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ABSTRACT

ALPHA - BETA TRANSITION IN QUARTZ

Lider, Mustafa Cem

M.Sc., Department of Physics

Supervisor : Prof. Dr. Hamit Yurtseven

September 2011, 49 pages

Alpha-Beta transition in quartz is studied using the Raman scattering. The Raman frequencies

of some lattice modes are analyzed at various temperatures close to the alpha beta transition

in quartz. For this analysis, the experimental data from the literature is used and the soft mode

behavior of those Raman phonons is investigated . On the basis of the predictions of some

models, the temperature dependencies for the Raman frequencies of the lattice modes which

move towards zero (soft mode) and their bandwidths close to the transition temperature Tc are

explained for the alpha-beta transition in quartz. In addition, by using the experimental vol-

ume data from literature, calculation of the temperature dependence of the Raman frequencies

through the Grüneisen parameter have been studied near the phase transition.

Keywords: α−β Transition, Raman Frequency, Bandwidth, Soft Mode, Grüneisen Parameter,

Quartz.
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ÖZ

KUARTZIN ALFA BETA GEÇİŞİ

Lider, Mustafa Cem

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Hamit Yurtseven

Eylül 2011, 49 sayfa

Kuartzın alfa - beta geçişi Raman saçılması kullanılarak çalışılmıştır. Bazı örgü kiplerinin Ra-

man frekanslarının analizi kuartzın alfa beta geçişi yakınındaki çeşitli sıcaklıklarda yapılmıştır.

Bu analiz için, literatürden deneysel veri kullanılmış ve bu Raman fononlarının yumuşak kip

davranışı araştırılmıştır. Bazı modellerin tahminlerine dayanarak, sıfıra doǧru giden (yumuşak

kip) örgü kiplerinin Raman frekanslarının sıcaklıǧa baǧımlılıǧı ve geçiş sıcaklıǧı Tc yakınındaki

bant genişlikleri kuartzın alfa beta geçişi için açıklanmıştır. Ayrıca, yine literatürden deneysel

hacim verileri kullanılarak faz geçişi yakınlarında Grüneisen parametresi aracılıǧıyla sıcaklıǧa

baǧlı Raman frekanslarının hesabı yapılmıştır.

Anahtar Kelimeler: Alfa-Beta Geçişi, Raman Frekansı, Bant Genişliği, Yumuşak Kip, Grüneisen

Parametresi, Kuartz.
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CHAPTER 1

INTRODUCTION

There have been quite a lot of experimental studies of structural phase transition since the

early of 1940s. In this field of study, various spectroscopic techniques have been used to

analyze physical and chemical properties of materials, including Raman scattering, neutron

scattering, infrared (IR) reflectivity, x-ray, electron paramagnetic resonance (EPR), nuclear

quadrapole resonance (NQR) and ultrasonic analyses [1]. Of the techniques, Raman spec-

troscopy has been widely become standard method in vibrational spectroscopy. As an inelas-

tic light scattering by molecular vibrations, it was first developed by Raman and consequently

he was awarded the Nobel prize in 1930 [2].

Raman spectroscopy method is used to analyze the vibrational modes of material having

unique process and selection rules. Unlike IR spectroscopy which is used to study of the

asymmetric vibrations of polar groups, Raman spectroscopy is the best at symmetric vibra-

tions of non polar groups [2].

Raman scattering , as an inelastic scattering arises from change of the frequency of incident

light after passing through a sample. The incoming light with a higher energy than the vi-

brational energy interacts with the molecule. The shift of frequency between incident and

scattered lights gives the information of vibrational energy states of relevant molecule. This

significant shift called Raman shift is given by the expression below

∆ω =

(1
λ0
−

1
λ1

)
(1.1)

where ∆ω is the Raman shift in the unit of cm−1, λ0 and λ1 are the excitation wavelength and

the Raman spectrum wavelength, respectively, in the units of cm.
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The Raman spectrum has been notably used to study the lattice dynamics of crystals. Espe-

cially, temperature dependence of lattice vibrations near the phase transition temperature is

a widely attractive issue. For this purpose, the Raman spectroscopy is of vital importance to

explain the phase transition and critical phenomena.

In this thesis, the phase transition in quartz has been investigated by using Raman scattering.

The data from the literature has been used to analyze the quartz crystal near the transition

temperature. The Raman spectrum of crystalline quartz (S iO2) has been investigated using

the experimental data [3] for the lattice modes between the temperatures of 77 and 888 K. It is

shown here that the Raman shifts of the 147 cm−1 and 207 cm−1 modes play a significant role

while approaching from α phase to the β phase of quartz. This phenomena has been explained

by the soft mode theory.

α−β transition in quartz has been the subject of various studies given in literature. Between the

α and β phases, an intermediate phase (incommensurate) has been observed in a temperature

range of 1.3 oC by the measurements of the heat capacity and the thermal expansion [4]. A

sharp peak in Cp has been observed at the incommensurate IC-β transition, whereas at the

α-IC transition the Cp peak becomes rounded around the transition temperature [5]. In the

incommensurate phase as a thermodynamically stable phase determined by x-ray diffraction

topography [6], there are six equivalent modulated waves excited within the c-plane [7] [8].

The thermodynamic nature of the α−β transition in quartz has been determined by an anomaly

in heat capacity by means of differential scanning calorimetry (DSC) [4] and, also in thermal

dilatation and dielectric constant [9]. A second order transition which occurs above the first-

order transition from α to β, has been proposed based on the observations of thermal expan-

sion and elastic compliance [10]. A first order (discontinuous) or second order (continuous)

nature of the α − β transition in quartz has also been discussed in an earlier study [11].

Some spectroscopic studies have given evidence of a first and second order kind that occurs

near the α − β transition in this crystal. In particular, the Raman spectra have shown that the

lattice vibration of the 207 cm−1 mode is associated with the α − β transition [3]. This is

supported by the temperature dependence of the Raman linewidth and shift of optical lattice

vibrations in quartz [12]. Also, the opalescence in a quartz crystal that has been observed near

the α − β transition [13] describes the critical behavior of the order parameter related to the

intensity in the spectrum. It has been argued that the critical opalescence that originates from
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the divergence of the fluctuations of the order parameter, can possibly affect on the Raman

scattering of the soft mode [13].

