

PERFORMANCE ANALYSES OF NEWTON METHOD

FOR MULTI-BLOCK STRUCTURED GRIDS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ERDEM AYAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

AEROSPACE ENGINEERING

SEPTEMBER 2011

 Approval of the thesis:

PERFORMANCE ANALYSES OF NEWTON METHOD FOR
MULTI-BLOCK STRUCTURED GRIDS

submitted by ERDEM AYAN in partial fulfillment of the requirements for the
degree of Master of Science in Aerospace Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Özgen _______________
Dean, Graduate School of Natural and Applied Science

Prof. Dr. Ozan Tekinalp _______________
Head of Department, Aerospace Engineering

Asoc. Prof. Dr. Sinan Eyi _______________
Supervisor, Aerospace Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Cevdet Çelenligil _______________
Aerospace Engineering Dept., METU

Asoc. Prof. Dr. Sinan Eyi _______________
Aerospace Engineering Dept., METU

Asoc. Prof. Dr. Dilek Funda Kurtuluş _______________
Aerospace Engineering Dept., METU

Asst. Prof. Dr. Oğuz Uzol _______________
Aerospace Engineering Dept., METU

Göktan Güzel, MSc. _______________

 Date:

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last Name: Erdem AYAN

 Signature:

iv

ABSTRACT

PERFORMANCE ANALYSES OF NEWTON METHOD FOR
MULTI-BLOCK STRUCTURED GRIDS

Ayan, Erdem

M.S., Department of Aerospace Engineering

Supervisor: Assoc. Prof. Dr. Sinan Eyi

September 2011, 76 pages

In order to make use of Newton’s method for complex flow domains, an Euler

multi-block Newton solver is developed. The generated Newton solver uses

Analytical Jacobian derivation technique to construct the Jacobian matrices with

different flux discretization schemes up to the second order face interpolations.

Constructed sparse matrices are solved by parallel and series matrix solvers. In

order to use structured grids for complex domains, multi-block grid construction

is needed. Each block has its own Jacobian matrices and during the iterations the

communication between the blocks should be performed. Required

communication is performed with “halo” nodes. Increase in the number of grids

requires parallelization to minimize the solution time. Parallelization of the

analyses is performed by using matrix solvers having parallelization capability. In

this thesis, some applications of the multi-block Newton method to different

problems are given. Results are compared by using different flux discretization

schemes. Convergence, analysis time and matrix solver performances are

examined for different number of blocks.

Keywords: Multi-Block Newton Method, Flux Jacobian, CFD

v

ÖZ

ÇOK BLOKLU YAPISAL AĞ SİSTEMİ İÇİN NEWTON YÖNTEMİNİN

PERFORMANS ANALİZİ

Ayan, Erdem

Yüksek Lisans, Havacilik ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Sinan Eyi

Eylül 2011, 76 sayfa

Bu tezde, kompleks geometrilerin akış çözümünde kullanılmak üzere geliştirilmiş

olan çok bloklu Newton metod çözücüsünün performans analizi anlatılmaktadır.

Euler denklemlerinin çözümü için gerekli olan Jacobian matrislerinin

oluşturulmasında farklı akış ayrıklaştırma teknikleri ile birlikte analitik türetme

yöntemi kullanılmıştır. Oluşturulan seyrek matrisler, matris çözücülerinin

yardımıyla paralel ve seri olarak çözülmüştür. Çözücünün çok bloklu hale

getirilmesiyle birlikte her bir blok için ayrı bir Jacobian matrisi analitik türetme

yöntemi ile oluşturulmuş ve her bir iterasyonda bloklar arasındaki gerekli olan

iletişim “sanal” noktalar kullanımı ile gerçekleştirilmiştir. Geliştirilen çözücü

farklı tipteki problemlere uyarlanmıştır. Farklı sayıda blok kullanımıyla birlikte

yakınsama durumu ve analiz süresi performansı çeşitli büyüklüklerdeki akış

problemleriyle değerlendirilmiştir. Ayrıca farklı matris çözücülerinin de kendi

aralarında çözüm süreleri ve doğrulukları açısından değerlendirmeler yapılmıştır.

Anahtar Kelimeler: Çok Bloklu Newton Metod, Akı Jacobianı, Hesaplamalı

Akışkanlar Dinamiği

vi

Dedicated to my family

vii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Asoc. Prof. Dr. Sinan Eyi for his guidance

support, encouragement and patience throughout the study.

I also would like to thank Mr. Yüksel Ortakaya, Chief of the Aeromechanics

Department in TAI for his technical support, understanding and tolerance.

I would like to thank to all members of işçet group and to my TAI colleagues

Ahmet Alper Ezertaş, Aykut Tamer, Ceren Öztürk, Özge Polat, Eda Toprakkale

and Halil Kaya for their moral support and encouragements.

Special thanks to my friend Eray Göksu for supporting me all the time and all the

things we have shared.

viii

TABLE OF CONTENTS

ABSTRACT ... iv
ÖZ ... v
ACKNOWLEDGEMENTS ... vii
CHAPTERS
1. INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Background .. 2

