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ABSTRACT 
 
 

VEHICLE ROUTING PROBLEM IN CROSS DOCKS 
WITH SHIFT-BASED TIME CONSTRAINTS ON PRODUCTS 

 
 

Koçak, Menekşe 
 
 

M.Sc., Department of Industrial Engineering 
Supervisor: Assoc. Prof. Dr. Canan Sepil 

 
 

December 2011, 106 pages 
 
 

In this study, the capacitated vehicle routing problem with shift based time 

constraints is taken into consideration. The study stemmed from an application 

in a cross dock. The considered cross dock is assumed to feed directly the 

production lines of its customer. The customer has a just-in-time production 

system that requires producing only in necessary quantities at the necessary 

times. This necessitates the arrival of the parts/products collected from 

different suppliers at the customer at the beginning of each shift of production. 

The shift times constitute deadlines for the products to be collected from the 

suppliers and used in each shift. The collection problem then can be seen as the 

capacitated vehicle routing problem with shift based time constraints.  The 

objective of the collection problem is to minimize the routing costs. For the 

accomplishment of this objective it is required to decide on products of which 

shift(s) should be taken from a supplier when a vehicle arrives at that supplier. 

For the solution of the problem a mathematical model is formulated. Since the 

dealt problem is NP-Hard, meta-heuristic solution approaches based on 

variable neighborhood search and simulated annealing are proposed. 

Computational experimentation is conducted on the test problems which are 

tailored from the capacitated vehicle routing instances from the literature. 

 

Keywords: Vehicle routing problem, shift-based time constraints on products, 

cross docks, variable neighborhood search, simulated annealing 
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ÖZ 
 
 

ÜRÜNLER ÜZERİNDEKİ VARDİYA BAZLI ZAMAN KISITLARI İLE 
ÇAPRAZ SEVKİYAT DEPOLARINDA ARAÇ ROTALAMA PROBLEMİ 

 
 

Koçak, Menekşe 
 
 

Yüksek Lisans, Endüstri Mühendisliği 
Tez Yöneticisi: Doç. Dr. Canan Sepil 

 
Aralık 2011, 106 sayfa 

 
Bu çalışmada, kapasiteli araçlarla vardiya bazlı zaman kısıtları ile araç 

rotalama problemi değerlendirilmiştir. Çalışma çapraz sevkiyat deposundaki 

bir uygulamadan gelmektedir. İncelenen çapraz sevkiyat deposunun, 

müşterisinin üretim hattını direkt olarak beslediği varsayılmıştır. Müşteri 

sadece gerekli zamanlarda gerekli miktarları üretmeyi gerektiren tam 

zamanında üretim sistemine sahiptir. Bu, farklı tedarikçilerden toplanan 

parçaların/ürünlerin, müşteriye her bir üretim vardiyasının başlangıcında 

gelmesini gerektirmektedir. Vardiya zamanları, tedarikçilerden toplanacak ve 

her bir vardiyada kullanılacak ürünler için son teslim tarihlerini 

oluşturmaktadır. Bu durumda, toplama problemi vardiya bazlı zaman kısıtları 

ile kapasiteli araç rotalama problemi olarak görülebilir. Toplama probleminin 

amacı rotalama maliyetlerini en aza indirmektir. Bu amacın başarılmasında, bir 

araç tedarikçiye ulaştığında hangi vardiya(ların) ürünlerinin alınması 

gerektiğine karar verilmesi gerekmektedir. Problemin çözümü için bir 

matematiksel model formüle edilmiştir. Ele alınan problem NP-Zor olduğu 

için, değişken komşu arama ve tavlama benzetimine dayanan meta-sezgisel 

çözüm yöntemleri de önerilmiştir. Sayısal deneyler literatürdeki kapasiteli araç 

rotalama örneklerinden uyarlanan problem seti üzerinde yürütülmüştür. 
 

Anahtar Kelimeler: Araç rotalama problemi, ürünler üzerinde vardiya bazlı 
zaman kısıtları, çapraz sevkiyat depoları, değişken komşu arama, tavlama 
benzetimi 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
In this study, we aim to develop a model in order to assist logistics decisions in 

cross-docking systems. Cross-docking is a branch of logistics consisting of 

unloading materials from an incoming truck and loading these materials 

directly into outbound trucks with little or no storage in between. Cross-

docking operations are conducted to sort materials for different destinations, or 

to combine materials from different origins into transport vehicles with the 

same, or similar destination, in generally less than 24 hours time. Timely 

delivery of products is an important issue in cross docking systems in order to 

reduce lead times for customer orders, inventory management costs, warehouse 

space requirements and labor costs. The overall concept of cross-docking 

operations is represented in Figure 1. 
 
 
 

 

Figure 1. Schematic Representation of cross-dock operations 
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Materials are collected from suppliers using incoming routes. In order to 

increase the efficiency of incoming routes vehicles can visit more than one 

supplier regarding the time and capacity constraints. As soon as a vehicle 

arrives at the cross-dock, it is scheduled to an available dock for unloading. At 

this point, synchronization of vehicle arrival times with dock availability is 

very important to eliminate unnecessary waiting which will result in longer 

lead times. When the vehicles are unloaded, materials are sorted in accordance 

with their destination and loaded to the outbound vehicles at the outbound 

docks. An outbound vehicle can directly go to one customer or can visit more 

than one customer within its route.  

Cross docks act as consolidation points in logistic systems. Based on the 

suppliers and customers profile, they have different operating characteristics. 

Our study is motivated by a real life example in Company X, which is a 

company in the automotive sector in Turkey. In X, the amount of parts required 

for the daily production is too high to keep inventory within the production 

area. A cross dock is used to feed the production line of the company directly. 

The company requires timely delivery of parts to the company from the 

suppliers through the cross dock. Working in different shifts, the company 

requires all parts used in that shift to arrive at the production area at the 

beginning of the shift.  

In a three shift example with shifts at [08:00-12:00], [13:00-17:00] and [18:00-

22:00], the first, second and third outbound vehicles should leave the cross 

dock so that they will arrive at the customer no later than 08:00, 13:00 and 

18:00, respectively. When the vehicles arrive at the company, they act as a 

stock area, and the unloaded parts directly go to the production lines.  
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In correspondence to the outbound routes, incoming routes should be 

constructed. This time we have restriction on the arrival of parts at the cross 

dock. The parts used in each shift should arrive at the cross dock no later than a 

deadline, which is determined from the schedule of the outbound vehicles.  

The depicted problem can be summarized as in Figure 2. In area numbered as 

(1), parts are picked up from the suppliers and delivered to the cross-dock via 

incoming routes. Regarding the capacity, a vehicle can pick up from a supplier 

only parts needed at the nearest (in time) shift, or can pick up parts needed in a 

number of subsequent shifts. In area (2), parts are separated into lanes in the 

cross dock depending on the shift they are needed. In area (3), the parts are 

loaded to outbound vehicles and delivered to the company based on known 

demands in each shift. In area (4), loaded parts are carried to the company via 

outbound vehicles. And finally, in area (5), parts are unloaded and directly 

transferred to the production lines. 

 
 
 

 

 
Figure 2. Parts Flow in the Cross-Dock System 
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Motivated by this application we have defined a vehicle routing problem 

(VRP). In our problem setting, vehicles are assumed to be capacitated, which 

makes the problem capacitated VRP, (CVRP). Additionally, as described 

above, the customer defines time deadlines for shifts in which predetermined 

amount of products are to be provided. Therefore, in addition to the vehicle 

capacities, we have shift-based time restrictions, which make the problem 

capacitated vehicle routing problem with shift-based time constraints (CVRP-

STC).  

 (CVRP-STC) is concerned with the determination of the routes for a fleet of 

homogeneous capacitated vehicles, based at one depot, to serve a set of 

suppliers, and there exist shift-based time restrictions for products. At this 

point, the depot we are dealing with is a cross dock, but, our approach is 

applicable to any kind of warehouse or production unit. The objective is to 

minimize the routing costs or total travel time needed to collect all the 

products. 

In (CVRP-STC), the following basic decisions are involved: 

- which vehicles visit which suppliers, 

- in what order a vehicle visits the suppliers, 

- while a vehicle is visiting a supplier, products of which shift are collected.  

Regarding the capacity, a vehicle can pick up from a supplier only parts needed 

at the nearest (in time) shift, or can pick up parts needed in a number of 

subsequent shifts. 
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In these basic decisions, a trade-off occurs such that a vehicle can pick up from 

a supplier parts needed in a number of subsequent shifts, (to minimize the total 

travel time), however the capacities of the vehicles and the shift-based time 

constraints could limit the parts collected from that supplier, resulting in 

multiple visits to the supplier. To the best of our knowledge, the problem 

(CVRP-STC) has not been defined as such in the vehicle routing or the cross-

dock literature. 

The rest of the study is organized as follows; In Chapter 2 the literature review 

on cross docks and also on VRPs is given. In Chapter 3, the details of CVRP-

STC are provided and mathematical formulation of the problem and its 

assumptions are given. In Chapter 4, meta-heuristic solution approaches; 

Variable Neighborhood Search (VNS) and Simulated Annealing (SA) 

algorithms are described in detail. Chapter 5 demonstrates our computational 

experimentation. Finally Chapter 6 presents the conclusions. 
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CHAPTER 2 
 
 

LITERATURE REVIEW 
 
 
 

In this chapter we provide related literature review on cross docks and vehicle 

routing. Then, we identify how our problem differs from existing studies in the 

literature. 

2.1 Literature Review on Cross Docks 

There are a number of operations within the context of cross-docks that require 

decision making. Boysen and Fliedner (2009) list the decision problems to be 

solved during the life cycle of a cross docking terminal from strategic to 

operational as follows: 

• Location of cross docking terminal(s) 

• Layout of the terminal 

• Assignment of vehicles to dock doors 

• Vehicle routing 

• Truck scheduling 

• Resource scheduling within the terminal 

Internal cross-dock operations related decision problems include assignment of 

trucks to dock doors and truck scheduling. There is a considerable amount of 

research conducted in this area. Table 1 lists these studies based on the 

parameters below; 
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1. Objective Function 

a. Minimize makespan 

b. Minimize earliness and tardiness 

c. Minimize total cost 

d. Minimize the total distance 

e. Maximize the direct flow 

2. Operations Inside the Cross-Dock 

a. Considered 

b. Not considered 

3. Temporary Storage 

a. Allowed 

b. Not allowed 

4. Dock Return Visit 

a. Allowed 

b. Not allowed 

5. Truck Change-Over Time 

a. Same for all trucks 

b. Different for different trucks 

6. Availability of Trucks at Time Zero 

a. Available 

b. Not available 

7. Long Term Storage 

a. Allowed 

b. Not allowed 

8. Number of Docks 

a. Single 

b. Multiple 

9. Number of Product Types 

a. Single 

b. Multiple 
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10.  Inbound and Outbound Truck Ingredients/Needs 

a. Known as a Priori 

b. Not Known as a Priori 

11.  Nature of Demand 

a. Deterministic 

b. Stochastic 

12.  Number of Facilities 

a. Single 

b. Multiple 

13.  Facility Capacity 

a. Capacitated 

b. Uncapacitated 

14.  Solution Method 

a. Exact 

b. Heuristic 

The majority of the articles listed in Table 1 aim to minimize the makespan. 

Nearly all of them do not deal in detail with the operations conducted inside the 

dock; instead, they use a fixed time interval. Most of them assume to have a 

temporary storage for the products that are unloaded and waiting to be loaded. 

Dock return visit is not allowed in nearly all of the studies which mean a 

vehicle is not allowed to return to the dock once it is loaded / unloaded. Truck 

changeover times are assumed to be known for most of the problems.  
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               Table 1. Literature Review for Cross-Dock Operations 
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  Table 1. Literature Review for Cross-Dock Operations (continued) 
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                    Table 1. Literature Review for Cross-Dock Operations (continued) 
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In the majority of the articles, all trucks are assumed to be available at time 

zero. Long term storage is not allowed in any study since it would conflict with 

the concept of cross-docking. Number of docks and number of product types 

are assumed to be multiple in most of them. In all of the studies inbound and 

outbound truck ingredients/needs are assumed to be known as a priori and 

nature of demand assumed to be deterministic and number of facilities (cross-

dock) assumed to be single. Most of the studies use uncapacitated facilities. 

Nearly half of the studies use heuristic procedures for the solution of problems 

since the nature of the operations is NP-Hard. Only one of the studies tries 

purely exact algorithms and the rest of the articles deal with both exact and 

heuristic methods. 

As stated above, the objective function of most of the studies is minimizing the 

makespan. Minimizing the makespan in a cross docking system is highly 

dependent on the availability of the products whenever they are needed. 

Products are carried to the cross-docks via incoming routes. At this point, for 

the vehicle scheduling and routing problem it gets important to minimize the 

makespan. A vehicle route should visit the required suppliers and should arrive 

at the cross-dock in a timely manner to avoid unnecessary waiting times. 

Instead of considering the vehicle scheduling aspect of the problem, most of 

the studies assume that all vehicles are available at time zero. But this 

assumption will result in larger lead times and higher costs, since the vehicles 

and the products will wait unnecessarily. Furthermore, all of the studies assume 

that inbound and outbound truck ingredients/needs are known a priori. To 

satisfy that assumption, vehicle routes should have been determined. 