In regard to the order parameter due to the orientation of S iO4 tetrahedra, which can take two

opposite values in the α phase corresponding to Dauphine twins (it is zero in the β phase), it

has been suggested [11] that Landau theory (mean field theory) can be employed. According

to the domain model for the β phase, the atoms occupy different α−domains which gives dy-

namic disorder in the high-symmetry β phase at high temperatures. On cooling, they occupy

the positions corresponding to one domain in the low-symmetry α phase [14]. According to

the classical soft-mode picture, vibrations of the atoms around their mean positions change

the symmetry at Tc as the temperature decreases from the β phase to the α phase in quartz

and displacive mode acts as the classical soft mode [14]. It has been pointed out previously

[15] that both models do not explain satisfactorily the structure of quartz and that low-energy

high-amplitude vibrations can contribute to the disorder in the β phase. Regarding the low

temperature α phase, there appear four symmetric Raman-active modes of species A1 and

eight doubly degenerate Raman active modes of species E, as reported previously [3]. Only

one of those A1 modes, which corresponds to the displacements of the atoms at the transition

[16] is the 207 cm−1 mode associated with the α − β transition, as stated above. It has been

observed experimentally that the 207 cm−1 Raman mode exhibits strong variation with the

temperature [3] [17]. Experimental data [3] gives that this Raman mode does not disappear in

the β phase, whereas the 147 cm−1 Raman mode which shows anomalous behavior disappears

completely at the α− β transition (Tc = 846K). The 147 cm−1 Raman mode of species A1 has

been considered as a soft mode [3] since its frequency goes to zero as the Tc is approached.

The α − β transition in quartz was considered as the λ − point transition at 573 oC and the

Pippard relations were applied to this crystal many years ago [18]. An anomalous behavior

of the heat capacity near the α − β transition has been detected experimentally [4] [19]. An

observed anomaly in thermal dilatation and dielectric constant has also been reported [9].

The α − β transition in quartz is considered as a first order since there is a thermal hysteresis

of 1 to 2 oC between heating and cooling, as obtained from the heat capacity measurements

[4]. However, the adiabatic measurements show that the Cp diverges with ∆H = 0 [20] which

suggests that the α−β transition is of a second order. In the presence of the intermediate phase

(incommensurate IC) between the α and β phases, it has been pointed out that the transition

upon cooling from β to IC is a second order with a small discontinuity and that the transition
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from IC to α is a first order [4] [10].

The α−β transition in quartz can be explained by two neighboring structures due to the atomic

positions with a rotation of the tetrahedric S iO4 angle ϕ (2-order axis), which causes the

change of the symmetry between the α and β phases (3 to 6 order) as pointed out previously

[21]. In an earlier study [14], temperature dependence of the fourth power of the average

S iO4 tetrahedral tilt angle δ has been taken as the order parameter of the α − β transition. It

has also been pointed out that there are phonon modes propagating, which are not interacting

with the S iO4 tetrahedra so that the tetrahedra move as rigid bodies with rotations of the Si-

O-Si linkages [14]. As the temperature increases from the α phase to β phase, the frequency

of those phonon modes decrease, which is an indication of disorder and thus the soft mode

is excited. Among the phonon modes which are associated with the α − β phase transition

in quartz, as observed experimentally [17] [3] the 207 cm−1 Raman mode exhibits strong

variation with temperature. The Raman frequency of this mode exists above Tc, whereas the

other lattice mode of the 147 cm−1 shows anomalous behavior and its Raman frequency goes

to zero at T = Tc. This is a soft mode behavior [22] so that the 147 cm−1 Raman mode plays

an important role in the mechanism of the α − β transition in quartz.

The α− β transition in this crystal has been investigated by the shift in Tc, which can be asso-

ciated with the thermal expansion of granite at high pressure [23]. The transition temperature

Tc has also been associated with a supercooling in an X-ray work [19]. Some other experi-

mental studies regarding the structure of β − quartz and the existence of the α − β transition

have been given in literature. α−β transition in MXO4 quartz like materials in regard to struc-

ture deformations has been studied experimentally [24]. As given in a previous study [25],

β-quartz crystallizes in a hexagonal symmetry and its chemical bond is ionic-covalent. There

are three S iO2 molecules in the unit cell and the unit cell parameters at 848 K are a = 4.9965

Å and c = 5.4546 Å [25]. Structural changes in the α − β transition in quartz have also been

studied in an earlier work [26] [27].

The Raman frequencies can be predicted from the volume data through the mode Grüneisen

parameter for the α − β transition in quartz. By using the variation of the crystal volume with

temperature and the value of the mode Grüneisen parameter, the frequencies of the Raman

modes can be calculated as a function of temperature for the α − β transition in quartz.

In this study, we analyze the experimental data [3] for the temperature dependencies of the
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147 cm−1 and 207 cm−1 Raman modes using a power-law formula. We associate variation

of the Raman frequency of those modes with the order parameter for the α − β transition in

quartz. By using the temperature dependence of the 147 cm−1 and 207 cm−1 Raman modes,

we then calculate the damping constant (Raman bandwidths) at various temperatures using

the soft mode-hard mode and the energy fluctuation models. The activation energies of the

two lattice modes (147 cm−1 and 207 cm−1) are also calculated for the α − β transition in

quartz. In addition, we calculate the temperature dependence of the Raman frequencies for

the lattice mode of 207 cm−1 for the α−β transition in quartz. For this prediction of the Raman

frequencies of the 207 cm−1 mode, we use the volume data [14] and the observed Raman data

for this mode [3] to determine the value of the mode Grüneisen parameter.

The arrangement of the thesis is as follows:

In chapter 2, phase transitions and types, transition from the α phase to the β phase in quartz,

order parameter, Landau theory, soft mode the models for the damping constant and also the

Grüneisen parameter are included. In chapter 3, the analyses of Raman bandwidth for both

the 147 cm−1 and 207 cm−1 modes and calculation of the Grüneisen parameter are given. As

a final chapter (chapter 4), the results of the calculations are given and comparison with the

theoretical values is discussed.
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CHAPTER 2

THEORY

2.1 Phase Transition

Phase transition is defined by transforming from one phase to another for a stable structure.

A very common example is water. By heating the water from liquid phase to gaseous phase

we can observe a simple phase transition. At 100 oC water molecules begin to leave the

liquid surface and steam is emitted. This process between different phases is very sudden.

At the boiling point the liquid water becomes thermodynamically unstable and gaseous water

becomes stable. In order to increase the temperature of material, the heat should be applied.

The heat capacity is determined how much heat is needed since applying heat to the material

increases its entropy [28]. Hence, the relation of heat capacities can be given as

Cα = T
(
∂S
∂T

)
α

(2.1)

where α is the corresponding constant (eg. V, P, etc). Considering the two phases which are

in thermodynamic equilibrium at a critical temperature Tc, one needs to add some extra heat

in order to transform from one phase to another which is called as the latent heat given by

L = ∆Q = Tc(S 2 − S 1) (2.2)

where S 1 and S 2 are the entropies of the first phase and second phase, respectively. According

to Equations 2.1 and 2.2, we can say that there exists a jump in the heat capacity Cα as a

function of temperature. In Figure 2.1 the temperature dependence of entropy is shown in the

existence of latent heat in liquid-gas transition where Tb represents the boiling point.
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Figure 2.1: Temperature dependence of entropy of H2O [28].

A phase diagram of water is shown in Figure 2.2 in which three phases of solid, liquid and

gaseous are given, coexisting with the phase boundaries.

Figure 2.2: Phase diagram of H2O [28].