1.3 Objectives .. 4

1.4 Literature Survey ... 5

1.5 Outline ... 9

2. GOVERNING FLOW EQUATIONS ... 11
2.1 Introduction ... 11

2.2 Governing Equations ... 12

2.3 Coordinate Transformation .. 13

2.4 Spatial Discretization ... 15

2.4.1 Flux Vector Splitting ... 17

2.4.2 Flux Difference Splitting ... 21

2.4.3 High Order Schemes with Limiters ... 23

2.5 Boundary Conditions and Block Interfaces ... 26

2.5.1 Far Field Boundary Conditions ... 26

2.5.2 Wall Boundary Conditions .. 27

2.5.3 Computational Boundary Conditions .. 27

2.5.4 Block Interfaces ... 28

3. SOLUTION METHOD .. 30
3.1 Introduction ... 30

3.2 Newton’s Method .. 31

3.2.1 Flux Jacobian Evaluation ... 32

ix

3.3 Structure of Jacobian Matrix ... 35

3.4 Implementation of Initial Conditions .. 38

3.5 Implementation of Boundary Conditions .. 39

3.6 Solution Method .. 40

3.7 Flow Solver Verification ... 40

4. FLOW SOLVER PERFORMANCE .. 46
4.1 Introduction ... 46

4.2 Problems Definition ... 46

4.3 Grid Parameters ... 50

4.4 Flow Solution .. 54

4.5 Performance of Convergence .. 58

4.6 CPU time Required for Convergence .. 62

5. CONCLUSION .. 70

REFERENCES .. 72

x

LIST OF TABLES

TABLES

Table 4.1 Effect of ∆ on Convergence, First Order Discretization (Axisymmetric

Nozzle) ... 59

Table 4.2 of ∆ on Convergence, Second Order Discretization (Axisymmetric

Nozzle) ... 60

Table 4.3 Grid Size Information (Axisymmetric Nozzle) 67

Table 4.4 CPU time required for different size of grids per one iteration

(Axisymmetric Nozzle) .. 69

Table 4.5 Total CPU time comparison (Axisymmetric Nozzle) 69

xi

LIST OF FIGURES

FIGURES

Figure 2.1 Generalized transformation from Physical domain to computational

domain .. 14

Figure 2.2 A typical control volume .. 16

Figure 2.3 Blocks Interface in the Streamwise Direction 29

Figure 2.4 Blocks Interface is Perpendicular to the Flow 29

Figure 3.1 5 Points and 9 points stencils .. 36

Figure 3.2 Matrix structure for first order analysis .. 37

Figure 3.3 Matrix structure for second order analysis .. 37

Figure 3.4 Channel Flow Grid (129x33) .. 41

Figure 3.5 Channel Flow Mach Contours Comparison (0.5 Mach) 41

Figure 3.6 Channel Flow Mach Contours Comparison (0.675 Mach) 42

Figure 3.7 C Type Grid for NACA 0012 (Outer View) 43

Figure 3.8 C Type Grid for NACA0012 (Inner View) .. 43

Figure3.9 Channel Flow Mach Contours Comparison (0.85 Mach and 1o angle of

attack) ... 44

Figure 4.1 Axisymmetric Nozzle Geometry .. 47

Figure 4.2 Channel Flow with a 10% Thick Circular Arc Bump 47

Figure 4.3 Axisymmetric Nozzle Boundary Conditions 48

Figure 4.4 Channel Flow Boundary Conditions .. 48

Figure 4.5 Axisymmetric Nozzle Single Block Grid ... 50

Figure 4.6 Channel Single Block Grid ... 50

Figure 4.7 2-D Single Block Grids .. 51

Figure 4.8 Multi-Block Grids for Axisymmetric Nozzle Problem 52

xii

Figure 4.9 Multi-Block Grids for Channel Problem .. 53

Figure 4.10 Mach Contours Comparison for Different Number of Blocks

(Axisymmetric Nozzle Problem) ... 56

Figure 4.11 Mach Contours Comparison for Different Number of Blocks

(Channel Problem) ... 57

Figure 4.12 Residual Comparison for ∆ initial =1000 ∆ final=50000

(Axisymmetric Nozzle) .. 61

Figure 4.13 Comparison for ∆ initial =1000 ∆ final=50000 (Channel) 62

Figure 4.14 Time Required for Construction of Jacobian Matrices per

one-block (First 20 iterations - Axisymmetric Nozzle) 63

Figure 4.15 Time Required for Construction of Jacobian Matrices per

one-block (First 20 iterations - Channel) ... 63

Figure 4.16 Time Required for Solving Jacobian Matrices per one-block

(First 20 iterations - Axisymmetric Nozzle) .. 64

Figure 4.17 Time Required for Solving Jacobian Matrices per one-block

(First 20 iterations - Channel) .. 64

Figure 4.18 Total time required per one-block (First 20

iterations - Axisymmetric Nozzle) ... 65

Figure 4.19 Total time required per one-block (First 20 iterations - Channel) 65

Figure 4.20 Total time required (First 20 iterations - Axisymmetric Nozzle) 66

Figure 4.21 Total time required (First 20 iterations - Channel) 66

xiii

LIST OF SYMBOLS

LATIN SYMBOLS

A Jacobian matrix of F flux vector

B Jacobian matrix of G flux vector

c Speed of sound

e Canonical vector

et Total energy per unit volume

f(x) A function of variable x

F Inviscid flux vector in x-direction

G Inviscid flux vector in y-direction

h Enthalpy

H Axisymmetric source vector

J Jacobian of transformation from Cartesian to generalised coordinates

M Mach number

p Pressure

QΛ Right eigenvector matrix of A, B

r Ratio of differences

R Residual vector of the system

Rax Axisymmetric case residual value

Rfrz Freezing residual value

Rpl Planar case residual value

∆t Time-like term added to Jacobian matrix diagonal

∆t0 Initial value for ∆t

∆tf Removal value for ∆t

u,v Velocity components

xiv

U,V Contravariant velocity components

U Contravariant velocity components in terms of k

x,y Components of Cartesian coordinates

GREEK SYMBOLS

α Factor to reduce W

∆ Forward difference operator

ε Finite-difference perturbation magnitude

φ Interpolation limiter function

γ Ratio of specific heats

ξ,,η Components of curvilinear coordinates

κ Interpolation order parameter

λ Eigenvalue

Λ Diagonal matrices including eigenvalues of A, B

ρ Density

σ Axisymmetry parameter

ζ A value between the original and perturbed variable

∂ Partial differentiation operator

SUBSCRIPTS

i,j Cell centred grid indices

x,y Differentiation with respect to x, y

ξ,η Differentiation with respect to ξ, η

∞ Free-stream value

xv

SUPERSCRIPTS

m Number of possible highest bits in the binary representation of mantissa

n Newton’s method iteration number

- Negative (left) value

+ Positive (right) value

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Computational fluid dynamics became one of the branches of aerodynamics

which complements the experimental and theoretical approaches since late 1970s.

It immediately became one of the tools to model the fluid flow in industry. Its

usage is increasing everyday and it became an important part of the design and

analyses processes for more and more companies. It is possible to model and

examine velocity, temperature, pressure and species included in fluid flow within

a solution domain with CFD.

Since the analysis requires numerical methods and algorithms, defining and

modeling the fluid flow and solving the modeled flow is a difficult task generally

and for some cases it is impossible without using computers. Before introducing

with CFD; scientists and engineers use some empirical methods or experiments.

These experiments generally refer to the wind tunnel tests. However, usage of

empirical methods is possible only for similar cases which are investigated

before. They can provide only a very limited accuracy. On the other hand, using

wind tunnel tests is not possible for most of the situations due to the high cost and

huge amount of cases. Most of the aerospace companies use wind tunnel tests

when CFD is inadequate to solve the problem or when in their detailed design

processes for very limited number of cases. Increasing capacity of aerospace

2

industry requires detailed analyzes of aircrafts with high accuracy and CFD tries

to fulfill this requirement.

Fast, robust and accurate methods & algorithms are required to solve

aerodynamic flows. The flow solver must have capability to handle a variety of

the flow conditions with different configurations. Several methods are presented

to balance the speed and robustness of the solver. The main problem is to find the

suitable method and an adequate model to solve the fluid flow to satisfy the

requirements.

1.2 Background

Computational fluid dynamics is used to model the problems and to find solutions

to the partial differential equations on a computational domain. Required

calculations are performed in the nodes within the domain. These nodes can be

arranged by structured or unstructured orders. Both of them have advantages and

disadvantages. Structured grid includes distributed nodes in an organized pattern

around the geometry. They require lower storage requirement and they work well

for simple configurations. However, it is not always possible to construct

structured grid on the flow domain for complex geometries. For these cases,

unstructured grids can fit the geometry. Moreover, they require less complicated

grid generation techniques and higher adaptability to the flow solution. When the

usage of single block structured grid is impossible, in order to make use of less

overhead and lower storage feature of structured grid, multi-block approach is

developed.

CFD solvers can be divided into two parts according to the time-marching

methods namely, explicit and implicit methods. Explicit methods are simple and

3

computationally easy. However, they are not stable when higher time steps are

used. Hence, they require more iteration for convergence. Using multi-grid

techniques decreases the required iteration for convergence. Implicit methods, on

the other hand, are not easy to implement. Moreover, they require higher

computational time per each iteration. However, the total required number of

iteration decreases for convergence. In CFD one of the fastest implicit methods is

the Newton method.

Creating fast and efficient flow solver is limited to the time required to solve

large linear system of equations. Direct inversion of these matrices is not possible

for some cases or very expensive up to the end of 90’s. For this reason, one of the

used methods in this field is approximate-Newton method and the other one is

Jacobian free inexact Newton method. They all include iterative methods to

inexactly solve the systems of linear equations. They reduce required time at each

iteration.

With increasing capability of computers, due to quadratic convergence rate

Newton’s method becomes again a powerful method. However, it requires exact

linearization of the residual equations to satisfy the quadratic convergence

property. Solving the flow domain requires the calculation of Jacobian matrix

which includes derivatives of the residual function with respect to the flow

variables. Depending on the constructed grid; the Jacobian matrix may be very

large. Reducing size of the Jacobian matrix can be done by using multi-block

grids. However, in this case the number of the Jacobian matrices increases and

another discussion appears about the fastest and robustness of the increasing

number of blocks with reducing sizes. There are several methods for performing

multi-block analyses. The main problem is the data transfers between the blocks.

The most common ways are using “halo” nodes or evaluating simultaneously

approaching terms (SAT).

4

 The other problem is the derivation of the entries in the Jacobian matrix. They

can be evaluated by analytical or numerical means. Analytical derivation of the

entries becomes more difficult when the discretization of the equations become

more complex. Numerical derivation, on the other hand, is simpler but it cannot

guarantee higher accuracy without some error analyses as preliminary studies.

The methods used to deal with these problems directly influence the efficiency

and usage of the Newton’s method.

1.3 Objectives

The main objective of this thesis is to use multi-block approach with Newton

method for 2-D Euler equations. Performance analyses are aimed to be done to

evaluate the abilities of the generated code. Corresponding performance

parameters are accuracy, robustness and required computational time for

convergence. Analysis time comparison is performed for varying numbers of

blocks in the domain. One block and multi-block grids are constructed and

analyzed with same solver parameters to compare accuracy. Moreover, flow

variables are examined around the block interfaces to evaluate the implemented

block interface boundary conditions. Since modeling the whole domain is

impossible with one block for complex geometries, another objective appears.

With multi-block approach, Newton method can be used also for complex

geometries. In addition, reduction of the computational time is aimed by making

parallelization of the analyses. The other objective is to examine the usage of the

Newton’s method with the direct sparse matrix solvers. PARDISO and

UMFPACK sparse matrix solvers are used in the study.

5

1.4 Literature Survey

Several researchers used Newton method in their studies for modeling fluid flow.

Generally they chose Newton Method due to the high convergence rate and high

accuracy.

Wington [1] used Newton’s method in his study. The article is about modeling

fluid flow around multi-element airfoil. He analyzed multi-element airfoil in

transonic flows. He used Newton’s method to make use of the quadratic

convergence property of the method. In order to solve the Jacobian matrix,

Symbolic manipulation expert system MACSYMA, symbolic derivation tool,

was used in his study. While solving the large linear sparse systems, to reduce the

huge storage requirements and great factorization time, he generated the nested

dissection node reordering technique, which is being used for some of the sparse

matrix solvers today.

Bender and Khosla [2] investigated the Newton’s method for the solution of the

viscid-inviscid compressible flows. They worked on initial conditions of

Newton’s method to increase convergence rate and prevent early divergence.

Two modifications are presented to reduce the sensitivity of the initial guess at

transonic Mach numbers. For such problems, they found that applied exact

Newton method exhibits high sensitivity to initial conditions.

Venkatakrishnan [3] used Newton’s method to compute viscous flows in a robust

manner. In his study, quadratic convergence is realized by using exact

linearization with Roe scheme. He showed that within 3-4 iterations the steady

solution results are obtained and the convergence rates are independent to the

Reynolds number.

6

Van Dam et al.[4] used fully-implicit technique to combine direct solution

technique based on banded Gauss elimination with Newton’s method for laminar

incompressible flows. Orkwis [5] developed a solver using Newton’s method to

solve 2-D & axisymmetric [6] and laminar & turbulent flows [7]. In his studies;

Navier-Stokes equations are approximated by flux difference splitting methods

with Glaister’s approach. With the addition of the geometric conservation law,

the freestream reproduction is satisfied for the axisymmetric solver. Van Albada

limiter is used to reduce spurious oscillations. As in the Wington’s study

MACSYMA is used to determine Jacobian Matrices entries.

Orkwis [8] made performance comparisons of the exact and quasi Newton

methods. He found that in spite of not having quadratic convergence rate, quasi

Newton methods are more efficient than the exact method which has quadratic

convergence in terms of CPU usage. In his another work which is with Kim [9],

Orkwis showed that with matrix simplifications like partial and global freezing

methods, approximate methods can also have quadratic convergence rate.

Whitfield and Taylor [10] presented numerical methods to evaluate jacobian

matrices for the cases at which obtaining the Jacobian matrices entries are

impractical with analytical method. They applied this approach both for

compressible and incompressible flows with high order ROE discretizations.

Vanden [11], [12] developed direct and iterative algorithms to solve a finite

volume discretization of the 3-D Euler equations in curvilinear coordinates. He

showed in his study that the iterative algorithms superior in terms of time

required for completion of the analyses.

Vanden and Orkwis [13] made performance comparison of analytical and

numerical Jacobian matrices in exact Newton method. MACSYMA is used for

7

analytical Jacobians. On the other hand finite differencing is used for numerical

Jacobians. They showed in their study that the convergence performance of both

matrices is same. They stated that for simpler cases when the linear systems of

equations are simple; analytical evaluation can be chosen but for the complex

schemes while performing the linearization of the equations numerical evaluation

will be the better choice.