Liao et al. (2010) work on a model that integrates cross-docking with the 

vehicle routing problem (VRP).  In the study, within the planning horizon, 

predefined numbers of identical vehicles are used to transport goods from 

supplies to retailers through a cross-dock.  
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It is stated that each supplier and retailer can be visited only once while the 

capacity of the vehicles are respected. The objective of the problem is to 

determine the number of vehicles and the best route to minimize the sum of the 

operational and the transportation costs of vehicles. For the solution of the 

problem, they propose a new tabu search (TS) algorithm. Based on their 

computational experiments, they express that the proposed TS algorithm can 

achieve better performance than the existing TS algorithms while using much 

less computation time. 

Dondo et al. (2011) study the multi-echelon VRP with cross docking. They 

deal with the operational management of hybrid multi-echelon multi-item 

distribution networks with the objective of satisfying customer demands at 

minimum total transportation cost. They considered a transportation 

infrastructure which allows direct shipping or shipping via DC/regional 

warehouses, including cross-docking or a hybrid strategy that is a combination 

of both types of shipments. They propose a monolithic optimization framework 

based on a mixed-integer linear mathematical formulation. They also report 

computational results for several problem instances. 

Lee et al. (2006) work on vehicle routing scheduling where a distribution 

network with a cross-dock is considered. In their study, an integrated model 

considering both cross-docking and vehicle routing scheduling is taken into 

consideration. In the problem setting, split deliveries are not allowed. In order 

to minimize the transportation costs, the aim of the study is to determine the 

best routing, number of vehicles required and the arrival time of each vehicle at 

a cross-dock. For the solution of the problem, firstly they represent a 

mathematical formulation. Then, since the problem is known to be NP-hard, a 

tabu search based algorithm is developed. Based on the computational study, 

they report that proposed algorithm produces good solutions. 
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2.2 Literature Review on Vehicle Routing 

Laporte (1992) describes the VRP as the problem of designing optimal delivery 

or collection routes from one or several depots to a number of geographically 

scattered cities or customers, subject to side constraints and states that the VRP 

plays a central role in the fields of physical distribution and logistics.  

Marinakis and Migdalas (2007) express that the vehicle routing problem and its 

variants have very important applications in the area of distribution 

management, as a consequence they have become some of the most studied 

problems in the combinatorial optimization and a large number of papers 

dealing with the numerous procedures have been proposed to solve them. In 

their study they provide a bibliography in VRP. 

Desrochers et al. (1990) explain the interest on developing optimization and 

approximation algorithms for vehicle routing problems as the practical 

importance of effective and efficient methods for handling physical distribution 

situations. They express that it is very hard for a distribution manager 

regardless of his experience to decide on a method that is well suited for his 

specific situation because of the large number of existing algorithms. 

Therefore, in order to facilitate this decision process they provide a 

classification system to support modeling problem situations and suggesting 

algorithms.  

Ekşioğlu et al. (2009) present a taxonomic framework for defining and 

integrating the domain of the extant VRP literature in terms that are 

operationally meaningful. They review the existing classifications and the 

growth in vehicle routing literature, after that they state the need for a 

taxonomy and represent their taxonomy for VRP. They use five main headings, 

and divide them in to small characteristics as given in Table 2. 
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                    Table 2. Taxonomy of the VRP Literature (Ekşioğlu et al. (2009)) 
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Based on this classification scheme, they also provide an extensive literature 

review in their study. 

In the literature, there are multiple variants of VRP that researchers work on. 

Main variants of vehicle routing problems can be listed as follows. 

• Capacitated Vehicle Routing Problems (CVRP) 

• Multi–depot VRP (MDVRP) 

• VRP with Time Windows (VRPTW) 

• Stochastic VRP (SVRP) 

• Periodic VRP 

• Split Delivery VRP 

• VRP with Backhauls (VRPB) 

• VRP with Pick-Ups and Deliveries (VRPPD) 

• VRP with Compartments 

In that follows we provide a review on a sample of studies on VRP and the 

extended problems, since there exist a vast number of such studies. 

Ekşioğlu et al. (2009) state that first incorporation of more than one vehicle in 

the problem formulation which can be considered as being first in the VRP 

literature was in 1964. After that mainly based on the improvements in 

computer technology VRP research accelerated during the 1990s. They express 

that the literature growth is almost perfectly exponential with a 6.09% annual 

growth rate which demonstrates VRP’s vitality. At this point, we try to give a 

survey on progressive VRP literature based on the described VRP variants. 
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Lin et al. (2009) deal with CVRP. In their problem setting, each vehicle has the 

same capacity and starts from the same delivery depot and then routes through 

customers. The loading and traveling distance of each vehicle cannot exceed 

the loading capacity and the maximum traveling distance of vehicle where the 

objective is to minimize the traveling cost. To solve the problem they used a 

hybrid algorithm of simulated annealing and tabu search. They run simulations 

and according to the simulation results they report that the proposed algorithm 

is competitive with other existing algorithms for solving CVRP. 

Toth and Vigo (2002) study on the branch and bound algorithms for the CVRP 

with both symmetric and asymmetric cost matrices. In their study they present 

the performance of different relaxations and algorithms on a set of benchmark 

instances through the comparison of computational results. 

Ho et al. (2008) focus on the multi-depot VRP. In their problem setting, the 

number and locations of the depots and customers are predetermined. Each 

depot is large enough to store all the products ordered by the customers and the 

demand of each customer known a priori. Vehicles with limited capacity are 

used to transport the products from depots to customers and each vehicle starts 

and finishes at the same depot visiting each customer exactly once. They stated 

that in multi-depot VRP problems, three decision areas exist. First is the 

grouping problem, clustering the set of customers to be served by the same 

depot. Second is the routing problem, assigning customer groups to routes. And 

the last one is the scheduling problem where the sequences of routes are 

determined.  For the solution of the problem, they propose two hybrid genetic 

algorithms. In the first one, the initial solution is generated randomly, and in 

the second one the Clarke and Wright savings method and the nearest neighbor 

heuristic are incorporated for the initialization procedure. They conduct a 

computational study with different problem sizes and report that the 

performance of the second algorithm is better regarding the total delivery time. 
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Hong (2012) studies the dynamic vehicle routing problem with hard time 

windows. For the solution, they decompose the problem to a series of static 

subsets of VRP with time windows. In order to solve the decomposition 

problem, they propose an event-trigger mechanism through which they obtain a 

series of system delay snapshots that is regarded as static VRP with time 

windows. The new request arrival during the stable operation is taken in to 

account as the trigger event. They propose an improved large neighborhood 

search (LNS) algorithm to solve the static problem. They work on test 

problems from Solomons static benchmarks and Lacker’s dynamic data sets 

and based on the computational results they state that their method is superior 

to other methods in most instances. 

Hashimoto et al. (2008) work on the VRP with time windows, VRPTW, where 

traveling times and traveling costs are time-dependent. In order to determine 

the routes of the vehicles, they use local search. They incorporate dynamic 

programming in the local search algorithm to compute an optimal time 

schedule for each route in neighborhood solution. For the solution of the 

problem, they develop an iterated local search algorithm. They express the 

effectiveness of the proposed generalization based on the computational results 

of the iterated local search algorithm compared against existing methods. 

Li et al. (2010) focus on stochastic vehicle routing problems. In their problem 

setting travel and service times are stochastic, and each customer has a specific 

time window constraint. They state that the problem they are dealing with is 

originally formulated as a chance constrained programming model and a 

stochastic programming model with recourse in terms of different optimization 

criteria. For the solution of the problem, they use tabu search algorithm. They 

also report their computational test results. 
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Novoa and Storer (2009) work on dynamic programming algorithms for the 

single-vehicle routing problem with stochastic demands. In the problem 

setting, a single vehicle with fixed capacity departs from a depot to perform 

only deliveries (or only pick-ups) at different customer locations. For the 

solution of the problem, a two-step look ahead rollout started with a stochastic 

base sequence is utilized which is relatively better than the one-step rollout 

algorithm started with a deterministic sequence. In the study, they also consider 

computing the cost-to-go with Monte Carlo simulation which reduces the 

computation time pretty much with little or no loss in solution quality. They 

also report computational results for sampled vehicle routing problems.  

Hemmelmayr et al. (2009) study the periodic vehicle routing problem without 

time windows. In the study planning horizon of several days is taken into 

account where each customer requires a certain number of visits. There also 

exists some flexibility on the exact days of the visits which corresponds to a 

decision about the choice of the visit days for each customer and to solve a 

VRP for each day. For the solution, they use a variable neighborhood search 

algorithm. Based on the computational results, they state that their approach is 

competitive and outperforms existing solution procedures proposed in the 

literature. They also indicate that if only a single vehicle is considered which 

will result in periodic traveling salesman problem, their VNS procedure 

approach is again competitive with slight changes. 

Francis and Smilowitz (2006) work on a continuous approximation model for 

the period vehicle routing problem where service choices exist. In that 

problem, the visit frequency to nodes is a decision of the model which 

corresponds to more efficient vehicle tours. For problem resolution, they use a 

continuous approximation model to facilitate strategic and tactical planning of 

periodic distribution systems while evaluating the value of service choice.  
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They examine their approach using a test instance from the literature. They 

also state that results of the proposed model can both help distribution service 

providers design valuable service options and be used to guide discrete 

solutions in exact vehicle routes determination. 

Aleman et al. (2010) study the split delivery VRP. In their study, they provided 

a detailed literature survey. For the solution of the split deliver VRP with the 

minimum fleet size, they present three local heuristic search algorithms. First, 

they represent a new constructive algorithm based on a novel concept called 

the route angle control measure. Second, via adaptive memory concepts, they 

enhance this constructive approach to an iterative approach. As per the third 

one, they include a variable neighborhood descent process. Using benchmark 

problem sets, they evaluate their approaches against exact and heuristic 

approaches. 

Gulczynski et al. (2010) work on split delivery VRP. They state in their study 

that although split delivery philosophy is cost effective considering travel 

costs, it is a disadvantage for a customer who prefers single visit. At that point, 

in their problem setting they allow split deliveries only if a minimum fraction 

of a customer’s demand is serviced by a vehicle which is a new problem called 

the split delivery VRP with minimum delivery amounts. For the solution of the 

problem they present a heuristic method that combines an endpoint mixed 

integer program with an enhanced record-to-record travel algorithm. They 

report computational results on a wide range of problem sets and state that their 

approach is competitive with the best heuristics in the literature. They also 

produce a set of 21 new test problems with minimum delivery amounts to be 

used in future studies as benchmarks. 
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Zhong and Cole (2005) study on VRP with backhauls and time windows. In 

their study, they take into account the case of existence of customer precedence 

which requires that all line-haul customers be visited before any backhaul 

customer. Their solution approach is two phased. In the first phase, proposed 

heuristic uses guided local search to improve routes allowing time and capacity 

violations. In the second phase, a new technique, called section planning, takes 

place, which eliminates time and capacity violations by assigning problematic 

customers to newly created routes. They report their computational results 

stating that the proposed heuristic produces better results than the best 

solutions in the literature. 

Wade and Salhi (2002) work on a vehicle routing problem with backhauls. In 

their problem setting, they state that there is no need to visit all line-haul 

customers before serving backhaul customers which is new to the literature. In 

order to solve the problem, they use an insertion-type heuristic. Based on the 

relaxation in the restriction of the mix of line-haul and backhaul customers, 

improvements in route costs are obtained.  

Deng et al. (2009) study on VRP with pick-up and delivery. In their study, they 

take into account soft time windows, fixed vehicle costs and a coefficient for 

vehicle full-load. For the solution of the problem, they use simulated annealing 

algorithm. In order to increase the efficiency of the algorithm, they improve it 

such that the proposed approach searches for a larger solution space within a 

certain period of time. While that search, to speed up the algorithm, a memory 

device is included to ensure that the output result at the end of algorithm is the 

optimal solution for that run. Additionally, as per the termination criteria of the 

algorithm, they present a new mixed-termination rule, that is, the algorithm 

terminates when the temperature is below a predefined value, or the memory 

array is same with no changes after a certain number of steps. Finally, they test 

the algorithm and report that the proposed approach is stable and efficient. 
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Zachariadis et al. (2009) work on VRP with simultaneous pick-up and delivery, 

i.e. transported products are bi-directionally, from the central depot to the 

customers, and from the customers back to the central depot. It is aimed to 

satisfy delivery and pick-up demand of the customer population in the problem. 

In order to solve the problem, they propose a hybrid solution approach 

consisting tabu search and guided local search. In that approach, to keep a 

balance between the intensification and diversification, the algorithm searches 

vast areas of the solution space mainly the most promising portions. Based on 

the computational experiments ranging from 50 to 400 customers, it is stated 

that the proposed approach is capable of producing high quality solutions. 

Derigs et al. (2010) study on the VRP with compartments, which is a problem 

relevant to several industries that requires inhomogeneous distribution of 

products in the food and petrol sector. For the solution of the problem, they 

prefer to work with different heuristic components. Their approach consists of 

alternative approaches for construction like greedy insertion, sweep and 

savings; for local search like 2-opt, Or-opt, 2-opt* and for large neighborhood 

search like order and vehicle based removal operators, greedy and regret based 

insertion and in addition diverse meta-heuristics like simulated annealing, 

record-to-record travel and tabu search. In their study, they also provide a 

benchmark suite of 200 instances. 