Solid, liquid and gaseous phases coexist at the triple point. There exist a very steep boundary

between the solid and liquid phases while approaching from the liquid to solid phase, a large

change occurs in entropy and small change in volume. This boundary of phase does not

terminate and continues indefinitely. On the other hand, the boundary between gas and liquid

terminates at the critical point. The latent heat of changing from solid to gas (sublimation) is

7



the sum of the latent heat of melting and the latent heat of vaporisation at temperatures close

to the triple point [28].

Most of substance expand in consequence of melting, so the gradient of solid-liquid line

is positive. Since water shrinks slightly when it melts, the gradient of solid-liquid line is

negative as shown in Figure 2.2 due to the hydrogen bonding that ice crystal lattice has an

open structure.

The stability at a temperature T is given by the minimum of Helmholtz free energy,

F = U − TS (2.3)

where U is the internal energy and S is the entropy. This relation for the different phases is

the same at transition temperature Tc as

F1(Tc) = F2(Tc) (2.4)

where Tc is below the melting point [29]. So as to decide the type of phase, it is appropriate

to consider the Gibbs function g which depends on the temperature and pressure. The Gibbs

function is defined as [30]

dg = −S dT + VdP (2.5)

where S and V are entropy and volume, respectively. Hence

(
∂g
∂T

)
P

= −S and
(
∂g
∂P

)
T

= V . (2.6)

The classification of phase transition is defined by Ehrenfest as a first order, second order,

third order and also fourth order. However, only the first two types of transition are mainly of

interest.

According to Ehrenfest, the order of a transition can be described using the Gibbs function.

It is simply defined that the transition is the first order provided that g is continuous but its
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derivatives ( ∂g
∂T )P and ( ∂g

∂P )T , that is, -S and V respectively, are discontinuous with the existence

of latent heat. On the other hand, if there is no latent heat and no volume change the Gibbs

function is continuous but the second derivatives, namely, compressibility, specific heat and

expansion coefficient are discontinuous. Such a type of transition is said to be the second

order [30]. In Figure 2.3, the temperature dependence of corresponding parameters (gibbs

function, volume, specific heat) in the first order transition are shown.

Figure 2.3: First order transition [28].

In figure 2.4, the behavior of corresponding parameters (gibbs function, volume, specific heat)

that depend on temperature in the second order transition are shown. An example of this phase

transition type is superconductivity transition on the order-disorder transition in β brass.

Figure 2.4: Second order transition [28].

A modern approach to classification of phase transitions differs from including latent heat or

not. One is first order transition as in first order phase transition of Ehrenfest, the other is

continuous phase transition including second, third and fourth order transitions of Ehrenfest.

Another classification of phase transition includes the symmetry breaking. An example of

this broken symmetry is illustrated in Figure 2.5 as below the transition temperature (Tc) and

above this temperature. In this example, atoms in a solid and in a liquid are compared.
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Figure 2.5: The liquid (T > Tc)-solid (T < Tc) phase transition [28].

In a liquid phase, the contraction of the system is weak but has a high degree of symmetry. In

the solid phase, however, this symmetry is broken. Firstly, one may see a surprising picture in

Figure 2.5 as if solid looks more symmetrical than liquid. But this situation is in fact different.

It is necessary to note that any point in a liquid is the same as any other on average. Atoms

do not line up just a direction or axes, rather the system possess rotational and translational

symmetry. On the other hand, solid is of some residual symmetry and it is invariant under

four-fold rotations. To change symmetry gradually is impossible and a certain symmetry is

either present or not. Therefore, phase transition is sharp and there is a particular distinction

between disordered and ordered phase [28].

2.1.1 Polarization

Polarization is the macroscopic quantity of dielectric materials. Since the tendency of po-

larization (polarizability) for diverse substance is different, it can be said that the dielectric

property is a characteristic property represented by dielectric constant ε. A dielectric material

can interact with an electric field seeing that electric dipoles line up to this field. Number

of dipole moments per unit volume is defined as polarization which is represented by the

polarization vector

~P = (ε − ε0)~E = χeε0 ~E (2.7)

where ε0 is the electric permittivity of space, ε is the electric permittivity of the medium and

χe is the susceptibility. The average dipole moment ( ~µav) of particle is related with local

10



electric field ~Eloc as

~µav = α ~Eloc (2.8)

where α is the polarizability which measures the electric susceptibility of the particle. With

the relation between polarization and N elementary dipole moments of particles ~µav as

~P = N ~µav (2.9)

the expression of polarization can be reduced as follows

~P = Nα ~Eloc . (2.10)

Here ~Eloc is different from ~E owing to the polarization of surrounding dielectric medium.

Based on these parameters, the polarization can be investigated by the change of temperature,

frequency and applied field. The polarizability (α) can be divided into four contribution parts

as electronic, ionic, orientational and interfacial in the form of

α = αe + αi + αd + αs . (2.11)

In electronic polarization, there exist positive atomic nuclei surrounded by negative elec-

tron clouds. By applying an external electric field,electrons are slightly displaced and conse-

quently induced dipole moments are formed. In ionic polarization, an external electric field

gives rise to change the equilibrium positions of net charges which have opposite polarity.

The asymmetric distribution of these distinct charges cause the permanent dipole moments

even in the absence of external electric field. However, these permanent dipoles experience a

torque due to the external electric field. Then we can say that orientational polarization arises

from the orientation of dipole moments towards the applied field direction. These three con-

tributions of polarization arise from the charges which are bounded in atoms locally. On the

other hand, in the interfacial polarization (space charge polarization), charge carriers can mi-

grate some amount of distance in dielectric substance. During this displacement process the
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charge carriers can be trapped on interfaces or in the material. All these kinds of polarization

are illustrated in Figure 2.6 [31].

Figure 2.6: Polarization mechanisms [31].

2.1.2 Transition Types of Ferroelectric Crystals

As far as structural transition is concerned, the ferroelectric transition has been extensively

studied in which the spontaneous polarization plays fundamental role in crystals. In such

crystals extraordinary temperature dependence of dielectric constant is of widely interest.

Therefore, this property has been discussed in order to explain piezoelectric effect, pyroelec-

tric effect and electro optical effects [29].

It has been accepted that ferroelectric crystals can be classified as order-disorder or displacive.

This type of crystals is marked due to their own type of transition as either displacive or order-

disorder. Both types of transitions are the transformation from one phase (e.g. ferroelectric

phase) to another (e.g. paraelectric phase) at the transition temperature or Curie temperature

Tc with a slightly reversible temperature change near the Tc.

In a displacive transition, the oscillations of atomic displacements in a paraelectric phase

change from the region about a non-polar to a polar region. Moreover, in an order-disorder

transition, the oscillations of the displacements in a paraelectric phase, however, change from

the region of some double-well or multi-well configuration to about an ordered subset of these
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wells [29].

