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ABSTRACT 

PERFORMANCE ANALYSES OF NEWTON METHOD FOR 
MULTI-BLOCK STRUCTURED GRIDS 

 
Ayan, Erdem 

M.S., Department of Aerospace Engineering 

Supervisor: Assoc. Prof. Dr. Sinan Eyi 

September 2011, 76 pages 

 

In order to make use of Newton’s method for complex flow domains, an Euler 

multi-block Newton solver is developed. The generated Newton solver uses 

Analytical Jacobian derivation technique to construct the Jacobian matrices with 

different flux discretization schemes up to the second order face interpolations. 

Constructed sparse matrices are solved by parallel and series matrix solvers. In 

order to use structured grids for complex domains, multi-block grid construction 

is needed. Each block has its own Jacobian matrices and during the iterations the 

communication between the blocks should be performed. Required 

communication is performed with “halo” nodes. Increase in the number of grids 

requires parallelization to minimize the solution time. Parallelization of the 

analyses is performed by using matrix solvers having parallelization capability. In 

this thesis, some applications of the multi-block Newton method to different 

problems are given. Results are compared by using different flux discretization 

schemes. Convergence, analysis time and matrix solver performances are 

examined for different number of blocks. 

 

Keywords: Multi-Block Newton Method, Flux Jacobian, CFD 
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ÖZ 

ÇOK BLOKLU YAPISAL AĞ SİSTEMİ İÇİN NEWTON YÖNTEMİNİN                

PERFORMANS ANALİZİ 

 

Ayan, Erdem 

Yüksek Lisans, Havacilik ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Sinan Eyi 

Eylül 2011, 76 sayfa 

 

Bu tezde, kompleks geometrilerin akış çözümünde kullanılmak üzere geliştirilmiş 

olan çok bloklu Newton metod çözücüsünün performans analizi anlatılmaktadır. 

Euler denklemlerinin çözümü için gerekli olan Jacobian matrislerinin 

oluşturulmasında farklı akış ayrıklaştırma teknikleri ile birlikte analitik türetme 

yöntemi kullanılmıştır. Oluşturulan seyrek matrisler, matris çözücülerinin 

yardımıyla paralel ve seri olarak çözülmüştür. Çözücünün çok bloklu hale 

getirilmesiyle birlikte her bir blok için ayrı bir Jacobian matrisi analitik türetme 

yöntemi ile oluşturulmuş ve her bir iterasyonda bloklar arasındaki gerekli olan 

iletişim “sanal” noktalar kullanımı ile gerçekleştirilmiştir. Geliştirilen çözücü 

farklı tipteki problemlere uyarlanmıştır. Farklı sayıda blok kullanımıyla birlikte 

yakınsama durumu ve analiz süresi performansı çeşitli büyüklüklerdeki akış 

problemleriyle değerlendirilmiştir. Ayrıca farklı matris çözücülerinin de kendi 

aralarında çözüm süreleri ve doğrulukları açısından değerlendirmeler yapılmıştır.  

 

Anahtar Kelimeler: Çok Bloklu Newton Metod, Akı Jacobianı, Hesaplamalı 

Akışkanlar Dinamiği 
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation 

Computational fluid dynamics became one of the branches of aerodynamics 

which complements the experimental and theoretical approaches since late 1970s. 

It immediately became one of the tools to model the fluid flow in industry. Its 

usage is increasing everyday and it became an important part of the design and 

analyses processes for more and more companies. It is possible to model and 

examine velocity, temperature, pressure and species included in fluid flow within 

a solution domain with CFD. 

 

Since the analysis requires numerical methods and algorithms, defining and 

modeling the fluid flow and solving the modeled flow is a difficult task generally 

and for some cases it is impossible without using computers. Before introducing 

with CFD; scientists and engineers use some empirical methods or experiments. 

These experiments generally refer to the wind tunnel tests. However, usage of 

empirical methods is possible only for similar cases which are investigated 

before. They can provide only a very limited accuracy. On the other hand, using 

wind tunnel tests is not possible for most of the situations due to the high cost and 

huge amount of cases. Most of the aerospace companies use wind tunnel tests 

when CFD is inadequate to solve the problem or when in their detailed design 

processes for very limited number of cases. Increasing capacity of aerospace 
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industry requires detailed analyzes of aircrafts with high accuracy and CFD tries 

to fulfill this requirement. 

 

Fast, robust and accurate methods & algorithms are required to solve 

aerodynamic flows. The flow solver must have capability to handle a variety of 

the flow conditions with different configurations. Several methods are presented 

to balance the speed and robustness of the solver. The main problem is to find the 

suitable method and an adequate model to solve the fluid flow to satisfy the 

requirements. 

1.2 Background 

Computational fluid dynamics is used to model the problems and to find solutions 

to the partial differential equations on a computational domain. Required 

calculations are performed in the nodes within the domain. These nodes can be 

arranged by structured or unstructured orders. Both of them have advantages and 

disadvantages. Structured grid includes distributed nodes in an organized pattern 

around the geometry. They require lower storage requirement and they work well 

for simple configurations. However, it is not always possible to construct 

structured grid on the flow domain for complex geometries. For these cases, 

unstructured grids can fit the geometry. Moreover, they require less complicated 

grid generation techniques and higher adaptability to the flow solution. When the 

usage of single block structured grid is impossible, in order to make use of less 

overhead and lower storage feature of structured grid, multi-block approach is 

developed.  

 

CFD solvers can be divided into two parts according to the time-marching 

methods namely, explicit and implicit methods. Explicit methods are simple and 
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computationally easy. However, they are not stable when higher time steps are 

used. Hence, they require more iteration for convergence. Using multi-grid 

techniques decreases the required iteration for convergence. Implicit methods, on 

the other hand, are not easy to implement. Moreover, they require higher 

computational time per each iteration. However, the total required number of 

iteration decreases for convergence. In CFD one of the fastest implicit methods is 

the Newton method.    

 

Creating fast and efficient flow solver is limited to the time required to solve 

large linear system of equations. Direct inversion of these matrices is not possible 

for some cases or very expensive up to the end of 90’s. For this reason, one of the 

used methods in this field is approximate-Newton method and the other one is 

Jacobian free inexact Newton method. They all include iterative methods to 

inexactly solve the systems of linear equations. They reduce required time at each 

iteration.  

 

With increasing capability of computers, due to quadratic convergence rate 

Newton’s method becomes again a powerful method. However, it requires exact 

linearization of the residual equations to satisfy the quadratic convergence 

property. Solving the flow domain requires the calculation of Jacobian matrix 

which includes derivatives of the residual function with respect to the flow 

variables. Depending on the constructed grid; the Jacobian matrix may be very 

large. Reducing size of the Jacobian matrix can be done by using multi-block 

grids. However, in this case the number of the Jacobian matrices increases and 

another discussion appears about the fastest and robustness of the increasing 

number of blocks with reducing sizes. There are several methods for performing 

multi-block analyses. The main problem is the data transfers between the blocks. 

The most common ways are using “halo” nodes or evaluating simultaneously 

approaching terms (SAT). 
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 The other problem is the derivation of the entries in the Jacobian matrix. They 

can be evaluated by analytical or numerical means. Analytical derivation of the 

entries becomes more difficult when the discretization of the equations become 

more complex. Numerical derivation, on the other hand, is simpler but it cannot 

guarantee higher accuracy without some error analyses as preliminary studies. 

The methods used to deal with these problems directly influence the efficiency 

and usage of the Newton’s method. 

1.3 Objectives 

The main objective of this thesis is to use multi-block approach with Newton 

method for 2-D Euler equations. Performance analyses are aimed to be done to 

evaluate the abilities of the generated code. Corresponding performance 

parameters are accuracy, robustness and required computational time for 

convergence. Analysis time comparison is performed for varying numbers of 

blocks in the domain. One block and multi-block grids are constructed and 

analyzed with same solver parameters to compare accuracy. Moreover, flow 

variables are examined around the block interfaces to evaluate the implemented 

block interface boundary conditions. Since modeling the whole domain is 

impossible with one block for complex geometries, another objective appears. 

With multi-block approach, Newton method can be used also for complex 

geometries. In addition, reduction of the computational time is aimed by making 

parallelization of the analyses. The other objective is to examine the usage of the 

Newton’s method with the direct sparse matrix solvers. PARDISO and 

UMFPACK sparse matrix solvers are used in the study.  
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1.4 Literature Survey 

Several researchers used Newton method in their studies for modeling fluid flow. 

Generally they chose Newton Method due to the high convergence rate and high 

accuracy. 

