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submitted by DİLEK BUYRUK in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Mathematics Department, Middle East
Technical University by,

Prof. Dr. Canan Özgen
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ABSTRACT

ON ALGEBRAIC FUNCTION FIELDS WITH CLASS NUMBER THREE

Buyruk, Dilek

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Mehpare Bilhan

Co-Supervisor : Prof. Dr. Ferruh Özbudak

February 2011, 128 pages

Let K/Fq be an algebraic function field with full constant field Fq and genus g. Then

the divisor class number hK of K/Fq is the order of the quotient group, D0
K/P (K),

degree zero divisors of K over principal divisors of K. The classification of the function

fields K with hK = 1 is done by MacRea, Leitzel, Madan and Queen and the classifi-

cation of the extensions with class number two is done by Le Brigand. Determination

of the necessary and the sufficient conditions for a function field to have class number

three is done by Hülya Töre.

Let k := Fq(T ) be the rational function field over the finite field Fq with q elements.

For a polynomial N ∈ Fq[T ], we construct the N th cyclotomic function field KN .

Cyclotomic function fields were investigated by Carlitz, studied by Hayes, M. Rosen,

M. Bilhan and many other mathematicians. Classification of cyclotomic function

fields and subfields of cyclotomic function fields with class number one is done by

Kida, Murabayashi, Ahn and Jung. Also the classification of function fields with

genus one and classification of those with class number two is done by Ahn and Jung.

In this thesis, we classified all algebraic function fields and subfields of cyclotomic
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function fields over finite fields with class number three.

Keywords: function fields, L-polynomial, class number, cyclotomic function field,

abelian extensions.
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ÖZ

SINIF SAYISI ÜC OLAN CEBİRSEL FONKSİYON CİSİMLERİ ÜZERİNE

Buyruk, Dilek

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Mehpare Bilhan

Ortak Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Şubat 2011, 128 sayfa

K/Fq, Fq sabit cismine sahip, cinsi g olan cebirsel bir fonksiyon cismi olsun. Bu du-

rumda, K/Fq’nun sınıf sayısı hK , D0
K/P (K) sınıf grubunun, yani, K’nın derecesi sıfir

olan divizörler grubunun temel (principal) divizörler grubuna bölünmesiyle elde edilen

bölüm grubunun eleman sayısına eşittir. Sınıf sayısı bir olan K fonksiyon cisimlerinin

sınıflandırılması MacRea, Leitzel, Madan ve Queen tarafından yapılmıştır. Sınıf sayısı

iki olanların sınıflandırılması ise Le Brigand tarafından yapılmıştır. Bir fonksiyon cis-

minin sınıf sayısının üç olabilmesi için gerek ve yeter koşulların saptanması ise Hülya

Töre tarafından yapılmıştır.

k := Fq(T ), q elemanlı Fq sonlu cismi üzerindeki rasyonel bir fonksiyon cismi ol-

sun. N ∈ Fq[T ] polinomu için, N−inci ”cyclotomic” fonksiyon cismi KN inşa edilir.

”Cyclotomic” fonksiyon cisimleri Carlitz tarafından inşa edilmiş, Hayes, M. Rosen,

M. Bilhan ve diğer bir çok matematikçi tarafından çalışılmıştır. Sınıf sayısı bir

olan ”cyclotomic” fonksiyon cisimlerinin ve ”cyclotomic” fonksiyon cisimlerinin alt

cisimlerinin sınıflandırılması Kida, Murabayashi, Ahn ve Jung tarafından yapılmıştır.

Ayrıca cinsi bir olan fonksiyon cisimlerinin sınıflandırılması ve sınıf sayısı iki olanların

vi



sınıflandırması Ahn ve Jung tarafından yapılmıştır.

Bu tezde, sınıf sayısı üç olan bütün cebirsel fonksiyon cisimlerini ve ”cyclotomic”

fonksiyon cisimlerinin alt cisimlerini sınıflandırdık.

Anahtar Kelimeler: fonksiyon cisimleri, L polinomu, sınıf sayısı, ”cyclotomic” fonksiyon

cisimleri, değişmeli genişlemeler.
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CHAPTER 1

INTRODUCTION

Let Fq be the finite field with q elements, and K/Fq an algebraic function field of one

variable having Fq for full constant field with genus g. The principal divisors P (K)

of K is a subgroup of the abelian group D0
K of degree zero divisors of K. Then the

quotient group D0
K/P (K) is a finite abelian group. Its order hK is called the divisor

class number of K/Fq. It is well-known that hK = L(1), where L is the numerator

polynomial of the zeta function of K.

In 1971, MacRae gave in [21] the quadratic function fields which have a place of degree

one with ideal class number one. He showed that there is only one imaginary quadratic

field if the characteristic of the finite field is not 2 and three if the characteristic is 2.

The study on the algebraic function fields K over finite fields with hK = 1 was done

by Madan and Queen in [23] in 1972. They showed that when class number is one,

q = 2 and genus is at most 4, q = 3 and genus is at most 2 or q = 4 and genus is at

most 1. For q = 2, they derived necessary and sufficient conditions for class number to

be one. When genus is three, they gave two examples to illustrate the given necessary

and sufficient conditions. The question of the existence of fields of genus 4 with class

number one was left open. They also proved that up to isomorphism, there is exactly

one quadratic function field of class number one which has no place of degree one.

The classification of algebraic function fields over finite fields with class number one

is finished by Leitzel, Madan and Queen in [19] in 1975. They proved that there is no

field of genus 4 over the field of 2 elements with class number one. They determined

that, up to isomorphism, there are precisely two function fields of genus 3 with class

number one when q = 2. They found possible cases for a field to have class number

two and in each case, they derived necessary and sufficient conditions for that function
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field. They determined that up to isomorphism, there are eight imaginary quadratic

function fields with class number two.

The divisor class number two problem for algebraic function fields was studied by Le

Brigand. In [18] in 1996, up to isomorphism, she classified all quadratic algebraic

function fields K with hK = 2. She determined that, up to isomorphism, there are

13 imaginary function fields with ideal class number two. She proved that, up to

isomorphism, there are 11 quadratic function fields over finite fields with divisor class

number two. The classification of the non-quadratic function fields with class number

two is done by Le Brigand in [17]. She proved that, up to isomorphism, there are only

eight non-quadratic function fields K such that hK = 2.

Let k := Fq(T ) be the rational function field over the finite field Fq with q elements,

and A := Fq[T ] the ring of polynomials. For N ∈ A, there exists a field extension

KN , called the N th cyclotomic function field KN . It is an analogue of the classical

cyclotomic number fields. These function fields were investigated by L. Carlitz in 1935

in [10].

In [13], Hayes developed the theory of cyclotomic function fields. Considering constant

field extensions and wild ramification at the infinite place of k, he constructed the

maximal abelian extension of k. By applying the Carlitz Theory with 1/T instead of

T and (1/T )ν+1 instead of N, he constructed the fields Fν and he defined the fixed field

of Fν under F∗q as Lν . Then the maximal abelian extension A of k is the composite

E.KT .L∞, where E is the union of all constant field extensions of k, KT is the union

of all cyclotomic function fields and L∞ is the union of all fields Lν .

In [8], Bilhan gave a proof for an analogue of the Kronecker-Weber theorem for rational

function fields. That is, she proved that every finite abelian extension K of k is

contained in a composite N = kn.KM .Lν , where kn is a constant field extension of

degree n, M is a non-zero polynomial in A and ν is a non-negative integer. This is

called a (ν, n,M)-extension.

In [22], Madan proved that the class number of a function field F/Fq divides the class

number of a function field E whenever E is a finite abelian Galois extension of F. If F

is an abelian extension of k, then by the analogue [8] of the Kronecker-Weber theorem,
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F is contained in some (ν, n,M)-extension and by the above result the class number

of F divides the class number of the (ν, n,M)-extension.

Let K be a subfield of a cyclotomic function field. By the conductor of K, we mean

the monic polynomial N ∈ A such that KN is the smallest cyclotomic function field

containing K. K+
N denotes the maximal subfield of KN such that the infinite place

splits completely. Let K+ = K∩K+
N be the maximal real subfield of K. We say that K

is a real extension of k if K = K+ and imaginary otherwise. An imaginary extension

K of k is called totally imaginary if K+ = k.

In [16], Kida and Murabayashi determined all cyclotomic function fields and their

maximal real subfields with divisor class number one, based on the previous results of

Madan, Queen, Armitage and Macrae. They also determined which of these abelian

extensions have genus one. In [2], Ahn and Jung determined all subfields of cyclotomic

function fields with divisor class number one when q 6= 2, and all imaginary abelian

extensions with relative divisor class number one. In [1], the same authors determined

all subfields of cyclotomic function fields with genus one when q 6= 2. Moreover, in [3],

they determined all subfields of cyclotomic function fields with divisor class number

two and they also gave the generators of such fields, explicitly.

In this thesis, we classified all algebraic function fields and all subfields of cyclotomic

function fields over finite fields with class number three. First we gave some prelimi-

naries and facts on the theory of algebraic function fields. Since the extension is not a

rational function field, genus is at least one. Then, we showed that when class number

is three, then q = 2 and genus is at most 6, or q = 3 and genus is at most 3, or

q = 4 and genus is at most 2, or q = 5 or 7 and genus is 1. We also gave the results

calculated in [33] on the necessary and sufficient conditions for class number to be

three.

In Chapter 3, we remarked some theorems presented in [17] in order to use in the

determination of quadratic extensions. Then we classified the quadratic extensions

over finite fields with class number three. Up to isomorphism, we determined that

there are exactly 5 elliptic function fields and 10 hyper-elliptic function fields over

finite fields with class number three.
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In Chapter 4, we classified the non-quadratic extensions over finite fields with class

number three. Up to isomorphism, we determined that there are at most 4 non-

hyperelliptic function fields when genus is three and 58 non-hyperelliptic extensions

when genus is four. We also proved that, up to isomorphism, there are at most 155

function fields of genus five with class number three as the complete intersection of

three quadrics in P4(F2). These are given in Appendix A. We also proved that for the

given necessary and sufficient conditions [33], the numerator of the zeta function has

a root with module different from 1/
√
q, when genus is six and class number is three.

In the last chapter, we assume K is a finite abelian extension of k contained in a

cyclotomic function field. In this chapter, we determine all subfields of cyclotomic

function fields with class number three. First, we give some necessary and sufficient

conditions for a subfield of a cyclotomic function field to have class number three.

Then we conclude that if a subfield of a cyclotomic function field has class number

three, then its genus is one or two. In section 2, we classify subfields of cyclotomic

function fields of genus one. In section 3, we classify the subfields of genus two.
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CHAPTER 2

PRELIMINARIES

Let Fq be the finite field with q = pn elements where p is a prime number. An

algebraic function field K of one variable over Fq is an extension field K ⊃ Fq such

that K is a finite extension of Fq(x) for some x ∈ K which is transcendental over Fq.

A valuation ring of the function field K/Fq is a subring O ⊆ K with the following

properties:

(i) Fq $ O $ K and

(ii) for any z ∈ K, either z ∈ O or z−1 ∈ O.

It is a well-known fact that a valuation ring O is a local ring with unique maximal

ideal P = O \ O∗ where O∗ is the group of units of O.

Theorem 2.1 (I.1.6, [32]) Let O be a valuation ring of the function field K/Fq and

P be its unique maximal ideal. Then

(i) P is a principal ideal.

(ii) If P = tO then for any 0 6= z ∈ K has a unique representation of the form z = tnu

for some n ∈ Z and u ∈ O∗.

(iii) O is a principal ideal domain.

A place of K is the maximal ideal P in some valuation ring O of K. Any element

t ∈ P such that P = tO is called a prime element for P . The set of all places of K is

denoted by PK .
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A discrete valuation of K/Fq is a function v : K → Z ∪ {∞} with the following

properties:

(i) v(x) =∞ ⇔ x = 0.

(ii) v(xy) = v(x) + v(y) for any x, y ∈ K.

(iii) v(x+ y) ≥ min{v(x), v(y)} for any x, y ∈ K.

(iv) There exists an element z ∈ K with v(x) = 1.

(v)v(a) = 0 for any non-zero a ∈ Fq.

Let P ∈ PK and let t ∈ P be a prime element. By Theorem 2.1, any 0 6= z ∈ K, has a

unique representation z = tnu with u ∈ O∗P and n ∈ Z. To the place P , we associate

a function vP : K → Z ∪ {∞} defined by vP (z) := n and vP (0) := ∞. Clearly, this

function is a discrete valuation of K/Fq. For an arbitrary w ∈ K, vP (w) 6= 0 only for

finitely many P ∈ PK .

We say P is a zero(pole) of x ∈ K if x ∈ P (x /∈ OP ). The constant field is naturally

embedded in the finite residue field FP = OP /P of P . The degree of P is defined as

degP := [FP : Fq].

The free abelian group DK on the set PK is called the divisor group of K. The map

deg : PK → Z is extended to DK by linearity. The kernel of this map, the group of

divisors of K of degree 0, is denoted by D0
K . For each x ∈ K∗, its principal divisor is

defined by (x) :=
∑

P∈PK
vP (x)P . Then (x) = (x)0 − (x)∞ where (x)0, the zero divisor

of x, and (x)∞, the pole divisor of x are positive divisors.

Theorem 2.2 Let x ∈ K \ Fq. Then deg(x)0 = deg(x)∞ = [K : Fq(x)].

Definition 2.0.1 Let D0
K denote the group of divisors of degree 0 and P (K) denote

the group of principal divisors of K. Clearly P (K) ⊆ D0
K and the order of the quotient

group D0
K/P (K) is called the class number of K and it is finite. It is denoted by hK .

�

Definition 2.0.2 For a divisor D ∈ DK , we define the Riemann-Roch space associ-
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ated to D by

L(D) := {x ∈ K∗ : (x) ≥ −D} ∪ {0}.

�

L(D) is a finite dimensional vector space over Fq and dimD := dimFqL(D). The genus

of K is defined as the nonnegative integer gK := max{degD − dimD + 1 : D ∈ DK}.

Theorem 2.3 (Riemann-Roch Theorem ) Let W be a canonical divisor of K/Fq.

Then, for any A ∈ DK ,

dimA = degA+ 1− g + dim(W −A).

Thus for a canonical divisor W, we have degW = 2g − 2 and dimW = g.

The power series

ZK(t) :=
∞∑
n=0

Ant
n ∈ Z[[t]],

with An :=| {D ∈ DK : D ≥ 0, degD = n} |, is called the zeta function of K. ZK(t) =

LK(t)/(1− t)(1− qt) where the numerator polynomial LK(t) ∈ Z[t] is of degree 2gK .

The numerator polynomial (L-polynomial) LK(t) satisfies the functional equation

LK(t) = qgK t2gKLK(1/qt).

Also, LK(1) = hK is the class number of K.

Let LK(t) = 1 + a1t + a2t
2 + · · · + a2gt

2g denote the L-polynomial of K. Using the

functional equation, we have the following relations among the coefficients of the L-

polynomial of K:

a2g = qg, a2g−1 = qg−1a1, a2g−2 = qg−2a2, ..., ag+1 = qag−1.

By Theorem V.1.15 and Theorem V.2.1 of [32], L(t) factors in C[t] in the form

LK(t) =

2g∏
i=1

(1− αit),

where |αi| =
√
q.
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Assume hK = 3, then

3 = LK(1) =

2g∏
i=1

|1− αi| ≥
2g∏
i=1

(1− |αi|) = (1−√q)2g.

If g = 0, then hK = 1. As hK = 3, we must have g ≥ 1 and 3 = LK(1) ≥ (1−√q)2.

Lemma 2.0.3 hK = 3 implies g ≥ 1 and 2 ≤ q ≤ 7.

Lemma 2.0.4 Let 2 ≤ q ≤ 7. If hK = 3 then one of the following conditions is

satisfied:

(i) q = 2, 1 ≤ g ≤ 6,

(ii) q = 3, 1 ≤ g ≤ 3,

(iii) q = 4, 1 ≤ g ≤ 2,

(iv) q = 5, 7, g = 1.

Proof. Let K = KFq2g−1 be the constant field extension of K of degree 2g − 1. Let

Ni denote the number of degree i places of K. Then,

LK(t) =

2g∏
i=1

(1− βit) (2.1)

is the L-polynomial of K where βi ∈ C and |βi| = q(2g−1)/2 for i = 1, 2, ..., 2g. On the

other hand,

LK(t) = 1 + a1t+ · · ·+ a2gt
2g (2.2)

where a1 = N1 − (q2g−1 + 1). Combining Equation 2.1 and Equation 2.2 , a1 =

β1 + · · · + β2g. Thus, using the triangular inequality, N1 ≥ q2g−1 + 1 − 2gq(2g−1)/2.

Since N1 comes from primes of K of degree dividing 2g−1, the total number of positive

divisors of K of degree 2g− 1 is at least (q2g−1 + 1− 2gq(2g−1)/2)/(2g− 1). By Lemma

V.1.4 of [32], the number of positive divisors of K of degree 2g−1 is hK(qg−1)/(q−1).

Hence, hK > 3 if

(q − 1)(q2g−1 + 1− 2g.q
2g−1

2 ) > 3(qg − 1)(2g − 1).

Using this inequality and Lemma 2.0.3, the result follows. �
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Lemma 2.0.5 Let ni denote the number of prime divisors of K of degree i ∈ Z+. If

hK = 3, then n1 ≤ 3.

Proof.

Assume n1 > 3. Let P1, P2, P3, P4 be distinct prime divisors of K of degree one. Then

P1−P1, P1−P2, P1−P3, P1−P4 ∈ Div0(K)/P (K). However |Div0(K)/P (K)| = hK .

Thus P1−Pi ≡ P1−Pj (mod P (K)) for i 6= j. That is Pi−Pj = (x) ∈ P (K) for some

x ∈ K \ {0}. Then [K : Fq[x]] = deg(x)0 = 1 where (x)0 denotes the zero divisor of x

by Theorem I.4.11 of [32]. Then K is rational and hK = 1, which is a contradiction.

Thus n1 ≤ 3. �

The symmetric functions Si of the roots can be expressed in terms of ni’s (for i =

1, 2, ..., 6) as in the following table:

Table 2.1: Formulas for the Si functions

−S1 n1 − (q + 1)

−S2 n1 + 2n2 − (q2 + 1)

−S3 n1 + 3n3 − (q3 + 1)

−S4 n1 + 2n2 + 4n4 − (q4 + 1)

−S5 n1 + 5n5 − (q5 + 1)

−S6 n1 + 2n2 + 3n3 + 6n6 − (q6 + 1)

Then the coefficients ai of the L-polynomial can be calculated by the following for-

mulas:

Table 2.2: Formulas for the coefficients of the L-polynomials

a1 −S1
a2

−S2+S2
1

2

a3
−S3

1+3S1S2−2S3

6

a4
S4
1−6S2

1S2+8S1S3+3S2
2−6S4

24

a5
−S5

1+10S3
1S2−15S1S2

2−20S2
1S3+20S2S3+30S1S4−24S5

120

a6
S6
1−15S4

1S2+45S2
1S

2
2−15S3

2+40S3
1S3−120S1S2S3−90S2

1S4+40S2
3+90S2S4+144S1S5−120S6

720

In particular, when q = 2, we have the following formulas for the coefficients of L-
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polynomials:

Table 2.3: Formulas for the coefficients of the L-polynomials when q = 2

n1 a1 a2 a3 a4 a5

n1 = 0 −3 n2 + 2 n3 − 3n2 n4 − 3n3 +
n2
2+5n2

2 n5 − 3n4 + 2n3 + n2n3 −
3n2

2+3n2

2

n1 = 1 −2 n2 n3 − 2n2 n4 − 2n3 +
n2
2+n2

2 n5 − 2n4 + n2n3 − (n22 + n2)

n1 = 2 −1 n2 − 1 n3 − n2 − 1 n4 − n3 − 1 +
n2
2−n2

2 n5 − n4 − n3 + n2n3 − 1− n2
2+3n2

2

n1 = 3 0 n2 − 1 n3 − 2 n4 − 3 +
n2
2−n2

2 n5 − n3 + n2n3 − 2n2 − 4

n1 a6

n1 = 0 n6 − 3n5 + 2n4 +
n3+n2

3
2 + n2n4 − 3n2n3 +

8n2+9n2
2+n

3
2

6

n1 = 1 n6 − 2n5 + n2n4 − 2n2n3 +
n2
3+n3

2 +
n3
2+3n2

2+2n2

6

n1 = 2 n6 − n5 − n4 + n2n4 − n2n3 +
n2
3−n3

2 +
n3
2−7n2

6 − 1

n1 = 3 n6 − n4 + n4n2 +
n2
3−3n3

2 +
n3
2−19n2

6 − 5

Theorem 2.4 [[33], Main Theorem] Let K/Fq be a function field of genus g. Then

hK = 3 if and only if one of the following conditions holds:

(1) g = 1, 2 ≤ q ≤ 7 and n1 = 3.

(2) g = 2, q = 2 and 2n2 + n21 + n1 = 10

((i) n1 = 0,n2 = 5 or

(ii) n1 = 1, n2 = 4 or

(iii) n1 = 2, n2 = 2).

(3)g = 2, q = 3 and 2n2 + n21 + n1 = 12

((i)n1 = 0, n2 = 6 or

(ii) n1 = 1, n2 = 5 or

(iii) n1 = 2, n2 = 3).

(4)g = 2, q = 4, hK > 3.

(5) g = 3, q = 2 and

(i) n1 = 0, n3 = 3,n2 ≤ 13 or
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(ii) n1 = 1, n2 + n3 = 4 or

(iii)n1 = 2, n3 + 2n2 = 3.

(6) g = 3, q = 3 , hK > 3.

(7) g = 4, q = 2 and

(i) n1 = 0, 2n4 + n22 − 3n2 = 6 and

{
n2 = 0, n3 ≤ 11, n4 = 3 or

n2 = 1, n3 ≤ 8, n4 = 4 or

n2 = 2, n3 ≤ 6, n4 = 4 or

n2 = 3, n3 ≤ 3, n4 = 3 or

n2 = 4, n3 = 0, n4 = 1

or

(ii) n1 = 1, 2n4 + 2n3 + n22 − n2 = 8 and

{ n2 = 0, n3 ≤ 3, 1 ≤ n4 ≤ 4 or

n2 = 1, n3 = 0, n4 = 4

(8) g = 5, q = 2 and n1 = 0, n5 − 2n3 + n2n3 = 3, n5 6= 0.

(9) g = 6, q = 2 and n1 = 0, n6 − 2n4 + (n3 + n23)/2 = 3, n2 = 0, n5 ≤ 6.
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CHAPTER 3

QUADRATIC FUNCTION FIELDS WITH CLASS

NUMBER THREE

3.1 Elliptic and hyperelliptic function fields

Proposition 3.1 [[18],Lemma 2.8 and Proposition 2.9] Assume charFq = 2.

(1) Let K/Fq be a quadratic function field (i.e, [K : Fq(x)] = 2 for some x ∈ K which

is transcendental over Fq ) of genus g ≥ 2. Then K/Fq is a hyperelliptic function field

and there exist x, y ∈ K such that K = Fq(x, y) and

y2 + h(x)y = f(x)

with h, f ∈ Fq[x] such that all zeros of h are simple zeros of f and

deg(h) ≤ g and deg(f) = 2g + 1

or

deg(h) = g + 1 and deg(f) ≤ 2g + 2.

(2) Let K = Fq(x, y) and y2 + h(x)y = f(x) for some x, y ∈ K. Then the places of

Fq(x)/Fq which ramify in K/Fq are

all zeros of h(x) if deg(h) = g + 1,

all zeros of h(x) and the pole of (x) if deg(h) ≤ g.

(3) Let K/Fq be a hyperelliptic function field such that K = Fq(x, y) and y2 +h(x)y =

12



f(x) for some x, y ∈ K where

f(x) =

2m+1∑
i=0

bix
i + bx2m+2,

h(x) =
m∑
i=0

aix
i + axm+1.

(i) Let Q ∈ Fq[x] be a monic irreducible polynomial of degree r, c a root of Q in kr,

the extension of degree r of Fq. We set k0 = F2 and denote by trkr/k0 the trace

of kr over k0. Let α be the finite place of Fq(x)/Fq associated to Q.

• α ramifies if and only if Q divides h(x).

• α splits if and only if gcd(Q, h) = 1 and trkr/k0(f(c)/h(c)2) = 0.

• α is inert if and only if gcd(Q, h) = 1 and trkr/k0(f(c)/h(c)2) = 1.

(ii) Let β denote the infinite place of Fq(x)/Fq.

• β ramifies if and only if deg(h) ≤ m.

• β splits if and only if deg(h) = m+ 1 and t2 + at+ b is reducible over Fq[t].

• β is inert if and only if deg(h) = m+1 and t2 +at+ b is irreducible over Fq[t].

Proposition 3.2 [[18], Lemma 2.6 and Proposition 2.7] Assume charFq 6= 2. Let

K/Fq be a quadratic function field of genus g ≥ 2. Then K/Fq is a hyperelliptic

function field and there exist x, y ∈ K such that K = Fq(x, y) and

y2 = f(x)

with a square-free polynomial f ∈ Fq[x] of degree 2g + 1 or 2g + 2 .

(i) Let Q ∈ Fq[x] be a monic irreducible polynomial. Let α be the finite place of

Fq(x)/Fq associated to Q.

• α ramifies if and only if Q divides f .

• α splits if and only if gcd(Q, f) = 1 and f(x) is a square mod Q in Fq[x].

• α is inert if and only if gcd(Q, f) = 1 and f(x) is not a square mod Q in

Fq[x].
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(ii) Let β denote the infinite place of Fq(x)/Fq.

• β ramifies if and only if deg(f) = 2g + 1.

• β splits if and only if deg(f) = 2g + 2 and the leading coefficient of f is a

square in Fq.

• β is inert if and only if deg(f) = 2g + 2 and the leading coefficient of f is not

a square in Fq.

Proposition 3.3 Let K/Fq be an elliptic function field, then there exists a place of

K of degree one. Let P be a place of degree one of K/Fq. There exist x, y ∈ K such

that K = Fq(x, y) and

(1) If charK = 2, y2 +h(x)y+f(x) = 0 where h, f ∈ Fq[x], h(x) = ax+b is non-zero,

f is monic and deg(f) = 3.

(2) If charK 6= 2, y2 + f(x) = 0 where f ∈ Fq[x], f is monic, square-free and

deg(f) = 3.

P is the unique place over the infinite place of Fq(x)/Fq. When charK = 2, a finite

place Q of Fq(x) is ramified if the associated polynomial divides h(x) and f(x). When

charK 6= 2, a finite place Q is ramified if the associated polynomial divides f(x).

Proof. Let ni denote the number of prime divisors of K of degree i. Since gK = 1,

n1 = hK ≥ 1. Let P be a place of K of degree one. Then, by Riemann-Roch Theorem,

dim(2P ) = deg(2P )− (g−1). Thus dim(2P ) = 2. Similarly, dim(3P ) = 3. Let {1, x}

be a basis of L(2P ). Take y ∈ L(3P ) \L(2P ). Then {1, x, y} is a basis for L(3P ) and

S = {1, x, x2, x3, y, y2, xy} is a subset of L(6P ) of order 7. As the dimension of L(6P )

is 6, the elements of S are linearly dependent over Fq. That is, there exist ai ∈ Fq for

i = 1, ..., 7 such that

a1y
2 + (a2 + a3x)y + (a4x

3 + a5x
2 + a6x+ a7) = 0.

By Theorem 2.2, [K : Fq(x)] = 2 and [K : Fq(y)] = 3. Then, we may assume a1 = 1

and a4 = 1. Since (x)∞ = 2P , P is the unique place above the infinite place of

Fq(x)/Fq.
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(1) When charK = 2, we have K = Fq(x, y) where

y2 + h(x)y + f(x) = 0

with h(x) = ax + b and f(x) = x3 + cx2 + dx + e for a, b, c, d, e ∈ Fq. Let Q be a

finite place of Fq(x) which is ramified in K/Fq(x). Let c be a root of the associated

polynomial of Q. Then y2 + h(c)y + f(c) = 0 has a unique solution in y if and only

if h(c) = 0. Thus c ∈ Fq and since finitely many places of Fq(x) are ramified, h(x) is

non-zero. Using the substitution y → y+ f(c)q+2, we have y2 +h(x)y+ f(x) + f(c) +

f(c)q/2h(x) = 0. Let f(x) = f(x) + f(c) + f(c)q/2h(x). Then y2 + h(x)y + f(x) = 0

where f(c) = 0 and f(x) is a monic polynomial of degree three.

(2) When charK 6= 2, let y = (y+h(x)2−1) and f(x) = f(x)+h(x)2, then y2+f(x) = 0

where degf(x) = 3 and f(x) is monic. Let Q be a finite place of Fq(x) which is ramified

in K and let c be a root of the associated polynomial of Q. Then y2 = f(c) has a

unique solution if and only if f(c) = 0. Hence the result follows. Assume f(x) is not

squarefree, then y2/(x+c)2+x+d = 0 for some c, d ∈ Fq. Substituting y/(x+c)→ y,

y2 + x+ d = 0 and K = Fq(y), which contradicts gK = 1. �

3.2 Determination of elliptic function fields

Theorem 3.4 Let K/Fq be a quadratic function field with class number 3 and g = 1.

(That is, [K : Fq(x)] = 2 for some x ∈ K, transcendental over Fq.) Then there exist

x, y ∈ K such that K = Fq(x, y) satisfying one of the followings:

(1) y2 + y = x3 for q = 2.

(2) y2 + x3 + 2x2 + 2x+ 2 = 0 for q = 3.

(3) y2 + αy + x3 = 0 for q = 4 where < α >= F∗4.

(4) y2 + x3 + 4x+ 2 = 0 for q = 5.

(5) y2 + x3 + 4 = 0 for q = 7.

Proof.
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1. Let q = 2. By Proposition 3.3, K = F2(x, y) where y2 + h(x)y + f(x) = 0 and

h(x) = ax + b, f(x) = x3 + cx2 + dx + e for a, b, c, d, e ∈ F2 and P∞ is totally

ramified in K/Fq(x). Since hK = n1 and hK = 3, (x) and (x + 1) are also

ramified or one of them splits and the other one is inert. If both of them are

ramified, then x2 + x divides h(x), which contradicts that deg(h) ≤ 1. Thus

deg(h) = 0 and h(x) = 1. We assume (x) splits and (x + 1) is inert. Then

y2 + y+ f(1) = 0 has no rational solution, i.e. f(1) = 1. Since y2 + y+ f(0) = 0

has 2 distinct roots, f(0) = 0. We have y2 + y + x3 + cx2 + cx = 0 for c ∈ F2.