Fallahi et al. (2008), worked on multi-compartment VRP. In their problem 

setting, vehicles are identical with several compartments each dedicated to one 

product. For each customer the demand for a single product must be entirely 

delivered by one single vehicle, whereas the demand for different products 

allowed to be delivered by several vehicles. In order to solve the problem, they 

propose three algorithms. First a constructed heuristic, second a memetic 

algorithm (MA) with a path relinking method and third a tabu search (TS) 

algorithm. It is stated that TS provides slightly better solutions than MA. 
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2.3 Comparison 

Comparing our problem with the variants of VRP, the following observations 

can be made. First of all we have capacity constraints for vehicles, which make 

our problem a CVRP. We have only one cross-dock which makes our problem 

a single-depot problem. We define shift-based time constraints which makes 

our problem different from the VRPTW. Best to our knowledge, shift-based 

time constraints for the products is new to the literature. We have a single 

period, a day, in our problem. Our problem shows some similarities with the 

split delivery VRP, which removes the restriction that each supplier has to be 

visited exactly once. But the reason behind multiple visits to a supplier is not 

just exceeding vehicle capacity with the amount of supply, but also meeting 

shift-based time restrictions for the products. There are no backhauls in our 

problem and only pick-ups from suppliers and delivery to the cross dock take 

place. In VRP with compartments, transportation of inhomogeneous products 

is allowed in different compartments. In that problem setting a vehicle arrived 

at a supplier can take only a specific type of product which is similar to our 

problem. The difference here is that; in vehicle routing problems with 

compartments, products are assigned to compartments based on their 

characteristics and there exist no time restrictions Moreover, each compartment 

may have different capacities.  Additionally, while some products cannot be 

carried together in a vehicle in VRP with compartments setting, we have no 

such restriction on products.  

As stated in literature review part, Ekşioğlu et al. (2009) described a taxonomy 

related with VRP. Based on their taxonomy, our problem is applied methods as 

we provide exact and meta-heuristic solution approaches to our problem. 

Scenario characteristics of our problem are; multi visits to a supplier is 

allowed, the parameters are deterministic, strict time windows for products are 

defined, single period is assumed and no backhauls are defined.  
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Regarding the physical characteristics, transportation network is undirected, 

suppliers are on nodes, geographical locations of suppliers are rural, and only a 

single depot is defined. We have homogeneous capacitated vehicles and 

transportation costs are vehicle independent. Regarding the information 

characteristics; evolution of information is static, quality of information is 

deterministic, availability of information is global and processing of 

information is centralized. Finally, data used is synthetic data. 
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CHAPTER 3 
 
 

MATHEMATICAL MODELLING 
 
 
 

In this chapter we first present the assumptions of our problem, then provide a 

mathematical model for (CVRP-STC).  

3.1 Assumptions 

Assumptions of our problem, CVRP-STC, are listed below; 

 Supplier and the cross dock locations are known. 

 The matrix of shortest distances is assumed to be known and all travel 

occurs on the shortest paths at constant speeds. 

 A supplier can provide different type of products.  

 Product supplies are assumed to be fixed and known.  

 At the supplier, the products are available at the beginning of the 

planning period. 

 There are m different shifts, thus m different deadlines for the products. 

 The lengths of the shifts are assumed to be equal.  

 The batch of product, which is prepared for a specific shift, cannot be 

split.  

 The inbound vehicle fleet is composed by a limited number of 

homogeneous capacitated vehicles.  
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 Each vehicle is assumed to start its route from the cross dock and return 

to that point after collecting required products from the suppliers on its 

route.  

 Tour length of each vehicle is assumed to be less than or equal to the 

shift length, that is each vehicle is assumed to finish its route within one 

shift interval. 

 Upon finishing a tour, a vehicle can start its subsequent tour. A vehicle 

can have at most m tours. 

 The fixed costs of the vehicles are not considered. 

 

3.2 Sets, Parameters and Decision Variables 

Sets used in the problem are as follows; 

N’: Set of all nodes (Suppliers + Cross Dock) 

N: Set of suppliers 

: Set of products supplied by supplier i, i∈N 

P= ∈  

K: Set of shifts 

: Set of vehicles used in the kth shift, k∈K. 

V= ,…,  
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Parameters required to handle the problem are as follows; 

C : Capacity of vehicles. 

m: Number of shifts. 

TIij : Travel time between nodes i and j, which includes the service time at node i,  

i,j ∈ N. 

TLk : Latest time that cross dock can receive supplies of product batches for shift 
k, k∈ K. 
 
TM = Maximum k∈ K {TLk} 

aipk: Vehicle capacity usage of  the batch of product p for shift k from supplier i,     
        i ∈ N, p ∈ , k∈ K. 
 
s: Constant number such as s ∈{1,2 ... ,m-1}. 

n: Number of vehicles. 

Decision variables used in the problem are as follows; 

tpipk : Arrival time of  the batch of product p for shift k from supplier i to the cross   
dock, i ∈ N, p ∈ , k∈ K. 
 
tviv : Arrival time of vehicle v to node i, i ∈ N, v∈ V. 

bijv : 1, if vehicle v travels from node i to j;  
        0 otherwise,  i,j ∈ N, v∈ V. 
 
xipkv : 1, if the batch of product p for shift k from supplier i is delivered by vehicle 
v;  0 otherwise,        i ∈ N, p ∈ , k∈ K, v∈ V. 
 
uiv:   Order of node i for the route of vehicle v, v∈ V. 

:    Ready time of vehicle v at the cross dock, v∈ V. 
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3.3 Mathematical Model 

Mathematical model developed to solve the problem of capacitated vehicle 

routing with shift-based time constraints is given below; 

Min ∑ ∑ ∑
 

 

subject to 

∑   1    v∈V    (1) 

∑  ∑     v∈V, l∈N’            (2) 

1     v∈V                (3) 

  1  | |(1  )  v∈V, i∈N’, j∈N  (4) 

∑ ∑ ∑ ∈    v∈V    (5) 

∑  1                    i∈N , p∈ , k∈ K  (6) 

∑ ∑  ∈  × | | × | | ×∑   v∈V,  j∈N  (7) 

∑   ∑    v∈V1, s ∈{1,2 ... ,m-1} (8) 

     i∈N, p∈ , k∈ K             (9) 

0         v∈V1    (10) 

1 ∑   v∈V1,s∈{1,2 ... ,m-1} (11) 

 1 ∑   v∈V1, s ∈{1,2 ... ,m-1} (12) 

1       v∈V1, s ∈{1,2 ... ,m-1} (13) 
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 1    v∈V, i,j∈N , i≠j   (14) 

 1    v∈V, i∈N                       (15) 

 1    v∈V, j∈N     (16) 

        v∈V, j∈N    (17) 

1    i∈N, p∈ , k∈ K, v∈V. (18) 

1    i∈N, p∈ , k∈ K, v∈V (19) 

 ∈ 0,1      v∈V, i,j∈N’   (20) 

 ∈ 0,1      i∈N, p∈ , k∈ K, v∈V (21) 

 ≥ 0      i∈N’ , v∈V   (22) 

≥ 0     i∈N, p∈ , k∈ K   (23) 

≥ 0     i∈N’ , v∈V   (24) 

≥ 0      v∈V    (25) 

 

In the objective function, it is aimed to minimize the routing times. Constraints 

(1) indicate that each vehicle can go to at most one supplier from the cross-

dock. Constraints (2) satisfy that if a vehicle arrives at a supplier, it must also 

leave it. Constraints (3) state that each vehicle starts its route from the cross-

dock. Constraints (4) are the MTZ constraints (Miller, Tucker and Zemlin 

(1960)) used to eliminate subtours. Constraints (5) are related with vehicle 

capacities. Constraints (6) ensure that all the batches of all the products 

supplied by the suppliers must be collected; it also indicates that each batch of 
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each product is assigned to one vehicle. Constraints (7) state that if any of the 

product batches supplied by the supplier is assigned to a vehicle, this vehicle 

must visit that supplier. Constraints (8) ensure that if a vehicle used for the sth 

interval, then it must also have been used for the 1,…,s-1 intervals. 

Following sets of constraints are the time related constraints. Constraints (9) 

state that arrival time of the batch of product p for shift k from supplier i at the 

cross dock must not exceed the latest time that cross dock can receive supplies 

of products for shift k. Constraints (10) ensure that vehicles used for the first 

time are ready at cross dock at time zero. Constraints (11) state that ready time 

of a vehicle for a usage is equal to arrival time of the vehicle to the cross dock 

from the previous usage. Constraints (12) indicate that arrival time of a vehicle 

to the cross dock for the sth interval, is greater than the arrival time of the 

vehicle to the cross dock for the previous interval. Constraints (13) ensure that 

ready time of a vehicle at the cross dock for the sth interval is linked to the 

arrival time of the vehicle to the cross dock from the (s-1)th interval. 

Constraints (14) – (15) express that if a vehicle v travels from node i to node j, 

than arrival time to node j will be the sum of arrival time of the vehicle v to 

node i and travel time between nodes i and j, including the service time at node 

i. Constraints (16) state that if a vehicle v travels from cross dock to node j, 

than arrival time to node j will be the sum of ready time of the vehicle v at the 

cross dock and travel time between cross dock and node j.  Similarly, 

constraints (17) state the arrival time of vehicle v to the cross dock, if the 

vehicle v is used. Constraints (18) – (19) set the relationship between the 

arrival times of vehicles and product batches to the cross dock. Finally, the 

remaining constraints numbered (20) - (25) define the decision variables. 
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The VRP is proved to be NP-hard and we additionally have shift-based time 

constraints, which make it harder for a mathematical model to find optimal 

solutions in reasonable time frames. Using proposed mathematical model for 

the solution of a problem with ten nodes, three products from each supplier,  

two vehicles and three shifts, after a ten hours solution time, it is seen that the 

relative gap between the best possible solution and the obtained solution is 

about 30%. This result also demonstrates the complexity of the proposed 

mathematical model. Related to that issue, Marinakis and Migdalas (2007) 

mentioned that VRP is an NP-hard problem; therefore it is not expected and is 

in general believed impossible to develop exact solution methods that can solve 

a VRP instance in reasonable amount of running time. At this point, for the 

solution of the described problem, we developed meta-heuristic approaches 

based on variable neighborhood search and simulated annealing in order to 

obtain high quality solutions in reasonable time frames. 
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CHAPTER 4 
 
 

METAHEURISTIC SOLUTION APPROACHES 
 
 
 

Since it is not possible to use developed mathematical model to obtain 

solutions for (CVRP-STC) for most real-world problems in reasonable times, 

we propose meta-heuristic approaches based on variable neighborhood search 

and simulated annealing to obtain good solutions fast. Proposed meta-heuristic 

approaches will be described in detail in the following sections. 

4.1 Variable Neighborhood Search 

Variable neighborhood search (VNS) is a recently developed meta-heuristic 

which produces promising solutions to vehicle routing problems. Hansen and 

Miladovic (2001) described the VNS as a simple and effective meta-heuristic 

for combinatorial and global optimization, which takes advantage of systematic 

change of neighborhood within a possibly randomized local search algorithm. 

Zhao et al. (2008) and Polacek et al. (2004) stated that VNS produces better 

solutions in vehicle routing problems they have dealt with, comparing with the 

existing proposed meta-heuristics. 

VNS as a basic idea while searching for a better solution, changes the 

neighborhoods in the search. A descent method is used in VNS in order to 

move to a local minimum and then either systematically or at random, it 

precedes increasingly distant neighborhoods of this solution. Whenever the 

algorithm moves to a new neighborhood, one or several points within that 

neighborhood are used as starting points for a local descent.  
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Change of the current solution depends on the improvement that means the 

value of the current solution changes to a new one if and only if a better 

solution has been found. Different from the meta-heuristics like Simulated 

Annealing or Tabu Search, VNS is not a trajectory following method and does 

not specify forbidden moves. 

Kytöjoki et al. (2007) studied on CVRP with the objective of designing 

minimum cost routes for a fleet of homogeneous capacitated vehicles in order 

to service geographically scattered customers with known demands. For the 

solution of the problem they proposed an efficient two-phase variable 

neighborhood search heuristic. In the first phase, an initial solution is created 

with a hybrid cheapest insertion heuristic applying seven improvement 

heuristics according to a variable neighborhood search scheme. In the second 

phase, an attempt is made to improve the initial solution with the same VNS 

approach, but using a different strategy. Based on the computational 

experiments, they stated that their proposed algorithm produces high-quality 

solutions within reasonable CPU times. 

Imran et al. (2009) worked on the heterogeneous fleet VRP. For the solution of 

the problem, they proposed an adaptation of the basic VNS algorithm. In their 

approach, the initial solution is obtained by Dijkstra’s algorithm based on a 

cost network constructed by the sweep algorithm and the 2-opt.  They also used 

a diversification procedure with a number of local search methods. In order to 

solve the problem, they proposed two VNS variants, which differ in the order 

the diversification and Dijkstra’s algorithm. They stated that both of the 

approaches are competitive. 

Hansen and Miladovic (2001) quite extensively worked on VNS. They stated 

the basic rules, principles and applications of the algorithm in detail. They also 

described the basic steps of VNS as in Figure 3. 
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Initialization 

(1) Select the set of neighborhood structures Nk, for k=1,...,kmax 

(2) Find an initial solution x; 

(3) Choose a stopping condition; 

Repeat the following until stopping condition is met.  

Main Step: 

(1) Set k ←1 ;  

(2) Until k=kmax, Repeat the following steps: 

(a) Shaking: Generate a point x’ at random  

from the kth neighborhood of x 

(x' ∈Nk(x)); 

(b) Local Search: Apply local search method  

with x' as initial solution; 

Denote x'' as the obtained local optimum 

(c) Move or not: If this local optimum is better than the incumbent, move 

there (x←x'') with k←1; Otherwise, set k←k+1. 

