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ABSTRACT

LIFETIME CONDITION PREDICTION FOR BRIDGES

Bayrak, Hakan
Ph.D., Department of Engineering Sciences
Supervisor : Assist. Prof. Dr. Ferhat Akgul

September 2011, 222 pages

Infrastructure systems are crucial facilities. They sypipé necessary transportation,
water and energy utilities for the public. However, whilerag these systems grad-
ually deteriorate in time and approach the end of their pifes. As a result, they
require periodic maintenance and repair in order to functiod be reliable through-
out their lifetimes. Bridge infrastructure is an essenpatt of the transportation
infrastructure. Bridge management systems (BMSs), usadbtator the condition
and safety of the bridges in a bridge infrastructure, hawédved considerably in the
past decades. The aim of BMSs is to use the resources in anadptianner keeping
the bridges out of risk of failure. The BMSs use the lifetimegfprmance curves to
predict the future condition of the bridge elements or beglgrhe most widely imple-
mented condition-based performance prediction and nraaniee optimization model
is the Markov Decision Process-based models (MDP). Theitapoe of the Markov
Decision Process-based model is that it defines the timantadeterioration using
the Markov Transition Probability Matrix and performs thietime cost optimiza-

tion by finding the optimum maintenance policy. In this stuitiyy Markov decision
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process-based model is examined and a computer prograndtthé&noptimal pol-
icy with discounted life-cycle cost is developed. The otherformance prediction
model investigated in this study is a probabilistic Bi-tanenodel which takes into
account the uncertainties for the deterioration procesistla@ application of main-
tenance actions by the use of random variables. As part o$tindy, in order to
further analyze and develop the Bi-linear model, a Latin étgpbe Sampling-based
(LHS) simulation program is also developed and integratéal the main computa-
tional algorithm which can produce condition, safety, afetdycle cost profiles for
bridge members with and without maintenance actions. Euribre, a polynomial-
based condition prediction is also examined as an altempgrformance prediction
model. This model is obtained from condition rating data pplging regression
analysis. Regression-based performance curves are raggshesing the Latin Hy-
percube sampling method. Finally, the results from the Marghain-based perfor-
mance prediction are compared with Simulation-basedrigdr prediction and the
derivation of the transition probability matrix from sinaikd regression based con-
dition profile is introduced as a newly developed approachas been observed that
the results obtained from the Markov chain-based averagdition rating profiles
match well with those obtained from Simulation-based meamdition rating pro-
files. The result suggests that the Simulation-based dondirediction model may

be considered as a potential model in future BMSs.

Keywords: lifetime condition prediction, Markov Decisi®nocess, transition proba-

bility matrix, simulation methods, bridges.
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KOPRULERN YASAM BOYU DURUM TAHM INI

Bayrak, Hakan
Doktora, Muhendislik Bilimleri B6lUmu
Tez YoOneticisi : Yard. Dog. Dr. Ferhat Akgul

Eylll 2011, 222 sayfa

Altyapi sistemleri hayati 6nheme sahip tesislerdir. Buestder kamu igin gerekli
ulasim, su ve enerji hizmetlerini §arlar. Fakat bu sistemler zamanla yipranir ve
yasam Omdurlerinin sonuna yaklasirlar. Sonuc olarak Btesiler islerlilikleri ve
guvenilirlikleri icin d6murleri boyunca dizenli araliklarbakim ve onarima ihtiyag
duyarlar. Kopruler altyapi sistemleri icinde ulasim ajtysinin 6nemli bir bolimunt
olusturur. Son yillarda, képri altyapisinda, koprulelimumunu ve glvertdiini kont-

rol eden Kopri Yonetim Sistemleri (KYS) gelistirilmigtiKY S’lerin amaci kopri-
leri cokme riskinden uzak tutarak, kaynaklari en uygunldelkullanmaktir. KYS’ler
koprilerin veya kopri elemanlarinin gelecekteki durumidahmin etmek icin yasam-
boyu performansggilerini kullanirlar. En yaygin kullanima sahip olan dora dayali
performans tahmini ve bakim optimizasyon modelleri MarKawar Sireci’ne dayall
modellerdir. Optimum bakim politikasini bularak, yasay maliyet optimizasyo-
nunu gerceklestirmesi ve zamanabg/ipranmay! Markov gegis olasilik matrisini
kullanarak tanimlayabilmesi, Markov karar surecine dagadelin 6zellgidir. Bu

calismada, Markov karar stirecine dayall model inceleediskontolu yasamboyu
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maliyet hesabini kullanarak en uygun politikayi bulan higisayar programi gelis-
tirildi. Bu ¢alismada incelenen @er bir performance tahmin modeli ise yipranma
sureci ve bakim uygulamalari igin rasgelegdenleri kullanarak bir¢ok belirsiZji
de hesaba katan olagia dayal bi-linear modeldir. Calismanin bir boélimu okara
Bi-linear modeli daha fazla analiz etmek ve gelistirmeik,id_atin Hypercube 6r-
neklemeye dayall bir simulasyon programi uretildi ve durgiavenlik ve yasam-
boyu maliyet profillerini bakim uygulamalarinin uygulanweeuygulanmama durum-
larinda Uretebilen ana programa entegre edildi. Ayricinpma dayali performans
egrisi alternatif bir performans tahmin modeli olarak ireedi. Bu model durum
siralama verisine regresyon analizi uygulayarak eldedledRegresyona dayali per-
formans @rileri Latin Hypercube 6rnekleme metodu kullanilarakregkiiretildi. Son
olarak, Markov zincirine dayali performans tahmin sonuganulasyona dayali Bi-
linear tahmin sonugclari ile kiyaslandi ve gecis ol@sitnatrisinin simile edilen reg-
rasyona dayalli durum profilinden elde edilmesi yeni geligh bir yaklasim olarak
tanitildi. Markov zincirine dayali ortalama durum sirakaprofilinden elde edilen
sonugclarin similasyona dayall ortalama durum siralamiélipden elde edilen so-
nuclarla ortistgl goézlemlendi. Bu sonug, similasyona dayali ortalamarduai-
mini modelinin gelecekte KYS’lerde kullaniimasi muhtenmaldel olabilecgini gos-

terir.

Anahtar Kelimeler: yasamboyu durum tahmini, Markov Ka®éireci, gegis olasilik

matrisi, simulasyon metodlari, képriler.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Infrastructure systems are crucial facilities for comntigsiand countries. They sup-
ply the necessary transportation, water and energy a8litor the public. Due to
increasing populations, the demand for these utilitiedde ancreasing and conse-
guently more facilities are being constructed to meet swgda. However, owning
such large number of infrastructure systems presents nawgmns. Allocating funds
and making decisions for maintenance and repair of thederagsto ensure their
survival and serviceability are two most important proldeemcountered during the
lifespan of old facilities. For instance, lifetime of thesgstems ranges from ap-
proximately 30 and 100 years [1] which means that these mgstequire long term

maintenance and repair in order to properly function ancetecefiable.

An essential part of the transportation infrastructurbésdridge infrastructure. Bridge
management systems (BMSs) used by developed countriesribomtine condition
and safety of the bridges in a bridge infrastructure havdvedoconsiderably in the
past decades. Initially, a number of BMSs were developeld asdontis [2], [3] and
BRIDGIT [4] after unexpected failures of certain bridgev&accurred such as the
Silver Bridge in the U.S. Using bridge management systenis,pgossible to estab-
lish maintenance and repair programs and to record conditi bridges. Inspec-
tions can be performed to record conditions of bridges angled fiime period may
be established between these inspections. In additionidgéoreplacement fund-

ing, the bridge management systems enable the allocati@sotirces for repair and
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maintenance of bridges. The aim of a BMS is to enable the mxamice repair or
replacement of the bridges using life-cycle managemehtigoes before their con-
ditions fall below a critical level. In other words, the gadldesign and management
of highway bridges is to determine and implement the bestifife design, mainte-
nance and repair strategy that insures an adequate levelialility at the lowest
possible life-cycle cost. In developed countries, spedii@ntion is paid to preven-
tive maintenance in order to prevent any problems in infuastire facilities before
they arise. Essential maintenance actions which are mgensive than others are
either postponed or canceled by applying preventive maamee actions which re-
duce the lifetime cost of a structural system [5]. Initiallyese studies started with
the use of alternative management model applications iardaleficiently use the
resources allocated for maintenance planning. The aimeoB¥Ss which resulted
from these applications was to establish the mésicive maintenance planning for
a network of bridges. Firstly, the U.S. lead the studies onSBMAASHTO LRFD
Bridge Design Specifications was put into practice by the Ataea Association of
State Highway and Transformationffidials (AASHTO) in 1993. System reliabil-
ity, aging and deterioration models were emphasized withenmaportance in this
new bridge specification. Following such developments aadgnizing the need of
such systems for monitoring the health of their bridge siftacture assets, numerous
other countries have initiated the development of their 8MSs such as Finnra in
Finland [6], Danbre- in Denmark [7], APT in Italy [8], China [9], Japan [10], Sigpe
in Mexico [11] and others.

Bridge Management Systems execute lifetime analysis fdoekf bridges. An
important subject in life-cycle analysis of bridges is thetattioration prediction of
bridges and their components. Deterioration predicticabées the determination of

remaining service life of a bridge and planning of future m@nance activities.

There are various causes of performance deteriorationtofietsral system. In rein-

forced concrete bridges, deterioration is caused by comad the main reason for
corrosion in concrete is the cholorization (chloridéusion into concrete, corrosion
of steel reinforcement etc.). The other deterioration $yjpebridges are inadequate
water insulation, inadequate design for therm@¢es, excessive loading, vehicle

collusions, inundations, the use of sea water in concretéung, damage resulted by



periodic freezing and thawing, faulty expansion jointsyltia supports, cracking of
reinforced concrete due to tension, alkali-silica reardj@nd settlement and collapse
in foundations. The causes of deterioration of performanayg be grouped into three
main categories. They include the aging (reduction of tasce and increase in load-
ing), special actions (collusions by vehicles, earthqaagellution, etc.) and human
errors (may arise at any stage in the lifetime of a structdr2)) Existence of deteri-
oration may have a major impact on the serviceability and arying capacity of
bridges. For instance, small amount of local corrosion aspessing steel cables of

prestressed reinforced concrete beams may cause a sudid@sem the structure.

Performance prediction of an infrastructure system idfacdit process due to exis-
tence of many uncertainties. Deterioration prediction at®ére produced to over-
come this dificulty. In addition, some deterioration prediction modeksyrireat the
uncertainties as random variables. These random variaitle&nown (or assumed)
probability distributions are generated by simulationhtgques and implemented
within performance prediction models to predict the parfance of a system. The
generated random numbers for variables with known proitabiktributions are the
main subject of the simulation process. Numerical simafathay be essential to
solve the problems involving random variables with knowngssumed) probability
distributions[13]. A sample obtained by simulation maysamt similar properties
to a sample of experimental observations[13]. Resultsimédaby simulation may
be presented statistically and applied to statistical pugf13]. Two most common
simulation techniques are Monte Carlo Simulation and Lbeiypercube Sampling.
In this study, Latin Hypercube Sampling method is programhineMatlab environ-
ment to generate random variables. Using the Latin Hyperouthod, it is possible
to obtain a more reliable parameter space with fewer it@mati This improves the
convergence rates and speed up execution. Thereforeffitiereey of Monte Carlo
Simulations is improved using this superior technique.tlt@more, its embedded
capability of handling multivariate distributions is adNageous in modeling studies.
Comprehensive information on this subject is given in Ceaagt Latin Hypercube
method is a sampling technique and it is subjected to samptiors. In other words,
if sample size is not infinitely large, Latin Hypercube Saimglsolutions are not

exact.



1.2 Literature Review

In order to obtain the best maintenance and repair stratiegyifetime performance
prediction of an infrastructure system should be corrqutddicted. Therefore, many
studies have been performed to generate performance fioeditodels. These mod-
els may be divided into two main groups such as safety- anditon-based models.
The safety-based models are based on continuous functidnsoasider the reliabil-
ity index or rating factor as a performance indicator. Fatamce, a bi-linear model
produced by Frangopol [14] is a continuous model. On therdthed, condition-

based performance models are generally discrete modelstadiks the condition
of a bridge members which is determined by visual inspectiBar example, the
Markov chain is a condition-based discrete model. Both w@thmaintain their va-
lidity because of their distinctive properties. In additia performance prediction

model which contains bi-linear continuous functions wa® aleveloped.

Lifetime performance prediction for bridges can be perfedmsing either a safety or
a condition criteria. In a well designed BMS, both of theseeda should be imple-

mented and monitored. In this thesis, safety predictiorhoug are described very
briefly followed by analyses based on a Markovian procesgdbgrediction tech-

nique and Polynomial-based prediction technique for doomdprediction of bridge

elements in time. As a part of the safety prediction, a vergflseview of the struc-

tural reliability theory is presented as a background ofgrerance prediction in

Chapter 2.

Some researchers studied the safety-based continuowsrparice prediction mod-
els. A reliability-based structural maintenance methogglbased on Monte Carlo
Simulation was developed by Lin [15]. Lin optimized relibty-based inspection and
rehabilitation strategy with minimum total expected castdoncrete girder bridges.
Moreover, a set of lifetime repair strategies for infrastue systems was optimized

by Estes [16] with a system reliability approach using thet brder reliability method.

In another study, Enright [17] suggested an approach, derieg the time-variant
system reliability for reinforced concrete highway girtdeidges with time dependent

resistance and loads. In that study, adaptive importamoplgag and numerical inte-
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gration were combined to predict performance levels offoeged concrete bridges

considering the environmental factors.

Kong and Frangopol [18] state that the assessment and poedaf structural de-
terioration is a dficult processes because of time dependent load and resigianc
rameters and applied maintenance actions . Therefore, sooertainties should
be introduced in a realistic lifetime analysis of infrasture systems under multiple
maintenance activities. In addition, Frangopol [14] menéid that the reliability-
based performance prediction models have to be implemémtedridge manage-
ment systems to take into account many uncertainties dtimmgfetime of a bridge

infrastructure system.

In another research study, performance prediction models€@ducted with life-
cycle cost procedure. In that study, maintenance and rapaans are applied to the

structure throughout its lifetime and new maintenancedegjias are presented.

Kong [12] proposed a method based on a modified decision dregaluate annual
probability of rehabilitation. This proposed model wasdise compute the present
value of the expected annual and cumulative cost of relatidin action. Not only
an individual bridge but also a group of bridges were exadhimigh the modified de-
cision tree method. Maintenance actions that were invatstijin this method were
time based strategies. The application time of the first ahdeguent maintenance
actions are described by probability mass functions in atixe time scale. Kong
[12] used a deterioration model to evaluate bridge relighrofile and the related
rehabilitation rate under no maintenance, preventive teaance and essential main-
tenance actions. This is a probabilistic model with eigimdam variables, which
include the deterioration rate, deterioration initiatibme, initial reliability index.
These random variables with known probability distribatfonctions were gener-
ated by using the Monte Carlo simulation technique. Furnttege, Kong conducted
a sensitivity analysis for rehabilitation rate and parametudies with discount rate
and target reliability index. Several maintenance scesakiere composed by time
controlled reliability profiles and safety controlled edility profiles. In addition,
an optimization algorithm was developed and optimum magntee scenarios were

investigated.



Studies about performance prediction of bridges indidaaé deterioration is a non-
linear process. Although structures have similar charitites based on design, con-
struction and components, they may havéedent deterioration rates. For this rea-
son, Petcherdchoo [1] investigated the bilinear and nealimeterioration functions
and rehabilitation times of structures with and withoutergive maintenance action
strategy based on the Monte Carlo Simulation techniquechedchoo generated
condition index, reliability index and deterministic arehdom cost profiles under
time-based maintenance strategies. The previously egiptiobabilistic model was
developed and applied to a group of bridge components widtezt®d maintenance
strategy. Time-based or preventive maintenance actiodgarformance-based or
essential maintenance actions were defined and a combiradttbese actions were
modeled and applied to a group of structures. In additiotgHeedchoo stated that
a minimum possible cumulative maintenance cost can notyallva obtained by ex-
pected cumulative maintenance cost. Hence, percentilegrofilative maintenance
cost should be taken into account. Eventually, Petcheepplied an optimization
method for combined maintenance actions to obtain maintanatrategy to mini-
mize total expected cumulative maintenance cost over @ntiéeof an infrastructure
system considering the minimum present value of expectetutative cost and the

percentile of cumulative maintenance cost.

Another researcher who studied the continuous performaneckction model is Neves
[19, 5]. Neves investigated a model which integrates peréorce indicators based on
visual inspection and structural assessment during teignie of a bridge. Condition,
safety and cost profiles were generated by this probabilistidel which is defined
as the bi-linear model. This model is a simplified perforneabhased method. It was
proposed by Thoft-Christensen [20] and provides lifetirmg@mance analysis with
small computationalféort using basic formulas. In this model, uncertainties were
threated as random variables and generated by Latin HylperSampling method.
Neves examined a time dependent reliability model propbgd¢bng and Frangopol
[18] and obtained reliability index and cost profiles whicthiit interaction with
each other. Furthermore, Neves generated several manteeeenarios and selected
optimum maintenance strategy considering the relatigniséiween the cost and the

effects of maintenance actions. In addition, nonlinear perémce deterioration of a



bridge infrastructure system under no maintenance andtemgince case was studied
and applied to deteriorating reinforced concrete strestim the Netherlands. Fur-
thermore, Neves conducted a multi-objective optimizaporcedure using Genetic
Algorithm to select the best maintenance strategy. In thisozation procedure, the
best situation for condition and safety index and minimuta@af mean cumulative

maintenance cost over lifetime were taken as the objeativetion.

Performance indicators are needed to describe time-depehéhavior of civil in-

frastructure systems such as bridges. Maintenance andgeraeat decisions may
be made based on these performance indicators. Conditier,isafety index, rating
factor, and reliability index are the most commonly usedqrerance indicators for
bridges. Current BMSs use condition based deterioratiediption models in order
to predict the lifetime deterioration of bridge elementsn@ition based prediction

generally relies on visual inspections of bridge elements.

The most widely implemented condition-based performamediption and mainte-
nance optimization models are the Markovian decision @®tmsed models. Thisis
a discrete performance prediction model. The laws of mdboa system in Markov
process is described using a set of time independent tranafion probabilities. In
order to apply the Markov decision process to bridge coslyaisa a cost structure
must be superimposed on the Markov process. The use of Marooesses to de-
termine the optimal decision policy is the subject of Dynamrogramming. The
solutions to such problems can be achieved by one of the #ippmaches: The
Method of Successive Approximations, Policy Improvemelgofithm and Linear
Programming [21]. It is not an easy task to obtain a solutisimgithe Method of
Successive Approximations within a finite number of itevad. However, a solution
can be achieved if the method is slightly modified. Furtheenthe Policy Improve-
ment Method is an alternative method based on iterationstwdiso aims to obtain an
optimal solution using finite iterations. In addition, dymia programming problems
may be stated as linear programming problem [22]. Markopi@tess models may
include integer-programming techniques [23].The impareaof the Markovian de-
cision process-based model is that it may define the timeuvadeterioration using
different Markov transition probability matrices forfidrent time periods and per-

forms the lifetime cost optimization by finding the optimurnaimtenance policy. The



Simplex Method, developed by G. B. Dantzing [21], is an appede method to solve
such linear optimization problems. In this thesis, a corapptogram is developed
and implemented into Matlab which has embedded optimizatolbox commands
using simplex algorithm to solve the linear programminggteas. Markov process
and its implementation in this thesis is explained thordyghChapter 3.

Saito [24] developed a network level bridge managemenierydb manage state
owned bridges by evaluating the present and future needsistirg bridges and
proposed a BMS composed of eight modules. The modules aalatia base, con-
dition rating assistance, bridge safety evaluation, im@noent activity identification,
impact identification, project selection, activity recmigland monitoring, and report-
ing modules. In Saito’s study, classification factors wesediuto divide bridges into
several subgroups according to identical properties taiobhore reliable results.
Highway system (interstate, other state)fficavolume (low, medium and high), cli-
matic region (northern, southern) and bridge types (cae@ed steel) were used as
the classification factors. Saito focused on consistenagpoatlition ratings, bridge
management costs and impacts, improvement of performarmt@eed assessment
models, and improvement of project selection models. Thgpt selection module
was divided into three sub-models, namely, life cycle cmgtranking and optimiza-
tion. Saito divided management activities into three maiugs. First, replace-
ment indicating the replacement of the entire bridge stimecincluding the approach
slab. Second, rehabilitation which indicates major repeiions. Last, maintenance,
which means minor repairs and preventive strategies. Statistal analyses were
performed to develop cost prediction models for bridgeae@mhent, rehabilitation
and maintenance. The data used in replacement cost anasiobtained by only
replaced state owned bridges between 1980 and 1985 in ttee@thndiana in the
U.S. A cost prediction model was generated by applying alimaar regression ap-
proach and transformed linear regression analyses beotimsefficiency of the use
of linear regression approach for cost data. Saito corsidéeck reconstruction and
deck replacement as two major rehabilitation activitieg dthtes that maintenance
activities should be applied periodically to avoid more@xgve replacement and re-
habilitation activities over the lifetime of the structarédand cleaning, bridge repair,

flushing bridge, patching bridge decks and other bridge teaance activities were



used to determine the maintenance activity costs. Furthiern$aito studied project
level and network level life cycle cost using the Equivalemiform Annual Cost
(EUAC) method. This method is suitable in order to evaluhterhultiple mainte-
nance actions with several analysis periods. In additioan&ing method was used
to set priorities on bridge rehabilitation and replacenpeajects. Moreover, analyses
were conducted to determine the application time of bridggacement and rehabil-

itation actions.

Jiang [25] studied to develop performance prediction nottelbridge management
systems. A dynamic optimization model was developed tataleoptimal strategy.
Jiang used a curve-based technique to predict the perfaeraibridges. The curve-
based model was obtained by using regression analysis wiaistapplied to Indiana
bridge inventory data obtained by visual inspection. Geragorithms [26] or neu-
ral networks are suitable for maintenance optimizatioruifze-based techniques are
used for deterioration prediction. Therefore, Jiang [25}erated transition probabil-
ity matrices from regression curves by solving nonlineagpamming optimization
formula to implement dynamic optimization model. In thidiopzation model, the
optimal strategies which maximize the benefit of the systems wbtained during
analysis period. Furthermore, this optimization model s@sjected to budget con-
straints. Jiang [25], moreover, studied an alternativéntipation method. In that
method, a ranking model developed by Saito [24] and the dynaptimization tech-

nique were combined.

Another study related to bridge management systems wasictatiby Golabet al.

[27]. They studied a statewide pavement management sy$teermaximum benefit
and minimum cost approaches were considered together aradheemmatical model
was developed. This mathematical model formulated thelpnolas a constrained
Markov decision process and linear programming was usedtrmine the optimal
policy. The long-term and the short-term model were stuttieabtain maintenance
policy which minimizes the expected long-term average aagdtminimizes the total

expected discounted cost during the first T years with steont standards.

Madanatt al. [28] studied to estimate the transition probabilities froomdition rat-

ing data which was based on discrete rating due to complekagntinuous condition



indices. In addition, Madanat al. [28] studied to develop incremental models. Sim-
ilar to Jiang [25] and Saito [24], Madanettal. [28] also used the bridge data from
the Indiana State Bridge Inventory. Madanat introducedva methodology based
on the ordered probit technique. Madanat claimed that #higmethodology gave a
better estimation of the Markovian transition probalektithan those obtained using
the commonly used methodology.

Another study on estimation of transition probability ni@ggs was conducted by
Ortiz-Garda et al. [29]. They generated six fierent data sets representingfeli-

ent condition rating distributions. Subsequently, thrgBedent methods for determi-
nation of transition probabilities from six fierent data sets was studied. The first
method minimizes the sum of squaredteliences between the average condition ob-
tained from the distribution of condition and each of datanfso The second method
uses the regression equations calculated from the datarsg&sms to minimize the
sum of squared élierences between the condition rating value obtained frgmese
sion equations and the average condition value computed fn@ distribution of
condition. Aim of the last method is to minimize the sum of sugiared dferences
between the distributions from original data and distiitmsg obtained from transi-
tion probabilities. Nonlinear optimization code was usedthe solution by the three
methods. Ortiz-Gaia et al. [29] claimed that the three methods give a good estima-
tion to the most original data, however, the third methodb@detter solutions for all

data sets.

Another study on the Markov chains was conducted by Morc80% [This study
examined the properties of Markov performance predicti@mueh using field data.
The field data was obtained from the Ministere des Transpo@débec (MTQ).
This study focused on the bridge deck systems. In this stuaydifferent condition
rating systems are used, namely; material condition rayrsiem and performance
condition rating system. In addition, the transition proitity matrices are generated
by using the percentage prediction method for both of theadition rating systems.
Examined properties are th&ect of inspection period and state independence as-
sumption on future condition prediction. As results of tlisdy, it is concluded that
the variation in inspection period presents an importéiece on condition forecast-

ing . Moreover, applied tests reveal that Markov chain maglalmemoryless with a
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95% level of confidence.

The Markov decision process is widely used maintenance epdimr optimization
algorithm in BMSs. Dynamic programming, on the other hasdhe name of the
general technique to find an optimal maintenance and rephaydor a deteriorating
system using transition probabilities. These transitimbpbilities are obtained from
bridge condition data which is gathered from inspectionsil@&vitz and Madanat
[31] state that there may be measurement errors becaussuofipgons on inspection
procedure. In their study [31], the assumptions which mayseahe measurement
errors are presented as error-free facility inspectiomsfexed inspection schedule.
A methodology which is called the Latent Markov Decisioné¢&ss (LMDP) is ap-
plied to take into account the presence of both assumptiotisi selection of opti-
mal maintenance and repair procedure by Madanat. The ldéergion process does
not assume the measurement of facility condition with noreriThis is the major
aspect which dfers the latent Markov decision process from traditional kd&mpro-
cess. In the LMDP formulation, data information may be updawith subsequent
inspections by using Bayes’ law, the known transition ancsaeement probabili-
ties. In Smilowitz and Madanat’s study [31], the LMDP mode¢ktended to include
network-level problem by using randomized policies. The@M®Mand traditional
MDP produce normally nonrandomized policies which speaiingle optimal pol-
icy. However, the extended methodology produces optinabgilities for optimal
policies for each state of the system. Smilowitz and Madgijtadapted the LMDP
formulation for the finite and infinite horizon to optimizesiection procedure and
maintenance and repair activities for a network-level wigasurement and forecast-
ing uncertainty. As a result of this study, it is observed tha expected costs increase

as uncertainties increase for both planning horizon types.

Deterioration models are used to predict the future coomlibif deteriorating systems.
In Markovian models, history of the condition states of asfiructure systems is not
taken into account to predict the future conditions. Thigation is a limitation on
forecasting of bridge condition. In the study conducted bp&in and Madanat [32],
a history-dependent model of bridge deck deterioratioroimtilated as a Markov
chain to overcome the limitation mentioned earlier. Thigad@ped method is an op-

timization approach for a bridge component maintenancerepldcement. In their
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study, condition of the bridge component is representechbyréliability index. In

addition, transition probabilities are estimated by usvante Carlo simulation. Fur-
thermore, the augmented state Markovian model is propogading a backward
recursion algorithm. The proposed model includes new kibasasuch as type of the
latest action and time since the latest action. As a restittedf study, if the proposed
Markovian model is applied, only maintenance actions wbeldpplied this way, and
performance threshold for the component would not be rehutlign a lower budget

during the planning horizon.

Another study related to Markovian deterioration model e@sducted by Thompson
and Johnson [33]. The purpose of that study was to develop rkdvian bridge

deterioration model from historical data. It is stated t@tdition state data obtained
from inspections may not be Sicient to predict future condition. More realistic

condition prediction may be obtained by knowing actual rrenance records.

Lounis and Vanier conducted a study [34] that combines Magkodeterioration
model with a multi-objective optimization procedure toahtthe optimal allocation
of funds and to determine the optimum policy for maintenamepair and replace-
ment. In their study, a stochastic multi-objective optiatian problem formulation is
used for the bridge maintenance management problem. Thiemzaxion of bridge
condition rating and reliability and minimization of magmance costs may be the
objectives of the problem. In addition, compromise prograng and minimum Eu-
clidean distance criterion and procedures were used tanotita priority optimal
ranking for deteriorated bridges. The minimum conditioting, minimum mainte-
nance cost, and maximum average dailyfitavere examined as three objectives in
that study.

A study conducted by Scherer and Glagola [35] examined thekdwén deteriora-
tion model for bridge management system. In the study, itated that the Markov
decision process is a powerful tool for representing detation model and for de-
termining optimal policies to control a large-scale systémtheir study, memoryless
property of the Markovian chain is tested by an inferencdyaigusing a chi-square
statistic. It is seen that the past condition do not have gomant éfect on future

condition.
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Lifetime safety and condition prediction for bridges isaisherently related to the
field of structural health monitoring. Time dependent cleimgperformance can be
observed through structural monitoring techniques. Thestadevelopment in this
field is the use of sensors such as the sensor-based mogisystem for reinforced
concrete and prestressed concrete structures [36]. Thisésvly emerging field in

performance evaluation of structures. However, its appba is limited so far.