Using the substitution x → x + c, we have y2 + y + x3 + c = 0. Substituting

y → y + cx and x→ x+ c, we have

y2 + y + x3 = 0. (3.1)

2. Let q = 3. By Proposition 3.3, K = F3(x, y) where y2 + f(x) = 0 with f(x) =

x3+cx2+dx+e for a, b, c, d, e ∈ F2 and P∞ is totally ramified in K/Fq(x). Since

hK = n1, two of finite places of F3(x) of degree one are ramified and the last one

is inert or one of them splits and two of them are inert. Since f is squarefree,

the first case is not possible. Assume (x) splits and (x + 1) and (x + 2) are

inert. Then y2 + f(0) = 0 has 2 rational distinct solutions, y2 + f(1) = 0 and

y2 + f(2) = 0 have no solution. That is, f(0) = 2, f(1) = 1 and f(2) = 1.

Hence,

y2 + x3 + 2x2 + 2x+ 2 = 0. (3.2)

3. For q = 4, by Proposition 3.3, K = F4(x, y) with y2 + h(x)y + f(x) = 0 where

h(x) = ax + b, f(x) = x3 + cx2 + dx + e for a, b, c, d, e ∈ F4, and P∞ is totally

ramified in K/Fq(x). Since hK = n1, either two of the places of degree one

are ramified or one of them splits and the others are inert. If two of them are

ramified, then their product divides h(x), which contradicts that deg(h) ≤ 1.

Thus deg(h) = 0. We assume (x) splits and (x + i) is inert when i ∈ F∗4. Then

y2 + h(i)y + f(i) = 0 has no rational solution for i ∈ F∗4, Up to isomorphism

y → ay + b for a ∈ F∗4 and b ∈ F4, we assume h(x) = α where α2 + α + 1 = 0

and f(x) = x3 + cx2 + dx for c, d ∈ F4. Up to isomorphism, we have

y2 + αy + x3 = 0. (3.3)

16



4. Let q = 5. By Proposition 3.3, K = F5(x, y) with y2 + f(x) = 0 where f(x) =

x3 + cx2 + dx + e for a, b, c, d, e ∈ F2, and P∞ is totally ramified in K/Fq(x).

Since hK = n1, two of the finite places of F5(x) of degree one are ramified and

the others are inert or one of them splits and four of them are inert. Since f is

squarefree, the first case is not possible. Assume (x+3) splits and the others are

inert. Then y2 +f(3) = 0 has 2 rational distinct solutions, and y2 +f(i) = 0 has

no solution for i = 0, 1, 2, 4. That is, f(3) = 1 or 4, f(i) = 2 or 3 for i = 0, 1, 2, 4.

Hence,

y2 + x3 + 4x+ 2 = 0. (3.4)

5. Let q = 7. Similar to the case q = 3, we assume (x) splits and the others are

inert. Then we have a unique solution. That is,

y2 + x3 + 4 = 0. (3.5)

�

3.3 Determination of hyperelliptic function fields

We have finished the case 1 of Theorem 2.4. Now, under the assumption K/Fq is a

quadratic function field, we examine the other cases of Theorem 2.4.

Theorem 3.5 Let K/Fq be a quadratic function field of genus g with class number 3.

g ≥ 2 if and only if there exist x, y ∈ K such that K = Fq(x, y) with

1. (for q = 2 and g = 2)

(i) y2 + y = x5 + x4 + 1 where L(t) = 4t4 − 4t3 + 4t2 − 2t+ 1 or

(ii) y2 + (x3 + x+ 1)y = x3(x3 + x+ 1) where L(t) = 4t4 − 2t3 + t2 − t+ 1 or

(iii) y2 + (x3 + x2 + 1)y = x3(x3 + x2 + 1) where L(t) = 4t4 − 2t3 + t2 − t+ 1.

2. (for q = 3 and g = 2)

(i) y2 = 2x6 + x2 + 2 where L(t) = 9t4 − 12t3 + 9t2 − 4t+ 1 or
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(ii) y2 = 2x6 +x5 + 2x4 +x3 + 2x2 +x+ 2 where L(t) = 9t4− 12t3 + 9t2− 4t+ 1

or

(iii) y2 = x5 + x3 + x+ 2 where L(t) = 9t4 − 9t3 + 5t2 − 3t+ 1 or

(iv) y2 = 2x6 + x5 + x4 + 2x3 + x2 + 1 where L(t) = 9t4 − 6t3 + t2 − 2t+ 1.

3. (for q = 2 and g = 3)

(i) y2 + y = x7 + x6 + 1 where L(t) = 8t6 − 8t5 + 4t4 − 2t3 + 2t2 − 2t+ 1.

4. (for q = 2 and g = 4)

(i) y2 + (x5 + x2 + 1)y = (x5 + x2 + 1)(x5 + x3 + 1) where L(t) = 16t8 − 24t7 +

20t6 − 14t5 + 9t4 − 7t3 + 5t2 − 3t+ 1 or

(ii) y2 + (x5 + x2 + 1)y = (x5 + x2 + 1)(x5 + x4 + x3 + x + 1) where L(t) =

16t8 − 24t7 + 20t6 − 18t5 + 15t4 − 9t3 + 5t2 − 3t+ 1.

Proof. By Theorem 2.4, we have the following cases:

1. Let q = 2 and g = 2. By Theorem 2.4, we have three cases:

(i)Let n1 = 0 and n2 = 5. Then P∞ is inert in K/Fq(x). By Proposition 3.1,

K = Fq(x, y) for some x, y ∈ K and

y2 + h(x)y = f(x),

where h(x) = a3x
3+a2x

2+a1x+a0, f(x) = b6x
6+· · ·+b0 ∈ Fq[x] and t2+a3t+b6

is irreducible over F2. Then b6 = a3 = 1. Since n1 = 0, all places of degree one

of Fq(x) are inert. Since n2 = 5, (x2 + x + 1) splits. Then x, x + 1, x2 + x + 1

do not divide h(x), i.e. h(x) is irreducible of degree 3. Up to isomorphism,

h(x) = x3 + x+ 1. Then f(x) = h(x)g(x), where g(x) is a polynomial of degree

3. Since f(1) = f(0) = 1, g(1) = g(0) = 1 and g(x) is irreducible of degree 3

different from h(x) by Proposition 3.1. That means g(x) = x3 + x2 + 1. Let c

be a root of Q = x2 + x + 1. Since (x2 + x + 1) splits, trk2/k0(f(c)/h(c)2) = 0.

However,

trk2/k0(f(c)/h(c)2) = c2g(c) + cg(c2)

= c+ c2

= 1,
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which is a contradiction.

(ii) Let n1 = 1 and n2 = 4. By Proposition 3.1, K = Fq(x, y) for some x, y ∈ K

and

y2 + h(x)y = f(x),

where h(x), f(x) ∈ Fq[x].

Since n1 = 1, only one of the places of Fq(x) of degree one is ramified and the

others are inert. Up to isomorphism, we assume P∞ is ramified. Since n2 = 4,

(x2 + x + 1) splits. By Proposition 3.1, deg(h) ≤ 2 and deg(f) = 5 and the

only ramified prime of Fq(x) of degree one is P∞. deg(h) = 1 or 2 implies

h(x) = x, x + 1, x2, (x + 1)2, x(x + 1) or x2 + x + 1. Since the associated finite

places are not ramified, this is not possible by part (2) and (3) of Proposition

3.1. Thus h(x) = 1 and deg(f) = 5 such that f(0) = f(1) = 1. Let

f(x) = x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0.

Since f(0) = f(1) = 1, a0 = 1 and a4 + a3 + a2 + a1 = 1. Let c be a root of

Q = x2 + x+ 1. Then trk2/k0(f(c)/h(c)2) = 0, by part (3) of Proposition 3.1.

trk2/k0(f(c)/h(c)2) = f(c) + f(c2).

Hence f(c) + f(c2) = 0. We have

0 = (c5 + a4c
4 + a3c

3 + a2c
2 + a1c+ 1) + (c10 + a4c

8 + a3c
6 + a2c

4 + a1c
2 + 1)

= (c2 + a4c+ a3 + a2c
2 + a1c+ 1) + (c+ a4c

2 + a3 + a2c+ a1c
2 + 1)

= 1 + a4 + a2 + a1.

We have 1 = a4 + a2 + a1 and a4 + a3 + a2 + a1 = 1, then a3 = 0. We have 4

possibilities for f(x). These are x5 + x4 + x2 + x + 1, x5 + x4 + 1, x5 + x2 + 1

or x5 + x+ 1. But up to isomorphism f(x) is unique and K = F2(x, y) where

1.(i)

y2 + y = x5 + x4 + 1, (3.6)

for some x, y ∈ K.

(iii) Let n1 = 2 and n2 = 2. Then we have two possibilities:
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• Two of the primes of F2(x) of degree one are ramified and the last one is

inert. Up to isomorphism, assume P∞ and (x+a) are ramified for a ∈ F2. Since

deg(h) ≤ 2 for this case, h(x) = x + a or (x + a)2. Thus (x2 + x + 1) either is

inert or splits. That is n2 = 1 or 3. However n2 = 2 and hence, there exists no

solution for this case.

• One of the places of degree one splits and the others are inert.(n2 ≥ 2) We

may assume (x) splits. Since n2 is exactly 2, (x2 + x + 1) is inert. Since P∞

is inert, deg(h) = 3 and deg(f) = 6 by part (2) and (3) of Proposition 3.1.

x, x + 1, x2 + x + 1 do not divide h(x), then h(x) is irreducible of degree 3,

f(0) = 0, f(1) = 1 and h(x) | f(x). Then f(x) = g(x)h(x) where g(x) =

x3 + e2x
2 + e1x ∈ F2[x] (f(0) = 0 implies g(0) = 0 and f(1) = 1 implies

1 + e2 + e1 = 1).

Let h(x) = x3 + x+ 1. Since (x2 + x+ 1) is inert,

trk2/k0(f(c)/h(c)2) = trk2/k0(g(c)/h(c)) = 1.

h(c) = c3 + c+ 1 = c and h(c)−1 = c2. Thus

1 = c2g(c) + (c2)2g(c2)

= c2(c3 + e2c
2 + e1c) + c4(c6 + e2c

4 + e1c
2)

= (c2 + c) + e2(c+ c2) + e1(1 + 1)

= 1 + e2.

Then e2 = 0 and e3 = 1. That is, K = F2(x, y) satisfying the following equation:

1.(ii)

y2 + (x3 + x+ 1)y = x3(x3 + x+ 1). (3.7)

Let h(x) = x3 + x2 + 1. Since (x2 + x+ 1) is inert,

trk2/k0(f(c)/h(c)2) = trk2/k0(g(c)/h(c))

= 1.
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h(c) = c3 + c2 + 1 = c2 and h(c)−1 = c. Thus

1 = cg(c) + c2g(c2)

= c(c3 + e2c
2 + e1c) + c2(c6 + e2c

4 + e1c
2)

= (c+ c2) + e2(1 + 1) + e1(c
2 + c)

= 1 + e1.

Then e1 = 0 and e3 = 1. That is, K = F2(x, y) satisfying the following equation:

1.(iii)

y2 + (x3 + x2 + 1)y = x3(x3 + x2 + 1) (3.8)

2. Let q = 3 and g = 2. By Theorem 2.4 we have the following cases:

(i)Let n1 = 0 and n2 = 6. Then P∞ and all finite places of degree one are

inert. By Proposition 3.2, f(x) = 2x6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + 2

and f(1) = f(2) = 2, which implies a2 + a4 = 1 and a1 + a3 + a5 = 0. Let

p1(x) = x2 + 1, p2(x) = x2 + 2x+ 2, p3(x) = x2 + x+ 2. Since n2 = 6, we have

the following two possibilities:

• Two of the places of degree two are ramified and one of them is inert. Assume

(p1) and (p2) are ramified and (p3) is inert. Then f(x) = p1(x).p2(x).g(x) where

deg(g) = 2. But f is square-free and p3, x, x+ 1, x+ 2 does not divide f. Hence

there exists no solution for this case.

• One of the places of degree one splits and the others are inert. Up to isomor-

phism, we may assume (p1(x)) splits and the others are inert.

Table 3.1: Complete squares in mod pi(x)

Mod p1(x) Mod p2(x) Mod p3(x)

12 ≡ 1 12 ≡ 1 12 ≡ 1
22 ≡ 1 22 ≡ 1 22 ≡ 1
x2 ≡ 2 x2 ≡ x+ 1 x2 ≡ 2x+ 1

(x+ 1)2 ≡ 2x (x+ 1)2 ≡ 2 (x+ 1)2 ≡ x+ 2
(x+ 2)2 ≡ x (x+ 2)2 ≡ 2x+ 2 (x+ 2)2 ≡ 2

(2x)2 ≡ 2 (2x)2 ≡ x+ 1 (2x)2 ≡ 2x+ 1
(2x+ 2)2 ≡ 2x (2x+ 2)2 ≡ 2 (2x+ 2)2 ≡ x+ 2
(2x+ 1)2 ≡ x (2x+ 1)2 ≡ 2x+ 2 (2x+ 1)2 ≡ 2
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Then

f(x) ≡ 2.(2)3 + a5.2
2x+ a4.2

2 + a3.2x+ a2.2 + a1.x+ 2(Mod p1(x))

≡ (a5 + 2a3 + a1)x+ (a4 + 2a2)(Mod p1(x)).

Since f(x) is a square Mod p1(x) by Proposition 3.2, a4+2a2 = 0 or a5+2a3+a1 =

0 by the given table. As (p2(x)) and (p3(x)) are inert, we find 4 solutions. Up

to isomorphism, we have two solutions. That is, there exist x, y ∈ K such that

K = Fq(x, y) satisfying one of the following equations:

2.(i)

y2 = 2x6 + x2 + 2 or (3.9)

2.(ii)

y2 = 2x6 + x5 + 2x4 + x3 + 2x2 + x+ 2. (3.10)

(ii)Let n1 = 1 and n2 = 5. Then one of the primes of degree one is ramified. Up

to isomorphism, assume P∞ is ramified and the others are inert, that is n2 ≥ 3.

Since n2 = 5, two of the places of degree two are ramified and the last one is

inert or one of them splits and the others are inert.

• Let two of the places of degree two be ramified. Assume (pi) and (pj) are

ramified. Since P∞ is ramified, degf = 5 and f(x) = pi(x)pj(x)g(x) where

deg(g) = 1. This implies that there exists a ramified finite prime of degree one,

which contradicts n1 = 1.

• Let one of the places of degree two split and the others be inert. Since P∞ is

ramified, we deduce that deg(f) = 5 by Proposition 3.2. Since pi(x) does not

divide f(x) for all i, f(b) 6= 0 for all b ∈ F3 and f is square-free, f(x) is monic

irreducible of degree 5. That is

f(x) = x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0.

f(0) = f(1) = f(2) = 2 implies a0 = 2, a4 + a2 = 0 and a3 + a1 = 2. Among

9 possibilities for f(x), we get 3 isomorphic function fields for this case. Up to

isomorphism, K = F3(x, y) for some x, y ∈ K satisfying the following equation:
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2.(iii)

y2 = x5 + x3 + x+ 2. (3.11)

(iii)Let n1 = 2 and n2 = 3. Then two of the primes of degree one are ramified

and the others are inert or one of them splits and the others are inert.

• Let two of the places of degree one be ramified and the others be inert, that is

n2 ≥ 2. But n2 = 3. Thus one of the places of degree two is ramified. Assume

(pi) is the ramified prime of degree two.

If P∞ is inert, then deg(f) = 6 by Proposition 3.2. Let (x + a) and (x + b) be

two ramified primes of degree one. Thus f(x) = pi(x)(x+ a)(x+ b)g(x), where

deg(g) = 2. Since f is square-free, only two of the finite places of degree one are

ramified and pj does not divide f for j 6= i, there exists no solution for g(x).

If P∞ is ramified, degf = 5. Let (x + a) be the other ramified prime. We have

f(x) = pi(x)(x+a)g(x) where deg(g) = 2. Using a similar argument, there exist

no solution for g(x).

• Let one of the places of degree one split. Up to isomorphism, we may assume

(x) splits and the others are inert, that is n2 ≥ 3. But n2 = 3. Hence all places

of degree two are inert and deg(f) = 6. Let

f(x) = a6x
6 + a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0.

Since P∞ is inert, a6 = 2 and since (x) splits, a0 = 1. Also f(1) = f(2) = 2

implies a4 + a2 = 2 and a1 + a3 + a5 = 0.

f(x) ≡ 2.23 + a52
2x+ a42

2 + a32x+ a22 + a1x+ 1(Mod x2 + 1)

≡ (a5 + 2a3 + a1)x+ (2 + a4 + 2a2)(Mod x2 + 1),

which is not a square Mod x2 + 1. (a5 + 2a3 + a1) 6= 0 and (2 + a4 + 2a2) 6= 0.

Since a4 + a2 = 2, we have a2 6= 2 and a4 6= 0. Similarly a3 6= 0. As all the

places of degree two are inert, up to isomorphism K = F3(x, y) for some x, y ∈ K

satisfying the following equation:

2.(iv)

y2 = 2x6 + x5 + x4 + 2x3 + x2 + 1. (3.12)
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3. Let g = 3 and q = 2. By Theorem 2.4, we have the following cases:

(a) Let n1 = 0 and n3 = 3. By Proposition 3.1, K = F2(x, y) where

y2 + h(x)y = f(x)

for some x, y ∈ K such that deg(h) = 4 and deg(f) ≤ 8. Since there exist at

least one ramified prime of degree three, say (p(x)), we have h(x) = p(x)g(x)

where deg(g) = 1. That means there exists a finite ramified prime of degree one

and n1 ≥ 1, which is a contradiction.

(b) Let n1 = 1 and n2 +n3 = 4. Then one of the primes of F2(x) of degree one is

ramified. Up to isomorphism, assume P∞ is ramified. Then K = F2(x, y) where

y2 + h(x)y = f(x)

for some x, y ∈ K such that deg(h) ≤ 3 and deg(f) = 7. Also, (x) and (x + 1)

are inert and hence n2 = 2, 3 or 4.

• Let n2 = 2 and n3 = 2. Since deg(h) ≤ 3, one of the primes of degree three

splits and the other one is inert. Also (x2 + x+ 1) is inert. Hence there exist no

finite ramified prime of degree ≤ 3 and h(x) = 1.

Let f(x) = x7+a6x
6+a5x

5+a4x
4+a3x

3+a2x
2+a1x+a0. Since f(0) = f(1) = 1,

a0 = 1 and a6 + a5 + a4 + a3 + a2 + a1 = 1. Let n,m be roots of x3 + x + 1

and x3 + x2 + 1, respectively. Then n7 = m7 = 1 and let c, c2 be roots of

x2 + x+ 1(c3 = 1). Then

trk2/k0(f(c)/h(c)2) = f(c) + f(c2)

= (c7 + c14) + a6(c
6 + c12) + a5(c

5 + c10) + a4(c
4 + c8)

+ a3(c
3 + c6) + a2(c

2 + c4) + a1(c+ c2) + (1 + 1)

= 1 + a5 + a4 + a2 + a1

= 1.

This implies a6 + a3 = 1 and a5 + a4 + a2 + a1 = 0

? Up to isomorphism x→ x+1, we assume (x3 +x+1) is inert and (x3 +x2 +1)
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splits. By part (3) of Proposition 3.1, we have respectively:

trk3/k0(f(n)/h(n)2) = 1

trk3/k0(f(m)/h(m)2) = 0

f(n)+f(n2) + f(n4) = 1

f(m)+f(m2) + f(m4) = 0

That is, we have explicitly:

(n7 + n14 + n28) + a6(n
6 + n12 + n24) + a5(n

5 + n10 + n20) + a4(n
4 + n8 + n16)+

a3(n
3 + n6 + n12) + a2(n

2 + n4 + n8) + a1(n+ n2 + n4) + (1 + 1 + 1) = 1

(m7 +m14 +m28) + a6(m
6 +m12 +m24) + a5(m

5 +m10 +m20) + a4(m
4 +m8 +m16)+

a3(m
3 +m6 +m12) + a2(m

2 +m4 +m8) + a1(m+m2 +m4) + (1 + 1 + 1) = 0

a6 + a5 + a3 = 1

a4 + a2 + a1 = 0

We also have a6 + a3 = 1 and a5 + a4 + a2 + a1 = 0. Then a5 = 0. We have

eight equations satisfying the given conditions. Up to isomorphism, there exists

a unique solution, that is, K = F2(x, y) for some x, y ∈ K where

3.(i)

y2 + y = x7 + x6 + 1, (3.13)

• Let n2 = 3 and n3 = 1. Since n1 = 1 and n2 = 3, (x2 + x + 1) is ramified

and since n3 = 1 one of the degree 3 primes is ramified. Hence their associated

polynomials divide h(x) and deg(h) ≥ 5. But deg(h) ≤ g = 3. So there exists

no solution.

• Let n2 = 4 and n3 = 0. We have deg(h) ≤ 3 and both of the primes of degree

three are inert. Also, (x2 + x + 1) splits. Hence there exists no finite ramified

prime of degree ≤ 3 and h(x) = 1.

Let f(x) = x7+a6x
6+a5x

5+a4x
4+a3x

3+a2x
2+a1x+a0. Since f(0) = f(1) = 1,

we have a0 = 1 and a6 + a5 + a4 + a3 + a2 + a1 = 1. Let n, n2, n4 be roots of
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x3 + x + 1, then n7 = 1. Let m,m2,m4 be roots of x3 + x2 + 1, then m7 = 1.

Let c, c2 be roots of x2 + x+ 1 (c3 = 1). Then

trk2/k0(f(c)/h(c)2) = f(c) + f(c2)

= 1 + a5 + a4 + a2 + a1

= 0.

This implies a6 + a3 = 0 and a5 + a4 + a2 + a1 = 1.

Since both (x3 + x+ 1) and (x3 + x2 + 1) are inert,

trk3/k0(f(n)/h(n)2) = 1

trk3/k0(f(m)/h(m)2) = 1

f(n) + f(n2) + f(n4) = 1

f(m) + f(m2) + f(m4) = 1

More explicitly,

(n7 + n14 + n28) + a6(n
6 + n12 + n24) + a5(n

5 + n10 + n20) + a4(n
4 + n8 + n16)

+ a3(n
3 + n6 + n12) + a2(n

2 + n4 + n8) + a1(n+ n2 + n4) + (1 + 1 + 1) = 1

(m7 +m14 +m28) + a6(m
6 +m12 +m24) + a5(m

5 +m10 +m20) + a4(m
4 +m8 +m16)

+ a3(m
3 +m6 +m12) + a2(m

2 +m4 +m8) + a1(m+m2 +m4) + (1 + 1 + 1) = 1

Then a1 + a2 + a4 = 1 and a6 + a5 + a3 = 1. We also have a6 + a3 = 0 . Thus

a3 = a6 and a5 = 1. a5 + a4 + a2 + a1 = 1 implies a4 + a2 + a1 = 0. which

contradicts the first equation.

(c) Let n1 = 2 and 2n2 + n3 = 3. Then one of the primes of F2(x) of degree one

splits and the others are inert or two of the primes of degree one are ramified.

• Let one of the primes of F2(x) of degree one split and the others be inert, that

is n2 ≥ 2. Since 2n2 + n3 = 3, we have n3 ≤ −1, which is not possible.

• Let two of the primes of degree one be ramified. Up to isomorphism, assume

P∞ and (x) are ramified. Then deg(h) ≤ 3 and deg(f) = 7. Since (x + 1) is
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inert and the extension is quadratic, n2 ≥ 1. But 2n2 + n3 = 3 implies n2 ≤ 1.

Thus n2 = 1 and n3 = 1. That means (x2 +x+ 1) is inert and one of the primes

of degree three is ramified and the associated polynomial divides h(x), but we

also have x divides h(x). Then deg(h) ≥ 4, which is a contradiction.

4. Let q = 2 and g = 4. By Theorem 2.4 we have the following cases:

(a) Let n1 = 0, 2n4 + n22 − 3n2 = 6. By Proposition 3.1, K = F2(x, y) where

y2 + h(x)y = f(x)

for some x, y ∈ K such that deg(h) = 5 and deg(f) = 10. Necessarily, n2 = 3 or

4.

For n2 = 4, 2n4 + 16− 12 = 6, n4 = 1. For this case (x2 +x+ 1) is ramified and

one of the degree 4 places, say (p(x)) is ramified and (x2 + x + 1)p(x) | h(x).

Then deg(h) ≥ 6, which is not possible.

Hence n2 = 3, (x2 + x + 1) is inert and n4 = 3. One of the degree 4 places of

K is over (x2 + x + 1) and two of them come from places of Fq(x) of degree

four. If two of the places of degree four are ramified, then deg(h) ≥ 8, which

is a contradiction. Thus one of the places of degree four splits and the others

are inert. Then h(x) is irreducible of degree 5 and f(x) = h(x)g(x) where

deg(g) = 5. Let

g(x) = x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0.

As f(0) = f(1) = 1, we have g(0) = g(1) = 1. So a0 = 1 and a4+a3+a2+a1 = 1.

We have 6 irreducible polynomials of degree 5. These are

(1) x5 + x2 + 1,

(2) x5 + x4 + x3 + x2 + 1,

(3) x5 + x4 + x2 + x+ 1,

(4) x5 + x4 + x3 + x+ 1,

(5) x5 + x3 + x2 + x+ 1,

(6) x5 + x3 + 1.
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Up to isomorphisms x → x + 1 and x → 1/x, h(x) is x5 + x2 + 1. Then

f(x) = (x5 + x2 + 1)(x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ 1). Let c and c2 be roots

of x2 + x+ 1. Then, c3 = 1 and h(c) = 1 = h(c2).

Since the associated place is inert,

trk2/k0(f(c)/h(c)2) = f(c) + f(c2)

= h(c)g(c) + h(c2)g(c2)

= g(c) + g(c2)

= (c5 + a4c
4 + a3c

3 + a2c
2 + a1c+ 1) + (c10 + a4c

8 + a3c
6 + a2c

4 + a1c
2 + 1)

= (c2 + c) + a4(c+ c2) + a3(1 + 1) + a2(c
2 + c) + a1(c+ c2) + (1 + 1)

= 1 + a4 + a2 + a1

= 1.

Thus a3 = 1.

Let a, b, d be roots of x4 +x+1, x4 +x3 +x2 +x+1 and x4 +x3 +1 respectively.

Then

h(a) = a+ 1, a15 = 1, h(a)−1 = a11 and f(a)/h(a)2 = g(a)/h(a) = a11g(a),

h(b) = b2, b5 = 1, h(b)−1 = b3 and f(b)/h(b)2 = g(b)/h(b) = b3g(b),

h(d) = d8, d15 = 1, h(d)−1 = d7 and f(d)/h(d)2 = g(d)/h(d) = d8g(d).

trk4/k0(f(a)/h(a)2) = a11g(a) + a22g(a2) + a44g(a4) + a88g(a8)

= a2 + a1.

trk4/k0(f(b)/h(b)2) = b3g(b) + b6g(b2) + b12g(b4) + b24g(b8)

= a5 + a4 + 1 + a1 + 1

= 1 + a4 + a1.

trk4/k0(f(d)/h(d)2) = d7g(d) + d14g(d2) + d28g(d4) + d56g(d8)

= 1 + a2 + a1.

Since one of the primes of degree four splits and the others are inert, we have

the following cases:

28



First case: a1 + a2 = 0. Then 1 + a2 + a1 = 1 = 1 + a4 + a1. So a4 = a1 = a2.

However, 1 + a4 + a2 + a1 = 1, hence a4 = a1 = a2 = 0 and there exist x, y ∈ K

such that K = F2(x, y) where

4.(i)

y2 + (x5 + x2 + 1)y = (x5 + x2 + 1)(x5 + x3 + 1). (3.14)

Second case: a1 + a2 = 1. Then a2 + a1 = 1 + a4 + a1 and a4 = a1 = a2 + 1.

However, 1+a4+a2+a1 = 1, hence 1 = a1 = a4, a2 = 0 and there exist x, y ∈ K

such that K = F2(x, y) where

4.(ii)

y2 + (x5 + x2 + 1)y = (x5 + x2 + 1)(x5 + x4 + x3 + x+ 1). (3.15)

We remark that the function field satisfying Equation 3.15 is not isomorphic to

the one which satisfies Equation 3.14, since their L-polynomials are different.

(b) Let n1 = 1, 2n4 + 2n3 + n22 − n2 = 8 and n2 = 0 or 1. Since the extension is

quadratic, two of the places of degree one are inert and n2 is at least 2, which

is a contradiction.

5. Let q = 2 and g = 5. By Theorem 2.4, we have n1 = 0, n5− 2n3 +n2n3 = 3 and

n5 > 0. By Proposition 3.1, K = F2(x, y) where

y2 + h(x)y = f(x)

for some x, y ∈ K such that deg(h) = 6 and deg(f) = 12. Since all places of

Fq(x) of degree one are inert and the extension is quadratic, we have n2 = 3, 4

or 5.

• For n3 = 0, n5 = 3, that is at least one of the places of degree five is ramified,

say (p(x)). Then h(x) = p(x)g(x) and deg(g) = 1, which implies that there

exists a ramified prime of degree one and n1 ≥ 1. This is not possible.

• For n3 = 1, 5 = n5 +n2. Then there exist a ramified place of degree three, say

(q(x)). Let n2 = 4, then n5 = 1 and we have a ramified place (p(x)) of degree

five. Then q(x)p(x) | h(x) and deg(h) ≥ 8, which is not possible. Since n5 > 0,

we have n2 6= 5. Thus n2 = 3.
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For n2 = 3, we have n5 = 2. Then (x2+x+1) is inert, one of the places of degree

three is ramified, say (q(x)) and the other one is inert. One of the places of degree

five splits and the others are inert. Then h(x) = q(x)2 and f(x) = q(x)g(x)

where deg(g) = 9. Up to isomorphism, assume q(x) = x3 + x+ 1. Let

f(x) = (x3+x+1)(x9+a8x
8+a7x

7+a6x
6+a5x

5+a4x
4+a3x

3+a2x
2+a1x+a0)

Since f(1) = f(0) = 1, we have a0 = 1 and

a8 + a7 + a6 + a5 + a4 + a3 + a2 + a1 = 1.

Let c be a root of x2 + x+ 1. Then h(c)2(= (c3 + c+ 1)2)2 = c and h(c)−2 = c2.

Since (x2 + x+ 1) is inert, we have

trk2/k0(f(c)/h(c)2) = trk2/k0(c2(c3 + c+ 1)g(c))

= trk2/k0(g(c))

= a8 + a7 + a5 + a4 + a2 + a1

= 1.

Then a6 + a3 = 0.

Let m be a root of x3 + x2 + 1, h(m) = (m2 +m)2. Since (x3 + x2 + 1) is inert,

trk3/k0(f(m)/h(m)2) = trk3/k0((m2 +m)g(m)/(m2 +m)4)

= trk3/k0(g(m)/(m)4)

= a8 + a6 + a5 + a4 + a1

= 1.