2.1.3 Landau Theory of Phase Transitions

The concept of thermodynamic properties of structural phase transition takes back to the

investigation of Landau (1937). According to him, the transition can be explained in terms

of an order parameter η of which breaks the symmetry of the paraelectric phase at Curie

temperature (Tc). While η is non-zero below the Tc, it vanishes above the Tc. Therefore, η is

such a significant parameter that plays crucial role on the atomic configuration from the less

symmetrical phase to the more symmetrical paraelectric phase [32].

“In order-disorder transition η measures the amount of long range ordering of permanent

dipoles. In displacive transitions, on the other hand, η measures the degree of displacement

of certain ions or ionic groups, i.e., the long range ordering of induced dipoles.”[32]

By making a perfect analogy to the ferromagnetism, one can say that while the order param-

eter is magnetization in ferromagnetic crystals, it is polarization in ferroelectric crystals. The

hysteresis property of P depending on electric field E is shown in Figure 2.7 [33].

Figure 2.7: Hysteresis loop for the polarization [33].

Here, Ps is the spontaneous polarization which is defined by the bounded surface charge

density on the relevant sample owing to the relative atomic displacements in a phase transition,

Em and Ec are maximum applied electric field and coercive field, respectively.
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According to Landau, we can define φ as the thermodynamic potential depending on T and η,

in addition, the potential can be selected as Helmholtz free energy given in Equation 2.3. By

saying η0 as the equilibrium value of the order parameter in the absence of external field, φ

ought to be minimum for the corresponding temperature for unstable states [32]

(
∂φ

∂η

)
η0

= 0,
(
∂2φ

∂η2

)
η0

> 0 . (2.12)

The above relations are used to determine the stability of diverse phases. In reference to

Landau, this potential should be expanded in powers of η as [32]

φ = φ0 +
1
2

aη2 +
1
4

bη4 +
1
6

cη6 + ... (2.13)

where φ0 is the thermodynamic potential at which η = 0, a and b are temperature dependent

functions. The order parameter η is the spontaneous polarization P for the ferroelectric phase

transition. In Equation 2.13, the coefficient of η4, b is of such a significant role that it deter-

mines the transition type as a first order, second order transition or tricritical. If b > 0, it is

the second order, b < 0 it is the first order and when b = 0, it is tricritical phase transition.

The Figures 2.8 and 2.9 represent the temperature dependence of the polarization for the first

order and second order transitions, respectively [32].

Figure 2.8: Temperature dependence of polarization for the first order transition [32].
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Figure 2.9: Temperature dependence of polarization for the second order transition [32].

Therefore, Equation 2.13 becomes

φ = φ0 +
1
2
φ1P2 +

1
4
φ2P4 +

1
6
φ3P6 + ... (2.14)

Applying the first condition of relation in Equation 2.12

(
∂φ

∂P

)
P0

= 0 (2.15)

one finds

(φ1 + φ2P2
0)P0 = 0 . (2.16)

The above equation has two solutions, one is P0 = 0 and the other is P0 , 0 by neglecting

higher powers than P4 for simplicity. It is useful to explain the even powers of order parameter

related to continuous phase transition, whereas the odd ones are omitted corresponding to

discontinuous phase transition. Here, the even powers should be selected for the ferroelectric

and ferromagnetic crystals.

As a further step, applying the latter relation in Equation 2.12 we can write straightforwardly

(
∂2φ

∂P2

)
> 0. (2.17)

In the existence of an external electric field E and defining the second derivative of free energy
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density with respect to the polarization is the reciprocal of isothermal susceptibility χ−1
T [32].

Hence,

(
∂φ

∂P

)
= E (2.18)(

∂2φ

∂P2

)
P0

=
∂E
∂P

=
1
χT

> 0 . (2.19)

It is straightforward to see the polarization from the Equation 2.16.

P0 =

√
−φ1

φ2
. (2.20)

For the first solution P0 = 0 is valid for T > Tc, namely, the paraelectric phase. As far as

the second solution P0 , 0 is concerned, we can say that a non-zero polarization exist even if

there is no external field. In order to seek the behavior in the neighborhood of the transition

temperature Tc, it is appropriate to expand φ in Taylor series by assuming [32]

φ1 = a′(T − Tc) (2.21)

where a′ is constant. Then Equation 2.20 becomes

P0 =

( a′

φ2

) 1
2

(T − Tc)
1
2 (2.22)

where T is below the transition temperature Tc. And finally, this relation can be reduced as

P0 α (T − Tc)β T < Tc (2.23)

where β is the critical exponent for the polarization and its value β = 1
2 [32].

2.1.4 Soft Mode and Displacive Transition

In the study of Raman spectroscopy, the optical phonons of the sample analyzed has been

investigated since the optical phonons are interacting with the incident beam in the Brillouin
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zone of sample in Raman scattering. So, these phonon frequencies as transverse (TO) and

longitudinal (LO) are the basis of measurement. With the same wave vector, longitudinal

optical phonon frequencies are higher than the frequencies of the transverse optical. Since

TO phonon frequency vanishes at any point within the Brillouin zone, this type of phonons

can be investigated rather than LO phonons. A typical dispersion relation is shown in figure

2.10. Precisely, we can say that the phonon frequency is of important role in the displacive

phase transition.

Figure 2.10: Dispersion relation [34].

As the measured property of phase transition, the symmetry breaking occurs while passing

from one phase to another. In ferroelectric crystals as an order parameter, the spontaneous

polarization P, is zero at higher temperatures (higher symmetry), whereas it is non-zero at low

temperatures, (low symmetry).

For the continuous transitions, namely, the second order transition below the critical tempera-

ture Tc, we can define a “normal mode” of which frequency is zero ν̃(~q = 0) = 0 that rebuilds

the lost symmetry [32].

Let us think a phonon frequency with a wave vector ~q by using anharmonic interaction ap-

proach. It can be defined as

ν̃ = ν2
0 + αT (2.24)

where the constant α is positive. Here, ν0 is the harmonic frequency of phonon. The anhar-

monic addition increases up to the fact that this restoring frequency ν̃ comes to zero [22].
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Figure 2.11: Temperature dependence of soft mode [22].

In the low temperature (less symmetric) phase, the frequency of mode decreases down to zero

by heating to the critical temperature Tc. At Tc the crystal presents an unstable state and the

phase transition occurs from the low symmetric phase to high symmetric phase. The behavior

of the lowering frequency while approaching to the transition temperature is defined as “soft

mode” [22]. In Figure 2.11, the behaviour of the soft mode is shown for the PbTiO3 obtained

by Scott and Burns in 1970 using Raman spectroscopy [22]. Quartz also shows the behaviour

of soft mode with ~q = 0, although it is not ferroelectric. It has a lack of inversion symmetry

for both low and high temperature phases [22].

2.2 Quartz

Quartz, S iO2, is the most abundant crystal on earth. One silicone and four oxygen atoms

are bounding and each Si is shearing the O atoms with the neighboring Si, consisting of

S iO2 [35]. As the polymorphs, there are six types of quartz in terms of stability at different

temperatures.

18



Figure 2.12: Polymorphs of S iO2 [36].