Saad and Schultz [14] presented an iterative method for solving linear systems in

their studies. Approximate Newton’s method by applying GMRES with first

order Jacobian approximations are investigated by Venkatakrishnan [15],

Mavriplis [16] and Rogers [17].

Forstyh and Jiang [18] made comparisons for the quasi Newton methods and

made simplifications on the Jacobian matrices. They found that, despite of the

expensive pre-conditioner, an inexact Newton method is more effective than

approximate methods.

Brown and Saad [19] analyzed inexact and approximate methods when they are

combined with linesearch techniques and model trust region algorithms. Their

method does not require Jacobian matrix storage and it accurate linearization of

the residual function is performed with no storage limit.

Researchers in this field are focused on quasi Newton methods in last decade due

to the difficulties in exact Newton’s method. After nearly ten silence years;

researchers again started to use exact Newton’s method in their studies due to the

improvements in sparse matrix solvers with advanced algorithms. One of the

most common sparse matrix solver is introduced by Davis [20] namely

UMFPACK. MUMPS, another one, is introduced by Amestoy and Duff [21] for

distributed memory parallel usage. Later, WSMP and PARDISO developed by

8

Gupta [22] and Schenk [23]. Usage of these matrix solvers is common among the

researchers.

Eyi and Onur [24] used UMFPACK as sparse matrix solver with exact Newton

method. They analyzed inviscid supersonic flow problem on ramp geometry.

They made analytical and numerical Jacobian comparison. Gelfgat [25] used

MUMPS to solve sparse matrices and T’ien and Raju [26] evaluated the

capabilities of multifrontal solvers. In their combustion problem, they used

UMFPACK and demonstrated that usage of direct matrix solvers decreases the

required computational time. Eyi and Ezertas [27] examined the usage of the

exact Newton’s method with sparse matrix solvers. They used UMFPACK multi-

frontal solver while making comparison of the numerical and analytical Jacobian

calculations.

In order to use structured grids around the complex geometries, researchers made

multi-block analyses in their studies. Nichols and Zingg [28] developed a three-

dimensional muli-block Newton-Krylov Euler solver with GMRES subspace

algorithm to solve linear system of equation. The multi-block strategy they

followed facilitates the treatmeant of arbitrarily complex geometries with point to

point matching at their interfaces. Kam [29] developed similar one with Spalart-

Allmaras turbulence model, Rumpfkeil [30] made airfoil optimization for

unsteady flows and Nemec [31] made shape design of aerodynamic configuration

with multi-block Newton-Krylov tool. All of these researchers have used halo

nodes at block interfaces in their studies.

Hicken [32] uses summation-by-parts (SBP) technique with simultaneous-

approximation-terms in his thesis and showed that by developing a scalable

preconditioner one can make use of advantage of the SBP-SAT discretization

over using halo nodes in the block interfaces. Leung [33] also used

9

simultaneously approaching terms in his thesis and performed parallel

aerodynamic shape optimization in three dimensions and he discussed the

performance of the data transfer between the different blocks via simultaneously

approaching terms. Finally, Huan, Hicken and Zingg [34] used two different

schemes for the interfaces and boundary schemes. In the first scheme they use

standard difference operators up to third-order global accuracy and special near-

boundary operators to preserve stability for fifth-order global accuracy. In the

second scheme they used summation-by-parts with simultaneous-approximation-

terms and they showed that the interface schemes that do not involve halo nodes

offer several advantages when the error introduced at mesh interfaces are

compared.

1.5 Outline

In Chapter 2; governing flow equations are introduced with discussions of its

basic theories. Different discretization techniques which are used in this study are

described with required formulations. Implemented boundary conditions with

block interface applications for multi-block grids are explained for different flow

regimes.

In Chapter 3; exact Newton method is presented with advantageous and

disadvantageous. Analytical and numerical derivation methods of the Jacobian

matrices are given with discussions on their usage comparisons. The way of the

implementation of the initial conditions and boundary conditions into the

Jacobian matrices are explained. Verification of the generated program is made

by performing airfoil and channel flow analyses. Since the generated program is

inviscid, verifications are made by comparison with other authors’ studies in

literature.

10

In Chapter 4; performance analyses results of the multi-block Newton method are

given. A nozzle problem and a channel flow problem are used for performance

analyses. First, successful implementations of the block interface boundary

conditions are shown. The flow domain is divided into different number of blocks

for both of the problem and their performance analyses results are presented in

terms of accuracy, iterations required for convergence and required CPU time.

Then, UMFPACK and PARDISO sparse matrix solvers are compared. The effect

of the diagonal addition term (Δt) to the convergence of the flow solution is

analyzed and the variation of the CPU time spent is tabulated.

11

CHAPTER 2

GOVERNING FLOW EQUATIONS

2.1 Introduction

Prepared flow model requires retaining the fluid characteristics of the flow

conditions. This flow model should have advanced spatial and time discretization

techniques to satisfy the needs. It is vital to decide the flow model properties

before solving the problem. Two main problems arise at this point. Required

accuracy and cost determination studies identifies the flow model properties.

Required accuracy depends on the aim of the modeled problem and the analysis

which is performed. Actually, accuracy and the cost terms depend on each other.

The accurate solution for complex flow problems needs advanced strategies on

computational meshes and high resolution on grids and this can cause increase in

the cost. Cost determination study generally referred as the required time to solve

the problem. The cost of the analyzed problem increases with the increase in the

level of scheme complexity. With simpler methods the cost of the problem can be

decreased however the required accurate results may not be reached.

In this study; implicit direct solution is used for time discretization which is

accepted as computationally expensive. Flux jacobian matrix is used in this

direct solution technique. Number of flow equations with the grid size determines

the size of the matrix and the computational cost of the problem. In order to

decrease the computational cost, flow is modeled with two dimensional Euler

12

equations. Structured grids are used for the modelling of the flow field. Using

structured grids makes easier to construct Jacobian matrices and makes easier to

store the required data of the problem.

Problems which have complex geometries cannot be modeled with one grid block

and required multi-block grids to solve the flow. In this study; analyses of the

complex geometries are performed by using multi-block grids. Data transfers

between the blocks are achieved by using halo nodes on the block boundaries.

For discretization of the equations the Steger-Warming [35], Van Leer [36],

AUSM [37] and Roe [38] upwind schemes are used. Moreover, for the second

order accurate analysis, MUSCL [39] interpolation is used with the required of

Van Albada’s [40] and Venkatakrishnan’s [41] continuous limiters.

2.2 Governing Equations

Mass, momentum and energy conservations construct the basis of the flow

analysis. These conservations can be presented by Navier-Stokes equations. For a

two-dimensional inviscid flow with density ρ, velocities , in Cartesian

coordinates , , pressure p and total energy , the equations are given by;

Q F G 0 (2.1)

where is the vector of conservative variables; and are the inviscid

convective fluxes and the first term drops when the problem is steady.

13

When they are written in detailed form;

 (2.2)

Pressure can be calculated from the ideal gas relation as;

1 (2.3)

2.3 Coordinate Transformation

For easily implementation of the numerical algorithms on an arbitrary geometry,

the governing equation in the physical domain must be transformed to the

computational domain. A generalized coordinate transformation is used to map

the curvilinear structured grids into square grids. Figure 2-1 shows the 2-D

transformation of the physical domain to computational domain. Coordinates of

the physical domain are , and the coordinates of the computational domain are

, .

= (x, y) = (x, y) (2.4)

14

Figure 2-1 Generalized transformation from Physical domain to
computational domain

In computational domain; the grid spacing is equal to one between the grid nodes.

The Euler equations for steady problem in 2-D can be re-written in the form:

F G 0 2.5

Corresponding flux terms are specified as following;

=

ρU
ρuU ξ p
ρvU ξ p

e p U

 =J

ρV
ρuV η p
ρvV η p

e p V

 (2.6)

 are contravariant velocities and given by:

U
V

ξX ηX
ξ η

u
v (2.7)

15

Directly computing the metric terms is not easy. Instead, the metric terms are

computed based on the reverse transformation:

ξX ηX
ξ η

x x
y y (2.8)

The transformation metrics appears as;

 (2.9)

2.4 Spatial Discretization

Euler equations can be represented in the form:

R Q 0 (2.10)

where the flow residual is;

 R Q F
ξ

G
η

 (2.11)

The flow variables are stored at cell centers. However, for flux calculations flow

variables which are stored at cell centers are interpolated to the cell faces.

Required grids are generated by the commercial software program GRIDGEN.

16

A typical control volume is shown in Figure 2-2.

Figure 2-2 A typical control volume

By considering flux balances across the cell, spatial derivatives of the flux

vectors can be written as:

ξ , ,

 (2.12)

∂G
∂ξ G

,
G

,

Flow variables are considered as constant within the each cell and the fluxes are

denoted at the interfaces between the cells.

Then the Equation (2.11) can be rewritten as:

F , F , G , G , 0 (2.13)

17

Central and upwind schemes are the two alternatives of performing spatial

discretization of the fluxes.

While using the central schemes, calculation of the fluxes are performed based on

the averaged flow variables at cell interfaces. The advantage of using central

scheme is the implementation. It is easy to implement. However, artificial

dissipation is required for central schemes. Upwind schemes, on the other hand,

do not necessitate artificial dissipation but the implementation is not so easy.

Using upwind schemes can be better way to capture possible discontinuities in

the flow. However, for some cases, usage of the limiter functions should be

required to correctly model of the flow.

 In this thesis upwind schemes are used with flux vector splitting and flux

difference splitting methods.

2.4.1 Flux Vector Splitting

Flux-vector splitting can be accepted as the first level of upwind schemes. the

convective fluxes can be constructed with two different ways in the flux vector

splitting schemes. In the first way; the sign of the characteristic variables

identifies the convective fluxes. In the second way; the flux vectors can be

decomposed directly into convective and pressure parts.