Let s,t,u,v,w,j be roots of x5 + x2 + 1, x5 + x3 + 1, x5 + x4 + x3 + x2 + 1, x5 +

x4 + x3 + x+ 1, x5 + x4 + x2 + x+ 1, x5 + x3 + x2 + x+ 1 respectively. Since one

of the associated places splits and the others are inert,

trk5/k0(f(t)/h(t)2) = trk5/k0((t26)g(t)/t11)

= trk5/k0(t15g(t))

= a7 + a6 + a5 + a4 + a3

= a7 + a5 + a4,
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as a6 + a3 = 0.

trk5/k0(f(v)/h(v)2) = trk3/k0((v17)g(v)/v6)

= trk3/k0(v11g(v))

= 1 + a7 + a5 + a4

Hence, trk5/k0(f(t)/h(t)2) + 1 = trk5/k0(f(v)/h(v)2), that is, either (x5 +x3 + 1)

or (x5 + x4 + x3 + x+ 1) splits and the others are inert.

trk5/k0(f(u)/h(u)2) = trk5/k0((u16)g(u)/u2)

= trk5/k0(u14g(u))

= a5 + a3 + a2 + 1

= 1.

trk5/k0(f(j)/h(j)2) = trk3/k0((j10)g(j)/j9)

= trk3/k0(jg(j))

= a6 + a5 + a2

= 1.

As a3 = a6, we have a2 + a3 + a5 + 1 = a2 + a5 + a3, which is not possible.

• For n3 = 2, we have 7 = n5 + 2n2. For n2 ≥ 4, we get n5 ≤ −1, which is not

possible. Then n2 = 3 and n5 = 1. There exists a ramified place of degree 5,

say (p(x)) and h(x) = p(x)g(x) where deg(g) = 1 and we have a ramified place

of degree 1. That is n1 ≥ 1.

• For n3 = 3, we get 9 = n5 + 3n2. If n2 ≥ 3, then n5 ≤ 0, which is impossible.

On the other hand, the extension is quadratic and n1 = 0. That implies n2 ≥ 3.

Thus we have no solution.

• For n3 ≥ 4, we have 3 = n5 +n3(n2− 2) ≥ n5 + 4(n2− 2) ≥ n5 + 4, as n2 ≥ 3.

That means n5 ≤ −1.

We deduce that there exists no quadratic function field with class number 3 for

q = 2 and g = 5.
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6. Let q = 2 and g = 6. By Theorem 2.4, we have n1 = 0, n2 = 0 and n6 − 2n4 +

n2n4 +
n2
3+n3

2 = 3. Since all places of k(x) of degree one are inert, n2 must be

at least 3. But n2 = 0 and hence we have no quadratic extension with class

number 3 for this case.

�
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CHAPTER 4

NON-QUADRATIC FUNCTION FIELDS WITH

CLASS NUMBER THREE

4.1 Results for the non-hyperelliptic case

In this case, we assume K is a non-hyperelliptic function field of genus g with class

number 3. Then g ≥ 3 and n2 ≤ 3. By Theorem 2.4, we have the following cases:

(A) g = 3, q = 2 and

(i) n1 = 0, n3 = 3, n2 ≤ 11 or

(ii) n1 = 1, n2 + n3 = 4 or

(iii) n1 = 2, n3 + 2n2 = 3.

(B) g = 4, q = 2 and

(i) n1 = 0, 2n4 + n22 − 3n2 = 6 or

(ii) n1 = 1, 2n4 + 2n3 + n22 − n2 = 8.

(C) g = 5, q = 2 and

n1 = 0, n5 − 2n3 + n2n3 = 3, n5 ≥ 1.

(D) g = 6, q = 2 and

n1 = 0, n6 − 2n4 +
n3+n2

3
2 = 3, n2 = 0, n5 ≤ 6.
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Theorem 4.1 Let K/Fq be a non-hyperelliptic function field of genus g with class

number 3. If g 6= 5, then there exist x, y ∈ K such that K = Fq(x, y) satisfying one of

the following equations:

(A) (for q = 2 and g = 3)

(1) y3 + y + x4 + x+ 1 = 0 with L(t) = 8t6 − 8t5 + 4t3 − 2t+ 1.

(2) y4 + y3 + (x3 + 1)y+ x4 + x+ 1 = 0 with L(t) = 8t6 − 8t5 + 2t4 + t3 + t2 − 2t+ 1.

(3) y4 + y3 +xy2 + (x3 +x+ 1)y+ (x4 +x+ 1) = 0 with L(t) = 8t6− 8t5 + 4t4− 2t3 +

2t2 − 2t+ 1.

(4) y3 + x2y + x4 + x3 + x = 0 with L(t) = 8t6 − 4t5 − 2t4 + 2t3 − t2 − t+ 1.

(B) (for q = 2 and g = 4)

(I-1) x3y3 + x3y2 + x3 + x2y3 + x2y2 + x+ y3 + y2 + 1 = 0, with L(t) = 16t8 − 24t7 +

12t6 + 6t5 − 11t4 + 3t3 + 3t2 − 3t+ 1.

(I-2) x3y3 + x3y2 + x3 + x2y3 + xy2 + x+ y3 + y2 + 1 = 0, with L(t) = 16t8 − 24t7 +

12t6 + 6t5 − 11t4 + 3t3 + 3t2 − 3t+ 1.

(I-3) x3y3 + x3y2 + x3 + x2y2 + xy3 + x+ y3 + y2 + 1 = 0, with L(t) = 16t8 − 24t7 +

8t6 + 12t5 − 15t4 + 6t3 + 2t2 − 3t+ 1.

(I-4) x3y3 + x3y2 + x3 + x2y3 + x2y2 + x2y + xy + x + y3 + y2 + 1 = 0, with L(t) =

16t8 − 24t7 + 8t6 + 12t5 − 15t4 + 6t3 + 2t2 − 3t+ 1.

(I-5) x3y3 + x3y2 + x3 + x2y3 + x2y + xy2 + xy + x + y3 + y2 + 1 = 0, with L(t) =

16t8 − 24t7 + 8t6 + 12t5 − 15t4 + 6t3 + 2t2 − 3t+ 1.

(I-6) x3y3 + x3y2 + x3 + x2y2 + x2y + xy3 + xy2 + x + y3 + y2 + 1 = 0, with L(t) =

16t8 − 24t7 + 12t6 + 6t5 − 11t4 + 3t3 + 3t2 − 3t+ 1.

(I-7) x3y3 + x3y2 + x3 + x2y3 + x2y2 + x2 + xy2 + xy + y3 + y2 + 1 = 0, with L(t) =

16t8 − 24t7 + 12t6 + 6t5 − 11t4 + 3t3 + 3t2 − 3t+ 1.

(I-8) x3y3 + x3y2 + x3 + x2y2 + x2y + x2 + xy3 + xy + y3 + y2 + 1 = 0, with L(t) =

16t8 − 24t7 + 8t6 + 12t5 − 15t4 + 6t3 + 2t2 − 3t+ 1.
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(II-1) y3 + (x4 + x2 + 1)y + (x6 + x4 + x3 + x2 + 1) = 0, with L(t) = 16t8 − 24t7 +

12t6 + 4t5 − 8t4 + 2t3 + 3t2 − 3t+ 1.

(II-2) y3 + x4y + x6 + x4 + x = 0, with L(t) = 16t8 − 16t7 + 4t5 − 2t4 + 2t3 − 2t+ 1.

(II-3) y3 + (x6 + x)y2 + x4y+ x3 + 1 = 0, with L(t) = 16t8− 24t7 + 12t6 + 4t5− 8t4 +

2t3 + 3t2 − 3t+ 1.

(II-4) y3 + xy2 + y2 + x4y + x2y + x6 + x3 + x2 + 1 = 0, with L(t) = 16t8 − 16t7 +

4t5 − 2t4 + 2t3 − 2t+ 1.

(III-1) y6 + xy5 + (x3 + x+ 1)y3 + x2y2 + (x5 + x3)y + x6 + x2 + 1 = 0, with L(t) =

16t8 − 24t7 + 12t6 − 2t4 + 3t2 − 3t+ 1.

(III-2) y6 + xy5 + (x3 + x+ 1)y3 + x2y2 + (x5 + x3 + x2 + x)y + x6 + x+ 1 = 0, with

L(t) = 16t8 − 24t7 + 12t6 − 2t4 + 3t2 − 3t+ 1.

(III-3) y6+xy5+(x3+1)y3+(x2+x)y2+(x5+x3+x2+x)y+x6+x4+x3+x+1 = 0,

with L(t) = 16t8 − 24t7 + 12t6 − 2t4 + 3t2 − 3t+ 1.

(III-4) y6 + xy5 + x3y3 + (x2 + x+ 1)y2 + (x5 + x3)y+ x6 + x4 + x3 + x+ 1 = 0, with

L(t) = 16t8 − 24t7 + 12t6 − 2t4 + 3t2 − 3t+ 1.

(III-5) y6+xy5+xy4+(x3+1)y3+(x3+x+1)y2+(x5+x2+x+1)y+x6+x5+x3+x2+1 =

0, with L(t) = 16t8 − 24t7 + 12t6 − 2t4 + 3t2 − 3t+ 1.

(III-6) y6+xy5+xy4+(x3+x)y3+(x3+x2+x+1)y2+(x5+x3+x)y+x6+x5+x2+x+1 =

0, with L(t) = 16t8 − 24t7 + 12t6 − 2t4 + 3t2 − 3t+ 1.

(III-7) y6 +xy5 +xy4 + (x3 +x)y3 + (x3 +x2 +x)y2 + (x5 +x3 +x2 + 1)y+x6 +x5 +

x3 + x2 + 1 = 0, with L(t) = 16t8 − 24t7 + 12t6 − 2t4 + 3t2 − 3t+ 1.

(III-8) y6+xy5+xy4+(x3+x+1)y3+(x3+x2+1)y2+(x5+x3+x2+x+1)y+x6+x5+1 =

0, with L(t) = 16t8 − 24t7 + 12t6 − 2t4 + 3t2 − 3t+ 1.

(III-9) y6 + xy5 + (x3 + 1)y3 + xy2 + x5y + x6 + x3 + x2 + x + 1 = 0, with L(t) =

16t8 − 24t7 + 16t6 − 10t5 + 8t4 − 5t3 + 4t2 − 3t+ 1.

(III-10) y6 + xy5 + (x3 + 1)y3 + xy2 + (x5 + x2 + x)y + x6 + x + 1 = 0, with L(t) =
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16t8 − 24t7 + 16t6 − 8t5 + 5t4 − 4t3 + 4t2 − 3t+ 1.

(III-11) y6 +xy5 +(x3 +x+1)y3 +x2y2 +(x5 +x3 +x2 +x)y+x6 +x3 +x2 +x+1 = 0,

with L(t) = 16t8 − 24t7 + 16t6 − 8t5 + 5t4 − 4t3 + 4t2 − 3t+ 1.

(III-12) y6 + xy5 + (x3 + x)y3 + (x2 + x)y2 + (x5 + x3 + x+ 1)y+ x6 + x+ 1 = 0, with

L(t) = 16t8 − 24t7 + 16t6 − 10t5 + 8t4 − 5t3 + 4t2 − 3t+ 1.

(III-13) y6 +xy5 +(x3 +x)y3 +x2y2 +(x5 +x3 +x2 +x+1)y+x6 +x3 +x2 +x+1 = 0,

with L(t) = 16t8 − 24t7 + 16t6 − 6t5 + 2t4 − 3t3 + 4t2 − 3t+ 1.

(III-14) y6 + xy5 + (x3 + 1)y3 + (x2 + x)y2 + (x5 + x3)y + x6 + x4 + x3 + x+ 1 = 0,

with L(t) = 16t8 − 24t7 + 16t6 − 8t5 + 5t4 − 4t3 + 4t2 − 3t+ 1.

(III-15) y6 + xy5 + (x3 + 1)y3 + x2y2 + (x5 + x3 + x)y+ x6 + x4 + x3 + x+ 1 = 0, with

L(t) = 16t8 − 24t7 + 16t6 − 6t5 + 2t4 − 3t3 + 4t2 − 3t+ 1.

(III-16) y6 + xy5 + x3y3 + x2y2 + (x5 + x3 + x2 + 1)y + x6 + x4 + 1 = 0, with L(t) =

16t8 − 24t7 + 16t6 − 6t5 + 2t4 − 3t3 + 4t2 − 3t+ 1.

(III-17) y6 + xy5 + x3y3 + x2y2 + (x5 + x3 + x + 1)y + x6 + x4 + 1 = 0, with L(t) =

16t8 − 24t7 + 16t6 − 10t5 + 8t4 − 5t3 + 4t2 − 3t+ 1.

(III-18) y6 + xy5 + x3y3 + x2y2 + (x5 + x3 + x+ 1)y+ x6 + x4 + x3 + x2 + 1 = 0, with

L(t) = 16t8 − 24t7 + 16t6 − 8t5 + 5t4 − 4t3 + 4t2 − 3t+ 1.

(III-19) y6 +xy5 + (x3 + 1)y3 + (x2 + 1)y2 + (x5 +x3 +x+ 1)y+x6 +x4 + 1 = 0, with

L(t) = 16t8 − 24t7 + 16t6 − 6t5 + 2t4 − 3t3 + 4t2 − 3t+ 1.

(III-20) y6+xy5+(x3+1)y3+(x2+x+1)y2+(x5+x3+x2+x+1)y+x6+x4+x3+x2+1 =

0, with L(t) = 16t8 − 24t7 + 16t6 − 6t5 + 2t4 − 3t3 + 4t2 − 3t+ 1.

(III-21) y6 + xy5 + y4 + x3y3 + (x2 + x)y2 + (x5 + x)y+ x6 + x4 + x3 + x+ 1 = 0, with

L(t) = 16t8 − 24t7 + 16t6 − 10t5 + 8t4 − 5t3 + 4t2 − 3t+ 1.

(III-22) y6 + xy5 + y4 + (x3 + 1)y3 + (x2 + 1)y2 + x5y+ x6 + x4 + x3 + x+ 1 = 0, with

L(t) = 16t8 − 24t7 + 16t6 − 8t5 + 5t4 − 4t3 + 4t2 − 3t+ 1.

(III-23) y6+xy5+xy4+(x3+x+1)y3+(x3+x2)y2+(x5+x3)y+x6+x5+x2+x+1 = 0,
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with L(t) = 16t8 − 24t7 + 16t6 − 8t5 + 5t4 − 4t3 + 4t2 − 3t+ 1.

(III-24) y6 +xy5 +xy4 + (x3 +x+ 1)y3 + (x3 +x2 +x)y2 + (x5 +x3 +x)y+x6 +x5 +

x2 + x+ 1 = 0, with L(t) = 16t8 − 24t7 + 16t6 − 6t5 + 2t4 − 3t3 + 4t2 − 3t+ 1.

(III-25) y6+xy5+xy4+(x3+x)y3+(x3+x2+x)y2+(x5+x3+x+1)y+x6+x5+1 = 0,

with L(t) = 16t8 − 24t7 + 16t6 − 6t5 + 2t4 − 3t3 + 4t2 − 3t+ 1.

(III-26) y6 +xy5 +xy4 + (x3 +x)y3 + (x3 +x2 +x)y2 + (x5 +x3 +x+ 1)y+x6 +x5 +

x3 + x2 + 1 = 0, with L(t) = 16t8 − 24t7 + 16t6 − 10t5 + 8t4 − 5t3 + 4t2 − 3t+ 1.

(III-27) y6 + xy5 + xy4 + (x3 + x+ 1)y3 + (x3 + x2 + x+ 1)y2 + (x5 + x3 + x+ 1)y +

x6 +x5 +x3 +x2 + 1 = 0, with L(t) = 16t8−24t7 + 16t6−8t5 + 5t4−4t3 + 4t2−3t+ 1.

(III-28) y6 + xy5 + xy4 + (x3 + x)y3 + (x3 + x2 + x)y2 + (x5 + x3 + x2 + 1)y + x6 +

x5 + x2 + x+ 1 = 0, with L(t) = 16t8 − 24t7 + 16t6 − 10t5 + 8t4 − 5t3 + 4t2 − 3t+ 1.

(III-29) y6 + xy5 + xy4 + (x3 + x+ 1)y3 + (x3 + x2 + 1)y2 + (x5 + x3 + x2 + x+ 1)y+

x6 +x5 +x2 +x+ 1 = 0, with L(t) = 16t8− 24t7 + 16t6− 6t5 + 2t4− 3t3 + 4t2− 3t+ 1.

(III-30) y6 + xy5 + (x + 1)y4 + (x3 + x + 1)y3 + (x3 + x2 + 1)y2 + (x5 + x)y + x6 +

x5 + x2 + x+ 1 = 0, with L(t) = 16t8 − 24t7 + 16t6 − 6t5 + 2t4 − 3t3 + 4t2 − 3t+ 1.

(III-31) y6 + xy5 + (x + 1)y4 + (x3 + 1)y3 + (x3 + x + 1)y2 + (x5 + x3 + x)y + x6 +

x5 + x2 + x+ 1 = 0, with L(t) = 16t8 − 24t7 + 16t6 − 10t5 + 8t4 − 5t3 + 4t2 − 3t+ 1.

(III-32) y6 + xy5 + (x3 + 1)y3 + xy2 + (x5 + x2 + x)y + x6 + x3 + 1 = 0, with L(t) =

16t8 − 24t7 + 20t6 − 16t5 + 12t4 − 8t3 + 5t2 − 3t+ 1.

(III-33) y6 + xy5 + x3y3 + y2 + (x5 + x)y + x6 + x+ 1 = 0, with L(t) = 16t8 − 24t7 +

20t6 − 16t5 + 12t4 − 8t3 + 5t2 − 3t+ 1.

(III-34) y6 + xy5 + (x3 + x + 1)y3 + (x2 + x)y2 + (x5 + x3 + x)y + x6 + x3 + 1 = 0,

with L(t) = 16t8 − 24t7 + 20t6 − 16t5 + 12t4 − 8t3 + 5t2 − 3t+ 1.

(III-35) y6 + xy5 + (x3 + x)y3 + x2y2 + (x5 + x3 + 1)y + x6 + x+ 1 = 0, with L(t) =

16t8 − 24t7 + 20t6 − 16t5 + 12t4 − 8t3 + 5t2 − 3t+ 1.

(III-36) y6+xy5+y4+(x3+1)y3+(x2+x+1)y2+(x5+x)y+x6+x4+x3+x2+1 = 0,

37



with L(t) = 16t8 − 24t7 + 20t6 − 16t5 + 12t4 − 8t3 + 5t2 − 3t+ 1.

(III-37) y6 + xy5 + xy4 + x3y3 + (x3 + 1)y2 + (x5 + x)y + x6 + x5 + x3 + x + 1 = 0,

with L(t) = 16t8 − 24t7 + 20t6 − 16t5 + 12t4 − 8t3 + 5t2 − 3t+ 1.

(III-38) y6+xy5+xy4+(x3+1)y3+(x3+1)y2+(x5+x2+1)y+x6+x5+x3+x2+1 = 0,

with L(t) = 16t8 − 24t7 + 20t6 − 16t5 + 12t4 − 8t3 + 5t2 − 3t+ 1.

(III-39) y6 + xy5 + xy4 + (x3 + 1)y3 + (x3 + x2 + 1)y2 + (x5 + x3 + x2 + 1)y + x6 +

x5 + x4 + x2 + 1 = 0, with L(t) = 16t8− 24t7 + 20t6− 16t5 + 12t4− 8t3 + 5t2− 3t+ 1.

(III-40) y6 + xy5 + (x + 1)y4 + (x3 + x + 1)y3 + (x3 + x2)y2 + (x5 + x + 1)y + x6 +

x5 + x3 + x2 + 1 = 0, with L(t) = 16t8− 24t7 + 20t6− 16t5 + 12t4− 8t3 + 5t2− 3t+ 1.

(III-41) y6 + xy5 + (x3 + x+ 1)y3 + x2y2 + (x5 + x3 + x2)y+ x6 + x2 + x+ 1 = 0, with

L(t) = 16t8 − 16t7 + 4t6 − 4t5 + 5t4 − 2t3 + t2 − 2t+ 1.

(III-42) y6 + xy5 + (x3 + x + 1)y3 + (x2 + x + 1)y2 + (x5 + x3)y + x6 + x3 + x = 0,

with L(t) = 16t8 − 16t7 + 4t6 − 4t5 + 5t4 − 2t3 + t2 − 2t+ 1.

(III-43) y6+xy5+(x3+1)y3+(x2+x+1)y2+(x5+x3+x2)y+x6+x4+x3+x+1 = 0,

with L(t) = 16t8 − 16t7 + 4t6 − 4t5 + 5t4 − 2t3 + t2 − 2t+ 1.

(III-44) y6 + xy5 + y4 + (x3 + 1)y3 + (x2 + x)y2 + x5y+ x6 + x4 + x3 + x+ 1 = 0, with

L(t) = 16t8 − 16t7 + 4t6 − 4t5 + 5t4 − 2t3 + t2 − 2t+ 1.

(III-45) y6 + xy5 + xy4 + x3y3 + x3y2 + (x5 + x2 + x + 1)y + x6 + x5 + 1 = 0, with

L(t) = 16t8 − 16t7 + 4t6 − 4t5 + 5t4 − 2t3 + t2 − 2t+ 1.

(III-46) xy4 + xy3 + (x3 + x2 + 1)y2 + (x3 + x+ 1)y + x5 + x3 + x2 + x+ 1 = 0, with

L(t) = 16t8 − 16t7 + 4t6 − 4t5 + 5t4 − 2t3 + t2 − 2t+ 1.

4.2 Projective spaces and complete linear systems

For a field k, the projective n-space, Pn(k), is defined by

Pn(k) := (kn+1 \ {0kn+1})/ ∼
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with the equivalence relation (x0 : x1 : · · · : xn) ∼ (λx0 : λx1 : · · · : λxn) for xi ∈ k

where i = 0, ..., n such that at least one of xi 6= 0 and λ ∈ k \ {0k}.

Let Pn(k) be the projective n-space over a field k. For each set S of homogeneous

polynomials f ∈ k[x0, ..., xn], define the zero-locus of S to be the set of points in

P (k, n) on which the functions in S vanish:

Z(S) := {x ∈ Pn(k) : f(x) = 0 for all f ∈ S}

A subset V of Pn(k) is called a projective algebraic set if V = Z(S) for some S. A

projective set is said to be irreducible if it cannot be written as a union of two projective

algebraic sets. An irreducible projective algebraic set is called a projective variety.

Given a subset V of Pn(k), let I(V ) be the ideal of k[x0, ..., xn], generated by all

homogeneous polynomials vanishing on V. For any projective algebraic set V, the

coordinate ring of V is the quotient of the polynomial ring by this ideal. That is,

k[V ] = k[x0, ..., xn]/I(V ).

It is an integral domain and its quotient field is the function field of V denoted by

k(V ). The dimension of V is the transcendence degree of k(V ) over k.

A hypersurface in a projective space of dimension n is an algebraic set defined by a

single equation F = 0, for a homogeneous polynomial F in the homogeneous coordi-

nates.

Definition 4.2.1 ([12], Ex. 2.16 of § II) A variety Y of dimension r in Pn(k) is

a complete intersection if it can be written as the intersection of n− r hypersurfaces.

�

Definition 4.2.2 ([24], V.3-3.67) For a divisor D, we denote by |D| the set of all

positive divisors which are equivalent to D. This is called a complete linear system. �

The projectivization P(V ) for a vector space V over Fq is the set of 1-dimensional

subspaces of V, and if V has dimension n+ 1, then P(V ) can be put into a one-to-one

correspondence with the projective n-space Pn(Fq).
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Taking the vector space P(L(D)), we define

S : P(L(D))→ |D|

by sending the span of a function f ∈ L(D) to the divisor div(f)+D. Since div(af) =

div(f) for a ∈ F∗q , S is well-defined.

A linear system is a subset of a complete linear system |D|, which corresponds via the

map S to a linear subspace of P(L(D)).

Theorem 4.2 ([32], V.1.4) For a divisor D, card(|D|) = (qdim(D) − 1)/(q − 1).

Definition 4.2.3 ([24], V.4.1) Let X be an algebraic curve. A rational map φ :

X → Pn(k) is a map of the form

φ = [g0 : g1 : · · · : gn]

where g0, g1, ..., gn are in the function field K associated to X and g0, g1, ...gn have the

property that for every rational place P ∈ X at which g0, g1, ...gn are well-defined and

not all zero,

φ(P ) = [g0(P ) : · · · : gn(P ))].

�

The rational map φ is not necessarily a function on all of X. However, it is sometimes

possible to evaluate φ(P ) at a rational place P of V where some gi is not well-defined.

Definition 4.2.4 A rational map φ = [f0 : · · · : fn] : X → Pn(k) is regular (or

defined) at a rational place P of the associated function field K if there is a function

g ∈ K such that

(i) each gfi is regular at P and

(ii) for some i, (gfi)(P ) 6= 0.

If such a g exists, we set φ(P ) = [(gf0)(P ).....(gfn)(P )].

It may be necessary to take different g’s for different points. A rational map which is

regular at every point is called a morphism.
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�

Let φ : X → Pn(k) be a rational map to projective space. To every such rational map

we associate a linear system:

Write φ = [f0 : · · · : fn] where each fi are in the function field K associated to X. Let

D = −mini{div(fi)} be the inverse of the minimum divisors of fi. Therefore, for a

rational place P ∈ X, we have that −D(P ) is the minimum among the orders of the

fi at P, so −D(P ) ≤ vP (fi) for each i.

Therefore, −D ≤ div(fi) for all i, we have fi ∈ L(D) for each i. Let Vf be the k-linear

space of the functions {fi}, that is, the set of all linear combinations
∑
i
aifi with

ai ∈ k. We have Vf ⊂ L(D) is a linear subspace of L(D).

Lemma 4.2.5 ([24], V.4.4) The linear system |φ| := {div(g) + D|g ∈ Vf} is well-

defined, independent of the choice of the function {fi} used to define φ.

Lemma 4.2.6 ([24], V.4.6) Let φ : X → Pn(k) be a regular map, then for every

rational place P ∈ X, there exists a divisor E ∈ |φ| which does not have P in its

support. In other words, there is no point of X which is contained in every divisor of

the linear system |φ|.

Definition 4.2.7 ([12], § II.7) A point P ∈ X is a base point of a complete linear

system |D| if P ∈ supp(E) for all E ∈ |D|. A linear system is base point free if it has

no base point. �

Theorem 4.3 A complete linear system |D| is base point free if and only if dim(D−

P ) = dim(D)− 1 for any rational place P ∈ K.

Proof. (⇐) Assume |D| is not base point free, that is, there exists a place P of K of

degree one such that P ∈ supp(E) for all E ∈ |D|. Let x ∈ L(D), then (x) = D1 −D

for a positive divisor D1 ∈ |D|. So P ∈ supp(D1), that is, D1 = P +D2 for a positive

divisor D2. Thus (x) = D2+P−D and then x ∈ L(D−P ). We have L(D) = L(D−P )

which contradicts dim(D − P ) = dim(D)− 1. Hence |D| is base point free.
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(⇒) Let |D| be base point free, then there exists E ∈ |D| such that P /∈ supp(E) and

(x) = E −D for some x ∈ K. So (x) � P −D, that is, dim(D − P ) < dim(D). On

the other hand, by Riemann-Roch Theorem

dim(D−P ) = deg(D)−g+dim(W−D+P ) and dim(D) = deg(D)−g+1+dim(W−D),

for a canonical divisor W. Then

dim(D)− dim(D − P ) = 1 + dim(W −D)− dim(W −D + P ).

Since dim(W −D) − dim(W −D + P ) ≤ 0, dim(D) − 1 ≤ dim(D − P ). Hence, we

have the equality. �

Corollary 4.4 Let W be a canonical divisor of a nonhyperelliptic function field K/Fq.

Then |W | is base-point-free.

Proof. Let P be a rational place of a nonhyperelliptic function field K. Since P is

positive, dim(P ) ≥ 1. Since K is nonhyperelliptic, the genus g of K is at least three.

By Clifford’s Theorem, dim(P ) ≤ 1 +deg(P )/2(= 3/2) as 0 ≤ deg(P ) ≤ 2g−2. Then

dim(P ) = 1 and by the Riemann-Roch Theorem,

dim(W − P ) = 2g − 3 + 1− g + dim(P )

= g − 1

= dim(W )− 1

By Theorem 4.3, |W | is base point free. �

Proposition 4.5 ([24], V.4.15) Let Q ∈ |D| be a base-point-free linear system of

projective dimension n on an algebraic curve X. Then, there is a regular map φ :

X → Pn(k) such that Q = |φ|. Moreover, φ is unique up to the choice of coordinates

in Pn(k).

Therefore, we have a one to one correspondence

{ base-point-free regular maps φ : X → Pn(F2)

linear system of } ←→
{

with non-degenerate image,

dimension n on X up to linear coordinate changes

}
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Lemma 4.2.8 ([24], V.4.17) Let X be an algebraic curve and let D be a divisor

on X with |D| base-point-free. Fix a rational place P ∈ X. Then there is a basis

f0, f1, ..., fn for L(D) such that vP (f0) = −D(P ) and vP (fi) > −D(P ) for all i ≥ 1.

Proposition 4.6 ([24], V.4.18) Let X be an algebraic curve and let D be a divisor

on X with |D| base-point-free. Fix distinct rational places P,Q in X. Then

φD(P ) = φD(Q)⇔ L(D − P −Q) = L(D − P ) = L(D −Q).

Hence, φD is one to one if and only if for every pair of distinct rational places P and

Q on X, we have dim(D − P −Q) = dim(D)− 2.

When the map φD is an isomorphism onto its image, we say that it is an embedding.

A divisor D such that |D| has no base point and φD is an embedding is called

a very ample divisor.

Thus by Proposition 4.6, a divisor D, such that |D| has no base point, is very ample

if and only if dim(D) = 2 + dim(D −A) where A is a positive divisor of degree two.

Every divisor of degree at least 2g+1 is very ample. That is, if D is a divisor of degree

2g + 1, A is a positive divisor of degree two and B is a positive divisor of degree one,

then by Riemann-Roch Theorem,

dim(D) = g + 2 = dim(D −A) + 2 and dim(D) = g + 2 = dim(D −B) + 1.

Proposition 4.7 ([12], IV.5.2) The canonical divisor is very ample if and only if

the function field is not hyperelliptic.

Proof. Let W be a canonical divisor of a function field K/Fq. Then |W | is base point

free.