 
Figure 3. Basic Steps of VNS 

 
 
 
In the initialization part, the neighborhood structure for k is determined which 

will affect the diversification of the algorithm. And then an initial solution is 

generated, x, so as to produce promising solutions. The quality of the initial 

solution is very critical for high quality solutions. With better start points, it is 

more possible for an algorithm to obtain better results. Finally, in the 

initialization step, the stopping condition of the algorithm is determined.  
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In the main step of the algorithm, firstly, the value of k is set to the smallest 

value namely k is set to 1. And then, until the algorithm reaches to the 

predefined kmax value, a number of steps executed in order to improve the 

results of the problems. Within this concept, the first step is shaking, according 

to the value of k, a new solution is produced, x’, from the kth neighborhood of 

x. Then taking the new generated solution x’ as the initial solution local search 

algorithm applied in order to find the local minimum. The steps of local search 

can be explained as in Figure 4. 

 
 
 

 
Figure 4. Steps of Local Search Algorithm 

 
 
 
After local search step, the result obtained from the local search is compared 

with the incumbent solution at hand. For the minimization problem if the local 

search result is smaller than the incumbent, the value of k is set to 1, and 

algorithm goes to step 1.  

Set x''← x' ; 

improvement← yes; 

Until improvement= no repeat the following; 

Calculate objective function value, f(x'''), for all x''' from the neighborhood 

of x'' (x''' ∈ N1(x'')); 

Set x'''← x''' with smallest objective function; 

If f(x'')>f(x''') 

Set x''← x'''; 

If f(x'')≤f(x''') 

improvement← no; 

Denote x'' as the obtained local optimum 
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Otherwise the value of the k is increased with the predefined step value, in that 

case the algorithm continues until k is equals to the defined kmax value. 

4.2 Simulated Annealing 

Simulated annealing was firstly introduced by Kirkpatrick et al. (1983), for the 

solution of combinatorial optimization problems. Tang (2004) states that the 

idea of simulated annealing algorithm is motivated by the annealing process in 

solids. In order to accomplish this situation of growing silicon in the form of 

highly ordered, defect-free crystals, the material is annealed. Firstly, it is 

heated to a temperature that permits many molecules to move freely with 

respect to each other, and then it is cooled carefully, slowly, until the material 

freezes into a crystal, which is completely ordered, and thus the system is at the 

state of minimum energy. In order to optimize the objective function, simulated 

annealing techniques prefer an analogous cooling operation for transforming a 

poor, unordered solution into an ordered, desirable solution. The cooling 

schedule is a very important key point for the annealing process. In order to 

achieve a low energy state, slow cooling is a must. In gradient-based 

minimization algorithms such as the Newton–Raphson algorithm, only 

downhill moves are allowed where downhill moves realized as fast as possible. 

The advantage of the annealing algorithm is that, it takes not only downhill 

moves, but also permits uphill moves with an assigned probability depending 

on the temperature of the current state. Çakır et al. (2011) states that using a 

probability function, simulated annealing is able to escape local optima. The 

probability of accepting uphill move is made via Boltzman distribution e-∆E/Tc; 

where ∆E indicates the change of energy and Tc corresponds to the current 

temperature. Tang (2004) also states that other than the probability, an 

annealing algorithm includes the four main components as described below. 
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The first component is the configuration which corresponds to the possible 

problem solutions that the search for optimal value conducted. The decision 

variables in general are multidimensional, discrete and have upper and lower 

bounds. The second is the cost function which is an objective function to 

measure how well the system performs within a certain configuration. The 

third one is the move set which is a generator of random changes, namely the 

neighbors in the configuration. And finally, the fourth one is the cooling 

schedule that is the cooling speed to anneal the problem from a random 

solution to a good, frozen one. Within the cooling schedule, a starting 

temperature, a stopping temperature together with the rules to determine when 

and how much the temperature should be reduced should be provided. 

Lin et al. (2011) studied on the truck and trailer routing problem with time 

windows. In their study, an extension of the truck and trailer routing problem, 

that is the truck and trailer routing problem with time windows is described, in 

order to bring this type of routing problem closer to the reality. For the solution 

of the problem a simulated annealing algorithm is proposed. They performed 

two computational experiments, one with a set of six Solomon’s benchmark 

problems, and the other, 54 instances converted from Solomon’s benchmark 

problems. Based on the solution results, they stated that the proposed simulated 

annealing heuristic is a producing promising solution. 

Tavakkoli-Moghaddam et al. (2007), worked on a capacitated vehicle routing 

problem. In their problem setting, split services are allowed by assuming 

heterogeneous fixed fleet. They also assumed that the cost of the fleet linked to 

the number of vehicles used and total unused capacity. They firstly proposed a 

mix integer linear model. Then, they generated a simulated annealing method. 

Based on the computational experiments, they stated that the proposed 

algorithm is capable of producing high quality solutions. 
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4.3 Proposed Variable Neighborhood Search Algorithm 

In order to customize the variable neighborhood approach for CVRP-STC, we 

utilized the roadmap described by Hansen and Miladovic (2001). 

We have defined two neighborhood structures of a solution x. In the first 

neighborhood structure,   the kth neighborhood of a solution x, (x), is 

composed of all solutions that differ from x in routes in terms of the positions 

of k suppliers. In the second neighborhood structure,   the kth neighborhood of a 

solution x, (x), is composed of all solutions that differ from x in terms of the 

shifts of products collected from the suppliers.  

In the initialization step, neighborhood structures (x) for i = 1,2 and 

k=1,...,kmax are defined. The initial solutions are obtained by assuming that the 

vehicles first collect only the products of the first shift, and this is repeated for 

all the shifts. Thus the initial solution is the solution of the CVRP problem that 

repeats m times. At this point, for the solution of the CVRP problem, the best 

solutions reported for the literature examples are utilized so as to obtain initial 

solutions and it is assumed that the routes are same for each shift at the 

beginning which results in three visits for all suppliers within the day. The 

stopping condition is also determined via parameter setting and described in 

detail in following sections. 

In the shaking part, a neighborhood structure (x) or (x) is selected 

randomly. For (x), the algorithm randomly selects two suppliers from 

different routes and changes them with each other and that repeats k times. 

Schematic representation of this shaking is given in Figure 5. 
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Figure 5. Swap Approach Used in the Shaking Step  
 
 
 
For (x), the shaking is done by considering shift (of products) exchanges, 

i.e. the algorithm searches for the possibility of taking more or less products 

from the randomly selected supplier. If in the route supplier i belongs to, for a 

product supplied by i,  only the batches of l shifts are collected, a change is 

made on the value of l .  This change of shifts is repeated k times. Schematic 

representation of the second shaking is given in Figure 6. 
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Figure 6. Product Exchange Approach for Shaking Step 
 
 
 
Local search is applied to a solution obtained in the shaking step. Polacek et al. 

(2004) applied local search only on a route basis to increase the effectiveness 

of the algorithm. That is, after each shaking only the routes that have been 

changed need to be re-optimized. In the local search part, we used the same 

approach as proposed by Polacek et al. (2004) in order to save time and 

increase effectiveness of the algorithm. For the first type of shaking, we utilize 

the cheapest insertion method. Within the concept of cheapest insertion, 

changed suppliers are inserted to each position in the changed routes which are 

obtained during the shaking step.  
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As a result, position with the smallest cost is chosen as the new place of the 

supplier within the route. Such moves lead to relatively small neighborhoods. 

Therefore, it is expected to be computationally efficient. Cheapest insertion 

approach is represented in Figure 7. 

 
 
 

 

Figure 7. Cheapest Insertion Approach for Local Search 
 
 
 
While implementing the cheapest insertion approach, whenever the algorithm 

generates a better route for supplier i, a search on (x) is carried out. Among 

all solutions generated the one with smallest objective function value is 

selected.  

After the algorithm reaches to the local minimum, it compares the obtained 

result with the incumbent, if it is better than the incumbent, the value of k again 

set as 1 and the algorithm goes back to the shaking step. If the solution is worse 

than the incumbent, then the value of k is increased by the amount of step 

value. This situation continues until the stopping condition is met. Pseudo code 

of the proposed variable neighborhood search is described in Figure 8. 
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Figure 8. Pseudo Code for Variable Neighborhood Search 

Initialization 
Select the set of neighborhood structures (x), for i = 1,2, 
k=1,...,kmax  
Generate the initial solution, x, by solving CVRP that repeats m 
times. 

       Return x: Initial solution   
(1) Iterationnum:=0, Calculate f(x). 

Repeat Main Step until Iterationnum>Iterationnummax 
 Main Step: 

(1) k=1; 
(2) Repeat the following until k=kmax 

(a) Shaking 
For k=1 to k=kmax 

Repeat the following until a feasible solution 
obtained 
 Randomly select (x), i = 1,2 
  If (x) is selected 

i=randomly selected number 
from x 

j=randomly selected number   
from x 

   Swap supplier i and supplier j 
Else 

i=randomly selected number 
from x  
Check product exchange for 
supplieri 

     End If 
Generate x' from the kth neighborhood 
of x 
Solve the VRP corresponding to x' 

  
   End for 
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Figure 8. Pseudo Code for Variable Neighborhood Search (continued) 

(b) Local Search 
Repeat the following until improvement=no 
 improvement=yes 
 x''=x' 

For all x'''  N1(x'') that belongs to the routes 
changed in shaking step do 

Solve the VRP corresponding to each 
x''' using cheapest insertion. Also per 
each x''' with best possible solution 
after cheapest insertion, check 
product-shift exchanges for supplier i. 
Calculate f(x''') 
x'''=min(x''') 
If f(x'')>f(x''') then 

x''=x''' 
     Else 
      improvement=no 

End if 
End for 

   Localmin=x'' 
(c) Move or not 

If f(x'') <= f(x) then 
x=x'' 
k=1 
Iterationnum=0 
goto step1 

Else 
k=k+1 
If(k<= kmax) 

goto step2 
    Else 
     Iterationnum= Iterationnum+1 
     If(Iterationnum<=Iterationnummax) 
      goto step1  
     End If 

End If 
   End if 
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4.4 Proposed Simulated Annealing Algorithm 

In the construction of the simulated annealing approach, in order to decide on 

the cooling schedule, we firstly determined the initial and final temperatures. 

Based on the approach proposed by Altıparmak et al. (2009), we set the value 

of the initial temperature to 665 in which an inferior solution (inferior by 70% 

relative to current solution) is accepted with a probability of 0.90. And likely, 

we set the final temperature to 0.15 such that a solution which is inferior by %1 

relative to current solution is accepted with a probability of 0.1%. The other 

component of the cooling schedule that is α, determined via parameter setting 

as described in the following sections. 

The initial solution is generated in the same way as in variable neighborhood 

search algorithm.  

In the neighborhood search, several approaches are used simultaneously. These 

are Swap, Insert, Swap Route and Random Route Assignment. In addition to 

the use of listed neighborhood approaches, the algorithm also searches for the 

possibility of taking more or less batches of a product (corresponding to 

different shifts) from the visited supplier i whenever a new neighborhood 

generated. After producing solutions using the described neighborhood search 

approaches, the solution with the smallest value between feasible solutions is 

taken as the new solution of the algorithm. 

Swap approach means that randomly selected two suppliers are changed with 

each other in order to produce a neighbor solution, also algorithm checks for 

possible product exchanges as described above. Swap approach used in 

simulated annealing is same with the one used in the shaking step of proposed 

variable neighborhood search.  
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Insert is that, a randomly selected supplier is inserted in a randomly selected 

position within the solution space. The approach can be represented in Figure 

9. In addition to that, algorithm searches for possible product exchanges for 

supplier “a” as explained above. 

 
 
 

 

Figure 9. Insert Approach Used in Simulated Annealing 
 
 
 
Swap route means that the route assignment of two suppliers is changed as 

represented in Figure 10. Also, product exchanges controlled for supplier “a” 

as described above. 
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Figure 10. Swap Route Approach for Simulated Annealing 
 
 
 
And finally, random route assignment is that the route assignment of a 

randomly selected supplier is changed with a randomly selected new route as 

shown in Figure 11. Here again, product exchanges for supplier “a” is checked 

for possible improvements as described above. 
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Figure 11. Random Route Assignment Approach for Simulated Annealing 
 
 
 
Here a defined step of the algorithm finishes where iteration number is 

increased by one and the temperature is reduced based on the cooling 

approach. This continues until the stopping condition that is the final 

temperature is met. 