2.4.1.1 Van Leer Scheme

Van Leer scheme is based on the characteristic decomposition of the convective

fluxes. It can be defined here as Mach number splitting.

 n L RM M M+ −= + (2.14)

18

Where the split Mach numbers are defined as

() ()2 2

1 0 1
1 11 1 1 1
4 4
0 1 1

L L R

L L L R R L

L R R

M if M if M

M M if M M M if M

if M M if M

+ −

≥ ≥⎧ ⎧
⎪ ⎪⎪ ⎪= + < = − <⎨ ⎨
⎪ ⎪

≤ − ≤ −⎪ ⎪⎩ ⎩ (2.15)

The Mach numbers, ML and MR, are calculated using the left and right states;

,L R
L R

L R

U UM M
c c

= = (2.16)

In the case of subsonic flows; where, 1nM < the positive and negative flux parts

are given by:

2

2

mass

mass x

c

mass y

energy

f

V cf u

F
V cf v

f

η
γ

η
γ

±

±

±

±

±

⎡ ⎤
⎢ ⎥

⎛ ⎞− ±⎢ ⎥+⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞− ±

+⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥

⎢ ⎥
⎣ ⎦

 (2.17)

Corresponding mass and energy flux components are defined as:

()

2

2

2 2 2 2

2

/

(1)
4

(1)
4

(1) 2
22(1)

L
mass L L

R
mass R R

energy mass

L R

Mf c

Mf c

U c u v Uf f

ρ

ρ

γ
γ

+

−

± ±

+
=

−
=

⎧ ⎫− ± + −⎪ ⎪= +⎨ ⎬
−⎪ ⎪⎩ ⎭ (2.18)

19

In the case of supersonic flow, where 1nM > , the fluxes are given by:

 ,

,

0 1

0 1
c c c n

c c n

F F F if M

F F F if M

+ −

+ −

= = ≥

= = ≤ −
 (2.19)

2.4.1.2 AUSM scheme

The Advection Upstream Splitting Method, AUSM, was introduced by Liou and

Steffen. The AUSM scheme includes convected and pressure parts.

Splitting according to the Mach number is performed as in the Van Leer scheme.

Corresponding flux splitting formulation is given below:

0 0

0 0

x L x R
c L c R

y L y R

T TL R

c c
p pcu cu

F M F M
cv cvp p
ch ch

ρ ρ
η ηρ ρ

ρ ρη η
ρ ρ

+ −
+ + − −

+ −

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ (2.20)

and pressure is splitted as follows:

() ()

() ()

2

2

1

1 2 1
4

0 1

0 1

1 2 1
4

1

L L

L
L L L L

L

R

R
R R R R

R R

p if M
pp M M if M

if M

if M
pp M M if M

p if M

+

−

≥⎧
⎪⎪= + − <⎨
⎪

≤ −⎪⎩

≥⎧
⎪⎪= − − <⎨
⎪

≤ −⎪⎩

 (2.21)

20

2.4.1.3 Steger-Warming Scheme

Eigenvalue splitting is not unique. There are lots of ways of splitting methods. In

Steger-Warming Scheme; the convective fluxes vectors can be calculated as

follows:

()
()() ()
()() ()

()() ()

1 2 3

1 2 3 2 3

1 2 3 2 3

2 2
2 2 3

1 2 3 2 3

2 1

2 1

2 12

2 1
2 1

x

c y

u c

F v c

u v cU c

γ λ λ λ

γ λ λ λ λ λ η
ρ

γ λ λ λ λ λ ηγ

λ λ
γ λ λ λ λ λ

γ

± ± ±

± ± ± ± ±

±
± ± ± ± ±

± ±
± ± ± ± ±

⎡ ⎤− + +
⎢ ⎥
⎢ ⎥− + + + −
⎢ ⎥
⎢ ⎥= − + + + −⎢ ⎥
⎢ ⎥

++⎢ ⎥− + + + − +⎢ ⎥−⎣ ⎦ (2.22)

In Equation 2.22 xη and yη represents the components of face normal vector. The

speed of sound and eigenvalues are defined as:

() ()2 2

1 2 3

11
2

, ,

tc e u v

U U c U c

γ γ

λ λ λ

⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

= = + = −
 (2.23)

For positive sign fluxes, F+; corresponding velocities, speed of sound and energy

terms are calculated from the left state flow variables. Similarly, for negative

signed fluxes, F-; they are calculated from right state variables.

By splitting the eigenvalues in terms of their signs:

 2
i i

i
λ λ

λ± ±
= (2.24)

Using this scheme with previously defined eigenvalues can cause problems when

the eigenvalues are equal to zero at sonic points and stagnation points. This

21

behavior makes the function discontinuous at these points. In order to reduce the

discontinuity a small number is used.

√
 (2.25)

2.4.2 Flux Difference Splitting

In contrast to the flux-vector splitting schemes, flux difference splitting methods

considers not only the direction of wave propagation but also the waves

themselves.

2.4.2.1 Roe Scheme

Roe’s approximation is based on the decomposition of the flux difference over a

face of the control volume. Roe’s averaged Jacobian matrix satisfies the

homogeneity property. Total flux can be defined with left and right state flow

variables as below:

 (2.26)

The diagonalized Roe’s Jacobian matrix is:

1

1

RL J

RL J

=

=

-
Λ Λ

-
Λ Λ

J Q Q

J Q Q

% % %

% % %

Λ

Λ
 (2.27)

22

Diagonal matrix, which is composed of eigenvalues of the Jacobian, is denoted

with J
%Λ , and the right eigenvectors matrix is ΛQ% . When the equations are

compiled into each other:

 (2.28)

By considering the eigenvalues signs, the flux vector can take the below form:

Then averaging the two flux vectors, the equation (2.28) can be rewritten as:

 (2.30)

Corresponding Roe’s Jacobian matrix and the Roe’s averaged variables are given

below:

()

() ()

2

3
2

0 1 0
3 3 1

2
1

1
2RL RL

RL RL RL

RL
T RL T RL RL

J u u

u
h u h u u

γ γ γ

γ
γ γ

⎡ ⎤
⎢ ⎥
⎢ ⎥

−⎢ ⎥= − −⎢ ⎥
⎢ ⎥

−⎢ ⎥
− + − −⎢ ⎥⎣ ⎦ (2.31)

23

RL

R R L L
RL

R L

R R L L
T

R L

RL R L

u u
u

h h
h

ρ ρ
ρ ρ

ρ ρ
ρ ρ

ρ ρ ρ

+
=

+

+
=

+

= (2.32)

2.4.3 High Order Schemes with Limiters

In the calculations; flow variables are assumed as constant within the cell.

However, when the flux calculations at the interfaces of the cells are needed to be

evaluated, the required computation of the flow variables are performed at the

cell faces.

With first order interpolation; the flow variables are as follows:

 ,

 , (2.33)

High order accuracy can be achieved by varying the flow variables within the

cell. The Monotonic Upstream Centered Scheme, MUSCL, is used for high order

reconstructions.

The interpolation formula is as below:

 1 1 ∆

 1 1 ∆ (2.34)

24

Δ are the difference operators and they are shown below:

∆
∆

 (2.35)

Type of differencing method and the order of the corresponding discretization

can be determined by defining different values to φ and κ.

First order accuracy can be obtained when Φ=0 and κ=0, and when Φ=1 and κ=1

the accuracy is increased to the second order. By varying values of these

parameters more, the order of accuracy can be increased further.

Second and higher-order upwind spatial discretizations require usage of limiters

in order to prevent oscillations at some situations. For example shock waves can

cause oscillations in the solutions. Reduction of the slopes can prevent those

oscillations which are used in the interpolation. Slopes of the corresponding

functions are made zero at strong discontinuities to reduce the order of

discretization to first order where the gradients are large.

In Equation 2.36 limiters are denoted by ()rφ . They are functions of the forward

and backward difference operators. Continuous limiter functions are used while

performing analytical differentiation of the fluxes for the Jacobian derivation

through this study. Where of the two continuous limiter functions are written

below:

25

2() 02 1
3 1() 2 32 2

rr for
r

rr for
r r

φ κ

φ κ

= =
+

= =
− + (2.36)

In this study limiters are activated only at high gradient regions in order to reduce

the discretization accuracy to first order.

In equations 2.36; when κ = 0 limiters leads to Van Albada limiter, and when

κ =1/3 limiters leads to Hemker- Koren limiter. For some cases; Van Albada

limiter is defined with κ = 0 case to prevent the activation of the limiter in smooth

regions by introducing an additional parameter,∈. Similar modification is

performed for κ =1/3 scheme by Venkatakrishnan. Modified interpolations

formulas are given below:

For κ = 0

2 2

2 2
() ()

2
ia b b a

a b
δ

+∈ + +∈
=

+ + ∈ (2.37)

For κ = 1/3

2 2

2 2
(2) (2)

3
a b b a
a b ab

δ +∈ + + ∈
=

+ − + ∈ (2.38)

where 1 1

,
,

L i L i

R i R i

a b
a b+ +

= Δ = ∇

= ∇ = Δ (2.39)

In equations from 2.36 to 2.40, ∈ is used as a small number to make it works only

at high gradient regions.

26

2.5 Boundary Conditions and Block Interfaces

In order to impose the flow properties to the whole domain; determination of the

boundary conditions are required. Physical domain boundaries include wall, far-

field, inflow and outflow boundaries. Special consideration is required for the

block interfaces for multi-block analysis. Varying according to the boundary

condition type, some specific treatments are needed to correctly evaluate the flow

variables and fluxes on the domains. Ghost cells are used for the implementation

of the physical domains. One layer ghost cell is used at the physical boundaries in

this study.

At the interior block interfaces, necessary data transfers between corresponding

blocks are performed with halo nodes and special consideration is required at the

interior boundaries such as wake-cut.

2.5.1 Far Field Boundary Conditions

External flow numerical simulations have to be conducted within a bounded

domain. For this reason, artificial far-field boundary conditions are required.

While performing the numerical implementation of the far-field boundary, two

basic requirements should be taken into consideration. The far-field boundaries

should simulate the flow as if the boundaries are at infinity and the disturbances

which occur in the inner domain should not be reflected back into the flow field.