(⇒) Let K be hyperelliptic. Then there exists x ∈ K \ Fq such that [K : Fq(x)] = 2

where (x)∞ = A is a positive divisor of K of degree two. Thus dim(A) ≥ 2 and by

Clifford’s theorem, dim(D) ≤ 2. Thus it is exactly 2 and by Riemann-Roch Theorem,

dim(A)− dim(W −A) = 2 + 1− g.
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So

dim(W −A) = g − 1 6= g − 2 = dim(W )− 2

and W is not very ample.

(⇐) Assume W is not very ample, then there exists a positive divisor A of degree two

such that dim(W )−dim(W−A) 6= 2, that is dim(W−A) 6= g−2. But 1 ≤ dim(A) ≤ 2

and dim(A)−dim(W −A) = 3−g. Thus dim(W −A) = g−1 and dim(A) = 2. That

is, there exists x ∈ L(A) \ Fq. Then [K : F2(x)] = 2 and K is hyperelliptic. �

Let X be an algebraic curve of genus 3 or more. Let K be a canonical divisor on X.

Then the complete linear system |K| is base-point-free and the associated map

φK : X → Pg−1(Fq)

is defined.

Proposition 4.8 ([24], VII.2.1) Let X be an algebraic curve (a projective variety

of dimension one ) of genus g ≥ 3. Then the canonical map is an embedding if and

only if X is not hyperelliptic. If X is not hyperelliptic, the canonical map embeds X

into Pg−1(F2) as a smooth projective curve of degree 2g − 2.

Theorem 4.9 Two non-hyperelliptic function fields are isomorphic if and only if

their canonical models are isomorphic under an automorphism of the projective space

Pg−1(k).

Proof. See [17] Page 157. �

Definition 4.2.9 If K/k has a divisor D of degree m such that dim(D) = 2, |D| is

called a complete linear system of type g1m. �

The cardinality of |D| is q + 1 by Theorem 4.2, that is, there exist q + 1 equivalent

positive divisors of degree m. Let A and B be two of them. Then there exists x ∈ K

such that A−B = (x) and [K : k(x)] = m.
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4.3 Proof of Theorem 4.1

Let X be a non-hyperelliptic smooth projective curve defined and absolutely irre-

ducible over Fq whose function field is K/Fq. We denote by W any positive divisor

of the canonical class of K/Fq. The set |W | of all positive canonical divisors is a

complete linear system with no base points.

Since K/Fq is not hyperelliptic, the linear system |W | induces an embedding φ from

X to Pg−1(Fq),

φ : X → Pg−1(Fq)

and the curve C = φ(X ) is a normal smooth curve of degree 2g − 2 whose function

field is K/Fq. Then C is the canonical model of K/Fq.

4.3.1 Genus 3 and q = 2

The canonical model C of K/k is a smooth plane quartic curve in P2(F2). Two non-

quadratic function fields of genus 3 are F2-isomorphic if and only if their canonical

models are transformed one to the other under an automorphism of the projective

plane P2(F2). Since the canonical class is cut out on the curve by the rational lines of

P2(F2), we can find x, y ∈ K such that (x) = (X) − (Z) = D1 −D, y = (Y ) − (Z) =

D2 − D for canonical divisors D1, D2, D such that {1, x, y} is a basis of L(D) and

K = F2(x, y) with the affine equation F (x, y) = 0 of C.

Let W denote a canonical divisor of K. Then

deg(W ) = 4, dim(W ) = 3.

(i) Let n1 = 0 and n3 = 3.

For n1 = 0 and n2 ≤ 2,

There are seven positive integral divisors in the canonical linear system |W | by Theo-

rem 4.2 and each of them is of degree four. Since n1 = 0 and n2 ≤ 2, then there exist

at most two places P, Q of K of degree two. So 2P , 2Q and P + Q are non-prime

positive divisors of K of degree four. Since the extension is not quadratic, P � Q.
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Since hK = 3, the order of the class P −Q is three in D0
K/P (K). That is, 2P � 2Q.

Clearly 2P � P + Q � 2Q. So at most one of the positive divisors in the canonical

class is not a prime divisor, that is, at least six of the positive divisors of the canonical

class are places of K of degree four. Let P be one of these places and consider L(P ).

Let {1, x, y} be a basis of this space. Since dimL(4P ) = 14 by Riemann-Roch Theo-

rem, the subset S = {1, x, x2, x3, x4, y, y2, y3, y4, xy, xy2, xy3, x2y, x3y, x2y2} of L(4P )

of cardinality 15 is linearly dependent over F2. That is,

ey4 + (a0 + a1x)y3 + (b0 + b1x+ b2x
2)y2 + (c0 + c1x+ c2x

2 + c3x
3)y (4.1)

+(d0 + d1x+ d2x
2 + d3x

3 + d4x
4) = 0

where e, ai, bi, ci, di ∈ F2 for all i. Since [K : F2(x)] = 4 = [K : F2(y)], e = 1 = d4 and

the homogeneous polynomial associated with Equation 4.1 is

f(X,Y, Z) = Y 4 + (a0Z + a1X)Y 3 + (b0Z
2 + b1XZ + b2X

2)Y 2+ (4.2)

(c0Z
3 + c1XZ

2 + c2X
2Z + c3X

3)Y + (d0Z
4 + d1XZ

3 + d2X
2Z2 + d3X

3Z +X4) = 0.

Since the canonical class is cut out on the curve by the rational lines of P2(F2), we

choose x, y ∈ K such that (x) = (X) − (Z) and (y) = (Y ) − (Z) where (Z) = P ,

(X) = F1 and (Y ) = F2 are places in the canonical class. Since (Z) = P and

f(X,Y, 0) = Y 4 + a1XY
3 + b2X

2Y 2 + c3X
3Y +X4 = 0,

a1 + b2 + c3 = 1. Since (X) = F1 and

f(0, Y, Z) = Y 4 + a0ZY
3 + b0Z

2Y 2 + c0Z
3Y + d0Z

4 = 0,

d0 = 1 and a0 + b0 + c0 = 1.

We checked all possibilities with Magma and we got no solution with hK = 3 and

gK = 3.

For n1 = 0 and n2 = 3: Let Q1, Q2, Q3 be places of K of degree two. Since the

extension is non-quadratic, Q1 + Q2 � Q1 + Q3 � Q2 + Q3 � Q1 + Q2 and 2Q1 �

2Q2 � 2Q3 � 2Q1. Then five of the positive divisors in the canonical class are

places. Let P be one of these places and consider L(P ). Let {1, x, y} be a basis of
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this space. Since dimL(4P ) = 14, the subset S = {1, x, x2, x3, x4, y, y2, y3, y4, xy, xy2,

xy3, x2y, x3y, x2y2} of L(4P ) of cardinality 15 is linearly dependent over F2. That is,

ey4 + (a0 + a1x)y3 + (b0 + b1x+ b2x
2)y2 + (c0 + c1x+ c2x

2 + c3x
3)y (4.3)

+(d0 + d1x+ d2x
2 + d3x

3 + d4x
4) = 0.

where e, ai, bi, ci, di ∈ F2 for all i.

Similar to the above remark, e = 1 = d4. The homogeneous polynomial associated

with Equation 4.3 is

f(X,Y, Z) = Y 4 + (a0Z + a1X)Y 3 + (b0Z
2 + b1XZ + b2X

2)Y 2+ (4.4)

(c0Z
3 + c1XZ

2 + c2X
2Z + c3X

3)Y + (d0Z
4 + d1XZ

3 + d2X
2Z2 + d3X

3Z +X4) = 0

Since the canonical class is cut out on the curve by the rational lines of P2(F2), we

choose x, y ∈ K such that (x) = (X) − (Z) and (y) = (Y ) − (Z) where (Z) = P ,

(X) = F1 are places in the canonical class and (Y ) = 2Qi for 0 ≤ i ≤ 3. Since

(Z) = P and

f(X,Y, 0) = Y 4 + a1XY
3 + b2X

2Y 2 + c3X
3Y +X4 = 0,

a1 + b2 + c3 = 1. Since (X) = F1 and

f(0, Y, Z) = Y 4 + a0ZY
3 + b0Z

2Y 2 + c0Z
3Y + d0Z

4 = 0,

d0 = 1 and a0 + b0 + c0 = 1.

Since (Y ) = 2Qi and

f(X, 0, Z) = X4 + d3ZX
3 + d2Z

2X2 + d1Z
3X + Z4 = 0,

d3 = 0 = d1 and d2 = 1.

We checked all possibilities with Magma and we got no solution with hK = 3 and

gK = 3.

(ii) Let n1 = 1, n2 + n3 = 4.

For n2 = 0, n3 = 4: Let P be the unique place of F2(x) of degree one. Since | W |

is base point free and W is very ample, dim(W − P ) = 2 and dim(W − 2P ) = 1.
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Since n2 = 0 and L(W − 2P ) 6= {0}, W − 2P ∼ 2P and 4P is canonical. Then

|W − P |= {3P,D1, D2} where D1, D2 are mutually equivalent places of K of degree

3 such that W ∼ D1 + P and W ∼ D2 + P . Thus dim(3P ) = 2 and dim(4P ) = 3.

Let {1, x} and {1, x, y} be bases of L(3P ) and L(4P ), respectively. Then the set

S = {1, x, x2, x3, x4, y, xy, x2y, y2, xy2, y3} ⊆ L(12P )

of cardinality 11 is linearly dependent over F2, since dim(12P ) = 10. Then

a0y
3 + (b0 + b1x)y2 + (c0 + c1x+ c2x

2)y + (d0 + d1x+ d2x
2 + d3x

3 + d4x
4) = 0,

for some a0, b0, b1, c0, c1, c2, d0, d1, d2, d3, d4 ∈ F2, not all of which are zero. Since

[K : F2(x)] = deg((x)∞) = 3 and [K : F2(y)] = deg((y)∞) = 4, we have a0 = 1 and

d4 = 1. Using the substitution y → y + (b0 + b1x), we have

y3 + (e0 + e1x+ e2x
2)y + (f0 + f1x+ f2x

2 + f3x
3 + x4) = 0,

where e0, e1, e2, f0, f1, f2, f3 ∈ F2. Since (x) = D̄ − 3P where D̄ is a place of degree

three, x = 0 implies y3 + e0y + f0 is irreducible of degree three, that is, e0 = f0 = 1.

Similarly, (y) = D̃ − 4P where D̃ is a place of degree four. Then y = 0 implies

1 + f1x + f2x
2 + f3x

3 + x4 is irreducible of degree four. Up to isomorphism, it is

x4 + x+ 1 or x4 + x3 + 1. Hence we have a unique solution, that is,

(A-1)

y3 + y + x4 + x+ 1 = 0, (4.5)

where L(t) = 8t6 − 8t5 + 4t3 − 2t+ 1.

For n2 = 1, n3 = 3:

Let P be the unique place of K of degree one and let Q be the unique place of K of

degree two. We have dim(W − P ) = 2 and dim(W − 2P ) = 1, that is, there exists

a positive divisor D of degree 3 such that W ∼ D + P and W − 2P ∼ 2P or Q. If

2P ∼ Q, then the extension is quadratic which is a contradiction. Thus 2P −Q is a

nonzero element of D0
K/PK . Thus 4P − 2Q is not principal and 6P ∼ 3Q. We have

4P or 2P +Q is canonical.

Let 4P be canonical, then dim(3P ) = 2 and dim(4P ) = 3. Let {1, x} and {1, x, y} be

bases of L(3P ) and L(4P ), respectively. Then the set

S = {1, x, x2, x3, x4, y, xy, x2y, y2, xy2, y3}
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in L(12P ) of cardinality 11 is linearly dependent over F2, since dim(12P ) = 10. Then

a0y
3 + (b0 + b1x)y2 + (c0 + c1x+ c2x

2)y + (d0 + d1x+ d2x
2 + d3x

3 + d4x
4) = 0,

where a0, b0, b1, c0, c1, c2, d0, d1, d2, d3, d4 ∈ F2. Since [K : F2(x)] = 3 and [K : F2(y)] =

4, a0 = 1 and d4 = 1. Using the substitution y → y + (b0 + b1x), we have

y3 + (e0 + e1x+ e2x
2)y + (f0 + f1x+ f2x

2 + f3x
3 + x4) = 0,

where e0, e1, e2, f0, f1, f2, f3 ∈ F2.

(x) = D̄ − 3P where D̄ is a positive divisor of degree three. Since x ∈ K \ F2 and

2P � Q, D is a place of degree three. Then x = 0 implies y3 + e0y + f0 is irreducible

of degree three, that is, e0 = f0 = 1. Also, (y) = D̃− 4P where D̃ is a positive divisor

of degree four. Since 2P � Q, 4P � 2Q and y ∈ L(4P ) \ L(3P ), D̃ is a place and up

to isomorphism, 1 + f1x+ f2x
2 + f3x

3 + x4 is x4 + x+ 1 or x4 + x3 + 1. In any case,

we have no solution.

Let 2P + Q be canonical, then dim(P + Q) = 2 and dim(2P + Q) = 3. Then,

|W−P |= {P+Q,D1, D2} where D1, D2 are places of degree three and |W |= {2P+

Q,P +D1, P +D2, F1, F2, F3, F4} where Fi are places of degree four for i = 1, 2, 3, 4.

Choose x,y in K such that (x) = 2P +D − F1 and (y) = F2 − F1. Then {1, x, y} is a

basis of L(F1) and K = F2(x, y). Then the set

S = {1, x, x2, x3, x4, y, y2, y3, y4, xy, xy2, xy3, x2y, x2y2, x3y}

of cardinality 15 is a subset of L(4F1) whose dimension is 14. Then it is linearly

dependent over F2, that is

a0y
4 + (a1 + a2x)y3 + (a3 + a4x+ a5x

2)y2 + (a6 + a7x+ a8x
2 + a9x

3)y

+(a10 + a11x+ a12x
2 + a13x

3 + a14x
4) = 0,

where ai ∈ F2 for i = 0, 1, ..., 14. Since [K : F2(x)] = 4, a0 = 1 and y = 0 implies

a10 + a11x + a12x
2 + a13x

3 + a14x
4 is x4 + x + 1 or x4 + x3 + 1. x = 0 implies

y4 + a1y
3 + a3y

2 + a6y+ 1 is divisible by y+ 1, that is a6 = a1 + a3. Up to coordinate

change of projective space, we have 6 isomorphic solutions for this case. Then K =

F2(x, y) such that
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(A-2)

y4 + y3 + (x3 + 1)y + x4 + x+ 1 = 0, (4.6)

where L(t) = 8t6 − 8t5 + 2t4 + t3 + t2 − 2t+ 1.

For n2 = 2, n3 = 2:

Let P be the unique place of F2(x) of degree one and let Q1, Q2 be the places of F2(x)

of degree two. Then dim(W − P ) = 2 and dim(W − 2P ) = 1, that is, there exist two

positive divisors D1, D2 of degree 3 mutually equivalent such that W ∼ Di + P for

i = 1, 2 and W − 2P ∼ 2P or Q1 or Q2. If 2P ∼ Qi for i = 1, 2 or Q1 ∼ Q2, then

the extension is quadratic, which is a contradiction. Then one of 4P , 2P + Q1 and

2P +Q2 is canonical.

Let 4P be canonical, then dim(3P ) = 2 and dim(4P ) = 3. Let {1, x} and {1, x, y} be

basis of L(3P ) and L(4P ), respectively. Then the set

S = {1, x, x2, x3, x4, y, xy, x2y, y2, xy2, y3} ⊆ L(12P )

of cardinality 11 is linearly dependent over F2, since dim(12P ) = 10. Then

a0y
3 + (b0 + b1x)y2 + (c0 + c1x+ c2x

2)y + (d0 + d1x+ d2x
2 + d3x

3 + d4x
4) = 0,

for some a0, b0, b1, c0, c1, c2, d0, d1, d2, d3, d4 ∈ F2. Since [K : F2(x)] = 3 and [K :

F2(y)] = 4, we have a0 = 1 and d4 = 1. Using the substitution y → y+ (a0 + a1x), we

have

y3 + (e0 + e1x+ e2x
2)y + (f0 + f1x+ f2x

2 + f3x
3 + x4) = 0,

where e0, e1, e2, f0, f1, f2, f3 ∈ F2. We have no solution for this case.

Let 2P +Qi for i = 1 or 2 be canonical. We may assume 2P +Q1 is canonical, then

dim(P +Q1) = 2 and dim(2P +Q1) = 3. Then, |W − P |= {P +Q1, D1, D2} where

D1, D2 are places of degree three and |W |= {2P+Q1, P+D1, P+D2, 2Q2, F1, F2, F3}

where Fi are places of degree four for i = 1, 2, 3. Choose x,y in K such that (x) = 2P+

Q1−F1 and (y) = F2−F1. Then {1, x, y} is a basis of L(F1) and K = F2(x, y). Then

the set S = {1, x, x2, x3, x4, y, y2, y3, y4, xy, xy2, xy3, x2y, x2y2, x3y} of cardinality 15

is a subset of L(4F1) whose dimension is 14. Then it is linearly dependent over F2,

that is

a0y
4 + (a1 + a2x)y3 + (a3 + a4x+ a5x

2)y2 + (a6 + a7x+ a8x
2 + a9x

3)y
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+(a10 + a11x+ a12x
2 + a13x

3 + a14x
4) = 0,

where ai ∈ F2 for i = 0, 1, ..., 14. Since [K : F2(x)] = 4, we have a0 = 1. y = 0

implies a10 + a11x+ a12x
2 + a13x

3 + a14x
4 is x4 + x+ 1 or x4 + x3 + 1. x = 0 implies

y4 + a1y
3 + a3y

2 + a6y + 1 is divisible by y + 1, that is a6 = a1 + a3. We have 4

isomorphic solutions for this case. Then K = F2(x, y) such that

(A-3)

y4 + y3 + xy2 + (x3 + x+ 1)y + (x4 + x+ 1) = 0, (4.7)

where L(t) = 8t6 − 8t5 + 4t4 − 2t3 + 2t2 − 2t+ 1.

(iii) Let n1 = 2, n3 + 2n2 = 3. Then n2 = 0 or 1. If n2 = 1, then we have 4 distinct

positive divisors of degree two. Since hK = 3, at least two of them are equivalent,

which contradicts that the extension is non-quadratic. Then n2 = 0, n3 = 3. Let P1, P2

be places of F2(x) of degree one. Since | W | is base point free, dim(W − P1) = 2

and dim(W − 2P1) = 1, that is, there exists a positive divisor D of degree 3 such that

W ∼ D+P1 and W−2P1 ∼ 2P1 or 2P2. If P1 ∼ P2, then K is a rational function field,

which is a contradiction. But 3P1 ∼ 3P2. We have 4P1 ∼ P1 + 3P2, 4P2 ∼ P2 + 3P1

and 2P1 + 2P2 are positive divisors of degree four which are not prime. Then 4Pi for

i = 1 or 2 or 2P1 + 2P2 is canonical.

Let 4Pi be canonical for i = 1 or 2. Without loss of generality, we may assume 4P1

is canonical. Then, | W − P1 |= {3P1, 3P2, D} where D is a place of degree three

and | W |= {4P1, P1 + 3P2, P1 + D,F1, F2, F3, F4} where Fi are places of degree four

for i = 1, 2, 3, 4. Let {1, x} and {1, x, y} be bases of L(3P1) and L(4P1), respectively.

Then the set S = {1, x, x2, x3, x4, y, xy, x2y, y2, xy2, y3} ⊆ L(12P ) of cardinality 11 is

linearly dependent over F2, since dim(12P ) = 10. Then

a0y
3 + (b0 + b1x)y2 + (c0 + c1x+ c2x

2)y + (d0 + d1x+ d2x
2 + d3x

3 + d4x
4) = 0,

for some a0, b0, b1, c0, c1, c2, d0, d1, d2, d3, d4 ∈ F2. Since [K : F2(x)] = 3 and [K :

F2(y)] = 4, a0 = 1 and d4 = 1. Using the substitution y → y + (a0 + a1x), we have

y3 + (e0 + e1x+ e2x
2)y + (f0 + f1x+ f2x

2 + f3x
3 + x4) = 0,

where e0, e1, e2, f0, f1, f2, f3 ∈ F2. Up to isomorphism x → x + 1, we have a unique

solution, that is K = F2(x, y) such that
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(A-4)

y3 + x2y + x4 + x3 + x = 0, (4.8)

where L(t) = 8t6 − 4t5 − 2t4 + 2t3 − t2 − t+ 1.

Let 2P1 + 2P2 be canonical. Then, |W − P1 |= {P1 + 2P2, D1, D2} where D1, D2 are

places of degree three and |W |= {2P1+2P2, P1+D1, P1+D2, F1, F2, F3, F4} where Fi

are places of degree four for i = 1, 2, 3, 4. Choose x,y in K such that (x) = P1+D2−F1

and (y) = 2P1 + 2P2 − F1. Then {1, x, y} is a basis of L(F1) and K = F2(x, y). Then

the set S = {1, x, x2, x3, x4, y, y2, y3, y4, xy, xy2, xy3, x2y, x2y2, x3y} of cardinality 15

is a subset of L(4F1) whose dimension is 14. Then it is linearly dependent over F2,

that is

a0y
4 + (a1 + a2x)y3 + (a3 + a4x+ a5x

2)y2 + (a6 + a7x+ a8x
2 + a9x

3)y

+(a10 + a11x+ a12x
2 + a13x

3 + a14x
4) = 0,

where ai ∈ F2 for i = 0, 1, ..., 14. Since [K : F2(x)] = 4,we have a0 = 1. Also, y = 0

implies a10 +a11x+a12x
2 +a13x

3 +a14x
4 is x2(x2 +1), then a14 = 1, a13 = 0, a12 = 1,

a11 = 0 and a10 = 0. Moreover, x = 0 implies y4 + a1y
3 + a3y

2 + a6y is (y3 + y + 1)y

or (y3 + y2 + 1)y, that is a6 = 1 and a1 + a3 = 1. We have

y4 + (a1 + a2x)y3 + (1 + a1 + a4x+ a5x
2)y2 + (1 + a7x+ a8x

2 + a9x
3)y

+(x2 + x4) = 0.

Using Magma, we get no function field satisfying the given conditions.
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4.3.2 Genus 4

Let gK = 4 and q = 2. By Theorem 2.4, h = 3 if and only if one of the following cases

occurs:

(a) n1 = 0 and
{
n2 = 0 n3 ≤ 11 n4 = 3 or

n2 = 1 n3 ≤ 8 n4 = 4 or

n2 = 2 n3 ≤ 6 n4 = 4 or

n2 = 3 n3 ≤ 3 n4 = 3 or

n2 = 4 n3 = 0 n4 = 1

(b) n1 = 1 and
{ n2 = 0 n3 ≤ 3 1 ≤ n4 ≤ 4 or

n2 = 1 n3 = 0 n4 = 4

Lemma 4.3.1 ([17], Lemma 5.1 ) Let K/Fq be a non-hyperelliptic function field

of genus 4 and let C be the canonical model of K/Fq. The curve C is the complete

intersection in P3(k) of a unique rational absolutely irreducible quadric surface D and

a rational cubic surface S. If we denote by N the number of linear systems g13 of K/Fq,

then 0 ≤ N ≤ 2 and

(1) N = 0 if and only if C lies on an elliptic quadric.

(2) N = 1 if and only if C lies on a cone.

(3) N = 2 if and only if C lies on a hyperbolic quadric.

Since g13 contains three positive divisors of degree 3. For q = 2 and g = 4, the existence

of g13 implies

(a’) n1 = 0 and n3 ≥ 3

(b’) n1 = 1 and n2 = 0, n3 = 2 or 3, 1 ≤ n4 ≤ 4.

Let An denote the number of degree n positive divisors of K. By [7], for 0 ≤ n ≤ 2g−2,

An = qn+1−gA2g−2−n + hK
qn+1−g − 1

q − 1

Let n = 6, q = 2 and g = 4, then A6 = 29.
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• Assume there exist two g13. Since the class number is 3, n3 is 6 or 7.

• Let n3 = 7. Then we have the following cases:

(a1) n1 = 0 and n2 = 0, n3 = 7, n4 = 3,

(a2) n1 = 0 and n2 = 1, n3 = 7, n4 = 4.

Let D+
3,1 = {T1, T2, T3} (Ti are mutually equivalent for i = 1, 2, 3) and let D+

3,2 =

{T4, T5, T6} (Tj are mutually equivalent for j = 4, 5, 6 and Ti are not equivalent to Tj

for i = 1, 2, 3 and j = 4, 5, 6 ). Since n1 = 0, all Ti are places of degree 3. But n3 = 7,

hence there exists a place T7 such that T7 is not equivalent to Ti for i = 1, 2, ..., 6.

(a1) Since n1 = 0 = n2, there exist 6 groups of mutually equivalent non-prime divisors

of degree 6. These are

(1) Ti + Tj , i, j = 1, 2, 3. (6)

(2) Ti + Tj , i, j = 4, 5, 6 (6)

(3) Ti + Tj , i = 1, 2, 3 and j = 4, 5, 6. (9)

(4)2T7. (1)

(5)Ti + T7, i = 1, 2, 3. (3)

(6) Ti + T7, i = 4, 5, 6. (3)

Since h = 3, a divisor of a group cannot be equivalent to a divisor in another group,

except the following possibilities:

(i) a divisor of (1) can be equivalent to a divisor of (6).

(ii) a divisor of (2) can be equivalent to a divisor of (5).

(iii) a divisor of (3) can be equivalent to a divisor of (4).

Since A6 = 29, we have a unique place of degree 6. That means we have at most

11 positive divisors of degree 6 mutually equivalent among the divisors contained in

these groups. But the canonical class contains 15 positive divisors of degree 6 which

are equivalent to each other. This is not possible.
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(a2) Let n1 = 0, n2 = 1, n3 = 7 and n4 = 4. Let P be a place of degree 2,

{T1, ...T7} be places of degree 3 and {Q1, ...Q4} be places of degree 4. Then S =

{2T1, ...2T7, T1 + T2, ..., T6 + T7, 3P, P +Q1, ..., P +Q4} of order 33 is a set of positive

divisors of degree 6. But A6 = 29, which is a contradiction.

• Then n3 = 6. Then we have the following cases:

(b1) n1 = 0, n2 = 0, n3 = 6 and n4 = 3,

(b2) n1 = 0, n2 = 1, n3 = 6 and n4 = 4,

(b3) n1 = 0, n2 = 2, n3 = 6 and n4 = 4.

Let D+
3,1 = {T1, T2, T3} (Ti are mutually equivalent for i = 1, 2, 3) and D+

3,2 =

{T4, T5, T6} (Tj are mutually equivalent for j = 4, 5, 6 and Ti are not equivalent to Tj

for i = 1, 2, 3 and j = 4, 5, 6 ). Since n1 = 0, all Ti are of degree 3.

(b1) Since n1 = 0 = n2, there exist 3 groups of mutually equivalent non-prime divisors

of degree 6. These are

(1) Ti + Tj , i, j = 1, 2, 3. (6)

(2) Ti + Tj , i, j = 4, 5, 6 (6)

(3) Ti + Tj , i = 1, 2, 3 and j = 4, 5, 6. (9)

Since h = 3, a divisor belonging to one of the above groups cannot be equivalent to a

divisor in another group and since A6 = 29, there exist 8 places of degree 6 of K. By

Theorem 4.2, the canonical class contains 15 mutually equivalent positive divisors of

degree 6. Thus the only possibility is that the divisors in the group (3) are canonical.

(b2) We have n1 = 0, n2 = 1,n3 = 6 and n4 = 4. Let P denote the place of K of

degree 2 and let {Q1, ...Q4} be the set of places of K of degree 4. Then there exist 3

groups of mutually equivalent non-prime divisors of degree 6. These are

(1) Ti + Tj , i, j = 1, 2, 3. (6)

(2) Ti + Tj , i, j = 4, 5, 6 (6)

(3) Ti + Tj , i = 1, 2, 3 and j = 4, 5, 6. (9)
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Since h = 3, a divisor of a group cannot be equivalent to a divisor in another group.

3P, P+Q1, P+Q2, P+Q3 and P+Q4 are also positive divisors of degree 6. So we have

26 positive non-prime divisors of degree 6. Since A6 = 29, there exist three places of

degree 6 of K. Since canonical class contains 15 mutually equivalent positive divisors

of degree 6. Thus the only possibility is that divisors of the group 3 are canonical.

(b3) We have n1 = 0, n2 = 2,n3 = 6 and n4 = 4. Let P,Q denote the places

of K of degree 2 and let {Q1, ...Q4} be the set of places of K of degree 4. Then

{2T1, ...2T6, T1 + T2, ..., T5 + T6, 3P, 3Q, 2P +Q,P + 2Q,P +Q1, ..., Q+Q4} of order

33 is a set of positive divisors of degree 6. Since A6 = 29, this case is not possible.

To find a solution for (b1) and (b2): Using the argument above, T1 + T4 is canonical

for both cases. Since T1 ∼ T2 and T4 ∼ T5, dim(T1)), dim(T4)) ≥ 2. By Clifford’s

Theorem, dim(Ti) ≤ 1+1/2(deg(Ti)) = 5/2 for i = 1, 4. Thus dim(T1) = dim(T4) = 2.

Take x ∈ L(T1) \ F2 and y ∈ L(T4) \ F2. Then {1, x, y, xy} is a basis for L(T1 + T4).

Also 1, x, x2, x3, y, y2, y3, xy, ..., x3y3 are in L(3T1+3T3) which has dimension 15. Thus

they are linearly dependent. That is there exist ai, bi, ci, di ∈ F2 for i = 0, 1, 2, 3 such

that

(a3x
3 + a2x

2 + a1x+ a0)y
3 + (b3x

3 + b2x
2 + b1x+ b0)y

2 + (c3x
3 + c2x

2 + c1x+ c0)y

+(d3x
3 + d2x

2 + d1x+ d0) = 0.

Since n1 = 0 for both cases, the curve has no rational point. That is for x = 0,

a0y
3 + b0y

2 + c0y + d0 is irreducible of degree 3. Then it is of the form

y3 + y + 1 or y3 + y2 + 1.

For y = 0, d3x
3 + d2x

2 + d1x+ d0 is irreducible of degree 3. Then it is of the form

x3 + x+ 1 or x3 + x2 + 1.

Since the infinite place of k(x) is inert in K,

1 + b3 + c3 + d3 = 1.

Since the infinite place of k(y) is inert, a3x
3 + a2x

2 + a1x+ a0 is irreducible over F2.

So, it is x3 + x+ 1 or x3 + x2 + 1.

For x = 1 = y, sum of all coefficients is 1. Then up to isomorphism, the curve has one
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of the following forms:

(x3+x+1)y3+(b3x
3+b2x

2+b1x+b0)y
2+((1−b3)x3+c2x

2+c1x+(1−b0))y+(x3+x2+1),

where b2 + b1 + c2 + c1 = 1

(x3+x+1)y3+(b3x
3+b2x

2+b1x+b0)y
2+((1−b3)x3+c2x

2+c1x+(1−b0))y+(x3+x+1),

where b2 + b1 + c2 + c1 = 0

(x3+x+1)y3+(b3x
3+b2x

2+b1x+b0)y
2+((b3)x

3+c2x
2+c1x+(1−b0))y+(x2+x+1).

where b2 + b1 + c2 + c1 = 0

Among 256 possibilities, we get 48 solutions.