Pseudo code of the proposed simulated annealing approach is described in 

Figure 12. 
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Figure 12. Pseudo Code for Simulated Annealing 
  

 

 

(0) Determine the initial parameters; 
T0 ← 665; Tk ←T0; Tf ← 0.15; α ← 0,0001; k ← 0 

(1) Find Initial Solution: 
(2) Generate the initial solution, x, by solving CVRP that repeats m 

times. 
 Return x: Initial solution   

x= S0;  
f(x)= f(S0); 
Sm=Current Solution;  
Sm=So; 
Sbest=Best Solution;  
Sbest=S0; 

(3) Neighborhood structure k=Swap, Insert, Swap Route, Random 
Route Assignment including possible product exchanges for i 
For all k do Solve the VRP corresponding to x’  
according to x'  Nk(x) 

Calculate f(x')  
Snew=min(x') 

(4) If Snew<=Sm then Sm=Snew 
Goto Step 4 

Else 

 100*
f(Sm)

f(Sm) - f(Snew)
=Δ  

  Generate a random number u using  
uniform distribution u~U(0,1) 

 If u ≤  e –(∆/T)  then 
  Sm=Snew 

Goto Step 5 
  End if 
 End if 
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Figure 12. Pseudo Code for Simulated Annealing (continued) 

 

 

 

  

(5) If f(Sm) < f(Sbest) then 
Sbest=Sm, 
f(Sbest)=f(Sm) 

 End if 
(6) k=k+1 

Tk= Tk-1 / (1+ α 1T −k ) 
If Tk>=Tf then 
 Goto Step 2 
Else 
 Goto Step 6 
End if 

       (7) Report Sbest, f(Sbest) 
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CHAPTER 5 
 
 

COMPUTATIONAL EXPERIMENTS 
 
 
 

In this section, in order to evaluate the performance of the proposed meta-

heuristics, runs on test problems are conducted and results are reported. Firstly, 

the test problem sets used for runs are explained in detail. Secondly, parameter 

settings for the two approaches, variable neighborhood search and simulated 

annealing, are provided. At the end, computational results as per the conducted 

runs are reported. 

5.1 Problem Sets 

For the evaluation of the performance of proposed solution approaches vehicle 

routing problem instances taken from the CVRP literature are utilized. 

The reason behind selecting the CVRP instances is that, we have capacitated 

homogeneous vehicles in our problem. In addition to the capacity constraints, 

we have shift based time restrictions which are different from the regular time 

window constraints. Therefore, we did not utilize VRPTW benchmark 

instances. All the instances are available in VRP web site. List of instances that 

we utilized is given in Table 3. 

In all the instances, we assumed m=3, and each supplier provides only one 

product. Additionally, the amounts of supply for each supplier per each shift 

assumed to be same that is; each supplier supplies the same size of product 

batch for each shift. For all instances, locations of suppliers and the depot 

(cross dock for our problem) are provided. With the help of location 

coordinates, we generated our symmetric distance matrix.  
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In the demand section of the instances, demands of customers are provided; 

however, since we consider that there exist three shifts within a day in our 

problem setting, we multiply the given product demands by three, that is, one 

batch for each shift. The vehicle capacities are directly taken from literature 

instances and assumed to be the same for all vehicles. Total number of vehicles 

are again taken from instances but here each vehicle used at most m times, so 

as to provide limited number of vehicles per each shift. 

 
 
 
Table 3. CVRP Literature Instances 
 

Instance Article # of 
Nodes 

# of 
Vehicles 

Vehicle 
Capacity 

(1) Augerat, et al.(1995) 37 5 100 

(2) Augerat, et al.(1995) 40 5 140 

(3) Augerat, et al.(1995) 45 7 100 

(4) Augerat et al.(1995) 65 10 130 

(5) Augerat et al.(1995) 78 10 100 

(6) Christophides and 
Eilon(1969) 22 4 6000 

(7) Christophides and 
Eilon(1969) 23 3 4500 

(8) Christophides and 
Eilon(1969) 30 3 4500 

(9) Christophides and 
Eilon(1969) 101 8 200 

 
 
 
In these instances, no information related with shift-based time constraints 

exist.  Therefore, the latest arrival times of product batches to the cross dock 

are defined as different scenarios, by giving deadlines derived based on the 

longest tour length of the best solutions reported in the literature.  
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For each instance, we considered three scenarios, resulting with shift-based 

constraints ranging from tight to loose. Latest arrival times for each shift in 

these scenarios are listed in Table 4. 

 
 
 
Table 4. Latest Arrival Time Scenarios for Products 
 

 Latest Arrival Time 

for shift1

Latest Arrival Time 

for shift2

Latest Arrival Time 

for shift3 

Scenario 1 Longest Tour 

Length 

2×Longest Tour 

Length 

3×Longest Tour 

Length 

Scenario 2 1.2×Longest Tour 

Length 

2.4×Longest Tour 

Length 

3.6×Longest Tour 

Length 

Scenario 3 1.4×Longest Tour 

Length 

2.8×Longest Tour 

Length 

4.2×Longest Tour 

Length 

 
 
 

5.2 Parameter Setting 

For solving CVRP-STC, we have proposed two meta-heuristic approaches, 

variable neighborhood search and simulated annealing. The initial solutions 

used in both approaches require the solutions of CVRP that are repeated m 

times. These solutions for CVRP are taken as the best reported solutions in the 

literature. Both approaches use some parameters during their process which 

needs to be determined before computational experiments. The parameter 

settings for these meta-heuristic approaches are explained in detail in the 

following sections. 
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5.2.1 Parameter Setting for Variable Neighborhood Search 

The parameters that require setting in the variable neighborhood search are the 

stopping condition and the kmax value. 

In order to determine the kmax value, we made test runs using the Augerat et 

al.(1995) VRP instance for 40 nodes and 5 vehicles. We assigned value of 4, 5, 

7, 10, 15 and 20 for kmax. The values assigned to kmax and steps are represented 

in Table 5 below. 

 
 
 
Table 5. List of kmax and Step Values Assigned for Parameter Setting 
 

kmax Step

4 1 

5 1 

7 1 

10 2 

15 3 

20 4 

 
 
 
We conducted test runs so as to let the algorithm to converge for each kmax and 

step value pair. The results of the algorithm for the solution of the Augerat et 

al. (1995) VRP instance for 40 nodes and 5 vehicles using different kmax values 

are represented in Figure 13. 

 
 
 



 

 

 

 

 

54 

 
 
Figure 13. Results for proposed kmax and step values using instance 2 
 
 
 
When the value of kmax is 7, the algorithm reaches to the best solution. kmax=7 is 

better than the case 4 and 5, since it makes larger perturbations to the current 

solution which result in better results. The performance of the algorithm was 

not promising when kmax value is greater than 7. Since the initial solution that 

the algorithm uses is the best solution reported so far in the literature, larger 

changes to the solution are either gives worse or infeasible solutions. Table 6 

indicates the evaluation of results as per the run for each kmax and step 

combination given above. In the table, the CPU time in seconds at which each 

combination reaches the best solution are reported where the highlighted CPU 

shows the kmax value that reaches the best solution in the shortest time and the 

highlighted objective function shows the overall best solution. 
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Table 6. Evaluation of algorithm as per each kmax and step combination using 
instance 2 
 

Augerat et al. (1995) – 40 Nodes, 5 
Vehicles 

kmax 
Value 

Step 
Value

Best 
Result 

CPU 
Time(sec)

4 1 1344 71,359 

5 1 1338 260,812 

7 1 1298 52,016 

10 2 1303 572,906 

15 3 1337 2739,31 

20 4 1341 3467,92 

 
 
 
The CPU time of the algorithm when kmax=7 is the best, this condition also 

reaches the overall best solution. The difference of the best solutions between 

kmax=7 and the kmax=10 is close to each other but when kmax=7 algorithm 

reaches a better solution about 9 minutes earlier. In the remaining instances 

objective function values are close to each other and worse than the case of 

kmax=7. Thus we set the value of kmax as 7. 

As the stopping condition time limit or iteration limit is preferred in general. In 

our problem, since time limit can stop the algorithm when there is a possibility 

of producing more promising solutions, we choose to use the iteration limit as 

the stopping condition. We define the iteration number as the number of 

iterations without any improvement on the best solution. The iteration limit is 

set as 5000, a promising limit based on the results reported above. 
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5.2.2 Parameter Setting for Simulated Annealing 

In our simulated annealing approach, we firstly generate an initial solution, S0, 

then in the neighborhood of the original solution, within the defined approach a 

new solution is produced, Snew. At this point, the amount of change in the 

objective function value is calculated using ∆= f (Snew) - f (S). If the obtained ∆ 

value is ∆ ≤ 0, then since the problem is a minimization problem, a move to the 

new solution is accepted. In case of ∆ > 0, the move to the new solution is 

accepted with a specified probability, denoted by exp_|∆|/T. T is a control 

parameter which corresponds to temperature which is reduced during the 

search. In the cooling strategy, there is a single iteration at each temperature in 

which the temperature determined by  1 / 1 α 1 , where 

Tk corresponds to the temperature at the kth iteration and α is the cooling ratio. 

In the algorithm, the temperature in the step 0 is equals to the initial 

temperature that is  ←  where k is equals to zero at the beginning (k←0). 

The neighborhood search structures that will be used within the context of 

simulated annealing have already been determined as described in the above 

sections. 

Remaining parameters that require settings in simulated annealing are initial 

temperature, , cooling ratio, α, stopping condition namely final temperature, 

.  

The initial temperature that is used in the proposed simulated annealing 

approach is set to 665 in which an inferior solution (inferior by 70% relative to 

current solution) is accepted with a probability of 0.90. The final temperature is 

assumed as 0.15 such that a solution which is inferior by %1 relative to current 

solution is accepted with a probability of 0.1% as described by Altıparmak et 

al. (2009). 
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In our algorithm, we assigned α values of 0.0001, 0.0005, 0.001, 0.005, 0.01 

and 0.02. We tried to find the best value of α via experimental search using the 

instances of Christophides and Eilon(1969) with 30 nodes and 3 vehicles, and 

the instances of Augerat, et al. (1995) with 37 nodes and 5 vehicles, with 40 

nodes and 5 vehicles, with 45 nodes and 5 vehicles. Results of the conducted 

experimental search are listed in Table 7 which shows the best solution and 

CPU time in seconds at which each alternative reaches the best solution within 

the defined cooling approach. In the table, highlighted values indicate α value 

that reaches the best solution. 

In each trial best solution of the algorithm based on predefined cooling strategy 

is found when α value is 0.0001. In contrast to that, higher CPU times also 

belong to α=0.0001. At this point, since the represented CPU values are in 

seconds and the longest duration when Augerat, et al. (1995) 45 nodes and 5 

vehicles test problem used is about 970 seconds, they can be regarded as 

tolerable. Therefore, α value is assigned as 0.0001 for the computational 

experiments.  
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                    Table 7. CPU Time and Best Solutions for Different α Values 
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5.3 Computational Results 

In this section, the performance of the proposed meta-heuristic solution 

approaches are reported based on the runs on the problems selected from the 

CVRP literature. We also provide a detailed analysis on the solution results. 

5.3.1 Results of the Test Runs 

The computational results for VNS and SA approaches are discussed in detail 

in that section. The proposed approaches are coded in C++ programming 

language. The computational experiments are conducted using the defined 

problem sets, gathered from CVRP literature. The runs are conducted on the 

computers with Intel Core 2 Duo 3.00 GHz CPU processor and 3.49 GB of 

RAM.  

Test runs are executed for each instance for three shift-deadline scenarios for 

both VNS and SA algorithms. Each test problem is run for both algorithms and 

the average results are reported. For the performance evaluation of the 

proposed approaches, the performance measures of CPU time, percent 

deviation from the best value, percent deviation from the initial solution result 

and percentage of the products collected in earlier shifts are used. Percentages 

of the test results are calculated with the given formulation; 

% / 100 

% / 100 

% / 100 
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At these formulations, %  indicates the percent deviation from the best 

solution produced, %  states the percent deviation from the initial 

solution while  and    correspond to objective function value of 

the initial solution, and the solution generated by a specific heuristic, 

respectively.  is the best objective function value generated by either of the 

meta-heuristic procedures. %  corresponds to the ratio of  the products 

collected in earlier shifts than they required,  indicates the total amount of 

products defined in the problem and  is the amount of products collected 

earlier than the required shifts. 

Firstly, we report in Table 8 the results of the test runs for scenario 1, where the 

shift deadlines are determined by the  longest tour time of the best solution in 

the literature.  
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                     Table 8. Results for scenario 1, where the shift deadlines are determined by the longest tour time 
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In Table 8 the reported values are the averages of five runs. Results per each 

run for both algorithms are listed in Appendix A. As seen from the results SA 

produces better solutions in all instances except instance 8. For all of the test 

runs it can be said that on the average SA produces about 9% better solutions 

than VNS. However, from the perspective of the CPU time it is clear that SA is 

not always the best. While in some cases SA works faster, it is seen that in 

more than half of the instances VNS works faster than SA. On the average 

VNS gives the result in about 360 seconds that is like 6 minutes earlier than 

SA. Both of the algorithms provide promising results compared to the initial 

solution. Regarding the initial solutions again SA acts better, that is on the 

average SA makes about 6% more improvement than VNS which is a total of 

about 14% improvement compared to the initial solution. Considering the ratio 

of the products collected from suppliers in earlier shifts, SA is about 12% 

greater than VNS on the average. That is using SA on the average about 21% 

of products are collected earlier than they required. 

In Table 9, we provide the results for scenario 2, where the shift deadlines are 

determined by multiplying the longest tour time by 1.2. Here we have not so 

strict time deadlines. The listed values are again the averages of five test runs. 

Results per each run for both algorithms are listed in Appendix B. It is clear 

from the results that SA produces better solutions for all of the instances. 

Regarding the results per each instance, it can be said that on the average SA 

produces about 8% better solutions than VNS.  
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                     Table 9. Results for scenario 2, where the shift deadlines are determined by 1.2×the longest tour time 
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In contrast to the first case, in the second case in most of the instances SA 

works faster than VNS comparing the CPU times. On the average SA produces 

the result about 747 seconds that is like 12.5 minutes earlier than VNS. Similar 

to the first one, both of the proposed algorithms provide promising results 

compared to the initial solution. Regarding the initial solutions again SA acts 

better, that is on the average SA makes about 6% more improvement than VNS 

that is very close to the situation in the first case. On the average SA totally 

makes about 18% improvement on the initial solution. Similar to the first case, 

using SA, the ratio of the products collected from suppliers in earlier shifts is 

on the average about 12.7% greater than VNS which corresponds to the on the 

average about 26% early collection for SA. 