They are α − quartz, β − quartz, tridymite, cristobalite, coesite and stishovite. With the

pressure and temperature dependence of quartz types is shown in figure 2.12 [36]. Since our

investigation is on alpha quartz and beta quartz, we do not focus on the others.

Quartz refers to α quartz or low quartz that exists below the 573.3oC (∼ 840K) with the

point group of D3 and trigonal structure. It has the enantiomorphistic property that exhibits

the chiral structure as the space groups of P3121(D4
3) and P3121(D6

3). At room temperature,

the lattice constants of unit cell a0 and c0 are 0.4918 nm and 0.5404 nm, respectively. The

bonding of Si-O consists of approximately 0.4 ionic and 0.6 covalent with the ∼ 4.85 eV

bonding energy[36].

By heating, α quartz transforms to β quartz or high quartz above the transition temperature Tc,

moving Si atoms at an amount of 0.03 nm. The trigonal shape changes to hexagonal with the

point groups of D6 and space groups P6222(D4
6) and P6422(D5

6). At about 873 K the lattice

constants of unit cell are a0 = 0.501 nm and c0 = 0.547 nm [36]. Furthermore, β − phase
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has higher symmetry than the α − phase and their structures are shown in Figure 2.13 by

comparing only the Si atoms of each phase [27].

Figure 2.13: (a) α − quartz and (b) β − quartz [27].

The structure of quartz was first investigated by Bragg and Gibbs in 1925. Ever since, nu-

merous studies have been developed to analyze the structure of quartz, using x-ray and neu-

tron scattering [37]. In 1940, Raman and Nedungadi have first analyzed the structure phase

transition of quartz using Raman scattering. They observed the soft mode behavior while

approaching the transition temperature Tc, from the α − phase to the β − phase.

Figure 2.14: Raman spectrum of α − quartz with species A1 at room temperature [3]

Then after a decade, Cochran and Anderson claimed that the vibrational normal modes present

instability which give rise to the phase transition in some ferroelectric crystals. According

to them, the mode frequency exhibits decreasing down to zero, as approaching Tc with the
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relation of ν2 ∼| T − Tc | [38]. Considering the Landau’s theory, Ginzburg suggested that the

soft mode behavior is the main rule of second order transition [39].

By the group theory, the types and the numbers of modes in crystals can be theoretically

calculated. In this respect, for α − quartz in the low temperature there exists four Raman

active and eight double degeneracy modes, species A and E, respectively. The modes having

A1 are determined as 1081, 466, 356 and 207 cm−1 [16]. Of these four modes, the three of

them transform to species of B1 Raman-inactive during the phase transition. Therefore, only

one mode of species A1 (Raman-active) survives in the β − phase.

In the study of Shapiro et al. [3], between the temperatures 77 and 888 K, quartz crystal has

been experimentally investigated. However, in addition to the usual expectation of the modes

for the α − quartz, an unexpected mode of 147 cm−1 was observed and it is shown in Figure

2.14. This mode was found to obey soft mode accompanying with the 207 cm−1 mode. These

two modes of quartz present a high variation with the temperature change. While the 147

cm−1 mode frequency exists only in α − phase, not in the β − phase, 207 cm−1 mode is

present in both phases. So that, it is reasonable to say based on the experimental result that

there is only one A1 mode in the β − phase and there are five modes in the α − phase. The

experimental outcome of both phases is shown in Figure 2.15. Since the E modes present a

little change with the varying temperature, they have not been considered in details.

Figure 2.15: Soft mode behavior of the 207 cm−1 and 147 cm−1 mode frequencies [3]
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In this figure, the triangles are for the 207 cm−1 and circles for the 147 cm−1 modes. Behavior
of the temperature dependence of these two mode frequencies can be explained by the soft
mode theory with the ν2 ∼| T − Tc |

γ where the excepted value of critical exponent γ as
0.4 < γ < 0.5 [3].

Figure 2.16: The temperature dependence of volume expansion in quartz [14]

One of the other analysis of the α − β phase transition on quartz has been studied by Tucker

et al. [37]. The temperature dependence of unit cell volume approaching from the α−phase to

the β− phase with a range of 20 to 1073 K, has been analyzed by using neutron scattering. In

this study, the increasing volume of the unit cell, as shown in Figure 2.16, has been observed

and the average structure of quartz (squares) with the neutron diffraction data (circles) was

comparably considered. The expansion of unit cell volume was explained in details merely

for silicon and for oxygen in view of transforming the structure trigonal to hexagonal system

[37].

2.3 Raman Bandwidth

The anharmonic effects in crystals lead to observe thermal expansion, temperature dependent

phonon frequencies, elastic constants and also bandwidths of phonon frequencies. Of these

effects, two of them play significant role on phonons, one is the deviation from the harmonic

interaction and the other is damping of phonon frequencies, observed as bandwidth and broad-

ening of the Raman spectrum line. One example of the latter behavior is shown in Figure 2.17
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for KNO3 analyzed by Harris in 1992. Linewidth or damping constant can be defined as “the

inverse of life time of an excited state” [22].

Figure 2.17: Temperature dependence of bandwidth of a ~q = 0 mode for KNO3 [22].

A compact expression of damping constant has been derived by Laulicht and Lucknar in 1977

[40] beginning with the study of Yamada et al. [41] on Ising spin-phonon coupled system and

more general treatment of Matsushita [42] in 1976 as follows:

Γ = Γ0 + A(1 − P2) ln
( Tc

T − Tc(1 − P2)

)
(2.25)

where P and Γ0 are the order parameter and damping constant of background respectively,

with constant A. In addition to Equation 2.25, a further expression has been developed by

Laulicht [43] in 1978 as

Γ = Γ0 + A′
( (1 − P2)T
T − Tc(1 − P2)

)
(2.26)

with a constant A′. Here, the order parameter is temperature dependent and given by Mat-

sushita [42] in the molecular field theory as,
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1 − 2exp
[
−

2Tc

T

]
, T << Tc

P =

[
3
(
1 −

T
Tc

)] 1
2
, 0 < Tc − T < Tc

0 , Tc < T

(2.27)

According to this relation, P the order parameter does not exist above the transition tempera-

ture. So that, the ν2 can be related to P linearly by

ν2 = a + bP (2.28)

where a and b are constants.