  

Wington [1] used Newton’s method in his study. The article is about modeling 

fluid flow around multi-element airfoil. He analyzed multi-element airfoil in 

transonic flows. He used Newton’s method to make use of the quadratic 

convergence property of the method. In order to solve the Jacobian matrix, 

Symbolic manipulation expert system MACSYMA, symbolic derivation tool, 

was used in his study. While solving the large linear sparse systems, to reduce the 

huge storage requirements and great factorization time, he generated the nested 

dissection node reordering technique, which is being used for some of the sparse 

matrix solvers today.  

 

Bender and Khosla [2] investigated the Newton’s method for the solution of the 

viscid-inviscid compressible flows. They worked on initial conditions of 

Newton’s method to increase convergence rate and prevent early divergence. 

Two modifications are presented to reduce the sensitivity of the initial guess at 

transonic Mach numbers. For such problems, they found that applied exact 

Newton method exhibits high sensitivity to initial conditions.  

 

Venkatakrishnan [3] used Newton’s method to compute viscous flows in a robust 

manner. In his study, quadratic convergence is realized by using exact 

linearization with Roe scheme. He showed that within 3-4 iterations the steady 

solution results are obtained and the convergence rates are independent to the 

Reynolds number. 
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Van Dam et al.[4] used fully-implicit technique to combine direct solution 

technique based on banded Gauss elimination with Newton’s method for laminar 

incompressible flows. Orkwis [5] developed a solver using Newton’s method to 

solve 2-D & axisymmetric [6] and laminar & turbulent flows [7]. In his studies; 

Navier-Stokes equations are approximated by flux difference splitting methods 

with Glaister’s approach. With the addition of the geometric conservation law, 

the freestream reproduction is satisfied for the axisymmetric solver. Van Albada 

limiter is used to reduce spurious oscillations. As in the Wington’s study 

MACSYMA is used to determine Jacobian Matrices entries.  

 

Orkwis [8] made performance comparisons of the exact and quasi Newton 

methods. He found that in spite of not having quadratic convergence rate, quasi 

Newton methods are more efficient than the exact method which has quadratic 

convergence in terms of CPU usage. In his another work which is with Kim [9], 

Orkwis showed that with matrix simplifications like partial and global freezing 

methods, approximate methods can also have quadratic convergence rate.  

 

Whitfield and Taylor [10] presented numerical methods to evaluate jacobian 

matrices for the cases at which obtaining the Jacobian matrices entries are 

impractical with analytical method. They applied this approach both for 

compressible and incompressible flows with high order ROE discretizations.  

 

Vanden [11], [12] developed direct and iterative algorithms to solve a finite 

volume discretization of the 3-D Euler equations in curvilinear coordinates. He 

showed in his study that the iterative algorithms superior in terms of time 

required for completion of the analyses.  

 

Vanden and Orkwis [13] made performance comparison of analytical and 

numerical Jacobian matrices in exact Newton method. MACSYMA is used for 
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analytical Jacobians. On the other hand finite differencing is used for numerical 

Jacobians. They showed in their study that the convergence performance of both 

matrices is same. They stated that for simpler cases when the linear systems of 

equations are simple; analytical evaluation can be chosen but for the complex 

schemes while performing the linearization of the equations numerical evaluation 

will be the better choice.  

 

Saad and Schultz [14] presented an iterative method for solving  linear systems in 

their studies.  Approximate Newton’s method by applying GMRES with first 

order Jacobian approximations are investigated by Venkatakrishnan [15], 

Mavriplis [16] and Rogers [17].  

 

Forstyh and Jiang [18] made comparisons for the quasi Newton methods and 

made simplifications on the Jacobian matrices. They found that, despite of the 

expensive pre-conditioner, an inexact Newton method is more effective than 

approximate methods.  

 

Brown and Saad [19] analyzed inexact and approximate methods when they are 

combined with linesearch techniques and model trust region algorithms. Their 

method does not require Jacobian matrix storage and it accurate linearization of 

the residual function is performed with no storage limit.  

 

Researchers in this field are focused on quasi Newton methods in last decade due 

to the difficulties in exact Newton’s method. After nearly ten silence years; 

researchers again started to use exact Newton’s method in their studies due to the 

improvements in sparse matrix solvers with advanced algorithms. One of the 

most common sparse matrix solver is introduced by Davis [20] namely 

UMFPACK. MUMPS, another one, is introduced by Amestoy and Duff [21] for 

distributed memory parallel usage. Later, WSMP and PARDISO developed by 
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Gupta [22] and Schenk [23]. Usage of these matrix solvers is common among the 

researchers.  

 

Eyi and Onur [24] used UMFPACK as sparse matrix solver with exact Newton 

method. They analyzed inviscid supersonic flow problem on ramp geometry. 

They made analytical and numerical Jacobian comparison. Gelfgat [25] used 

MUMPS to solve sparse matrices and T’ien and Raju [26] evaluated the 

capabilities of multifrontal solvers. In their combustion problem, they used 

UMFPACK and demonstrated that usage of direct matrix solvers decreases the 

required computational time. Eyi and Ezertas [27] examined the usage of the 

exact Newton’s method with sparse matrix solvers. They used UMFPACK multi-

frontal solver while making comparison of the numerical and analytical Jacobian 

calculations. 

 

In order to use structured grids around the complex geometries, researchers made 

multi-block analyses in their studies. Nichols and Zingg [28] developed a three-

dimensional muli-block Newton-Krylov Euler solver with GMRES subspace 

algorithm to solve linear system of equation. The multi-block strategy they 

followed facilitates the treatmeant of arbitrarily complex geometries with point to 

point matching at their interfaces. Kam [29] developed similar one with Spalart-

Allmaras turbulence model, Rumpfkeil [30] made airfoil optimization for 

unsteady flows and Nemec [31] made shape design of aerodynamic configuration 

with multi-block Newton-Krylov tool. All of these researchers have used halo 

nodes at block interfaces in their studies.   

 

Hicken [32] uses summation-by-parts (SBP) technique with simultaneous-

approximation-terms in his thesis and showed that by developing a scalable 

preconditioner one can make use of advantage of the SBP-SAT discretization 

over using halo nodes in the block interfaces. Leung [33] also used 
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simultaneously approaching terms in his thesis and performed parallel 

aerodynamic shape optimization in three dimensions and he discussed the 

performance of the data transfer between the different blocks via simultaneously 

approaching terms. Finally, Huan, Hicken and Zingg [34] used two different 

schemes for the interfaces and boundary schemes. In the first scheme they use 

standard difference operators up to third-order global accuracy and special near-

boundary operators to preserve stability for fifth-order global accuracy. In the 

second scheme they used summation-by-parts with simultaneous-approximation-

terms and they showed that the interface schemes that do not involve halo nodes 

offer several advantages when the error introduced at mesh interfaces are 

compared.   

1.5 Outline   

In Chapter 2; governing flow equations are introduced with discussions of its 

basic theories. Different discretization techniques which are used in this study are 

described with required formulations. Implemented boundary conditions with 

block interface applications for multi-block grids are explained for different flow 

regimes. 

 

In Chapter 3; exact Newton method is presented with advantageous and 

disadvantageous.  Analytical and numerical derivation methods of the Jacobian 

matrices are given with discussions on their usage comparisons. The way of the 

implementation of the initial conditions and boundary conditions into the 

Jacobian matrices are explained. Verification of the generated program is made 

by performing airfoil and channel flow analyses. Since the generated program is 

inviscid, verifications are made by comparison with other authors’ studies in 

literature.  
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In Chapter 4; performance analyses results of the multi-block Newton method are 

given.  A nozzle problem and a channel flow problem are used for performance 

analyses. First, successful implementations of the block interface boundary 

conditions are shown. The flow domain is divided into different number of blocks 

for both of the problem and their performance analyses results are presented in 

terms of accuracy, iterations required for convergence and required CPU time. 

Then, UMFPACK and PARDISO sparse matrix solvers are compared. The effect 

of the diagonal addition term (Δt) to the convergence of the flow solution is 

analyzed and the variation of the CPU time spent is tabulated. 
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CHAPTER 2  

GOVERNING FLOW EQUATIONS 

2.1  Introduction 

Prepared flow model requires retaining the fluid characteristics of the flow 

conditions. This flow model should have advanced spatial and time discretization 

techniques to satisfy the needs. It is vital to decide the flow model properties 

before solving the problem. Two main problems arise at this point. Required 

accuracy and cost determination studies identifies the flow model properties. 

Required accuracy depends on the aim of the modeled problem and the analysis 

which is performed. Actually, accuracy and the cost terms depend on each other. 