1.3 Research Objectives

The objective of this thesis is to develop an approach whahhines the power-
ful ability of the Markovian maintenance optimization médath simulation-based
transition probability generation. There are severalgrarance prediction models
such as bi-linear model, polynomial-based model, and Mackain approach. Each
model has its own distinctive properties. In this studyoélihe existing models are
investigated in order to achieve further development ia fi@ld. In current Bridge
Management Systems (BMSs), Markov chain method is the peefenodel since
it gives the optimal strategy via dynamic programming. Oaather hand, Markov
chain approach has some limitations which is to be explaiméie following chap-
ters. Therefore, Markov chain approach and bi-linear madeinvestigated to com-
bine powerful properties with an interactive relation aseavrapproach. Deteriora-
tion rate and transition probabilities are the same notfongleterioration predic-
tion models. The mentioned new approach obtains this ndtioboth models via
simulation-based deterioration model. Therefore, botdemay be investigated in
the dynamic programming to achieve optimal strategy foridger system during its
lifetime.

In order to achieve the objective of this research, the tagkrteeded to be completed
are listed as follows:

1. Develop a simulation program in order to conduct prolistil analyses in-

cluding multiple random variables.

2. Examine existing performance prediction models whiabvigle information

about performance and deterioration condition of a detatiitg bridge or bridges
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and to obtain performance prediction curves.

. Determine the applicable maintenance and repair actmmisridge systems

throughout their lifetime.

. Investigate how the structural performance and lifeeyclst of the structures

may be &ected by the applied maintenance and repair actions.

. Study the theory of Markovian processes and chains andmndignprogram-
ming in general, derive the necessary formulations, devaloalgorithm for
the solution of the problem using linear programming andetigy the neces-

sary computer program.

. Obtain an optimal solution for dynamic programming pesblby using linear

programming.

. Produce regression-based performance curves usingpsiomun order to de-

rive Markov transition probabilities.

. Obtain optimal strategies using dynamic programmingnfdas and simulation-

based continuous performance prediction models.

In this study, Latin Hypercube Sampling simulation teclueidpas been implemented

in Matlab computer environment to incorporate uncertasin the problem by gen-

erating random variables. In addition, several other cdemrograms are developed

and implemented for deterioration modeling, includindirigar, Markov process and

Regression-based condition prediction models, in ordectmmplish the objective

of this study.

1.4 Organization of the Thesis

The thesis is divided into seven chapters.

Chapter 1 introduces, from general perspective, the performanagigiren concept

and deterioration modeling for deteriorating infrastuetsystems. In addition, stud-

ies conducted on Bridge Management Systems (BMSs) to depeldormance pre-
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diction methods are mentioned. Finally, objective and oizggtion of the thesis are

presented.

Chapter 2 presents subjects on condition, safety and combined peaioce predic-
tion. Two general approaches for performance predictiencondition and safety
prediction, are briefly explained. Reliability-based petidn and rating factor-based
prediction are discussed in safety-based prediction@ectProbability of failure-
based prediction and reliability index-based predictionstitute the reliability-based
prediction methods. In addition, basic probability cortseptructural reliability and
system reliability are defined. Condition prediction basad/isual inspection is in-
troduced. Finally, combination of condition and safetwdxh performance prediction

is presented in combined performance prediction section.

Chapter 3introduces the Markov process-based condition predictast, the chap-
ter provides information about the dynamic programmindopem in general. Then,
linear programming is introduced as a solution techniquelymamic programming
problem. A computer progranMarkov.m, developed by using Simplex algorithm to
obtain the optimal procedure for maintenance actions bynhya decision process is
introduced. Numerical examples are solved to reveal howl¢eesion process works.
Furthermore, complete formulation of the computationgbathm is derived for dif-
ferent number of states and number of action cases obtaledlly, steady-state

case and transition probabilities are explained and swistare discussed.

Chapter 4 presents the simulation techniques in which Monte Carlakition tech-
nique and Latin Hypercube sampling method are describethisgrChapter, a sim-
ulation computer programatin_hs.m, developed using Latin Hypercube sampling
method to incorporate uncertainties in deterioration nindds explained. More-
over, applicable maintenance actions for the bridges aestigated. In addition, a
computer progranihs _csc.m, developed to produce the bi-linear model performance
prediction curves for condition, safety and cost profileals® introduced. Mainte-
nance actions are implemented into the csc.m program through an input file and

performance curves under maintenance actions are obtained

Chapter 5 presents the regression modeling used to predict the bpedermance

over lifetime. Condition data for bridge components frordiéma Bridge Inventory
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[25] is used to obtain performance prediction curves bygiie regression model.
Finally, obtained performance curves are regenerateding sgnulation for the co-
efficients of regression-based performance curve formufgects of three dierent

codficient of variations values are observed for thesdfamments with normal dis-
tribution. Probabilistic performance prediction curves abtained from the bridge

inventory data.

Chapter 6 explains further the studies performed in this thesis basedlarkov

chain approach for condition prediction of bridges. Detieation of the future per-
formance prediction of a structure with initial conditiotate vector and transition
probability matrix is presented. Moreover, derivationraifrsition probability matrix
from simulated condition profile is introduced as a new apphofor estimation of

transition probability matrix.

Chapter 7 summarizes the thesis by briefly presenting the studieopeed. In
addition, findings and developments are discussed. Fjnabommendations for

future work are given.
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CHAPTER 2

SAFETY AND CONDITION PREDICTION FOR BRIDGES

2.1 Introduction

Lifetime performance prediction for bridges can be perfedmsing either a safety or
a condition criterion. Reliability-based prediction aradimg factor-based prediction
are examples of safety-based performance predictionh&umiore, condition crite-
rion involves Markov decision process and polynomial basedlition prediction. In
a well designed BMS, both of these criteria should be implaed and monitored.
However, currently, the BMSs do not have this capability. dverview of the safety

and condition prediction methods is given in the followimgtons.

2.2 Safety Prediction

The assurance of system performance within the constréiat@nomy is one of
the principal aims of engineering design. During the preadglanning and design
many decisions that are required are invariably made uratetittons of uncertainty,
and risk is often unavoidable. Therefore, the assurancemdmpnance can seldom
be perfect. Safety is a function of combinations of loadsrdke lifetime of the
structure. Structural safety depends on the load carrnapggity of the structure and
safety-based prediction models are produced by struassgissment. There are sev-
eral procedures used for prediction of safety level of ageichember or a bridge. The
two main procedures used for safety prediction approacteesefability-based pre-

diction and rating factor-based prediction. These twotggfieediction approaches are
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described in detail in sections 2.2.1 and 2.2.2. The purpfibe discussion presented
in this section on safety prediction is to explain the megwifthe safety profile which
will be discussed in Chapter 4. Safety index profiles are gead in Chapter 4 with-
out using the formulations that will be presented in thigisec This is because of the
fact that the main focus of the thesis is the condition pteatidor bridges. However,
normally, value of a safety index must be calculated usiegdhmulations that will
be presented in this section. In other words, unlike the timmdassessment which
is generally performed visually, safety assessment ndymeduires structural engi-
neering formulations or determination of quantified valfiéesistance degradation
and load increase in a bridge member. The formulations ptedéherein form the
background on how the safety index profiles presented in t€hdpvould have been
determined. Although the structural reliability analyssoutside the scope of this
thesis, a brief overview of the subject is necessary befm®udsing the concept of

safety index in future chapters.

2.2.1 Reliability-based Prediction

Prediction of element and system reliability are generadlged on either the calcu-
lation of the reliability index or the probability of failerwhich are described in the

following sections.

Reliability I ndex and Probability of Failure

The bridges are expected to be in service for a long time withdequate repair and
maintenance. As bridges age, structural weakening duetheftic and aggressive
environmental factors such as impact of stream, climatth@aake, additional dead
loads and environmental pollution becomes more importawceshese factors lead

to an increase in repair frequency and decrease in loadicgrgpacity.

Load and resistance have a time dependfateon probability of failure throughout
the service life of a structure as shown in Figure 2.1. As shiovthis figure, expected
resistance of a structure decreases in time because obemental factors, whereas

expected load increases in time.

18



RESISTANCE DISTRIBUTION (R)
LOAD DISTRIBUTION (Q)
R

ot i
<
o
— | |
()
=
=
w a
@)
=
=
'_
5 i
« Q
L
Wl

- ' -

7’
’
v
i i
1 1
tO tl t2

TIME (YEARS)

Figure 2.1: Load and resistance distribution throughortise life

Probabilistic measure of assurance of performance is dkéisaeliability. Nowa-
days, the use of moving load déieient method and reliability analysis method for
structural analysis of bridges are rapidly increasing imtdes that have made progress
in the subject of structural evaluation of bridges. In depeld countries, in the area
of structural assessment of bridges, structural safetgron is the most important
criterion among all other criteria taken into account whagliects the determination

of investment budgets for bridge maintenance and repair.

Reliability analysis methods are in the subject of the memsastudies based on
probability. Reliability can be formulated as the deteration of the capacity of
a system to meet certain requirements. Probabilistic eat@iistructural load and

capacity can be modeled as follows.

R = Supply Capacity (Resistance)

Q = Demand Requirement (Load)

If it is assumed thaR can be represented by the distribution of strength of a tstraic
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element andQ can be represented by the distribution of load as shown iar€ig
2.2, reliability of that structural elemeiits, (probability of safety or probability of
having qualified level of structural performance) is defibgdhe area under the joint
probability distribution functionfr o(r, g). Insuring the eventR > Q) throughout the
lifetime of the structure is the objective of the relialyildnalysis. This is possible
only if the probabilityP(R > Q) is satisfied. Probability of occurrence Bf> Q is
calculated by integration given in Eq. 2.1.

Ps=P(R>Q)=PR-Q>0)= ffR o fro(r, g)drdq (2.1)

In Eq. 2.1,fro(r, 0) is the joint probability distribution function d andQ. The term
(R- Q) defines another random variable which is defined as SafajioR¢or Safety
Margin) denoted by, (i.e., M = R— Q). Mean ofM and its standard deviation of

M are denoted by andoy, respectively.

On the other hand, probability of failure can be defined aptbbability of resistance

being less than the load, which is formulated as shown in E4. 2
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P = f ) [1 - Fq(x)] fr(X)dx (2.2)

If RandQ are independent random variables with normal distribgtigmobability
of failure can be calculated as a function of the r#ﬁé as givenin Eq. 2.3.

Pf:P[R—QSO]:P[MSO]:(D(—g—M) (2.3)
M

® function has the property shown in Eq. 2.4

®(_m) 1- cp(“—M) (2.4)

In the Eqg. 2.3® is the Laplace function ( cumulative distribution functiirstandard
normal variable). The ratié‘_% is described as reliability index ( or safety index ) and
shown byg. Therefore;

(2

Using the description of safety margin, for normally distried random variables, the

reliability index formula can be extended as:

MR = 1Q
[ 2 2
O'R+O'Q

The probability of occurrence of any evdain statistics, i.eP(E), is between 0 and

B= (2.6)

1 as shown in Eq. 2.7.

0<PE)<1 2.7)

If occurrence of an event is impossible, probability of ateace of that event is 0.
In addition, the probability of certain event is 1. These faredamental axioms of

probability. Safety and failure of a component or a systemusually exclusive and
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collectively exhaustive because safety and failure of apmment or system cannot
happen at the same time; that is only one of them must occursangle space
consisted of safety and failure. Therefore, probabilitysafety Ps in terms of the

probability of failureP; is defined as shown in Eq. 2.8.

Ps=1-P; (2.8)

Eg. 2.9 can be obtained by substituting Eq. 2.3 and 2.4 int@E8g

Ps = Q)(B) (29)

The safety margirM also defines the so-called performance functi¢x). Perfor-
mance functions depending on random variables can be deddwafind the proba-
bility of failure of a system. The performance functigfx) is defined as:

>0 Safety
g :{ =0 LimitState (2.10)
<0 Failure

g(X) describes the limit state of the system. The vet@ontains the random vari-
ables. Solution of a limit state function yields the rell@apiindex (or the probability

of failure).

Structural systems are composed of structural membersdditi@n, reliability of
structural systems may befidirent from the structural components that form these
systems. In other words, capacity of the system &iexcted by the capacity and for-
mation of the members. There are several types of systemglpaseries, parallel,
and combination systems defined based dfeint combination of topologies and
configuration of structural components. Furthermore,tgaje failure of these sys-
tems are determined usingfiidgirent formulations. System reliability has a notable
feature stated by Estes and Frangopol [37]. In their studyas demonstrated that
a component with the lowest reliability in a system may netagls the one that is

most needed to be repaired, because a component whosélitgliadex is below
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the target reliability level may not cause the reliabilifitloe system to fall below the

target reliability.

If components of the systems are connected in series, sgbénsy are called series
systems and the failure of these systems requires faildrasyoone of the compo-
nents. In other words, the reliability or safety of the systequires that none of the

components fail. Safety of a series system is defined as simolam 2.11,

(@ >0) (2.11)
k=1

If components of the systems are connected in a parallelgroation, such systems
are called parallel systems and the total failure of theséegys requires failures of
all components. In other words, the system remains safe/ibaa of the components

survives. Failure of a parallel system is defined as showmir?EL2,

() (@® <0) (2.12)
k=1

Many structures in reality include a combination of serieg parallel systems. Fail-

ure of a combined system is defined as shown in Eq. 2.13,

Lmj ﬁ (9(¥) < 0) (2.13)

=1 k=1

Illustration of Relationship between Reliability Index, Probability of Failure and
Probability of Safety.

If resistancdr and loadQ are normally distributed and independent random variables
there exist a direct relationship among reliability inggeprobability of failureP; and
probability of safetyPs as given by Eq. 2.14 and as shown in Table 2.1.

Ps=®(8) = 1- Py (2.14)
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Table 2.1: Reliability indices and corresponding valueprabability of failure and
probability of safety

g || 0067 10 128]165 233| 309 | 372 |426| 475|520 561| 6.0
P;[[05]025]016|010[005]001| 10° | 10* [10°]10°] 107 |10°%|10°
Ps 105]0.75]0.84|090| 095|099 099909999 ~ ~ ~ N ~

Figure 2.3 represents the relation between probabilitaiddife and reliability index.
In addition, relation between probability of safety andateility index is shown in
Figure 2.4. As can be seen in these figures, probability ddriaidecreases when
reliability index increases. In other words, probabilifyfailure and reliability index
have inverse relation. In addition, probability of safetgléx and reliability index
have direct relation. It may be stated that probability désaindex increases rapidly
when reliability index increases.

Probability of Failure-based Safety Prediction

Probability of failureP; can be used as a performance indicator to quantify the struc-
tural safety. Various researchers have studied the litesiafety of bridges using
probability of failure as the safety criterion.

Enright [17, 38, 39, 40, 41, 42] studied deterioration medxlreinforced concrete
bridges and investigated the reliability of reinforced cate highway girder bridges
under aggressive conditions using a time-variant serigesyreliability approach in
which both load and resistance are time dependent. Enrgga Monte Carlo Sim-
ulation technique with Adaptive Importance Sampling anangtical Integration to
determine the cumulative-time failure probability pradileEnright determined nom-
inal live load dfect using AASHTO requirements (LRFD 1994), and described th
live load by a Poisson point process.

Hong [43] extended the treatment of Mori and Ellingwood [4#[ considered the
uncertainties in the deterioration initiation time andhe tdegradation growth model.
Hong has taken into account the correlation between theréslof structural ele-
ments in a structural system for the system reliabilityreate. He used the nested
reliability method which do not require the simulation todfig; (t), and used FORM
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( First Order Reliability Method ) to find reliability index odeling the structure as
series and parallel systems. Hong used algorithms dedarilj&5], [46] to find prob-
ability of failure for the systen;;(X, u) and presented an integrated methodology to

evaluate the time-dependent reliability for deteriorgttructures.

Probability of failure of a series system is determined from

Pij(x,u)=1- P[ﬂ (gk,ij(x, S, U) > O)] =1-®d(-8,p) (2.15)

k=1
Similarly, the probability of failure of a parallel systerarcbe determined from:

Pij(x.u) = P[ﬂ (kij (X S U) < 0) | = ©(-.p) (2.16)

k=

[N

Reliability | ndex-based Safety Prediction

As an alternative criteria to probability of failure, rddiéity index has been more

often used as a measure of safety for bridge elements arehsyst

Estes and Frangopol [47] have studied to provide managedesigions that will
balance lifetime system reliability and expected lifeleycost in an optimal man-
ner and predicted remaining life reliability profiles forthdoridge components and
overall bridge system. Estes proposed a system reliabifiproach for optimizing
the lifetime repair strategy for highway bridges and modédhes bridge as a series-
parallel combination of failure modes, and developed hstidtte equations for each
of failure modes in terms of some random variables, and ctedpseparately the
reliability with respect to occurrence of each possibléufai mode based on these
limit equations using FORM. He transformed all random ualga to uncorrelated
standard normal variables and used an iterative searchitgehto compute the re-
liability index . Estes found the optimum lifetime repairategy by examining all
feasible combinations of developed options and consigethie service life of the
bridge.

Akgul and Frangopol [48, 49] conducted reliability anasysf bridge components us-

ing performance limit state functions defined in terms ohdtad code formulations
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in AASHTO (1996) specifications.
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Figure 2.5: Reliability index profile

Reliability-index-based prediction of lifetime safetynche demonstrated by a time-
variant reliability index profile ( i.e. Safety Profile ) asostm in Figure 2.5. In this
approachp is assumed to be a quadratic function of time, jgé&) = 5 - 6t2. The
assumption is made to demonstrate the relationship betg@esmdPs (t) in time, as
shown in Figures 2.5 and Figure 2.6, respectively. NormA(ly must be calculated
using FORM, SORM or a similar reliability method.

For g values between 0 and 5, over a given time horizon ef O tot = 1, the

corresponding?; values can be plotted as shown in Figure 2.6.

2.2.2 Rating Factor-based Prediction

Bridges are designed with respect to design vehicle loadseder, vehicle weights
in traffic do not remain the same over the lifetime of bridges. Theeefaridges are

subjected to larger weights in time. In addition, bridgetederate and therefore,
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their load carrying capacities also decrease in time. Hesefety of older bridges
should be examined to ensure safety of public. Rating is eesslmowing the safety
level of a bridge structure at any age. In other words, thegs® of finding the safe
live load capacity of a bridge is referred to as the rating.ad.oating of a bridge
member can be calculated using certain formulas, and i&trans of resistance and
load are known, time-variant rating value can be calcul&ec bridge member or
for a bridge. Such a performance prediction graph can be asex Safety Index

Profile.

In general, structure safety concept depends on the eritdrich defines the relation
between resistand® and loadQ. The criteria is that resistané&should be greater
than loadQ as displayed in Eq. 2.17 [50].

R>Qu+Q+ ) Q (2.17)

where,
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Ris the resistance (or capacity) of the member
Qq is the dfect of dead load

Q is the dfect of live load

Qi is the dfect of loadi

Maximum allowable live load should be determined to evaulé bridge rating fac-
tor. Rearranging Eq. 2.17 f@), yields

Q< R—(Qd-i‘ZQiJ (2.18)

Q in Eqg. 2.18 is called the maximum allowable live-load (onuattive load capac-
ity). Rating Factor is described as the ratio of actual loed capacity to the required
live load capacity of a bridge component and it is formulatsd

RE — (Actual Live Load Capacity
" (Required Live Load Capacity

(2.19)

As shown in Eqg. 2.19, the rating factor has to be equal to ceexainity to carry the
rating vehicle safely. However, when the rating factor ssléhan unity, the bridge is

subjected to overload.

Rating factor has dlierent values for dierent bridge members. In other words, abut-
ments, piers, columns, footing girder and slabs may hafferdint actual live load
capacities and required live load capacities. Therefdractires may have several
rating factors according to its components, but minimumaoihg factor is consid-
ered as the rating of structure. In other words, componeatwidge with minimum

rating factor defines the safety of the bridge.

There are three available rating factor methods for bridgments including Allow-
able Stress rating (ASR), Load Factor Rating (LFR), and LaradiResistance Factor
Rating (LRFR). There are two levels of rating which are dfess by strength re-
guirements [48]. First, inventory level rating can be defias the safely carried load
by the bridge for indefinite period. Second, operating leegihg is described as
the absolute maximum permissible load which may be safetyechby the bridge.
The part of the actual live load capacity shown in Eq. 2.38,(Qq4 + >; Qi) can be
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denoted as:

o 29)

Q

Then, Eg. 2.18 takes the following form.

Q<R-Q (2.20)

Introducing the load and resistance factors, actual liael loapacity can be written

as:

PR—¥BqQ (2.21)

where,

¢ is the resistance (capacity) reduction factor,
Ris the resistance (capacity) of the member,
v is the load factor,

Bois the dead load cdiécient,

Q is the dead loadféect on member.

Similarly, required live load capacity is formulated addals.

YBL+nya L+ (2.22)

where,

B+, 1s the live load cofficient,

L+ is the live load &ect on member including the vehicle impact.

Substituting the actual live load capacity and required llbad capacity into Eqg. 2.19
yields
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_ (#R—-¥BqQ)

RF = 22 YPQY)
(YB+1,Lw+1y)

(2.23)

The dead load and live loads are the only loads consideredterrdining the rat-
ing factor because the probability of occurrence of othadltypes such as thermal,

earthquake, hydraulic and wind load during the short liaglloading is very small.

The load factorsy, S +1),, andL.) are defined in AASHTO (1996) Table 3.22.1A
for each group of structure [48]. Load factor and loadfioent of member which
work under flexure and tension are as follows: 1.3, 8o = 1.0, andB ., = 1.67,
for operating rating leves ., = 1.

Consequently, basic rating factor formulas become:

For inventory rating,

(¢R-1.3Q)
RF=—~—— 2.24
(2271 41) ( )
For operating rating,
RF = M (2.25)
' (1.3L(L+|)) '

Once the rating factor is calculated for a given bridge memiséng the formulas
given above, if the variation in time d&® andQ can be predicted for the future, the

time-variant rating values can e obtained for a bridge membe

However, determination of the time variation of resistaacd load for a deteriorating
structural member is not a straightforward procedure.duies further modeling of
both resistance degradation mechanisms in the memberemeége in vehicular load
levels in time. Modeling of resistance degradation medrariof reinforced concrete
and steel are still be subject of considerable researchdriighd and are beyond the
scope of this thesis. In this thesis, safety index profiles@nted in Chapter 4 are not
obtained considerinB andQ formulations given in this chapter. Instead, simulation-
based safety profiles are generated which are based omhsalfidy index distribution

and deterioration rates, both of which are treated as randoiables.
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2.3 Condition Prediction

Safety-based performance prediction for bridges reqtlesse of formulas contain-
ing resistance and load requires the prediction of thestifife variations. Condition-
based prediction, on the other hand, is based on condititmafabridge members
or bridges obtained through visual inspection techniqg@emdition data is based on
previously defined standards of damage categories (oredpsspresented by num-
bers or letters, denoting little, medium or heavy damagel¢evDamage categories

may be as little as four or as many as ten or even more.

There are other approaches for condition prediction ofdasdother than Markov
process-based models. A thorough background on such studie presented in
Chapter 1. The other approaches include bi-linear or pelyabbased condition
predictions and regression-based prediction methodsth&napproach is the use of
simulation techniques in combination with the approactsted above. As an exam-
ple, Neves [51, 5] analyzed the variations in time of prolstic performance indi-
cators of existing bridges according to condition, safety eost under maintenance
strategies. Neves and Frangopol [19] have proposed a mdueh\Wwelps prediction
of uncertainties in the application times of maintenandas, the &ects of main-
tenance actions and the deterioration process of exigtingtgre on the performance
indicator and life-cycle cost of structure. UncertaintiedNeves’ model was gener-
ated by Latin Hypercube Sampling. Neves used Genetic Algos to optimize the
time of application of maintenance actions.

In this thesis, separate computer programs are developedlfong the lifetime con-
dition prediction for bridges with the ultimate objectivEambining the results of
simulation techniques and hence the randomness of thegonowith the lifetime
optimum policy determination capability of Markov procdsssed on discrete time
intervals.
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Notations in Chapter 2

R

Q

Ps

P+
fR,Q(r’ q)
M

Hm

oM

()]

B

HRrR
OR
HQ
JQ
P(E)
9(x)

Supply Capacity (Resistance)

Demand Requirement (Load)

Probability of safety

Probability of failure

Joint probability distribution function dR andQ
Safety region (Safety Margin)

Mean ofM

Standard deviation d¥i

Laplace function ( cumulative distribution function oéetlard
normal variable )

Reliability index

Mean ofR

Standard deviation dR

Mean ofQ

Standard deviation d

Probability of occurrence of an event

Limit state function (Performance function)
Effect of dead load

Effect of live load

Effect of loadi

Rating factor

Resistance (capacity) reduction factor

Load factor

Dead load coféicient

Live load codficient

Live load gfect on member including the vehicle impact
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CHAPTER 3

MARKOV PROCESS BASED CONDITION PREDICTION

A few of the currently used maintenance management systentwrifiges use the
visual inspection-based discrete condition states andddiged Dynamic Program-
ming methods. In Dynamic Programming, the state of a detdiig system change
with respect to time. The prior states have more importélieceon the transition
from one state to another. However, the process of changbecamdeled with the
Markov process if the transition probability depends ordingent state. Markov pro-
cess is currently used in a few bridge management systemse\téo, the research
on such systems is still continuing to improve the existirgglmds by incorporating
new performance measures such as structural reliabiliye dbjective of the op-
timization of bridge maintenance through bridge lifetire¢o determine how to use
the existing resources in order to keep the bridges at aaiclepteliability levels while
having the lowest lifetime cost. Because of discrete nattiits formulation, Markov
process-based condition deterioration model match well thie fact that condition
data on deteriorating structural elements is also cokeatediscrete time intervals.
Morcous [52] used Markov-chain models which are based onassumptions for
predicting the future condition of bridge components, ey, and networks. The
first assumption is constant inspection period, and thengbisostate independence.
Markov chains are a special case of the Markov processesarandsed as perfor-
mance prediction models for bridge components by definiagrdte condition states
and accumulating the probability of transition from one dition state to another
over multiple discrete time intervals. Morcous developaasition probability ma-
trices for diferent elements of the deck system, and used Bayes’ ruleustddf the

variation in the inspection period. Transition probal@bktare obtained either from
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accumulated condition data or by using an expert judgment.

The laws of motion for a system in Markov process is descrimdg a set of time
independent transformation probabilitié!‘ﬁa defines the probability that the system
may be at level at the beginning of the next time intervalvhen the system is at
leveli now and actiorais chosen without any consideration about the past comditio

t=1 t=t

Figure 3.1: States, Time and Transition Probability in MarRrocess

In order to apply the Markov decision process to bridge revaaralysis, a reward
structure must be superimposed on the Markov process. ithheatis chosen when
the system is at leve] let the associated reward be denoted;pyThe use of Markov
processes to determine optimal decision policy is the stiloeDynamic Program-
ming. Solution of such problems can be achieved by one ohileetapproaches; the
Method of Successive Approximations, Policy Improvemelgofithm and Linear

Programming.

It is not an easy task to obtain a solution using method ofessgige approximations
with a finite number of iterations. However, a solution carabkieved if the method
is slightly modified. Furthermore, the policy improvemergthod is an alternative
method based on iterations which also aims to obtain an apsoiution using finite

iterations.

Let us consider an arbitrary poli¢ye Cp. A policy refers to a set of optimal actions
in each state maximizing the total reward. In Dynamic Progreng, the Discounted

long-term Discounted Life-cycle cost, i.&,(R) must satisfy the following Equation
[22].
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Vi(R) = i Ozt_lz Z PrXi = J, Yy =aXy =) rja (3.1)
t=1 a

J
where,

V¢(R): Discounted long-term life-cycle cost under poliRyt state,

R: Selected policy,

«a : Discount factor,

ria : Reward earned at stajevhen actiora is chosen,

Pr : Probability that the system will be at statat the beginning of the next time
interval if actiona is chosen when the system is currently at state

The objective is to findRk which maximizes/*(R). In other words, the aim is to find a
series of optimal actions (decisions) which will maximike tifetime reward over a
certain time horizon. The Linear Programming formulatidéthe problem is stated
as follows [22].

Minimize 3} B;v;
j

ija‘l

subjectto v <rja+a ) Py (3.2)
J

Bi>0, jeA ;31:1

The problem may be solved as a maximization problem afteisteaming it to a
Dual Linear Problem. The Simplex Method is an appropriat¢hoekto solve such
linear optimization problems. At this stage of study, siexginethod routine has been
implemented in a main program and the optimization resulesxample problems
have been verified. According to the obtained results, ifgfegram could be im-
proved to solve the linear optimization problems faultiggbie main program could
be extended to a more general program to solve Markov prgeebiems with linear
optimization. After that, time dependent and discountéddycle cost optimization
problems which rely on Markov decision process could beeshhAt a later stage,
it was intended to apply the developed sequential decigishaptimization program

to optimum bridge maintenance and repair decision making.
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Condition States
1

Figure 3.2: Markovian Deterioration Model

3.1 Dynamic Programming Solution

In order to apply the Markov decision process to a systemanuaysis, a cost struc-
ture must be superimposed on the Markov process.glf) define the probability
of the system being at stajet the the next time interval when the system is at state
i if actionais chosen. If actiom is chosen when system is at levethe associated

cost can be denoted ly,.

Let us consider an arbitrary polidg € Cp whereCp denotes the subclass G
consisting of the deterministic policies, afd denotes the class of all Markovian
policies which are time variant. In this case, the discoditife-cycle cost¥y(i, @)

satisfies the following equation [21].