Regarding the soft mode-hard mode model, the critical behavior of the damping constant can

be described according to a power-law formula

Γ = A[T/(Tc − T )]2β (2.29)

where β is the critical exponent for the order parameter and A is the amplitude. This relation

can be written in the logarithmic form as

lnΓ = lnA + 2β ln[T/(Tc − T )] (2.30)

During the phase transitions ions can be differently oriented by gaining an amount of activa-

tion energy Ea. The relation with the damping constant is given by Huber et al. [44] as

Γ = α +
β

T
exp[−Ea/kBT ] (2.31)

where kB is the Boltzmann constant, α and β are also constants related with the relaxation

of vibration and reorientation of relaxation, respectively. Very close to transition temperature

these coefficients can be ignored, hence using this approximation the Equation 2.31 reduces

to
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lnΓ =

(
−Ea

kBT

)
. (2.32)

2.4 Grüneisen Parameter

To study the thermal expansion during the phase transition we have to use anharmonic ap-

proximation to explore the unit cell volume dependence of phonon frequencies. In order to

obtain so called Grüneisen relation, it is useful to begin with the heat capacity. A conservation

relation of heat capacity between constant pressure (Cp) and constant volume (Cv) with the

temperature is the following:

Cp −Cv =
TVα2

κT
(2.33)

where κT and α are the isothermal compressibility and the expansion coefficient, respectively

κT = −
1
V

(
∂V
∂P

)
T

(2.34)

α =
1
V

(
∂V
∂T

)
P

= κT

(
∂P
∂T

)
V
. (2.35)

The derivative of Helmholtz free energy with respect to the volume, that is P, gives

P = −

(
∂F
∂V

)
T

= −
∂φ

∂V
−

1
2

∑
~q,ν

~
∂ω(~q, ν)
∂V

−
∑
~q,ν

n(ω,T )~
∂ω(~q, ν)
∂V

(2.36)

substituting into the Equation 2.4 yields

α = −κT

∑
~q,ν

~
∂ω(~q, ν)
∂V

∂n(ω,T )
∂T

(2.37)

where n is the phonon number and ν stands for the labeled mode. So, the heat capacity with

the contribution of each mode is expressed as
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C̃~q,ν = ~ω(~q, ν)
∂n(ω,T )
∂T

(2.38)

and also the Grüneisen parameter of mode can be defined as

γ~q,ν = −
V

ω(~q, ν)
∂ω(~q, ν)
∂V

= −

∂
(
lnω(~q, ν)

)
∂(lnV)

(2.39)

with the mean Grüneisen parameter

γ =
∑
~q,ν

γ~q,ν
C̃~q,ν

Cv
(2.40)

In Equation 2.39, the minus sign contributes a positive effect on γ. And it is appropriate

to say that whereas the frequency is decreasing, the volume of unit cell is increasing due

to the weakness of inter-atomic forces [22]. For a constant pressure in case of the isobaric

state, changing the unit cell volume by the temperature can be related to the variation of the

frequency with temperature, defined as the isobaric mode Grüneisen parameter,

γp = −
1
α

1
ν

(
∂ν

∂T

)
p
. (2.41)

By means of this equation, the Raman frequency varying with the temperature can be ex-

pressed as

νp(T ) = ∆ν + ν1 exp[−γpln(Vp(T )/V1)] (2.42)

where V1 and ν1 are the volume and frequency, respectively, at T=0 K and ∆ν is the frequency

shift. The temperature dependence of volume Vp(T) and the frequency νp(T ) can be expressed

by a quadratic formula

Vp = a0 + a1T + a2T 2 (2.43)

and

νp = b0 + b1T + b2T 2 . (2.44)
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CHAPTER 3

CALCULATIONS

3.1 Analysis of the Two Raman Frequencies of 147 cm−1 and 207 cm−1 Modes

of Quartz

In the study of Shapiro et al. [3], for the α-β phase transition in quartz, two Raman frequency

modes of 147 cm−1 and 207 cm−1 show significant changes with the varying temperature as

an anharmonic effect. This behavior has been observed within the temperatures 77 K to 888

K, for the α-phase to β. From the curve of these two modes in Figure 2.15 by approaching to

critical temperature Tc, a soft mode like picture can clearly be seen. We took the data for both

modes to analyze the soft mode behavior obeying the power-law formula ν2 = k | T − Tc |
β

and obtained the values of the critical exponent β. We plotted for the 147 cm−1 mode in Figure

3.1 and the 207 cm−1 mode in Figure 3.2 by separating the fitted curves into two. In order to

obtain the values of the critical exponent β as in Equation 2.23, each mode was analyzed with

the corresponding temperature intervals.

Table 3.1: Values of the critical exponent for the Raman frequencies of the 147 cm−1 and 207
cm−1 modes and the amplitude according to power-law formula

Raman mode (cm−1) β k Temperature interval (K)
147 0.5 897.8 4.3 <| T − Tc |< 546.3
147 1.2 298.8 0.5 <| T − Tc |< 4.3
207 0.2 10938.0 179.3 <| T − Tc |< 543.3
207 0.04 24343.0 1.4 <| T − Tc |< 179.3

27



Figure 3.1: Temperature dependence of the 147 cm−1 Raman mode frequency as approaching
to the critical temperature Tc.

Figure 3.2: Temperature dependence of the 207 cm−1 Raman mode frequency as approaching
to the critical temperature Tc.
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3.2 Calculation of the Damping Constant for the 147 cm−1 and 207 cm−1 Raman

Modes

According to the bandwidth relations in Equations 2.25 and 2.26, we calculated the damping

constant denoted as Γ1 and Γ2, respectively. For the 147 cm−1 mode, Γ values have a coupled

behavior, so that we plotted them separately as two linear fits. However, damping constant of

the 207 cm−1 mode required to be fitted a cubic function.

Figure 3.3: Temperature dependence of the damping constant according to Equation 2.25 for
the 147 cm−1 mode.

In Figure 3.3 the diverging part of the fitted line was redrawn in Figure 3.4 by using a power

low formula given in Equation 2.29 to find the critical exponent β close to the transition

temperature. After doing this, values of the critical exponent β corresponding to the damping

constants Γ1 and Γ2 are listed in Table 3.2.

Table 3.2: Values of the critical exponent β and the amplitude A for 147 cm−1 near the Tc.

Bandwidth β A (cm−1) Temperature interval (K)
Γ1 0.18 0.34 0.5 <| T − Tc |< 10.8
Γ2 0.28 0.18 0.5 <| T − Tc |< 10.8
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Figure 3.4: The diverging part of the damping constant near the Tc.

Figure 3.5: Temperature dependence of the damping constant according to Equation 2.26 for
the 147 cm−1 mode
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Figure 3.6: The diverging part of the damping constant near the Tc

Figure 3.7: Temperature dependence of the damping constant fitted with a cubic function for
the 207 cm−1 mode according to Equation 2.25.
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Figure 3.8: Temperature dependence of damping constant fitted with a cubic function for the
207 cm−1 mode according to Equation 2.26

3.3 Calculations of the Order Parameter and Raman Frequencies of the 147

cm−1 and 207 cm−1 Modes

In this study, the order parameter (polarization) was calculated using the second relation of

Equation 2.27. By making use of the ν2 vs P graphs , each mode frequency was calculated

and compared with the observed ones.
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Figure 3.9: Temperature dependence of the order parameter (polarization P)

Figure 3.10: ν2 against P relation for the 147 cm−1 Raman mode

33



Figure 3.11: ν2 against P relation for the 207 cm−1 Raman mode

Figure 3.12: Calculated and observed frequencies for the 147 cm−1 Raman mode
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Figure 3.13: Calculated and observed frequencies for the 207 cm−1 Raman mode

3.4 Calculation of the Activation Energy for the 147 cm−1 and 207 cm−1 Raman

Modes

According to Equation 2.32, the activation energy Ea using the Raman bandwidths Γ1 and Γ2

was calculated and relevant temperature intervals are listed.