Characteristic based boundary conditions approach is used to define required

flow conditions at the far-field. Eigenvalue signs of the convective flux Jacobians

determine the direction of the information along the characteristic lines. It can be

towards to the computational domain or to the out-of the boundaries. Therefore,

depending on the local Mach number, four different types of far-field boundary

conditions should be investigated. [42]

27

Supersonic Inflow: All eigenvalues have the same sign and the conservative

variables on the boundary are determined by free stream values only.

Supersonic Outflow: All eigenvalues have the same sign and the conservative

variables on the boundary are determined by the solution inside the domain.

Subsonic Inflow: Three characteristics (velocity components and density) enter to

the domain and one characteristic (pressure) leaves the domain. Therefore, one

characteristic variables are extrapolated from inside and the others are calculated

from free stream values.

Subsonic Inflow: Three characteristics leave domain and should be extrapolated

from inside but the other variable must be determined externally.

2.5.2 Wall Boundary Conditions

The aim of the wall boundary condition is to model no flow through the

boundaries. Since the flow is inviscid, required simulation can be performed by

using symmetry condition. At wall boundaries; the magnitudes of the velocity

components in the normal direction are equal but have opposite signs on the both

sides of the boundaries. The density, tangential component of the velocity and

energy is extrapolated from the interior cells to the ghost cells of the wall-

boundary.

2.5.3 Computational Boundary Conditions

Symmetry and wake-cut boundary conditions are two of the most widely used

computational boundary conditions. Symmetry boundary conditions are used

28

when the domain and the flow characteristics are symmetric about an axis. In

symmetry boundary conditions, while constructing the ghost cells, all of the flow

variables are extrapolated from the interior cells and only the sign of the normal

velocity component is in the opposite direction. In the wake-cut boundary

conditions; the solution is computed to fourth-order using the data in front and

behind of the wake cut as follows:

4 4 (2.41)

2.5.4 Block Interfaces

For multi-block grids; special considerations is required for the data transfer

between the block interfaces. The block boundaries of the neighbors are

overlapped in the streamwise direction when halo nodes are used.

The blocks are solved independently during start-up. As it is shown in Figure 2-3

the last interior column of Block 1 is specified as halo column of Block 2 and the

first interior column of Block 2 is specified as halo column of Block 1. At each

iteration; flow variables in halo columns are updated from the corresponding

interior cells of the neighboring block. Two different results come out at the

interface of the two blocks and then the solutions are subsequently averaged. At

steady state the block interfaces becomes completely transparent as it is a single

block.

Block interfaces; which are in the cross-stream directions are treated as wake-cuts

and such boundaries do not require halo nodes. As it is in the wake-cut

boundaries; flow variables in the last two columns of Block 1 and in first two

columns of Block 2 are used to calculate the fluxes on the blocks interfaces.

29

(Figure 2-4). However, it should be noted that the halo nodes work for both of the

conditions

Figure 2-3 Blocks Interface in the Streamwise Direction

Figure 2-4 Blocks Interface is Perpendicular to the Flow

30

CHAPTER 3

SOLUTION METHOD

3.1 Introduction

Iterative methods are being used for many years to solve the governing equations

of inviscid and viscous flows. During these studies explicit and implicit schemes

are used. In these schemes, iterative approach is used to solve the large linear

systems of equations which come from linearization in time. At this point; direct

solution to this linear system of equation introduces Newton’s method. However,

this has not been used so much due to the large memory requirements. However,

it is now easy to use Newton method with powerful computers.

In this chapter, Newton method is presented with the details of the methodology.

Moreover, the flux Jacobian matrix structure, implementation of the initial and

boundary conditions, solving methods of the large sparse matrices are explained.

At the end of the chapter, the verification of the generated code is done by

comparing the code results with other authors’ results in literature. Airfoil and

channel flow problems are chosen for verification.

31

3.2 Newton’s Method

The discrete Euler equations are shown with a set of nonlinear algebraic

equations, represented here by the vector equation;

 0 (3.1)

residual vector of the spatial discretization is shown as R(q). Residual is non-

linear function of conservative flow variables, q.

By applying Newton’s method to the residual equation; following linear system

can be obtained;

 ∆ (3.2)

) and ∆ (3.3)

Where the matrix is;

 (3.4)

and is specified as flow Jacobian.

Only the first-order Taylor series expansion is used and assuming that at the end

of the iterations desired convergence is obtained, i.e. 0. The

Newton’s Method can be defined as following:

 R ∆ (3.5)

32

Calculation for each iteration is given by;

∆ (3.6)

Then the analysis continues until the residual decreases below the desired value.

3.2.1 Flux Jacobian Evaluation

Flux Jacobian matrix calculation is needed for the solution of Euler equations.

Elements of the matrix are the residual derivatives with respect to the flow

variables vector. In this study; derivative calculations are performed with

analytical and numerical methods.

3.2.1.1 Analytical Jacobian Derivation

Discretized flux residual can be evaluated as:

 (3.7)

In equation 3.7 R , refers to the cell residual. Derivatives of each cell residuals

with respect to the flow variables construct the Jacobain matrix. Corresponding

discretized residual Jacobians can be written as:

 (3.8)

33

For first order discretizations; k and l values in Equation 3.8 changes from i-1 to

i+1 and j-1 to j+1, respectively.

 (3.9)

Corresponding Jacobian matrices in first order discretization for a 5-point stencil

can be calculated as:

 (3.10)

For the second order spatial discretization; MUSCL scheme is used to calculate

the flow variables at the cell faces. Interpolation of flow variables are performed

at the center of the neighboring cells. With the help of limiter functions MUSCL

scheme is made differentiable with respect to flow variables. Therefore,

analytical Jacobian calculations are performed easily for high order schemes.

For analytical flux calculations; it can be said that the residuals can be calculated

accurately and the order of error is equal to the round-off error. Although it

requires detailed hand calculations, analysis time of the prepared program is

34

short. On the other hand, when the complexity of the discretized residual

equations increases, the analytical Jacobian derivation turns into a crucial

problem. For these situations, numerical Jacobian studies will be a better choice.

3.2.1.2 Numerical Jacobian Derivation

Numerical Jacobian derivation method is another way to evaluate Jacobian

fluxes. In this method; the numerical Jacobian can be evaluated with a small

finite-difference perturbation magnitude, ε. With the component of the

residual vector component of the flow variable vector and the component

of the unit vector the usage of ε is as follows:

 (3.11)

Perturbation magnitude can be positive or negative. However, the sign of it is so

important when it is too close to the flow variable. First of all; the sign of ε

determines the type of differencing method. Using positive value makes the

differentiation forward and using negative value makes it backward. Then; while

using numerical Jacobians; eigenvalue signs should be checked during the

calculations to be sure that the perturbation magnitude does not cause to vary the

flux vector. Finally it determines the accuracy of the analyses; error can be

minimized with a good choice of it.

The numerical Jacobian method is used especially when the discretized residual

equations are complex. Since for such cases; analytically derivation of the

Jacobians are not easy. However, the computation time of the numerical Jacobian

35

method is greater when compared with the analytical method and it requires some

preliminary work for higher accuracy.

3.3 Structure of Jacobian Matrix

The Jacobian matrix is constructed with the partial derivatives of the cell

residuals with respect to the flow variables. Generated matrix is a large sparse

matrix but since the residual equations are depends on the local flow variables

most of the elements are zero. While solving the large sparse matrix, only the

nonzero elements are stored since evaluating all off the elements will be too

expensive especially for the large problems.

Residual equation with a first-order discretization, requires five-point stencil.

This produces block diagonal matrix with five 4x4-blocks. When second-order

discretization is used; the required grid number increases to nine and the

constructed block diagonal matrix includes nine 4x4-blocks. Hence, only these

block bands and the elements corresponding to the boundary conditions are non-

zero. Other elements in the matrix are zero.

For solving sparse matrixes UMFPACK and PARDISO packages are used.

Details of the packages are discussed in the following chapters.

4 points are required for first order analyses and 9 points are required for second

order analyses in 2-D Euler equations. Constructed stencils are shown in Figure

3-1 both for first order and second order 2-D Euler equations. For first order

analysis 4 points are required and for second order analysis required points

increase to 9 in 2-D Euler equations.

36

Figure 3-1 5 Points and 9 points stencils

Residual derivatives with respect to the flow variables are written for first order

and second order Euler equations;

 (3.12)

37

 (3.13)

Matrix structures for first and second order Euler equations are shown in Figure

3-2 and in Figure 3-3.

Figure 3-2 Matrix structure for first order analysis

Figure 3-3 Matrix structure for second order analysis

38

3.4 Implementation of Initial Conditions

Good initial condition is necessary for Newton’s method to obtain better

convergence and to prevent early divergence. In general; free-stream conditions

are used to implement initial conditions. However, by following such a way, one

may not obtain desired results with Newton method for most of the problem

cases. In order to use Newton method for these cases, if possible, a better guess

for initial condition is required. If the problem is complex, making initial guess is

difficult and one has to follow better procedure to get desired results. There are

some studies for this situation in literature and the widely used one is adding a

term to the diagonal of the Jacobian matrix. The aim to use this approach is to

make the matrices more stable by having dominant diagonal.

Newton method with the additional term can be presented as;

∆
∆ (3.14)

When ∆ ∞, the modified Newton method becomes equal to the original one.

The magnitude of ∆ depends on the L2-norm of the residuals. At the first

iteration; the magnitude of the ∆ is small and it becomes greater at the further

iterations.

L2-norm of the residuals can be shown as;

∆ ∆ (3.15)

Since quadratic convergence cannot be obtained at initial iterations, this method

increases the computational time. At initial iterations, convergence stays linear

and quadratic convergence can be obtained as the additional term goes to infinity.

39

So, initial iterations require additional terms to make the Newton method works.

However, at further iterations flow conditions become good enough to be used as

initial condition without using additional term anymore. This may cause

oscillation in the results. However, if the correct time is selected for removing

additional term, the desired convergence can be reached.