Second way (Geometric Solution): If there exist two g13, then n3 ≥ 6 and the

canonical model C lies on a hyperbolic quadric. The equation of the hyperbolic quadric

D is

f(X,Y, Z, T ) = XY + ZT = 0.

Let

s(X,Y, Z, T ) = c1X
2Z + c2X

2T + c3XZ
2 + c4XT

2 + c5XZT + c6Y
2Z

+c7Y
2T + c8Y Z

2 + c9Y ZT + c10Y T
2 + c11ZT

2 + c12Z
2T + c13Z

3

+c14T
3 + c15X

3 + c16Y
3 = 0

be the general form of the cubic surface. Then C is the intersection of these surfaces.

D has 9 rational points. These are

P1 = (0, 0, 0, 1), P2 = (0, 0, 1, 0), P3 = (0, 1, 0, 0), P4 = (0, 1, 0, 1), P5 = (0, 1, 1, 0),

P6 = (1, 0, 0, 0), P7 = (1, 0, 0, 1), P8 = (1, 0, 1, 0), P9 = (1, 1, 1, 1).
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Since n1 = 0, none of Pi satisfies the cubic equation. So we have

c13 = c14 = c15 = c16 = 1,

c1 + c3 = 1, c2 + c4 = 1, c6 + c8 = 1, c7 + c10 = 1,

c5 + c9 + c11 + c12 = 1.

Among 128 possibilities, we get 48 solutions for the cubic surface with class number 3

as we found above. Up to coordinate change of projective space, we get 8 equations:

(1) x3 + xz2 + xt2 + y3 + y2t+ yz2 + z3 + z2t+ t3 = 0,

(2) x3 + xz2 + xt2 + y3 + y2t+ yz2 + yzt+ z3 + t3 = 0,

(3) x3 + xz2 + xt2 + y3 + y2z + y2t+ z3 + z2t+ t3 = 0,

(4) x3 + xz2 + xzt+ xt2 + y3 + y2t+ yz2 + z3 + z2t+ zt2 + t3 = 0,

(5) x3 + xz2 + xzt+ xt2 + y3 + y2t+ yz2 + yzt+ z3 + zt2 + t3 = 0,

(6) x3 + xz2 + xzt+ xt2 + y3 + y2z + y2t+ yzt+ z3 + z2t+ t3 = 0,

(7) x3 + x2t+ xz2 + y3 + y2t+ yz2 + yzt+ z3 + z2t+ zt2 + t3 = 0,

(8) x3 + x2t+ xz2 + xzt+ y3 + y2z + y2t+ z3 + z2t+ zt2 + t3 = 0.

Let U be the open set of P3(k) defined by T 6= 0. Let V be the open set in P2(k)

consisting of the elements of the form (x, y, z) where z 6= 0. We define a morphism

from V to U such that

(x : y : 1)→ (x : y : xy : 1),

to get a plane model for K/k. That is K = k(x, y) where x, y ∈ K satisfying one of

the following equations:

B.(I-1)

x3y3 + x3y2 + x3 + x2y3 + x2y2 + x+ y3 + y2 + 1 = 0, (4.9)

with L(t) = 16t8 − 24t7 + 12t6 + 6t5 − 11t4 + 3t3 + 3t2 − 3t+ 1.

B.(I-2)

x3y3 + x3y2 + x3 + x2y3 + xy2 + x+ y3 + y2 + 1 = 0, (4.10)
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with L(t) = 16t8 − 24t7 + 12t6 + 6t5 − 11t4 + 3t3 + 3t2 − 3t+ 1.

B.(I-3)

x3y3 + x3y2 + x3 + x2y2 + xy3 + x+ y3 + y2 + 1 = 0, (4.11)

with L(t) = 16t8 − 24t7 + 8t6 + 12t5 − 15t4 + 6t3 + 2t2 − 3t+ 1.

B.(I-4)

x3y3 + x3y2 + x3 + x2y3 + x2y2 + x2y + xy + x+ y3 + y2 + 1 = 0, (4.12)

with L(t) = 16t8 − 24t7 + 8t6 + 12t5 − 15t4 + 6t3 + 2t2 − 3t+ 1.

B.(I-5)

x3y3 + x3y2 + x3 + x2y3 + x2y + xy2 + xy + x+ y3 + y2 + 1 = 0, (4.13)

with L(t) = 16t8 − 24t7 + 8t6 + 12t5 − 15t4 + 6t3 + 2t2 − 3t+ 1.

B.(I-6)

x3y3 + x3y2 + x3 + x2y2 + x2y + xy3 + xy2 + x+ y3 + y2 + 1 = 0, (4.14)

with L(t) = 16t8 − 24t7 + 12t6 + 6t5 − 11t4 + 3t3 + 3t2 − 3t+ 1.

B.(I-7)

x3y3 + x3y2 + x3 + x2y3 + x2y2 + x2 + xy2 + xy + y3 + y2 + 1 = 0, (4.15)

with L(t) = 16t8 − 24t7 + 12t6 + 6t5 − 11t4 + 3t3 + 3t2 − 3t+ 1.

B.(I-8)

x3y3 + x3y2 + x3 + x2y2 + x2y + x2 + xy3 + xy + y3 + y2 + 1 = 0, (4.16)

with L(t) = 16t8 − 24t7 + 8t6 + 12t5 − 15t4 + 6t3 + 2t2 − 3t+ 1.

• Assume there exists unique g13. Let g13 = {T1, T2, T3}. Then by Theorem 2.4,

we have the following possibilities:

(a”) n1 = 0 and {

n2 = 0 3 ≤ n3 ≤ 5 n4 = 3 or

n2 = 1 3 ≤ n3 ≤ 5 n4 = 4 or

n2 = 2 3 ≤ n3 ≤ 5 n4 = 4 or

n2 = 3 n3 = 3 n4 = 3
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(b”) n1 = 1 and { n2 = 0 n3 = 2 or 3 1 ≤ n4 ≤ 4

Since n1 is at most one and for n1 = 1, n2 = 0, at least two of Ti are prime. Since we

have unique g13, the curve lies on a cone. We denote by Li the rational line passing

thorough the vertex of the cone and containing Ti for i = 1, 2, 3. Then the rational

plane Pi,j containing Li and Lj cuts the curve at Ti +Tj , which is a canonical divisor.

But Ti + Tj ∼ 2Ti for i, j = 1, 2, 3. Since at least two of Ti are prime, there exists a

place Ti of degree 3 such that dim(Ti) = 2 and dim(2Ti) = 4.

Let T be a place of degree 3 of K/k such that dim(T ) = 2 and dim(2T ) = 4. Let

{1, x} be a basis of L(T ). Then [K : k(x)] = 3. Since (x)∞ = T , (1/x) is inert in

K/k(x). Since dim(2T ) = 4, there exists y ∈ L(2T )\L(T ) such that {1, x, x2, y} is a

basis for L(2T ). We have (y)∞ = 2T and k(x, y) = K. Also

{1, x, x2, x3, ...x6, y, yx, ..yx4, y2, xy2, x2y2, y3}

are in L(6T )(16 elements). But dim(6T ) = 15. Hence they are linearly dependent.

That is

y3 + φ2(x)y2 + φ4(x)y + φ6(x) = 0,

where φi(x) ∈ k[x] of degree ≤ i for i = 2, 4, 6. Set v = y + φ2(x). Then k(x, y) =

k(x, v) and

v3 + ψ4(x)v + ψ6(x) = 0, (∗)

where ψi(x) ∈ k[x] and degψi ≤ i for i = 4, 6. Set u = 1/x. Then multiplying (*) by

u6 and setting t = u2v, we have

t3 + (a4 + a3u+ a2u
2 + a1u

3 + a0u
4)t+ (b6 + · · · b0u6) = 0.(∗∗)

Since the infinite place of k(x)/k corresponds to (u) (and since n1 ≤ 1), (u) is inert

and t3+a4t+b6 ∈ k[t] is irreducible and a4 = b6 = 1. We have the following solutions:

(1) t3 + t+ (u5 + u2 + 1) = 0, (n1 = 1, n2 = 0, n3 = 2, n4 = 2)

(2) t3 + t+ (u5 + u4 + u2 + u+ 1) = 0, (n1 = 1, n2 = 0, n3 = 2, n4 = 2)

(3) t3 + (u4 + 1)t+ (u6 + u2 + u+ 1) = 0, (n1 = 1, n2 = 0, n3 = 2, n4 = 2)
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(4) t3 + (u4 + 1)t+ (u6 + u5 + u4 + 1) = 0, (n1 = 1, n2 = 0, n3 = 2, n4 = 2)

(5) t3 + (u4 + u2 + 1)t+ (u6 + u3 + u2 + u+ 1) = 0, (n1 = 0, n2 = 1, n3 = 5, n4 = 4)

(6) t3 + (u4 + u2 + 1)t+ (u6 + u4 + u3 + u2 + 1) = 0, (n1 = 0, n2 = 1, n3 = 5, n4 = 4)

(7) t3 + (u4 + u2 + 1)t+ (u6 + u5 + u4 + u3 + 1) = 0, (n1 = 0, n2 = 1, n3 = 5, n4 = 4).

Geometric Solution(Second way): The canonical model C lies on a cone. The

equation of the cone D is

f(X,Y, Z, T ) = X2 + ZT = 0.

Then the canonical model C of K/k is the intersection of the cone and a cubic surface.

D has 7 rational points. These are

P1 = (0, 0, 0, 1), P2 = (0, 0, 1, 0), P3 = (0, 1, 0, 0), P4 = (0, 1, 0, 1), P5 = (0, 1, 1, 0),

P6 = (1, 0, 1, 1), P7 = (1, 1, 1, 1).

Let

s(X,Y, Z, T ) = c1XY T + c2XY Z + c3XY
2 + c4XZ

2 + c5XT
2 + c6XZT + c7Y

2Z + c8Y
2T

+ c9Y Z
2 + c10Y ZT + c11Y T

2 + c12ZT
2 + c13Z

2T + c14Z
3 + c15T

3 + c16Y
3 = 0.

be the general form of the cubic surface.

There exist 72 cubic surface satisfying the above conditions. The general form of the

elements of the subgroup M of PGL(F2, 4), fixing the cone is
1 0 d1d3 d2d4

a1 1 a2 a3

0 0 d1 d2

0 0 d3 d4

 ,

where ai, di ∈ F2 satisfying d1d4 + d2d3 = 1. Up to isomorphism with respect to M ,

we get 4 equations for the cubic surface :

(1) xzt+ y3 + yz2 + yzt+ yt2 + z3 + z2t+ zt2 + t3 = 0,

(2) xt2 + y3 + yz2 + z3 + z2t = 0,
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(3) xy2 + xzt+ y3 + y2t+ yz2 + z3 + t3 = 0,

(4) xy2 + xzt+ y3 + y2t+ yz2 + yzt+ z3 + zt2 + t3 = 0.

Let U be the open set of P3(k) defined by T 6= 0. Let V be the open set in P2(k)

consisting of the elements of the form (x, y, z) where z 6= 0. We define a morphism

from V to U such that

(x : y : 1)→ (x : y : x2 : 1),

to get a plane model for K/k. Then, K = k(x, y) where x, y ∈ K satisfying one of the

following equations:

B.(II-1)

x6 + x4y + x4 + x3 + x2y + x2 + y3 + y + 1 = 0, (4.17)

with L(t) = 16t8 − 24t7 + 12t6 + 4t5 − 8t4 + 2t3 + 3t2 − 3t+ 1.

B.(II-2)

x6 + x4y + x4 + x+ y3 = 0, (4.18)

with L(t) = 16t8 − 16t7 + 4t5 − 2t4 + 2t3 − 2t+ 1.

B.(II-3)

x6 + x4y + x3 + xy2 + y3 + y2 + 1 = 0, (4.19)

with L(t) = 16t8 − 24t7 + 12t6 + 4t5 − 8t4 + 2t3 + 3t2 − 3t+ 1.

B.(II-4)

x6 + x4y + x3 + x2y + x2 + xy2 + y3 + y2 + 1 = 0, (4.20)

with L(t) = 16t8 − 16t7 + 4t5 − 2t4 + 2t3 − 2t+ 1.

• Assume there exists no g13

In this case, since h = 3, by Theorem 2.4, we must have the following possibilities:
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(ā) n1 = 0 and {

n2 = 0 n3 ≤ 3 n4 = 3 or

n2 = 1 n3 ≤ 3 n4 = 4 or

n2 = 2 n3 ≤ 3 n4 = 4 or

n2 = 3 n3 ≤ 3 n4 = 3 or

n2 = 4 n3 = 0 n4 = 1

(b̄) n1 = 1 and {
n2 = 0 n3 ≤ 2 1 ≤ n4 ≤ 4 or

n2 = 1 n3 = 0 n4 = 4

Let C = D ∩ S be the canonical model of K/F2. Then we choose (X : Y : Z : T ) ∈

P3(k) such that D is given by

XY + Z2 + ZT + T 2 = 0.

D has 5 rational points. These are

P1 = (1, 0, 0, 0), P2 = (0, 1, 0, 0), P3 = (1, 1, 0, 1), P4 = (1, 1, 1, 0), P5 = (1, 1, 1, 1).

Let α be a root of x2 + x+ 1. Then the places of degree 2 of D are

Q1 = (α : α2 : 0 : 1) + (α2 : α : 0 : 1),

Q2 = (α : α2 : 1 : 0) + (α2 : α : 1 : 0),

Q3 = (α : α2 : 1 : 1) + (α2 : α : 1 : 1),

Q4 = (0 : 1 : 1 : α) + (0 : 1 : 1 : α2),

Q5 = (1 : 0 : 1 : α) + (1 : 0 : 1 : α2),

Q6 = (0 : 0 : 1 : α) + (0 : 0 : 1 : α2),

Q7 = (0 : 1 : α : 1) + (0 : 1 : α2 : 1),

Q8 = (0 : α2 : α : 1) + (0 : α : α2 : 1),

Q9 = (1 : 0 : α : 1) + (1 : 0 : α2 : 1),

Q10 = (α2 : 0 : α : 1) + (α : 0 : α2 : 1).

63



Then we may assume that the equation of the cubic surface S is

s(X,Y, Z, T ) = c1X
2Z + c2X

2T + c3XZ
2 + c4XT

2 + c5XZT + c6Y
2Z

+ c7Y
2T + c8Y Z

2 + c9Y ZT + c10Y T
2 + c11ZT

2 + c12Z
2T + c13Z

3

+ c14T
3 + c15X

3 + c16Y
3 = 0.

Case 1: n1 = 0, n2 = 0. For n1 = 0, none of Pi’s satisfies S. Thus we have the

following equations:

c16 = 1, c15 = 1, c14 = 1 + c10 + c7 + c4 + c2,

c13 = 1 + c8 + c6 + c3 + c1, c12 = 1 + c11 + c9 + c5.

Also, none of Qi’s satisfies S. Using Magma, we have no function field with class

number 3.

Case 2: n1 = 0, n2 ≥ 1. One of Qi’s satisfies S.

Let G be the group of permutations of five rational points Pi of D. Then G is isomor-

phic to S5.

For n1 = 0, n2 = 1, there exist 120 cubic surfaces such that the intersection of D and

one of these cubic surfaces S gives a a function field of genus 4 with class number 3.

Up to isomorphism, we have 8 solutions for the cubic equation satisfying the given

conditions:

(1) x3 + xzt+ y3 + yt2 + z3 = 0, (n1 = 0, n2 = 1, n3 = 3, n4 = 4)

(2) x3 + xzt+ y3 + y2t+ yzt+ z3 + zt2 = 0, (n1 = 0, n2 = 1, n3 = 3, n4 = 4)

(3) x3 + xt2 + y3 + y2t+ yzt+ z3 + z2t+ zt2 + t3 = 0, (n1 = 0, n2 = 1, n3 = 3, n4 = 4)

(4) x3 + xt2 + y3 + y2t+ yz2 + z2t+ t3 = 0, (n1 = 0, n2 = 1, n3 = 3, n4 = 4)

(5) x3 +x2t+ y3 + y2z+ yz2 + yzt+ yt2 + z3 + z2t+ zt2 + t3 = 0, (n1 = 0, n2 = 1, n3 =

3, n4 = 4)

(6) x3+x2t+xzt+y3+y2t+yz2+yzt+yt2+z2t = 0, (n1 = 0, n2 = 1, n3 = 3, n4 = 4)
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(7) x3 +x2t+xzt+ y3 + y2z+ yt2 + z2t+ zt2 + t3 = 0, (n1 = 0, n2 = 1, n3 = 3, n4 = 4)

(8) x3 +x2t+xzt+y3 +y2z+yz2 +yzt+z3 +zt2 = 0. (n1 = 0, n2 = 1, n3 = 3, n4 = 4)

Let U be the open set of P3(F2) defined by Y 6= 0. Let V be the open set in P2(k)

consisting of the elements of the form (x, y, z) where z 6= 0. We define a morphism

from V to U such that

(x : y : 1)→ (x2 + xy + y2 : 1 : y : x),

to get a plane model for K/k. Then K = k(x, y) satisfying one of the following

equations:

That is K = F2(x, y) such that

B.(III-1)

y6 + xy5 + (x3 + x+ 1)y3 + x2y2 + (x5 + x3)y + x6 + x2 + 1 = 0, (4.21)

with L(t) = 16t8 − 24t7 + 12t6 − 2t4 + 3t2 − 3t+ 1.

B.(III-2)

y6 + xy5 + (x3 + x+ 1)y3 + x2y2 + (x5 + x3 + x2 + x)y + x6 + x+ 1 = 0, (4.22)

with L(t) = 16t8 − 24t7 + 12t6 − 2t4 + 3t2 − 3t+ 1.

B.(III-3)

y6 + xy5 + (x3 + 1)y3 + (x2 + x)y2 + (x5 + x3 + x2 + x)y + x6 + x4 + x3 + x+ 1 = 0,

(4.23)

with L(t) = 16t8 − 24t7 + 12t6 − 2t4 + 3t2 − 3t+ 1.

B.(III-4)

y6 + xy5 + x3y3 + (x2 + x+ 1)y2 + (x5 + x3)y + x6 + x4 + x3 + x+ 1 = 0, (4.24)

with L(t) = 16t8 − 24t7 + 12t6 − 2t4 + 3t2 − 3t+ 1.

B.(III-5)

y6 + xy5 + xy4 + (x3 + 1)y3 + (x3 + x+ 1)y2 + (x5 + x2 + x+ 1)y + x6 + x5 + x3 + x2 + 1 = 0,

(4.25)
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with L(t) = 16t8 − 24t7 + 12t6 − 2t4 + 3t2 − 3t+ 1.

B.(III-6)

y6 + xy5 + xy4 + (x3 + x)y3 + (x3 + x2 + x+ 1)y2 + (x5 + x3 + x)y + x6 + x5 + x2 + x+ 1 = 0,

(4.26)

with L(t) = 16t8 − 24t7 + 12t6 − 2t4 + 3t2 − 3t+ 1.

B.(III-7)

y6 + xy5 + xy4 + (x3 + x)y3 + (x3 + x2 + x)y2 + (x5 + x3 + x2 + 1)y + x6 + x5 + x3 + x2 + 1 = 0,

(4.27)

with L(t) = 16t8 − 24t7 + 12t6 − 2t4 + 3t2 − 3t+ 1.

B.(III-8)

y6 + xy5 + xy4 + (x3 + x+ 1)y3 + (x3 + x2 + 1)y2 + (x5 + x3 + x2 + x+ 1)y + x6 + x5 + 1 = 0,

(4.28)

with L(t) = 16t8 − 24t7 + 12t6 − 2t4 + 3t2 − 3t+ 1.

For n1 = 0, n2 = 2, we have 360 cubic surfaces such that the intersection of D and one

of these cubic surfaces S gives a a function field of genus 4 with class number 3. Up

to isomorphism, we have 23 solutions for the cubic surface.

(1) x3 + y3 + y2t+ yt2 + z3 + z2t+ t3 = 0, (n1 = 0, n2 = 2, n3 = 1, n4 = 4)

(2) x3 + y3 + y2t+ yzt+ z3 + z2t+ zt2 = 0, (n1 = 0, n2 = 2, n3 = 2, n4 = 4)

(3) x3 + xzt+ y3 + y2t+ yzt+ yt2 + z3 + zt2 + t3 = 0, (n1 = 0, n2 = 2, n3 = 2, n4 = 4)

(4) x3 + xzt+ y3 + y2z + y2t+ yzt+ z2t = 0, (n1 = 0, n2 = 2, n3 = 1, n4 = 4)

(5) x3 +xzt+ y3 + y2z+ y2t+ yzt+ yt2 + zt2 + t3 = 0, (n1 = 0, n2 = 2, n3 = 3, n4 = 4)

(6) x3 + xt2 + y3 + y2t+ z3 + z2t+ t3 = 0, (n1 = 0, n2 = 2, n3 = 2, n4 = 4)

(7) x3 + xt2 + y3 + y2t+ yzt+ z3 + t3 = 0, (n1 = 0, n2 = 2, n3 = 3, n4 = 4)

(8) x3 + xt2 + y3 + y2z + zt2 = 0, (n1 = 0, n2 = 2, n3 = 3, n4 = 4)

(9) x3 + xt2 + y3 + y2z + yzt = 0, (n1 = 0, n2 = 2, n3 = 1, n4 = 4)
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(10) x3 + xt2 + y3 + y2z + yzt+ yt2 + t3 = 0, (n1 = 0, n2 = 2, n3 = 2, n4 = 4)

(11) x3 + xt2 + y3 + y2z + yz2 + yzt+ z3 = 0, (n1 = 0, n2 = 2, n3 = 3, n4 = 4)

(12) x3 + xt2 + y3 + y2z + yz2 + yzt + yt2 + z3 + z2t + zt2 + t3 = 0, (n1 = 0, n2 =

2, n3 = 3, n4 = 4)

(13) x3+xz2+xzt+xt2+y3+y2t+yzt+z2t+ t3 = 0, (n1 = 0, n2 = 2, n3 = 1, n4 = 4)

(14) x3 +xz2 +xzt+xt2 +y3 +y2t+yz2 +z3 + t3 = 0, (n1 = 0, n2 = 2, n3 = 2, n4 = 4)

(15) x3 + x2t+ xzt+ y3 + y2t+ yt2 + z3 = 0, (n1 = 0, n2 = 2, n3 = 2, n4 = 4)

(16) x3 +x2t+xzt+y3 +y2t+yzt+yt2 +z3 +z2t = 0, (n1 = 0, n2 = 2, n3 = 3, n4 = 4)

(17) x3 + x2t+ xzt+ y3 + y2z + yzt+ z2t = 0, (n1 = 0, n2 = 2, n3 = 3, n4 = 4)

(18) x3 +x2t+xzt+y3 +y2z+yzt+yt2 +z2t+ t3 = 0, (n1 = 0, n2 = 2, n3 = 1, n4 = 4)

(19) x3 + x2t + xzt + y3 + y2z + yz2 + yzt + yt2 + z3 + z2t + t3 = 0, (n1 = 0, n2 =

2, n3 = 2, n4 = 4)

(20) x3+x2t+xzt+y3+y2z+y2t+yt2+z2t+zt2 = 0, (n1 = 0, n2 = 2, n3 = 1, n4 = 4)

(21) x3 + x2t + xzt + y3 + y2z + y2t + yz2 + yzt + yt2 + z3 + zt2 = 0, (n1 = 0, n2 =

2, n3 = 3, n4 = 4)

(22) x3+x2t+xz2+y3+y2t+yz2+yzt+yt2+z3 = 0, (n1 = 0, n2 = 2, n3 = 3, n4 = 4)

(23) x3 + x2t + xz2 + xzt + y3 + y2t + yz2 + yzt + yt2 + z3 + z2t = 0. (n1 = 0, n2 =

2, n3 = 1, n4 = 4)

Using the morphism

(x : y : 1)→ (x2 + xy + y2 : 1 : y : x),

we get a plane model for K/k. Then K = F2(x, y) satisfying one of the following

equations:

B.(III-9)

y6 + xy5 + (x3 + 1)y3 + xy2 + x5y + x6 + x3 + x2 + x+ 1 = 0, (4.29)
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with L(t) = 16t8 − 24t7 + 16t6 − 10t5 + 8t4 − 5t3 + 4t2 − 3t+ 1.

B.(III-10)

y6 + xy5 + (x3 + 1)y3 + xy2 + (x5 + x2 + x)y + x6 + x+ 1 = 0, (4.30)

with L(t) = 16t8 − 24t7 + 16t6 − 8t5 + 5t4 − 4t3 + 4t2 − 3t+ 1.

B.(III-11)

y6 + xy5 + (x3 + x+ 1)y3 + x2y2 + (x5 + x3 + x2 + x)y + x6 + x3 + x2 + x+ 1 = 0,

(4.31)

with L(t) = 16t8 − 24t7 + 16t6 − 8t5 + 5t4 − 4t3 + 4t2 − 3t+ 1.

B.(III-12)

y6 + xy5 + (x3 + x)y3 + (x2 + x)y2 + (x5 + x3 + x+ 1)y + x6 + x+ 1 = 0, (4.32)

with L(t) = 16t8 − 24t7 + 16t6 − 10t5 + 8t4 − 5t3 + 4t2 − 3t+ 1.

B.(III-13)

y6 + xy5 + (x3 + x)y3 + x2y2 + (x5 + x3 + x2 + x+ 1)y + x6 + x3 + x2 + x+ 1 = 0,

(4.33)

with L(t) = 16t8 − 24t7 + 16t6 − 6t5 + 2t4 − 3t3 + 4t2 − 3t+ 1.

B.(III-14)

y6 + xy5 + (x3 + 1)y3 + (x2 + x)y2 + (x5 + x3)y + x6 + x4 + x3 + x+ 1 = 0, (4.34)

with L(t) = 16t8 − 24t7 + 16t6 − 8t5 + 5t4 − 4t3 + 4t2 − 3t+ 1.

B.(III-15)

y6 + xy5 + (x3 + 1)y3 + x2y2 + (x5 + x3 + x)y + x6 + x4 + x3 + x+ 1 = 0, (4.35)

with L(t) = 16t8 − 24t7 + 16t6 − 6t5 + 2t4 − 3t3 + 4t2 − 3t+ 1.

B.(III-16)

y6 + xy5 + x3y3 + x2y2 + (x5 + x3 + x2 + 1)y + x6 + x4 + 1 = 0, (4.36)
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with L(t) = 16t8 − 24t7 + 16t6 − 6t5 + 2t4 − 3t3 + 4t2 − 3t+ 1.

B.(III-17)

y6 + xy5 + x3y3 + x2y2 + (x5 + x3 + x+ 1)y + x6 + x4 + 1 = 0, (4.37)

with L(t) = 16t8 − 24t7 + 16t6 − 10t5 + 8t4 − 5t3 + 4t2 − 3t+ 1.

B.(III-18)

y6 + xy5 + x3y3 + x2y2 + (x5 + x3 + x+ 1)y + x6 + x4 + x3 + x2 + 1 = 0, (4.38)

with L(t) = 16t8 − 24t7 + 16t6 − 8t5 + 5t4 − 4t3 + 4t2 − 3t+ 1.

B.(III-19)

y6 + xy5 + (x3 + 1)y3 + (x2 + 1)y2 + (x5 + x3 + x+ 1)y + x6 + x4 + 1 = 0, (4.39)

with L(t) = 16t8 − 24t7 + 16t6 − 6t5 + 2t4 − 3t3 + 4t2 − 3t+ 1.

B.(III-20)

y6 + xy5+(x3 + 1)y3 + (x2 + x+ 1)y2 + (x5 + x3 + x2 + x+ 1)y (4.40)

+ x6 + x4 + x3 + x2 + 1 = 0,

with L(t) = 16t8 − 24t7 + 16t6 − 6t5 + 2t4 − 3t3 + 4t2 − 3t+ 1.

B.(III-21)

y6 + xy5 + y4 + x3y3 + (x2 + x)y2 + (x5 + x)y + x6 + x4 + x3 + x+ 1 = 0, (4.41)

with L(t) = 16t8 − 24t7 + 16t6 − 10t5 + 8t4 − 5t3 + 4t2 − 3t+ 1.

B.(III-22)

y6 + xy5 + y4 + (x3 + 1)y3 + (x2 + 1)y2 + x5y + x6 + x4 + x3 + x+ 1 = 0, (4.42)

with L(t) = 16t8 − 24t7 + 16t6 − 8t5 + 5t4 − 4t3 + 4t2 − 3t+ 1.

B.(III-23)

y6 + xy5+xy4 + (x3 + x+ 1)y3 + (x3 + x2)y2 + (x5 + x3)y (4.43)

+x6 + x5 + x2 + x+ 1 = 0,
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with L(t) = 16t8 − 24t7 + 16t6 − 8t5 + 5t4 − 4t3 + 4t2 − 3t+ 1.

B.(III-24)

y6 + xy5+xy4 + (x3 + x+ 1)y3 + (x3 + x2 + x)y2+ (4.44)

(x5 + x3 + x)y + x6 + x5 + x2 + x+ 1 = 0,

with L(t) = 16t8 − 24t7 + 16t6 − 6t5 + 2t4 − 3t3 + 4t2 − 3t+ 1.

B.(III-25)

y6 + xy5 + xy4 + (x3 + x)y3 + (x3 + x2 + x)y2 + (x5 + x3 + x+ 1)y + x6 + x5 + 1 = 0,

(4.45)

with L(t) = 16t8 − 24t7 + 16t6 − 6t5 + 2t4 − 3t3 + 4t2 − 3t+ 1.

B.(III-26)

y6 + xy5+xy4 + (x3 + x)y3 + (x3 + x2 + x)y2 + (x5 + x3 + x+ 1)y (4.46)

+ x6 + x5 + x3 + x2 + 1 = 0,

with L(t) = 16t8 − 24t7 + 16t6 − 10t5 + 8t4 − 5t3 + 4t2 − 3t+ 1.

B.(III-27)

y6 + xy5+xy4 + (x3 + x+ 1)y3 + (x3 + x2 + x+ 1)y2+ (4.47)

(x5 + x3 + x+ 1)y + x6 + x5 + x3 + x2 + 1 = 0,

with L(t) = 16t8 − 24t7 + 16t6 − 8t5 + 5t4 − 4t3 + 4t2 − 3t+ 1.