The accurate solution for complex flow problems needs advanced strategies on 

computational meshes and high resolution on grids and this can cause increase in 

the cost. Cost determination study generally referred as the required time to solve 

the problem. The cost of the analyzed problem increases with the increase in the 

level of scheme complexity. With simpler methods the cost of the problem can be 

decreased however the required accurate results may not be reached. 

 

In this study; implicit direct solution is used for time discretization which is 

accepted as computationally expensive.  Flux jacobian matrix is used in this 

direct solution technique. Number of flow equations with the grid size determines 

the size of the matrix and the computational cost of the problem. In order to 

decrease the computational cost, flow is modeled with two dimensional Euler 
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equations. Structured grids are used for the modelling of the flow field. Using 

structured grids makes easier to construct Jacobian matrices and makes easier to 

store the required data of the problem. 

Problems which have complex geometries cannot be modeled with one grid block 

and required multi-block grids to solve the flow. In this study; analyses of the 

complex geometries are performed by using multi-block grids. Data transfers 

between the blocks are achieved by using halo nodes on the block boundaries.  

 

For discretization of the equations the Steger-Warming [35], Van Leer [36], 

AUSM [37] and Roe [38] upwind schemes are used.  Moreover, for the second 

order accurate analysis, MUSCL [39] interpolation is used with the required of 

Van Albada’s [40] and Venkatakrishnan’s [41] continuous limiters.  

2.2 Governing Equations 

Mass, momentum and energy conservations construct the basis of the flow 

analysis. These conservations can be presented by Navier-Stokes equations. For a 

two-dimensional inviscid flow with density ρ, velocities ,  in Cartesian 

coordinates , , pressure p and total energy , the equations are given by; 

 
Q F G 0                                  (2.1) 

 

where  is the vector of conservative variables;  and  are the inviscid 

convective fluxes and the first term drops when the problem is steady. 
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When they are written in detailed form; 

 

                              (2.2) 

 

 

Pressure can be calculated from the ideal gas relation as; 

 

1                             (2.3) 

2.3 Coordinate Transformation 

For easily implementation of the numerical algorithms on an arbitrary geometry, 

the governing equation in the physical domain must be transformed to the 

computational domain. A generalized coordinate transformation is used to map 

the curvilinear structured grids into square grids. Figure 2-1 shows the 2-D 

transformation of the physical domain to computational domain. Coordinates of 

the physical domain are ,  and the coordinates of the computational domain are 

, . 

 

= (x, y)    = (x, y)                                  (2.4) 
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Figure 2-1 Generalized transformation from Physical domain to 
computational domain  

In computational domain; the grid spacing is equal to one between the grid nodes. 

The Euler equations for steady problem in 2-D can be re-written in the form: 

 

F G 0                                  2.5  

 

Corresponding flux terms are specified as following; 

=

ρU
ρuU ξ p
ρvU  ξ p

e p U

     =J

ρV
ρuV η p
ρvV  η p

e p V

                     (2.6) 

 

 

   are contravariant velocities and given by: 

 

U
V

ξX     ηX
ξ     η

u
v                                     (2.7) 
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Directly computing the metric terms is not easy. Instead, the metric terms are 

computed based on the reverse transformation: 

 

ξX     ηX
ξ     η

x      x
y     y                                    (2.8) 

 

The transformation metrics appears as; 

 

                                                 (2.9) 

2.4 Spatial Discretization 

Euler equations can be represented in the form: 

 

R Q 0                                              (2.10) 

 

where the flow residual is; 

 

         R Q F
ξ

G
η

                                              (2.11) 

 

The flow variables are stored at cell centers. However, for flux calculations flow 

variables which are stored at cell centers are interpolated to the cell faces. 

Required grids are generated by the commercial software program GRIDGEN.  
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A typical control volume is shown in Figure 2-2. 

 

 

Figure 2-2 A typical control volume 

By considering flux balances across the cell, spatial derivatives of the flux 

vectors can be written as: 

 

ξ , ,
 

                                                                              (2.12) 

∂G
∂ξ G

,
G

,
 

 

Flow variables are considered as constant within the each cell and the fluxes are 

denoted at the interfaces between the cells.  

 

Then the Equation (2.11) can be rewritten as:  

 

F , F , G , G , 0                             (2.13) 
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Central and upwind schemes are the two alternatives of performing spatial 

discretization of the fluxes.   

 

While using the central schemes, calculation of the fluxes are performed based on 

the averaged flow variables at cell interfaces. The advantage of using central 

scheme is the implementation. It is easy to implement. However, artificial 

dissipation is required for central schemes.  Upwind schemes, on the other hand, 

do not necessitate artificial dissipation but the implementation is not so easy. 

 

Using upwind schemes can be better way to capture possible discontinuities in 

the flow.  However, for some cases, usage of the limiter functions should be 

required to correctly model of the flow.  

 In this thesis upwind schemes are used with flux vector splitting and flux 

difference splitting methods.  

2.4.1 Flux Vector Splitting  

Flux-vector splitting can be accepted as the first level of upwind schemes.  the 

convective fluxes can be constructed with two different ways in the flux vector 

splitting schemes. In the first way; the sign of the characteristic variables 

identifies the convective fluxes.  In the second way; the flux vectors can be 

decomposed directly into convective and pressure parts.  

 

2.4.1.1 Van Leer Scheme 

Van Leer scheme is based on the characteristic decomposition of the convective 

fluxes. It can be defined here as Mach number splitting.   

 n L RM M M+ −= +                          (2.14) 
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Where the split Mach numbers are defined as 

( ) ( )2 2

1 0 1
1 11 1 1 1
4 4
0 1 1

L L R

L L L R R L

L R R

M if M if M

M M if M M M if M

if M M if M

+ −

≥ ≥⎧ ⎧
⎪ ⎪⎪ ⎪= + < = − <⎨ ⎨
⎪ ⎪

≤ − ≤ −⎪ ⎪⎩ ⎩                 (2.15) 

The Mach numbers, ML and MR, are calculated using the left and right states; 

,L R
L R

L R

U UM M
c c

= =                                                          (2.16) 

In the case of subsonic flows; where, 1nM <  the positive and negative flux parts 

are given by: 

                                     

2

2

mass

mass x

c

mass y

energy

f

V cf u

F
V cf v

f

η
γ

η
γ

±

±

±

±

±

⎡ ⎤
⎢ ⎥

⎛ ⎞− ±⎢ ⎥+⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞− ±

+⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥

⎢ ⎥
⎣ ⎦

                              (2.17) 

Corresponding mass and energy flux components are defined as: 

                               

( )

2

2

2 2 2 2

2

/

( 1)
4

( 1)
4

( 1) 2
22( 1)

L
mass L L

R
mass R R

energy mass

L R

Mf c

Mf c

U c u v Uf f

ρ

ρ

γ
γ

+

−

± ±

+
=

−
=

⎧ ⎫− ± + −⎪ ⎪= +⎨ ⎬
−⎪ ⎪⎩ ⎭      (2.18) 
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In the case of supersonic flow, where 1nM > , the fluxes are given by: 

                                      ,

,

0 1

0 1
c c c n

c c n

F F F if M

F F F if M

+ −

+ −

= = ≥

= = ≤ −
 (2.19) 

2.4.1.2 AUSM scheme 

The Advection Upstream Splitting Method, AUSM, was introduced by Liou and 

Steffen. The AUSM scheme includes convected and pressure parts. 

Splitting according to the Mach number is performed as in the Van Leer scheme.  