3.5 Implementation of Boundary Conditions

In order to implement the boundary conditions, flow variables relations should be

defined between the ghost cells and the interior cells. Relations can be defined

explicitly by using the previous iterations. After each iteration both of the interior

cells and ghost cells are updated by solving the Jacobian matrices. In this study,

implicit boundary conditions are used by defining the required Jacobian matrix

and the right hand side matrix entries and by solving them simultaneously. The

linearization of the equations that define the relations between the ghost cells and

interior cells are needed to be used in the implicit analysis. The corresponding

linearized equation is given below:

 ∆ ∆ (3.16)

Thes linearized equations varies according to the flow conditions. For supersonic

inlet and supersonic outlet boundary conditions A and B matrices entries are

equal to 1 but for subsonic boundary conditions a bit complicated calculations

should be performed to evaluate the corresponding matrices.

40

3.6 Solution Method

The Jacobian matrix should be constructed and factorized in order to get the flow

variables at each iteration. Derivatives of the residual function with respect to the

flow variables form the Jacobain matrix. There are several methods to solve such

matrices in the literature. Size of the matrix depends on the generated grid.

Actually, most of the entries in the Jacobian matrix are zero. Hence this

simplifies storing and solving the matrices.

In this study, matrix solver packages PARDISO (Parallel Direct Solver) and

UMFPACK (Unsymmetric-pattern MultiFrontal PACKage) are used to solve the

Jacobian matrices. Both of the matrices use LU decomposition to solve the sparse

matrices. Both of them are able to solve large sparse symmetric and unsymmetric

linear matrices. PARDISO can use shared-memory and distributed-memory

multiprocessors. Solver time comparison for both of the packages is performed

throughout this study.

3.7 Flow Solver Verification

Since the generated tool is inviscid, it is difficult the compare the results with

experimental data. Instead of this, the generated tool results are compared with

other authors’ results in literature. NACA0012 airfoil is chosen for external flow

test case and a channel flow with bump geometry is chosen for internal flow test

case.

Grid generated for the channel flow having 10 % thickness to chord ratio is

shown in Figure 3-4. Generated grid totally increases 129x33 nodes. Boundary

conditions that are used for this problem will be discussed in the performance

41

analyses part. For verification of the channel flow bump geometry, second order

Van Leer scheme is used. 0.5 Mach and 0.675 Mach are chosen for test case

conditions and corresponding Mach contours are compared with [43], which are

shown in Figure 3-5 and in Figure 3-6.

Figure 3-4 Channel Flow Grid (129x33)

Mach Contours which are given in [43] for 0.5 Mach inlet velocity

Mach contours which are calculated from generated tool for 0.5 Mach

inlet velocity

Figure 3-5 Channel Flow Mach Contours Comparison (0.5 Mach)

42

Mach Contours which are given in [43] for 0.675 Mach inlet velocity

Mach contours that are calculated from generated tool for 0.675 Mach inlet

velocity

Figure 3-6 Channel Flow Mach Contours Comparison (0.675 Mach)

As it is demonstrated in Figure 3-5 and in Figure 3-6; flow solver is good at

predicting the channel flow. Results are compatible with the ones given in [43]

both for 0.5 Mach and 0.675 Mach. The black lines in the Mach contours figures

represent the block interfaces which will be discussed in the following chapter.

43

NACA 0012 airfoil is chosen as a test case for external flow. C type grid is used

for the flow domain and shown in Figure 3-7 with boundary conditions. Grid size

is equal to 275x65.

Figure 3-7 C Type Grid for NACA 0012 (Outer View)

Figure 3-8 C Type Grid for NACA0012 (Inner View)

44

The analyses are performed for 0.85 Mach with 1o angle of attack. Second order

with Van-Leer scheme is used and corresponding Mach contours are compared

with the ones given in [44] and demonstrated in Figure 3-9.

Mach Contours which are given in [44] for 0.85 Mach and 1o angle of

attack

Mach contours that are calculated from generated tool for 0.85 Mach and 1o

angle of attack

Figure 3-9 NACA0012 Mach Contours Comparison
(0.85 Mach and 1o angle of attack)

45

As it is shown in Figure 3-9 and mach contours are similar with the ones shown

in [44]. Corresponding Cp comparison is given in Figure 3-10.

Figure 3-10 NACA0012 CP Comparison

46

CHAPTER 4

FLOW SOLVER PERFORMANCE

4.1 Introduction

In this chapter, performance analyses of the multi-block Newton method are

discussed. An axisymmetric nozzle and a channel flow problems are chosen to be

used for the performance analyses. The flow domain is divided into different

number of blocks to examine the effect of number of blocks to accuracy, the

convergence rate and CPU time spent. Block interface is moved to the different

locations in the flow domain to check the behavior of the interface boundary

condition at different flow conditions. Same problems are solved with different

sparse matrix solvers to compare their speed and accuracy.

4.2 Problems Definition

An axisymmetric nozzle and a channel flow problems are chosen for performance

analyses of the multi-block Newton method. The axisymmetric nozzle geometry

is shown in Figure 4-1.

Corresponding analyses parameters for the axisymmetric nozzle problem are;

Inlet Area: 0.138474 m2

Throat Area: 0.0314 m2

Total Temperature: 3130 K

47

Total Pressure: 17425611 Pa

Inlet Velocity: 0.1 Mach

Figure 4-1 Axisymmetric Nozzle Geometry

Moreover, channel flow problem is used to evaluate the performance of the

generated program for supersonic inflow conditions and examine block boundary

conditions around shock and expansion waves with 1.65 Mach inflow speed at

sea level standard atmospheric conditions. The channel flow with the bump

geometry is shown in Figure 4-2.

Figure 4-2 Channel Flow with a 10% Thick Circular Arc Bump

48

Boundary conditions that are used in the analyses are shown in Figure 4-3 and in

Figure 4-4. At inlet and outlet boundaries; Riemann invariants are used to apply

characteristic type boundary condition. Symmetry boundary condition is used at

the upper boundary to make the domain axisymmetric and the wall boundary

condition is used at the lower boundary.

Figure 4-3 Axisymmetric Nozzle Boundary Conditions

Figure 4-4 Channel Flow Boundary Conditions

Boundary conditions are implemented as explained in Chapter.2. In axisymmetric

nozzle problem; subsonic inflow & supersonic outflow and in channel problem

supersonic inflow and supersonic outflow conditions are used. Signs of the

49

eigenvalues of the convective fluxes determine the direction of the transformed

information.

For subsonic inflow boundary condition, characteristic variables are determined

from the freestream values. One of the characteristic variables is extrapolated

from the interior of the flow domain. Following boundary condition equations

can be derived for inflow and outflow boundaries

1
2

/

u u / (4.1)

 /

For supersonic inflow, all of the eigenvalues have the same sign. All of the

conservative variables on the inlet boundary are determined from the freestream

flow variables.

 (4.2)

For supersonic outflow, all of the eigenvalues have the same sign. All of the

conservative variables on the outlet boundary are determined from the inside of

the domain.

 (4.3)

50

4.3 Grid Parameters

Axisymmetric nozzle grid, which is used for the analyses, includes 82x21 and the

channel problem grid includes 129x33 number of nodes. Since the analyses are

inviscid, boundary layer is not constructed on wall boundaries. Single block grids

are shown in Figure 4-5 and in Figure 4-6.

Figure 4-5 Axisymmetric Nozzle Single Block Grid

Figure 4-6 Channel Single Block Grid

Size of the one Jacobian matrix can be calculated with the following formula. By

considering four flow variables in 2-D Euler equations. (Figure 4-7)

 4 (4.4)

51

Figure 4-7 2-D Single Block Grids

For multi-block Newton method performance evaluation, same grid is used and

divided into different number of blocks as it is shown in Figure 4-8. In the

analysis, number of solved Jacobian matrices is equal to the number of blocks.

In following axisymmetric nozzle multi-block analyses; constructed blocks have

nearly same sizes as shown in Figure 4-8. Totally 1722 nodes are tried to be

distributed within the whole blocks equally for axisymmetric nozzle problem.

52

2 Blocks Grid

4 Blocks Grid

8 Blocks Grid

16 Blocks Grid

Figure 4-8 Multi-Block Grids for Axisymmetric Nozzle Problem

53

In following channel flow multi-block analyses; constructed blocks have nearly

same sizes as shown in Figure 4-9. Totally 4257 nodes are tried to be distributed

within the whole blocks equally for channel problem.

2 Blocks Grid

4 Blocks Grid

8 Blocks Grid

12 Blocks Grid

Figure 4-9 Multi-Block Grids for Channel Problem

54

4.4 Flow Solution

Axissymetric Nozzle problem is a good example for internal flow. Air enters from

the inlet of the nozzle with 0.1 Mach and leaves from the outlet with nearly 3.25

Mach. Mach contours are shown in Figure 4-10 for different number of blocks.

Having a supersonic inflow and outflow boundaries, channel problem is solved to

examine the code performance in catching shock and expansion waves. Mach

contours of the bump geometry are shown in Figure 4-11.

At all of the analyses; same solution parameters are used except ∆ , additional

term for diagonal, which will be discussed later in this chapter.

First of all, at all of the analyses; analytically derived flux Jacobian matrix entries

are used. Numerical derivation method is not used for this comparison problems

and PARDISO is used as a matrix solver. All of the results are converged

solution results and the convergence criterion is below 10-12. Residuals are

calculated as the differences of the net fluxes that pass through a cell at each

iteration. For convergence the normalized difference of the net fluxes are

expected to be below 10-12. Since discretization order and splitting scheme may

change the results, second order discretization is used with Van Leer flux vector

splitting scheme at all of the analyses.

As it is seen from Figure 4-10 and Figure 4-11, the block interface boundary

conditions work well both for subsonic and supersonic flow conditions. As it is

explained in Chapter 2, communications between the blocks are performed with

using halo nodes. In these problems, single column halo nodes are used. Blocks

are solved separately and two different results occur at the interface. Then the

halo nodes are updated for the next iteration and the fluxes at the interfaces are

55

averaged to make the blocks compatible. At steady state, the interfaces become

completely transparent.