Wr(i,0) = Er ) o'W (3.3)

t=1
where,
Wi=w,ifY;=i,A=aackK,iel

Therefore,

Wr(i, @) = i a' > > di@ - wi (3.4)
t=0 i

| a
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Er : Expected value,

Wr(i, @): Discounted life-cycle cost,

R: Selected policy,

«a : Discount factor,

Wi, . Cost incurred when system is in stand actiora is taken,

i . Statei,

a: Action a,

gij(a) : The probability of the system being in statat the next instant the system
is observed when the system is in statew and actiora is taken regardless of its
history (referred to as the transition probability).

Ki : Number of actions possible when the system is at state

| : State space ( Space of possible states)

The objective is to find the polidg which minimizesPg(i, @). In other words, the aim
is to find a series of optimal actions (decisions) which wilhimize the life time cost
over a certain time horizon. Linear Programming can be usédd optimum policy
R. Linear programming is a useful approach to derive finit@algms for a number
of Markovian control problems. Denoting the discounted tf/cle costPg(i, @) as

V;, the Linear Programming formulation of the problem is stase follows.

Maximize 3 B;V;
J
subjectto Vi < Wia + @ X, Gij(a)v; (3.5)
j

Bi>0, jeA %,31:1

The problem may be solved as a minimization problem aftasfaaming it to a Dual
Linear Problem. Again, the Simplex Method is the appropriaethod to solve the
linear optimization problems. In this study, a program igadeped to solve the primal

and dual optimization problems stated above.
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3.2 Linear Programming

Dynamic Programming is used to implement Markov processdstiermine optimal
decision policy for a system that changes states in timecdbisted life-cycle cost
problem is also a type of Dynamic Programming. In order to fireldiscounted life-
cycle cost and optimal policy for a dynamic system, DynammagiPamming problem
must be solved. Linear Programming Problem is one of thetisolunethods for

Dynamic Programming problem. Linear Programming problemtiie cost-based
formulation (i.e cost minimization) can be solved using thkowing procedure if

Wi, andg;j(a) are known.

Primal Problem:

Maximize 2BV
i
subject to Vi S Wiq +a X gi@v;, aek; iel (3.6)
i

where g;>0, jel, and 3 pgj=1 aregivennumbers.
J

Dual problem for the above primal problem is:

Minimize 3.3 XaWia
1 a
subjectto X, >0, aeKkK;, i€l (3.7)
2 X %a(0 - aij(@) =, J €l
where;

gij =0ifi # jands;; = 1if i = j (Kronecker delta)
i, ] . States of the system.

According to the Expected Average Cost Criteriohy’ X, = 1 is added as a new
1 a

constraint.

The formulation presented above is implemented in a comgatggram (both in
FORTRAN and Matlab environments) in order to solve numéesamples. In the

following section, the problem is solved for combiningfdrent number of states and
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different number of actions. First, a two-state and two-actaseds solved, then a

three-state and two-action case is considered.

After the numerical examples, formulation of the compuwtaail algorithm is ex-
plained. Derivation of the cdigcient matrix for the two-state and two-action problem
is presented followed by the derivation of the fiament matrix for the dual form of

the same problem.

After the derivation of the cd&cient matrices are presented, a flowchart of the algo-
rithm used for the Markov Process is introduced. Then stestatg transition prob-
abilities are explained using a two-state transition meaahel a three-state transition
model. Finally, an example of bridge element conditionestednsition model is pre-

sented.

3.3 Computational Examples

3.3.1 A Two - State, Two - Action Case

In this problem, the dynamic system is periodically obsdiingime and at any given
time, the system can only be at one of the two states0,i = 1, i.e;| = {0, 1}, and
there are two possible actions at each statel,a = 2, i.e;K; = 2, [21]. The cost
matrix [w] and transition probability matrix] are as follows.

Wo1 Woz| 10
W11 Wi2 B 2 2
{(%0(1), Joo(2)) (Qox(1), %1(2))} _ { %, 711) (%,% }

(@0(1), 010(2) (@) au:@)| |G D (&2

Fig. 3.3 shows the two possible states and the actions whithe taken at each state
for a two state, two action case. Transition probabilitiesvm state, two action case

are given in Fig. 3.4 through Fig. 3.7.
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Figure 3.3: Possible states and action paths for each stasetivo state , two action
case

Figure 3.6: Transition probabilities when action 1 is takéstate 1
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Figure 3.7: Transition probabilities when action 2 is takéstate 1

Transition probability matrix can be divided into two pactsisidering the number of
actions.q(1) andq(2) as follows.

05 05
q(1) =
0.67 033

0.25 Q75
q(2) =
0.33 067
The problem can be converted to a linear programming probigimg the formula-

tions explained earlier. Primal Linear programming prails formulated as follows.

Letting 8o = A1 = 3 anda = 3 formulation for objective function becomes.

Maximize 3 B;V; = BoVo + f1V1
j

Substituting the values @’s

Maximize Vo +1v;

Constraints are expanded as,

Vi < W+ a ) ()Y,
j
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Vo < Wo1 + @[Qoo(1)Vo + Qoa(1)v4]

Vo < Woz + @[Qoo(2)Vo + Qo1(2)v1]

Vi < Wi1 + [Qio(1)Vo + gra(1)vi]

Vi < Wio + [Q10(2)Vo + Q11(2)Vv1]

Substituting the values of;,, g;;(a) anda, we obtain,

3V 1v<1
Vo z1s

7 3
éVo - §V1 <0

—}v +§v <2
3°76 "

—}v +gv <2
6O 31—

Therefore, the primal linear programming problem becomes,

Maximize }v + }v
20" 2"
. 3 1
subject to —\o—--vy <1
] 2 ) 2 1=
7 3
Vo — §V1 <0
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5
—=Vo+=V; <2

—}v +gv <2
6O 31—

The objective function of dual linear programming probleecdmes

Minimize > )" XaWia = XoiWor + XotWoz + Xa1Wiz + XaoWaz
i a

Substituting the values af,,, we obtain

Minimize Xo1 + OXg2 + 2X11 + 2Xq»

The constraints are generated as follows.

Z Z Xa(0ij — aj(a)) = B

forj=0

X01(000 — @¥oo(1)) + Xo2(d00 — @0oo(2)) + X11(610 — @10(1)) + X12(d10 — @0h0(2)) = Bo

forj=1

Xo01(601 — @Co1(1)) + Xo2(d01 — @o1(2)) + X11(11 — @h1(1)) + X12(611 — @h1(2)) = B1
Substituting the values @f}, g;j(a) ande, we obtain,

IV VN NN VO
4X01 8X02 311 612—2
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. 3. .5 .2 _1
4X01 8X02 611 312—2

Thus, the dual linear programming problem takes the folhguorm

Minimize Xo1 + OXo2 + 2X11 + 2X12

subject to 3 +7 1x 1x _1
J 4X01 8X02 X~ gX2 = 5

1 3 +5x +2x _l
4X01 8X02 611 312—2

The rearranged form of the problem can be stated as follotvws pfimal problem is a
maximization problem. The solution of this problem gives talues of/, v; which

maximizes the objective function. The values of the vagalgjive the minimum cost.

Maximize }Vo + 51
2 2
subject to Zvo - %vl <1
gvo - gvl <0
—%vo + gvl <2

1v+2v <2
glotzVis

Since the program implemented solves only the minimizapieblems, in oder to
perform this maximization, the primal problem must be cotec to a minimiza-

tion problem. Firstly, objective function is multiplied b and then inequalities in
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constraints are converted to equalities adding or sulmigaoew variables which are
referred to as the slack variables. Each constraint hasard@yslack variable and all
slack variables are flerent from each other. The variables are shown in the ofsgecti
function with O codicient, which means that the slack variables haveffexeon the
objective function.

Minimize - %vo— %v1+0v2+0v3+0v4+0v5
3 1
subject to —Vo—-Vi+\Wv=1
] g0 zVitVe

zv —§v +v3=0
80 81 3=

—}v +§v +Vy=2
30 61 4 =

1v +2v +Vg =2
60 31 5—

Simplex Method is used to solve the problem. The solutiowis 1.2414,v; =
2.8966. vy denotes the minimum discounted life-cycle cost if optimaliqy R is
taken when the system is at state 0, andenotes the minimum discounted life-cycle
cost if optimal policyR is taken when the system is at state 1.

Dual linear programming problem was formulated as
Minimize Xo1 + OXg2 + 2X11 + 2X12

subject to 3 +z _EX —}x _1
J 4X01 8X02 X~ X2 =3

. 3. .5 .2 1
4X01 8X02 611 312—2
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Solution vector is

U
9:
Il

For which the following values are obtained

0.9655
1.0345
0

e
Q
Il

The values oy, andx;, are zero andg, andx;; have nonzero values. This result is
interpreted according tDi, values. LetD;; = D, {H¢_1, Y;} for R € Cs. Da{Hi_1, Yi}
denotes the probability of taking actiarat timet using a random mechanism. In this
random mechanism formuléd;_; shows the history of the system up to time 1
andY; shows the state of the system at titn&@herefore, in order to find the optimal

policy, Di; values must be obtaine®,,’s formula is

Xia

D, =
T Y Xa
a

(3.8)

andD;; values can be obtained as follows.

i=0,a=1
X1 Xo1 0 _
Do1 = = = =0
> Xoa  Xor+ Xo2 0+ 0.9655
a
i=0,a=2
0.9655
Dop = Xo2 Xo2 1

S Xa  Xor+ X0 0+ 0.9655

a

a7



i=1l,a=1

_ X11 X11 1.0345 _
Z X1a B X11 + X12 B 1.0345+0 B

X2 X2 _ 0 -0
Z X1a X11 + X12 1.0345+0

Y,
o
|
I
|

Nonzero values oDj, correspond toi(= 0,a = 2), (i = 1,a = 1). This means that
action 2 should be taken at state 0, and action 1 should be tikstate 1 in order to

achieve the optimal policy.

3.3.2 A Three - State, Two - Action Case

In this problem, the dynamic system is periodically obsdingime and at any given
time, the system can only be at one of the three states0,i = 1, andi = 2, i.e;
| ={0,1,2}, and there are two possible actions at each statd,a = 2, i.e;K; = 2

[21]. The cost{v] and transition probability matricesg[are as follows.

(doo(1), Aoo(2))  (@o1(1), do2(2))  (Qo2(1), Fo2(2)) %, %) (%,, %) (%1’ %
(G20(2). 920(2))  (@h2(1). G2(2)) (Or2(1) 2(2))p =4(0.3) (L, %) (0,0)
(G20(1), A20(2))  (@21(1), G21(2))  (022(1), 022(2)) (200 (0.3) (3.3

Fig. 3.8 shows three possible states and the actions thétecaken at each state for
a three state, two action case. Transition probabilitiehi&fe state, two action case
are given in Fig. 3.9 through Fig. 3.14.
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Figure 3.8: Possible states and actions that can be takewslastate for a three state,
two action case

Figure 3.9: Transition probabilities when action 1 is takéstate O

Uy (2)=0.3
20 () =2

N

\ \901(2): 0.33

4O 50O

Figure 3.10: Transition probabilities when action 2 is také state 0
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Figure 3.12: Transition probabilities when action 2 is také state 1

The problem can be converted to a linear programming probigimg the formula-

tions explained earlier. Primal Linear programming prails formulated as follows.

Letting 30 = B1 = B> = 1 ande = 3, formulation for objective function becomes

Maximize Y B;Vj = BoVo + B1Va + B2V
j

Substituting the values @’s, we obtain

Maximize 2vo+iv; + 2w,
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i=1 C) ------- ,C)
i:ZQ':”g'z_zilzfQ-?%,Q

Figure 3.13: Transition probabilities when action 1 is také state 2

Figure 3.14: Transition probabilities when action 2 is také state 2
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Constraints are expanded as,
Vi < Wig + azj: ai(@)v
Vo < Wo1 + @[Qoo(1)Vo + Qoa(1)V1 + Qoa(1)V2]
Vo < Woz + @[Goo(2)Vo + Goa(2)V1 + Go(2)Vv-]
Vi < Wi + a[Qio(1)Vo + dua(1)va + di2(1)Vv]
Vi < Wiz + a[010(2)Vo + 11(2)va + di2(2)Vv2]
V2 < Wo1 + a[02o(1)Vo + Goa(1)Va + Gao(1)Vv2]

Vo < Wop + a[Goo(2)Vo + 021(2)V1 + O22(2)V-]

Substituting the values ofi,, g;;(a) anda, we obtain,

3v—lv—1v<1
40 81 82—
§v—}v—}v <0
60 61 62—

1
0V0+§V1+0V2§2

1 2
—6V0+ §V1+0V2 <1
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1 5
—=Vo+0vi+ =wn <1
30+ 1+62_

1 2
0V0—6V1+§V2§2

Therefore, the primal linear programming problem becomes

Maximize }v +1v +}v
3°"3173%
3v —1v —lv <1
40 81 82—
§v —}v —Ev <0
60 61 62—

1
Ov0+§v1+0v2§2
1 2

——Vo+ -1 +0v, <1
60 31 2=

1 5
—=Vo+0v;+-w, <1
3V 1t gV2=

1 2
OVO—EV]_-I-:—))VQSZ

The objective function of the dual linear programming pevblbecomes

Minimize > )" XaWia = XoiWor + XooWoz + X1Waa + XaoWip + Xo1War + XooWoo

| a

Substituting the values of,, we obtain,
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Minimize Xo1 + OXg2 + 2X11 + X120 + Xo1 + 2X02

The constraints are generated as follows.

Z Z Xia(0i) — (@) = B;

forj=0

X01(600—@0oo(1)) + Xo2(000— @Coo(2)) + X11(d10— @Q10(1)) + X12(d 10 — @T10(2)) + X21(020—
@00(1)) + X22(d20 — a020(2)) = o

forj=1

X01(01—a0o1(1))+ Xo2(001— @Co1(2)) + X11(011 — @Q11(1)) + X12(611 — @11(2)) + X21(021 —
@Qp1(1)) + Xo2(021 — a021(2)) = B1

forj=2

Xo01(002—@0o2(1)) + Xo2(002— Co2(2)) + X11(012— @Q12(1)) + X12(d 12— @12(2)) + X21(022—
@Q2(1)) + X22(022 — a022(2)) = B2

Substituting the values @f}, g;j(a) ande, we obtain,

3 5 1 1 1
—Xo1+ =Xo2 + 0X11 — =X12 — =Xo1 + OXp2 = =

4 6 6 3 3
L ! + 1x + 2x + Ox 1x = L
8X01 6on >X11 3 12 21 6 22 = 3
N + 0X11 + OXq2 + §x + 2 oz =
8X01 6on 11 12 6 21 3X02 =3

Thus, the dual linear programming problem takes the folhgiorm.

Minimize Xo1 + OXo2 + 2X11 + X192 + Xo1 + 2%o9o
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subject to 3 +§ + 0x —Ex —}x + Ox _1
J 4X01 6on 11— gXi2 X 22= 3

N +1x +gx + Ox —}x 1
8X01 6on 5Kt 3% 21- X2 = 3
! ! + OX11 + OXg2 + 5x + 2 =
8X01 6on 11 12+ gX1 3X02 =3

The solution of primal problem g = 0.6207,v; = 1.6552,v, = 1.4483.vy denotes
the minimum discounted life-cycle cost if optimal poliByis taken when the system
is at state Oy; denotes the minimum discounted life-cycle cost if optimaligy Ris
taken when the system is at state 1, sndenotes the minimum discounted life-cycle

cost if optimal policyR is taken when the system is at state 2.

Solution of dual problem is summarized as follows.

0.7586

e
Q
Il

0.6897
0.5517

The values ofXy; and X;1 and Xy, are zero andg,, X1» andX,; have nonzero values.

Using Dj, values, the optimal policy can be determined as follows.

i=0,a=1

Xo1 _ Xo1 _ 0 -0
> Xoa  Xo1+ X2 0+ 0.7586

a

DOl =

i=0,a=2

55



X02 Xo2 0.7586

D = = = =
2 S Xa Yoo+ Xz 0+0.7586
a
i=1l,a=1
Dy = Xu __ Xu 0 0
Z X1a X11 + X12 0+ 0.6897
a
i=l,a=2
Dy, — Xi2 X2 06897
e Z X1a B X11 + X12 B 0+0.6897_
a
i=2,a=1
_ X21 _ Xo1 _ 0.5517 _
2 Z X2a B Xo1 + Xoo B 0.5517+0 B
a
i=2,a=2
D,, = X22 _ X22 0

-_— -_— -_— O
Z X2a Xo1 + Xo2 0.5517+0

Results correspond to€£ 0,a=2), (i = 1,a=2)and ( = 2,a=1). This means that
action 2 should be taken at state 0, and action 2 should be &ilkstate 1 and action

1 should be taken at state 2 in order to achieve the optimatdypol

3.4 Formulation of the Computational Algorithm

3.4.1 Derivation of the Codficient Matrix A for the Two-State Two-Action Prob-

lem

Constraints of linear programming problem compose a lisgatem of equations as

shown below.
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[A] mxcniVinxa < {Whmxa (3.9

Matrix A is referred to as the cdiécient matrix and it is derived using the transfor-
mation formula which transforms discounted life-cycletgm®blem from dynamic

programming to linear programming.

Transformation formula is given as shown below.

Vi < W+ a ) ()Y,
j

The elements of the céiecient matrix depend on cost, transition probability and dis

counted rate as shown below.

am = f {Wa, @, G(3)} (3.10)

Explicit form of matrix A can be written as,

a1 A2
dy1 A
dz; a2

| Q41 Qa2

As an example problem, let us assume that the cost matrixrenglansition proba-

bility matrix are given as below.

Wo1 Wo2 10
Wia = =
W11 Wi2 2 2

L (Goo(1), doo(2))  (Cloa(1), Goa(2)) _ 33 .3
(d0(1), 910(2))  (G12(1), 11(2)) 2,3 (3.3

3°3 3°3
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Based on the given data, elements of matrix A may be formdileteerms ofwi,,
gij(@ anda. First row of the cofficient matrix implies that the system is at state 0
and action 1 is taken, i.e;

i=0, a=1 and a=

NI =

Vo < Wo1 + a[Qoo(1)Vo + Qoa(1)v4]

Vo < Woz1 + aCoo(1)Vo + @Qoa(1)v1

Vo — @Qoo(1)Vo — @Qo1(1)V1 < Wos

[1 — aoo(1)]Vo — @Qoa(1)V1 < Woz

[1 — @Qoo(1)]Vo + [—aQoa(1)IV1 < Wo1

Lettingas; = [1 — a@Qoo(1)], @12 = [—ao1(1)], we obtain

aj1Vo + a2V1 < Wog

Second row of the cdicient matrix corresponds to the system being at state 0 and
action 2 is taken.

i=0, a=2 and a=

Vo < Woz + a[Qoo(2)Vo + Qo1(2)v4]
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Vo < Woz + aloo(2)Vo + afo1(2)v1

Vo — @Qoo(2)Vo — @Qo1(2)V1 < Wop

[1 — a0oo(2)]Vo — @Qo1(2)V1 < Wy

[1 - @Qoo(2)]Vo + [~aQo(2)IV1 < Wop

Lettingaz; = [1 — a0oo(2)], 22 = [-ado1(2)], we obtain

ax1Vo + AoV < Wo2

Third row of the coéficient matrix corresponds to the system being at state 1 and
action 1 is taken.

i=1 a=1 and a=

Vi < Wig + a[Qio(1)Vo + Ora(1)v4]

V1 < W1 + atho(1)Vo + agua(1)va

Vi — aQuo(1)Vo — Q1 (1)vi < Wiq

[—aio(1)Vo + [1 — au1(1)]v1 < Wiy

Letting ag; = [-a0io(1)], as2 = [1 — adu1(1)], we obtain
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az1Vo + agoVy < Wig

Fourth row of the coféicient matrix corresponds to the system being at state 1 and
action 2 is taken.

i=1 a=2 and a=

NI =

Vi < Wiz + [Q10(2)Vo + Q11(2)Vv1]

V1 < Wip + atho(2)Vo + aQ11(2)v1

Vi — @Q10(2)Vo — @011(2)V1 < Wi

[—ad10(2)]Vo + [1 — aq11(2)Iv1 < Wip

Lettingau; = [~@010(2)], @42 = [1 — aq12(2)], we obtain

Aa1Vo + aa2V1 < Wy

At this stage, all elements of matrix A and vectoare determined. Therefore, linear
system of equations for the constraints can be written eXiglas,

»[1 —afoo(1)] [~aQoi(1)] | Wo1

(A = [1-adw(2)] [-a0(2)] and (W) = Wo2
[-adi0(1)] [1 - agua(1)] Wig

| [-a010(2)] [1 - aqu1(2)]] W12

Substituting [A] andw} into the system of equations, we obtain,
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Vo
[1-a00(1)] [-etn@)] 1 0 0 g |v 1
[1-a0uw(2)] [-egu(2)] O 1 0 O [v| [O
[~otio(1)] [1-equ®] 0 0 1 O |v| |2
| [-a010(2)] [1-0aqu(2)] O 0 O 1f |va 2
Vs

3.4.2 Derivation of the Codficient Matrix B for the Dual Form of the Two -

State Two - Action Problem

Constraints of dual linear programming problem compos&eali system of equa-

tions as shown below.

[B] mxn{x}nxl < {,B}mxl (3.11)

Matrix B is referred to as the céiecient matrix and it is derived using the transfor-
mation formula which transforms discounted life-cycletgm®blem from dynamic

programming to dual linear programming.
Transformation formula is given as shown below.

Z Z Xia(ij — a0ij(a)) = B (3.12)

i
The elements of the céecient matrix depend on transition probabiligy, and dis-

counted rate as shown below.

brm = f(0(8). 8. @) (3.13)

Explicit form of matrix B can be written as,

B= (3.14)

bll b12 b13 b14
b21 b22 b23 b24
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Transformation formula has Kronecker Deltd, (3, anda. Properties and values of

these variables are shown below.
1
ZJ:BJ =1 and «a = 5

6i,-:0 if i#j and oij=1 if =]

whereg; are any set of arbitrary numbers that when summed, add to one.

There are summations oMandaindices. Thus, the formulation of ciient matrix

of constraint of dual linear programming problem can be ¢gtied forj values.

forj=0

DD Xaldo = atio(@) = Bo

Substituting anda values and performing summation ovemnda, we obtain

X01(000 — @oo(1)) + Xo2(d00 — @0oo(2)) + X11(610 — @10(1)) + X12(d10 — @0h0(2)) = Bo

Lettlng bll = [600 - quo(l)], b12 = [(500 — QQOO(Z)], b13 — [610 _ Clqlo(l)] and b14 _
[610 — @010(2)], we obtain

D11X01 + D12X02 + D13X11 + P1aXa2 = Bo

forj=1

DD Xaldn — atn(@) = B

i
Substituting anda values and performing summation ovemnda, we obtain

62



Xo1(001 — @Uo1(1)) + Xo2(d01 — @o1(2)) + X11(611 — @Q11(1)) + X12(d11 — @Ch1(2)) = B2

Letting bp1 = [d01 — @Qo1(1)], b2z = [do1 — @001(2)], D23 = [011 — @Q11(1)] andbyy =
[611 — @011(2)], we obtain

B21X01 + D22Xo2 + DogXq1 + DoaXi2 = B1

Codfticient matrix of dual linear programming problem for this Iplem may be writ-

ten explicitly as:

B 000 — @Qoo(1) oo — @loo(2) 10— alio(1l) J10— a/(ho(z)]

001 — afo1(1) do1 — @Qo1(2) 611 — @thi(l) J11 — a1a(2)

Substituting [B] angb’s into system of equations, we obtain,

[[500 — aCoo(1)] [600 — @Coo(2)] [d10 — @Q10(1)] [610— @Cho(z)]] X02 {Bo}

[601 — @Qo1(1)] [do1 — @Qo1(2)] [611 — aCh1(1)] [611 — aQui(2)]| [Xu1

X12

Figure 3.15 shows the algorithm developed for programmonfind an optimal pol-
icy for a dynamic system using dynamic programming MarkowcBss reduced to
linear programming. The aim of the program is to find an opkipadicy which mini-
mizes the expected discounted cost. First, dynamic pragiagmproblem is reduced
to a linear programming problem. The form of the linear pamgming problem is
referred to as primal problem which includes the minimuncaiisited cost variable,
action cost and transition probability matrix. Second,rehew to find feasible solution
variables, the primal problem is converted to dual lineabpegm. Finally, solution of

the dual problem yields the optimal policy.
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Input variables

o : Discount factor

[w] :Costmatrix

[q] :Transitionprobability matrix
Ib :Lower bound of variables
[A] :Coefficiert matrix

inum: Numberof states
anum: Numberof actions

v

Minimize Expected Discounted Cost:
min ¥ (i,a)=E>. a'W,
t=0

Solve the Linear programming problem:
(Primal problem)

Maximize > Bv,
i
subject to v sw,+a> q(ay,, abK, i0Ol,
i

where g, >0, jOI, and Z,Bj =1 are given number:
i

v

Solve the Linear programming problem:
(Dual problem)

Minimize >3 XaWi,
subject to X, =0, aldK,, iOl,
and szia(aii_aqij(a)):ﬁjv o,

!

Output variables

v: :Minimum discountedcostfor statej, j O

]
X4 :Feasiblesolution b thedualproblemandanaverage

probability of beingin statei andmakingdecisiona.

Figure 3.15: Flowchart Algorithm of Markov Process

64



3.5 Steady - State Probabilities

Condition of a dynamic system that changes its state is defiga set of states. The
system moves from one state to another in time. Moving tohaaitate is called the
state transition. Transition of the states can be in ternisn&f or space change. After
a certain number of transitions, the change in values ofldraents of the transition
matrix diminishes. This state of the matrix is referred tohessteady-state transition

matrix. The following examples are generated in order toaestrate this process.

3.5.1 A Two State Transition Model

The transition of two states is modeled as a homogeneousaMathain with the
following transition probability matrix [13].

08 02
05 05

(a) If it is dry today, the probability that it will be dry 2 dayfrom now may be
computed by first determining P(2).

P(2) = P(0)P?

0.8 02/|0.8 02
= 0
05 05[|0.5 05

08 02
=[0.8 02]
05 05

=[0.74 026]

Hence, itis 74% probable that the day after tomorrow will e tlow, let us advance
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this procedure in time in order to find the steady state cmrdgtate.

P(3) = P(O)P®

3
08 02
05 05

=[1 O][

=[0.722 Q278]

P(4) = P(O)P*

- [0.7166 02834]

P(5) = P(0)P°

- [0.7150 02850]

P(6) = P(0)P°

6
0.8 0.2]

=[1 0] [
05 05

=[0.7145 02855]

P(7) = P(O)P’

7
08 02
05 05

=[1 Q] [
- [0.7143 02857]
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P(8) = P(O)P®

=[0.7143 02857]

Therefore, steady state condition state is founié(8).

3.5.2 A Three State Transition Model

Let us assumed that the following transition probabilitytrixas given for a dynamic

system having three states.

04 05 01
P=103 03 04
01 07 02

and the initial state probabilities are given as:

P=[0.1 01 08]

After one transition, the state probabilities become:

04 05 01
P(1)=[0.1 01 08][03 03 04
01 07 02

=[0.15 064 021]

After second and the following transitions, the state pbiiiges are calculated as
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follows:

04 05 01
P@)=[0.1 01 08][03 03 04
01 07 02

=[0.273 Q414 Q313]

04 05 01
P@)=[0.1 01 08]|03 03 04
01 07 02

=[0.2647 04798 (02555]

4
04 05 01

P(4)=[0.1 01 08](0.3 03 04
0.1 07 02

=[0.2754 04551 02695]

5

04 05 01

PG)=[0.1 01 08]|03 03 04
01 07 02

=[0.2736 04629 02635]

6

04 05 01

P6)=[0.1 01 08]|03 03 04
01 07 02

=[0.2747 04601 02652]

7

04 05 01

P(7)=[0.1 01 08]|03 03 04
01 07 02

=[0.2744 04601 02646]
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8

04 05 01

P@)=[0.1 01 08]|03 03 04
01 07 02

=[0.2745 04607 02648]

9

04 05 01

PO =[0.1 01 08][03 03 04
01 07 02

=[0.2745 04608 02647]

10
04 05 01

P(10)=[0.1 01 08]|03 03 04
01 07 02

~ [0.2745 04608 02647]

Therefore, the steady state condition state is achievdwedenth transition.

3.5.3 A Bridge Element Condition State Transition Model

An example of transition probabilities under optimal antdor a bridge element’s
condition states is given as follows [53]:

095 005 0 O
047 049 004 O
0.18 048 031 003
039 039 016 Q06|

Based on these transition probabilities, the process ofthevgteady state condition
state is achieved will be demonstrated. Let us assume titiat tondition state for

the system is:

P=[0 0 1 O
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This means that the condition of the system is at state 3. iEh&s assumption
based on regular standard inspection period for bridgeiatiah and that the system
changes state at every 2 year period. Now, steady statetiwonsliate can be found

the same following procedure that was followed in the presiexamples.