 

Corresponding flux splitting formulation is given below: 

        

0 0

0 0

x L x R
c L c R

y L y R

T TL R

c c
p pcu cu

F M F M
cv cvp p
ch ch

ρ ρ
η ηρ ρ

ρ ρη η
ρ ρ

+ −
+ + − −

+ −

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦                  (2.20) 

and pressure is splitted as follows: 

 

 

( ) ( )

( ) ( )

2

2

1

1 2 1
4

0 1

0 1

1 2 1
4

1

L L

L
L L L L

L

R

R
R R R R

R R

p if M
pp M M if M

if M

if M
pp M M if M

p if M

+

−

≥⎧
⎪⎪= + − <⎨
⎪

≤ −⎪⎩

≥⎧
⎪⎪= − − <⎨
⎪

≤ −⎪⎩

                          (2.21) 
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2.4.1.3 Steger-Warming Scheme 

Eigenvalue splitting is not unique. There are lots of ways of splitting methods. In 

Steger-Warming Scheme; the convective fluxes vectors can be calculated as 

follows: 

 

  

( )
( )( ) ( )
( )( ) ( )

( )( ) ( )

1 2 3

1 2 3 2 3

1 2 3 2 3

2 2
2 2 3

1 2 3 2 3

2 1

2 1

2 12

2 1
2 1

x

c y

u c

F v c

u v cU c

γ λ λ λ

γ λ λ λ λ λ η
ρ

γ λ λ λ λ λ ηγ

λ λ
γ λ λ λ λ λ

γ

± ± ±

± ± ± ± ±

±
± ± ± ± ±

± ±
± ± ± ± ±

⎡ ⎤− + +
⎢ ⎥
⎢ ⎥− + + + −
⎢ ⎥
⎢ ⎥= − + + + −⎢ ⎥
⎢ ⎥

++⎢ ⎥− + + + − +⎢ ⎥−⎣ ⎦                        (2.22)

                  

In Equation 2.22 xη and yη  represents the components of face normal vector. The 

speed of sound and eigenvalues are defined as: 

 
( ) ( )2 2

1 2 3

11
2

, ,

tc e u v

U U c U c

γ γ

λ λ λ

⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

= = + = −
                               (2.23) 

For positive sign fluxes, F+; corresponding velocities, speed of sound and energy 

terms are calculated from the left state flow variables. Similarly, for negative 

signed fluxes, F-; they are calculated from right state variables.   

 

By splitting the eigenvalues in terms of their signs: 

 2
i i

i
λ λ

λ± ±
=                                                       (2.24) 

Using this scheme with previously defined eigenvalues can cause problems when 

the eigenvalues are equal to zero at sonic points and stagnation points. This 
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behavior makes the function discontinuous at these points.  In order to reduce the 

discontinuity a small number  is used. 

 

√
                                     (2.25) 

2.4.2 Flux Difference Splitting 

In contrast to the flux-vector splitting schemes, flux difference splitting methods 

considers not only the direction of wave propagation but also the waves 

themselves.  

2.4.2.1 Roe Scheme 

Roe’s approximation is based on the decomposition of the flux difference over a 

face of the control volume. Roe’s averaged Jacobian matrix satisfies the 

homogeneity property. Total flux can be defined with left and right state flow 

variables as below: 

 

  

                           (2.26) 

The diagonalized Roe’s Jacobian matrix is: 

 

1

1

RL J

RL J

=

=

-
Λ Λ

-
Λ Λ

J Q Q

J Q Q

% % %

% % %

Λ

Λ
   (2.27) 
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Diagonal matrix, which is composed of eigenvalues of the Jacobian, is denoted 

with J
%Λ , and the right eigenvectors matrix is ΛQ%  . When the equations are 

compiled into each other: 

                  (2.28) 

By considering the eigenvalues signs, the flux vector can take the below form: 

 

  
Then averaging the two flux vectors, the equation (2.28) can be rewritten as: 

 

               (2.30) 

 

Corresponding Roe’s Jacobian matrix and the Roe’s averaged variables are given 

below: 

 

 

( )

( ) ( )

2

3
2

0 1 0
3 3 1

2
1

1
2RL RL

RL RL RL

RL
T RL T RL RL

J u u

u
h u h u u

γ γ γ

γ
γ γ

⎡ ⎤
⎢ ⎥
⎢ ⎥

−⎢ ⎥= − −⎢ ⎥
⎢ ⎥

−⎢ ⎥
− + − −⎢ ⎥⎣ ⎦          (2.31) 
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RL

R R L L
RL

R L

R R L L
T

R L

RL R L

u u
u

h h
h

ρ ρ
ρ ρ

ρ ρ
ρ ρ

ρ ρ ρ

+
=

+

+
=

+

=     (2.32) 

2.4.3 High Order Schemes with Limiters 

In the calculations; flow variables are assumed as constant within the cell. 

However, when the flux calculations at the interfaces of the cells are needed to be 

evaluated, the required computation of the flow variables are performed at the 

cell faces. 

 

With first order interpolation; the flow variables are as follows:   

 

     ,   

  ,                                         (2.33) 

 

High order accuracy can be achieved by varying the flow variables within the 

cell. The Monotonic Upstream Centered Scheme, MUSCL, is used for high order 

reconstructions.  

 

The interpolation formula is as below: 

 

                       1 1 ∆  

    1 1 ∆                           (2.34) 
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Δ    are the difference operators and they are shown below: 

 

∆     
∆
 

                                                           (2.35) 

 

Type of differencing method and the order of the corresponding discretization 

can be determined by defining different values to φ and κ. 

 

First order accuracy can be obtained when Φ=0 and κ=0, and when Φ=1 and κ=1 

the accuracy is increased to the second order. By varying values of these 

parameters more, the order of accuracy can be increased further. 

 

Second and higher-order upwind spatial discretizations require usage of limiters 

in order to prevent oscillations at some situations. For example shock waves can 

cause oscillations in the solutions. Reduction of the slopes can prevent those 

oscillations which are used in the interpolation. Slopes of the corresponding 

functions are made zero at strong discontinuities to reduce the order of 

discretization to first order where the gradients are large.  

 

In Equation 2.36 limiters are denoted by ( )rφ . They are functions of the forward 

and backward difference operators. Continuous limiter functions are used while 

performing analytical differentiation of the fluxes for the Jacobian derivation 

through this study. Where of the two continuous limiter functions are written 

below: 

 



 

 

 

 

 

 

25 

 

2( ) 02 1
3 1( ) 2 32 2

rr for
r

rr for
r r

φ κ

φ κ

= =
+

= =
− +                               (2.36) 

 

In this study limiters are activated only at high gradient regions in order to reduce 

the discretization accuracy to first order.   

 

In equations 2.36; when κ = 0 limiters leads to Van Albada limiter, and when      

κ =1/3 limiters leads to Hemker- Koren limiter. For some cases; Van Albada 

limiter is defined with κ = 0 case to prevent the activation of the limiter in smooth 

regions by introducing an additional parameter,∈. Similar modification is 

performed for κ =1/3 scheme by Venkatakrishnan. Modified interpolations 

formulas are given below:    

For κ = 0 

2 2

2 2
( ) ( )

2
ia b b a

a b
δ

+∈ + +∈
=

+ + ∈  (2.37) 

For κ = 1/3 

2 2

2 2
(2 ) ( 2 )

3
a b b a
a b ab

δ +∈ + + ∈
=

+ − + ∈  (2.38) 

where 1 1

,
,

L i L i

R i R i

a b
a b+ +

= Δ = ∇

= ∇ = Δ  (2.39) 

In equations from 2.36 to 2.40, ∈ is used as a small number to make it works only 

at high gradient regions.  
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2.5 Boundary Conditions and Block Interfaces 

In order to impose the flow properties to the whole domain; determination of the 

boundary conditions are required. Physical domain boundaries include wall, far-

field, inflow and outflow boundaries. Special consideration is required for the 

block interfaces for multi-block analysis. Varying according to the boundary 

condition type, some specific treatments are needed to correctly evaluate the flow 

variables and fluxes on the domains. Ghost cells are used for the implementation 

of the physical domains. One layer ghost cell is used at the physical boundaries in 

this study.  

 

At the interior block interfaces, necessary data transfers between corresponding 

blocks are performed with halo nodes and special consideration is required at the 

interior boundaries such as wake-cut. 

2.5.1 Far Field Boundary Conditions  

External flow numerical simulations have to be conducted within a bounded 

domain. For this reason, artificial far-field boundary conditions are required. 

While performing the numerical implementation of the far-field boundary, two 

basic requirements should be taken into consideration. The far-field boundaries 

should simulate the flow as if the boundaries are at infinity and the disturbances 

which occur in the inner domain should not be reflected back into the flow field.   

Characteristic based boundary conditions approach is used to define required 

flow conditions at the far-field. Eigenvalue signs of the convective flux Jacobians 

determine the direction of the information along the characteristic lines. It can be 

towards to the computational domain or to the out-of the boundaries. Therefore, 

depending on the local Mach number, four different types of far-field boundary 

conditions should be investigated. [42]  
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Supersonic Inflow: All eigenvalues have the same sign and the conservative 

variables on the boundary are determined by free stream values only. 

 

Supersonic Outflow: All eigenvalues have the same sign and the conservative 

variables on the boundary are determined by the solution inside the domain.  

 

Subsonic Inflow: Three characteristics (velocity components and density) enter to 

the domain and one characteristic (pressure) leaves the domain. Therefore, one 

characteristic variables are extrapolated from inside and the others are calculated 

from free stream values.  