B.(III-28)

y6 + xy5+xy4 + (x3 + x)y3 + (x3 + x2 + x)y2 + (x5 + x3 + x2 + 1)y (4.48)

+ x6 + x5 + x2 + x+ 1 = 0,

with L(t) = 16t8 − 24t7 + 16t6 − 10t5 + 8t4 − 5t3 + 4t2 − 3t+ 1.

B.(III-29)

y6+xy5 + xy4 + (x3 + x+ 1)y3 + (x3 + x2 + 1)y2+ (4.49)

(x5 + x3 + x2 + x+ 1)y + x6 + x5 + x2 + x+ 1 = 0,
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with L(t) = 16t8 − 24t7 + 16t6 − 6t5 + 2t4 − 3t3 + 4t2 − 3t+ 1.

B.(III-30)

y6+xy5 + (x+ 1)y4 + (x3 + x+ 1)y3 + (x3 + x2 + 1)y2+ (4.50)

(x5 + x)y + x6 + x5 + x2 + x+ 1 = 0,

with L(t) = 16t8 − 24t7 + 16t6 − 6t5 + 2t4 − 3t3 + 4t2 − 3t+ 1.

B.(III-31)

y6 + xy5 + (x+ 1)y4 + (x3 + 1)y3 + (x3 + x+ 1)y2+ (4.51)

(x5 + x3 + x)y + x6 + x5 + x2 + x+ 1 = 0,

with L(t) = 16t8 − 24t7 + 16t6 − 10t5 + 8t4 − 5t3 + 4t2 − 3t+ 1.

For n1 = 0, n2 = 3, we have 80 solutions. Up to isomorphism, we have 9 cubic surfaces

satisfying the given conditions:

(1) x3 + y3 + yzt+ z3 + z2t+ zt2 + t3 = 0, (n1 = 0, n2 = 3, n3 = 1, n4 = 3)

(2) x3 + y3 + y2t+ yz2 + yzt = 0, (n1 = 0, n2 = 3, n3 = 1, n4 = 3)

(3) x3 + xzt+ y3 + yzt+ z3 + z2t+ t3 = 0, (n1 = 0, n2 = 3, n3 = 1, n4 = 3)

(4) x3 + xzt+ y3 + y2z + y2t = 0, (n1 = 0, n2 = 3, n3 = 1, n4 = 3)

(5) x3 +xz2 +xzt+xt2 +y3 +yz2 +yzt+yt2 +z3 +z2t+ t3 = 0, (n1 = 0, n2 = 3, n3 =

1, n4 = 3)

(6) x3 + x2t+ y3 + y2t+ yz2 + yzt+ t3 = 0, (n1 = 0, n2 = 3, n3 = 1, n4 = 3)

(7) x3 +x2t+ y3 + y2z+ yz2 + yt2 + z3 + zt2 + t3 = 0, (n1 = 0, n2 = 3, n3 = 1, n4 = 3)

(8) x3 +x2t+xt2 +y3 +y2z+yz2 +yt2 +z3 +zt2 = 0, (n1 = 0, n2 = 3, n3 = 1, n4 = 3)

(9) x3 +x2t+xz2 + y3 + y2z+ yzt+ yt2 + z3 + t3 = 0. (n1 = 0, n2 = 3, n3 = 1, n4 = 3)

Using the morphism (x : y : 1) → (x2 + xy + y2 : 1 : y : x), K = F2(x, y) satisfying

one of the following equations:
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B.(III-32)

y6 + xy5 + (x3 + 1)y3 + xy2 + (x5 + x2 + x)y + x6 + x3 + 1 = 0, (4.52)

with L(t) = 16t8 − 24t7 + 20t6 − 16t5 + 12t4 − 8t3 + 5t2 − 3t+ 1.

B.(III-33)

y6 + xy5 + x3y3 + y2 + (x5 + x)y + x6 + x+ 1 = 0, (4.53)

with L(t) = 16t8 − 24t7 + 20t6 − 16t5 + 12t4 − 8t3 + 5t2 − 3t+ 1.

B.(III-34)

y6 + xy5 + (x3 + x+ 1)y3 + (x2 + x)y2 + (x5 + x3 + x)y + x6 + x3 + 1 = 0, (4.54)

with L(t) = 16t8 − 24t7 + 20t6 − 16t5 + 12t4 − 8t3 + 5t2 − 3t+ 1.

B.(III-35)

y6 + xy5 + (x3 + x)y3 + x2y2 + (x5 + x3 + 1)y + x6 + x+ 1 = 0, (4.55)

with L(t) = 16t8 − 24t7 + 20t6 − 16t5 + 12t4 − 8t3 + 5t2 − 3t+ 1.

B.(III-36)

y6 + xy5 + y4 + (x3 + 1)y3 + (x2 + x+ 1)y2 + (x5 + x)y (4.56)

+ x6 + x4 + x3 + x2 + 1 = 0,

with L(t) = 16t8 − 24t7 + 20t6 − 16t5 + 12t4 − 8t3 + 5t2 − 3t+ 1.

B.(III-37)

y6 + xy5 + xy4 + x3y3 + (x3 + 1)y2 + (x5 + x)y + x6 + x5 + x3 + x+ 1 = 0, (4.57)

with L(t) = 16t8 − 24t7 + 20t6 − 16t5 + 12t4 − 8t3 + 5t2 − 3t+ 1.

B.(III-38)

y6 + xy5+xy4 + (x3 + 1)y3 + (x3 + 1)y2 + (x5 + x2 + 1)y (4.58)

+ x6 + x5 + x3 + x2 + 1 = 0,

with L(t) = 16t8 − 24t7 + 20t6 − 16t5 + 12t4 − 8t3 + 5t2 − 3t+ 1.
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B.(III-39)

y6 + xy5 + xy4+(x3 + 1)y3 + (x3 + x2 + 1)y2 + (x5 + x3 + x2 + 1)y (4.59)

+ x6 + x5 + x4 + x2 + 1 = 0,

with L(t) = 16t8 − 24t7 + 20t6 − 16t5 + 12t4 − 8t3 + 5t2 − 3t+ 1.

B.(III-40)

y6 + xy5 + (x+ 1)y4+(x3 + x+ 1)y3 + (x3 + x2)y2 + (x5 + x+ 1)y (4.60)

+ x6 + x5 + x3 + x2 + 1 = 0,

with L(t) = 16t8 − 24t7 + 20t6 − 16t5 + 12t4 − 8t3 + 5t2 − 3t+ 1.

Case 3:( n1 = 1) In this case, there exist 120 solutions. Up to coordinate change of

the projective space, the cubic surface satisfies one of the following equations:

(1) x3 + xzt+ y3 + y2t+ yt2 + z3 + zt2 = 0, (n1 = 1, n2 = 1, n3 = 0, n4 = 4)

(2) x3 + xzt+ y2t+ yz2 + z3 + z2t+ t3 = 0, (n1 = 1, n2 = 1, n3 = 0, n4 = 4)

(3) x3 + xt2 + y3 + y2t+ yz2 + z3 + z2t+ zt2 + t3 = 0, (n1 = 1, n2 = 1, n3 = 0, n4 = 4)

(4) x3 +xz2 +xzt+xt2 + y3 + y2t+ z3 + z2t+ t3 = 0, (n1 = 1, n2 = 1, n3 = 0, n4 = 4)

(5) x3 + x2t+ y3 + y2z + yzt+ zt2 = 0, (n1 = 1, n2 = 1, n3 = 0, n4 = 4)

(6) x2t+xzt+y3 +y2z+y2t+yz2 +yzt+yt2 + t3 = 0. (n1 = 1, n2 = 1, n3 = 0, n4 = 4)

By the morphism (x : y : 1) → (x2 + xy + y2 : 1 : y : x), we have K = K(x, y)

satisfying one of the following equations:

B.(III-41)

y6 + xy5 + (x3 + x+ 1)y3 + x2y2 + (x5 + x3 + x2)y + x6 + x2 + x+ 1 = 0, (4.61)

with L(t) = 16t8 − 16t7 + 4t6 − 4t5 + 5t4 − 2t3 + t2 − 2t+ 1.

B.(III-42)

y6 + xy5 + (x3 + x+ 1)y3 + (x2 + x+ 1)y2 + (x5 + x3)y + x6 + x3 + x = 0, (4.62)

with L(t) = 16t8 − 16t7 + 4t6 − 4t5 + 5t4 − 2t3 + t2 − 2t+ 1.
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B.(III-43)

y6 + xy5+(x3 + 1)y3 + (x2 + x+ 1)y2 + (x5 + x3 + x2)y (4.63)

+ x6 + x4 + x3 + x+ 1 = 0,

with L(t) = 16t8 − 16t7 + 4t6 − 4t5 + 5t4 − 2t3 + t2 − 2t+ 1.

B.(III-44)

y6 + xy5 + y4 + (x3 + 1)y3 + (x2 + x)y2 + x5y + x6 + x4 + x3 + x+ 1 = 0, (4.64)

with L(t) = 16t8 − 16t7 + 4t6 − 4t5 + 5t4 − 2t3 + t2 − 2t+ 1.

B.(III-45)

y6 + xy5 + xy4 + x3y3 + x3y2 + (x5 + x2 + x+ 1)y + x6 + x5 + 1 = 0, (4.65)

with L(t) = 16t8 − 16t7 + 4t6 − 4t5 + 5t4 − 2t3 + t2 − 2t+ 1.

B.(III-46)

xy4 + xy3 + (x3 + x2 + 1)y2 + (x3 + x+ 1)y + x5 + x3 + x2 + x+ 1 = 0, (4.66)

with L(t) = 16t8 − 16t7 + 4t6 − 4t5 + 5t4 − 2t3 + t2 − 2t+ 1.
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4.3.3 Genus 5

Let gK = 5 and q = 2. By Theorem 2.4, we have n1 = 0, n5 − 2n3 + n2n3 = 3 and

n5 6= 0. Since the extension is non-quadratic, n2 ≤ 3. Thus one of the following

conditions holds:

(a) n1 = 0, n2 = 0, n5 = 3 + 2n3,

(b) n1 = 0, n2 = 1, n5 = 3 + n3,

(c) n1 = 0, n2 = 2, n5 = 3,

(d) n1 = 0, n2 = 3, n5 = 3− n3, 0 ≤ n3 ≤ 2.

Let An denote the order of the set of positive divisors of K of degree n. Assume K

has a positive divisor M of degree 3. By Clifford’s Theorem, dim(M) is at most 2. By

Lemma V.1.4 of [32], A3 ≤ 3(22−1). Hence n3 is at most 9. Similarly, A4 ≤ 3.(23−1)

and n4 is at most 21. Considering the possibilities for ni for i = 1, ..., 5, we have

723 distinct L-polynomials. Calculating the roots of L-polynomials for each case in

Magma, except the following cases, we find that L-polynomial has a root with absolute

value different from 1/
√

2. So, it remains only the following cases to study:

(1) n2 = 0, n3 = 0, n4 = 8,

(2) n2 = 0, n3 = 1, n4 = 5,

(3) n2 = 0, n3 = 1, n4 = 6,

(4) n2 = 0, n3 = 2, n4 = 2, n6 = 6,

(5) n2 = 0, n3 = 2, n4 = 3, n6 = 3,

(6) n2 = 0, n3 = 3, n4 = 1, n5 = 9, n7 = 18,

(7) n2 = 1, n3 = 0, n4 = 3,

(8) n2 = 1, n3 = 0, n4 = 4,

(9) n2 = 1, n3 = 1, n4 = 0, n5 = 4,

(10) n2 = 1, n3 = 1, n4 = 1, n5 = 4.
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• If K has a g13, then it has a trisecant in the canonical embedding and it can be

represented as a plane quintic with one node by Exercise 5.5 of § IV of [12]. We

assume K has a g13. Since n1 = 0, g13 is a set of order 3, consisting of mutually

equivalent places of K of degree 3. Then n3 ≥ 3 and we are in case (6):

n1 = 0, n2 = 0, n3 = 3, n4 = 1, n5 = 9, n7 = 18. (4.67)

Let g13 = {Pi ∈ PK : degPi = 3, i = 1, 2, 3} and let A5 := {D ∈ Div(K) : D ≥

0, deg(D) = 5}. Since n1 = n2 = 0, all divisors in A5 are places of K of degree

5. Then, A5 = {Qi ∈ PK : degQi = 5, i = 1, ..., 9}. By Lemma V.1.4 of [32],

| Qi |= 2dim(Qi) − 1. Since | A5 |= 9, | Qi |= 1, 3 or 7. Hence, we assume Q1, Q2, Q3

are in three distinct divisor classes. Since hK = 3, P1 + Qi is in the canonical class

for some i = 1, 2, 3. Let W be a canonical divisor of K and P1 +Q1 be equivalent to

W. Then by Riemann-Roch Theorem,

dim(Q1) = deg(Q1)− (g − 1) + dim(P1).

That is, dim(Q1) = 3. Let {1, x, y} be a basis of L(Q1). Since [K : F2(x)] =

[K : F2(y)] = 5, F2(x, y) is K or F2(x) = F2(y). The second case implies y =

(ax + b)/(cx + d) where ad − bc 6= 0, a, b, c, d ∈ F2. Clearly, this is not possible and

so K = F2(x, y). Let S := {xiyj : 0 ≤ i + j ≤ 6, j ≤ 5, i, j ∈ Z}. Then, S is a set

of cardinality 27 in L(6Q1) whose dimension is 26. So S is linearly dependent on F2,

that is,

(a0 + a1x)y5 + (b0 + b1x+b2x
2)y4 + (c0 + c1x+ c2x

2 + c3x
3)y3 + (d0 + · · ·+ d4x

4)y2+

(4.68)

(e0 + · · ·+ e5x
5)y + (f0 + · · ·+ f6x

6) = 0,

where ai, bi, ci, di, ei, fi ∈ F2. Since n1 = n2 = 0, y = 0 implies any polynomial of

degree less than or equal to 2 does not divide f0+f1x+f2x
2+f3x

3+f4x
4+f5x

5+f6x
6

and x = 0, y = 1 implies a0 + b0 + c0 + d0 + e0 = 0. Using Magma, we have seen that

the equation 4.68 does not give a function field satisfying the conditions in (∗) and

hence K does not have a g13.

• If K does not have a g13, then by Exercise 5.5 of § IV.5 of [12], its canonical model

in P 4(F2) is a complete intersection of three quadric hypersurfaces.
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Let PGL(F2, 5) be the general linear group of 5× 5 invertible matrices whose entries

are in F2.

| PGL(F2, 5) | = (25 − 1)(25 − 2)(25 − 4)(25 − 8)(25 − 16)

= 9999360.

Let S be the set of nonzero quadrics with the indeterminates x,y,z,t,u over F2. |

S |= 215 − 1. By Theorem 6.30 of [20], up to isomorphism, there exists a unique

nondegenerate quadric, that is, k0 : xy + zt + u2 = 0. Let G be a subgroup of

PGL(F2, 5) fixing k0. Then | G |= 720. Thus the number of nondegenerate quadrics

is PGL(F2, 5)/G = 13888. Nonzero degenerate quadrics are isomorphic to one of

the following quadrics, that is, if s is a nonzero degenerate quadric, then there exists

σ ∈ PGL(F2, 5) such that σ(s) is equal to one of the following quadrics:

k1 : xy+zt = 0, 1152 automorphisms of PGL(F2, 5) fix k1 and GL(F2, 5)/1152 = 8680

quadrics are isomorphic to k1.

k2 : xy+zt+z2+t2 = 0, 1920 automorphisms of PGL(F2, 5) fix k2 andGL(F2, 5)/1920 =

5208 quadrics are isomorphic to k2.

k3 : xy+z2 = 0, 2304 automorphisms of PGL(F2, 5) fix k3 and GL(F2, 5)/2304 = 4340

quadrics are isomorphic to k3.

k4 : xy = 0, 21504 automorphisms of PGL(F2, 5) fix k4 and 465 quadrics are isomor-

phic to k4.

k5 : xy + x2 + y2 = 0, 64512 automorphisms of PGL(F2, 5) fix k5 and 155 quadrics

are isomorphic to k5.

k6 : x2 = 0, 322560 automorphisms of PGL(F2, 5) fix k6 and 31 quadrics are isomor-

phic to k6.

Sum of all the above numbers of quadrics gives the order of S, as expected.

We are interested in the intersection of three linearly independent quadrics l1, l2 and

l3, satisfying the following conditions:
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n1 = 0, n2 ≤ 1, n3 ≤ 3, n4 ≤ 8, n5 ≤ 9. (4.69)

Let at least one of li be nondegenerate. Assume l1 is k0. Then there exist 215 − 1

possibilities for l2. Up to isomorphims, we have 152 possibilities for l2. That is, for a

given quadric l2, if G1 is a subgroup of G, fixing l2, then | G | / | G1 | quadrics are

isomorphic to l2 while G1 fixes l1.

Let all of li be degenerate and at least one of them be degenerate in four indetermi-

nates. Then it is k1 or k2. If l1 is k1, then there exist 215 − 1 − 13888 possibilities

for l2. Up to isomorphims, we have 112 possibilities for l2. If l1 is k2, again, we have

215 − 1− 13888 possibilities for l2. Up to isomorphims, we have 88 possibilities for l2.

If at least one of them is degenerate in three indeterminates and the others are

degenerate in at most three indeterminates, we assume l1 is k3. Then there exist

215 − 1 − 13888 − 860 − 5208 possibilities for l2. Up to isomorphims, we have 59

possibilities for l2.

If at least one of them is degenerate in two indeterminates and the others are degen-

erate in at most two indeterminates, then the first one is k4 or k5. If l1 is k4, there

exist 465 + 155 + 31 possibilities for l2. Up to isomorphims, we have 14 values for l2.

If l1 is k5, we have the same number of possibilities for l2. Up to isomorphims, we

have 9 possibilities for l2.

If all of the quadrics are degenerate in at most one indeterminate, we assume l1 is k6.

We have 31 possibilities for l2. Up to isomorphims, we have 2 values for l2.

For nondegenerate case, we have 556 distinct solutions for l3 satisfying the given

condition. Up to coordinate change of the projective space P4(F2), we have 125

solutions which are given in Appendix A and for the degenerate quadric l1 : xy+zt = 0,

we have 32 values for l3 with class number three. First we eliminate the nondegenerate

quadrics among them, then up to coordinate change, there exist 5 solutions, given in

Appendix A. For the degenerate quadric l1 : xy+zt+z2+t2 = 0, we have 424 solutions

for l3. Among these values for l3, we eliminate the nondegenerate quadrics and the

quadrics which are isomorphic to xy + zt = 0, up to change of coordinates. Then up

to isomorphism of the projective space, we get 25 solutions. These are presented in
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Appendix A, as well. For other cases, checking all 215 − 1 possible values for l3 in

magma, we get no solution satisfying 4.69.

4.3.4 Genus 6

Let gK = 6 and q = 2. We have n1 = 0, n6−2n4 +
n3+n2

3
2 = 3, n5 ≤ 6 and n2 = 0. We

have A3 ≤ 9 and A4 ≤ 21 by Clifford’s Theorem and Lemma V.1.4 of [32]. Hence n4

is at most 21 and n3 is at most 9. Then we have 1540 distinct L-polynomials. Using

Magma, we calculate the roots of them. For each case L-polynomial has a root with

absolute value different from 1/
√

2. Hence there exists no non-quadric function field

of genus 6 with class number 3.
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CHAPTER 5

CYLOTOMIC FUNCTION FIELDS WITH CLASS

NUMBER THREE

5.1 Construction of cyclotomic function fields

Let k = Fq(t) be the rational function field over the finite field Fq where q is a prime

power and let A = Fq[t] be the ring of polynomials. Let k̄ be the algebraic closure of

k. We define an action of A on the additive group k̄+ of k̄

A× k̄+ → k̄+

(N(t), u)→ uN(t).

We take Φ, µt ∈ End(k̄+) defined by Φ(u) = uq and µt(u) = tu. Using these endo-

morphisms, we define uN(t) := N(Φ + µt)(u). Clearly ua = a.u for all a ∈ Fq.

Let N(t) = adt
d + ad−1t

d−1 + · · ·+ a1t+ a0, then

uN(t) = (ad(Φ + µt)
d + · · ·+ a1(Φ + µt) + a0I)(u).

With the help of this action, we consider k̄+ as an A-module.

If we assume deg(N) = d,

uN(t) =
d∑
i=0

(
N(t)

i

)
uq

i
,

where
(
N(t)
i

)
is a polynomial in A of degree (d−i)qi satisfying the following properties:

(i)
(
N(t)
0

)
= N(t),

(ii)
(N(t)

d

)
is the leading coefficient of N(t).
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To extend this polynomial for all i ∈ Z, we define

(iii)
(
N(t)
i

)
= 0 for i > d or i < 0.

Moreover,

(
aN(t)+bM(t)

i

)
= a

(
N(t)
i

)
+ b
(
M(t)
i

)
for M(t), N(t) ∈ A and a, b ∈ Fq,

and
(
td+1

i

)
= t
(
td

i

)
+
(
td

i−1
)q

.

Since char(k) = p and q is a p-power and d
du(uN(t)) = N(t) is nonzero, uN(t) is a

separable polynomial in u of degree qd over A.

Let ΛN be the set of roots of uN(t). For N 6= 0, ΛN is a finite cyclic A-module

with qd elements and ΛN ∼= A/N as an A-module and KN = k(ΛN ) is called the

cyclotomic function field associated to N with the constant field Fq. Let K+
N be its

maximal real subfield , that is, the maximal subfield of KN in which infinite prime ∞

splits completely.

Example 5.1.1 Let N(t) = 2t+ 1 ∈ F3[t] be a polynomial, then

uN(t) = (2(Φ + µt) + I)(u)

= 2(u3 + tu) + u

= u(2u2 + 2t+ 1)

uN(t) = 0⇒ u = 0 or u = ±
√
−t− 1/2.

That is KN = F3(t)(
√
−t− 1/2) which is a totally imaginary extension of k.

Proposition 5.1 (1.4, [13]) Let N = a
∏
Pn be a factorization of the polynomial

N ∈ A into the powers of monic irreducible polynomials. Then

ΛN =
∑
P |N

ΛPn

where ΛPn is the set of the roots of uP
n(t) and the sum is direct as a sum of A−modules.

Proposition 5.2 (1.5, [13]) If N = Pn where P is an irreducible polynomial in A,

then ΛN is a cyclic A-module.
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Definition 5.1.2 If N ∈ A, N 6= 0, then Φ(N) is the order of the group of units of

A/(N). �

The cyclic A-module ΛN has exactly Φ(N) generators. If λ is a generator of ΛN , then

ΛN = {λM |M ∈ A}. Clearly ΛN =< λM > if and only if (M,N) = 1.

Proposition 5.3 (2.2, [13]) Suppose N = Pn where P is a monic irreducible poly-

nomial in t with degP = d. Then every prime divisor of K except P and the infinite

place∞ are unramified in KN , and the ramification index of P is Φ(N) = qdn−qd(n−1).

Proposition 5.4 (2.4, [13]) If N = Pn, where P is a monic irreducible in A, then

f(u) = uP
n
/uP

n−1
is an Eisenstein polynomial over A at P.

Theorem 5.5 (3.1, [13]) Let N ∈ A, N 6= 0. Then ∞ is tamely ramified in KN/k.

Theorem 5.6 (3.2, [13]) Let N = Pn where P is a monic irreducible polynomial

in A with degP = d. Then, the infinite place ∞ splits into Φ(N)/(q − 1) prime

divisors in KN . The ramification index e(∞,KN/k) is q− 1 and the degree of inertia

f(∞,KN/k) is 1.

5.2 Character groups

Definition 5.2.1 Let M be a polynomial in A. A Dirichlet character modulo M is a

function from A→ C such that

(i) χ(A+BM) = χ(A) for all A,B ∈ A.

(ii) χ(A)χ(B) = χ(AB) for all A,B ∈ A.

(iii) χ(A) 6= 0 if and only if (A,M) = 1.

�

A Dirichlet character modulo M induces a homomorphism from (A/MA)∗ → C∗ and

conversely, given such a homomorphism, there is a unique corresponding Dirichlet
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character. The trivial Dirichlet character χ0 is defined by χ0(A) = 1 if (A,M) = 1

and χ0(A) = 0 if (A,M) 6= 1. Since for any A ∈ A such that (A,M) = 1, Ak ≡ 1

modulo M for some k ∈ Z+ and χ(Ak) = 1, we deduce that χ(A) is a root of unity.

There are exactly Φ(M) Dirichlet characters modulo M . This number is equal to the

order of the group (A/MA)∗. Let XM be the set of Dirichlet characters modulo M. If

χ, ψ ∈ XM , we define their product χψ by the formula χψ(A) = χ(A)ψ(A). By this

product, XM is a group. The identity of this group is the trivial character χ0. The

inverse of a character is given by χ−1(A) = χ(A)−1 if (A,M) = 1, and χ−1(A) = 0 if

(A,M) 6= 1.

Moreover, XM is isomorphic to (A/MA)∗.

If χ ∈ XM , let χ(A) := χ(A), the complex conjugate of χ(A). Since χ(A) is a root of

unity or 0, χ = χ−1.

Proposition 5.7 (4.2, [26]) Let χ and ψ be two Dirichlet characters modulo M and

A and B two elements of A relatively prime to M . Then we have the orthogonality

relations:

(i)
∑
A

χ(A)ψ(A) = Φ(M)δ(χ, ψ).

(ii)
∑
χ
χ(A)χ(B) = Φ(M)δ(A,B).

The first sum is over any set of representatives for A/MA and the second sum is over

all Dirichlet characters modulo M . By definition, δ(χ, ψ) = 0 if χ 6= ψ and 1 if χ = ψ.

Similarly, δ(A,B) = 0 if A 6= B and 1 if A = B.

5.3 Cyclotomic function fields and their subfields

The infinite prime divisor of k associated to (1/T ) is denoted by ∞. Throughout this

chapter, we assume K is a finite abelian extension of k such that K ⊆ KN for some

N ∈ A. Then K+ = K ∩K+
N is the maximal real subfield of K.

Definition 5.3.1 The conductor of K is the monic polynomial N such that KN is

the smallest cyclotomic function field containing K. �
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Definition 5.3.2 K/k is called a real extension, if JK(:= Gal(K/K+) =< 1 >,

and imaginary otherwise. If JK = Gal(K/k), then K is called a totally imaginary

extension.

�

Let K be a subfield of a cyclotomic function field. Let us denote by XK the character

group of Gal(K/k). For a fixed monic irreducible polynomial Q ∈ Fq[T ], let YK =

{χ ∈ XK : χ(Q) 6= 0} and ZK = {χ ∈ XK : χ(Q) = 1}. By Chapter 3 of [34], we have

[YK : ZK ] = f((Q),K/k), the inertia degree of the associated place of Q in K/k and

| ZK |= g(Q,K/k), the number of primes of K lying above (Q).

Definition 5.3.3 Let F ′/K be a finite separable extension of F/K. Then the divisor

D(F ′/F ) :=
∑
P∈PF

∑
P ′|P

d(P ′|P )P ′

is called the different of F ′/F . If P ′|P is tamely ramified, then d(P ′|P ) = e(P ′|P )−1.

Otherwise

d(P ′|P ) =

∞∑
n=0

(|G0(P ′, F ′/F )| − [G0(P ′, F ′/F ) : Gn(P ′, F ′/F )]),

where Gn(P ′, F ′/F ) denotes the nth upper ramification group of P ′ in F ′. �

Theorem 5.8 (Hurwitz Genus Formula) Let L/K be a finite abelian extension

with the same constant field. Then we have

2gL − 2 = (2gK − 2)[L : K] + deg(D(L/K))

where D(L/K) is the different of L/K. Especially gL ≥ gK .

In this chapter, we determine all subfields of the cyclotomic function fields with class

number three. Using Theorem 2.4,

(i) q = 2, 1 ≤ gK ≤ 6,

(ii)q = 3, 1 ≤ gK ≤ 2,

(iii)q = 5, 7, gK = 1.
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Let S∞(K) denote the set of prime divisors of K lying above∞. Then n1 ≥ |S∞(K)| =

[K+ : k] ≥ 1. For q = 2, K = K+, then n1 ≥ |S∞(K)| = [K : k] ≥ 2 in this case.

Then by Theorem 2.4,

(A) gK = 1, (q = 2, 3, 5, 7, n1 = 3),

(B) gK = 2, (q = 2, n1 = 2, n2 = 2) or (q = 3, n1 = 1, n2 = 5 or n1 = 2, n2 = 3),

(C) gK = 3, q = 2, n1 = 2, n3 + 2n2 = 3.

For the last case, 2 = n1 ≥ |S∞(K)| = [K : k] ≥ 2, that is, the extension is quadratic

and∞ splits. That implies (T ) and (T +1) are inert, then n2 ≥ 2 and n3 ≤ −1, which

is not possible. Hence we skip this case.

5.4 Genus one case:

Proposition 5.9 Let K/k be a real extension of genus 1 with class number 3, then

n1 = 3 ≥ [K : k] ≥ 2 and K satisfies one of the following cases:

(i) q = 2, K is a quadratic extension of k with conductor P 4, degP = 1,

(ii) q = 7, K = k( 3
√
P ), degP = 3,

(iii) q = 3, 5, 7, K = k(
√
P1P2), degP1 = 1, degP2 = 3.

Proof. Let K/k be a real extension of genus 1 with class number 3. Then K = K+

and 3 ≥ [K : k] ≥ 2 and by Theorem 3.3 and 3.4 of [1], K satisfies one of the following

conditions:

if [K : k] is a p-power where p = char(k),

(a) p = 2, K/k is a quadratic extension, cond(K) = P 4, degP = 1,

(b) p = 2, K/k is a quartic extension, cond(K) = P 3, degP = 1,

(|n1 ≥ S∞(K)| = [K : k] = 4, which contradicts hK = 3)

(c) p = 2, K/k is a quadratic extension, cond(K) = P 2, degP = 2.
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(|S∞(K)| = [K : k] = 2 = hK − 1. That means there exits a ramified finite prime of

degree 1, which is not possible.)

(d) p = 3, K/k is a cubic extension, cond(K) = P 3, degP = 1,

(|S∞(K)| = [K : k] = 3 and since P is ramified hK = n1 ≥ 4)

(e) p = 2, K/k is quadratic or biquadratic cond(K) = P 2
1P

2
2 , degPi = 1.

(Similarly, n1 ≥ 4 for this case.)

if [K : k] is relatively prime to p where p = char(k),

(a’) K = k( 3
√
P ), degP = 3, q ≡ 1 (mod 3),

(b’) K = k(
√
P ), degP = 4, q odd,

(That means hK = n1 is even.)

(c’) K = k(
√
−P1

4
√
P2), degP1 = 1, degP2 = 2, q ≡ 1 (mod 4),

(n1 ≥ |S∞(K)| = [K : k] = 4.)