095 005 0 O]
047 049 004 O
0.18 048 031 003
039 039 016 Q06|

PL)=[0 0 1 0]

=[0.18 048 031 003]

(095 005 0 O
047 049 004 O
0.18 048 031 003
039 039 016 Q06|

PR)=[0 0 1 0]

=[0.4641 04047 01201 Q0111]

(095 005 0 O
047 049 004 O
0.18 048 031 003
039 039 016 Q06|

PB)=[0 0 1 0

=[0.6571 02835 00552 00043]

095 005 0 0
047 049 004 O
0.18 048 031 003
039 039 016 Q06|
=[0.7690 01999 00291 00019]

P4)=[0 0 1 0

095 005 0 0
047 049 004 O
0.18 048 031 003
039 039 016 Q06|
=[0.8305 01511 00173 00010]

PG)=[0 0 1 0
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PG)=[0 0 1 0

= [0.8636

P(7)=[0 O

- [0.8811

P@)=[0 O

= [0.8904

PO)=[0 0

= [0.8953

P(10)=[0 O

=[0.8979

P(11)=[0 0

= [0.8992

1 0]

1 0]

0.95
0.47
0.18
0.39

005
049
048
039

01243 00116

0.95
0.47
0.18
0.39

0]

005
049
048
039

01099 Q0087

0.95
0.47
0.18
0.39

0]

005
049
048
039

01022 Q0071

0.95
0.47
0.18
0.39

0]

005
049
048
039

00981 00063

0.95
0.47
0.18
0.39

005
049
048
039

00960 00059

0.95
0.47
0.18
0.39

005
049
048
039

0 0
004 O
031 003

016 006
00006]
0 0

004 O
031 003

016 006
00004]

0 0]
Q04 O
031 003

016 006
00003]

0 0
004 0
031 003
016 Q06|

00002]

L10

0 0
004 O
031 003

016 Q06|
00002]

11

0 0
004 O
031 003

016 006

00949 00057 00002]
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i 112
095 005 O 0

047 049 Q04 O
018 048 031 003
039 039 016 Q06|
= [0.9000 00943 00056 00002

095 005 0 O
047 049 004 O
0.18 048 031 003
039 039 016 Q06|
=[0.9003 00939 Q0055 00002
095 005 0 O
047 049 004 O
0.18 048 031 003

039 039 016 Q06|
= [0.9005 00938 Q0055 00002

P(12)=[0 0 1 0]

-13

P3)=[0 0 1 0

14

P14)=[0 0 1 0]

i 15
095 005 O 0

047 049 004 O
0.18 048 031 003
039 039 016 Q06|
=[0.9007 00937 00055 Q0002
095 005 0 0
047 049 004 O
0.18 048 031 003
039 039 016 Q06|
=[0.9006 00936 00055 00002
095 005 0 O
047 049 004 O
0.18 048 031 003

039 039 016 Q06|
=[0.9007 00936 00055 00002

P(5)=[0 0 1 0

,16

P(16)=[0 0 1 0]

117

PL7)=[0 0 1 0]

Therefore, by comparing(16) andP(17), it can be observed that the steady state

condition is achieved at 34 years, since each multiplicasequal to 2 years.
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3.6 Applications for Finding the Optimal Policy

Table 3.1 gives detailed information for the applicatiorMadrkov Decision Process
used by the California Department of Transportation (@ak) [2]. The information
presented is for Element 107 which is the Painted Steel Oprele/G Similarly, Table
3.2 presents the costs of actions defined in Table 3.1. @Galtrses the Pontis Bridge
Management System to find the optimal solution for bridgenelet maintenance,

repair and rehabilitation (MR&R) by using the linear pragraing technique.

Markov.m program, written in this study, is used to find the optimaligofor the
same problem. The Transition Probability Matrix and the tQdatrix denoted as
gij(a) andwi, presented below each table in matrix form are implementtitire

developed computer program.

Table 3.1: Transition probabilities of Do Nothing and otheintenance actions for
the application example.

States Actions Transition Probabilities (%)
1 2 3 4 5
1 0 - Do Nothing 93.81 6.19 0 0 0
1 - Surface Clean 100 0 0 0 0
0 - Do Nothing 0 88.88 11.12 0 0
2 1 - Surface Clean 1 99 0 0 0
2 - Surface Clean & Repaint 96 4 0 0 0
3 0 - Do Nothing 0 0 87.12 12.88 0
1 - Spot Blast, Clean & Repaint 88 12 0 0 0
0 - Do Nothing 0 0 0 88.88 11.12
4 1 - Spot Blast, Clean & Repaint 61 14 5 20 0
2 - Replace Paint System 97 3 0 0 0
0 - Do Nothing 0 0 0 0 90.55
5 1 - Major Rehabilitation 30 9 1 20 40
2 - Replace Unit 100 0 0 0 0
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Table 3.2: Costs of Do Nothing and Other Maintenance Actionghe application

example.
States Actions Cost ($)
1 0 - Do nothing 0
1 - Surface clean 62.34
0 - Do nothing 0
2 1 - Surface clean 80.84
2 - Surface clean & repaint 225.26
3 0 - Do nothing 0
1 - Spot blast, clean & repaint  328.48
0 - Do nothing 0
4 1 - Spot blast, clean & repaint  455.90
2 - Replace paint system 396.32
0 - Do nothing 0
5 1 - Major rehabilitation 1279.52
2 - Replace unit 2394.82
>(93.8L 1000) (6.19,0,0) (0,0,0) (0,0,0) (0,0,0)
(0,1,96) (8888,99,4) (11120,0) (0,0,0) (0,0,0)
g;@ =] (0,880) (0,12,0) (87120,0) (1288 0,0) (0,0, 0)
(0,61,97) (014,3) (0,5,0) (8888,20,0) (11120,0)
| (0,30,100) (Q9,0) (0,1,0) (0,20,0)  (9055,40,0)

As shown in Table 3.1, the Element 107 has aient condition state and there are

several feasible actions for each state. For instance $&id State 3 have 2fgrent
MR&R actions. However, the State 2, 4, and 5 havefBdént MR&R actions. The

Do-Nothing action is listed in all condition states as a fiel@saction. There are 7

unique actions considering all of the condition states.ddit#on, Table 3.1 lists the

transition probabilities of being in Stajeat the next instant, when acti@nis taken

at the present state

Maintenance, Repair, Rehabilitation and Replacemens dosElement 107 is given

in Table 3.2. As shown in Table 3.2, Do-Nothing action ha® zrst. It should be

noted that the same maintenance action may haverent cost values in flerent

states. For example, both Surface Clean and Spot Blastn @Gld&epaint actions

are feasible in more than one state havinfjedent maintenance costs infferent
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condition states.

0 6234 0

0 8084 22526
Wia = |0 32848 0

0 45590 39632

0 127952 239482

For the above problem, solution of the linear programmingpfam is obtained as

follows.

X
)

Il
o

The values oky,, Xo2, Xo3, X32, Xa1, Xa2, X51, X502, ANUXs53 are zero anc; 1, X»1, Xa1 and
X43 have nonzero values. Calculating tbg values, the optimal policy can be defined

as follows.

i=1l,a=1

X11 X11 0.4688

D = = = —
L S Xu+ X 04688+ 0
a

1
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D22

D23

D41

X12 X12 0
D12 = = = =0
Y Xa X1+ X 0.4688+0
a
X1 X21 B 0.2690 ~
T S Xea  Xoit Xe2t Xps 02690+ 0+0
a
Z Xoa Xo1 + Xoo + Xo3 0.2690+0+0
a
Z X2a Xo1 + Xoo + Xo3 0.2690+0+0
a
X31 X31 0.2323
D31 = = = =1
2. X3a X1+ X2 0.2323+0
a
D3 = Xs2 = Xa = 0 =0
Z X33 X31 + X32 0.2323+0
a
Xa1 Xa1 0
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X42 Xa2 0

D = = = =
2 S m X+ Xaz+ Xas 0+ 0+ 0.0299
a
i=4,a=3
D = Xa3 X43 B 0.0299
B S e e+ Xap+ Xas  0+0+00299
a
i=5a=1
X51 X51
Dsy = = = = NaN
> ZXSa Xg1 + Xg2 + Xg3 0+0+0
a
i=5a=2
X52 X52
Dsz = = = = NaN
> ZXSa Xg1 + Xg2 + Xg3 0+0+0
a
i=5a=3
s _ X3 0 NaN

53: = =
Y Xsa Xs1+Xsp+Xs3 0+0+0
a

Results correspondto € 1,a=1),(=2a=1),(=3a=1)and(=4a=23)
which means that action 1 should be taken at state 1, actibodldbe taken at state
2, action 1 should be taken at state 3, and action 3 shouldckba & state 4 in order
to achieve the optimal policy. If the optimal actions arddaled for a stiiciently

long term period of time, the element will not reach the skate

According to the optimal policy, the transition probalyilihatrix takes the form be-

low.
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9381 619 O 0 0
0 8888 1112 O 0
gj@=| 0 0 8712 1288 O
97 3 0 0 0
0 0 0 0 9055
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AGE (YEARS)

Figure 3.16: Performance data obtained from optimal policy

Fig. 3.16 showing the variation in time of the average coaditating may be ob-
tained by following the optimal policy. As shown this graftie steady state condition

state is achieved at nearly 30 years.

As another example, the transition probability is given@ble 3.3. In this example,
the transition probabilities are selectedtelient than that of the former example.

The deterioration rate of this element is higher than then@rone. The costs of
the actions are the same as the former element costs. Inxdmispde, €fect of the
transition probabilities on selecting optimal policy ivéstigated. In order to im-

plement the transition probabilities into the developat kov.m computer program,
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Table 3.3: Transition probabilities of Do Nothing and MR&Btians.

States Actions Transition Probabilities (%)
1 2 3 4 5

1 0 - Do nothing 70 20 10 O 0
1 - Surface clean 80 20 0 O 0
0 - Do nothing 0O 70 15 10 5

2 1 - Surface clean 30 50 20 O 0
2 - Surface clean & repaint 70 15 15 O 0

3 0 - Do nothing 0O O0 70 10 10
1 - Spot blast, clean & repaint 15 30 30 15 10
0 - Do nothing 0O O 0 75 30

4 1 - Spot blast, clean & repaint 5 15 30 35 15
2 - Replace paint system 20 25 40 10 5
0 - Do nothing O 0O 0 O 70

5 1 - Major rehabilitation 10 25 30 25 5
2 - Replace unit 100 0 O O 0

gij(a) matrix is composed as shown below.

(70.80.0) (2020,0) (100,00 (0.0,0)  (0.0,0)
(0,30,70) (7050,15) (1520,15) (100,0) (50,0)
gi(@ =1 (0,150) (0,30,0) (7030,0) (20150) (1010,0)
(0,520) (01525) (030,40) (703510) (3015,5)
(0,10,100) (Q250) (0,30,0) (0,250) (705,0)]

Based on the given transition probability and cost matrites solution to the linear

programming problem is obtained as follows.
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The X1, %23, X32, X43 aNd X53 have nonzero values, so optimal policy can be achieved
by applying action 2 when in State 1, action 3 in State 2, aciin State 3, action 3
in State 4, and action 3 when in State 5.

The transition probability matrix of the optimal policy is ahown below and Fig.

3.17 is obtained by following the optimal policy.

(80 20 O 0
70 15 15 0
gj@ =15 30 30 15 10
20 25 40 10 5
100 0 0 0 ©
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Figure 3.17: Condition State Performance curve obtainau fwptimal policy.

3.7 Summary

In this chapter, Markov process-based condition predigianvestigated. The condi-
tion prediction method is used for the Dynamic Systems. Dynaystem problems
can be solved by dynamic programming technique. Policy avgment, successive
approximation, and linear programming are mentioned a#isol methods for Dy-

namic Programming problems and linear programming techaig investigated to

obtain a solution technique for Markov process-based ¢tmmdprediction.

Dynamic programming problem can be reduced to linear progriag which is re-
ferred to as primal problem. In order to obtain optimal solut primal problem is
converted to dual problem. A two-state two-action and tiateg¢e two action cases
are investigated.

Furthermore, the steady state procedure obtained by foliptlie optimal policy for
a suficiently long period is investigated. Finally, the develdgemputer program is
used to find optimal policy for a structure withfidirent deterioration model and same

cost matrix.
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Notations in Chapter 3

a
iandj
pt

ija

(R
R

a

la

aij(a)

A maintenance action

Condition states ( Condition level )

Probability that the system may be at leyelt the beginning

of the next time interval when the system is at levehow

and actiora is chosen without any consideration about the past
condition

Discounted long-term life-cycle cost under poliRyat state
Selected policy

Discount factor

Reward earned at stajavhen actiomais chosen

The probability of the system being in stgtat the next instant
the system is observed when the system is in stadsv and action
ais taken regardless of its history (referred to as the ttimsi
probability)

Expected policyR

Probability of occurrence of a system in state

Class of all Markovian policies

Subclass 0€g

Expected long-term discounted cost under poRcy

Cost incurred when system is in sta@nd actiora is taken
Number of actions possible when the system is at state

State space ( Space of possible states)

History of a system up to time- 1

State of a system at tinte

Probability of taking actiom at timet using a random mechanism
Solution vector of a dual linear problem

82



CHAPTER 4

BI-LINEAR AND POLYNOMIAL BASED CONDITION
PREDICTION AND EFFECT OF MAINTENANCE ACTIONS

4.1 Simulation

Simulation is an artificially generated state of a real ptgisprocess. The act of
simulating a system generally requires representing &as&ery characteristics or

behavior of a selected system.

Simulation is used in many events, including the modelingystems in nature in
order to gain insight into their functioning. Simulationakso used in such fields as
performance optimization, safety engineering, and tgsBimulation can be used to

illustrate the eventual realtects of alternative conditions and courses of action.

Simulation is an important feature in engineering systelas involve many pro-
cesses. The term simulation may be used in engineeringwatllitferent meanings.
First, term simulation may refer to a computer simulatiothef behavior of an engi-
neering system. This means that the real world system issiagex] using computer
modeling and its real life behavior is imitated. For exampleivil engineering, sim-
ulation allows scientists to observe the behavior of a Imgidinder earthquaketect
prior to the occurrence of such an event. Second, the termlaiimn may refer to
a numerical simulation technique. This meaning of simatats the subject of this
thesis. There are fierent types of simulation techniques, two of which are men-
tioned here; the Monte Carlo Simulation Method and the LH#percube Sampling
Method.
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4.1.1 Monte Carlo Simulation

Monte Carlo Simulation method is a computational algorithat relies on repeated
random sampling. Monte Carlo methods are often used to ateyhysical and
mathematical systems. They are most suited for computepgtation because of
their reliance on fast repeated computation and random augdneration. Monte
Carlo methods are used when it is infeasible or impossibdenopute an exact result
using a deterministic algorithm. If systems have large nemds coupled random

variables, it is especially suitable to use the Monte Carnmtation method.

4.1.2 Latin Hypercube Sampling

The Latin Hypercube sampling was developed to generatedribdigon of a rational
collection of parameter values from a multidimensionatrthstion. This sampling
method was first introduced by McKag al.[54]. Simply stated, Latin Hypercube
sampling is a constrained Monte Carlo sampling schemepges the entire domain
more systematically while Monte Carlo simulation methaaidglly picks points ran-
domly within the domain. Therefore, théfieiency of Monte Carlo simulations can

be improved using Latin Hypercube sampling.

Latin Hypercube sampling works in the following manner. Taege of each vari-
able is divided intan nonoverlapping intervals on the basis of equal probabilitye
method selects different values from each &fvariablesX;, X,, ..., Xx. Each variable
has a probability density function and Latin hypercube atgm selects one value
from each interval randomly taking the corresponding pbdiig density function
into account. The values obtained for the random varialdeare paired in equally
likely combinations withn values ofX, and thesen pairs are combined in a random
manner withn values ofX3 to formn triplets, and so on, untit k-tuplets are formed.
Thesen k-tuplets are the same as thd-dimensional input vectors which form the

Latin Hypercube sample.

Using the Latin hypercube method, the whole parameter spa@tée obtained more
reliable with fewer iterations. This can help improve cagence rates and speed up

execution [54].
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Monte Carlo Simulation method and Latin Hypercube Samphreghod use several
techniques to generate random numbers from a given pratlyabsgtribution. Some
of the techniques are the inverse transform method, composipproach, convo-
lution method, and acceptance-rejection technique. Bghidy, inverse transform
method is used. Inverse transform is a method of generaéimpke numbers ran-
domly from any probability distribution whose cumulativisttibution functionF(x)
(CDF) is given. Inverse transform method can generate a eurifsom a random
variable with the probability density function (PDP)X) by first finding F(x) from
P(X) and then inverting it by solving = F(x) for x, which givesx = F~1(p). Then,
a uniform random number & p < 1 is generated and = F~(p) is computed.
Although this method is generally applicable, there maydregutational diiculties
obtaining cumulative distribution functions for some pabbity distributions.

Matlab, which is used for simulation in this study, contam3oolbox application
to generate random numbers from Latin Hypercube sampliraglaid Toolbox func-
tions that can generate numbers using Latin Hypercube sagrgole named déisdesign
andlhsnorm. Thelhsdesign function generates a Latin Hypercube samflsntain-
ing n values for each op variables. For each column, tmevalues are randomly
distributed with one from each interval (3}, (1/n,2/n), ..., (1-¥n,1), and they are
randomly permuted. Théhsnorm function, on the other hand, generates a Latin
Hypercube samplX of sizen from the multivariate normal distribution with mean
vectoru and covariance matrix. X is similar to a random sample from the multi-
variate normal distribution, but the marginal distributiof each column is adjusted

so that its sample marginal distribution is close to its th&oal normal distribution.

Since Matlab is a programmable tool, in this study, its paogming capabilities are
combined with its embedded simulation functions. Furtheenthe Latin Hyper-
cube sampling has been improved so that it can be used witffiesiestit probability
distribution type other than the ones existing in Matlabe Tandom variables used

in this study have triangular distributions bbsdesign andlhsnormfunctions cannot
generate random numbers from triangular distribution. sTlezuMatlab functiori-

file, named asatin_hs_tri.mis developed and desired random numbers are generated
based on triangular distribution. Inverse cumulativerthstion function (CDF) used

to generate random numbers from any distribution type isselérfrom this distri-
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bution. Cumulative distribution function of a triangulastlibution and its inverse

cumulative distribution function are given as Eqs. 4.1 aij] lespectively.

(mode-min B
(M) x = mode
_ (X — min)®
(Max- X2
1- (max-modga(max-mlr))’ X > mode
mode p = mode
Gp =1 (min+ /p- (max-min - (mode-mip), p<mode (4.2

(max— Y@ - p) - (max-min) - (max-mod(}z), p < mode

Table 4.1: Parameters in the cumulative and inverse cuimalldistribution functions
of triangular distribution.

Parameter Description
min Minimum value of the triangular distribution
mode Mode value of the triangular distribution
max Maximum value of the triangular distribution
Fy Cumulative distribution function of triangular distriloih
G Inverse cumulative distribution function of triangular
P distribution
X Any selected number in the distribution
p probability of cumulative distribution function

Eq. 4.2 is derived from Eq. 4.1, transforming cumulativertisition function into
the inverse function. The parameters introduced in equdtib and 4.2 are described
in Table 4.1.

Simulation results obtained frolatin_hs_tri.mfunction are presented in Figures 4.2,
4.3,4.4,45,4.6,4.7 and 4.8. These figures show how anaseri@ sample size in-
creases the convergence of simulation results to the thealrgiangular distribution.
Triangular nature of the simulated distribution is notbisiin Fig. 4.4 with 100 sam-
ples. However, it is clearly visible in Fig. 4.7 with 1000 sales. As shown in Fig.
4.4 through Fig. 4.8, a triangularly distributed randomiafalle, whose minimum,
mode and maximum values are known, is simulated with 10, 1000, 10000 and

50000 sample sizes. Minimum, mode and maximum values ofatheéam variable
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are 10, 20 and 30, respectively. As illustrated, if the sansje is small, simulation
results are not accurate. When the number of sample sizeadlgincreased (e.g,
10000 or 50000 simulations), an exact distribution fitting triangular distribution is

achieved.

Read Input File
nsamples : number of samples
nvar : lifetime of structure
Characteristics of distributions:
xmin : minimum value for triangular distribution
xmode : mode value for triangular distribution
Xmax : maximum value for triangular distribution

v

Generate Random Variables

random variables = ranchéample, nvar)
rand generates uniformly distributed random vagabl

v

Use Inverse Transform Method

Use inverse transfer method to
transform generated random numberg
from uniformly distributed random
numbers to triangularly distributed
random numbers

Figure 4.1: Flowchart of Latin Hypercube Sampling simwaatprogram.

It can also be observed that the interval length of bar chapltg has anféect on
the display of the simulation results. Although Fig. 4.2 &gl 4.3 have the same
sample size, these figures do not look the same. This can hersae clearly from
differences between Figure 4.4 and Figure 4.5. As shown in Fig, tdere is a
disharmony among bar heights deviating substantially faeomangular distribution.
In Fig. 4.5, however, the bars converge to the trianguldridigion shape. Therefore,
it should be realized that bar charts with larger intervaigtds can represent the

desired distribution with smaller sample sizes.
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Figure 4.2: Latin Hypercube Sampling with a sample size cdrdd 60 intervals
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Figure 4.3: Latin Hypercube Sampling with a sample size cd@ 13 intervals
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20 ‘
SAMPLE SIZE = 100
MIN. = 10
MODE = 20
MAX. = 30
15+ 7
>
O
=z
T
2 101 7
o
L
o
L
5, -
Q
10 15 20 25 30

VALUES OF VARIABLE

Figure 4.5: Latin Hypercube Sampling with a sample size & d0d 11 intervals
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Figure 4.7: Latin Hypercube Sampling with 10000 Sample Size

90



1800 \

SAMPLE SIZE = 50000
m MIN. = 10
T MODE = 20
1500 ' N - MAX. = 30
. r N
% 1 B
Z 1000/ | 8 -
2 i nE
(@4 ] |
] B
4 | N
LL | L
5001 B
0
10 15 20 25 30

VALUES OF VARIABLE

Figure 4.8: Latin Hypercube Sampling with a sample size ®C&0

4.2 Maintenance Actions for Bridges

Maintenance is any activity applied to a structural systeheiothan the new con-
struction. The objective of all maintenance actions is tegkihe structural system in
good condition throughout its lifetime. Cleaning, paigtias well as repairs and re-
placements of components are examples of maintenancasiothe bridges. The
main actions of bridge maintenance can be classified asiotgasealing, painting,

coating, reseting, repairing, replacement, modificatiehabilitation and emergency
maintenance actions. Specific maintenance actions thditecparformed under these

action categories may be grouped as follows [55].

1. Cleaning Actions:

e Wash
e Zone wash

e Sweeping
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e Flushing

e Removal of incompressible material
e Removal of vegetation

e Removal of material in channels

¢ Unclog cleanouts

e Clean Debrig drift

e Clean Grditi

2. Sealing, Painting, Coating actions:

Spot clean

Partial or complete application of fluid sealers

Painting

Coating or Applying preservatives

Chemical treatments

Surface preparation
3. Reset actions:

e Re-positioning

e Lubrication

e Tightening (of bolts and rods)

e Other minor corrective actions

e Consumables

e Caulking

e Resetting Gates or signals

e Resetting Mechanical equipments

e Resetting Electrical equipments
4. Repair actions return elements to better condition, en&g as-built condition

e Patching
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Re-attach or Re-anchor

Straightening

Jacking or Aligning

Reinforcing

Dredging or Grading

5. Replacement actions :

¢ Individual replacement
e Section replacement
e Complete replacement

e Span replacement

6. Modification actions :

e Modify Geometry

Modify Protection

Modify Vulnerability

Modify Strengthen capacity

Modify Function

Modify Assembly

7. Emergency maintenance actions are taken in responsddersacute problems

that must correct restore or continueffi@operations

e Posting the bridge

Shoring the bridge

Closure, full

Closure, partial

Detour

Temporary bridge placement
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Based on policies of developed countries that have welfdesi BMSs, maintenance
actions may be defined more appropriately. In general, cigaand minor repairing
are always classified as maintenance. Also, repairs oraeplants of components are
usually categorized as maintenance actions. Moreovel soiprovements obtained
in small scaled projects might be considered as mainteractogty. However, im-
provement in large scaled project, bridge replacement adddoreconstruction are

never classified as maintenance.

Maintenance actions mentioned below and Table 4.2 and PaBlare taken from

Bridge Rehabilitation [56]. Existing bridge infrastructuneeds maintenance and
repair actions because aging leads to deterioration ojetements. In very general
terms, according to [56], the following maintenance actioan be undertaken when

a bridge is deteriorated.

Repair

Replacement

Rehabilitation

Strengthening

Modernization

Repair, restores the defects on the structure and it géydeals with local damages

of structural members than whole structures.

Replacement actions substitute or change the bridge menainer equipment ele-
ments that need to be fixed. Equipment elements are expgoas, bearings and
barriers, deck elements, bracing elements are some s@lstambers.

Rehabilitation actions restore the bridge structure. R#éitetion is applied on the

whole bridge structure.

The fourth action; i.e, strengthening, increases the |l@ad/mg capacity by adding

new members or material.
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Some actions upgrade the facilities, e.g., neufitrdlow arrangement, new signs,

new barriers. These actions are grouped under the Modé&omza

Moreover, there exist an action type, named as retrofittiRgtrofit is applied to
existing structure and is a strengthening procedure. ht bfthe newly gained ex-
periences, retrofitting may be applied if it is found thatialidesign is not sfiicient.

These five maintenance actions have many specific sub-a¢tiononcrete and steel
bridges. These actions and the material or structural mesibevhich they can be
applied are shown in Table 4.2 and Table 4.3 [56].

Table 4.2: General classification of standard repair tephes and materials applied
to concrete bridge superstructures.

Material or structural
member to be repaired
Removal of Concrete,

deteriorated concreteAll structural members
Reinforcing steel
Strands

Anchorages

Steel bearings or joints
Balustrades or other
steel elements

Type of work

Corrosion removal

: Concrete
Surface cleaning Steel
Crack repair Concrete
Bounding the
repair mgterials Concrete
Patching Concrete
Replacement or
addition of the Reinforcing steel

reinforcement
Reinforcement

Reinforcing steel

protection
Applying the. Concrete
repair materials
Surface coating
Concrete

and sealing
Repair of collusion | Mostly reinforced or

damage in structural prestressed concrete
members beams or box girders
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Table 4.3: General classification of standard repair tephes and materials applied
to steel bridge superstructures

Type of work

Structural members
or their joints
to be repaired

Corrosion removal
and surface cleaning

Any

Repair of
deformed elements

Any

Removal of structural
elements or some
parts of them as

well as removal of
structural joints or
some of their parts,
e.g., welds or rivets
with defects, cracked
gusset plates, etc.

Any, if necessary

Strengthening of
structural elements
with reduced cross-
sections by corrosion
or the elements with
other defects

(e.g., fatigue cracks)
or the elements weakene
by plastic deformation

ol

Any, if necessary

Strengthening of the
the structure after
its repairing

Mostly main structural
elements, e.g., the girders
Relatively seldom other
elements, e.g., floor-beams

Installation of the new
elements after removal
of the existing ones

Any, if necessary and
technically justified
and possible

Anti-corrosion

protection

Any steel elements
and their joints
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According to PONTIS Technical Manual [57], there are fivedition (damage) states
for a steel open girder that is painted. Also, there are s@asilile actions for each
condition state. Five condition states and suitable maartee and repair actions that

can be applied in each condition state are listed below.

1. There is no evidence of active corrosion and the paineayss sound and
functioning as intended to protect the metal surface.

e Do nothing or

e Surface clean unit

2. There is little or no active corrosion.The paint systeny imachalking, peeling,
curling, or showing other early evidence of paint systenress but there is no

exposure of metal.

e Do nothing or
e Surface clean unit or

e Surface clean and restore top coat of unit

3. Surface or fracled rust has formed or is forming. The psystem is no longer
effective. There may be exposed metal but there is no activesiorr which is

causing loss of section

e Do nothing or

e Spot blast, clean and paint unit

4. The paint system has failed. Surface pitting may be ptdagnany section
loss due to active corrosion does not yet warrant strucamalysis of either

the element or the bridge.

e Do nothing or
e Spot blast, clean and paint unit or

¢ Replace paint system on unit

5. Corrosion has caused section loose andfiscgent to warrant structural anal-
ysis to ascertain the impact on the ultimate strengthyanskerviceability of

either the element or the bridge.
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e Do nothing or
e Major replacement unit or

e Replace unit

According to Neves and Frangopol [51], there are fotifedent condition levels for
structures. In the light of the inspection, it is decided ebhmaintenance actions are
to be applied to the structure according to its conditiorledlso, a safety index is
included in their study.

In [51], maintenance strategy is composed of three main@naction types. These
are: No maintenance, Preventive maintenance and Essarmdiatenance actions.
Furthermore, depending on the time of application of thentesiance action, the
maintenance actions are classified as follows.

1. Time-based maintenance actions

e Silane treatment

e Replacement of expansion joints
2. Performance-based maintenance actions

e Minor concrete repairs

¢ Do nothing and rebuild
3. Time-and Performance-based maintenance actions

e Cathodic protection

Preventive maintenance actions are usually time-basedt@mance actions because
they are applied independently of the performance of thekire.

If performance of the structure is at or below an acceptdirkshold level, essential
maintenance actions are applied. Therefore, essentiatemaince actions are usually
performance-based maintenance actions.