 

Subsonic Inflow: Three characteristics leave domain and should be extrapolated 

from inside but the other variable must be determined externally. 

2.5.2 Wall Boundary Conditions 

The aim of the wall boundary condition is to model no flow through the 

boundaries. Since the flow is inviscid, required simulation can be performed by 

using symmetry condition. At wall boundaries; the magnitudes of the velocity 

components in the normal direction are equal but have opposite signs on the both 

sides of the boundaries. The density, tangential component of the velocity and 

energy is extrapolated from the interior cells to the ghost cells of the wall-

boundary.  

2.5.3 Computational Boundary Conditions 

Symmetry and wake-cut boundary conditions are two of the most widely used 

computational boundary conditions. Symmetry boundary conditions are used 
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when the domain and the flow characteristics are symmetric about an axis. In 

symmetry boundary conditions, while constructing the ghost cells, all of the flow 

variables are extrapolated from the interior cells and only the sign of the normal 

velocity component is in the opposite direction. In the wake-cut boundary 

conditions; the solution is computed to fourth-order using the data in front and 

behind of the wake cut as follows: 

 

4 4                          (2.41) 

2.5.4 Block Interfaces 

For multi-block grids; special considerations is required for the data transfer 

between the block interfaces. The block boundaries of the neighbors are 

overlapped in the streamwise direction when halo nodes are used.  

 

The blocks are solved independently during start-up. As it is shown in Figure 2-3 

the last interior column of Block 1 is specified as halo column of Block 2 and the 

first interior column of Block 2 is specified as halo column of Block 1. At each 

iteration; flow variables in halo columns are updated from the corresponding 

interior cells of the neighboring block. Two different results come out at the 

interface of the two blocks and then the solutions are subsequently averaged. At 

steady state the block interfaces becomes completely transparent as it is a single 

block. 

 

Block interfaces; which are in the cross-stream directions are treated as wake-cuts 

and such boundaries do not require halo nodes. As it is in the wake-cut 

boundaries; flow variables in the last two columns of Block 1 and in first two 

columns of Block 2 are used to calculate the fluxes on the blocks interfaces. 
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(Figure 2-4). However, it should be noted that the halo nodes work for both of the 

conditions 

 

 

Figure 2-3 Blocks Interface in the Streamwise Direction 

 

Figure 2-4 Blocks Interface is Perpendicular to the Flow 
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CHAPTER 3  

SOLUTION METHOD 

3.1 Introduction 

Iterative methods are being used for many years to solve the governing equations 

of inviscid and viscous flows. During these studies explicit and implicit schemes 

are used. In these schemes, iterative approach is used to solve the large linear 

systems of equations which come from linearization in time. At this point; direct 

solution to this linear system of equation introduces Newton’s method. However, 

this has not been used so much due to the large memory requirements. However, 

it is now easy to use Newton method with powerful computers.  

 

In this chapter, Newton method is presented with the details of the methodology. 

Moreover, the flux Jacobian matrix structure, implementation of the initial and 

boundary conditions, solving methods of the large sparse matrices are explained. 

At the end of the chapter, the verification of the generated code is done by 

comparing the code results with other authors’ results in literature. Airfoil and 

channel flow problems are chosen for verification. 
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3.2 Newton’s Method 

The discrete Euler equations are shown with a set of nonlinear algebraic 

equations, represented here by the vector equation; 

 0                                                               (3.1)  

residual vector of the spatial discretization is shown as R(q). Residual is non-

linear function of conservative flow variables, q. 

 

By applying Newton’s method to the residual equation; following linear system 

can be obtained;  

 

         ∆                                                     (3.2) 

                    )  and  ∆                                             (3.3) 

Where the matrix is; 

                                                       (3.4) 

and  is specified as flow Jacobian.   

Only the first-order Taylor series expansion is used and assuming that at the end 

of the iterations desired convergence is obtained, i.e.  0.  The 

Newton’s Method can be defined as following: 

 

        R ∆                                         (3.5) 
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Calculation for each iteration is given by; 

∆                           (3.6) 

Then the analysis continues until the residual decreases below the desired value. 

3.2.1 Flux Jacobian Evaluation 

Flux Jacobian matrix calculation is needed for the solution of Euler equations. 

Elements of the matrix are the residual derivatives with respect to the flow 

variables vector. In this study; derivative calculations are performed with 

analytical and numerical methods.  

 

3.2.1.1 Analytical Jacobian Derivation 

Discretized flux residual can be evaluated as: 

 

         (3.7) 

 

In equation 3.7 R ,  refers to the cell residual. Derivatives of each cell residuals 

with respect to the flow variables construct the Jacobain matrix.  Corresponding 

discretized residual Jacobians can be written as:  

   (3.8) 
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For first order discretizations; k and l values in Equation 3.8 changes from i-1 to 

i+1 and j-1 to j+1, respectively. 

 

         (3.9) 

 

Corresponding Jacobian matrices in first order discretization for a 5-point stencil 

can be calculated as:  

 

                   (3.10) 

 

For the second order spatial discretization; MUSCL scheme is used to calculate 

the flow variables at the cell faces. Interpolation of flow variables are performed 

at the center of the neighboring cells. With the help of limiter functions MUSCL 

scheme is made differentiable with respect to flow variables. Therefore, 

analytical Jacobian calculations are performed easily for high order schemes. 

 

For analytical flux calculations; it can be said that the residuals can be calculated 

accurately and the order of error is equal to the round-off error. Although it 

requires detailed hand calculations, analysis time of the prepared program is 
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short. On the other hand, when the complexity of the discretized residual 

equations increases, the analytical Jacobian derivation turns into a crucial 

problem. For these situations, numerical Jacobian studies will be a better choice. 

 

3.2.1.2 Numerical Jacobian Derivation 

Numerical Jacobian derivation method is another way to evaluate Jacobian 

fluxes. In this method; the numerical Jacobian can be evaluated with a small 

finite-difference perturbation magnitude, ε. With the   component of the 

residual vector   component of the flow variable vector and the   component 

of the unit vector the usage of ε is as follows:  

 

                                          (3.11) 

 

Perturbation magnitude can be positive or negative. However, the sign of it is so 

important when it is too close to the flow variable. First of all; the sign of ε 

determines the type of differencing method. Using positive value makes the 

differentiation forward and using negative value makes it backward. Then; while 

using numerical Jacobians; eigenvalue signs should be checked during the 

calculations to be sure that the perturbation magnitude does not cause to vary the 

flux vector. Finally it determines the accuracy of the analyses; error can be 

minimized with a good choice of it.  

 

The numerical Jacobian method is used especially when the discretized residual 

equations are complex. Since for such cases; analytically derivation of the 

Jacobians are not easy. However, the computation time of the numerical Jacobian 
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method is greater when compared with the analytical method and it requires some 

preliminary work for higher accuracy.  

 

3.3 Structure of Jacobian Matrix 

The Jacobian matrix is constructed with the partial derivatives of the cell 

residuals with respect to the flow variables. Generated matrix is a large sparse 

matrix but since the residual equations are depends on the local flow variables 

most of the elements are zero. While solving the large sparse matrix, only the 

nonzero elements are stored since evaluating all off the elements will be too 

expensive especially for the large problems.  

 

Residual equation with a first-order discretization, requires five-point stencil. 

This produces block diagonal matrix with five 4x4-blocks. When second-order 

discretization is used; the required grid number increases to nine and the 

constructed block diagonal matrix includes nine 4x4-blocks. Hence, only these 

block bands and the elements corresponding to the boundary conditions are non-

zero. Other elements in the matrix are zero.   

 

For solving sparse matrixes UMFPACK and PARDISO packages are used. 

Details of the packages are discussed in the following chapters.  

 

4 points are required for first order analyses and 9 points are required for second 

order analyses in 2-D Euler equations. Constructed stencils are shown in Figure 

3-1 both for first order and second order 2-D Euler equations. For first order 

analysis 4 points are required and for second order analysis required points 

increase to 9 in 2-D Euler equations.  
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Figure 3-1 5 Points and 9 points stencils 

 

Residual derivatives with respect to the flow variables are written for first order 

and second order Euler equations; 

 

                              (3.12) 
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    (3.13) 

 

 

Matrix structures for first and second order Euler equations are shown in Figure 

3-2 and in Figure 3-3. 