Table 3.3: Calculation of the activation energies for the Raman modes indicated

Raman mode (cm−1) Γ Ea (eV) Temperature interval (K)
147 Γ1 1.32 769.8 < T < 845.6
147 Γ1 0.11 299.8 < T < 769.8
147 Γ2 1.22 769.8 < T < 845.6
147 Γ2 0.07 299.8 < T < 769.8
207 Γ1 0.005 382.1 < T < 844.7
207 Γ2 0.005 382.1 < T < 844.7
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Figure 3.14: The damping constant (Γ1) as a function of temperature for the 147 cm−1 mode
to extract the activation energy Ea for this mode according to Equation 2.32.

Figure 3.15: The damping constant (Γ2) as a function of temperature for the 147 cm−1 mode
to extract the activation energy Ea for this mode according to Equation 2.32.
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Figure 3.16: The damping constant (Γ1) as a function of temperature for the 207 cm−1 mode
to extract the activation energy Ea for this mode according to Equation 2.32.

Figure 3.17: The damping constant (Γ2) as a function of temperature for the 207 cm−1 mode
to extract the activation energy Ea for this mode according to Equation 2.32.
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3.5 Calculation of the Grüneisen Parameter and the Raman Frequency for the

207 cm−1 Mode

From the study of Tucker et al. [37] on α − β phase transition, we made use of the volume

dependence of the unit cell varying with the temperature, as shown in Figure 2.16. For sim-

plicity, we assigned subscripts “s” and “c” to the volume and frequency which refer to the

solid squares and solid circles in Figure 2.16, respectively. Firstly, we fitted the temperature

dependent unit cell volume to a quadratic formula according to the Equation 2.43 for both

data. Then using Equation 2.44, we also fitted for the 207 cm−1 mode frequency. We plot in

Figure 3.18 the data fitted with the relevant coefficients, as given in Table 3.4

Table 3.4: Calculations of coefficients from the fitted volume data for squares and circles, Vs

and Vc

Volume a0 a1 (10−4) a2 (10−6) Temperature interval (K)
Vc 112.2 -3.5 7.1 6.6 < T < 854.6
Vs 112.3 10 8.0 6.6 < T < 855.9

Figure 3.18: Temperature dependence of the unit cell volume for solid circles in Figure 2.16
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Figure 3.19: Temperature dependence of the unit cell volume for solid squares in Figure 2.16

Figure 3.20: Temperature dependence of the Raman frequency for the 207 cm−1 mode.
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Table 3.5: Values of the coefficients obtained for the 207 cm−1 mode frequency according to
Equation 2.44.

Raman mode (cm−1) b0 b1 (10−3) b2 (10−5) Temperature interval (K)
207 213.6 -13 -5.0 299.8 < T < 844.7

Table 3.6: Values of the coefficients obtained as the frequency difference for the 207 cm−1

(Figure 3.21)

Frequency shift c0 c1 (10−3) c2 (10−5) Temperature interval (K)
∆νs 510 -2.0 3.3 299.8 < T < 844.7

Table 3.7: Values of the coefficients obtained as the frequency difference for the 207 cm−1

(Figure 3.22)

Frequency shift d0 d1 (10−3) d2 (10−6) Temperature interval (K)
∆νc 4.94 -4.0 5.2 299.8 < T < 844.7

Table 3.8: Values of the mode Grüneisen parameter γp determined by using the neutron
diffraction data (Figure 3.18) and the unit-cell volume of the average structure of quartz (Fig-
ure 3.19) with the values of the volume and the Raman frequency at T=0 K.

V (A3) γp V0 (A3) ν1 (cm−1)
Vc 5.5 112.2 213.6
Vs 2.5 112.3 213.6
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Figure 3.21: The frequency difference for the 207 cm−1 Raman mode.

Figure 3.22: The frequency difference for the 207 cm−1 Raman mode.
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Figure 3.23: The comparison for the 207 cm−1 Raman mode calculated frequencies according
to Equation 2.42 with the observed data.
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CHAPTER 4

DISCUSSIONS AND COMMENTS

The observed Raman frequencies for the lattice modes of 147 and 207 cm−1 were related to

the order parameter (polarization) for the α − β transition (Tc = 846 K) in quartz, as shown

in Figures 3.10 and 3.11, respectively. Since the Raman frequency of the weak mode of

symmetry A1 (147 cm−1) goes to zero when approaching the α − β transition temperature

Tc as observed experimentally [3], this mode exhibits a soft mode behavior according to

ν2 = k | T − Tc |
β within the framework of the soft mode theory [45]. This leads to the α − β

transition in quartz as a second order transition, which was also considered by Ginzburg [39]

within the Landau′s phenomenological theory. However, our analysis of the ν2 vs. T − Tc

gives rise to the value of β = 0.5, as also obtained previously [3] within the temperature

interval of 4.3 <| T − Tc(K) |< 546.3 according to our analysis given here. This is not in

agreement with the value of β = 1/2 from the ν vs. T − Tc or β = 1 from the ν2 vs. T − Tc

data according to the soft mode theory, as also pointed out previously [3]. So, the square of

the Raman frequency (ν2) of the lattice modes of 147 cm−1 and 207 cm−1 correlates with the

order parameter (polarization P) linearly, as shown in Figures 3.10 and 3.11, respectively for

the α− β transition in quartz. Within the temperature interval of 0.5 < T −Tc(K) < 4.3 which

is close to the α − β transition in quartz, our analysis of the ν2 vs. T − Tc for the 147 cm−1

mode gives the value of β = 1.2. This exponent value is close to the β = 1 predicted from the

soft mode theory. This indicates that the A1 (147 cm−1) exhibits a soft mode behavior within

the temperature interval of about 4 K just below Tc for the α − β transition in quartz.

Regarding the temperature dependence of the Raman bandwidths of the 147 cm−1 mode, the

Γ values calculated from Equations 2.25 and 2.26 (Figures 3.3 and 3.5) behave differently

from those calculated for the 207 cm−1 mode (Figures 3.7 and 3.8). The Γ values calculated
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from Equation 2.25 for the 147 cm−1mode (Figure 3.3) is lower than those calculated from

Equation 2.26 (Figure 3.5). Also, the Γ values calculated from Equation 2.25 (Figure 3.7) are

much lower than those calculated using Equation 2.26 (Figure 3.8) for the 207 cm−1 mode

within a large temperature region below Tc down to T − Tc = −500K.