Maintenance and Repair actions taken from [51], [55], [58]grouped in Table 4.4.
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Table 4.4: A comparison and matching of Maintenance Actions

National Database

Bridge System for Neves and Frangopol
Rehabilitation Maintenance Actions
on Highway Bridges
Removal of Minor concrete
deteriorated Replace .
repair

concrete
Corrosion removal,
Surface coating Coat/ Paint Cathodic protection
and sealing
Surface cleaning Clean/ Clear Silane treatment
Crack repair,
Patching,
Bonding the
repair material,

. Replacement of
Replacement or Repair expansion ioints
addition of the b J
reinforcement,
Applying the
repair materials
Reinforcement | ir, Rebuild
protection
Repair of collusion
damage in structural Emergency Rebuild

members
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4.3 Bi-Linear Performance Model

The lifetime deterioration of infrastructure systems maypbedicted using condition
profiles. The profiles can be obtained usinfjetient models, such as Markovian Pro-
cess, Polynomial functions and Regression Models. Thegiread model described
in this section combines the condition and safety assedsmerder to determine the
condition and safety profiles considering maintenanceasti The model is devel-
oped by Neves and Frangopol [19]. In this study, the modd@-isreated by develop-
ing a computer program. The objective of the program devetog is to verify the
developed simulation program by comparing the results fikaves [19] and then to
further develop the model taking into account the regressiodeling and Markov
Process. The performance prediction model has many vasiahilar to other pre-
diction models. Some of the variables are initial conditiotlex, deterioration rate,
and deterioration initiation time. If maintenance or re@aitions are applied to the
system, new variables are introduced to predict the pedooa profiles of the sys-
tems, too. Fig. 4.9 shows the performance indicator velisus graph when two
maintenance actions are applied throughout the lifetintee@gystem [19]. Variables
shown in Fig. 4.9 are described in Table 4.5. All random \@eés are assumed to

have triangular distribution [19].

A computer program is developed as part of this thesis inrdadkave a simulation
program in hand to be used for simulation-based bridge paegnce prediction. As
an initial study, the developed program is first used to yesbme of the results
reported in [19].

The developed program namedlas _csc.m obtains the condition, safety, and cost
profiles by using the equations given between Equation 4d3Eauation 4.12. This
developed computer program generates the random variaditeg Latin Hypercube
sampling method withatin_hs tri.m. Flowchart of thelhs csc.m is presented in
Figure 4.10. First, this program reads the random variaiotes an input file. All
random variables related with condition, safety and codfilps are described in this
input file. The described random variables in the input fie@esented in Table 4.5.
Second, the program performs simulation for each randorablaraccording to their

characteristic parameters. Third, time loop starts fteaD as the construction year
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and maintenance type is decided to be applied according t@atitdom variables. The
calculation part is included in the time loop. In additionadysis is conducted for ev-
ery year. The values of performance profiles and mainteneosteare calculated for
each year throughout the lifetime. Maintenance actionieg if application of any

action is necessary at a certain instant. The applicatioa is stored andfiects of

maintenance actions are implemented into the profile andribe profile values are
calculated as a next step in the calculation. Thereaftey,determined whether the
time loop comes to the end of the time horizon. If time looptoarous, calculations
are conducted for the next year. Otherwise, simulation rerrabhd number of simu-
lation variables are controlled whether the program coragké end. If simulation

number is still smaller than the number of simulations, paoggoes to the start of
the simulation loop and then generates new values for theborarvariables. Other-
wise, thelhs_csc.mis accomplished. Finally, condition, safety, and cost pesfare

composed of the average values of condition, safety andvaasibles obtained from

simulation based computer program.

Profile under
maintenance 1 and 2

/ o,  Profile under
1

Profile under no, maintenance 1
maintenance

01

PERFORMANCE INDICATO

v

TIMF

Figure 4.9: Superposition of thefects of two maintenance actions in a performance
prediction model
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Table 4.5: Description of Random Variables Used in Figuge 4.

Random Variable

Description

01

Deterioration rate of
condition index

0>

Change in deterioration
rate due to first
maintenance action

03

Change in deterioration
rate due to second
maintenance action

04

Increase in performance
indicator due to first
maintenance action

Os

Increase in performance
indicator due to second
maintenance action

Time of initiation
of deterioration of
performance indicator

Time of first application
of maintenance action

Time of subsequent application
of maintenance action

Time during which the
deterioration &ect on
performance indicator
is suppressed

Time during which the
deterioration &ect on
performance indicator is
suppressed or reduced
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Read Input File
num_sim: number of simulations

T max : lifetime of the structure
Co, S : initial performance indices (Condition, Sgje

v

Start Simulation Loop
Generate random variables in each simulatipn

simul_num=1:num_sim
simul_num = simulation number

v

Start Time Loop

(t=0:1T_max)

v

Decide Maintenance Type
Time-based, Performance-based,
Combined-based maintenance action$

v

Calculation Part
Calculate condition and safety indices

Is any maintenace

Yes application necessary?

- Apply maintenance action

- Save time of application .
- Perform the effect of maintenance actiop time =time + 1

v

No

time> lifetime?

No

Smul_num> num_sim’

End Program

Figure 4.10: Flowchart dhs_csc.m program
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4.3.1 Condition Profiles

Condition index is a kind of performance indicator. Itisaibed by visual inspection.
In addition, condition index is an important indicator teegsbe bridge deterioration
without any mechanical test. Moreover, Bilinear model pres condition prediction

formula for infrastructure system throughout the lifetime

Equation from 4.3 to 4.6 are used to compose the conditiofiiggainder no main-
tenance case. Figures from 4.11 to 4.19 are obtained fromulas used for no

maintenance case which are presented below.

er =0 lye (4.3)
to=MiNEt; T)-T+1>0 (4.4)
trero + tge = 1 year (4.5)
Co, if T=0
Cr = _ (4.6)
Cr1—e€r, if T>0

Definitions of the random variables used in the above fortraria are given in Table
4.6.

The condition profiles under the maintenance action is nbthby formulas given in
Eqs 4.7 through 4.12.

€T = (91 - 92) * treduced + 61 - tno (4.7)

tzero = Min(ty; 7) —max(0;7-1) >0 (4.8)
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Table 4.6: Random variables used in condition index fortmhaunder No Mainte-
nance Case

Random Variable | Description
Deterioration rate of condition index under no
€r maintenance during the specified one year time
interval
t Fractions of the year during which there is no
20 deterioration of condition under no maintenance
¢ Fractions of the year during which there is
det deterioration of condition under no maintenance
ti The initiation time of deterioration of condition
T Time
Co Initial condition index
Cr Condition index at tim&
teffect = MiN(tpg; 7) — Max(0;r—1)> 0 (4.9)
1:reduced = min(l;teffect - tzero) (4-10)
tzero + treduced + tho = 1 year (4-11)
Cr1—e€t, if > 1year
Cr = T-1— €T | Y (4.12)
Cr_1— €7 + 04, IfOST<1year

The variables in Egs. 4.7 through 4.12 are defined in Table 4.7

Condition profiles can be obtained based on giveted@nt values of the random
variables including initial condition inde&,, deterioration initiation timd;, and de-
terioration rate9,. The formulas presented above are used to develop the siomila
based performance prediction program. Flowchart of coerquibgram’s algorithm
is presented in Fig. 4.10. The condition profiles and valdieescriptors of the three
random variables are presented Figs. 4.11 through 4.20.difksment profiles are

obtained using dierent values for the random variables. Nine of these figures a
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Table 4.7: Random variables used in condition index formmfeunder Maintenance
Case

Random Variable | Description
Equivalent rate of condition deterioration during

e one year interval
¢ Fraction of the year during which there is nidest
ne of the maintenance on condition
Fraction of the year during which there is no
toero deterioration of condition due to théfect of

maintenance action

Fraction of the year during which maintenance

tef fect action reduces or suppresses the deterioration of
the condition

Fraction of the year during which the deterioration

treduced rate of condition is reduced due to the maintenance
action
T The time elapsed since the maintenance is applied

obtained for under no maintenance case and are groupedne® subgroups based
on the variables values. For every group, the values aregelafor only one vari-
able and other two variables are kept constant. These gty the fects of the
random variables on the condition index profile. All usedalales to achieve these
figures have triangular distribution.

The graphs contain the descriptor values the random vasgatthich define the shape
of the condition index profile. The random variables, initandition index Cop),
deterioration initiation time¥), deterioration rate’), and the number of simulations
are displayed in all the figures. The number of simulatiordusel00000. In all
graphs, the probability density functions (PDFs) of thedithon index distribution
are computed using Latin Hypercube Sampling and are disglay discrete points
in time. Mean value and standard deviation profiles of thedtmm index are shown

separately in the graphs.

The first three graphs, Fig. 4.11, Fig. 4.12 and Fig. 4.13wsthe dfect of dete-
rioration rated, on condition indexC. Initial condition indexC, and deterioration
initiation time T; are kept at constant values, and the value of deterioratitshis

changed. Minimum, mode, and maximum values of initial cbadiindexC, are de-
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Figure 4.11: Hect of Deterioration Rate on Condition Index Profile underNiin-
tenance Case fah = T (0, 0.05,0.1)

fined as 0, 1.75 and 3.50, respectively and 0, 5 and 10 yeanseadeas the minimum,

mode and maximum values of deterioration time initiafion

For Fig. 4.11, distribution values of deterioration ratg ére used as 0, 0.05, and 0.1.
As shown in the figure, value of the mean initial conditionards around 1.75 and
during the first 5 year, no deterioration is observed. Afsedg, mean condition index
increases gradually (i.e, downward), and violates the itimmdthreshold Ciarge =
3.0) by the end of 30 years if a condition threshold value is m&zlto be 3. Finally,
the mean condition index reaches 4 at 50 years. Variatioheobtandard deviation
of the condition index throughout the analysis remains alrabthe same value. The
standard deviation is observed as 0.7 at the beginning theesches 1.2 at the end
of 50 years.

Fig. 4.13 is the last figure of the first group of three grapher this profile, the
minimum, mode and maximum values of deterioration ratg 4re 0, 0.15, 0.3, re-
spectively. Initial condition indexC, and deterioration initiation timd&; have the

same values as the first two analyses. As shown in Fig. 4.1&dletion rate values
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Figure 4.12: Hect of Deterioration Rate on Condition Index Profile UnderNiin-
tenance Case fah =T (0, 0.1,0.2)

for this analysis are higher than the other two analysesrefbee, the higher value
of the deterioration rate leads the condition index to reagh = 3.0 very early and
causes a larger variation of standard deviation. Mean tiondndex reaches thresh-
old value by the end of 13 years and standard deviation ofdhdition index 3 at the

end of 50 years.

Consequently, it can be observed that deterioration égtdés an importantféect on
the condition index profile. When deterioration rate chandglee standard deviation
and the mean of condition index present significant vametiof deterioration rate

increases, mean and standard deviation of condition intErase, too.

Condition index of a bridge component may not be exactly kmaven the bridge
is constructed. However, initial condition index distrilon should be known to ex-
amine the condition profiles. For this reason, the initialdition index is a random
variable. Figs. 4.14, 4.15 and 4.16 illustrate tffeet of initial condition index on the
condition profile. All random variables except initial catoh index have the same

distributions values for these three profiles. Minimum, ecand maximum values
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Figure 4.13: Hect of Deterioration Rate on Condition Index Profile UnderNiiin-
tenance Case fah = T (0, 0.15,0.3)

of deterioration raté, are 0, 0.08 and 0.16, respectively and 0, 5 and 10 years are the

minimum, mode and maximum values of deterioration timaatian T;.

As shown from the Fig. 4.14, 0, 0.5, and 1 are the minimum, nademaximum

values of initial condition index for the first profile. Forislprofile, mean condition
index is higher than condition threshdli, ¢« = 3.0 until 37 years. At the end of 48
years, mean of the condition index reaches 4. On the othet, Istandard deviation
of the condition index is 0.2 at the beginning of analysisetiamd 1.5 at the end of
the lifetime.

Figure 4.15 shows theftect of initial condition index on condition profile when min-
imum, mode, and maximum values of initial condition indeg @r 1 and 2, respec-
tively. Mean of the condition index crosses the conditiaesholdCi, ¢« = 3.0 after
30 years because of having larger value of initial conditrafex than that in Fig.
4.14. Changes in standard deviation of the condition indextd variation of initial
condition index is very small. Standard deviation of thediban index is 0.3 at the

beginning and it reaches 1.5 at the end of the time horizon.
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Figure 4.14: Hect of Initial Condition Index on Condition Index Profile ugrdNo
Maintenance Case f@, =T (0, 0.5, 1)

If triangular distribution of initial condition index i€y = T(0, 1.5, 3) as shown in Fig.
4.16, mean condition index crosses the threshold very aarfhown in the Fig. 4.16.
Condition index reaches 3 at the end of the 24 years. Stamtaidtion behaves in

the same manner as in Figure 4.14 and Figure 4.15.

As stated in [19], it is verified that the initial conditiondex Cy has an important
effect on the condition index profile. The higher initial comnalitindex values cause
condition index to cross the threshold sooner. Value ofititeal condition index has

no remarkable ffect on the standard deviation of the condition index.

Onset of deterioration of in a bridge member may not be knoxactty. There-
fore, deterioration initiation time is modeled as randomalale when predicting the
lifetime of a deteriorating system more accurately. The tieeee figures of the con-
dition profile, i.e, Figs. 4.17, Fig. 4.18 and Fig. 4.19, shbe dfect of deterioration
initiation time T; on the condition profile. Hence, all variables except detation
initiation time have constant values for the three figuremiiium, mode, and max-

imum values of deterioration ratg are 0, 0.08 and 0.16, respectively. Besides, 0,
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Figure 4.15: Hect of Initial Condition Index on Condition Index Profile ugrdNo

Maintenance Case f@, =T (0, 1, 2)
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Figure 4.16: Hect of Initial Condition Index on Condition Index Profile UgrdNo
Maintenance foCy =T (0, 1.5, 3)
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1.75 and 3.50 are the minimum, mode and maximum values @lingndition index
Co.
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Figure 4.17: Hect of Deterioration Initiation Time on Condition Index He under
No Maintenance Case far =T (0,5, 10)

In Fig. 4.17, the system starts deteriorating approxingaieyears later after con-
struction and then condition index continues to increasa/avard) linearly. Mean
condition index reaches the threshold level at the end ofe2@syand standard devia-
tion while 0.8 at the beginning of the analysis, it reach&sat the end of 50 years.

Fig. 4.18 is generated with new distribution values of detation initiation time. i.e;

T(10, 15, 20). This increment causes the deteriorationan Kter and the lifetime
to be longer.Deterioration starts approximately betwe@radd 20 years after the
construction. Consequently, condition index reaches tmition threshold at 30

years.

Fig. 4.19 is the last profile showing théfect of deterioration initiation time on
condition index. In this figure, characteristic values ofederation initiation time
distribution are 20, 25 and 30. As shown in the Fig. 4.19,rilmtation starts between
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Figure 4.18: Hect of Deterioration Initiation Time on Condition Index Hie under
No Maintenance Case fd; = T ( 10, 15, 20)

20 and 30 years and this causes lifetime to be longer thanrtiigeg in Fig. 4.17
and Fig. 4.18. Mean condition index reaches the threshetl b 40 years and the

variation on standard deviation becomes smaller.

Deterioration initiation time has a significantect on condition index profile and it
effects the lifetime of the bridge. The later the deterioratoset starts, the longer
the lifetime of the bridge becomes. In addition, there isveiige proportion between

deterioration initiation time and standard deviation ofidibion index.

As the next step, maintenance scenarios are applied foreaa®eting bridge using
the deterioration model developed by Neves and Frango®! [llo maintenance
case, silane treatment, replacement of expansion jointgrnaoncrete repairs, do
nothing and rebuild, and cathodic protection actions apiegh as maintenance and
repair actions. Performance (condition) profiles are oleiifor each maintenance
scenario. The data is obtained from the model presented kbgdNend Frangopol
[19]. Condition profiles presented between Figure 4.20 agdrE 4.25 are obtained
from the random variables defined in the Table 4.8. All rand@mables for the

113



0 \

NUM. OF
SIMULATION:
100,000

C,=T(0,1.75,350)
T,=T(20,25,30)
6,=T(0,0.08,0.16)

Ay
T

I

N
T

MEAN

CONDITION INDEX, C

w
T

0 10 20 30 40 50
TIME, YEARS

Figure 4.19: Hect of Deterioration Initiation Time on Condition Index Hie under
No Maintenance Case. fai = T ( 20, 25, 30)

maintenance scenario are generated using the Latin Hypesampling method and
the number of simulations is selected as 1000.

Fig. 4.20 is condition profile under no maintenance case. hsva in this figure,
the bridge is assumed to be subjected to deterioration siacke Performance curve
gradually decreases over years with condition index valeeeasing. Performance
curve in 4.20 is linear because the selected maintenaneagy maintenance case.
For no maintenance case, condition index increases veiglyand reaches its critic

level between 15 and 20 years.

The profiles in Fig. 4.21, 4.22, 4.23, 4.24, and 4.25 are nbthusing data defined in
Table 4.8.

The profiles in Figure 4.21 is obtained when silane treatmsaihtenance activity
is applied to the bridge infrastructure. Silane treatmsrat preventive maintenance
activity and only leads to reduction of deterioration ratdence, this action only

extends the lifetime of the bridge. Silane treatment hasnpyévement fect on the
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Table 4.8: Data for Condition Index with Maintenance

Silane

Replace Cathotic Minor Do nothing
Treatment Expansion Protection Concrete and
Joints Repair Rebuild
toi T(0, 7.5, 15) T(0, 20, 40) whenC = 2 whenC =3 | whenS =0.91
t, T(0, 12.5, 15) T(20, 30,40) | T(7.5, 10, 12.5) whenC =3 | whenS =091
04 0 0 0 T(2.0, 2.5, 3) To O
tq 0 0 12.5 0 T(10, 15, 30)
(61— 6,) | T(0.0,0.01, 0.03) T(0.0, 0.04,0.08 0 0 0

tog T(7.5,10,12.5)| T(10, 15, 30) 12.5 0 T(10, 15, 30)
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Figure 4.20: Condition Profile under No Maintenance Case.
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condition profile. As shown in Figure 4.21, no improvemenpefformance curve
is achieved by silane treatment but condition index reaahesitical level between
30 and 40 years. Therefore, the lifetime of the structureredd if silane treatment is

applied as maintenance action.

The profile in Fig. 4.22 is obtained by replacement of expamgoints which is a
preventive maintenance actions and a time-based mairdersrategy. Therefore,
this action has first and subsequent maintenance apphdaties which are random
variables. The onlyféect of this maintenance activity is the reduction of detation
rate of the condition profile (performance curve). Replagehof expansion joints
has no improvementkect on the condition profile.

0 ‘
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Figure 4.22: Condition Profile when Replacement of Expandmmints action is ap-
plied.

The profile in Fig. 4.23 is obtained when minor concrete negaapplied to the
bridge. Minor concrete repair is an essential maintenactoera First and subsequent
maintenance actions are applied when condition index esatte threshold level.
Minor concrete repair has an important improvemeteat on the condition profile.

Minor concrete repair prevents the bridge condition fromcheng the critical level
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throughout its lifetime.
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Figure 4.23: Condition Profile under Minor Concrete Repatroe.

Do nothing and rebuild is an essential maintenance actidritas dependent on the
safety index profile. Do nothing and rebuild applied wheresaindex reaches the
threshold level. Neves and Frangopol [19], based on statiddata, assumed the
threshold level for the safety index is 0.91. In other woidsyes and Frangopol [19]
assumed the existence of a coupling between the conditidrsafety indices. As
shown in Figure 4.24, condition (performance) of bridgedgedly gets worse until

the maintenance action is applied.

The profile in Fig. 4.25 is obtained by applying the cathodim@ction maintenance

to the structure. Cathodic protection is a time and perfoicesbased maintenance
action. First cathodic protection action is applied whenditon index reaches the
threshold level but subsequent actions are applied at gubaeapplication times. In

[19], threshold level for the condition index for cathodiofection is selected as 2.
Cathodic protection only delays the deterioration in timd & has no improvement

effect on the condition index.
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Figure 4.24: Condition Profile under Do Nothing and Rebudtican.
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Figure 4.25: Condition Profile when Cathodic Protectioncecis applied.
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4.3.2 Safety Profile

In well designed BMS, maintenance and repair strategieslecaled according to
performance curves of the structure. Another performancg other than the con-
dition profile is the safety profile. This performance profdedetermined based on
structural assessment formulas which were explained ipteh&. Structure’s safety
level is impaired when safety index is small. In the study}[1® threshold level for
the safety index is selected as 0.91. Structure whose dafity reaches threshold
level will be out of service and must be subjected to an egdenaintenance action.
Safety profile is obtained using the similar formulas of tbedition profile. Safety
profiles presented between Figure 4.26 and Figure 4.31 &a@ed using the random
variables defined in the Table 4.9.

Using the developed maintenance simulation program, tfetysprofile under no

maintenance case is obtained as shown in Fig.4.26. Theedsdgibjected to deteri-
oration since the beginning. Therefore, performance cgradually decreases over
the years. Safety index of the structure reaches the thicekhwel at nearly 40 years
if no action is taken. Performance curve is linear becausaterance type selected

iS N0 maintenance case.

Figures 4.27 through Figure 4.31 are obtained using theorandariables values
given in Table 4.9.

The Safety Profile in Fig. 4.27 is obtained when silane treatraction is applied to
the bridge. Silane treatment is a time-based maintenarimnao first and subse-
guent maintenance actions are applied at specified timedhwainé random variables.
Silane treatment leads to a reduction of deterioration oatg. Hence, this action
extends the lifetime of the bridge. In addition, silane time@nt has no improvement
effect on safety profile. Therefore, no improvement on Safeyileris achieved by

silane treatment.

Replacement of expansion joints is a preventive maintemantion and it is a time-
based maintenance strategy. The action has first and sidrgeqaintenance appli-

cation times which are random variables. Since the ofilce of this maintenance
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Table 4.9: Data for Safety Index with Maintenance

Silane Replace Cathotic Minor Do nothing
Treatment Expansion Protection Concrete and
Joints Repair Rebuild
toi T(0, 7.5, 15) T(0, 20, 40) C=2 c=3 S=091
ty T(10, 12.5, 15) T(20, 30, 40) T(7.5,10,125) C=3 S=091
04 0 0 0 0 T(1.0,1.25,1.50
ty 0 0 12.5 whileC < 1 whileC < 1
(6. - 6,) | T(0.0,0.007,0.018) T(0.0,0.007,0.018 0 0 0
tod T(7.5, 10, 12.5) T(10, 15, 30) 12.5 whileC < 1 whileC < 1
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Figure 4.27: Safety Profile under Silane Treatment action.
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activity is the reduction of deterioration rate of conditiprofile only, this mainte-
nance activity extends lifetime of bridge infrastructunewever as shown in Fig.
4.28, it has no improvementfect on the Safety Profile.
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Figure 4.28: Safety Profile when Replacement of Expansiorislaction is applied.

The Safety index profile shown in Fig. 4.29 is obtained whenanconcrete repair
is applied the bridge. Minor concrete repair is an esseatid performance-based
maintenance action. First and subsequent maintenanoagaetie applied when con-
dition index reaches the threshold level. While minor ceterepair has an important
improvement &ect on condition profile, as shown in Fig. 4.29, it has no improent

effect on the safety profile.

Do nothing and rebuild is an essential and performanceebasgntenance action
and applied when safety index reaches the threshold levelshdwn in Fig. 4.30,
safety index of the bridge is gradually decreasing untilrtteentenance action is ap-
plied. Safety index gains substantial improvement immtetiiafter the application

of rebuild action.
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Figure 4.30: Safety Profile Under Do Nothing and Rebuild éwti
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Figure 4.31: Safety Profile when Cathodic Protection adsapplied

If cathodic protection is applied to the structure the safebfile is as shown in Fig.

4.31. Cathodic protection is a time and performance-basgdtenance action. First
cathodic protection action is applied when condition inceaches the threshold level
but subsequent actions are applied according to subseap@itation times. Thresh-
old level of condition index for cathodic protection is sgtxl as 2. Cathodic protec-
tion only delays the deterioration in time, it has no impreat défect on safety in-

dex. Although there is no improvement on safety index, adithprotection prevents
further deterioration of the structure. Therefore, sexlife of structure automatically

extends.

4.3.3 Cost Profiles

Cost profiles are obtained by using Life-Cycle Cost AnalysS8CA). This analysis
is used to find out the action cost throughout the bridgeitifet Fig. 4.32 presents
effects of the maintenance action on the bridge condition astjgrofiles. As shown

in Fig. 4.32[58], costs depends on application time and arhofithe improvement.
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The triangular shapes shown in Fig. 4.32 represents theottst routine actions.
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Figure 4.32: Interaction between maintenance costs amhact

Cost Profiles are obtained by inserting life-cycle cost ysial procedure into the
Ilhs_csc.m program. Cost values are stored at the application time. chse val-
ues are called as the annual maintenance cost. In additioomation of these cost
values gives the cumulative maintenance costs. Both oétfeemulas are presented
in Equation 4.13 and Equation 4.14.

Annual Maintenance Cogsj(= C(t) (4.13)
T

Cumulative Maintenance CostE Z C(t) (4.14)
t=0

Annual and cumulative maintenance costs can be transfaioribd equivalent cost of
the application time in order to have a chance for making compn at a reference
point in time. Discount rate is used to obtain the presenievalf the maintenance

cost. Discounted cost formulas are given in Eq. 4.15 and Bd&. 4
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C()

P.V of Annual Maintenance Cos}(= T (4.15)
4
. . Loc)
P.V of Cumulative Maintenance CobtE& Z T+ (4.16)
v
t=0

In order to calculate these maintenance cost Withcsc.m, two new formulas are
required as shown.

ZN: C(t)
= @+
N

E(P.V of Annual Maintenance Cos}) = (4.17)

E(P.V of Cumulative Maintenance CoB)(= '

(4.18)

where,

C(t) is the cost value at timg
T is the lifetime of the bridge,
v is the discount rate,

N is the total number of the simulations.

Cost profiles for applied maintenance actions are calalilated plotted using the
values in Table 4.10 [19]. Fig. 4.33 through 4.36 show ths@mnévalue of expected
cumulative cost over the time horizon for foufférent maintenance actions. Lifetime
maintenance cost profile for silane treatment is shown in E@3 with discount
rates 0 % and 6 %. As mentioned before, silane treatmentnaitia preventive
maintenance action. Hence, application procedure of tttisrais based on time.
As show in Fig. 4.33, silane maintenance strategy is a re@upsecedure applied at
definite time intervals. If only silane treatment is applmcer lifetime of structure,
present value of the expected cumulative cost is approeimab0 kE with discount
rate 0 %.
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Present value of expected cumulative cost of replacemeanipainsion joints action is

presented in Fig. 4.34. This action is also a time-baseteglyaProbability distribu-

tions of first and subsequent maintenance actions were givée previous section.

Based on these distributions, replacement of expansiatsjoccurs one or two times

in a 50 year lifetime. As shown in Fig. 4.34, present valuexgfeeted cumulative

cost of replacement of expansion joints is approximatelyp XE over the lifetime

period if only this strategy is applied on the structure.
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PRESENT VALUE OF
EXPECTED CUMUL. COST

Table 4.10: Cost distribution for maintenance actions

Maintenance Actions Maintenance Cost (k£)
Silane Treatment T(0.3,39, 77)
Cathodic Protection T(19, 2604, 5189)
Minor Concrete Repair T(16, 3605, 14437)
Rebuild T(247, 7410, 28898)

Replace Expansion Joints T(0.7, 19, 39)
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Figure 4.33: Present value of expected maintenance costr uimle-based silane
treatment for discount rates 0% and 6%.

The other maintenance action considered for cost profilergdion is minor concrete

repair. This maintenance action is a performance-basesérfgal) maintenance ac-

tion. Minor concrete repair should be applied when the dimdperformance index
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Figure 4.34: Present value of expected maintenance cost tinoe-based replace-
ment of expansion joints for discount rate 0% and 6%

reaches its target value (i.e., 3). Therefore, there isioglship between deterioration
rate and the number of applied minor concrete repair actlariag the lifetime of the

structure. This maintenance strategy has an importéetteon performance indices
of the structure. Minor concrete repair causes improverimeabndition index and

delay in safety index. If minor concrete repair is selectedaintenance strategy for
lifetime maintenance analysis, cost profile for that actsoobtained as shown in Fig.
4.35. For this case, present value of expected cumulatstereaches approximately
10000 k£ at the end of 50 years. This cost is higher than thsitasfe treatment and

replacement of expansion joints.

Rebuild maintenance strategy is a performance-based{edsenaintenance action
type. Itis refered to as the do-nothing and rebuild maimeraaction. In this action
procedure, any maintenance activity is not applied to tidgeruntil the safety index
reaches the safety threshold level. The rebuild actionpiegbto the bridge when the
safety index reaches the safety threshold level. Fig. 48@s present value profile

of the expected cumulative cost of the do-nothing and rdkagtion. Approximate

129



x 10°

[ERN
N

MINOR CONCRETE REPAIR
NUMBER OF SIMULATION:
1000

[ERN
o
T

[ee)
T

PRESENT VALUE OF
EXPECTED CUMUL. COST
o
T

O | | | |
0 10 20 30 40 50

TIME, YEARS

Figure 4.35: Present value of expected maintenance cost yaaformance-based
minor concrete repair.
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Figure 4.36: Present value of expected maintenance costr yaaformance-based
rebuild action.

130



value of the expected cumulative cost for this maintenactieraat the end of the
lifetime is 7300 KE.

4.4 Polynomial-Based Condition Prediction

An example of a Condition Index is the condition rating. Th® tterms are gen-
erally used interchangeably. They both represent a rangeirogrical or alphanu-
merical values representingfidirent levels of deterioration of bridge components or
bridges. Condition ratings of bridge components or bridgedifferent ages can
be predicted using @erent methods. In addition to simulation-based probaiailis
method described in the previous section, another methib iso called regression
model-based method. There are several regression modaelsustatistical stud-
ies. Linear regression, piecewise linear regression atlghpmial regression are the
common types of regression models. In this study, polynbregression model is
used because it has more advantages than the other regnessiels when condition
deterioration of bridges is considered. Polynomial regjjssmodel is more realistic
than linear regression model and easier to use than piezénésr regression model
for bridge condition prediction.