In Table 10, we provide the results for scenario 3, where the shift deadlines are 

determined by multiplying the longest tour time by 1.4. Here we have the 

loosest time deadlines. Like in the other cases, in the Table 10 the reported 

values are the averages of the test runs. Results per each run for both 

algorithms are listed in Appendix C. Based on the listed results, it is clear that 

SA produces better solutions than VNS in all of the cases. Taking into 

consideration the entire test runs it can be said that on the average SA produces 

about 9% better solutions than VNS. Unlike to the situations in the first and 

second cases, from the perspective of the CPU time it is clear that SA is 

produces faster solutions in each of the instances. On the average SA gives the 

result about 1662 seconds that is like 27 minutes earlier than VNS. Like in the 

other cases, both of the algorithms provide promising results compared to the 

initial solution, When compared with the initial solutions again SA produces 

better results. On the average SA makes about 6% more improvement than 

VNS that is SA improves the initial solution by about 22%. The ratio of the 

products collected from suppliers in earlier shifts using SA is on the average 

about 14% greater than VNS which is also greater than the other cases. 

  



 

 

 

 

 

65 

 
                     Table 10. Results for scenario 3, where the shift deadlines are determined by 1.4×the longest tour time 
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5.3.2 Detailed Analysis on the Results 

Analyzing the results, it is seen that solution results for the proposed VNS 

algorithm get better when the shift deadlines get looser. That means, 

comparing the first and second scenarios, VNS produces worse solutions in the 

first scenario, similarly, when we compare second and third scenarios, it can be 

said that third scenario produces better solutions than the second one in nearly 

all of the instances. On the contrary, CPU times required to obtain the solutions 

get worse when the shift deadlines get looser. That is, while in the first scenario 

we see the shortest CPU times, they are longest in the third scenario in again 

nearly all of the trials. The reason behind obtaining worse solutions in shorter 

times in the first scenario is that, since, it is more restrictive regarding the shift 

lengths; it is hard for the algorithm to find better solutions. If the algorithm 

cannot find a better solution the iteration number will be increased and the 

stopping condition will be met earlier. At this point, as it is easier to find better 

solutions when the restrictions are relaxed, the algorithm produces better 

solutions. Additionally, the stopping condition in the proposed VNS algorithm 

is the number of iterations without any improvement on the best solution, since 

with relaxed constraints it is more possible to find better solutions; it takes 

longer time to meet the stopping condition in the third scenario.  

Considering the results, it appears that both the solution results and the CPU 

time for the proposed SA algorithm get better when the restriction on the shift 

deadlines get looser. At this point, when we compare the first and second 

scenarios, SA produces worse solutions in the first scenario regarding both the 

objective functions and solution time, similarly, when we compare second and 

third scenarios, it is clear that third scenario produces better solutions than the 

second one in nearly all of the trials in the same perspective. The reason behind 

obtaining better solutions in shorter times in the third scenario is that, since, the 

restrictions are relaxed in the third scenario; it is easier for the algorithm to find 

better solutions. When the algorithm produces better solutions, it passes to the 
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next iteration with a cooler temperature. That means the cooling is faster when 

the constraints are relaxed which results in better solutions in shorter time 

frames. 

As mentioned in the above sections, SA algorithm provides better solutions 

than VNS in all cases. But the amount of deviation between the solutions 

obtained by each of the approaches remains nearly same around 9%. That can 

be interpreted as; the reaction of both of the algorithms against the restriction 

on the shift deadlines is in the same manner. But only in the first scenario, 

VNS produces faster solutions than SA, which is on the average 6 minutes. 

This duration can be regarded as tolerable in favor of SA considering 27 

minutes difference in the third scenario. Therefore, within these settings usage 

of SA algorithm will be more beneficial. 

Taking into consideration the results of the third scenario, deviation from the 

initial solution is most promising that is 45.88% for VNS and 52.44% for SA 

when instance 7 is studied. Also, the deviation from the initial solution is least 

promising that is 3.60% for VNS and 4.59% for SA when instance 5 is 

considered. In instance 7, longest tour length is 289 units and the closest tour 

length is 211 where the difference is 87 units. But for instance 5 largest tour 

length is 222 units and the closest tour length is 204 where the difference is 18 

units. At this point, it can be said that when the difference between the tour 

lengths increases, and also when the largest tour length gets bigger, the 

flexibility of the algorithm increases and better improvements become possible. 

Here, flexibility means, the possibility of finding alternative routes between 

shifts which promise better solutions. 

Considering the ratio of products collected in earlier shifts than they required, 

it is clear that the ratio increases for both VNS and SA approach from scenario 

1 to scenario 3. Concentrating on the instances 7 and 2, we try to investigate 

the behavior of the algorithm against the initial solution in second scenario.  
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For both of the problems in the initial solution, algorithm repeats the same 

routes in each shift visiting each supplier three times a day. In the first instance 

with 23 nodes, algorithm trends to carry some of the product batches that 

belong to second shift in the first shift. Similarly, algorithm tends to carry some 

of the products batches of the third shift in the first and second shift. Like in 

the example of 23 nodes, in 78 nodes instance again algorithm prefers to carry 

some of the product batches in the shifts that are earlier than the time that they 

required to be at the cross dock. At this point, it can be said that when the 

algorithm searches for better solutions, it slides the possible product batches to 

the vehicles of earlier shifts if there exist enough vehicle capacity or if the 

length of tour of a vehicle is shorter than the shift length, the algorithm tends to 

use the vehicle second time in the same shift which also produce promising 

solutions. Therefore, as the lengths of the shifts are extending beginning from 

the first scenario till the third scenario, the algorithm finds better solutions with 

the relaxation of the time restrictions taking the advantage of early collection. 

In some instances even the solution results for both VNS and SA approach are 

close to each other, the ratios of early collection of products are higher for SA. 

The reason behind is that; in SA approach, construction of neighbor solutions 

considers more tour exchanges for suppliers comparing with VNS.  

As reported the performance of the proposed VNS algorithm is worse than the 

SA approach. Therefore, in order to increase the effectiveness of the VNS 

algorithm we tried a different local search structure that is called 2-opt* which 

is a special inter-tour move. Within the concept of 2-opt*, two connections, 

one from each tour, are removed which produces four sub-tours that are then 

recombined. 2-opt* approach is represented in Figure 14. 

 



 

 

 

 

 

69 

 

Figure 14. 2-opt* Approach for Local Search 

 
 
 
In Table 11, we provide the average results using 2-opt* approach in local 

search for scenario 2, where the shift deadlines are determined by multiplying 

the longest tour time by 1.2. Results per each run are listed in Appendix D. 

When we used the method of 2-opt* in the local search phase rather than the 

method of cheapest insertion, we obtain better solutions but this time solution 

times get too long.  
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Table 11. Results for scenario 2, where the shift deadlines are determined by 

1.2×the longest tour time using 2-opt* approach in local search 

 

Instance │N│ │V│ 

% Improvement 
Over CPU 

(min) 

% 
Deviation 

from 
Initial 

Solution 
% Early 
Collected

VNS(CI) SA 

6 22 4 15.78 7.93 53.58 22.28 21.35 
7 23 3 22.71 9.65 657.72 55.89 36.22 
8 30 3 14.69 1.98 262.75 39.64 29.39 
1 37 5 24.54 8.16 927.72 31.32 29.42 
2 40 5 15.65 11.11 103.33 18.75 18.67 
3 45 7 5.33 2.10 1142.58 10.39 19.22 
4 65 10 2.89 2.13 351.75 6.54 9.65 
5 78* 10 4.30 3.36 605.49 7.74 20.62 
9 101* 8 3.34 3.07 606.03 7.80 12.28 

Minimum 2.89 1.98 53.58 6.54 9.65 
Average 12.14 5.50 523.44 22.26 21.87 
Maximum 24.54 11.11 1142.58 55.89 36.22 

 

* - Since the algorithm could not terminate in 7200 minutes that is 120 hours, 

we report the results obtained when the algorithm terminated after 10 hours. 

 
For example regarding the second scenario, for the problem with 22 nodes best 

solution obtained with the 2-opt* method is 846, which is even smaller than the 

average result of SA algorithm for the same scenario that is 949.6. But the 

duration when 2-opt* used is nearly 64 minutes. This duration is on the average 

about 4 minutes for VNS and 3 minutes for SA approach. The difference is 

about 60 minutes that is 1 hour for the smallest size example. When the size of 

the problem increases gap is also increases. For example again regarding the 

second scenario, for 37 nodes instance using 2-opt* method, the objective 

function value is 1344, and the duration is about 848 minutes where on the 
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average the objective function value and the duration is respectively 1826 and 

18 for VNS and 1500 and 8 for SA approach. As seen again the 2-opt* method 

finds better solutions than all of them but the difference of the durations is 

about 830 minutes which corresponds to about 13.8 hours. At this point 2-opt* 

method can be advisable if the user have time flexibility while obtaining the 

solutions. 
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CHAPTER 6 
 
 

CONCLUSIONS 
 
 
 

In this study, we work on the capacitated vehicle routing problem in cross 

docks where shift based time constraints on products are taken into 

consideration. In our problem setting, the dealt cross dock is assumed to feed 

directly the production lines of its customer. At this point, the customer defines 

frequencies which are corresponds to shifts to get the products based on its 

production rate. Based on the defined number of shifts, time deadlines per each 

shift is also determined within the day. Therefore, in order to meet the 

customer’s demand, products are collected from the suppliers regarding these 

deadlines which results in shift-based time constraints on products. In our 

study, the objective is to minimize the routing costs for inbound routes. At this 

point, it is very important to decide on the product batches that will be taken 

from a supplier when a vehicle arrives at the supplier. In order to solve the 

problem firstly a mathematical model is formulated. Since the dealt problem is 

NP-Hard, meta-heuristic solution approaches based on variable neighborhood 

search and simulated annealing are also proposed. For the evaluation of the 

performance of the proposed algorithms computational experimentation is 

conducted on the test problems which are tailored from the capacitated vehicle 

routing instances from the literature. 

Based on the conducted computational study, it is seen that the performance of 

the SA algorithm is much better than the VNS approach, both regarding the 

solution times and objective functions. Moreover, both of the algorithms are 

providing promising solutions compared with the initial solutions considering 

that the initial solutions are taken as the best solutions reported in the literature. 
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The proposed algorithms react in the same manner to the changes on the shift 

lengths. For the experiments we defined three different shift lengths based on 

the longest tour lengths of the best solutions of the literature examples ranging 

from tight to loose. Both approaches produce better solutions when the 

constraints on shift end times get looser. In contrast, while the solution duration 

of the VNS approach gets longer, duration of the SA algorithm gets shorter 

with the relaxation of the shift lengths which also favors SA approach. 

In order to obtain better solutions we tried a different local search structure for 

VNS algorithm which is 2-opt* method. This time, produced solutions are 

better even from SA in the objective function perspective but the solution 

durations extend too much to be acceptable. The 2-opt* approach can be 

preferred if the user have time flexibility while obtaining the solutions. 

The test problems used to evaluate the performance of the proposed meta-

heuristic algorithms are tailored from CVRP literature and the initial solutions 

are taken as the best solutions reported in the literature. In case of using the 

proposed algorithms for the problems rather than literature instances, there will 

be a need to produce initial solutions. At this point, initial solutions can be 

produced using existing VRP heuristics like nearest neighbor search algorithm 

regarding the capacity and time restrictions. 

The problem of capacitated vehicle routing with shift based time constraints on 

products is applicable to the companies in which mass production on a shift 

basis is taken into consideration like in automotive or domestic appliance 

industries. In accordance with the preferences of the customer a cross dock can 

be added to the logistics flow in order to reduce the amount of inventory kept 

in company area and also in order to increase the effectiveness of the logistics 

operations with full truck load deliveries to the customer. With the described 

settings the required products will be delivered to the customer at the beginning 

of each shift which will directly feed the production lines. Since the proposed 
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meta-heuristic approaches are constructed considering basic characteristics, 

they can be applicable to the real life examples with little or no change based 

on problem specific requirements. 

There are many extensions are possible for the future works. One of them can 

be adding holding costs at the cross dock for early arrivals of product batches. 

Effects of different number of shifts can be investigated. Considering 

heterogeneous set of vehicles will be a harder problem. Also, taking in to 

consideration the capacitated cross docks can be another extension. 

Additionally, considering the combination of the proposed problem with the 

internal cross dock operations will lead to a different problem. Also, 

development of different metaheuristic approaches may be another extension. 