 

 

Figure 3-2 Matrix structure for first order analysis 

 

Figure 3-3  Matrix structure for second order analysis 
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3.4 Implementation of Initial Conditions 

Good initial condition is necessary for Newton’s method to obtain better 

convergence and to prevent early divergence. In general; free-stream conditions 

are used to implement initial conditions. However, by following such a way, one 

may not obtain desired results with Newton method for most of the problem 

cases. In order to use Newton method for these cases, if possible, a better guess 

for initial condition is required. If the problem is complex, making initial guess is 

difficult and one has to follow better procedure to get desired results. There are 

some studies for this situation in literature and the widely used one is adding a 

term to the diagonal of the Jacobian matrix. The aim to use this approach is to 

make the matrices more stable by having dominant diagonal.  

 

Newton method with the additional term can be presented as; 

∆
∆                                              (3.14) 

 

When ∆ ∞, the modified Newton method becomes equal to the original one. 

The magnitude of ∆  depends on the L2-norm of the residuals. At the first 

iteration; the magnitude of the ∆  is small and it becomes greater at the further 

iterations. 

 

L2-norm of the residuals can be shown as; 

∆ ∆                                                          (3.15) 

 

Since quadratic convergence cannot be obtained at initial iterations, this method 

increases the computational time. At initial iterations, convergence stays linear 

and quadratic convergence can be obtained as the additional term goes to infinity.  
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So, initial iterations require additional terms to make the Newton method works. 

However, at further iterations flow conditions become good enough to be used as 

initial condition without using additional term anymore. This may cause 

oscillation in the results. However, if the correct time is selected for removing 

additional term, the desired convergence can be reached. 

3.5 Implementation of Boundary Conditions 

In order to implement the boundary conditions, flow variables relations should be 

defined between the ghost cells and the interior cells. Relations can be defined 

explicitly by using the previous iterations. After each iteration both of the interior 

cells and ghost cells are updated by solving the Jacobian matrices. In this study, 

implicit boundary conditions are used by defining the required Jacobian matrix 

and the right hand side matrix entries and by solving them simultaneously. The 

linearization of the equations that define the relations between the ghost cells and 

interior cells are needed to be used in the implicit analysis. The corresponding 

linearized equation is given below:  

 ∆ ∆                                     (3.16) 

 

Thes linearized equations varies according to the flow conditions. For supersonic 

inlet and supersonic outlet boundary conditions A and B matrices entries are 

equal to 1 but for subsonic boundary conditions a bit complicated calculations 

should be performed to evaluate the corresponding matrices. 
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3.6 Solution Method 

The Jacobian matrix should be constructed and factorized in order to get the flow 

variables at each iteration. Derivatives of the residual function with respect to the 

flow variables form the Jacobain matrix. There are several methods to solve such 

matrices in the literature. Size of the matrix depends on the generated grid. 

Actually, most of the entries in the Jacobian matrix are zero. Hence this 

simplifies storing and solving the matrices.  

 

In this study, matrix solver packages PARDISO (Parallel Direct Solver) and 

UMFPACK (Unsymmetric-pattern MultiFrontal PACKage) are used to solve the 

Jacobian matrices. Both of the matrices use LU decomposition to solve the sparse 

matrices.  Both of them are able to solve large sparse symmetric and unsymmetric 

linear matrices. PARDISO can use shared-memory and distributed-memory 

multiprocessors. Solver time comparison for both of the packages is performed 

throughout this study.  

3.7 Flow Solver Verification 

Since the generated tool is inviscid, it is difficult the compare the results with 

experimental data. Instead of this, the generated tool results are compared with 

other authors’ results in literature. NACA0012 airfoil is chosen for external flow 

test case and a channel flow with bump geometry is chosen for internal flow test 

case.  

 

Grid generated for the channel flow having 10 % thickness to chord ratio is 

shown in Figure 3-4. Generated grid totally increases 129x33 nodes. Boundary 

conditions that are used for this problem will be discussed in the performance 
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analyses part. For verification of the channel flow bump geometry, second order 

Van Leer scheme is used. 0.5 Mach and 0.675 Mach are chosen for test case 

conditions and corresponding Mach contours are compared with [43], which are 

shown in Figure 3-5 and in Figure 3-6.  

           

Figure 3-4 Channel Flow Grid (129x33) 

 
Mach Contours which are given in [43] for 0.5 Mach inlet velocity 

 

Mach contours which are calculated from generated tool for 0.5 Mach 

inlet velocity 

Figure 3-5 Channel Flow Mach Contours Comparison (0.5 Mach) 
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Mach Contours which are given in [43] for 0.675 Mach inlet velocity 

 
Mach contours that are calculated from generated tool for 0.675 Mach inlet 

velocity 

 

Figure 3-6 Channel Flow Mach Contours Comparison (0.675 Mach) 

As it is demonstrated in Figure 3-5 and in Figure 3-6; flow solver is good at 

predicting the channel flow. Results are compatible with the ones given in [43] 

both for 0.5 Mach and 0.675 Mach. The black lines in the Mach contours figures 

represent the block interfaces which will be discussed in the following chapter. 
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NACA 0012 airfoil is chosen as a test case for external flow. C type grid is used 

for the flow domain and shown in Figure 3-7 with boundary conditions. Grid size 

is equal to 275x65.  

 

Figure 3-7 C Type Grid for NACA 0012 (Outer View) 

 

Figure 3-8 C Type Grid for NACA0012 (Inner View) 
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The analyses are performed for 0.85 Mach with 1o angle of attack. Second order 

with Van-Leer scheme is used and corresponding Mach contours are compared 

with the ones given in [44] and demonstrated in Figure 3-9. 

 

 
Mach Contours which are given in [44] for 0.85 Mach and 1o angle of 

attack 

 
Mach contours that are calculated from generated tool for 0.85 Mach and 1o 

angle of attack 

 

Figure 3-9 NACA0012 Mach Contours Comparison                                   
(0.85 Mach and 1o angle of attack) 
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As it is shown in Figure 3-9 and mach contours are similar with the ones shown 

in [44]. Corresponding Cp comparison is given in Figure 3-10. 

 

 

Figure 3-10 NACA0012 CP Comparison  
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CHAPTER 4  

FLOW SOLVER PERFORMANCE 

4.1 Introduction 

In this chapter, performance analyses of the multi-block Newton method are 

discussed. An axisymmetric nozzle and a channel flow problems are chosen to be 

used for the performance analyses. The flow domain is divided into different 

number of blocks to examine the effect of number of blocks to accuracy, the 

convergence rate and CPU time spent. Block interface is moved to the different 

locations in the flow domain to check the behavior of the interface boundary 

condition at different flow conditions. Same problems are solved with different 

sparse matrix solvers to compare their speed and accuracy.   

4.2 Problems Definition 

An axisymmetric nozzle and a channel flow problems are chosen for performance 

analyses of the multi-block Newton method. The axisymmetric nozzle geometry 

is shown in Figure 4-1. 

Corresponding analyses parameters for the axisymmetric nozzle problem are; 

Inlet Area: 0.138474 m2 

Throat Area: 0.0314 m2 

Total Temperature: 3130 K 
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Total Pressure: 17425611 Pa 

Inlet Velocity: 0.1 Mach 

 

 

Figure 4-1 Axisymmetric Nozzle Geometry 

Moreover, channel flow problem is used to evaluate the performance of the 

generated program for supersonic inflow conditions and examine block boundary 

conditions around shock and expansion waves with 1.65 Mach inflow speed at 

sea level standard atmospheric conditions. The channel flow with the bump 

geometry is shown in Figure 4-2. 

 

 

Figure 4-2 Channel Flow with a 10% Thick Circular Arc Bump 
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Boundary conditions that are used in the analyses are shown in Figure 4-3 and in 

Figure 4-4.  At inlet and outlet boundaries; Riemann invariants are used to apply 

characteristic type boundary condition. Symmetry boundary condition is used at 

the upper boundary to make the domain axisymmetric and the wall boundary 

condition is used at the lower boundary.   

 

Figure 4-3 Axisymmetric Nozzle Boundary Conditions 

 

Figure 4-4 Channel Flow Boundary Conditions 

Boundary conditions are implemented as explained in Chapter.2. In axisymmetric 

nozzle problem; subsonic inflow & supersonic outflow and in channel problem 

supersonic inflow and supersonic outflow conditions are used. Signs of the 
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eigenvalues of the convective fluxes determine the direction of the transformed 

information. 

 

For subsonic inflow boundary condition, characteristic variables are determined 

from the freestream values. One of the characteristic variables is extrapolated 

from the interior of the flow domain. Following boundary condition equations 

can be derived for inflow and outflow boundaries 

 
1
2  

/   

u u  /                                     (4.1) 

 /  

 

For supersonic inflow, all of the eigenvalues have the same sign. All of the 

conservative variables on the inlet boundary are determined from the freestream 

flow variables. 