When the calculated flow variables between the two sides of the interface have

much difference, the Newton method for the both blocks does not converge to the

same result and may have a stability problem. For these cases, ∆ the diagonal

additional term, should be arranged logically to keep the both sides of the blocks

compatible.

56

1 Block Contours

2 Blocks Contours

4 Blocks Contours

8 Blocks Contours

16 Blocks Contours

Figure 4-10 Mach Contours Comparison for Different Number of Blocks
(Axisymmetric Nozzle Problem)

57

1 Block Contours

2 Blocks Contours

4 Blocks Contours

8 Blocks Contours

12 Blocks Contours

Figure 4-11 Mach Contours Comparison for Different Number of Blocks
(Channel Problem)

58

4.5 Performance of Convergence

The most critical factor that affects the convergence of the Newton method is the

way of term addition (∆ to the diagonal of the Jacobian matrix. Newton scheme

does not have convergence problems and has quadratic convergence rate if there

is not an additional term to the diagonal. However, Newton method has problems

when the initial conditions are poor. To improve the initial conditions, one has to

use diagonal addition terms and when the sufficient propagation is reached the

additional terms can be cancelled to make use of the quadratic convergence rate

ability of the method. If the additional term is not cancelled after some

propagation, the convergence rate will become linear and the required iteration

number for convergence will increase. In Table 4.1 effect of ∆ on convergence

is shown for first order discretization.

59

Table 4.1 Effect of ∆ on Convergence, First Order Discretization
(Axisymmetric Nozzle)

Iterations required for convergence

Δt initial Δt final 1 Block 2 Blocks 4 Blocks 8 Blocks 16 Blocks

1 5 601 828 1143 1398 1712

1 50 903 1156 1318 1550 1928

1 500 1180 1306 1670 1981 2345

1 5000 1616 1702 2103 2461 2811

10 50 35 89 118 176 250

10 500 67 96 121 176 274

10 5000 77 109 122 191 275

10 50000 93 111 122 193 275

100 500 11 24 60 92 113

100 5000 15 26 61 92 113

100 50000 17 28 63 92 113

100 500000 18 28 63 98 113

500 5000 9 21 50 77 107

500 50000 10 23 52 77 107

500 500000 11 23 52 77 107

500 5000000 11 23 53 77 107

5000 50000 7 19 62 72 113

5000 500000 8 20 63 72 113

5000 5000000 8 20 63 72 113

5000 50000000 8 21 67 72 113

In Table 4.2, effect of ∆ on convergence is shown for second order

discretization. Actually, it can be said that, there is not an explicit rule for

calculation of ∆ . Most suitable additional term can be found by trial and error

method. Generally the lower ∆ increases the number of iterations required for

convergence and the higher one increase the risk of divergence. The required

60

additional term depends on the problem parameters and the initial condition that

is given to the program.

Table 4.2 of ∆ on Convergence, Second Order Discretization (Axisymmetric
Nozzle)

Iterations required for convergence

Δt initial Δt final 1 Block 2 Blocks 4 Blocks 8 Blocks 16 Blocks

1 5 2748 2918 * * *

1 50 * * * * *

1 500 * * * * *

1 5000 * * * * *

10 50 126 292 * * *

10 500 178 311 * * *

10 5000 279 317 * * *

10 50000 337 317 * * *

100 500 12 23 80 * *

100 5000 15 26 82 * *

100 50000 17 26 82 * *

100 500000 20 26 * * *

500 5000 10 19 61 714 1128

500 50000 11 19 63 727 1130

500 500000 12 19 63 741 1130

500 5000000 12 * * 741 1130

5000 50000 7 21 68 * *

5000 500000 9 19 69 * *

5000 5000000 9 21 71 * *

5000 50000000 9 * * * *

(*) Not converged cases

Iterations required for convergence increases with increasing number of blocks.

The single block Jacobian matrix is solved implicitly and it quadratically

converges within nearly 10 iterations. However, when the whole domain is

61

divided into some blocks, due to the interface boundary condition, the required

number of iteration increases. When the interface boundary condition is used, the

fully implicit property of the Jacobian matrices disappears with the interventions

during each iteration.

In Figure 4-12 and in Figure 4-13 residuals are compared for different numbers of

blocks. Same analysis parameters are used for all of the cases. ∆ initial is 1000

and ∆ final is 50000.

Figure 4-12 Residual Comparison for ∆ initial =1000 ∆ final=50000
(Axisymmetric Nozzle)

62

Figure 4-13 Comparison for ∆ initial =1000 ∆ final=50000 (Channel)

4.6 CPU time Required for Convergence

CPU time required for convergence is shown in the figures from Figure 4-14 to

Figure 4-21. In Newton method analyses; construction of the Jacobian matrices

and solving the constructed Jacobian matrices are two main parts that require

more CPU time when compared with the other parts of the analyses. Jacobian

matrices entries are calculated with analytical derivation method and the required

time is directly proportional with the matrix size.

63

Figure 4-14 Time Required for Construction of Jacobian Matrices
per one-block (First 20 iterations - Axisymmetric Nozzle)

Figure 4-15 Time Required for Construction of Jacobian Matrices
per one-block (First 20 iterations - Channel)

64

Figure 4-16 Time Required for Solving Jacobian Matrices per one-block
(First 20 iterations - Axisymmetric Nozzle)

Figure 4-17 Time Required for Solving Jacobian Matrices per one-block
(First 20 iterations - Channel)

65

Figure 4-18 Total time required per one-block
(First 20 iterations - Axisymmetric Nozzle)

Figure 4-19 Total time required per one-block (First 20 iterations - Channel)

66

Figure 4-20 Total time required (First 20 iterations - Axisymmetric Nozzle)

Figure 4-21 Total time required (First 20 iterations - Channel)

67

Table 4.3 Grid Size Information (Axisymmetric Nozzle)

 Total Grid Size Grid Size per One Block (Nearly)

1 Block 82*21 82*21

2 Blocks 82*21 41*21

4 Blocks 82*21 41*11

8 Blocks 82*21 21*11

16 Blocks 82*21 11*11

With increasing number of blocks, due to the decreasing size of the each block,

CPU time required for constructing and solving the Jacobian matrices per one

block decreases. However, due to the increase in the required iteration number for

convergence, the total time required rises with increasing number of blocks. In

Table 4.3, total grid sizes and grid sizes per one block is given for following

discussions

In Figure 4-14 and in Figure 4-15, CPU time required for construction of the

Jacobian matrices is shown. The main factor that affects the required CPU time is

the size of the Jacobian matrix. It generally linearly affects the required CPU

time, so there is a linear decrease in the construction of the Jacobian matrices

with increasing number of blocks per one iteration. The other factors which affect

the CPU time required for construction of the matrix are flux vector splitting

method, order of the discretization and the boundary conditions. Depending of

the model, performed calculations vary.

In Figure 4-16 and in Figure 4-17 CPU time required for solving the Jacobian

matrices per one iteration are demonstrated. Size of the matrix quadratically

affects the required CPU time and with increasing number of blocks there is a

quadratic decrease in solving the Jacobian matrices per one iteration.

68

Total time required per one iteration of the single block is given in Figure 4-18

and in Figure 4-19. One block case requires more CPU time as expected when

only the results per one block are considered. In Figure 4-20 and in Figure 4-21

total CPU time of the all blocks per one iteration are shown. Increasing number

of blocks generally increases the total required time. However, when the size of

the each block in problems decreases so much, quadratic decrease in CPU time

for solving the matrices affects the total CPU time and may keep it stationary.

However, again when the total CPU time required for convergence compared, it

can be said that, the increasing number of blocks rises the total CPU time at all

conditions.

In the analyses; PARDISO and UMFPACK are used as sparse matrix solvers.

Both of them are discussed in Chapter 3. They follow the same methodology to

solve large sparse matrices. The only difference is PARDISO divides the

Jacobian matrices into different CPU nodes and solves the Jacobian matrices

parallel. On the other hand, UMFPACK does not have parallelization capability.

In Table 4.4, CPU time required for different size of grids at each iteration is

shown. When the grid size increases, required CPU time for an iteration increases

as expected. The big percentage of the increase in CPU time is due to the

construction of the jacobian matrices. Increase in the grid size, augments the time

required for solving the Jacobian matrices but the increase is not as much as in

the construction part. Making multi-block grids decreases the total time required

per one iteration especially when the grid size is greater. Performance of

PARDISO is better than UMFPACK for all size of grids which are used in this

thesis due to the parallelization capability in terms of CPU time required. 8 cores

&2 CPU 2.33 GHz with 8 GB RAM are used for analyses. In order to decrease

the total required CPU time, one should decrease the time required for

construction of the Jacobian matrices. In Table 4.5 total CPU time comparison is

69

given and as mentioned earlier increasing number of blocks rises the total CPU

time. Having a greater contribution, matrix construction time can be decreased by

parallelization of this part but the grid size for 2-D Euler solver is not as big as

the ones those analyzed here. However, parallelization would be necessary when

viscous force terms are added or when the 3-D version of the code is generated.

Table 4.4 CPU time required for different size of grids per one iteration
(Axisymmetric Nozzle)

Constructing the

Jacobian Matrices (s)
Solving the Jacobian Matrices (s)

 PARDISO UMFPACK

One

Block
16 Blocks

One

Block
16 Blocks

One

Block
16 Blocks

82*21

Grid 0.9 0.13*16=2.08 0.15 0.004*16=0.064 0.16 0.006*16=0.096

405*60

Grid 51 2.8*16=44.8 5.13 0.15*16=2.4 8.11 0.41*16=6.56

810*120

Grid 122 6.85*16=109.6 25.12 0.95*16=15.2 - 1.55*16=24.8

Table 4.5 Total CPU time comparison (Axisymmetric Nozzle)

 Time Required (s)

Per One Iteration

Total

 One Block 16 Blocks One Block 16 Blocks

82*21 Grid 1.05 2.14 18.9 516.392

405*60 Grid 56.13 47.2 1010.34 5569.6

810*120 Grid 147.12 124.2 2648.16 14655.6

70

CHAPTER 5

CONCLUSION

In this thesis, exact multi-block Newton’s method was successfully applied for

2-D Euler equations. In house developed tool was used for the analyses and it

was improved throughout the thesis study. Euler equations were discretizied by

using finite volume method with different upwind methods and second order

accuracy was used for the spatial discretizations. Multi-block analyses were

performed by using halo nodes and corresponding modifications were done in

analytical Jacobian calculations and matrix solver parts. Block interface boundary

conditions were added and made compatible with the different flow regimes.