Considering the critical behavior of the damping constant or the bandwidths varying with

the temperature below Tc, our Γ values calculated from Equations 2.25 and 2.26 show the

expected behavior for the Raman mode of 147 cm−1 (Figures 3.3 and 3.5). As predicted from

the soft mode theory (ν → 0 as T → Tc), the bandwidth Γ of the 147 cm−1 Raman mode

(Figures 3.3 and 3.5) diverges or goes to infinity as a soft mode when the α − β transition is

approached from the low temperatures (α − phase) and it goes to zero well below Tc (about

T − Tc = −400K). Our exponent values of β ≈ 0.2 (Equation 2.25) and ≈ 0.3 (Equation 2.26)

which were deduced from the power-law analysis (Equation 2.29) for the 147 cm−1 Raman

mode as given in Table 3.2, can be compared with the value of β = 0.5 from the ν2 vs. T

data (ν2 = k | T − Tc |
β) and also with the value of β = 0.2 deduced from the analysis of the

207 cm−1 Raman mode within the same temperature interval (Table 3.1). This indicates that

the critical behavior of the soft mode (147 cm−1) can be described consistently by the critical

exponent for the order parameter as obtained from the temperature dependence of the Raman

frequency (ν2 = k | T − Tc |
β) and that dependence of the bandwidth (Equation 2.29) for this

mode. This critical behavior is not seen for the 207 cm−1 mode, as observed experimentally

[3] and also from our calculated bandwidths (Figures. 3.7 and 3.8). So, the mechanism of

the α − β transition and the soft mode behavior is attributed to the 147 cm−1 Raman mode

of quartz. In regard to the values of the activation energy which we extracted from Equation

2.32 by using our calculated values of the bandwidth for the 147 cm−1 and 207 cm−1 modes

(Equations 2.25 and 2.26), they are comparable with the value of kBT = 0.072 eV for the

α − β transition in quartz. As given in Table 3.3, for the soft mode of the 147 cm−1 the Ea

values increase from ∼0.1 eV to about 1.3 eV as approaching the transition temperature Tc

on the basis of both soft mode-hard mode coupling model (Equation 2.25) and the energy

fluctuation model (Equation 2.26). In particular, our extracted value of Ea = 0.07 eV within

the temperature interval of 299.8 < T (K) < 769.8 for the 147 cm−1 mode (Table 3.3) is the

same as the kBTc value for the α − β transition in quartz. For the 207 cm−1 Raman mode ,

our Ea value of 0.005 eV for all the temperature range below the Tc (Table 3.3) is too small

to be compared with the kBTc value for the α − β transition in this crystal. This indicates
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that the height of the barrier decreases much faster than the energy difference between the

two minima in the α phase (ordered phase) leads to a double minimum configuration with

random occupation of the S iO4 atoms in the β phase (disordered phase) on the basis of the

ad-hoc phenomenological model [3]. This suggests that the α − β transition in quartz is an

order-disorder transition.

The temperature dependence of the Raman frequencies for the lattice modes was analyzed

using the experimental data for the α−β transition in quartz. The Raman bandwidths of those

modes were calculated as a function of temperature for the α − β transition in this crystal by

using the soft mode hard mode coupling model and the energy fluctuation model.

Our results show that the calculated Raman bandwidths for the 147 cm−1 lattice mode (soft

mode) increase largely as the α−β transition temperature is approached. This is in accordance

with the soft mode behavior of the Raman frequency vanishing at T = Tc, as expected from

the soft mode theory. Our calculated bandwidths of the Raman modes studied here, can be

compared with the experimental measurements for the α−β transition in quartz when available

in the literature.

The Raman frequency of the 207 cm−1 mode was calculated (Equation 2.42) using the volume

data [14] through the Grüneisen parameter γp of this mode (Equation 2.39) for the α − β

transition in quartz at various temperatures, as given in Figure 3.23. This is in accordance

with the observed Raman frequencies [3] for the 207 cm−1 mode (Figure 3.20 or Figure 3.23)

which decrease as the temperature increases towards the transition temperature Tc. Although

this decrease in the Raman frequency with increasing temperature is exhibited for the 207

cm−1 mode, the absolute values of the Raman frequency ν are completely different except

at T=300 K. Since the volume values were obtained using two different techniques [14],

namely, the neutron diffraction (Figure 3.18) and the unit-cell volume of the average structure

of quartz (Figure 3.19), we deduced two γp values for the 207 cm−1 Raman mode (Table

3.8). Thus, the two sets of the Raman frequency of this mode were calculated with the γp

values according to Equation 2.42, as plotted in Figure 3.23. It is clear from this figure

that the Raman frequencies calculated using (the symbol solid square) the neutron diffraction

data (Figure 3.18) follow closely the observed data [3]. This indicates that the value of the

Grüneisen parameter for the 207 cm−1 is in fact γp =5.5 instead of 2.5 on the basis of our

calculated Raman frequencies in comparison with the experimental data [10], as shown in
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Figure 3.23. On the other hand, ∆ν values of the Raman frequency shift for the 207 cm−1

mode, which were deduced from Equation 2.42 by using the two sets of volume data [14]

show a different temperature dependence (Figures 3.21 and 3.22). For the volume data (Figure

3.19), ∆ν increases as the temperature increases towards Tc (Figure 3.21) whereas ∆ν values

obtained by using the volume data (Figure 3.18) remains almost constant (around 4 cm−1).

We also note that the ∆ν values (Figure 3.21) which were obtained from the volume data

given in Figure 3.19, are much larger than those given in Figure 3.22. This also indicates that

the smaller ∆ν values (Figure 3.22) for the 207 cm−1 mode with the Grüneisen parameter of

γp=5.5 represent the observed behavior of this lattice mode for the α − β transition in quartz.

The frequency shift due to the atomic motions of this lattice mode can be associated with the

α − β transition in quartz, as also pointed out previously [16]. It was reported many years

ago that this lattice mode moves toward the Rayleigh line as the Tc is approached and that

it disappears completely in the β phase [17]. However, it has been observed that the 207

cm−1 mode still exists above Tc as a broad band centered at 162 cm−1 [3]. With increasing

temperature in the α phase, the Raman frequency of this phonon mode decreases, as observed

experimentally (Figure 3.20), which causes the increasing disorder towards the β phase. It has

been pointed out previously that the extensive disorder in the β phase is due to the excitation

of the soft mode. So that, the low-energy high-amplitude vibrations contribute to the disorder

in the β phase [14].

The Raman frequency of the lattice mode (207 cm−1) was calculated as a function of tem-

perature by using the volume data for the α − β transition in quartz. The calculation of the

Raman frequency of this mode was performed by determining the mode Grüneisen parameter

using the observed Raman data, which was kept constant throughout the α − β transition in

this crystal. Our calculated frequencies which were obtained by using the neutron diffraction

data, predict the observed Raman frequencies of this lattice mode for the α − β transition in

quartz. However, our frequencies calculated from the unit-cell volume of the average structure

of quartz, are in disagreement with the observed Raman data.

It is shown here that our method of calculating the Raman frequencies from the neutron scat-

tering volume data is better match for explaining the experimental data with respect to the

unit-cell volume average for the α − β transition in quartz.
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