                                                   (4.2) 

For supersonic outflow, all of the eigenvalues have the same sign. All of the 

conservative variables on the outlet boundary are determined from the inside of 

the domain. 

 

                                                (4.3) 
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4.3 Grid Parameters 

Axisymmetric nozzle grid, which is used for the analyses, includes 82x21 and the 

channel problem grid includes 129x33 number of nodes. Since the analyses are 

inviscid, boundary layer is not constructed on wall boundaries. Single block grids 

are shown in Figure 4-5 and in Figure 4-6. 

 

 

Figure 4-5 Axisymmetric Nozzle Single Block Grid 

 

Figure 4-6 Channel Single Block Grid 

Size of the one Jacobian matrix can be calculated with the following formula. By 

considering four flow variables in 2-D Euler equations. (Figure 4-7) 

 

   4         (4.4) 
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Figure 4-7 2-D Single Block Grids 

For multi-block Newton method performance evaluation, same grid is used and 

divided into different number of blocks as it is shown in Figure 4-8. In the 

analysis, number of solved Jacobian matrices is equal to the number of blocks.  

 

In following axisymmetric nozzle multi-block analyses; constructed blocks have 

nearly same sizes as shown in Figure 4-8. Totally 1722 nodes are tried to be 

distributed within the whole blocks equally for axisymmetric nozzle problem. 
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2 Blocks Grid 

 
4 Blocks Grid 

 
8 Blocks Grid 

 
16 Blocks Grid 

Figure 4-8 Multi-Block Grids for Axisymmetric Nozzle Problem 
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In following channel flow multi-block analyses; constructed blocks have nearly 

same sizes as shown in Figure 4-9. Totally 4257 nodes are tried to be distributed 

within the whole blocks equally for channel problem. 

 

 
2 Blocks Grid 

 
4 Blocks Grid 

 
8 Blocks Grid 

 
12 Blocks Grid 

Figure 4-9 Multi-Block Grids for Channel Problem 
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4.4 Flow Solution 

Axissymetric Nozzle problem is a good example for internal flow. Air enters from 

the inlet of the nozzle with 0.1 Mach and leaves from the outlet with nearly 3.25 

Mach. Mach contours are shown in Figure 4-10 for different number of blocks.  

 

Having a supersonic inflow and outflow boundaries, channel problem is solved to 

examine the code performance in catching shock and expansion waves.  Mach 

contours of the bump geometry are shown in Figure 4-11. 

 

At all of the analyses; same solution parameters are used except  ∆ , additional 

term for diagonal, which will be discussed later in this chapter.  

 

First of all, at all of the analyses; analytically derived flux Jacobian matrix entries 

are used. Numerical derivation method is not used for this comparison problems 

and PARDISO is used as a matrix solver. All of the results are converged 

solution results and the convergence criterion is below 10-12. Residuals are 

calculated as the differences of the net fluxes that pass through a cell at each 

iteration. For convergence the normalized difference of the net fluxes are 

expected to be below 10-12. Since discretization order and splitting scheme may 

change the results, second order discretization is used with Van Leer flux vector 

splitting scheme at all of the analyses. 

 

As it is seen from Figure 4-10 and Figure 4-11, the block interface boundary 

conditions work well both for subsonic and supersonic flow conditions. As it is 

explained in Chapter 2, communications between the blocks are performed with 

using halo nodes. In these problems, single column halo nodes are used. Blocks 

are solved separately and two different results occur at the interface. Then the 

halo nodes are updated for the next iteration and the fluxes at the interfaces are 
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averaged to make the blocks compatible. At steady state, the interfaces become 

completely transparent.  

 

When the calculated flow variables between the two sides of the interface have 

much difference, the Newton method for the both blocks does not converge to the 

same result and may have a stability problem. For these cases, ∆  the diagonal 

additional term, should be arranged logically to keep the both sides of the blocks 

compatible. 
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1 Block Contours 

 

2 Blocks Contours 

 

4 Blocks Contours 

8 Blocks Contours 

 

16 Blocks Contours 

Figure 4-10 Mach Contours Comparison for Different Number of Blocks 
(Axisymmetric Nozzle Problem) 
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1 Block Contours 

 
2 Blocks Contours 

 
4 Blocks Contours 

 
8 Blocks Contours 

 
12 Blocks Contours 

Figure 4-11 Mach Contours Comparison for Different Number of Blocks 
(Channel Problem) 
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4.5 Performance of Convergence 

The most critical factor that affects the convergence of the Newton method is the 

way of term addition (∆  to the diagonal of the Jacobian matrix. Newton scheme 

does not have convergence problems and has quadratic convergence rate if there 

is not an additional term to the diagonal. However, Newton method has problems 

when the initial conditions are poor. To improve the initial conditions, one has to 

use diagonal addition terms and when the sufficient propagation is reached the 

additional terms can be cancelled to make use of the quadratic convergence rate 

ability of the method. If the additional term is not cancelled after some 

propagation, the convergence rate will become linear and the required iteration 

number for convergence will increase. In Table 4.1 effect of  ∆   on convergence 

is shown for first order discretization.  
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Table 4.1 Effect of ∆  on Convergence, First Order Discretization 
(Axisymmetric Nozzle)  

Iterations required for convergence 

Δt initial Δt final 1 Block 2 Blocks 4 Blocks 8 Blocks 16 Blocks 

1 5 601 828 1143 1398 1712 

1 50 903 1156 1318 1550 1928 

1 500 1180 1306 1670 1981 2345 

1 5000 1616 1702 2103 2461 2811 

10 50 35 89 118 176 250 

10 500 67 96 121 176 274 

10 5000 77 109 122 191 275 

10 50000 93 111 122 193 275 

100 500 11 24 60 92 113 

100 5000 15 26 61 92 113 

100 50000 17 28 63 92 113 

100 500000 18 28 63 98 113 

500 5000 9 21 50 77 107 

500 50000 10 23 52 77 107 

500 500000 11 23 52 77 107 

500 5000000 11 23 53 77 107 

5000 50000 7 19 62 72 113 

5000 500000 8 20 63 72 113 

5000 5000000 8 20 63 72 113 

5000 50000000 8 21 67 72 113 

 

 

In Table 4.2, effect of ∆   on convergence is shown for second order 

discretization. Actually, it can be said that, there is not an explicit rule for 

calculation of ∆ .  Most suitable additional term can be found by trial and error 

method. Generally the lower ∆  increases the number of iterations required for 

convergence and the higher one increase the risk of divergence. The required 
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additional term depends on the problem parameters and the initial condition that 

is given to the program.  

Table 4.2 of ∆  on Convergence, Second Order Discretization (Axisymmetric 
Nozzle) 

Iterations required for convergence 

Δt initial Δt final 1 Block 2 Blocks 4 Blocks 8 Blocks 16 Blocks 

1 5 2748 2918 * * * 

1 50 * * * * * 

1 500 * * * * * 

1 5000 * * * * * 

10 50 126 292 * * * 

10 500 178 311 * * * 

10 5000 279 317 * * * 

10 50000 337 317 * * * 

100 500 12 23 80 * * 

100 5000 15 26 82 * * 

100 50000 17 26 82 * * 

100 500000 20 26 * * * 

500 5000 10 19 61 714 1128 

500 50000 11 19 63 727 1130 

500 500000 12 19 63 741 1130 

500 5000000 12 * * 741 1130 

5000 50000 7 21 68 * * 

5000 500000 9 19 69 * * 

5000 5000000 9 21 71 * * 

5000 50000000 9 * * * * 

(*) Not converged cases 

 

Iterations required for convergence increases with increasing number of blocks. 

The single block Jacobian matrix is solved implicitly and it quadratically 

converges within nearly 10 iterations. However, when the whole domain is 
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divided into some blocks, due to the interface boundary condition, the required 

number of iteration increases. When the interface boundary condition is used, the 

fully implicit property of the Jacobian matrices disappears with the interventions 

during each iteration. 

 

In Figure 4-12 and in Figure 4-13 residuals are compared for different numbers of 

blocks. Same analysis parameters are used for all of the cases.  ∆  initial is 1000 

and  ∆  final  is 50000.   