Moreover, splitting the delivery of a batch of product can be regarded as 

another approach. 
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APPENDIX A 
 
 

COMPUTATIONAL RESULTS FOR THE FIRST 
SCENARIO 

 
 
 

In Appendix A, computational results for both proposed variable neighborhood 

search and simulated annealing approaches are provided in detail for the 

selected CVRP literature instances where the end time of the first shift is 

exactly equals to the longest tour length of the best solutions. At this point the 

end time of the second shift is two times greater than the first one and 

similarly, the end time of the third shift is three times greater than the first one. 
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Table A - 1. Results for Christophides and Eilon (n22 - v4) Problem for the 

First Scenario 

 
Christophides 
and Eilon (n22 

- v4) 
 

Initial 
Solution: 1125 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 1062 2.23 9.93 1040 3.48 13.91 
2nd Trial 1048 2.69 9.32 1002 4.03 15.59 
3rd Trial 1048 2.50 7.79 1027 2.94 14.83 
4th Trial 1048 2.19 7.79 1006 3.79 13.45 
5th Trial 1048 3.11 9.32 1040 3.41 14.37 
Minimum 1048 2.19 7.79 1002 2.94 13.45 
Average 1050.8 2.54 8.83 1023 3.53 14.43 
Maximum 1062 3.11 9.93 1040 4.03 15.59 

 
 
 
Table A - 2. Results for Christophides and Eilon (n23 - v3) Problem for the 

First Scenario 

 
Christophides 
and Eilon (n23 

- v3) 
 

Initial 
Solution: 1707 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 1236 5.01 12.77 950 2.69 49.42 
2nd Trial 1155 7.25 26.28 779 2.69 50.98 
3rd Trial 1165 4.58 32.37 911 3.71 51.73 
4th Trial 1283 5.62 14.59 831 3.46 52.08 
5th Trial 1265 4.30 20.09 876 3.83 49.56 
Minimum 1155 4.30 12.77 779 2.69 49.42 
Average 1220.8 5.35 21.22 869.4 3.27 50.75 
Maximum 1283 7.25 32.37 950 3.83 52.08 
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Table A - 3. Results for Christophides and Eilon (n30 - v3) Problem for the 
First Scenario 

 
Christophides 
and Eilon (n30 

- v3) 
 

Initial 
Solution: 1611 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 1294 7.30 13.15 1300 3.85 22.64 
2nd Trial 1492 9.90 9.11 1295 4.40 22.34 
3rd Trial 1491 2.90 10.46 1304 3.65 20.25 
4th Trial 1475 5.63 13.9 1251 3.94 26.45 
5th Trial 1498 4.26 13 1303 4.64 23.84 
Minimum 1294 2.90 9.11 1251 3.65 20.25 
Average 1450 6.00 11.62 1290.6 4.10 23.10 
Maximum 1498 9.90 13.9 1304 4.64 26.45 
 
 
 
Table A - 4 . Results for Augerat, et al. (n37 - v5) Problem for the First 
Scenario 

 
Augerat, et al. 

(n37 - v5) 
 

Initial 
Solution: 2007 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 1833 10.47 9.25 1615 9.19 29.07 
2nd Trial 1880 11.04 6.96 1605 10.57 31.61 
3rd Trial 1841 9.64 11.3 1532 8.40 26.53 
4th Trial 1815 5.97 13.59 1557 8.68 30.63 
5th Trial 1850 11.82 9.5 1573 8.94 28.66 
Minimum 1815 5.97 6.96 1532 8.40 26.53 
Average 1843.8 9.79 10.12 1576.4 9.16 29.3 
Maximum 1880 11.82 13.59 1615 10.57 31.61 
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Table A - 5. Results for Augerat, et al. (n40 - v5) Problem for the First 
Scenario 

 
Augerat, et al. 

(n40 - v5) 
 

Initial 
Solution: 1374 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 1345 6.36 4.36 1260 14.58 9.06 
2nd Trial 1353 8.22 5.82 1284 11.90 11 
3rd Trial 1298 11.83 4.63 1282 14.90 9.87 
4th Trial 1350 8.31 5.82 1236 12.85 8.95 
5th Trial 1345 7.96 6.31 1268 14.70 11.21 
Minimum 1298 6.36 4.36 1236 11.90 8.95 
Average 1338.2 8.54 5.39 1266 13.78 10.02 
Maximum 1353 11.83 6.31 1284 14.90 11.21 
 
 
 
Table A - 6. Results for Augerat, et al. (n45 - v7) Problem for the First 
Scenario 

 
Augerat, et al. 

(n45 - v7) 
 

Initial 
Solution: 3438 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 3253 10.51 8.2 3177 14.91 14.72 
2nd Trial 3241 12.24 10.25 3307 13.53 10.72 
3rd Trial 3254 9.01 8.93 3302 14.35 13.98 
4th Trial 3252 13.72 9.25 3213 17.51 17.77 
5th Trial 3254 9.96 9.35 3212 15.65 15.72 
Minimum 3241 9.01 8.2 3177 13.53 10.72 
Average 3250.8 11.09 9.20 3242.2 15.19 14.58 
Maximum 3254 13.72 10.25 3307 17.51 17.77 
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Table A - 7. Results for Augerat, et al. (n65 - v10) Problem for the First 
Scenario 

 
Augerat, et al. 

(n65 - v10) 
 

Initial 
Solution: 2376 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 2319 11.52 4.78 2355 31.94 9.65 
2nd Trial 2320 15.79 5.05 2240 66.79 9.07 
3rd Trial 2322 12.17 4.94 2256 74.91 8.53 
4th Trial 2289 22.42 6.61 2306 52.54 7.87 
5th Trial 2311 28.33 6.17 2309 54.96 7 
Minimum 2289 11.52 4.78 2240 31.94 7 
Average 2312.2 18.04 5.51 2293.2 56.23 8.42 
Maximum 2322 28.33 6.61 2355 74.91 9.65 
 
 
 

Table A - 8. Results for Augerat, et al. (n78 - v10) Problem for the First 
Scenario 

 
Augerat, et al. 

(n78 - v10) 
 

Initial 
Solution: 3663 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 3578 38.14 4.51 3495 40.74 21.48 
2nd Trial 3578 34.05 2.17 3478 37.50 24.19 
3rd Trial 3582 42.66 3.34 3464 40.86 23.97 
4th Trial 3574 71.69 3.59 3491 39.51 22.58 
5th Trial 3556 88.61 5.76 3565 37.22 21.8 
Minimum 3556 34.05 2.17 3464 37.22 21.48 
Average 3573.6 55.03 3.87 3498.6 39.16 22.80 
Maximum 3582 88.61 5.76 3565 40.86 24.19 
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Table A - 9. Results for Christophides and Eilon (n101 - v8) Problem for the 
First Scenario 

 
Christophides 

and Eilon 
(n101 - v8) 

 
Initial 

Solution: 2445 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 2392 84.84 3.42 2315 80.93 15.34 
2nd Trial 2368 46.32 4.22 2399 82.18 14.24 
3rd Trial 2361 38.15 5.87 2351 86.62 15.16 
4th Trial 2384 29.00 4.54 2387 82.96 14.56 
5th Trial 2338 86.47 5.89 2399 82.80 14.34 
Minimum 2338 29.00 3.42 2315 80.93 14.24 
Average 2368.6 56.95 4.79 2370.2 83.10 14.73 
Maximum 2392 86.47 5.89 2399 86.62 15.34 
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APPENDIX B 
 
 

COMPUTATIONAL RESULTS FOR THE SECOND 
SCENARIO 

 
 
 

In Appendix B, computational results for both proposed variable neighborhood 

search and simulated annealing approaches are provided in detail for the 

selected CVRP literature instances where the end time of the first shift is 1.2 

times that is 20% greater than the longest tour length of the best solutions. At 

this point the end time of the second shift is 2.4 times greater than the first one 

and similarly, the end time of the third shift is 3.6 times greater than the first 

one. 
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Table B - 1. Results for Christophides and Eilon (n22 - v4) Problem for the 
Second Scenario 

 
Christophides 
and Eilon (n22 

- v4) 
 

Initial 
Solution: 1125 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 1029 3.72 10.39 931 2.79 20.64 
2nd Trial 1038 4.47 11.92 955 2.40 23.24 
3rd Trial 1038 3.39 11.92 958 2.54 20.79 
4th Trial 1048 3.70 9.32 930 2.79 19.87 
5th Trial 1038 3.40 11.31 974 2.62 20.03 
Minimum 1029 3.39 9.32 930 2.40 19.87 
Average 1038.2 3.74 10.97 949.6 2.63 20.91 
Maximum 1048 4.47 11.92 974 2.79 23.24 
 
 
 
Table B - 2. Results for Christophides and Eilon (n23 - v3) Problem for the 
Second Scenario 

 
Christophides 
and Eilon (n23 

- v3) 
 

Initial 
Solution: 1707 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 892 13.18 45.36 768 3.04 51.84 
2nd Trial 1104 7.90 30.23 858 3.00 43.51 
3rd Trial 905 11.71 35.31 790 2.89 51.84 
4th Trial 986 17.74 37.29 922 2.86 51.21 
5th Trial 984 7.24 47.36 829 2.99 40.79 
Minimum 892 7.24 30.23 768 2.86 40.79 
Average 974.2 11.55 39.11 833.4 2.96 47.84 
Maximum 1104 17.74 47.36 922 3.04 51.84 
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Table B - 3. Results for Christophides and Eilon (n30 - v3) Problem for the 
Second Scenario 

 
Christophides 
and Eilon (n30 

- v3) 
 

Initial 
Solution: 1611 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 1076 10.86 22.57 953 4.32 30.11 
2nd Trial 1199 9.19 17.71 1028 5.00 28.62 
3rd Trial 1029 24.25 29.89 992 4.78 31.53 
4th Trial 1248 10.25 17.71 987 4.44 33.63 
5th Trial 1147 6.82 22.72 1000 4.61 28.99 
Minimum 1029 6.82 17.71 953 4.32 28.62 
Average 1139.8 12.27 22.12 992 4.63 30.58 
Maximum 1248 24.25 29.89 1028 5.00 33.63 
 
 
 
Table B - 4. Results for Augerat, et al. (n37 - v5) Problem for the Second 
Scenario 

 
Augerat, et al. 

(n37 - v5) 
 

Initial 
Solution: 2007 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 1859 8.65 11.3 1513 7.83 32.84 
2nd Trial 1825 14.34 8.68 1538 7.60 35.7 
3rd Trial 1792 37.58 11.05 1428 7.67 32.18 
4th Trial 1843 11.40 12.53 1436 7.99 31.44 
5th Trial 1814 19.66 10.89 1589 7.81 32.51 
Minimum 1792 8.65 8.68 1428 7.60 31.44 
Average 1826.6 18.32 10.89 1500.8 7.78 32.93 
Maximum 1859 37.58 12.53 1589 7.99 35.7 
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Table B - 5. Results for Augerat, et al. (n40 - v5) Problem for the Second 
Scenario 

 
Augerat, et al. 

(n40 - v5) 
 

Initial 
Solution: 1374 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 1317 7.04 5.39 1272 8.54 14.56 
2nd Trial 1338 6.95 4.26 1255 7.63 15.96 
3rd Trial 1315 6.33 4.58 1261 7.91 14.34 
4th Trial 1324 7.03 4.31 1282 7.95 12.94 
5th Trial 1323 6.65 4.58 1209 8.85 17.69 
Minimum 1315 6.33 4.26 1209 7.63 12.94 
Average 1323.4 6.80 4.62 1255.8 8.17 15.10 
Maximum 1338 7.04 5.39 1282 8.85 17.69 
 
 
 
Table B - 6. Results for Augerat, et al. (n45 - v7) Problem for the Second 
Scenario 

 
Augerat, et al. 

(n45 - v7) 
 

Initial 
Solution: 3438 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 3253 26.01 8.09 3198 12.87 22.55 
2nd Trial 3260 15.71 7.78 3131 12.22 21.18 
3rd Trial 3256 19.58 9.09 3165 16.89 26.65 
4th Trial 3255 19.75 9.88 3121 15.27 23.71 
5th Trial 3247 16.37 8.25 3118 14.04 25.44 
Minimum 3247 15.71 7.78 3118 12.22 21.18 
Average 3254.2 19.48 8.62 3146.6 14.26 23.91 
Maximum 3260 26.01 9.88 3198 16.89 26.65 
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Table B - 7. Results for Augerat, et al. (n65 - v10) Problem for the Second 
Scenario 

 
Augerat, et al. 

(n65 - v10) 
 

Initial 
Solution: 2376 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 2276 31.12 7.3 2280 32.97 11.94 
2nd Trial 2320 13.01 4.92 2273 29.49 13.61 
3rd Trial 2311 27.30 6.75 2241 36.10 17.33 
4th Trial 2263 26.64 9.87 2292 42.79 7.35 
5th Trial 2264 24.19 6.94 2259 32.76 12.19 
Minimum 2263 13.01 4.92 2241 29.49 7.35 
Average 2286.8 24.45 7.16 2269 34.82 12.48 
Maximum 2320 31.12 9.87 2292 42.79 17.33 
 
 
 
Table B - 8. Results for Augerat, et al. (n78 - v10) Problem for the Second 
Scenario 

 
Augerat, et al. 