Regression models have important applications in bridgelition analysis. The

first application is to predict the average condition ragiiodg bridge components at
different ages. Second, regression models is used to find th@éodstien rates at

different ages. Third, they can be used to determine the imp&Eviebenefit gained

by rehabilitation.

An example of polynomial regression equation for deck ctowlirating, the follow-

ing equation is proposed by Jiang [59].

Cueck = 9 — 0.3498T + 0.0104T2 - 0.0001T3 (4.19)

In Jiang's formula, condition rating ranges between 0 arilrgépresents the best con-
dition while O represents the failed condition. The valumes from NBI (National
Bridge Inventory) condition rating classification in U.Sowever, initial condition

index value can be set equal to any index value based on amjjtioonevaluation
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rating scale. Condition rating profile for bridge decks oxe5 year lifetime period
based on Eqg. 4.19 is shown Fig. 4.37. In this polynomial gjom model, time
T(years) is the independent variable and condition ratiramgks at dierent ages.

Let us represent the cfiient in Eq. 4.19 by3's as shown in Fig. 4.37. Deck
polynomial regression model gives rationallyfdrent condition rating profiles when
B's are changed. Thefect of8’s on condition rating profile will be presented at the

end of this section.

CONDITION RATING BASED ON REGRESSION MODEL

R = 9-B1T+B2T2-ﬁ3T3

B1=0.3498
-l B,=0.0104
6l B3 = 0.0001

CONDITION RATING

0 5 10 15 20 25 30 35 40 45 50 55 60 65
T (YEARS)

Figure 4.37: Polynomial regression of deck condition

Fig. 4.38 shows the predicted and actual condition ratinge decks of 40 bridges
presented by Jiang [59]. Statistical bridge data providedi#ng is reproduced here.
As shown the regression model for bridge decks approxintegeattual condition
ratings with some discrepancy.

Fig. 4.39 shows the number of bridges by age condition ratrigvhich were plotted
in Fig. 4.38. Mean age of the 40 bridges is 39.3 years anddnelatd deviation of the
bridges age is 19.8 years as indicated in the figure. Mostedbtitges, (17 bridges),
between 15 and 30 years old.
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Figure 4.38: Actual and predicted condition rate of selgdi@ bridges.

Fig. 4.40 shows the individual ages of the 40 bridges. Thegest age in the bridge
stock is 15 years old and there are two bridges at that ageofthe oldest bridge is
84.

In Fig. 4.41 through 4.49 fkect of the co#ficients 8's) in Eq. 4.19 on the condition

rating profiles are investigated and displayed.

In Fig. 4.41, condition rating profile is examined based @mnession model for bridge
deck. Every variables except are kept constant, andfect of3; on condition rating
profile of bridge deck is observed. The valuegspivary between 0.1 and 0.6. As
shown in Fig. 4.41, some of these results of the polynomigession model for
bridge deck are irrational because condition rating curustndecrease gradually
but the mentioned valueg;=0.1, 0.2, and 0.3) increase the condition rating curve
after 20 years. This leads to conceptual error for the detgron model. Therefore,
condition rating curves leading to irrational results amoved from Fig. 4.41, and
as a result, Fig. 4.42 is obtained. As shown in Fig. 4.42, thallgest acceptable
value forB; a value between 0.3498 and 0.4 the condition rating profileriafge

deck when the othgt values are kept constant. Therefore, increagingalue causes
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NUMBER OF BRIDGES BY AGE

18

TOTAL NUMBER OF BRIDGES =40
16 L E(T) =39.3
o(T) =19.8
14 |
0
o 12 |
a
T 10 |
LL
(@) 8 L
o
)
= S
)
= 4l
2
0
15 30 45 60 75 90

BRIDGE AGE, T (YEARS)

Figure 4.39: Number of bridges by age for which conditionngianalysis is per-
formed.

a decrease in service life of the bridge deck. When valyk &fincreased to 0.4, 0.5,
and 0.6, condition rating decreases radically and reaclad®eB44 years, 17 years

and 12 years, respectively.

In Fig. 4.43, condition rating profiles are examined basethervalues of,. Every
variables exce#, are kept constant, and th&ext of3, on condition rating of bridge
deck is observed. The values @f vary between 0.0098 and 0.011. Acceptable
value is forg, is 0.0102 based on a visual inspection of the profiles in thaply

As shown in Fig. 4.43, if the value ¢, is increased, irrational results arise from
regression model for bridge deck because the conditiomg atiofile starts increasing
(for B, > 0.0104) after approximately 30 years.

Figure 4.44 is obtained by removing the regression curvegyuslues of3, larger
than 0.0102 from Fig. 4.43. As shown in Figure 4.43, the Istrgeceptable value
for B, is 0.0102 and when value @5 is decreased keeping other variables constant,

deterioration of the bridge condition accelerates moréaltgpTherefore, decreasing
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BRIDGES BY AGE
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Figure 4.40: Individual ages of 40 bridges.
CONDITION RATING BASED ON REGRESSION MODEL
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Figure 4.41: Polynomial regression-based condition gapirofile for bridge deck
when onlyB; ranges between 0.1 and 0.6
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CONDITION RATING BASED ON REGRESSION MODEL

R= 9-B1T+B2T2-B3T3

CONDITION RATING

2 | —x—betal=0.3498
—x—betal=0.4
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Figure 4.42: Polynomial regression-based condition gapirofile for bridge deck
when onlyB; ranges between 0.3498 and 0.6

CONDITION RATING BASED ON REGRESSION MODEL

R = 9-B1T+ BzTZ-BgTS
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Figure 4.43: Polynomial regression-based condition gagirofile for bridge deck
when onlyB, ranges between 0.0098 and 0.011

136



of value of3; leads to a reduction of the service life of the bridge decletiam the
regression model for bridge deck element. For example, wie10.0098 is used as
the value of3,, condition rating of deck reaches 3 at the end of 54 years.

CONDITION RATING BASED ON REGRESSION MODEL

R=9-B,T+B,T>B5T°

CONDITION RATING

3
—e— beta2=0.0098 \\
2 A

—a—beta2=0.01

—a— beta2=0.0102

0 5 10 15 20 25 30 35 40 45 50 55 60 65

T(YEARS)

Figure 4.44: Polynomial regression-based condition gagirofile for bridge deck
when onlyg, ranges between 0.0098 and 0.0104

Fig. 4.45 shows thefkect of the coféficient8; on the condition rating curve of the
bridge deck based on polynomial regression model. In omldtig. 4.45, every
codficient excepps; are kept constant, andfect of 33 on condition rating of bridge
deck is observed. The value Bt is varied between 0.00008 and 0.00014. The
smallest acceptable value 185 is between @001 and M0011. As shown in Fig.
4.45, if value ofB; is decreased, irrational results arise from regressionetnioad

bridge deck and the condition rating increases after 3Gsyear

Figure 4.46 is obtained by removing the irrational reg@ssiurves from Fig. 4.45.
When value oB; is taken as 0.0001, an acceptable regression curve is elt&@mn65
years service life. The larger valuesgf( larger than 0.0001) causes deterioration
of the bridge condition to accelerate more rapidly. Thefocreasing the value of

B3 leads to reduction of the service life of the bridge deck Haseregression model
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CONDITION RATING BASED ON REGRESSION MODEL
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Figure 4.45: Polynomial regression-based condition gapirofile for bridge deck
when onlyB; ranges between 0.00008 and@14

for bridge deck element. For example, if the 0.00014 is used4f condition rating
of deck reaches 3 at the end of 37 years. However, serviceflfadge deck extends

to 65 years when value @§ is taken as 0.0001.

Each of Figures 4.47, 4.48 and 4.49 consists of two regnessioves. The two re-
gression curves are obtained using the same regression afibdielge deck and have

the same values fgt, except for3, andps.

The value of cofficientg; is 0.4 for each regression curve in Fig. 4.47. The values
of B, andps, on the other hand, are assigned the values shown in Eq. 4. D8her
wordsB, andps are assumed independenef For the other regression curve, values
of B, andps are determined depending Bn To achieve thisg3, andg; are divided

by B in order to find a ratio betweesy and the other cdicients. In Eq. 4.19, ratio
betweens; andg,, andp; andgs are 0,029731 and 0,000286, respectivelys,lis
changed, the value ¢ andpgs, depending on the value g8f, are found using these

ratio constant.

138



CONDITION RATING BASED ON REGRESSION MODEL

R= 9'B1T+32T2-53T3
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Figure 4.46: Polynomial regression-based condition gapirofile for bridge deck
when onlyB; ranges between 0.0001 an@0014

As shown in Fig. 4.47, two polynomial curves are obtaingdis equal to 0.4 for
both regression curves. However, valueggpfandpg; are diferent for each curve.
All coefficients are independent for one of the polynomial curveshérother curve,
B> andps values change with respect to ratio dependingons, andgs values in
independent curve are 0.0104 and 0.0001, respectivelyh®ather hand3, andg;
values in dependent curve are 0.01189 and 0.000114, resgeci his application
gives good regression model because regression curvenebitbased on the cfie
cient ratios leads bridge deck member to have longer seliféchan ones in which
B> andBs; are kept as constant even if the valuegpis varied. Regression curve
obtained from application mentioned above is rational. &@mple, service life of
the regression curve whose ¢ideents are related to each other is approximately 62
years. However, the other regression curve whoséic@nts are not related to each

other has 44 years of service life.

In Fig. 4.48, both of the regression models of deck membephas0.58;. The re-

gression curve for which the cfiientsg, andss depend orB; gives a more rational
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CONDITION RATING BASED ON REGRESSION MODEL

R = 9'61T+[32T2-B3T3

CONDITION RATING
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Figure 4.47: Comparison of polynomial regression-basedilps of deck condition
based oB; = 0.4 while2 angB; are changed as being independent or dependent of
the value of3;.

result than the other curve. The first regression curvesstiarin condition rating 9
and decreases sharply to rating 5 in approximately 12 y#dagg, remains nearly at
rating 3.5, starting from 20 years old for a duration of apprately 27 years. The
regression curve reaches the condition rating 3 when tligérieck member is ap-
proximately 54 years old. The other regression curve obthby changing, value
only submit little service life profile. When the bridge denlkember is approximately

18 years old, condition rating reaches the rating 3.

The two regression curves shown in Fig. 4.49 Bas- 0.6. Both curves reaches
the condition rating 3 earlier than the curves shown in Fig.74and Fig. 4.48. The
polynomial curve with independent dieient values reaches the condition rating 3
approximately at 12 years. However, the other polynomiateueaches the condi-
tion rating 3 at 18 years. It can be noted tAahas an importantféect on condition

rating. The larger values @ leads bridge condition rating to faster deterioration.
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CONDITION RATING BASED ON REGRESSION MODEL

R = 9-B1T+BzT2-B3T3
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Figure 4.48: Comparison of polynomial regression-basedilps of deck condition
based oB; = 0.5 while2 angB; are changed as being independent or dependent of
the value of3;.

CONDITION RATING BASED ON REGRESSION MODEL

R = 9'B1T+BzT2-BgT3
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Figure 4.49: Comparison of polynomial regression-basefilps of deck condition
based oB; = 0.6 while32 angB; are changed as being independent or dependent of
the value of;.
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4.5 Summary

In this chapter, a probabilistic Bi-linear model is invgstied. The model contains
numerous uncertainties defined as random variables. I todgenerate random
variables and investigate Bi-linear model, a Latin Hypbeegsampling-based com-
puter program is developed in Matlab environment. The aged simulation pro-
gram generates values for random variables. The simulatiogram is integrated
in a main algorithm to produce the condition, safety, and posfiles. Deteriora-
tion rate, initial condition index, and deterioration iation time are three substantial
random variables which determine the condition and safedfiles under no main-
tenance case. Various condition profiles are obtained #olalv, moderate and high
values of these three random variables. In addition, camgisafety, and cost pro-
files are re-generated under the fivéfelient maintenance actions and investigated
effect of the maintenance actions. Furthermore, maintenamteegair actions are
investigated for dferent bridge types and several components of bridges. Ifinal
polynomial regression-based prediction curve is invastid. Hfects of the changes

of polynomial equation on the performance curve are exathine
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Notations in Chapter 4

F(X)
P(x)
G
X
p
01
6>

Cumulative distribution function of variabbe

Probability density function of variabbe

Inverse cumulative distribution function

Any selected number in the distribution

Probability of cumulative distribution function

Deterioration rate of condition index

Change in deterioration rate due to first maintenancemctio
Change in deterioration rate due to second maintenanmaact
Increase in performance indicator due to first maintenactien
Increase in performance indicator due to second maintenaction
Time of initiation of deterioration of performance indioa

Time of first application of maintenance action

Time of subsequent application of maintenance action

Time during which the deterioratiortfect on performance indicator is
suppressed

Time during which the deterioratiortfect on performance indicator is
suppressed or reduced

Deterioration rate of condition index under no maintergatigring the
specified one year time interval

Fractions of the year during which there is no deterioratibcondition
under no maintenance

Fractions of the year during which there is deterioratiboamdition
under no maintenance

Time

Initial condition index

Condition index at tim&

Fraction of the year during which there is nifeet of the maintenance
on condition

Fraction of the year during which maintenance action redwur
suppresses the deterioration of the condition

Fraction of the year during which the deterioration ratearfdition is
reduced due to the maintenance action

The time elapsed since the maintenance is applied

Annual maintenance cost at tihe

Discount rate

Total number of the simulations

Condition rating for deck

Codficients of the polynomial regression equation
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CHAPTER 5

CONDITION PREDICTION COMBINING BOTH
SIMULATION AND REGRESSION TECHNIQUES

5.1 Introduction

Bridge condition profiles and bridge condition rating da&ienportant and essential
measures that assist the decision making process regdnddgg management, re-
habilitation and repair actions. Through a bridge inspegtbridge condition rating
should be predicted as accurately as possible in order t@ maccurate selections
for maintenance, repair and rehabilitation actions overlthidge lifetime. For this
reason, bridge performance prediction is an essential ooem for Bridge Man-
agement Systems (BMSs). Bridge performance predictionefsaate produced by
several bridge performance prediction methods using tiondbr safety rating data.
These methods were discussed and studied in Chapter 4 daodere simulation-
based bi-linear deterioration model [19], a regressiotyaisamodel [25, 60] and the
Markov decision process model [25]. Simulation-based aegr&sion-based con-
dition prediction models will be combined in this chapteonder to develop a new

condition prediction model incorporating the powerfukiferes of each method..

5.2 Regression Models for Bridge Performance Prediction

Regression analysis is a method used to determine relatmbstween dependent
and independent variables and to generate new data setesmvariables. Regres-

sion analysis method is used to obtain bridge performanegigiion curves. These
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performance prediction curves assist bridge adminisinatto predict bridge condi-
tion and remaining service life [60]. Based on the predictarves, applications of
required maintenance actions can be planned. Bridge ¢onghitediction curves are
developed based on the inspection data collected over #mnédge condition rating
data depend on manyftirent parameters. Some of these parameters are bridge age,
bridge types (concrete, steel and timber bridge), highvamdiions, tréfic volume
and climatic conditions. In addition, bridge conditionimgtdata dffer according to
substructure, superstructure and deck which are considsrenajor bridge compo-
nents [61]. Therefore, several performance predictionetsodan be produced by
regression analysis method forffedrent parameters and for bridge components of a
bridge.There are éterent regression analysis models. As an introduction ssthip-
ject, an example regression-based condition predictioteirateveloped by Jiang was
introduced in Sect. 4.4 of Chapter 4. The fimgéents of the regression model were
analyzed in detail. A more general discussion of the regressodels for bridge

performance prediction is presented in the following sedi

5.2.1 Linear Regression Model

Linear regression is an approach to generate a linear fationlof the relationship
between random variables composing a data set. One of ttadbles is considered
as the independent variable, while the rest of the varisdneslependent variable in

the data set.

A commonly used method for fitting a regression line to an pkegkdata is the least
square method. The best fitting line for the data set is catledIby minimizing the
sum of the squares of the verticalfégrences between actual data and estimated re-

gression line.

Linear Regression Model with One I ndependent Variable. Form of a linear equation

with one independent variable is shown in Eq. 5.1.

Yi =Qp+ alxil + € (51)

where
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Y; is the dependent variable,

Xi1 is the independent variable,

a1 is the slope of the linear line,

ag IS the intercept of linear equation and is also interpretedadue ofY whenX = 0,

& iIs the error term which has standard normal distribution.

Linear Regression Model with Multiple Independent Variable. Linear regression
with multiple variables is used when the dependent variabéxpressed by two or
more random variables. In BMSs, linear regression with arteso random variables
may be used as a simple form of performance prediction moHach additional
variable term leads to a new déieient to be estimated. As a result, if number of
variables increases, the complexity of the regressioreasas. Form of a linear re-

gression equation with two independent variable is given as

Yi = Qo+ Cklxil + a’zxiz + € (52)

where

Xi1 is the first independent variable,
Xi» is the second independent variable,

a1, ap are the cofficient of the first and second independent variables resjedcti

There are several factors whicffect the bridge condition in time. In BMSs, how-
ever, more than two factors are not generally used in reigressodels because of
computational complexity. Therefore, if linear regressmodel is used in a BMSs,

two independent variables are generally used to represeiiridge condition rating.

Bridge age is the first independent variable generally used the other variable is
the average daily tfac (ADT).

Fig. 5.1 show the result of a linear regression analysis fiata set consisted of one
independent variable. Values of dependent and indeperdgables are listed in the
figure. Linear regression obtained when the least squargfitiethod is applied to

this data set.
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Figure 5.1: Linear Regression for a Data Set having one ieggnt variable

5.2.2 Piecewise Linear Regression Model

Another linear regression model is the piecewise lineareegjon model. Piecewise
linear regression model includedt@rent slopes at fferent intervals. For data that
displays a nonlinear relationship between the variabiesat regression may not be
suitable. In this case, piecewise linear regression carsée 1o obtain a better fit for

nonlinear data.

Figure 5.2 presents application of piecewise linear reggpedor a data set taken from
Figure 5.1. As shown in Figure 5.2, linear regression haspgigoes linear equation
with different slopes and piecewise linear regression gives bgieoxmation than

linear regression for that sample data.

5.2.3 Polynomial Regression Model

It is common to use the polynomial regression model wheralinegression can not

represent the relationship between dependent and indepewrdriables for a data
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PIECEWISE LINEAR REGRESSION WITH ORDER 2 (BILINEAR )
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Figure 5.2: Piecewise Linear Regression with Order TwoiiiBdr) for Complete
Data Set

set. Polynomial regression equation may be a second ortl@rdaorder or a higher
order equation. For example, a third order polynomial regjan equation with one

independent variable is presented as follows.

Yi = ap + a1X + X + asX® + ¢ (5.3)

The bridge condition rating data presented as data poirfiggs 5.3 through 5.14.
The bridge group data is from interstate and otherstateybsidor diterent age lo-
cated in the state of Indiana in the U.S, and represent thigédondition ratings
obtained by visual inspections [25]. Furthermore, the daitelassified by bridge
component types, representing the condition ratings dfgjesubstructures, and su-

perstructures of these bridges based on the bridge age.

The bridge condition rating data can be used to generaterpasthce prediction mod-
els by applying polynomial regression analysis. As a resfydblynomial regression,
polynomial-based performance prediction equations at&mdd. The coficients of

these regression equations are presented in Table 5.gthii@ble 5.4.
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Table 5.1: The Ca#écients of Polynomial-based Performance Prediction Eqoati
for Interstate Highway Concrete Bridge Condition RatingdJdsed

Co (0%} [0%) as R2

Deck 8.1911| -.2013 | 0.0070| -1.2727%* | 0.6053
Substructure | 8.0962| -0.2047| 0.0081| —1.4960="* | 0.4816
Superstructure 8.0074| -0.1773| 0.0044| -5.4061e™> | 0.5474

In regression analysig;? term is the cofficient of determination and it shows the
prediction performance of the regression equation for thiessical data.
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Figure 5.3: Condition Ratings and Polynomial Regressiorv€for Concrete Bridge
Decks of Interstate Highway Bridges.

The bridge condition ratings and polynomial-based regmassurves and equations
for concrete bridge components are shown in Figures 5.3igir&®.5. There are
concrete bridges with fferent ages. The ages of the bridges for this data group
range between 0 and 33. In addition, the condition rating dat of the concrete
bridges are composed of deck condition rating data for Sdgles, substructure data
for 58 bridges, and superstructure condition data for 58das. Subsequently, all

data is analyzed by polynomial regression method. As atrehid codficients of
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Figure 5.4: Condition Ratings and Polynomial Regressiorv€ftor Concrete Bridge
Superstructures of Interstate Highway Bridges.

polynomial-based regression equations are obtained asempted in Table 5.1. Fur-
thermore R? values for deck, substructure, and superstructure of etmbridges on

interstate highways are shown in the last column of Table 5.1

Another data set is the condition ratings of steel bridge maments presented from
Fig. 5.6 through Fig. 5.8. The ages of bridges in this datagrange between 0 and
39. Total number of steel bridges on interstate highwaykismdata set are 169. 57
bridges out of a total of 169 bridges represent the condit@imgs of the decks as
shown in Fig. 5.6 and 56 bridges represent the supersteudata as shown in Fig.
5.7. Finally, 56 bridges are shown in Fig. 5.8 representuigsgucture condition rat-
ings. All of the condition rating data is examined by using golynomial regression
method. Consequently, polynomial-based regression iemsadre obtained and the
codficients of these equations are presented in Table 5.2 fdrlsidges. In addi-

tion, R? values for deck, substructure, and superstructure of istieigles on interstate

highways are shown in the last column of Table 5.2.
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CONDITION RATING FOR SUBSTRUCTURE
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Figure 5.5: Condition Ratings and Polynomial Regressiorv€for Concrete Bridge
Substructures of Interstate Highway Bridges.
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Figure 5.6: Condition Ratings and Polynomial Regressiorv€tior Steel Bridge
Decks of Interstate Highway Bridges.
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Table 5.2: The Ca#écients of Polynomial-based Performance Prediction Eqoati
for Interstate Highway Steel Bridge Condition Data used.

Co (0%} a as R2

Deck 8.8827| -.3181 | 0.0127| -1.9328&* | 0.5496
Substructure | 8.6403| -0.2415| 0.009 | —-1.458%* | 0.5680
Superstructure 8.6471| -0.2522| 0.0103| -1.7273%* | 0.5333
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Figure 5.7: Condition Ratings and Polynomial Regressiorv€tior Steel Bridge
Superstructures of Interstate Highway Bridges.
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Figure 5.8: Condition Ratings and Polynomial Regressiornv€tior Steel Bridge
Substructures of Interstate Highway Bridges.

The condition rating data of concrete bridge componentsighways other than
interstate highways (i.e, State and Local highways) whighb& referred to as Oth-
erstate highways in the State of Indiana are shown in FiguBsthrough Figure 5.11.
The age range of the otherstate highways are greater thiaof tinéerstate highways.
As shown in Fig. 5.13, the ages of concrete bridges on Otitersighways range
between 0 and 60 years old. Moreover, the sample size of gtésgtoup is larger
than total number of Interstate highways. Total number afgws for the condition

rating data for concrete bridge components on Otherstgtenays are 278.

Polynomial regression method is applied to this data anghpohial-based regression
equations are obtained. The @d@ents of regression equations and thefioent of
determination values) are presented in Table 5.3.

The steel bridge components on Otherstate highways is shegtaup of condition

rating data set. These condition rating data sets are pgegsenFigures 5.12 through
5.14. These data sets represent the maximum number of bradgeompared to the
previous data sets. The number of steel bridges on Othetsgltways is 384. The
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Table 5.3: The Ca#écients of Polynomial-based Performance Prediction Eqoati
for Otherstate Highway Concrete Bridges Condition RatirageDused.

Co (0%} [0%) as R2

Deck 8.3647| -.2707 | 0.0068| —6.548%™ | 0.5397
Substructure | 8.1872] -0.2648| 0.0079| —8.4097° | 0.4609
Superstructure 8.5785| -0.3299] 0.0101| -1.0518* | 0.5115

bridge age for these bridges is older than the bridge agetafass mentioned earlier.
The ages of the bridges range from 0 to 63 for steel bridgestbar€tate highways.
All of the data is analyzed by polynomial regression metteoat| polynomial-based
regression equations are obtained for deck, substrucng superstructure, sepa-
rately. These cd&cients of equations and ciiieient of determinations for these
bridge components are presented in Table 5.4.
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Figure 5.9: Condition Ratings and Polynomial Regressiorv€ftor Concrete Bridge
Decks of Otherstate Highway Bridges.
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Figure 5.10: Condition Ratings and Polynomial Regressiomv€ for Concrete
Bridge Superstructures on Otherstate Highway Bridges.
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Figure 5.11: Condition Ratings and Polynomial Regressiamv€ for Concrete
Bridge Substructures on Otherstate Highway Bridges.
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Figure 5.12: Condition Ratings and Polynomial Regressiarv€for Steel Bridge
Decks on Otherstate Highway Bridges.
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Figure 5.13: Condition Ratings and Polynomial Regressiarv€ for Steel Bridge
Superstructures on Otherstate Highway Bridge
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Figure 5.14: Condition Ratings and Polynomial Regressiarv€ for Steel Bridge
Substructures on Otherstate Highway Bridge

Table 5.4: The Cdé&cients of Polynomial-based Performance Prediction Eqoati
for Otherstate Highway Steel Bridges Condition Ratingsaleged

Co (041 [0%) as Rz

Deck 8.0713] -.2356 | 0.0079| —9.0462 | 0.4693
Substructure | 8.1613| -0.2846] 0.0102| -1.1588* | 0.4371
Superstructure 8.1041| -0.23 | 0.0075| -8.546%° | 0.4966
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5.3 Simulation-Based Condition Prediction

The regression-based performance prediction is one of énfermance prediction
models. This performance prediction model may be obtaiyeapplying the regres-
sion analysis to a real condition rating data set for bridgygesuch a data set, condi-
tion rating is the dependent variable whereas bridge adeisiependent variable.
In addition, the fitting accuracy of the obtained regressigmations for condition rat-
ing data sets may be checked by examining théfment of determinatiol®R?. Once

obtained, regression-based performance curve model cdimdmtly used to predict

the condition of an infrastructure group at any future time.

In this section, a new concept of condition prediction camryg both simulation and
regression techniques will be introduced. Theftioents of the polynomial-based
performance curves obtained by regression analysis ardneated as random vari-
ables and their distributions are generated using Latingryybe simulation tech-
nique with diferent coéicient of variation (COV) values, and a new mean condition
rating profile is computed based on the randomfitment parameters. Simulations
with different COV values lead to many condition rating values witfedent values
to store in the same year. As a result, a simulation-baseeésgign curve can be
plotted by using the mean condition rating based on all dmrdrating data in the
same year. In addition, as shown in Figures 5.15 through, p&®ability density
distributions of these condition rating data at every tearyptervals are plotted to
show the distribution (or dispersion) of the conditionmgtat each point in time (i.e,

every 5 years) over the structure’s lifetime.

All simulations to obtain the simulation-based performapeediction curves gener-
ated using the Latin Hypercube simulation technique. Tleffictents of the polynomial-
based regression equations, Cg, a1, a,, andas are simulated. The probability dis-
tributions of these cdicients are assumed as Normal distribution. In addition,-num
ber of simulations used is 1000 in order to obtain reliablafga space to represent
all codficients. Furthermore, the deterministic values of thes#icgnts are taken
as expected values. Standard deviation of these parametarst known. Therefore,

in these simulations, therefore, the standard deviatituegafor the cofficients are

obtained based on threel@irent assumed values of the fiozent of variation COV.
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For example, 0.05, 0.10, and 0.15 are used as COV valuesdbroddhe regression
equation parameters of the condition rating data for atldgicomponent types.

In this study, simulation process is applied to the regogssguations for all bridge
component types. There are 12tdrent bridge component types used in this study
(Based on deck, superstructure, substructure, concte&s, imterstate, otherstate cri-
teria). 12 diferent regression equation curves are subjected to simmlatocess with

3 different COV values. Thus, this simulation process yields &emint simulated
performance prediction curves which are presented in Egybirl5 through 5.50.