 

 

 

Figure 4-12 Residual Comparison for ∆  initial =1000  ∆  final=50000 
(Axisymmetric Nozzle) 
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Figure 4-13 Comparison for ∆  initial =1000  ∆  final=50000 (Channel) 

4.6 CPU time Required for Convergence 

CPU time required for convergence is shown in the figures from Figure 4-14 to 

Figure 4-21. In Newton method analyses; construction of the Jacobian matrices 

and solving the constructed Jacobian matrices are two main parts that require 

more CPU time when compared with the other parts of the analyses. Jacobian 

matrices entries are calculated with analytical derivation method and the required 

time is directly proportional with the matrix size.  
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Figure 4-14 Time Required for Construction of Jacobian Matrices              
per one-block (First 20 iterations - Axisymmetric Nozzle) 

 

Figure 4-15 Time Required for Construction of Jacobian Matrices               
per one-block (First 20 iterations - Channel) 
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Figure 4-16 Time Required for Solving Jacobian Matrices per one-block                  
(First 20 iterations - Axisymmetric Nozzle) 

 

Figure 4-17 Time Required for Solving Jacobian Matrices per one-block                         
(First 20 iterations - Channel) 
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Figure 4-18 Total time required per one-block                                            
(First 20 iterations - Axisymmetric Nozzle) 

 

Figure 4-19 Total time required per one-block (First 20 iterations - Channel) 
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Figure 4-20 Total time required (First 20 iterations - Axisymmetric Nozzle) 

 

Figure 4-21 Total time required (First 20 iterations - Channel) 
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Table 4.3 Grid Size Information (Axisymmetric Nozzle) 

 Total Grid Size Grid Size per One Block (Nearly) 

1 Block 82*21 82*21 

2 Blocks 82*21 41*21 

4 Blocks 82*21 41*11 

8 Blocks 82*21 21*11 

16 Blocks 82*21 11*11 

 

 

With increasing number of blocks, due to the decreasing size of the each block, 

CPU time required for constructing and solving the Jacobian matrices per one 

block decreases. However, due to the increase in the required iteration number for 

convergence, the total time required rises with increasing number of blocks. In 

Table 4.3, total grid sizes and grid sizes per one block is given for following 

discussions   

 

In Figure 4-14 and in Figure 4-15, CPU time required for construction of the 

Jacobian matrices is shown. The main factor that affects the required CPU time is 

the size of the Jacobian matrix.  It generally linearly affects the required CPU 

time, so there is a linear decrease in the construction of the Jacobian matrices 

with increasing number of blocks per one iteration. The other factors which affect 

the CPU time required for construction of the matrix are flux vector splitting 

method, order of the discretization and the boundary conditions. Depending of 

the model, performed calculations vary.  

 

In Figure 4-16 and in Figure 4-17 CPU time required for solving the Jacobian 

matrices per one iteration are demonstrated.  Size of the matrix quadratically 

affects the required CPU time and with increasing number of blocks there is a 

quadratic decrease in solving the Jacobian matrices per one iteration.  



 

 

 

 

 

 

68 

 

Total time required per one iteration of the single block is given in Figure 4-18 

and in Figure 4-19. One block case requires more CPU time as expected when 

only the results per one block are considered. In Figure 4-20 and in Figure 4-21 

total CPU time of the all blocks per one iteration are shown. Increasing number 

of blocks generally increases the total required time. However, when the size of 

the each block in problems decreases so much, quadratic decrease in CPU time 

for solving the matrices affects the total CPU time and may keep it stationary. 

However, again when the total CPU time required for convergence compared, it 

can be said that, the increasing number of blocks rises the total CPU time at all 

conditions. 

 

In the analyses; PARDISO and UMFPACK are used as sparse matrix solvers. 

Both of them are discussed in Chapter 3. They follow the same methodology to 

solve large sparse matrices. The only difference is PARDISO divides the 

Jacobian matrices into different CPU nodes and solves the Jacobian matrices 

parallel. On the other hand, UMFPACK does not have parallelization capability.  

 

In Table 4.4, CPU time required for different size of grids at each iteration is 

shown. When the grid size increases, required CPU time for an iteration increases 

as expected. The big percentage of the increase in CPU time is due to the 

construction of the jacobian matrices. Increase in the grid size, augments the time 

required for solving the Jacobian matrices but the increase is not as much as in 

the construction part. Making multi-block grids decreases the total time required 

per one iteration especially when the grid size is greater. Performance of 

PARDISO is better than UMFPACK for all size of grids which are used in this 

thesis due to the parallelization capability in terms of CPU time required. 8 cores 

&2 CPU 2.33 GHz with 8 GB RAM are used for analyses. In order to decrease 

the total required CPU time, one should decrease the time required for 

construction of the Jacobian matrices. In Table 4.5 total CPU time comparison is 
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given and as mentioned earlier increasing number of blocks rises the total CPU 

time. Having a greater contribution, matrix construction time can be decreased by 

parallelization of this part but the grid size for 2-D Euler solver is not as big as 

the ones those analyzed here. However, parallelization would be necessary when 

viscous force terms are added or when the 3-D version of the code is generated.   

Table 4.4 CPU time required for different size of grids per one iteration 
(Axisymmetric Nozzle) 

  

Constructing the 

Jacobian Matrices (s)
Solving the Jacobian Matrices (s) 

      PARDISO UMFPACK 

  

One 

Block 
16 Blocks 

One 

Block 
16 Blocks 

One 

Block 
16 Blocks 

82*21 

Grid 0.9 0.13*16=2.08 0.15 0.004*16=0.064 0.16 0.006*16=0.096 

405*60 

Grid 51 2.8*16=44.8 5.13 0.15*16=2.4 8.11 0.41*16=6.56

810*120 

Grid 122 6.85*16=109.6 25.12 0.95*16=15.2 - 1.55*16=24.8

Table 4.5 Total CPU time comparison (Axisymmetric Nozzle) 

  Time Required (s) 

  

Per One Iteration 

 

Total 

  One Block 16 Blocks One Block 16 Blocks 

82*21 Grid 1.05 2.14 18.9 516.392 

405*60 Grid 56.13 47.2 1010.34 5569.6 

810*120 Grid 147.12 124.2 2648.16 14655.6 
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CHAPTER 5  

CONCLUSION 

In this thesis, exact multi-block Newton’s method was successfully applied for   

2-D Euler equations. In house developed tool was used for the analyses and it 

was improved throughout the thesis study. Euler equations were discretizied by 

using finite volume method with different upwind methods and second order 

accuracy was used for the spatial discretizations. Multi-block analyses were 

performed by using halo nodes and corresponding modifications were done in 

analytical Jacobian calculations and matrix solver parts. Block interface boundary 

conditions were added and made compatible with the different flow regimes. 

Generated tool was made adaptable to the different type of problems with 

implementations of the various boundary conditions. Two different matrix solver 

programs, UMFPACK and PARDISO were used for the Jacobian matrix 

solutions. Both of them have capability to solve highly sparse large matrices, 

which are inevitable in this study and they were made compatible with the 

generated tool. Airfoil and channel flow problems were used for verification of 

the tool.  

 

Multi-block performance analyses were made for axisymmetric nozzle and 

channel flow problems. Accuracy, convergence and CPU time spent comparison 

was made by dividing the whole domain into different number of blocks. Flow 

contours were investigated around the block interfaces to examine the data 

transfers between the neighboring blocks. Grids having different sizes were used 
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for these analyses to make reliable comparisons. In these comparisons; it was 

seen that the increasing number of blocks rises the total CPU time spent due to 

the increase in the required iterations for convergence. The greater part of the 

total CPU time spent aroused from Jacobian construction part and it was tried to 

be reduced by simplifications in the corresponding subroutines. CPU time spent 

of the UMFPACK and PARDISO matrix solvers were compared and using 

PARDISO was seen to be more suitable for this analysis because of its 

parallelization capability.  

 

In the performance analyses, it was seen that with good initial guess, Newton’s 

method provides quadratic convergence rate. Poor initial guesses, on the other 

hand, caused divergence or tremendous increase in the required iterations. 

Diagonal addition term was used in the analysis to strength the initial guesses. 

Required iteration numbers were tabulated for different values of additional term. 

Initial and the withdrawal values of those added diagonal terms were found to be 

critical factors on the convergence of the solution.  

 

In order to increase the accuracy, viscous force calculation terms and turbulence 

models should be added to the generated tool. These additions would require 

higher grid sizes for the analyses. Those increases in the grid size will cause more 

CPU time and the parallelization of the Jacobian matrix construction part would 

be necessary.  

 

Usage of the exact Newton Method is not suitable for very complicated problems 

and when the flow domains have higher grid sizes. Instead of exact Newton 

method, matrix free Newton Krylov method or inexact Newton method can be 

used for these types of problems. Moreover, for multi-block analyses 

simultaneously approaching terms (SAT) with summation by parts (SBP) 

approach can be used to replace halo nodes to increase accuracy 
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