(n78 - v10) 
 

Initial 
Solution: 3663 

VNS SA 

fheuristic CPU 
(min) 

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected 

1st Trial 3531 165.94 8.78 3512 32.41 25.68 
2nd Trial 3550 69.22 7.54 3502 37.46 26.68 
3rd Trial 3534 116.87 8.57 3537 33.77 26.78 
4th Trial 3526 161.31 8.92 3541 38.77 27.1 
5th Trial 3516 131.99 10.13 3394 33.58 26.21 
Minimum 3516 69.22 7.54 3394 32.41 25.68 
Average 3531.4 129.06 8.79 3497.2 35.20 26.49 
Maximum 3550 165.94 10.13 3541 38.77 27.1 
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Table B - 9. Results for Christophides and Eilon (n101 - v8) Problem for the 
Second Scenario 

 
Christophides 

and Eilon 
(n101 - v8) 

 
Initial 

Solution: 2445 

VNS SA 

fheuristic CPU 
(min) 

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected 

1st Trial 2428 91.28 5.66 2283 78.80 22.35 
2nd Trial 2297 84.26 5.73 2373 88.76 22.61 
3rd Trial 2304 54.17 6.81 2426 82.44 20.78 
4th Trial 2355 56.92 6.14 2306 89.44 24.87 
5th Trial 2277 116.80 8.25 2241 79.41 24.65 
Minimum 2277 54.17 5.66 2241 78.80 20.78 
Average 2332.2 80.68 6.52 2325.8 83.77 23.05 
Maximum 2428 116.80 8.25 2426 89.44 24.87 
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APPENDIX C 
 
 

COMPUTATIONAL RESULTS FOR THE THIRD 
SCENARIO 

 
 
 

In Appendix C, computational results for both proposed variable neighborhood 

search and simulated annealing approaches are provided in detail for the 

selected CVRP literature instances where the end time of the first shift is 1.4 

times that is 40% greater than the longest tour length of the best solutions. At 

this point the end time of the second shift is 2.8 times greater than the first one 

and similarly, the end time of the third shift is 4.2 times greater than the first 

one. 
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Table C - 1. Results for Christophides and Eilon (n22 - v4) Problem for the 
Third Scenario 

 
Christophides 
and Eilon (n22 

- v4) 
 

Initial 
Solution: 1125 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 1025 5.44 8.56 853 2.27 23.7 
2nd Trial 885 7.66 22.78 820 2.63 26.6 
3rd Trial 925 8.37 16.97 854 2.88 26.6 
4th Trial 981 4.71 14.37 847 2.62 27.98 
5th Trial 979 7.35 14.83 866 2.70 26.75 
Minimum 885 4.71 8.56 820 2.27 23.7 
Average 959 6.70 15.50 848 2.62 26.33 
Maximum 1025 8.37 22.78 866 2.88 27.98 
 
 
 
Table C - 2. Results for Christophides and Eilon (n23 - v3) Problem for the 
Third Scenario 

 
Christophides 
and Eilon (n23 

- v3) 
 

Initial 
Solution: 1707 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 809 53.70 43.71 806 2.88 52.61 
2nd Trial 1054 11.73 35.28 823 2.67 51.09 
3rd Trial 962 14.04 44.18 808 3.20 51.42 
4th Trial 905 10.39 41.65 810 3.00 52.33 
5th Trial 889 32.09 40.89 812 2.79 51.56 
Minimum 809 10.39 35.28 806 2.67 51.09 
Average 923.8 24.39 41.14 811.8 2.91 51.80 
Maximum 1054 53.70 44.18 823 3.20 52.61 
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Table C - 3. Results for Christophides and Eilon (n30 - v3) Problem for the 
Third Scenario 

 
Christophides 
and Eilon (n30 

- v3) 
 

Initial 
Solution: 1611 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 1040 49.60 30.11 961 4.79 34.6 
2nd Trial 1076 25.51 31.01 980 5.19 30.64 
3rd Trial 1074 7.65 27.13 982 4.96 34.23 
4th Trial 1063 7.48 26.23 985 4.75 27.05 
5th Trial 1009 12.81 27.27 980 5.43 27.57 
Minimum 1009 7.48 26.23 961 4.75 27.05 
Average 1052.4 20.61 28.35 977.6 5.02 30.82 
Maximum 1076 49.60 31.01 985 5.43 34.6 
 
 
 
Table C - 4. Results for Augerat, et al. (n37 - v5) Problem for the Third 
Scenario 

 
Augerat, et al. 

(n37 - v5) 
 

Initial 
Solution: 2007 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 1762 21.18 12.2 1339 7.20 38.65 
2nd Trial 1582 30.86 20.47 1320 7.96 37.51 
3rd Trial 1585 54.55 20.8 1311 7.92 36.69 
4th Trial 1594 38.73 26.04 1333 7.82 39.23 
5th Trial 1784 25.58 15.31 1322 7.59 40.86 
Minimum 1582 21.18 12.2 1311 7.20 36.69 
Average 1661.4 34.18 18.96 1325 7.70 38.59 
Maximum 1784 54.55 26.04 1339 7.96 40.86 
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Table C - 5. Results for Augerat, et al. (n40 - v5) Problem for the Third 
Scenario 

 
Augerat, et al. 

(n40 - v5) 
 

Initial 
Solution: 1374 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 1304 8.35 8.46 1130 7.84 22.86 
2nd Trial 1301 8.42 8.19 1121 7.83 25.08 
3rd Trial 1272 10.53 9.33 1110 8.04 24.75 
4th Trial 1171 14.42 13.53 1100 8.09 25.56 
5th Trial 1302 6.43 6.79 1100 8.16 25.67 
Minimum 1171 6.43 6.79 1100 7.83 22.86 
Average 1270 9.63 9.26 1112.2 7.99 24.78 
Maximum 1304 14.42 13.53 1130 8.16 25.67 
 
 
 
Table C - 6. Results for Augerat, et al. (n45 - v7) Problem for the Third 
Scenario 

 
Augerat, et al. 

(n45 - v7) 
 

Initial 
Solution: 3438 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 3238 32.21 10.88 3088 13.76 28.49 
2nd Trial 3145 49.86 15.61 3023 10.07 27.28 
3rd Trial 3228 24.05 10.62 3138 11.45 24.55 
4th Trial 3128 41.48 12.88 3108 12.65 27.97 
5th Trial 3239 19.32 10.72 3131 11.27 27.54 
Minimum 3128 19.32 10.62 3023 10.07 24.55 
Average 3195.6 33.38 12.14 3097.6 11.84 27.17 
Maximum 3239 49.86 15.61 3138 13.76 28.49 
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Table C - 7. Results for Augerat, et al. (n65 - v10) Problem for the Third 
Scenario 

 
Augerat, et al. 

(n65 - v10) 
 

Initial 
Solution: 2376 

VNS SA 

fheuristic CPU 
(min)

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected

1st Trial 2212 57.20 9.43 2165 30.88 23.48 
2nd Trial 2263 20.37 7.95 2242 28.17 24.28 
3rd Trial 2292 20.95 7.79 2102 34.28 24.52 
4th Trial 2269 49.79 8.09 2166 30.55 23.89 
5th Trial 2255 22.86 9.7 2078 29.59 24.03 
Minimum 2212 20.37 7.79 2078 28.17 23.48 
Average 2258.2 34.23 8.59 2150.6 30.69 24.04 
Maximum 2292 57.20 9.7 2242 34.28 24.52 
 
 
 
Table C - 8. Results for Augerat, et al. (n78 - v10) Problem for the Third 
Scenario 

 
Augerat, et al. 

(n78 - v10) 
 

Initial 
Solution: 3663 

VNS SA 

fheuristic CPU 
(min) 

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected 

1st Trial 3527 151.87 9.78 3537 32.80 29.42 
2nd Trial 3538 164.64 8.18 3412 36.52 31.98 
3rd Trial 3523 156.90 10.6 3589 31.09 31.55 
4th Trial 3530 267.94 12.05 3409 31.75 28.92 
5th Trial 3537 131.09 7.54 3528 32.69 29.09 
Minimum 3523 131.09 7.54 3409 31.09 28.92 
Average 3531 174.49 9.63 3495 32.97 30.19 
Maximum 3538 267.94 12.05 3589 36.52 31.98 
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Table C - 9. Results for Christophides and Eilon (n101 - v8) Problem for the 
Third Scenario 

 
Christophides 

and Eilon 
(n101 - v8) 

 
Initial 

Solution: 2445 

VNS SA 

fheuristic CPU 
(min) 

% Early 
Collected fheuristic CPU 

(min) 
% Early 
Collected 

1st Trial 2279 74.80 8.87 2392 84.23 25.6 
2nd Trial 2286 48.58 5.62 2373 84.31 24.89 
3rd Trial 2277 115.33 9.05 2195 83.48 28.32 
4th Trial 2395 180.29 7.54 2259 82.05 26.42 
5th Trial 2358 63.66 7.99 2305 81.01 26.02 
Minimum 2277 48.58 5.62 2195 81.01 24.89 
Average 2319 96.53 7.81 2304.8 83.01 26.25 
Maximum 2395 180.29 9.05 2392 84.31 28.32 
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APPENDIX D 
 
 

COMPUTATIONAL RESULTS FOR THE 2opt* 
APPROACH USING SECOND SCENARIO 

 
 
 

In Appendix D, computational results for proposed variable neighborhood 

search algorithm with 2-opt* approach in the local search step, are provided in 

detail for the selected CVRP literature instances where the end time of the first 

shift is 1.2 times that is 20% greater than the longest tour length of the best 

solutions. Here, the end time of the second shift is 2.4 times greater than the 

first one and similarly, the end time of the third shift is 3.6 times greater than 

the first one. 
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Table D - 1. Results for Christophides and Eilon (n22 - v4) Problem for the 
Second Scenario 

 
Christophides and Eilon 

(n22 - v4) 
Initial Solution: 1125 

VNS % Early 
Collected fheuristic CPU (min) 

1st Trial 857 70.66 21.86 
2nd Trial 920 26.17 19.72 
3rd Trial 846 63.92 22.47 
Minimum 846 26.17 19.72 
Average 874.33 53.58 21.35 
Maximum 920 70.66 22.47 
 
 
 
Table D - 2. Results for Christophides and Eilon (n23 - v3) Problem for the 
Second Scenario 

  
Christophides and Eilon 

(n23 - v3) 
Initial Solution: 1707 

VNS % Early 
Collected fheuristic CPU (min) 

1st Trial 745 789.82 29.57 
2nd Trial 745 666.31 49.53 
3rd Trial 769 517.04 29.57 
Minimum 745 517.04 29.57 
Average 753 657.72 36.22 
Maximum 769 789.82 49.53 
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Table D - 3. Results for Christophides and Eilon (n30 - v3) Problem for the 
Second Scenario  

 
Christophides and Eilon 

(n30 - v3) 
Initial Solution: 1611 

VNS % Early 
Collected fheuristic CPU (min) 

1st Trial 972 210.61 31.01 
2nd Trial 990 494.68 24.81 
3rd Trial 955 82.96 32.36 
Minimum 955 82.96 24.81 
Average 972.33 262.75 29.39 
Maximum 990 494.68 32.36 
 
 
 
Table D - 4. Results for Augerat, et al. (n37 - v5) Problem for the Second 
Scenario  

 

Augerat, et al. (n37 - v5) 
Initial Solution: 2007 

VNS % Early 
Collected fheuristic CPU (min) 

1st Trial 1344 848.12 31.77 
2nd Trial 1396 999.17 29.97 
3rd Trial 1395 935.89 26.53 
Minimum 1344 848.12 26.53 
Average 1378.33 927.72 29.42 
Maximum 1396 999.17 31.77 
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Table D - 5. Results for Augerat, et al. (n40 - v5) Problem for the Second 
Scenario  

 

Augerat, et al. (n40 - v5) 
Initial Solution: 1374 

VNS % Early 
Collected fheuristic CPU (min) 

1st Trial 1105 94.52 19.25 
2nd Trial 1121 88.26 18.98 
3rd Trial 1123 127.22 17.79 
Minimum 1105 88.26 17.79 
Average 1116.33 103.33 18.67 
Maximum 1123 127.22 19.25 
 
 
 
Table D - 6. Results for Augerat, et al. (n45 - v7) Problem for the Second 
Scenario 

 

Augerat, et al. (n45 - v7) 
Initial Solution: 3438 

VNS % Early 
Collected fheuristic CPU (min) 

1st Trial 3100 792.21 21.34 
2nd Trial 3073 1185.55 17.56 
3rd Trial 3069 1449.99 18.76 
Minimum 3069 792.21 17.56 
Average 3080.67 1142.58 19.22 
Maximum 3100 1449.99 21.34 
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Table D - 7. Results for Augerat, et al. (n65 - v10) Problem for the Second 
Scenario  

 

Augerat, et al. (n65 - v10)
Initial Solution: 2376 

VNS % Early 
Collected fheuristic CPU (min) 

1st Trial 2236 337.46 10.09 
2nd Trial 2210 305.07 9.1 
3rd Trial 2216 412.71 9.76 
Minimum 2210 305.07 9.1 
Average 2220.67 351.75 9.65 
Maximum 2236 412.71 10.09 

 
 
 
Table D - 8. Results for Augerat, et al. (n78 - v10) Problem for the Second 
Scenario  

 
Augerat, et al. (n78 - 

v10)* 
Initial Solution: 3663 

VNS % Early 
Collected fheuristic CPU (min) 

1st Trial 3401 606.8 18.32 
2nd Trial 3365 601.23 21.45 
3rd Trial 3373 608.45 22.09 
Minimum 3365 601.23 18.32 
Average 3379.67 605.49 20.62 
Maximum 3401 608.45 22.09 

 

 

 

 

 

 

 

 



 

 

 

 

 

106 

Table D - 9. Results for Christophides and Eilon (n101 - v8) Problem for the 
Second Scenario  

 
Christophides and Eilon 

(n101 - v8)* 
Initial Solution: 2445 

VNS % Early 
Collected fheuristic CPU (min) 

1st Trial 2236 604.5 14.1 
2nd Trial 2291 606.28 8.64 
3rd Trial 2236 607.3 14.1 
Minimum 2236 604.5 8.64 
Average 2254.33 606.03 12.28 
Maximum 2291 607.3 14.1 

* - Since the algorithm could not terminate in 7200 minutes that is 120 hours, 

we report the results obtained when the algorithm terminated after 10 hours. 