In Figures 5.15 through 5.17, regression-based conditiedigtion curves and prob-
ability density distributions of condition rating data g@eated by using simulation for
the deck components of the concrete bridges on Interstgitevaiys are presented. As
shown these figures, simulation analysis is conducted fgedds of lifetime. In ad-
dition, the condition rating value is approximately 8.2ta beginning of the analysis
and it reaches 3 at the end of the analysis time. Figures Brd&dgh 5.17 are plotted
for three ditferent values of the céiécient of variation for the regression equation co-
efficients such as 0.05, 0.10, and 0.15. For instance, Fig. § Alotted by using the
value of COV as 0.05 for the regression parameters. As showrobability density
plots of in figure, dispersion of the condition rating dataesy small at a given year.
Furthermore, the variation of the standard deviation ptbtty the dotted line in the
same figure is very small throughout the analysis period. graph in Fig. 5.16 is
plotted by using the COV of 0.10. In this figure, there is a bifedence between the
maximum and minimum values of simulated condition ratinlyiea (i.e, samples) in
the same year. In addition, standard deviation for conditading increases toward
the end of the lifetime. Fig. 5.17 is the third figure for thigdge component type and
represents the simulated condition prediction curve ugia@ OV of 0.15. As shown
in the figure, there is a significant variation (very largepéision) in the condition
ratings at a given year. Therefore, standard deviationigfitpure indicates the big

dispersion by substantially increasing at the end of thelkition analysis period.
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Figure 5.15: Simulation of Polynomial Regression Equatith 5 % COV to predict
the Condition Rating of Concrete Bridge Decks on Interdthtghways

The next three figures, i.e, Fig. 5.18 through Fig. 5.20 shastmulated regression-
based condition prediction curves for the substructurepmrants of the concrete
bridges on Interstate highways. Similar to the deck compgremulation analy-
sis for the substructure components is conducted for theed® geriod. As shown
in these figures, the condition rating value is approxinyael at the beginning of
the analysis and it reaches about 3.3 at the end of the asg@lgsbd. Figures 5.18
through 5.20 are plotted for thredfi@irent values of the cdigcient of variation for the
regression equation cfieient, i.e; 0.05, 0.10, and 0.15. As shown in Fig. 5.18, there
is a small diference between the maximum and minimum values of the sarfigles
values of the probability density distribution plotteddpvertical axes) of condition
rating data for the same year. Furthermore, the change malatd deviation in the
same figure is very small throughout the analysis period. Fif9 is plotted using a
COV of 0.10. In this figure, dispersion of the condition rgtitata is larger at time
periods. In addition, standard deviation for conditionngtis also increased. Fig.
5.20 is plotted using a COV of 0.15. As shown in the figure, éhisra substantial
variation in simulated values of the condition ratings apthyed time periods. Stan-

dard deviation displays a very large dispersion at the entietimulation analysis
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Figure 5.16: Simulation of Polynomial Regression Equatigth 10 % COV to pre-
dict the Condition Rating of Concrete Bridge Decks on IntesHighways

Similarly, Figures 5.21 through 5.23 are generated for tipesstructure components
of concrete bridges. The condition rating value is appratety 8 at the beginning
of the analysis and reaches 4.5 at the end of the analysis §immélar to the previous
analyses, three fierent values of the c@igcient of variation used for the regression
equation cofficients are 0.05, 0.10, and 0.15. The profile in Fig. 5.21 iethan a
COV of 0.05 for the regression parameters. There is a litfpatsion of the condition
rating in time. Standard deviation plotted by the dotted Imvery small throughout
the analysis time and reaches 0.8 at the end of 40 years. ©fikepn Fig. 5.22, is
based on COV of 0.10. Standard deviation for condition gateaches 1.2 at the end
of the 40 years. Finally, Fig. 5.23 shows the simulated dwdiprediction curve
based on a COV of 0.15. A very large dispersion of the comlitadings is visible.
Standard deviation also displays a very large dispersioreaghing 2 at the end of

the simulation analysis time.
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Figure 5.17: Simulation of Polynomial Regression Equatigth 15 % COV to pre-
dict the Condition Rating of Concrete Bridge Decks on IntaesHighways.
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Figure 5.18: Simulation of Polynomial Regression Equatith 5 % COV to predict
the Condition Rating of Concrete Bridge Substructures terstate Highways
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Figure 5.19: Simulation of Polynomial Regression Equatigth 10 % COV to pre-
dict the Condition Rating of Concrete Bridge Substructunesnterstate Highways
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Figure 5.20: Simulation of Polynomial Regression Equatiath 15 % COV to pre-
dict the Condition Rating of Concrete Bridge Substructamesnterstate Highways
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Figure 5.21: Simulation of Polynomial Regression Equatiith 5 % COV to predict
the Condition Rating of Concrete Bridge Superstructuremtarstate Highways
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Figure 5.22: Simulation of Polynomial Regression Equatiath 10 % COV to Pre-
dict the Condition Rating of Concrete Bridge Superstruesion Interstate Highways
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Figure 5.23: Simulation of Polynomial Regression Equatath 15 % COV to Pre-
dict the Condition Rating of Concrete Bridge Superstruesion Interstate Highways

In Figures 5.24 through 5.26, regression-based conditiedigtion curves and prob-
ability density distributions of condition rating data g@eated by using simulation for
the deck components of the steel bridges on Interstate laighare presented. The
profiles show that the condition rating value is approxirya89 at the beginning
of the analysis and reaches 4.2 at the end of 40 years. Théeprofrig. 5.24 is
plotted using a COV as 0.05 for the regression parametersathm of the standard
deviation is very small throughout the analysis time andmea 1.5 at the end of 40
years. The profile in Fig. 5.25 is plotted based on a COV of.0i.éhis graph, there
are large dterences between the maximum and minimum simulated samiplesva
of condition rating data. Standard deviation for conditrating reaches 2.8 at the
end of 40 years. Finally, the profile in Fig. 5.26 is based or©&%©f 0.15. Standard

deviation indicates a large dispersion and reaches 4.3yaQperiod.

The profiles in Fig. 5.27 through 5.29 are for the substrectamponents of steel
bridges on Interstate highways. The condition rating vasuapproximately 8.6 at
the beginning and reaches 4 at the end of 40 years. In Fig, St&7dard deviation
reaches approximately 1 at the end of 40 years. The profilgging=28 is based on
a COV of 0.10. Standard deviation for condition rating resschbout 2.1 at the end

165



of the analysis period. Finally, Fig. 5.29 is for a COV of 0.Bandard deviation in
this case reaches 3.2 at the end of 40 years.
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Figure 5.24: Simulation of Polynomial Regression Equatith 5 % COV to predict
the Condition Rating of Steel Bridge Decks on Interstatehiigys

The profiles in Figures 5.30 through 5.32 are for the supertire components of
the steel bridges on Interstate highways. The conditiangatalue is approximately
8.7 at the beginning and reaches approximately 4 at the eA@ péars. The profile
in Fig. 5.30 is based on a COV of 0.05. Standard deviationgioby the dotted
line reaches around 1.3 at the end of 40 years. Similarlyptbgle in Fig. 5.31 is
based on a COV of 0.10. Standard deviation for conditiomgateaches 2.5 at the
end of the analysis period. Finally, Fig. 5.32 is for a COV dff) As shown, there
is substantial in the condition rating value in time. Stadd#eviation indicates this
very large dispersion by reaching 3.6 at the end of the sitomanalysis. A standard
deviation of 3.6 for a mean condition rating of 4 correspaids COV of 90 % which
represents an extremely large dispersion of mean valuenafitton rating at the end
of 40 years. i.e, 4 is not a reliable estimate of conditiomgpof the structure at 40
years. It represents# 3.6 which corresponds to a condition rating value at the end
of 40 years of anywhere between 0.4 and 7.6.
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Figure 5.25: Simulation of Polynomial Regression Equatidth 10 % COV to Pre-
dict the Condition Rating of Steel Bridge Decks on Inteestdighways

— 2 3
C—C0+0(1T+0(2T a T

SIMULATED
CONDITION RATING FOR DECK, C

NUMBER OF SIMULATION:
3 1000 -

CoV:0.15 .-
2| E(C,): 8.8827 - -

E(otl) :—0.3181
1 E(otz) :0.0127 B
E(a,) : ~1.9328¢™*

0 5 10 15 20 25 30 35 40
BRIDGE AGE (YEARS)

Figure 5.26: Simulation of Polynomial Regression Equatiath 15 % COV to Pre-
dict the Condition Rating of Steel Bridge Decks on Inteestdighways
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Figure 5.27: Simulation of Polynomial Regression Equatiith 5 % COV to Predict
the Condition Rating of Steel Bridge Substructures on sté&te Highways
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Figure 5.32: Simulation of Polynomial Regression Equatigth 15 % COV to pre-
dict the Condition Rating of Steel Bridge Superstructunesnverstate Highways
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Figure 5.28: Simulation of Polynomial Regression Equatigth 10 % COV to pre-
dict the Condition Rating of Steel Bridge Substructuresrdarstate Highways
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Figure 5.29: Simulation of Polynomial Regression Equatiath 15 % COV to pre-
dict the Condition Rating of Steel Bridge Substructuresraarstate Highways
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Figure 5.30: Simulation of Polynomial Regression Equatiith 5 % COV to predict
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The profiles in Figures 5.33 through 5.35 are for the deck aomapts of the concrete
bridges on Otherstate highways. The lifetime period oigtiaal data for deck is 60
years. As shown in these graphs, initial condition ratinlyeas approximately 8.4
and its final value reaches around 2.5. Again thréeint values of the cdiécient of
variation are used for the regression equatiorffaments consisting of 0.05, 0.10, and
0.15. The profile in Fig. 5.33 is based on a COV of 0.05 for tigeession parameters.
As shown in the graph, variation of dispersion of the cooditiating data in time is
small. However it is larger than that of the previous caseand@rd deviation has a
small value throughout the period and reaches 1.8 at 40.yEaesprofile in Fig. 5.34
is based on a COV of 0.10. In this graph, there is substaritigrdnces between the
maximum and minimum values simulated sample values of thdition rating data.
Standard deviation for condition rating reaches 3.3 at titeead 40 years, which is
larger than the mean value (2.5). This means an high unegrfair condition rating
value at 40 years. Finally, Fig. 5.35 is based on a COV of (Gt&ndard deviation in
this figure indicates an extremely large dispersion by reacapproximately 5 at the

end of the analysis period.
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Figure 5.33: Simulation of Polynomial Regression Equatiith 5 % COV to predict
the Condition Rating of Concrete Bridge Decks on Otherdtigdways
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Simulation-based regression condition prediction cufeeghe substructure com-
ponents of the concrete bridges on Interstate highways rasepted in Fig. 5.36
through 5.38. The lifetime of statistical data for substuue is 60 years. The initial
condition rating is approximately 8.2 at the beginning amel¢ondition rating value
reaches 2.5 at the end of 60 years. Theiodent of variation used for the regression
equation cofficient are 0.05, 0.10, and 0.15. Fig. 5.36 is based on a COW&f 0.
As shown in garph, dispersion of the condition rating datzery small at the begin-
ning. However, dispersion of the condition rating data dgger toward the end of
the lifetime period. Standard deviation for substructumponent reaches 2 at the
end of the analysis. The profile in Fig. 5.37, is based on a CO¥1X0. As shown
in figure, standard deviation reaches 3.7 at the end of 6Gy€&#ay. 5.38 is based on
a COV of 0.15. As shown in figure, standard deviation reacheéstthe end of 60
year. Standard deviation gets larger than the mean conddiing at the end of the

lifetime period.

9

o 8f I

9

O 7r :

L

=)

% of : |
BU- C=C 0(1T+0(2 +0(3T
E o5 :
3¢
S << 4k 1
7 & | NUMBER OF SIMULATION:

Z ,|1000 -7

o 3 AR

-

E COV.:0.10 -

= 2| E(C,): 8.3647 - .

8 E(a,) : —0.2707 _y==""

1| E(a,) : 0.0068 - .
E(a,) : —6.5485¢°

0 10 20 30 40 50 60
BRIDGE AGE (YEARS)

Figure 5.34: Simulation of Polynomial Regression Equatigth 10 % COV to pre-
dict the Condition Rating of Concrete Bridge Decks on Ottag¢esHighways
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Figure 5.35: Simulation of Polynomial Regression Equatiath 15 % COV to pre-
dict the Condition Rating of Concrete Bridge Decks on OttatesHighways
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Figure 5.36: Simulation of Polynomial Regression Equatiith 5 % COV to predict
the Condition Rating of Concrete Bridge Substructures dre@tate Highways
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Figure 5.37: Simulation of Polynomial Regression Equatiath 10 % COV to pre-
dict the Condition Rating of Concrete Bridge Substructamre©therstate Highways
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Figure 5.38: Simulation of Polynomial Regression Equatiath 15 % COV to pre-
dict the Condition Rating of Concrete Bridge Substructamre©therstate Highways

The profiles in Figures 5.39 through 5.41 are for the supertire components of
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the concrete bridges on Otherstate highways. The meantomndating value is
approximately 8.6 at the beginning and reaches 2.5 at theoktige analysis time.
Similar to previous graphs, the figures are obtaine usingal@&cient of variation of
0.05, 0.10, and 0.15. The profile in Fig. 5.39 is based on a C{3/G%. Standard
deviation gets an important value at the end of the lifetimmeqal and reaches 2.5 at
60 years. Fig. 5.40, is based on COV of 0.10. Standard dewi&tir condition rating
reaches approximately 4.7 at the end of the analysis. F#l iS.based on a COV
of 0.15. As shown in the figure, there is substantidledence between the maximum
and minimum values simulated sample values of conditiomgadata. Therefore,
standard deviation reaches 7.3 at the end of 60 years whigie ¢agh uncertainty for

condition rating value at the end of the lifetime period.
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Figure 5.39: Simulation of Polynomial Regression Equatiith 5 % COV to predict
the Condition Rating of Concrete Bridge Superstructure®therstate Highways
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Figure 5.40: Simulation of Polynomial Regression Equatiath 10 % COV to pre-
dict the Condition Rating of Concrete Bridge Superstrueguom Otherstate Highways
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Figure 5.41: Simulation of Polynomial Regression Equatiath 15 % COV to pre-
dict the Condition Rating of Concrete Bridge Superstrueguom Otherstate Highways

The profiles in Fig. 5.42 through 5.44 are for the deck comptsef the steel bridges
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on Otherstate highways. The lifetime of available stat#tdata for steel bridges on
Otherstate is 70 years. The condition rating value is apprately 8.1 at the begin-
ning and reaches about 0 at the end of lifetime period. Thiri@erent values of the
codficient of variation are used for the regression equatiorfficoent consisting of
0.05, 0.10, and 0.15. Fig. 5.42 is based on a COV of 0.05. Asslfigure, disper-
sion of the condition rating data is very small at the begigrand increases gradually
toward the end of 70 years. Standard deviation reaches #hé a0 years. Standard
deviation gets larger than the mean value at the end ofrifefberiod. The profile
in Fig. 5.43, is based on a COV of 0.10. Standard deviatioohesapproximately
5.3 at the end of 70 years which causes an substantially mggrtainty. Fig. 5.44 is
based on a COV of 0.15. Standard deviation displays too misgesion at the end
of 70 years. Standard deviation reaches approximatelyt 7.8 gears.

The profiles in Figures 5.45 through 5.47 are for the substracomponents of the
steel bridges on Otherstate highways. For this componeatiahle statistical data
is for 70 years. The condition rating value is approximagB at the beginning and
reaches 0 at the end of the lifetime period. The profile in big5 is based on a COV
of 0.05. Standard deviation has also remarkable value ¢ivaut the analysis and
reaches 3.4 at the 70 years. Fig. 5.46, is based on a COV ofAslshown in figure,

standard deviation for condition rating reaches about Meaéhd of the analysis. Fig.
5.47 is produced for the COV of 0.15. Standard deviationlrea@pproximately 10
at the end of the simulation analysis. It means that the gée@icondition rating data
with COV of 0.15 for the substructure components of the dtéeges on Otherstate
highways shows extremely high uncertainty and it is vefiialilt to make a reliable

estimate of condition rating of structure after 40 years.

Figures 5.48 through 5.50 are obtained for the supersteicmponents of the steel
bridges on Otherstate highways. The condition rating veduspproximately 8.1 at
the beginning and it reaches 0 at the end of 70 years. Theggréiphs are obtained
based on a COV of 0.05, 0.10, and 0.15. Fig. 5.48 is based on\adZ@©.05.
Standard deviation is small at the beginning but reacheatZ/b years. The profile
in Fig. 5.49 is based on a COV of 0.10. Standard deviatiorhesb at the end of the
analysis. Finally, Fig. 5.50 is obtained by using a COV of50.5tandard deviation
reaches approximately 7.8 at the end of 70 years.
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Figure 5.42: Simulation of Polynomial Regression Equatith 5 % COV to predict
the Condition Rating of Steel Bridge Decks on Otherstatehinays
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Figure 5.43: Simulation of Polynomial Regression Equatigth 10 % COV to pre-
dict the Condition Rating of Steel Bridge Decks on Otheeskighways

178



SIMULATED
CONDITION RATING FOR DECK, C

1000

COV :0.15

E(CO) :
E(al) :
E(az) :

8.0713
—0.2356
0.0079

NUMBER OF SIMULATION:

E(a) : —9.0462¢°

0 10 20 30 40 50 60 70
BRIDGE AGE (YEARS)

Figure 5.44: Simulation of Polynomial Regression Equatiath 15 % COV to pre-
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Figure 5.45: Simulation of Polynomial Regression Equatiith 5 % COV to predict
the Condition Rating of Steel Bridge Substructures on Gtiaée Highways
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Figure 5.46: Simulation of Polynomial Regression Equatiath 10 % COV to Pre-
dict the Condition Rating of Steel Bridge Substructures time@tate Highways
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Figure 5.47: Simulation of Polynomial Regression Equatigth 15 % COV to pre-
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Figure 5.48: Simulation of Polynomial Regression Equatith 5 % COV to predict
the Condition Rating of Steel Bridge Superstructures ore@tiate Highways
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Figure 5.49: Simulation of Polynomial Regression Equatigth 10 % COV to pre-
dict the Condition Rating of Steel Bridge Superstructune©therstate Highways
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Figure 5.50: Simulation of Polynomial Regression Equatiatih 15 % COV to pre-
dict the Condition Rating of Steel Bridge Superstructune©therstate Highways

5.4 Summary

In this chapter, regression-based condition predictiodef®investigated as an al-
ternative prediction model. Linear and piecewise linegression models are men-
tioned. However, an important part of this chapter is devtadgoolynomial regression-
based performance prediction curves. The polynomial ssgpa equations are ob-
tained for deck, superstructure, and substructure conmsré bridges in the ex-
isting BMS. The cofficients of the polynomial regression equations are treased
random variables with normal distribution. The values @fsth coéficients are used
as mean value to generate polynomial regression curveg uatim Hypercube Sam-
pling technique. Therefore, a large number of conditiomgatiata for each year can

be obtained.
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Notations in Chapter 5

Yi

Xi1
Xi2
Qo

a;

€

Co

R2
Ccov
E(Co)

Dependent random variable

The first independent random variable

The second independent random variable
Intercept of linear equation

Slope of linear line

Error term which has standard normal distribution
Initial condition rating

Codfticient of determination

Codficient of variation

Expected value of,
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CHAPTER 6

DERIVATION OF MARKOV TRANSITION PROBABILITY
MATRIX FROM SIMULATED CONDITION PROFILE

6.1 Introduction

As mentioned in previous chapters, there are several agpipesao predict the per-
formance of infrastructure systems. Markov chain apprparession-based model
and bi-linear model are the thredl@rent approaches studied in this thesis, that can
be used for forecasting the conditions of structures. Mawain approach is the
predominantly used stochastic approach in BMSs. This @gbrases the transition
probabilities to predict the future condition of the stiwet Transition probabilities
represent the probabilities of the state transitions froma state to another. Transi-
tion probabilities are represented in matrix form whichfereed to as the Transition
Probability Matrix (TPM) denoted b¥. If the initial condition state and transition
probability matrix of a structural member are known, itsshet condition state can be

obtained by multiplying the initial state vector with tharssition probability matrix.

The form of the transition probability matrix is given in kig 6.1. Transition prob-
ability matrix is obtained from inspection data of bridgergmnents. In order to
obtain the transition probability matrix and build the degeation prediction model
for structural elements, Markov chain model needs only tuwaxessive cycles of in-
spections [33]. A transition probability matrix represertio-nothing” case for a
structure that is not subjected to any maintenance andrrap@ons. This transition
probability matrix is referred to as the deterioration mddethe structure. Both the

rows and columns of the matrix represent the number of plessiates the structure
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may be at any given time. Therefore, the transition prolighihatrix is a square

matrix with number of rows and columm(= n).

Pi1 P2 -0 Pun

P21 P22 -+ Pon
Pmn =1 . : .. :

Pmi Pm2 -+ Pmn

Figure 6.1: Transition Probability Matrix.

There are dterent methods in literature on derivation of the transifpwabability
matrix. The percentage prediction method [25], regresbased non-linear program-
ming optimization [25], and ordered probit and randoffieets model [62] are some

of the derivation methods of the transition probability mat

In the percentage prediction method, the formula preseant&d). 6.1 is used. This
formula gives the transition probabilities for the statéthe structural systems. The
variables in Eq. 6.1 defined in Eq. 6.2.

= (6.1)

where,

fi; is the estimated transition probability of the system betwstate and statg.

n = Z nij (6.2)
j

where,

n; ; is the number of bridges or bridge elements passing frore statstatej during

the observation (or given) time period.
n; is the total number of bridges or bridge elements in sthtfore the transition.
Another method used for deriving the transition probapiitatrix is the regression-
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based method by solving a nonlinear optimization formatatiThe nonlinear opti-
mization method minimizes the sum of absolutéatences between condition ratings
obtained from regression curve and from the Markov-chaidehasing the formula-

tion presented below [25].

N
Minimize Z [Y(t) — E(t, P)|
t=1

subjectto O< p(i) < 1 (6.3)
n

QP =1

i=1
where,

t is the operation time,

N is the total number of transition years,

Y(t) is the value of condition rating obtained from regressiquation at time,
E(t, P) is the value of condition rating estimated by Markov chaiodal at timet,

p(i) is the probability that a structure will remain in the sartegesduring the transi-
tion period.

Eq. 6.3 can be solved by the Quasi-Newton method [25]. Swiutf the equation
yields p(i)’s which form the transition probability matrix. There aeveral factors
that dfect the matrix dimension and values of transition probaédi They include
the number of possible states and the transition period. mbee the number of
possible states, are the bigger the transition probalmiayrix becomes. Moreover,
if the transition period is relatively small, transitiongbabilities to diferent states
will also be small values. In other words, probabilitiesrainsition to the same states
will be large. Computation with a large matrix arises cerifficulties. Therefore,
certain assumptions are made in order to keep the compsatimple. For example,
the transition to dferent states are limited if the transition period is smatl.tHis
case, it can be assumed that the condition of a structure hange only one state in
a small transition period. In this case, the transition pholity matrix takes the form
as shown in Fig. 6.2 which is referred to as the RestrictedhFarthe TPM.
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p(L,1) pL,2) O 0 0 0 0
0 p22) P23 0 0 0 0
0 0 P(33) PB4 0 0 0
P=| 0 0 0 p44) p@5 0 0
0 0 0 0 p(55 p56) O
0 0 0 0 0 p(6,6) p6,7)
0 0 0 0 0 0 1)

Figure 6.2: Transition Probability Matrix in Restrictedrfo

For a bridge element, the transition period may be one, twa fore year periods.
Based on the transition period, Markov chain gives the dardof the structure at
the end of the transition period. As shown in Fig. 6.2, eaghiras only two transition
probabilities in the form ofx(i, j), wherei represents the condition state at present or
at the beginning of the transition period, arjds the condition state at future or at
the end of the transition period. There is a relationshipvbeni and j given by

j =1+ 1. Since each row includes only two probabilities, conditid the structure
either remains in the same state or only drops to one wortediang the transition
period. Since there are only two possibilities betweerestand statg, the sum of
the probabilities in each row is equal to 1, which is stated as

p(i, i)+ p(i, )) =1 (6.4)

Moreover, there is one additional property of the transifioobability matrix in re-
stricted form. That is, the probabilities are null forj. This means that a structure’s
condition can get only worse without any rehabilitation @pair action as the struc-

ture ages.

The transition probability matrix shown in Fig. 6.2 is as&ded based on the condi-
tion rating scale of the National Bridge Inventory (NBI) s8y® in the United States
[25]. As shown in Table 6.1, condition ratings of the bridgesIBI [63] are catego-
rized by a rating system which ranges from 0 to 9. In this gaipstem, condition
rating 9 represents the newly constructed system, on theargnthe worst situation

for the bridge is represented by 0. However, a constraintbeamtroduced below
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Table 6.1: Condition states and definitions of structurahwdnts used in National
Bridge Inventory (NBI) in the U.S

NBI Rating Description Repair Action
9 Excellent condition None
8 very good condition None
7 Good condition Minor maintenance
6 Satisfactory condition Major maintenance
5 Fair condition Minor repair
4 Poor condition Major repair
3 Serious condition Rehabilitate
2 Critical condition Replace
1 Imminent failure condition Close bridge and evacuate
0 Failed condition Beyond corrective action

which the bridges may not be permitted to fall. For instaneeBMS of the State

of Indiana, the condition rating of a bridge is not permittecdrop under rating 3
by applying repair and replacement actions. Based on timstant, the transition
probability matrix shown in Fig. 6.2 is assembled using tivSBcriteria of the State
of Indiana, and hence uses 7 condition states. In addpi@®,in Fig. 6.2 is 1 because
the lowest acceptable rating level is 3. In BMS of State ofdnd, the NBI Condition

Rating Scale is converted to Condition States as shown ile &b [25].

Table 6.2: Relationship between Condition Ratings and @@mdStates used in
BMS of the State of Indiana

NBI Bridge Rating Scale
9 8 7 543 21 0
1 2 3 45 6 7 8 9 10
Condition States Used by IBMS

Pontis uses element-based condition state classificaisteed of a bridge-based clas-
sification. The condition states and their definitions usedfe Bare Concrete Bridge
Deck Element in Pontis, the predominant BMS in U.S., are shiolable 6.3. Con-
ditions of elements for bridges are categorized by visugpéation for their discrete
states. Pontis uses Si@irent condition states to define the visual condition of dd®i
element. The small number of condition states produce al $raakition probabil-

ity matrix and results in computational simplicity. As show Table 6.3, condition
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state 1 represents the newly built or perfect condition oél@ment. If an element,

however, is in the worst condition, its condition state igresented by rating 5.

Table 6.3: Condition States and definitions for Bare CorcBtdge Deck Element

in Pontis

Pontis | Description Feasible Repair Action
Condition
Rating

The surface of deck has ng

1 repaired areas _and_ the_re s Add a protective system
no spallgdelamination in
the deck surface
Repair area aridr spallg Repair spalled
delaminations exist in the | delaminated area

2 deck surface. The combined
distress areas is 2 % or
less of the deck area Add a protective system
Repaired area ay spallg | Repair spalled
delaminations exist in the | delaminated area

3 deck surface. The combined
distress areas is 10 % or
less of the deck area Add a protective system
Repaired area ayat spallg | Repair spalled
delaminations exist in the | delaminated area

4 deck surface. The combined
distress areas is more than
10 % but less than 20 % of| Add a protective system
the deck area
Repaired area ayf spallg | Repair spalled
delaminations exist in the | delaminated area

5 deck surface. The combined
distress areas is more than
25 % of the deck area Add a protective system

6.2 Performance Prediction using Markov Chain Approach

As mentioned earlier, Markov process is a stochastic pedfoegpredicting the future
states of a dynamic system if its future state depends onlysgoresent value. In
other words, the past state of the system hasffexieon its future state. Because
of this characteristic, Markov process is said to have mghass property, which is

stated as follows.
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P(Xtr1 = 12Xt = i, Xieg = Tte1, ... Xo = 1) = P(Xts1 = 122 Xc = i) (6.5)

where t is the present time.

In addition, the Markov process is called a Markov chain wtienparameter set is
discrete. In order to find the future condition state of actral element, it is nec-
essary to know its initial condition state vector and its&iion probability matrix.

Initial condition state vector represents the conditiamgavalue of a structural ele-
ment in terms of a probability distribution. Dimension oistiector is defined by the

number of possible states. Initial condition state vecsor loe written as follows.

I.Cum =[P(1) p(2) PB) --- pN)] (6.6)

where,
|.C is the initial condition state vector, amds the total number of condition states.

The sum of the probabilities in this row vector is equal to drrirulation to predict

the future condition rating vector can be written as follows

C.D(M)axn = 1-Caxny - Py (6.7)

where,C.D(t) is the condition rating distribution of a structural elamhat timet.

As shown in Eq. 6.7, future condition prediction processisducted by multiplying
the initial condition state vector (1.C) with the transii@robability matrix. The
future time of the condition vector to be predicted depenshe initial condition
vector, the transition period, and the power of the tramsiprobability matrix. This
relationship in an explicit form is written as follows.
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CD@O) = I.C-P?
CcD@) = IC-P!?
CD@) = I.C-P?2 68)
CD@) = IC-P3 '
CD(t) = I.C-P!

As shown in Eqg. 6.8, condition state vectortat O is equal to the initial condition

state vector itself.

In order to obtain the average condition rat@@) of a structure at timg C.D(t)1xn)
should be multiplied by the condition rating vecf.1). Condition rating vectoR
is a column vector which ranges between 1 and 5 for Pontis BiwiSatween 0 and

9 for NBI. The formula for the average condition rating, #fere, is as follows.

C(t) = C-D(t)(lxn) : R(n><l) (6.9)

6.2.1 An Example for the Application of the Markov Chain Approach

An example is presented in this section to explain the perémice prediction using
Markov chain approach. In this example, transition prolitgbnatrix is taken from
actual bridge element data which belongs to Bridge Elem@wnt fainted steel open
girders, used by California Department of TransportatioRontis [2]. The condition
states and their descriptions are represented in TableT®d transition probability
matrix, P, shown in Eq. 6.10 is obtained for the “Do Nothing” action eaghich
also forms deterioration model for Bridge Element 107 PImatrix, the sum of the
5t row is not equal to 1 and it has a nonzero value of 90.55 %. Itnséaat the
probability of failure is 9.45 % for this element if no maintace action is applied at
the last condition state.
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Table 6.4: Condition states and definitions of the Bridgertget 107, (Painted open
steel girders) in Pontis.