(d’) K = k( 3
√
−P 2

1P
2
2 ), degP1 = 1, degP2 = 2, q ≡ 1 (mod 3),

(|S∞(K)| = [K : k] = 3, but P1 is totally ramified and n1 ≥ 4. )

(e’) K = k( 3
√
−P 2

3P1,
3
√
−P 2

3P2) or k( 3
√
P1P2P3), degPi = 1, q ≡ 1 (mod 3),

(n1 ≥ |S∞(K)| = [K : k] ≥ 9 for the first case. For the second case, |S∞(K)| = [K :

k] = 3, but n1 ≥ 6. )

(f’) K = k(
√
P1P3,

3
√
−P2P 2

3 ), degPi = 1, q ≡ 1 (mod 6),

(n1 ≥ |S∞(K)| = [K : k] ≥ 4. )

(g’) K = k(
√
P1P3,

4
√
P2P 3

3 ) or k( 4
√
P 2
1P2P3), degPi = 1, q ≡ 1 (mod 4),

(n1 ≥ |S∞(K)| = [K : k] ≥ 4.)

(h’)K = k(
√
P1P2), degP1 = 1, degP2 = 3, q odd,

(i’)K = k(
√
P1P2) or k(

√
P1,
√
P2), degPi = 2, q odd,
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(In this case n1 is even )

(j’) K = k(
√
P1P2,

√
P3) or k(

√
P1P2P3), degP1 = degP2 = 1, degP3 = 2, q odd,

(n1 ≥ 4)

(k’) K = k(
√
P1P2,

√
P1P3,

√
P1P4) or k(

√
P1P2,

√
P3P4) or k(

√
P1P2P3P4), degPi =

1, q odd,

(n1 ≥ 4 )

Hence, the result follows. �

Using the conditions of the previous proposition, we get the following result:

Theorem 5.10 Let K/k be a real extension of genus 1 with class number 3. Then K

is one of the following function fields up to isomorphism (x→ x+ a, a ∈ F∗q):

(1) q = 3, K = k(y) such that y2 = T (T 3 + 2T 2 + T + 1) or y2 = T (T 3 + T 2 + T + 2)

with L(t) = 3t2 − t+ 1

(2) q = 5, K = k(y) satisfying one of the following equations:

(i)y2 = T (T 3 − T 2 − T − 1),

(ii)y2 = T (T 3 + 2T 2 + T + 3),

(iii)y2 = T (T 3 + 3T 2 + T + 2),

(iv) y2 = T (T 3 + T 2 − T + 1).

For each one, L(t) = 5t2 − 3t+ 1.

(3)q = 7, K = k(y) such that y2 = T (T 3+2) or y2 = T (T 3+5) with L(t) = 7t2−5t+1.

(4)q = 2, K = k(y) such that y2 + y = 1/T 3 with L(t) = 2t2 + 1

(5) q = 7, K = k(y) such that y3 = T 3 + 3 or y3 = T 3 + 4 with L(t) = 7t2 − 5t+ 1.

Proof. Clearly, K satisfies one of the conditions of Proposition 5.9:

(i)q = 2, K is a quadratic extension of k with conductor P 4, degP = 1:
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Then |S∞(K)| = [K : k] = 2 = n1 − 1 and one of the finite places of k of degree one

is ramified. Up to isomorphism, let (T ) be ramified. Using the previous results, up

to isomorphism, K = F2(x, y) with y2 + y = x3, where ∞ is ramified and (x) splits

in K/F2(x). Using the substitution, x → 1/T , we get K = k(y) with y2 + y = 1/T 3

where ∞ splits and (T ) is ramified in K/k.

By Hurwitz Genus Formula, we check our result:

0 = −2[K : k] + deg(Diff(K/k)).

That is, d((T ),K/k) = 4 and vT (u) = −3, where u = 1/T 3. Since u 6= w2−w for any

w ∈ F2(T ), by Artin-Schreier extension, y2 + y = u where (T ) is totally ramified in

K/k.

(ii) q = 7, K = k( 3
√
P ), degP = 3:

Let XKP
, XK be the character groups of KP and K, respectively. XKP

∼= (A/P )∗ is a

cyclic group of order 73−1. Let χ be a generator, then XK =< χa > for some integer

a and the order of χa is [K : k] = 3. Hence we may assume XK =< χ114 >. Assume

YK = {χ ∈ XK : χ(Q) 6= 0} and ZK = {χ ∈ XK : χ(Q) = 1} for an irreducible

polynomial Q. Then, we have [YK : ZK ] = f((Q),K/k), the inertia degree of the

associated place of Q in K/k and | ZK |= g(Q,K/k), the number of primes of K lying

above (Q). Since |S∞(K)| = [K : k] = 3, none of the finite places of k of degree one

splits in K/k. That is, we have

χ114(T + a) 6= 1

for all a ∈ F7. Up to isomorphism T → T + α, α ∈ F∗7, we have 16 possibilities for P.

Among them, for P = T 3 + 3 and T 3 + 4, the result follows.

Let P = T 3 + 3, then XKP
=< χ > and T + 1 is a primitive element of (F7(T )/P )∗.

We have

χ114(T ) = χ(T 114) = χ(T 6) = χ(2) = exp(4πi/3), χ114(T + 1) = exp(2πi/3),

χ114(T + 2) = exp(2πi/3), χ114(T + 3) = χ((T + 3)114) = χ(2) = exp(4πi/3),

χ114(T + 4) = χ(4) = exp(2πi/3), χ114(T + 5) = χ(2) = exp(4πi/3) = χ114(T + 6).

88



Hence all finite places of k of degree one are inert and

K = k(
3
√
T 3 + 3). (5.1)

Similarly, for P = T 3 + 4, χ(T + a) 6= 1 for all a ∈ F7 and

K = k(
3
√
T 3 + 4). (5.2)

(iii) q = 3, 5, 7, K = k(
√
P1P2), degP1 = 1, degP2 = 3:

• q = 3

|S∞(K)| = [K : k] = 2 = n1 − 1 and one of the finite places of k of degree one,

say P1 is ramified and all other places of degree one are inert, except ∞. WLOG,

assume P1 = (T ) and let the associated polynomial of P2 be T 3 + aT 2 + bT + c where

a, b, c ∈ F3. Using the results of [18],

K = k(y), with y2 = T (T 3 + aT 2 + bT + c). (5.3)

Let P1P2(T ) denote the product of the associated polynomials of P1 and P2, respec-

tively. P1P2(1) = P1P2(2) = 2 ∈ F∗3\F∗23 and P2 is irreducible. By Proposition 3.2, we

have b = 1, a = 2, c = 1 or b = 1, a = 1, c = 2. That is,

y2 = T (T 3 + 2T 2 + T + 1) or y2 = T (T 3 + T 2 + T + 2). (5.4)

• q = 5

Similarly, K = k(y) where y2 = P1P2. Assume P1 = (T ) and P2 = T 3 + aT 2 + bT + c

where a, b, c ∈ F5. Also P1P2(α) = 2 or 3 for α ∈ F5. Checking all possibilities we

have K = k(y) satisfying one of the following equations:

y2 = T (T 3 − T 2 − T − 1), (5.5)

y2 = T (T 3 + 2T 2 + T + 3), (5.6)

y2 = T (T 3 + 3T 2 + T + 2), (5.7)

y2 = T (T 3 + T 2 − T + 1). (5.8)

• q = 7
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K = k(y) where y2 = P1P2. Assume P1 = (T ) and P2 = T 3 + aT 2 + bT + c where

a, b, c ∈ F7. Also P1P2(α) = 3, 5 or 6 for α ∈ F7. Checking all possibilities we have

K = k(y) where

y2 = T (T 3 + 2) or y2 = T (T 3 + 5). (5.9)

�

Remark 5.11 (Lemma 4.1, [1]) Let K/k be an imaginary extension of k with gK =

1. Then gK+ = 0.

Proposition 5.12 Let K/k be a totally imaginary extension of genus 1 with class

number 3, then K satisfies one of the following cases:

(i) q = 7, K = k( 3
√
P1P2), degPi = 1,

(ii) q = 7, K = k(
√
−P1,

3
√
−P2), degPi = 1,

(iii) q = 3, 5, 7, K = k(
√
−P ), degP = 3.

Proof. We have |S∞(K)| = 1 = n1 − 2. By Theorem 4.2 of [1], K is one of the

following function fields:

(a) K = k( 3
√
−P 2), degP = 2, q ≡ 1 (mod 3), (|S∞(K)| = 1 and none of finite places

of k of degree one is ramified. If one of them splits, n1 ≥ 4. Otherwise, n1 = 1.)

(b) K = k( 3
√
P1P2), degPi = 1, q ≡ 1 (mod 3),

(c) K = k(
√
−P1

4
√
−P2), degPi = 1, q ≡ 1 (mod 4),

(While P2 is totally ramified, P1 is not totally ramified, that is n1 = 2 or n1 ≥ 4.)

(d) K = k(
√
−P1,

3
√
−P2), degPi = 1, q ≡ 1 (mod 6),

(e) K = k(
√
−P ), degP = 3, q odd,

(f) K = k(
√
−P1P2), degP1 = 1, degP2 = 2, q odd,

(Similarly, P1 is totally ramified and n1 = 2 or n1 ≥ 4.)

(g) K = k(
√
−P1P2P3), degPi = 1, q odd,
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(n1 ≥ 4.) �

Theorem 5.13 Let K/k be a totally imaginary extension of genus 1 with class num-

ber 3. Then,up to isomorphism (x→ x+a, a ∈ F∗q), K is one of the following function

fields:

(1) q = 7, K = k(y) such that y3 = T (T +3) or y3 = T (T +4) with L(t) = 7t2−5t+1.

(2) q = 7, K = k(y, z) such that y2+T = 0 and z3+T+4 = 0 with L(t) = 7t2−5t+1.

(3) q = 3, K = k(y) such that y2 + T 3 + 2T 2 + 1 = 0 with L(t) = 3t2 − t+ 1.

(4) q = 5, K = k(y) such that y2 + T 3 + 4T + 2 = 0 or y2 + T 3 + 4T + 3 = 0 with

L(t) = 5t2 − 3t+ 1.

(5) q = 7, K = k(y) such that y2 + T 3 + 3 = 0 with L(t) = 7t2 − 5t+ 1.

Proof. Clearly, K satisfies one of the conditions of Proposition 5.12:

(i) q = 7, K = k( 3
√
P1P2), degPi = 1: |S∞(K)| = 1 and P1 and P2 are totally ramified.

Then all of the other finite places of k of degree 1 are inert in K/k. Assume P1 = (T )

and P2 = (T + a) for a ∈ F∗7. Let XKPi
, XK be the character groups of KPi and K,

respectively. XKPi

∼= (A/Pi)∗ is a cyclic group of order 6. Let χi be the generator of

XKPi
, then XK =< χ2

1χ
2
2 > where χi(3) = exp(2πi/6).

• Let a = 1, then χ2
1χ

2
2(T + 3) = 1 and n1 ≥ 6.

• Let a = 2, then χ2
1χ

2
2(T + 1) = 1 and n1 ≥ 6.

• Let a = 3, then χ2
1χ

2
2(T+1) = exp(10πi/3), χ2

1χ
2
2(T+2) = exp(4πi/3),χ2

1χ
2
2(T+4) =

exp(2πi/3),χ2
1χ

2
2(T + 5) = exp(2πi/3),χ2

1χ
2
2(T + 6) = exp(2πi/3) and all of the places

of degree one, except (T ) and (T + 3) are inert. That is,

K = k(y) where y3 = T (T + 3). (5.10)

• Let a = 4, then χ2
1χ

2
2(T +1) = exp(2πi/3), χ2

1χ
2
2(T +2) = exp(2πi/3),χ2

1χ
2
2(T +3) =

exp(2πi/3),χ2
1χ

2
2(T +5) = exp(10πi/3),χ2

1χ
2
2(T +6) = exp(4πi/3) and all of the places

of degree one, except (T ) and (T + 4) are inert. That is,

K = k(y) where y3 = T (T + 4). (5.11)
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• Let a = 5, then χ2
1χ

2
2(T + 6) = 1 and n1 ≥ 6.

• Let a = 6, then χ2
1χ

2
2(T + 2) = 1 and n1 ≥ 6.

(ii) q = 7, K = k(
√
−P1,

3
√
−P2), degPi = 1: Let P1 = (T ) and P2 = (T + a) for a ∈

F∗7 Using the notation of part (i), XK =< χ3
1, χ

2
2 >. Since n1 = 3, P1 is inert in

k( 3
√
−P2)/k, P2 splits in k(

√
−P1)/k and all the other finite places of k of degree one

do not split in K/k.

• Let a = 1, then χ2
2(T ) = 1 and n1 ≥ 4.

• Let a = 2, then χ3
1(T + 1) = 1 = χ2

2(T + 1) and n1 ≥ 7.

• Let a = 3, then χ3
1(T + 2) = 1 = χ2

2(T + 2) and n1 ≥ 7.

• Let a = 4, then χ2
2(T + 1) = exp(2πi/3), χ2

2(T + 2) = exp(10πi/3),χ3
1(T + 3) =

−1,χ3
1(T+5) = −1,χ2

2(T+6) = exp(4πi/3). Also χ3
1(T+4) = 1 and χ2

2(T ) = exp(πi/3)

That is,

K = k(y, z) where y2 + T = 0 and z3 + T + 4 = 0. (5.12)

• Let a = 5, then χ3
1(T + 4) = 1 = χ2

2(T + 4) and n1 ≥ 7.

• Let a6, then χ2
2(T ) = 1 and n1 ≥ 4.

(iii) q = 3, 5, 7, K = k(
√
−P ), degP = 3:

• Let q = 3. Up to isomorphism (T → T + a, a ∈ F ∗3 ) there exist four possibilities

for P. These are T 3 + 2T + 1, T 3 + 2T + 2, T 3 + T 2 + 2 and T 3 + 2T 2 + 1. Since

|S∞(K)| = 1, one of the finite places of k of degree one splits and the others are inert

in K/k.

(a) Let P = T 3 + 2T + 1, then (F3(T )/P )∗ =< T >. Let XKP
=< χ > where

| XKP
|= 33 − 1. XK =< χa > for some a ∈ Z and | XK |= [K : k] which is equal to

2. Since the order of χa is 2, we may assume XK =< χ13 > and χ13(T ) = χ13(T+1) =

χ13(T + 2) = −1. Hence n1 = 1.

(b) Let P = T 3 + 2T + 2, then (F3(T )/P )∗ =< −T >. Let XKP
=< χ >, we have

XK =< χ13 > and χ13(T ) = χ13(T + 1) = 1. Thus n1 ≥ 5.
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(c) Let P = T 3 + T 2 + 2, then (F3(T )/P )∗ =< −T >. Let XKP
=< χ >, we have

XK =< χ13 > and χ13(T ) = χ13(T + 1) = 1. So n1 ≥ 5.

(d) Let P = T 3 + 2T 2 + 1, then (F3(T )/P )∗ =< T >. Let XKP
=< χ >, we have

XK =< χ13 > and χ13(T + 2) = 1 and χ13(T ) = χ13(T + 1) = −1. Hence n1 = 3 and

K = k(y) where

y2 + T 3 + 2T 2 + 1 = 0. (5.13)

• Let q = 5. Up to isomorphism (T → T + a, a ∈ F ∗5 ) we have 8 possibilities for P.

These are T 3 +T + 1, T 3 +T + 4, T 3 + 3T + 2, T 3 + 3T + 3, T 3 + 2T + 1, T 3 + 2T + 4,

T 3 +4T +2 and T 3 +4T +3. Since |S∞(K)| = 1, one of the finite places of k of degree

one splits and others are inert in K/k. Let XKP
=< χ > where | XKP

|= 53 − 1.

XK =< χa > for some integer a and | XK |= [K : k] which is equal to 2. That is,

order of χa is 2. So we may assume XK =< χ62 >.

(a) Let P = T 3 + T + 1, then χ62(T ) = χ62(T + 2) = 1 and n1 ≥ 5.

(b) For P = T 3 + T + 4, χ62(T ) = χ62(T + 2) = 1. Thus n1 ≥ 5.

(c) For P = T 3 + 3T + 2, χ62(T + 3) = χ62(T + 4) = 1 and n1 ≥ 5.

(d) Assume P = T 3 + 3T + 3, then χ62(T + 1) = χ62(T + 2) = 1 and n1 ≥ 5.

(e) Let P = T 3 + 2T + 1. Then χ62(T ) = χ62(T + 2) = 1 and n1 ≥ 5.

(f) For P = T 3 + 2T + 4, χ62(T + 1) = χ62(T ) = 1 and n1 ≥ 5.

(g) Let P = T 3 + 4T + 2. χ62(T ) = χ62(T + 1) = χ62(T + 3) = χ62(T + 4) = −1 and

χ62(T + 2) = 1. That is, n1 = 3 and K = k(y) where

y2 + T 3 + 4T + 2 = 0. (5.14)

(h) Let P = T 3 + 4T + 3. χ62(T ) = χ62(T + 1) = χ62(T + 2) = χ62(T + 4) = −1 and

χ62(T + 3) = 1. That is, n1 = 3 and K = k(y) where

y2 + T 3 + 4T + 3 = 0. (5.15)

• Let q = 7. Up to isomorphism (T → T + a, a ∈ F ∗7 ) we have 16 possibilities for

P. These are T 3 + 2, T 3 + 3, T 3 + 4, T 3 + 5, T 3 + T + 1, T 3 + T + 6, T 3 + 2T + 1,
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T 3+2T+6, T 3+3T+2, T 3+3T+5, T 3+4T+1, T 3+4T+6, T 3+5T+2, T 3+5T+5,

T 3 + 6T + 2, T 3 + 6T + 5. Since |S∞(K)| = 1, one of the finite places of k of degree

one splits and others are inert in K/k. Let XKP
=< χ > where | XKP

|= 73 − 1.

XK =< χa > for some a ∈ Z and | XK |= [K : k] which is equal to 2. That is, order

of χa is 2. Then we may assume XK =< χ171 >. Among them, the result follows for

only T 3 + 3. That is, let P = T 3 + T + 1, then (F7[T ]/P )∗ =< T + 1 >.

χ171(T+1) = χ171(T+2) = χ171(T+3) = χ171(T+4) = χ171(T+5) = χ171(T+6) = −1

and χ171(T ) = χ(T 171) = χ(1) = 1, that is n1 = 3 and K = k(y) where

y2 + T 3 + 3 = 0. (5.16)

�

Proposition 5.14 Let K/k be an imaginary (not totally imaginary) extension of

genus 1 with class number 3, then K satisfies one of the following cases:

(i) q = 7, K = k( 3
√
−P1,

3
√
−P2), degPi = 1,

(ii) q = 7, K = k(
√
−P1

6
√
−P2), degPi = 1.

Proof. We have K 6= K+ 6= k and |S∞(K)| ≥ 2. By Theorem 4.4 and by Theorem

4.6 of [1], K is one of the following function fields:

(a) K = k( 4
√
P ), degP = 2, q ≡ 1 (Mod 4),

(|S∞(K)| = 2, hence there exists Q ∈ Pk of degree 1 which is totally ramified. Then

Q|cond(K), which is a contradiction.)

(b) K = k( 3
√
−P 1, 3

√
−P2), degPi = 1, q ≡ 1 (mod 3),

(c) K = k( 3
√
−P 1, 4

√
P1P 3

2 ), degPi = 1, q ≡ 1 (mod 4),

(By the proof of Theorem 4.4 of [1], |S∞(K)| = 4 > hK .)

(d) K = k( 3
√
−P1

6
√
−P2), degPi = 1, q ≡ 1 (mod 6),

(By the proof of Theorem 4.4 of [1], |S∞(K)| = 3 and P2 is totally ramified, then

n1 ≥ 4. )
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(e) K = k(
√
−P1,

4
√
−P2), degPi = 1, q ≡ 1 (mod 4),

(By the proof of Theorem 4.4 of [1], |S∞(K)| = 2, hence there exists Q ∈ Pk of degree

1 which is totally ramified. Then Q|cond(K), which is a contradiction. )

(f) K = k( 3
√
−P1

6
√
−P2), degPi = 1, q ≡ 1 (mod 6),

(g) K = k( 3
√
−P , α), degP = 1, q = 4k, k ∈ Z+, α ∈ K+

P 2 , [k(α) : k] = 2,

(For q = 4k, k ∈ Z+, hK 6= 3.)

(h) K = k( 3
√
−P , β), degP = 1, q = 3k, k ∈ Z+, β ∈ K+

P 2 , [k(β) : k] = 3,

(By the proof of Theorem 4.4 of [1], |S∞(K)| = 3 and P is totally ramified and

n1 ≥ 4.)

(i) K = k(
√
−P 1,

√
−P2,

√
−P3), degPi = 1, q odd,

(By the proof of Theorem 4.4 of [1], |S∞(K)| = 4 > hK . )

(j) K = k(
√
−P ,

√
Q), degP = 1, degQ = 2,

(k) K = k(
√
−P ,

√
P1P2), degP = degPi = 1.

(For (j) and (k), |S∞(K)| = 2, hence there exists Q′ ∈ Pk of degree 1 which is totally

ramified. Then Q′|cond(K), which is a contradiction.) �

Theorem 5.15 Let K/k be an imaginary (not totally imaginary) extension of genus

1 with class number 3. Then, up to isomorphism(x→ x+ a, a ∈ F∗q), K is one of the

following function fields:

(1) q = 7, K = k( 3
√
−T , 3

√
−(T + 3)) with L(t) = 7t2 − 5t+ 1,

(2) q = 7, K = k( 3
√
−T , 3

√
−(T + 4)) with L(t) = 7t2 − 5t+ 1,

(3)q = 7, K = k(
√
−(T + 2) 6

√
−T ) with L(t) = 7t2 − 5t+ 1,

(4)q = 7, K = k(
√
−(T + 5) 6

√
−T ) with L(t) = 7t2 − 5t+ 1.

Proof.K satisfies one of the conditions of Proposition 5.14:
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(i) Let q = 7 and K = k( 3
√
−P1,

3
√
−P2) where degPi = 1. Without loss of generality,

we assume P1 = (T ) and P2 = (T + a) for some a ∈ F∗t . Since |S∞(K)| = 3, all places

of k of degree one do not split in the extension. Let XKPi
denote the character group

of KPi for i = 1, 2. Let XKPi
=< χi >, then o(χi) = 6 and XK =< χ2

1, χ
2
2 >. Since

(F7(T )/Pi)
∗ ∼= F∗7, we define χi such that χi(3) = exp(2πi/6) for i = 1, 2.

For a = 1, χ2
1(T + 1) = 1, then n1 ≥ 6.

For a = 2, χ2
1(T + 1) = χ2

2(T + 1) = 1, then n1 ≥ 12.

For a = 3, χ2
2(T + 1) = exp(10πi/3) 6= 1, χ2

1(T + 2) = exp(8πi/6) 6= 1, χ2
1(T +

3) = exp(4πi/6) 6= 1, χ2
1(T + 4) = exp(8πi/3) 6= 1, χ2

2(T + 5) = exp(4πi/3) 6= 1,

χ2
2(T + 6) = exp(4πi/6) 6= 1. Hence none of them splits and

K = k( 3
√
−T , 3

√
−(T + 3)). (5.17)

For a = 4, χ2
2(T + 1) = exp(8πi/3) 6= 1, χ2

1(T + 2) = exp(8πi/6) 6= 1, χ2
1(T +

3) = exp(4πi/6) 6= 1, χ2
1(T + 4) = exp(8πi/3) 6= 1, χ2

1(T + 5) = exp(10πi/3) 6= 1,

χ2
2(T + 6) = exp(4πi/3) 6= 1. Hence none of them splits and

K = k( 3
√
−T , 3

√
−(T + 4)). (5.18)

For a = 5, χ2
1(T + 6) = χ2

2(T + 6) = 1, then n1 ≥ 12.

For a = 6, χ2
2(T ) = 1, then n1 ≥ 6.

(ii) q = 7, K = k(
√
−P1

6
√
−P2), degPi = 1. Without loss of generality, we assume

P1 = (T + a) and P2 = (T ) for some a ∈ F∗t . By the proof of Theorem 4.4 of [1],

|S∞(K)| = 2. Since P2 is totally ramified, (T+b) does not split in the extension for all

b ∈ F∗7. Let XKPi
denote the character group of KPi for i = 1, 2. Let XKPi

=< χi >,

then o(χi) = 6 and XK =< χ3
1χ2 >. Since (F7(T )/Pi)

∗ ∼= F∗7, we define χi such that

χi(3) = exp(2πi/6) for i = 1, 2.

For a = 1, χ2(T + 1) = 1, then n1 ≥ 6.

For a = 2, χ3
1χ2(T + 1) = −1, χ3

1χ2(T + 3) = exp(πi/3), χ3
1χ2(T + 4) = exp(4πi/3),

χ3
1χ2(T + 5) = (−1) exp(5πi/3), χ3

1χ2(T + 6) = (−1), and χ2(T + 2) = exp(2πi/3).
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Hence none of them splits and

K = k(
√
−(T + 2) 6

√
−T ). (5.19)

For a = 3, χ3
1χ2(T + 6) = 1, then n1 ≥ 9.

For a = 4, χ3
1χ2(T + 1) = 1, then n1 ≥ 9.

For a = 5, χ3
1χ2(T+1) = −1, χ3

1χ2(T+2) = exp(2πi/3), χ3
1χ2(T+3) = (−1) exp(πi/3),

χ3
1χ2(T + 4) = (−1) exp(4πi/3), χ3

1χ2(T + 6) = (−1), and χ2(T + 5) = exp(5πi/3).

Hence none of them splits and

K = k(
√
−(T + 5) 6

√
−T ). (5.20)

For a = 6, χ3
1χ2(T + 1) = 1, then n1 ≥ 9.

�

5.5 Genus two case:

5.5.1 q = 2

For q = 2, K is a real extension of k and n1 = 2 = n2. That implies [K : k] = 2 =

|S∞(K)|. Thus any finite place of k of degree one is inert in K/k. Since n2 = 2 and (T )

and (T+1) are inert, (T 2+T+1) is also inert. Then P does not divide N := cond(K),

when degP ≤ 2. Assume N =
r∏
i=1

Pmi
i , then degPi ≥ 3. By Hurwitz’s Genus Formula

for K/k, deg(D(K/k)) = 6. Since Pi are wildly ramified, 6 ≥ 2(
r∑
i=1

degPi). Equality

holds if and only if mi = 2 for all i. Hence N = P 2 where degP = 3.

Up to isomorphism T → T +1, we assume P = T 3 +T +1. Using Proposition 2.8 and

Proposition 2.9 of [18], K = k(y), where y2 + (T 3 +T + 1)y = (T 3 +T + 1)g(T ) where

0 6= g(T ) ∈ F2[T ] is of degree less than 4 and g(0) = g(1) = 1. Also let α be a root of

T 2 + T + 1. Since (T 2 + T + 1) is inert, by Proposition 3.1, g(α)/α + g(α2)/α2 = 1.

That implies g(T ) = 1. Hence K = k(y) where y2 + y = 1/(T 3 + T + 1).
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Theorem 5.16 Let q = 2 and K be an extension of k of genus 2 with class number

3. Then, up to isomorphism, K = k(y) where y2 + y = 1/(T 3 + T + 1) and L(t) =

4t4 − 2t3 + t2 − t+ 1.

5.5.2 q = 3

Theorem 5.17 Let q = 3 and K be a real extension of k of genus 2 with class number

3. Then, up to isomorphism, K = k(y) where y2 = T 6 + T 4 + T 3 + T 2 + 2T + 2 or

y2 = T 6 + T 4 + 2T 3 + T 2 + T + 2 and for each case L(t) = 9t4 − 6t3 + t2 − 2t+ 1.

Proof. Let K/k be a real extension, then [K : K+] = [K : k] divides q − 1 = 2.

Hence, [K : k] is quadratic and |S∞(K)| = 2. Thus we are in the case n1 = 2, n2 = 3.

Since all finite places of k of degree one are inert, all finite places of k of degree two

are also inert. That is, any place P of k of degree less than or equal to two does not

divide the conductor N of K. Since the extension degree is prime to q, we may assume

N =
r∏
i=1

Pi where Pi ∈ Pk. By Hurwitz’s Genus formula for K/k,
r∑
i=1

degPi = 6 where

degPi ≥ 3. Thus N = P1P2 where degPi = 3 or N = P where degP = 6. Then by

Theorem 2.5 and Lemma 2.6 of [18], y2 = N such that N is not a square modulo Q

for a place Q of k of degree one or two. Considering each case, the result follows for

only N = T 6 + T 4 + T 3 + T 2 + 2T + 2 and N = T 6 + T 4 + 2T 3 + T 2 + T + 2. �

Theorem 5.18 Let q = 3 and K be an imaginary extension of k of genus 2 with class

number 3. Then, up to isomorphism, K = k(y) where y2 = T 5 + T 3 + T + 2 and

L(t) = 9t4 − 9t3 + 5t2 − 3t+ 1.

Proof. Let K/k be an imaginary extension, then 2 ≤ [K : K+] divides q − 1 = 2.

That is, [K : K+] = 2. Then by Theorem 2.4, we have

(i) n1 = 1, n2 = 5 or

(ii) n1 = 2, n2 = 3

(i) Let n1 = 1 and n2 = 5. Then |S∞(K)| = 1 and K+ = k. That is K/k is quadratic,

∞ is ramified and all finite places of k of degree one are inert in the extension. Then

we have two possibilities: either two of the places of k of degree two are ramified and
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the third one is inert or one of them splits and the others are inert. Extension degree

is prime to q and we assume N =
r∏
i=1

Pi where Pi ∈ Pk. By Hurwitz’s Genus formula

for K/k,
r∑
i=1

degPi = 5 where degPi ≥ 2. Thus N = P where degP = 5. Then by

Theorem 2.5 and Lemma 2.6 of [18], y2 = N such that N is not a square modulo Q

for a place Q of k of degree one and N is a square modulo Q′ for only one of the places

Q′ of k of degree two and it is not a square modulo Q′′ where Q′′ is a place of k of

degree two different from Q′. There exist three distinct place in PF3(x) of degree two.

Up to isomorphism (T → T + a, a ∈ F∗3), we may assume Q′ = T 2 + T + 2. Then we

have N = T 5 + T 3 + T + 2. That is,

K = k(y) where y2 = T 5 + T 3 + T + 2. (5.21)

(ii) Let n1 = 2 and n2 = 3. Then |S∞(K)| = 1 or 2.

• Assume |S∞(K)| = 1. Then K/k is quadratic, ∞ and one of the finite places P of

k of degree one are ramified and the other places of k of degree one are inert in the

extension. Up to isomorphism, let P = (T ). Then one of the places Q of k of degree two

is ramified and the others are inert. Assume N = P.Q
r∏
i=1

Pi where Pi ∈ Pk of degree

greater than two . By Hurwitz’s Genus formula for K/k, degP +degQ+
r∑
i=1

degPi = 5

where degPi ≥ 3. That is,
r∑
i=1

degPi = 2 and degPi ≥ 3, which is not possible.