State

Name

Description

1

No corrosion

No evidence of active corrosion; paint
system sound and functioning as intended.

2

Paint distress

Little or no active corrosion. Surface or
freckled rust has formed or is forming.

Rust formation

Surface or freckled rust is prevalent. There
may be exposed metal but no active corrosion.

Active corrosion

Corrosion present but any section loss resulting
from active corrosion does not yet warrant
structural analysis.

Section loss

Corrosion has caused section losfiisient to
warrant structural analysis to ascertain tfeet
of the damage.

0381 619

0 0

0

0
0
0

8888 1112

0

0
0
0

8712 1288

0 8888 1112

0 0

o
0
0

(6.10)

9055

According to the Markov chain approach, the condition predn for the newly built
Bridge Element 107 is performed as follows. Since the elérfi@i is newly built,

initial condition state vector takes the form shown below.

IC=[1L 0 0 0 O

In addition, the condition rating vector may be represeatetbliows.
R=[1 2 3 4 5]
The Condition Rating Distribution Cfand the Condition RatingtGt timet may be
found by using Eqgs. 6.7 and 6.9, respectively.
CDO)=[1L 0 0 0 0]-[P]°

-1 0 0 0 0]
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C(O)=[L 0 0 0 0]{R)
=1

CD@)=[1 0 0 0 O0][P*
=[938 62 0 0 O]

C(1)=[938 62 0 0 O0]-{R
=1.0619

CD@2)=[1 0 0 0 0]-[P]?
=[88 1131 Q7 0 Q]

C(2)=[88 113 07 0 O0]-{R}
=1.1269

cD@=[1L 0 0 0 O0][P?®
=[825 1550 19 01 0]

C(3)=[825 1550 19 01 0]-{R)
=1.1948

c.D@)=[1 0 0 o0 0]-[P*
= [77.45 1888 334 032 001]

C(4)=[77.45 1888 334 032 001]-{R)
= 1.2656

C.DB)=[1 0 0 0 O0]-[P°
=[72.65 2158 502 071 004]

C(5)=[72.65 2158 502 071 004]-{R}
=1.3392
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The condition rating distribution and the average conditiating may be computed

as described above for any point in timéCondition distributions obtained above are

plotted in Fig. 6.3 as bar chart distributions along theigatiaxes. The graph shows

how the condition distribution of the bridge element chanfgem in time.

CONDITION STATE

100

938

88

825

7745

72,65

6.2

11.3

155

18.88

0.7

1.9

3.34

0.1

0.32

0.01

21.58

0.71

0.04

v

3
TIME (YEAR)

Figure 6.3: Transition Probabilities Under Do Nothing Case

The average condition rating values for Bridge Element 1&7 lose computed by

Markov Chain approach throughout its lifetime. The compate can be performed

using the transition probability matrix of the element. Thatrix can be subjected a

slight modification so that the value at the last row becon®5s%. In other words,

the probability of failure for the element is diminished.€m the deterioration model

or the transition probability matrix takes the following .

0381 619 0 0 0 |

0 8888 1112 0 0
P=| 0 0 8712 1288 O (6.11)

0O 0 0 8ssg 1112

o 0 0 0 100

194



The average condition rating values calculated for the etgrare listed in Table 6.5
for a 50 year time period (considered as the lifetime). Fig.shows the time average
condition ratings or the variation of the deterioration relambtained by Markov chain

throughout the lifetime.

Table 6.5: Markov chain approach-based condition premficti

Age(t) [0 | 5 10 15 | 20 | 25 30 | 35 | 40 | 45 50
C(t) 1{1.34]1.74| 2.18| 2.63| 3.05| 3.43| 3.76| 4.03| 4.25| 4.43
1 LT
.0. MARKOV CHAIN APPROACH
.o. DETERIORATION MODEL
[ J
— °
Q2 'o.. LIFETIME : 50 YEARS -
0 °.
> %
< %
o °.
z 3r .o. b
O [
= AVERAGE ...
a) CONDITION:RATING °o.
pd %
0 e
O 41 .°o.. ]
.......0
5 I I I I
0 10 20 30 40 50

AGE (YEARS)

Figure 6.4: Markov chain approach-based performance gredi

6.3 Derivation of Transition Probability Matrix

In the previous section, the methods and formulations thathe used to obtain
transition probability matrix for a bridge element were césed. In this section,
a new approach developed in this thesis that can be used &vagerthe transition

probability matrix from condition rating data by using silation will be explained.

195



As mentioned earlier, one of the methods that can be usedtéinaihe transition

probability matrix is the percentage prediction methodweer, in order to use this
method, the sample space must contain large number of ddtarv@se, this method
can not give anféective result. This is the important limitation which reésts the use

of the percentage prediction method. This limitation maybercome by applying
simulation which produces enough data to use this pracatieghod.

The regression curve obtained from condition rating dakaesed by visual inspec-
tion can be regenerated by Latin Hypercube simulation tecien Therefore, simula-
tion produces enough condition rating data to apply thegrgege prediction method.
During the application process of this method, the proceduay be subjected to cer-
tain difficulties arising from the probabilistic nature of the sintida. In that case,

certain assumptions which will be mentioned later can beariadbvercome these

difficulties.

Simulated condition profile for the condition rating datacofhicrete bridge substruc-
tures on the Otherstate highway in the State of Indiana ini®JuUSed to explain the
method of derivation of the Markov transition probabilit@trix.

The formulations used to obtain the transition probabititgtrix are presented as

follows.
nttl
LI
Pii = —— (6.12)
1,1 nlt

trans; ) = nf — ni** (6.13)
njt = ni™ —trans ) (6.14)
j=i+1 (6.15)

where,
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pii is the probability that the element which is currently in diion ratingi will stay

in the same condition rating during the transition period.

nitfil is the number of condition ratings data which stay in the saamglition rating
during the transition period.

n' is the total number of condition ratingsit the beginning of the transition period.

trans; j is the number of condition ratings which pass to a worse ¢mmdduring
the transition period.

ni*! is the total number of condition ratingst the end of the transition period.

The transition probability matrix can be derived from theslated regression-based
performance curve if the Egs. 6.12 through 6.15 are appti¢lde distribution of the
condition rating data for each year.

Table 6.6: Distribution of the condition rating data obtadrfrom simulation at time
t=0andt=1

Rating | State | t=0|t=1
9 1 |218 |84
8 2 | 735 | 773
7 3 |47 143
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(a) Atthe beginning of the first inspection period (b) At the end of the first inspection period

Figure 6.5: Distribution of simulated condition rating aat

The distributions of condition rating data at tirhe= 0 andt = 1 are presented in
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Figure 6.5(a) and 6.5(b). The number of observation valagisese graph are listed
in Table 6.6. One step of the procedure of the percentagectimdmethod can be
applied as follows.

_ 84
P11 =578
039

transq ) = 218- 84
=134

ny, = 773- 134
= 639

639
735

=087

P22 =

trans s = 735- 639
=96

ng; = 143- 96
=47

a7

P33 = 17
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Simulated Regression—-Based
Condition Prediction

- ++++ Simulation—Based Markov Chain

Condition Prediction
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FOR SUBSTRUCTURE, C
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Figure 6.6: Simulated regression-based Condition priedicurve vs. Markov chain-
based Condition prediction

A structure has dierent deterioration rates in the lifetime period. Therefdifetime

of a structural element may be divided into several timequerbased on these deteri-
oration rates. Itis why the deterioration is predicted wehe lifetime of the structure
is divided many time periods. For each time periodfedent transition probability
matrices should be computed. For instance, lifetime of theciete substructure
components on Otherstate highway is divided into ten per[@8]. Therefore, ten
different transition probability matrices should be computedHe lifetime of those

components.

Moreover, each time period consists of several years. Riesenethod for derivation

of the transition probability matrix should be applied fach year as transition period
step in each time period. In that case, there may be compiffedest values of the

samep;;’s for each year. However, there must be gnevalue for each time period.

Therefore, the arithmetic mean of same transition statgsg sfgives the value op;;

for each time period.
There may not be any condition rating data in a time periothdbcase, assumptions
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must be made. For instance, newer structural elements nidyame condition state
ratings larger than 4. For this cag®gs and pss can be taken as 1, and thpgs and
pe7 are forced to be 0. In addition, older structural elementg nw have condition
state ratings less than 3. For this casgs, p23 andps4 can be taken as 1, and then

P11, P22 andps s are forced to be 0.

It is assumed that the condition rating can drop at most @ate 8t one year period to
decrease the computational work. Moreover, sum of eachiroramsition probability
matrix is equal to 1. Therefore, transition probability gfi{,) can be computed as

follows.

Pio = 1039
=0.61
P23 = 1-0.87
=013
Pa=1-1
=0

A transition probability matrix with seven elements coneen for IBMS form can

be seen in Table 6.7. As can be seen in Figure 6.6, Markov djesad condition
prediction curve is obtained by using this transition phuligy matrix. In addition,

both simulated regression-based performance curve ankoMahain-based condi-
tion prediction curve are presented together in Figure Ascan be seen in Figure
6.6, these two prediction curves are very similar. HoweMerkov chain-based con-
dition prediction curve displays a certain deviation begig from the approximately
50 year. Condition rating of the Markov chain-based condiprediction curve does

not drop to 3 in the lifetime of the structure becaus@gf = 1.
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Table 6.7: Transition probabilities for concrete subgtite component on otherstate
highway in Indiana for 7 dierent states

Age | Ppr1 P22 P33 Pas Pss Pes  Pr7
06 {035 062 093 1 1 1 1
7-12| 0 033 .70 096 1 1 1
13-18| O 0O 075 090 099 1 1
19-24| O 0O 092 093 097 099 1
25-30| O 0 1 098 097 099 1
31-36| O 0 1 1 097 098 1
37-42| 0 0 1 097 096 095 1
43-48| O 0O 0.97 095 092 092 1
49-54| 0 0O 094 088 087 0.8 1
55-60| O 0O 090 085 082 0.80 1

The transition probability matrix should have 10 elemeatstitain good match curve
as the Markov chain-based condition prediction for the $ted regression-based
performance curve. Therefore, it is allowed that the caowlitating value can drop
under the value of 3. In that case, the transition probghiliaitrix takes the form
presented in Table 6.8. If this transition probability mais used, the Markov chain
-based condition prediction presented in Figure 6.8 canlaired. As shown in
Figure 6.8, presented method for the derivation of tramsitirobability matrix from

simulated regression-based performance prediction.

Table 6.8: Transition probabilities for concrete substite component on otherstate
highway in Indiana for 10 diierent states

Age | Pr1 P22 P33 Pas Pss Pes  Prz Pss  Pos  Pioto
06 {035 0.62 093 1 1 1 1 1 1 1
7-12| 0 033 .70 09 1 1 1 1 1 1
13-18| O 0O 075 090 099 1 1 1 1 1
19-24| O 0O 092 093 097 099 1 1 1 1
25-30| O 0 1 098 097 099 1 1 1 1
31-36| O 0 1 1 097 098 096 1 1 1
37-42| O 0 1 097 096 095 096 099 1 1
43-48| O 0O 0.97 095 0.92 0.92 093 0.90 0.98 1
49-54| 0 0O 094 088 0.87 0.86 0.87 0.87 0.85 1
55-60| O 0O 090 085 0.82 0.80 0.79 0.81 0.79 1
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Figure 6.7: Simulated regression-based performance gii@dicurve vs Markov
chain performance prediction for the whole condition ratscale

6.3.1 Derivation of Maintenance Profiles of Bilinear Model l$ing Markov Chain
Approach

As mentioned earlier, the bi-linear model is an importanfgrenance prediction
model which gives the decision makers the ability to obséwot safety and con-
dition prediction for a bridge. Furthermore, the model israudation based proba-
bilistic model, and the féects of maintenance actions can be implemented into this
prediction model. However, the bi-linear model needs tauthér developed to find
the optimum maintenance policy for the structure. This ssitg may be overcome
by applying an optimization procedure to the bi-linear mopaded the Markov process

can be used to find the optimum policy.

Markov chain approach predicts the lifetime condition ofractural element by us-
ing transition probabilities. In addition, Markov procds®ls the optimal policy by
using dynamic programming formulations. In order to use RdarDecision Pro-
cess, transition probabilities can be obtained from caonlprofiles of the bi-linear

model. The transition probabilities are derived for evertian procedure by using
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the Simulation-based Performance Prediction Method.

The simulation based percentage prediction method ohtaénsansition probability
matrix by calculating the transitions of condition datavbetn the condition states
for each year. However, this process may require substaotigutational &ort. In
addition, deterioration of the structure may not be the smaughout the lifetime.
Therefore, lifetime of the structure is divided into severdgervals and transition
probability matrix is calculated for each interval sepalatThe transition probabili-
ties of each interval can be found by taking the average atitian of each year in
the analyzed subgroup.

Bi-linear model defines the condition of the structure witbifferent condition in-

dices. However, more than 4 condition indices are takendantmunt in order to find

the transition probabilities from the simulation basedcpatage prediction method.
This is why the simulated condition data shows very largpetision towards the end
of the time horizon. In other words, condition indices argtributed to many states
when the analysis time increases. Therefore, transitiobghilities derived from

profiles of bilinear model may be presented in ax & matrix.

The Bi-linear condition profiles obtained for maintenantategies and the Markov
chain prediction curves obtained using the transition gbdliies derived from the
bilinear condition profiles are presented in Figures 6.8ufgh 6.13. The transition

probabilities of the maintenance strategies are presémfeables 6.9 through 6.14.

Fig. 6.8 presents both the Bi-linear condition profile andrikéa chain approach-
based condition profile under No Maintenance case. Due to Himteghance case,
the profiles are linear. In Fig. 6.8, the solid line is theibehr model and the circular
markers represent the Markov chain condition profile olatdiby simulation-based
transition probability matrix. As shown in this figure, sitation-based Markov chain
approach matches the bi-linear model well. The transiti@bability matrix pre-
sented in Table 6.9 is obtained by dividing the lifetime of #lement into 5 equal
subgroups. The transition probability values are the @eralues of the transitions
of each group.

Fig. 6.9 shows the Bi-linear and Markov chain condition pesfifor the silane treat-
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— BILINEAR MODEL

NO MAINTENANCE

CONDITION INDEX (C)

0 10 20 30 40 50
AGE (YEARS)

Figure 6.8: Simulation-based Markov chain performancdiption vs Bilinear
model prediction for no maintenance

ment action. The silane treatment is a time-based mainterastion. In other words,
time of the first and subsequent maintenance applicatiansg@ecified by probabil-
ity distributions defined in terms of time as the random \@&a In order to obtain
the transition probabilities from the bi-linear model, &@rnorizon is also divided into
many intervals according to maintenance application tinfs shown in Fig. 6.9,
simulation-based Markov chain condition profile gives adjapproximation for the

bi-linear model.

Table 6.9: Transition probabilities obtained from Bilin@aodel for no maintenance
case

Age Po,o P11 P22 Ps3 Paa Pss Pes Pr7
0-10 | 0.716 0.878 0.917 0.966 0.997 1 1

1
11-20] 1 0.858 .905 0.914 0.95 0.979 1 1
21-30] 1 0.934 0.917 092 0.917 0.933 1 1
31-40| 1 0.954 0.947 0.931 0.919 0.915 0.927 1
41-50| O 0.981 0.951 0.943 092 0.913 0903 1

Figure 6.10 is generated for Replacement of Expansionslangintenance action.
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The simulation based transition probabilities are pre=gmt Table 6.11. As shown
in Table 6.11, the transition probabilities are calculdi@dthree diferent lifetime

intervals.

0

SIMULATION-BASED
MARKOV CHAIN APPROACH

— BILINEAR MODEL

CONDITION INDEX (C)
N P

W

SILANE TREATMENT
4 \

0 10 20 30 40 50
AGE ( YEARS)

Figure 6.9: Simulation-based Markov chain performancdliption vs Bilinear
model prediction for Silane Treatment maintenance action

Table 6.10: Transition probabilities obtained from Bidar model for Silane Treat-
ment maintenance action.

Age | poo P11 P22 P33 Pa.4 P55 Pes  Pr7
0-5 | 057 0.9 0.94 0.88 1 1

1 1
6-16 | 1 0945 .965 0.978 0.99 1 1 1
17-25) O 0.94 0.967 0.98 0.985 1 1 1
26-35| 0 0937 0.97 0.975 0.984 0.996 1 1
36-45| 0 0.932 0972 0.972 0.984 0.981 1 1
46-50] 0 0.933 0.963 0.97 0978 0983 0988 1

Fig. 6.11 is obtained for the Cathodic Protection mainteraaction. In order to cal-
culate the transition probabilities for cathodic proteuntithe lifetime of the structure
is divided into 5 intervals. As shown in Figure 6.11, the atiod profile remains

unchanged between 20th and 50th year of the lifetime un@ecdthodic protection
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Figure 6.10: Simulation-based Markov chain performanaglistion vs. Bi-linear
model prediction for Replacement of Expansion Joints

action. Therefore, the lifetime of the structure is not ded any interval after the
20th year. The transition probabilities for the CathodiotBction action are repre-
sented in Table 6.12. Four condition indices arffisient to represent the Cathodic

Protection profile of the bi-linear model.

Table 6.11: Transition probabilities obtained from Bidar model for Replacement
of Expansion Joints

Age | Poo P11 P22 P33 Pa.4 Pss Pes Pr7

0-15 | 0.71 0.88 0.918 0.95 0.984 0.994 1 1
16-30f O 0.838 .929 0.943 0.952 096 0.97 1
31-50 O 0.929 0.935 0.928 0.946 0.949 0.962 1

The bi-linear model profile and simulation based Markov ohaofile under Minor
Concrete Repair action are presented in Fig. 6.12. As showmis graph, there are
improvements for the structure. The transition probabitiatrix for Minor Concrete
Repair is presented in Table 6.13. However, this table ptesanly one age group.

The transition probability matrix for essential mainteoamctions can only be pre-
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sented in separate Tables for every age group because aiverpents in condition
index. The age group presented in Table 6.13 includes tinsitian probabilities
between 11 and 15 years.

0]
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Figure 6.11: Simulation-based Markov chain performanaigtion vs Bi-linear
model prediction for the Cathodic Protection action.

Table 6.12: Transition probabilities obtained from Bidar model for the Cathodic
Protection action.

Age Po,o Pi1 P22 P33
05 | 071 090 1 1
6-10 | 0.856 0.848 1 1
11-15| 096 0.866 1 1
1 1
1 1

16-20| 1 0.90
21-50| 0.968 0.954

The Do Nothing and Rebuild action profile for both the bi-tnenodel and Markov
chain approach is presented in Fig. 6.13. This maintenaraegure enables the
condition of the structure to reach the threshold conditratex level and then ap-
plies the rebuild action. The transition probabilities ezpresented by 8 8 matrix.

Simulation based transition probabilities obtained byltihkknear model is presented
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Table 6.14. The do nothing and rebuild is an essential maamtee action. Therefore,
the condition profile shows some improvement at the apjpdioatmes of the main-
tenance action. The transition probabilities between 3D4nyears are presented in
Table 6.14.
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SIMULATION-BASED
MARKOV CHAIN APPROACH
—— BILINEAR MODEL

=
T
1

CONDITION INDEX (C)
N

w
I

MINOR CONCRETE REPAIR

4 1 1 |
0 10 20 30 40 50
AGE (YEARS)

Figure 6.12: Simulation-based Markov chain performanaigtion vs Bi-linear
model prediction for Minor Concrete Repair action

Table 6.13: Transition probabilities obtained from Bikkmenodel for Minor Concrete
Repair action

p(0,0) p(0,1) O 0 0957 Q043 O 0
p(1,0) p(L1) O 0o | |0008 Q992 0 0
0 p21) P22 P23)|~| 0 0026 097 0004
0 0 p32 p@33) 0 0 0011 Q989

Six different condition profiles obtained from both the Bi-linead &darkov chain
approaches are presented together in Figures 6.8 throlighlf.addition, the transi-
tion probability matrices used in Markov chain approachmesented in the Tables
6.9 through 6.14.
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Table 6.14: Transition probabilities obtained from Bidar model for Do Nothing and Rebuild action.

(p(0,0) O 0 0 0 0 0 0 | 1 0 0 0 0 0 0 0 |
p(1,0) p(1,1) O 0 0 0 0 0 0363 0637 O 0 0 0 0 0
0 p21) P22 O 0 0 0 0 0 0444 0556 O 0 0 0 0
0 0 pB2 pB3) 0 0 0 ol | o 0 0162 0838 O 0 0 0
0 0 0 p@43) p44 O 0 o] | o 0 0O Q04 093 003 O 0
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Figure 6.13: Simulation-based Markov chain performancedistion vs Bilinear
model prediction for do nothing and rebuild
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6.4 Summary

In this chapter, derivation of transition probabilitieg atudied. Two dferent meth-
ods for derivation of transition probability matrix are nienmed such as the percent-
age prediction method and the nonlinear optimization nathidhe percentage pre-
diction method is a straight forward method, however, itas reliable if the data
on number of ratings is not flicient. This limitation can be overcome by using
the simulation-based results of condition profiles. Trémsiprobabilities are derived
from simulated regression-based condition curve andrigar condition profiles for
five different maintenance case and no maintenance. Finally, sedulegression-
based condition curve and Bi-linear profiles can also beiddafrom the Markov
chain approach condition prediction method with tranaifiwobabilities computed

from simulated condition rating data.
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Notations in Chapter 6

P . Transition probability matrix

Di. . Estimated transition probability of the system betweeaiest
and statg

N j . Number of bridges or bridges elements passing from state
statej during the observation (or given) time period

n; . Total number of bridges or bridge elements in stdiefore the
transition

Y(t) . Value of condition rating obtained from regression eraat
timet

E(t,P) : Value of condition rating estimated by Markov chain moatel
timet

p(i) . Probability that a structure will remain in the same sthieng
the transition period

.C . Initial condition state vector

C.D(t) : Condition rating distribution of a structural elementiate t

R :  Condition rating vector

C(t) . Average condition rating

Pii . Probability that the element which is currently in conalitiratingi
will stay in the same condition rating during the transitpmriod

n}jl : Number of condition rating data which stay in the same ciorli
rating during the transition period

nt . Total number of condition ratingsat the beginning of the
transition period

trans; ;) : Number of condition ratings which pass to a worse conditioning
the transition period

ni+t . Total number of condition ratingsat the end of transition
period
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CHAPTER 7

SUMMARY AND CONCLUSION

Bridge networks are one of the mostimportant infrastriesystems. All constructed
structures deteriorate throughout their lifetimes dueaigous environmental factors
and loading conditions. If maintenance, repair, rehattibn and replacement actions
are not applied to deficient bridges at required times widtgadte funds, irreversible
problems may arise such as inadequate funds for furtheowepnents, sudden accu-
mulation of repair and rehabilitation needs, substantahemical losses in terms of
infrastructure assets and ultimately endangering theysafegeneral public. There-
fore, bridge conditions should be inspected periodicatig apecific actions should
be applied to improve their performance when necessaryselteguirements create
the need for Bridge Management Systems (BMSs). BMSs argms$ito manage
maintenance, repair, rehabilitation and replacement&tior bridge networks and
to keep bridges away from risk of failure by using the necgssasources in an opti-
mal manner. In order to achieve these objectives, BMSs majanone of the per-
formance prediction and optimization models. This stud3spnts a new model for
the derivation of the transition probability matrix from iansilated regression based
condition profiled for lifetime performance prediction foridges through condition

evaluation.

In this thesis, first, a brief overview of Bridge Managemepst®ms is presented,
followed by the investigations of BMSs and performance tezh models. Safety
and condition prediction are the two performance predictexhniques for bridges.
Safety performance prediction is described and then iiétialmdex and rating fac-

tor are presented as two performance indicators. Ratingrfdased prediction is

presented and basic principles and rating formulas aregalso.

213



As the next step, Markov process-based condition predicsicnvestigated. Markov
process is a category of the dynamic programming problenmaByc programming
problem should be solved in order to find the optimal decigiolicy from a Markov
process. The problem can be reduced to a linear programmatepn which be-
comes one of the solution methods for dynamic programmingoputer program
is developed to obtain an optimal policy for a dynamic systieat has multiple main-
tenance actions in multiple condition states. Both exgkaterage and discounted
cost problems are solved by using the developed computgragro The developed
program solves the Markov process problem to obtain thergbgpolicy with mini-
mum life-cycle cost. It is noted that Markov process gergidioses the do-nothing
and rebuild action types as part of the optimal policy to wbthe minimum cost
solution for a structural element with a low deterioratiater However, it is also ob-
served that the process choses the maintenance actionsigvithcant improvement
effects for the bridge elements at each condition state fouatsiial element with a
high deterioration rate. The process follows such a polcgn attempt to keep the
bridge at higher condition states with minimum cost durisdifetime. As part of the
studies, steady-state probabilities are also calculatelying the expected average

cost problem for the long term optimal policies.

Furthermore, maintenance action types applicable féemint bridge components are

investigated and these actions are categorized basedioeftbets on the structure.

A part of the study is devoted to an existing probabilistidiBear performance pre-
diction model. The model provides an analysis of life-cypdeformance prediction
for bridges under no maintenance case af@édint maintenance cases. The Bi-linear
model is also able to define humerous uncertainties exigtifgidge performance
prediction. The uncertainties are related to the bridgdfiend also to the mainte-
nance actions. The uncertainties are defined as randonbleian order to study
and further develop the Bi-linear model, and to generateesafor random variables,
a Latin Hypercube sampling-based computer program is dpedlusing Matlab. The
program generates values for random variables havingguian distributions. The
program is integrated into the another specially develamedputer program which
is used to generate condition, safety and life-cycle costilps for a bridge and to

verify the results presented by the model’'s developers.ioMarcondition profiles
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are obtained for dierent distribution values of deterioration rate, initiaindition
index, and deterioration initiation time to present tlkeet of certain random vari-
ables on condition performance of the bridge. Using the logesl computational
algorithm, condition, safety and cost profiles obtainedauritle five diferent main-
tenance actions were re-created. It was also noted thiateht performance profiles
were obtained under fierent type of maintenance actions. For instance, prewentiv
maintenance actions prevented the condition profile tolhreéhe target level for a
while, however, they had no improvemertiieet on the condition profiles. In addi-
tion, it was observed that preventive maintenance actiaasno remarkablefiect
on safety profiles. Whereas, essential maintenance astieresapplied to structures
whose performance close to target level and these actiditaie sudden and signif-
icant improvement on condition and safety profiles. Moreowevas illustrated that
life-cycle cost of preventive maintenance actions was kntilan one of the essential

maintenance actions.

As an alternative performance prediction model and for the@se of comparing
the results of dterent models, a condition rating data-based polynomiaksssjon
prediction model is also developedffécts of the changes of cieients of the poly-
nomial equation on the performance curve are examined. €%aofjthe values of
the codficients which yield the rational performance curves arerdeteed. As an
introduction to this subject, a short introduction on resgren-based models used for
bridge performance prediction is presented. Then, linedr@ecewise linear re-
gression models are described. Polynomial regressioediqzerformance prediction
curves are obtained from the data for deck, superstruchaeabstructure compo-
nents of the bridges in the existing BMS. The developed s=ijpe- based perfor-
mance curve models can be directly used to predict the dondif a bridge group at
any future time. The regression-based condition prediatiorves are generated us-
ing the Latin Hypercube Sampling technique. Thereforetgelaumber of condition

rating data for each year can be obtained.

A large part of this study is devoted to the derivation of Markransition probability
matrix from a simulated condition profile. The developedgramms and knowledge
gained from studying dierent performance prediction techniques formed the foun-

dation for the development of this new approach. The tremmsjirobability matrix
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determines the deterioration model of a bridge elementtH®reason, itis an impor-
tant instrument to predict the lifetime performance of adure. Furthermore, in this
study, several dierent approaches for derivation of transition probabitigtrix are
described such as the percentage prediction method anaiii@ear optimization
method. The percentage prediction is a relatively strefighitard method, however,
it is not reliable if the data on number of ratings is noffiient. It has been found
in this study that this limitation can be overcome by using simulation-based re-
sults of condition profiles. Consequently, it has been oteskthat the performance
prediction curves obtained using the Bi-linear predictizethod can also be obtained
from the Markov chain-based condition prediction methothwiansition probabili-

ties computed from simulated condition rating data.

As a conclusion, in this study, the Markov decision prodegsed model is exam-
ined and a computer program to find the optimal policy witlrcdisited life-cycle
cost is developed. The other performance prediction mogtektigated in this study
is a probabilistic Bi-linear model which takes into accothe uncertainties for the
deterioration process and the application of maintenantiers by the use of ran-
dom variables. As part of the study, in order to further apalsind develop the Bi-
linear model, a Latin Hypercube Sampling-based (LHS) satioh program is also
developed and integrated into the main computational glgorwhich can produce
condition, safety, and life-cycle cost profiles for bridgembers with and without
maintenance actions. Furthermore, a polynomial-baseditiom prediction is also
examined as an alternative performance prediction modkis model is obtained
from condition rating data by applying regression analyfegression-based per-
formance curves are regenerated using the Latin Hypercaoelgng method. Fi-
nally, the results from the Markov chain-based performanediction are compared
with Simulation-based Bi-linear prediction and the detitwa of the transition prob-
ability matrix from simulated regression based conditioafife is introduced as a
newly developed approach. It has been observed that thisrestained from the
Markov chain-based average condition rating profiles matehwith those obtained
from Simulation-based mean condition rating profiles. Tégult suggests that the
Simulation-based condition prediction model may be careid as a potential model
in future BMSs.
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