• Assume |S∞(K)| = 2, then K/k is quartic. It is a well-known fact that gK+ ≤ gK .

For gK+ = 2, by Hurwitz’s Genus Formula, degree of the different of K/K+ is -2.

Since this is not reasonable, gK+ = 0 or 1.

Let gK+ = 0, that is hK+ = 1. Then by Proposition 4.1 of [2], K+ ⊆ K+
P with

degP = 2 or K+ ⊆ K+
P1P2

with degPi = 1.

Assume the first case holds.

? If P is ramified in K/K+, by Hurwitz’s Genus formula for K/K+,

2 = −4 + 2.deg∞+ degP + 2
r∑
i=1

degQi,

where P 6= Qi are places of k which are also ramified in K/K+. Then N = PQ where

degQ = 1. If Q splits in K+/k, then n1 ≥ 4, which is a contradiction. Let Q be inert
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in K+/k. Since it is ramified in K/K+ then there exists γ ∈ PK lying over Q such

that degγ = 2. Since n2 = 3 and γ and the place lying over P are of degree two, there

exists a place Q′ of k, different from P and Q, with degQ′ ≤ 2, which is ramified in

K/k. That means Q′ divides N, which is a contradiction.

? If P is not ramified in K/K+, by Hurwitz’s Genus formula for K/K+,

2 = −4 + 2.deg∞+ 2
r∑
i=1

degQi,

where P 6= Qi are places of k which are ramified in K/K+. Then N = PQ where

degQ = 2 or N = PQ1Q2 where degQi = 1. Since n1 = 2, n2 = 3, using an argument

similar to above, there exists another ramified place Q′ of k with degQ′ ≤ 2. Then Q′

divides N, which is not possible.

Assume K+ ⊆ K+
P1P2

with degPi = 1. Since n1 = |S∞(K)|, Pi are inert in K/K+.

By Hurwitz’s Genus formula for K/K+,

2 = −4 + 2.deg∞+ 2
r∑
i=1

degQi,

where Pi 6= Qj are places of k which are ramified in K/K+. We have N = P1P2Q

with degQ = 2 or N = P1P2Q1Q2 with degQi = 1. N = P1P2Q1Q2 with degQi = 1

implies n1 ≥ 4 or n2 ≥ 4, which is a contradiction. N = P1P2Q with degQ = 2 implies

n2 ≥ 4 or there exists another ramified place of degree less than or equal to two. Since

both of them are not reasonable, we skip this case. Hence gK+ 6= 0.

Let gK+ = 1. It is known that hK+ | hK = 3, then hK+ = 1 or 3. Since [K+ :

k] = 2 and q = 3, by Theorem 3.4 of [1], K+ = k(
√
P1P2) with degP1 = 1 and

degP2 = 3. Then hK+ = 3. Up to isomorphism, by Theorem 5.10, P1 = (T ) and

P2 = (T 3 + 2T 2 + T + 1) or P2 = (T 3 + T 2 + T + 2).

Let XKP1
=< χ1 > and XKP2

=< χ2 >, then o(χ1) = 2, o(χ2) = 26 and XK+ =<

χ1χ
13
2 >. Since |XK | = 4 and χ1χ

13
2 ∈ XK , XK =< χ1, χ2 >.

? Let P2 = (T 3 + 2T 2 + T + 1). Then

χ1(T + 1) = 1, χ13
2 (T + 1) = −1,

χ1(T + 2) = −1, χ13
2 (T + 2) = 1.
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That is n2 ≥ 4, which is not our case.

? Let P2 = (T 3 + T 2 + T + 2). Then χ13
2 (T ) = 1 and n1 ≥ 4, which is not true.

Thus gK+ 6= 1 and there does not exist K such that [K : k] = 4 with hK = 3 for q = 3

and gK = 2.

�
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APPENDIX A

Complete Intersection of Three Quadrics in Projective

Space P4(F2)

Let K/F2 be an algebraic function field of genus 5 with class number three. We proved

in Chapter 4 that canonical model C of K is the complete intersection of three linearly

independent quadrics l1, l2 and l3 in P4(F2) as they are listed below. In each case, we

calculated the L-polynomial of the function field K/F2.

A.1 Non-degenerate Case: l1 : xy + zt+ u2 = 0

(1) l2 : xz + z2 + zu+ t2 + tu+ u2 = 0, l3 : x2 + y2 + yu = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

Example: We find the function field of the complete intersection of quadrics in the

non-degenerate case l1 : xy+zt+u2 = 0 given in (1). Let U be the open set of P4(F2)

defined by z 6= 0. Let V be the open set in P3(k) consisting of the elements of the

form (x, z, t, u) where z 6= 0. We define a morphism from V to U such that

(x : z : t : u)→ (1 + u+ t2 + tu+ u2 : y : 1 : t : u),

to get a plane model for K/k. Using x2 = yu+y2 in l3, we have x4 = x2yu+x2y2. By

l1, xy = t+ u2. Using this one in the previous equation, x4 = x(t+ u2)u+ (t2 + u4).

But x = 1 + u+ t2 + tu+ u2. Then, we have K = F2(t, u) such that

(1 + u+ t2 + tu+ u2)4 + (1 + u+ t2 + tu+ u2)(t+ u2)u+ (t2 + u4) = 0
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with L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(2)l2 : xz + y2 + zu+ t2 + tu = 0, l3 : x2 + yu+ z2 + t2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(3) l2 : xz+y2 + t2 + tu+u2 = 0, l3 : x2 +xz+xt+yz+yt+yu+z2 +zt+zu+u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(4) l2 : xz + y2 + zu+ t2 + tu = 0, l3 : x2 + yu+ z2 + zt+ t2 + u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(5) l2 : x2 +xz+y2 +yu+z2 +zt+zu+ tu+u2 = 0, l3 : x2 +yu+z2 +zt+ t2 +u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(6) l2 : x2 +xz+yu+z2 +zt+ t2 + tu+u2 = 0, l3 : y2 +yu+z2 +zt+zu+ t2 +u2 = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(7) l2 : x2 + xz + z2 + t2 + tu = 0, l3 : x2 + y2 + yt+ zu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(8) l2 : x2 +xz+y2 +yu+z2 +zt+zu+ tu+u2 = 0, l3 : yt+z2 +zu+ t2 + tu+u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

103



(9) l2 : x2 + xz + y2 + yu+ z2 + zt+ tu = 0, l3 : yt+ z2 + zt+ zu+ t2 + u2 = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(10) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : yt+z2+zt+zu+t2+u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(11) l2 : x2 + xz + z2 + t2 + tu = 0, l3 : y2 + yt+ z2 + zt+ zu+ t2 + u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(12) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : x2+yt+z2+zt+zu+t2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(13) l2 : xz+y2+yu+z2+zt+zu+ t2+ tu+u2 = 0, l3 : x2+y2+yt+zt+zu+ t2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(14) l2 : xz + y2 + t2 + tu+ u2 = 0, l3 : x2 + yt+ z2 + zt+ zu+ tu = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(15) l2 : xz + y2 + zu+ t2 + tu = 0, l3 : x2 + y2 + yt+ yu+ z2 + zu+ t2 + u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(16) l2 : xz+y2+yu+zt+zu+t2+tu+u2 = 0, l3 : x2+y2+yt+yu+z2+zu+t2+u2 = 0,
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n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(17) l2 : x2 + xz + z2 + t2 + tu = 0, l3 : x2 + y2 + yt+ yu+ z2 + zt+ u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(18) l2 : x2 + xz + z2 + t2 + tu = 0, l3 : y2 + yt+ yu+ z2 + zt+ t2 + tu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(19) l2 : xz + y2 + yu+ zt+ t2 + tu = 0, l3 : x2 + yz + z2 + zt+ t2 + tu = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(20) l2 : xz+y2+yu+zt+zu+t2+tu+u2 = 0, l3 : x2+yz+z2+zt+zu+t2+tu+u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(21) l2 : xz+yu+z2+zt+zu+t2+tu+u2 = 0, l3 : x2+y2+yz+zt+zu+t2+tu+u2 = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(22) l2 : xz + y2 + zu+ t2 + tu = 0, l3 : x2 + y2 + yz + yu+ z2 + tu = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(23) l2 : x2 + xz + z2 + t2 + tu = 0, l3 : y2 + yz + yu+ z2 + zt+ zu+ t2 + u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,
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L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(24) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : y2+yz+yu+z2+zt+zu+t2+u2 =

0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(25) l2 : x2 + xz + z2 + t2 + tu = 0, l3 : x2 + y2 + yz + yu+ z2 + zt+ zu = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(26) l2 : x2 + xz + y2 + yu+ z2 + zt+ tu = 0, l3 : x2 + yz + yt+ t2 + tu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(27) l2 : x2 + xz+ yu+ z2 + zt+ t2 + tu+ u2 = 0, l3 : x2 + y2 + yz+ yt+ tu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(28) l2 : xz + z2 + zu+ t2 + tu+ u2 = 0, l3 : x2 + y2 + yz + yt+ t2 + tu = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(29) l2 : xz + z2 + zu+ t2 + tu+ u2 = 0, l3 : x2 + y2 + yz + yt+ zu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(30) l2 : x2 + xz+ yu+ z2 + zt+ t2 + tu+ u2 = 0, l3 : x2 + y2 + yz+ yt+ zu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,
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L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(31) l2 : x2 + xz + y2 + yu+ z2 + zt+ tu = 0, l3 : x2 + yz + yt+ yu+ t2 + u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(32) l2 : xz + y2 + zu+ t2 + tu = 0, l3 : x2 + yz + yt+ yu+ z2 + u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(33) l2 : x2 + xz+ yu+ z2 + zt+ t2 + tu+ u2 = 0, l3 : x2 + y2 + yz+ yt+ yu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(34) l2 : xz + z2 + zu+ t2 + tu+ u2 = 0, l3 : x2 + y2 + yz + yt+ yu+ t2 + u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(35) l2 : xz + y2 + t2 + tu = 0, l3 : x2 + yz + yt+ yu+ z2 + tu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(36) l2 : x2 + xz+ y2 + yu+ z2 + zt+ tu = 0, l3 : x2 + yz+ yt+ yu+ zu+ t2 + u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(37) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : x2+yz+yt+yu+zu+t2+u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.
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(38) l2 : xz + z2 + zu+ t2 + tu+ u2 = 0, l3 : x2 + y2 + yz + yt+ yu+ zu+ tu = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 5, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 4t6 − 8t5 + 2t4 + t3 + 2t2 − 3t+ 1.

(39) l2 : xz + z2 + zu+ t2 + tu+ u2 = 0, l3 : x2 + y2 + yz + yt+ yu+ zt+ u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(40) l2 : x2 + xz + y2 + yu+ z2 + zt+ tu = 0, l3 : x2 + xu+ y2 + zt+ t2 + tu = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(41) l2 : x2 + xz + z2 + t2 + tu = 0, l3 : xu+ y2 + yu+ z2 + t2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(42) l2 : xz + z2 + zu+ t2 + tu+ u2 = 0, l3 : x2 + xu+ y2 + yu+ zu+ t2 + tu = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(43) l2 : xz + z2 + zu+ t2 + tu+ u2 = 0, l3 : x2 + xu+ y2 + yu+ zt+ t2 + u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(44) l2 : xz + y2 + zu+ t2 + tu = 0, l3 : x2 + xu+ y2 + yu+ z2 + zt+ u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(45) l2 : x2 + xz+ yu+ z2 + zt+ zu+ t2 + tu = 0, l3 : xu+ y2 + yt+ z2 + t2 + u2 = 0,
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n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(46) l2 : xz + y2 + yu+ zt+ zu+ t2 + tu+ u2 = 0, l3 : x2 + xu+ yt+ z2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(47) l2 : x2 + xz + yu+ z2 + zt+ zu+ t2 + tu = 0, l3 : x2 + xu+ y2 + yt+ tu = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(48) l2 : x2 + xz+ y2 + yu+ z2 + zt+ zu+ tu+ u2 = 0, l3 : xu+ yt+ z2 + zu+ t2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(49) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : x2+xu+y2+yt+zu+t2 = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(50) l2 : x2 + xz + yu+ z2 + zt+ t2 + tu+ u2 = 0, l3 : x2 + xu+ y2 + yt+ zt = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(51) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : xu+yt+z2+zt+zu+t2+tu = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(52) l2 : x2 + xz + y2 + yu+ z2 + zt+ zu+ tu+ u2 = 0, l3 : x2 + xu+ yt+ z2 + zt+

zu+ t2 + tu+ u2 = 0,
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n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(53) l2 : x2 + xz+ yu+ z2 + zt+ zu+ t2 + tu = 0, l3 : xu+ y2 + yt+ yu+ z2 + t2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(54) l2 : xz + y2 + yu+ zt+ zu+ t2 + tu+ u2 = 0, l3 : x2 + xu+ yt+ yu+ z2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(55) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : xu+yt+yu+z2+zu+t2+tu+u2 =

0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(56) l2 : x2 + xz + y2 + yu+ z2 + zt+ zu+ tu+ u2 = 0, l3 : x2 + xu+ y2 + yt+ yu+

zu+ t2 + tu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(57) l2 : x2+xz+y2+z2+tu+u2 = 0, l3 : x2+xu+y2+yt+yu+zt+zu+t2+u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(58) l2 : x2 + xz+ y2 + yu+ z2 + zt+ tu = 0, l3 : x2 + xu+ y2 + yz+ yu+ z2 + t2 = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(59) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : xu+y2+yz+yu+z2+t2+tu = 0,
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n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(60) l2 : x2+xz+yu+z2+zt+t2+tu+u2 = 0, l3 : x2+xu+y2+yz+yu+z2+tu = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(61) l2 : xz + y2 + zu+ t2 + tu = 0, l3 : x2 + xu+ yz + yu+ z2 + zu+ t2 = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(62) l2 : xz+ z2 + zu+ t2 + tu+ u2 = 0, l3 : x2 + xu+ y2 + yz+ yu+ zt+ t2 + tu = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(63) l2 : x2+xz+z2+t2+tu = 0, l3 : xu+y2+yz+yu+z2+zt+zu+t2+tu+u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(64) l2 : xz+ z2 + zu+ t2 + tu+ u2 = 0, l3 : x2 + xu+ y2 + yz+ yt+ t2 + tu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(65) l2 : xz + z2 + zu+ t2 + tu+ u2 = 0, l3 : x2 + xu+ y2 + yz + yt+ zu = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(66) l2 : x2 + xz+ z2 + t2 + tu = 0, l3 : xu+ y2 + yz+ yt+ z2 + zu+ t2 + tu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,
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L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(67) l2 : x2 + xz+ z2 + t2 + tu = 0, l3 : x2 + xu+ y2 + yz+ yt+ z2 + zu+ tu+ u2 = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(68) l2 : xz+y2+yu+z2+zt+t2+tu+u2 = 0, l3 : x2+xu+yz+yt+zt+tu+u2 = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(69) l2 : xz+ z2 + zu+ t2 + tu+ u2 = 0, l3 : x2 + xu+ y2 + yz+ yt+ zt+ tu+ u2 = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(70) l2 : x2+xz+y2+z2+tu+u2 = 0, l3 : x2+xu+y2+yz+yt+z2+zt+zu+t2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(71) l2 : x2 + xz+ yu+ z2 + zt+ zu+ t2 + tu = 0, l3 : xu+ y2 + yz+ yt+ yu+ t2 = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(72) l2 : x2 + xz + z2 + t2 + tu = 0, l3 : x2 + xt+ y2 + yu+ z2 + t2 + u2,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(73) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : x2+xt+yu+z2+t2+tu+u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.
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(74) l2 : xz+ y2 + yu+ z2 + zt+ zu+ t2 + tu+ u2 = 0, l3 : x2 + xt+ y2 + yu+ tu = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(75) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : x2+xt+y2+yu+t2+tu = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(76) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : x2+xt+yu+z2+zt+t2+u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(77) l2 : xz + z2 + zu+ t2 + tu+ u2 = 0, l3 : x2 + xt+ y2 + yu+ zt = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(78) l2 : xz+ y2 + yu+ zt+ t2 + tu+ u2 = 0, l3 : x2 + xt+ y2 + yu+ z2 + zt+ u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(79) l2 : xz+ y2 + yt+ yu+ zu+ t2 + u2 = 0, l3 : x2 + xt+ y2 + yu+ z2 + zt+ u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(80) l2 : xz + yu+ z2 + zt+ t2 + tu = 0, l3 : x2 + xt+ y2 + yt+ zu+ t2 + u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(81) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : xt+yt+z2+zu+t2+tu+u2 = 0,
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n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(82) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : x2+xt+y2+yt+yu+zu+t2 = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(83) l2 : xz+y2+yu+z2+zt+t2+tu+u2 = 0, l3 : x2+xt+y2+yt+yu+zu+t2+u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(84) l2 : xz + y2 + yu+ zt+ t2 + tu = 0, l3 : x2 + xt+ yt+ yu+ z2 + zt+ u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(85) l2 : x2 + xz + z2 + t2 + tu = 0, l3 : xt+ y2 + yz + z2 + zt+ zu = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(86) l2 : x2 + xz + z2 + t2 + tu = 0, l3 : x2 + xt+ y2 + yz + z2 + zt+ zu+ t2 = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(87) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : xt+y2+yz+yu+z2+t2+u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(88) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : x2+xt+yz+yu+t2+u2 = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,
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L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(89) l2 : xz + y2 + zu+ t2 + tu = 0, l3 : x2 + xt+ yz + yu+ z2 + zu+ t2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(90) l2 : x2+xz+yu+z2+zt+zu+t2+tu = 0, l3 : x2+xt+y2+yz+yu+zu+t2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(91) l2 : xz+y2+yu+zt+zu+t2+tu+u2 = 0, l3 : x2+xt+y2+yz+yu+z2+zu+u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(92) l2 : xz+ y2 + t2 + tu+ u2 = 0, l3 : x2 + xt+ yz+ yu+ z2 + zt+ zu+ t2 + u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(93) l2 : x2 + xz + yu+ z2 + zt+ t2 + tu+ u2 = 0, l3 : x2 + xt+ y2 + yz + yu+ z2 +

zt+ zu+ t2 + tu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(94) l2 : xz + z2 + zu+ t2 + tu+ u2 = 0, l3 : x2 + xt+ y2 + yz + yt+ zt+ t2 + tu = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(95) l2 : x2 + xz + y2 + yu+ z2 + zt+ tu = 0, l3 : x2 + xt+ y2 + yz + yt+ z2 + zt+

zu+ t2 + tu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,
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L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(96) l2 : xz+z2+zu+ t2+ tu+u2 = 0, l3 : x2+xt+y2+yz+yt+yu+zt+ t2+u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(97) l2 : xz+yu+zt+t2+tu = 0, l3 : x2+xt+y2+yz+yt+yu+z2+zt+zu+tu+u2 = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(98) l2 : xz+y2+t2+tu+u2 = 0, l3 : x2+xt+y2+yz+yt+yu+z2+zt+zu+t2+tu = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(99) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : x2+xt+xu+yu+z2+t2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(100) l2 : xz+y2+yu+z2+zt+zu+t2+tu+u2 = 0, l3 : x2+xt+xu+y2+yu+u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(101) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : x2+xt+xu+y2+yu+t2+u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(102) l2 : x2+xz+y2+z2+tu+u2 = 0, l3 : x2+xt+xu+yu+z2+zt+zu+t2+tu+u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.
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(103) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : x2+xt+xu+y2+yt+zu+t2 = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(104) l2 : xz + y2 + t2 + tu+ u2 = 0, l3 : x2 + xt+ xu+ yz + z2 + zt+ t2 + u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(105) l2 : x2 + xz + yu+ z2 + zt+ t2 + tu+ u2 = 0, l3 : x2 + xt+ xu+ y2 + yz + z2 +

zt+ zu+ t2 + u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(106) l2 : x2+xz+yu+z2+zt+zu+t2+tu = 0, l3 : x2+xt+xu+y2+yz+yu+t2+u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(107) l2 : x2 + xz + y2 + yu+ z2 + zt+ tu = 0, l3 : x2 + xt+ xu+ y2 + yz + yt+ z2 +

zt+ zu+ t2 + u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(108) l2 : x2 + xz + yu+ z2 + zt+ t2 + tu+ u2 = 0, l3 : x2 + xt+ xu+ y2 + yz + yt+

yu+ z2 + zt+ t2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(109) l2 : x2 + xz + y2 + yu+ z2 + zt+ tu = 0, l3 : x2 + xt+ xu+ y2 + yz + yt+ yu+

z2 + zt+ zu+ t2 + tu+ u2 = 0,
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n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(110) l2 : xz + y2 + zu+ t2 + tu = 0, l3 : x2 + xz + y2 + yu+ z2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(111) l2 : xz+z2+zu+t2+tu+u2 = 0, l3 : x2+xz+y2+yu+z2+zu+t2+tu+u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(112) l2 : x2 + xz + z2 + t2 + tu = 0, l3 : x2 + xz + y2 + yt+ yu+ zt+ u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(113) l2 : x2+xz+y2+yu+z2+zt+zu+tu+u2 = 0, l3 : x2+xz+y2+yt+yu+zt+t2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(114) l2 : x2 + xz + z2 + t2 + tu = 0, l3 : xz + y2 + yt+ yu+ zt+ t2 + tu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(115) l2 : xz + y2 + yu+ zt+ t2 + tu = 0, l3 : x2 + xz + y2 + yz + yu+ z2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(116) l2 : xz+ yu+ z2 + zt+ zu+ t2 + tu+u2 = 0, l3 : x2 +xz+ y2 + yz+ yu+ z2 = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,
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L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(117) l2 : xz+ y2 + yu+ zt+ zu+ t2 + tu+u2 = 0, l3 : x2 +xz+ y2 + yz+ yu+ z2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(118) l2 : x2 + xz + z2 + t2 + tu = 0, l3 : xz + y2 + yz + yu+ zt+ zu+ t2 + tu = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(119) l2 : x2 +xz+ z2 + t2 + tu = 0, l3 : x2 +xz+ y2 + yz+ yu+ zt+ zu+ tu+u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(120) l2 : xz+y2+zt+zu+t2 = 0, l3 : x2+xz+xu+y2+yt+yu+z2+zt+t2+u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(121) l2 : x2 + xz + yu+ z2 + zt+ zu+ t2 + tu = 0, l3 : x2 + xz + xu+ y2 + yt+ yu+

zt+ zu+ tu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(122) l2 : xz + y2 + yu+ zt+ zu+ t2 + tu+ u2 = 0, l3 : x2 + xz + xu+ y2 + yt+ yu+

z2 + zt+ zu+ t2 + tu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(123) l2 : xz+yu+z2+zt+t2+tu = 0, l3 : x2+xz+xu+y2+yz+yu+z2+tu+u2 = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,
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L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(124) l2 : x2 + xz + yu+ z2 + zt+ zu+ t2 + tu = 0, l3 : x2 + xz + xu+ y2 + yz + yt+

z2 + zt+ zu+ tu = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(125) l2 : xz+y2+yu+z2+zt+t2+tu+u2 = 0, l3 : x2+xz+xt+yt+z2+zu+tu+u2 = 0,

n1 = 0, n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

A.2 Degenerate Case l1 : xy + zt = 0,

(1) l2 : xz+xu+y2+yu+zt+t2+u2 = 0, l3 : x2+xu+y2+yt+z2+zu+t2+tu+u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(2) l2 : x2 +xz+xu+y2 +yu+zt+u2 = 0, l3 : xu+y2 +yt+z2 +zt+zu+ t2 + tu = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(3) l2 : xz + xu+ y2 + yu+ z2 + zt+ t2 = 0, l3 : x2 + xu+ yz + zu+ t2 + tu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(4) l2 : xz+xu+y2+yu+zt+ t2+u2 = 0, l3 : x2+xt+y2+yz+yu+z2+zu+ tu = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(5) l2 : xz+xu+y2+yu+zt+t2+u2 = 0, l3 : x2+xt+xu+yz+z2+zu+t2+tu+u2 = 0,
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n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

A.3 Degenerate Case l1 : xy + z2 + zt+ t2 = 0,

(1) l2 : x2 + xu+ y2 + yu+ z2 + zt+ t2 + tu+ u2 = 0, l3 : yz + yu+ t2 + tu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

Example: We find the function field of the quadrics in the degenerate case l1 :

xy + zt + z2 + t2 = 0. Let U be the open set of P4(F2) defined by y 6= 0. Let V be

the open set in P3(k) consisting of the elements of the form (x, z, t, u) where y 6= 0.

We define a morphism from V to U such that

(x : z : t : u)→ (z2 + zt+ t2 : 1 : z : t : u),

to get a plane model for K/k. Using x = z2+zt+t2 in l3, we have z = u+t2+tu+u2.

By l2, we have K = F2(t, u) such that

u8 + u5 + (t4 + t2)u4 + (t2 + t+ 1)u3 + (t4 + t2)u2 + (t4 + t3 + 1)u+

(t8 + t6 + t3 + t2 + 1) = 0

with L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(2) l2 : x2 + xz + xu+ yt+ z2 + zt+ zu+ t2 + u2 = 0, l3 : y2 + zt+ zu+ t2 + u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 5, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 4t6 − 8t5 + 2t4 + t3 + 2t2 − 3t+ 1.

(3) l2 : xu+ y2 + yt+ zu+ t2 = 0, l3 : x2 + y2 + yz + zt+ zu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 5, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 4t6 − 8t5 + 2t4 + t3 + 2t2 − 3t+ 1.

(4) l2 : x2 + xu+ yt+ z2 + zu+ t2 + u2 = 0, l3 : x2 + y2 + yz + zt+ zu+ t2 + u2 = 0,
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n1 = 0, n2 = 0, n3 = 1, n4 = 5, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 4t6 − 8t5 + 2t4 + t3 + 2t2 − 3t+ 1.

(5)l2 : x2+xz+xu+y2+yz+yu+z2+zt+u2 = 0, l3 : y2+yz+yt+z2+zu+t2+u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 5, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 4t6 − 8t5 + 2t4 + t3 + 2t2 − 3t+ 1.

(6) l2 : x2+xz+xu+yt+z2+zt+zu+t2+u2 = 0, l3 : y2+yz+yt+z2+zu+t2+u2 = 0,

n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(7) l2 : x2+xz+xu+yu+z2+zu+tu+u2 = 0, l3 : x2+y2+yz+yt+yu+zt+zu+t2+u2 =

0,

n1 = 0, n2 = 0, n3 = 1, n4 = 5, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 4t6 − 8t5 + 2t4 + t3 + 2t2 − 3t+ 1.

(8) l2 : x2 + xz + xu + yt + z2 + zt + zu + t2 + u2 = 0, l3 : y2 + yz + yt + yu + zt +

zu+ t2 + tu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(9) l2 : x2 +xz+xu+yt+z2 +zt+zu+ t2 +u2 = 0, l3 : xu+y2 +yt+yu+ t2 + tu = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(10) l2 : xu+ y2 + yt+ zu+ t2 = 0, l3 : x2 + xu+ yz + yt+ zt+ t2 + u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 5, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 4t6 − 8t5 + 2t4 + t3 + 2t2 − 3t+ 1.

(11) l2 : xz + xu+ y2 + yt+ z2 + zt+ zu+ t2 + u2 = 0, l3 : x2 + xu+ y2 + yz + yt+
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yu+ zu+ t2 + u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(12) l2 : x2+xu+yt+z2+zu+t2+u2 = 0, l3 : x2+xt+y2+yt+z2+zt+zu+t2+tu = 0,

n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(13) l2 : x2+xu+y2+yu+z2+zt+t2+tu+u2 = 0, l3 : x2+xt+yt+yu+zt+zu+t2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(14) l2 : xu+ y2 + yt+ zu+ t2 = 0, l3 : x2 + xt+ y2 + yz + zu+ t2 + u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(15) l2 : x2+xz+xu+yu+z2+zu+tu+u2 = 0, l3 : x2+xt+y2+yz+z2+zu+tu = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(16) l2 : xu+ y2 + yt+ zu+ t2 = 0, l3 : x2 + xt+ y2 + yz + yt+ zu+ t2 + tu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(17) l2 : x2+xz+xu+yt+z2+zt+zu+t2+u2 = 0, l3 : xt+xu+y2+yu+z2+zu+tu = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(18) l2 : x2 + xz + xu+ yu+ z2 + zu+ tu+ u2 = 0, l3 : xt+ xu+ y2 + yt+ tu = 0,
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n2 = 1, n3 = 1, n4 = 1, n5 = 4,

L(t) = 32t10 − 48t9 + 8t8 − 8t7 + 2t6 + 5t5 + t4 − 2t3 + t2 − 3t+ 1.

(19) l2 : x2+xu+y2+yu+z2+zt+t2+tu+u2 = 0, l3 : x2+xt+xu+y2+yz+z2+tu = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(20) l2 : x2+xu+yt+z2+zu+t2+u2 = 0, l3 : xz+y2+yu+z2+zt+zu+t2+tu+u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(21) l2 : x2+xu+yt+z2+zu+t2+u2 = 0, l3 : xz+y2+yt+yu+z2+zu+t2+tu+u2 = 0,

n1 = 0, n2 = 0, n3 = 2, n4 = 3, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 6t6 + 2t5 − 3t4 + 2t3 + 2t2 − 3t+ 1.

(22) l2 : x2+xu+y2+yu+z2+zt+t2+tu+u2 = 0, l3 : x2+xz+y2+yz+yu+z2+zu = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(23) l2 : x2+xz+xu+yu+z2+zu+tu+u2 = 0, l3 : x2+xz+y2+yz+yt+z2+zt+t2+tu =

0,

n1 = 0, n2 = 0, n3 = 2, n4 = 2, n5 = 7,

L(t) = 32t10 − 48t9 + 16t8 + 8t7 − 8t6 + 5t5 − 4t4 + 2t3 + 2t2 − 3t+ 1.

(24) l2 : xu+ y2 + yt+ zu+ t2 = 0, l3 : x2 + xz + xu+ y2 + yu+ zu+ u2 = 0,

n1 = 0, n2 = 0, n3 = 1, n4 = 6, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 6t6 − 11t5 + 3t4 + t3 + 2t2 − 3t+ 1.

(25) l2 : x2+xu+yt+z2+zu+t2+u2 = 0, l3 : xz+xt+y2+yu+z2+zt+zu+tu+u2 = 0,
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n1 = 0, n2 = 0, n3 = 1, n4 = 5, n5 = 5,

L(t) = 32t10 − 48t9 + 16t8 + 4t7 + 4t6 − 8t5 + 2t4 + t3 + 2t2 − 3t+ 1.
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