Generated tool was made adaptable to the different type of problems with

implementations of the various boundary conditions. Two different matrix solver

programs, UMFPACK and PARDISO were used for the Jacobian matrix

solutions. Both of them have capability to solve highly sparse large matrices,

which are inevitable in this study and they were made compatible with the

generated tool. Airfoil and channel flow problems were used for verification of

the tool.

Multi-block performance analyses were made for axisymmetric nozzle and

channel flow problems. Accuracy, convergence and CPU time spent comparison

was made by dividing the whole domain into different number of blocks. Flow

contours were investigated around the block interfaces to examine the data

transfers between the neighboring blocks. Grids having different sizes were used

71

for these analyses to make reliable comparisons. In these comparisons; it was

seen that the increasing number of blocks rises the total CPU time spent due to

the increase in the required iterations for convergence. The greater part of the

total CPU time spent aroused from Jacobian construction part and it was tried to

be reduced by simplifications in the corresponding subroutines. CPU time spent

of the UMFPACK and PARDISO matrix solvers were compared and using

PARDISO was seen to be more suitable for this analysis because of its

parallelization capability.

In the performance analyses, it was seen that with good initial guess, Newton’s

method provides quadratic convergence rate. Poor initial guesses, on the other

hand, caused divergence or tremendous increase in the required iterations.

Diagonal addition term was used in the analysis to strength the initial guesses.

Required iteration numbers were tabulated for different values of additional term.

Initial and the withdrawal values of those added diagonal terms were found to be

critical factors on the convergence of the solution.

In order to increase the accuracy, viscous force calculation terms and turbulence

models should be added to the generated tool. These additions would require

higher grid sizes for the analyses. Those increases in the grid size will cause more

CPU time and the parallelization of the Jacobian matrix construction part would

be necessary.

Usage of the exact Newton Method is not suitable for very complicated problems

and when the flow domains have higher grid sizes. Instead of exact Newton

method, matrix free Newton Krylov method or inexact Newton method can be

used for these types of problems. Moreover, for multi-block analyses

simultaneously approaching terms (SAT) with summation by parts (SBP)

approach can be used to replace halo nodes to increase accuracy

72

REFERENCES

[1] Wington, L B., “Application of MACSYMA and Sparse Matrix Technology
to Multi-element Airfoil Calculations”, AIAA Paper 87-1142, 1987.

[2] Bender, E.E and Kosla, P.K., “Application of Sparse Matrix Solvers and
Newton’s Method to Fluid Flow Problems”, AIAA Paper 88-3700, 1988.

[3] Venkatakrishnan, V., “Newton Solution of Inviscid and Viscous Problems”,
AIAA Journal, Vol. 27, July 1989, pp. 885-891.

[4] Van Dam, C. P., M. Hafez and J. Ahmad, “Calculations of viscous flow
with separation using Newton’s method and direct solver”, AIAA Journal, Vol.
28, No. 5, 1990, pp. 937-939.

[5] Orkwis, P. D., A Newton’s method Solver for the Two-Dimensional and
Axisymmetric Navier-Stokes Equations, Ph.D. Dissertation, North Carolina State
University, Raleigh, NC, 1990.

[6] Orkwis, P. D., and McRae, D. S., “Newton’s method Solver for High Speed
Viscous Separated Flowfields”, AIAA Journal, Vol. 30, January 1992, pp. 78-
85.

[7] Orkwis, P. D., and Mc Rae, D. S., “Newton’s Method Solver for High
Speed Viscous Separated Flowfields”, AIA Journal, Vol. 30, January 1992, pp.
1507-1514.

[8] Orkwis, P. D., “Comparison of Newton’s and Quasi-Newton’s Method
Solvers for the Navier-Stokes Equations”, AIAA Journal, Vol. 31, May 1993,
pp. 832-836.

[9] Kim, D. B., and Orkwis, P. D., “Jacobian Update Strategies for Quadratic
and Near-Quadratic Convergence of Newton and Newton-Like Implicit
Schemes”, AIAA Paper 93-0878, Proceedings of the AIAA 31st Aerospace
Sciences and Meeting&Exhibit, Reno, Nevada, January 1993.

73

[10] Whitfield, D. L., and Taylor, L. K., “Discretizerd Newton-Relaxation
Solutionof High Resolution Flux-Difference Split Schemes”, AIAA Paper 91-
1539, 1991.

[11] Vanden, K. J., Direct and Iterative Algorithms for the Three-Dimensional
Euler Equations, Ph.D. Dissertation, Mississippi State University, Mississippi,
1992.

[12] Vanden, K. J., and Whitfield, D. L, “Direct and Iteartive Algorithms for the
Three-Dimensional Euler Equations”, AIAA Paper 93-3378, 1993.

[13] Orkwis,P.,D., and Venden, K.,J., ”On the Accuracy of Numerical Versus
Analytical Jacobians”, AIAA Paper 94-0176, Proceedings of the AIAA 32nd
Aerospace Science Meeting, Reno, Neveda1994, January 1994.

[14] Saad, Y., and Schultz, M.H., “GMRES: A Generalized Minimal Residual
Algorithm For Solving Non-Symmetric Linear Systems”, SIAM J. Sci. Stat.
Comput. Vol. 7, July 1986.

[15] Venkatakrishnan, V., and Mavripilis, D.J., “Implicit Solvers for
Unstructured Meshes”, AIAA-91-1537-CP, 1991.

[16] Venkatakrishnan, V., “Implicit Schemes and Parallel Computing in
Unstructured Grid CFD”, ICASE report 95-28 CR-195071, NASA, 1995

[17] Rogers, S.E., “A Comparison of Implicit Schemes for the Incompressible
Navier Stokes Equations with Artificial Compressibility”, AIAA 95-0567,
January 1995

[18] Forsyth, P.A., and Jiang, H., “Iterative Methods for Full Newton Solution
of the Euler Equations”, Sixth International Symposium on Computational Fluid
Dynamics, pp. 318-323 , Lake Tahoe, Nevada, September 1995

[19] Brown, P., and Saad, Y., “Convergence Theory of Nonlinear Newton
Krylov Algorithms”, SIAM J. Optimization, Vol. 4., pp. 297-330

[20] Davis, T. A., UMFPACK Version 4.1 User Manual, University of Florida

74

[21] Amestoy, P. R., Duff, I. S. and L’Excellent, J. –y., “Multifrontal parallel
Distributed Symmetric and Unsymmetric Solvers”, Computer Methods in
Applied Mechanics and Engineering, Vol. 184, Issues 2-4, 14 April 2000, pp.
501-520

[22] Gupta, A., “Recent Advances in Direct Methods for Solving Unsymmetric
Sparse Systems of Linear Equations”, ACM Transactions on Mathematical
Software, Vol. 28(3), 2002, pp.301-324.

[23] Schenk, O. and Gartner, A., “Solving Unsymmetric Sparse Systems of
Linear Equations with PARDISO”, Journal of Future Generation Computer
Systems, Vol.20, 2004, pp.475-487.

[24] Onur, O. and Eyi, S., “Effects of the Jacobian Evaluation on Newton’s
Solution of the Euler Equations”, International Journal for Numerical Methods
in Fluids, Vol.49, pp 211-231,2005.

[25] Gelfgat, A. Y., “Stability of the Convective Flows in Cavites: Solution of
benchmark problems by a low-order finite volume method”, International
Journal for Numerical Methods in Fluids, Vol.53, pp 485-506.

[26] Raju,M.P,Tien,J.S. ”Development of Direct Multifrontel Solvers for
Combustion Problems”, International Journal of Computation and
Methodology, 1521-0626, Vol. 53, Issue 3,2008,pp.189-205

[27] Ezertaş A. A., Master of Science Thesis,”Sensitivity Analysis Using Finite
Difference and Analytical Jacobians” METU 2009

[28] Nichols J. C., Zingg D. W., “A Three-Dimensional Multi-Block Newton-
Krylov Flow Solver for the Euler Equations”, AIAA paper, 2005

[29] Kam D. C. W.,Master of Science Thesis, “A Three Dimensional Newton-
Krylov Navier-Stokes Flow Solver Using a One-Equation Turbulence Model”,
University of Toronto, 2007

[30] Rumpfkeil M. P., Doctor of Philosopy, “Airfoil Optimization for Unsteady
Flows with Application to High-Lift Noise Reduction” University of Toronto,
2008

[31] Nemec M. Doctor of Philosopy, “Optimal Shape Design of Aerodynamic
Configurations: A Newton-Krylov Approach” University of Toronto, 2003

75

[32] Hicken J. E.,, Doctor of Philosopy, “Efficient Algoriths for Future Aircraft
Design: Contributions to Aerodynamic Shape Optimization” University of
Toronto, 2009

[33] Leung T. M-M, “A Newton-Krylov Approach to Aerodynamic Shape
Optimization in Three Dimensions” University of Toronto, 2010.

[34] Huan X, Hicken J. E., Zingg D. W., “Interface and Boundary Schemes for
High-Order Methods” , AIAA paper, 2009.

[35] Steger, J. L., and Warming, R. F., “Flux Vector Splitting of the Inviscid
Gasdynamic Equations with Application to Finitte-Difference Methods”,
Journal of Computational Physics, Vol.40, 1981, pp. 263-293.

[36] Van Leer, B. “Flux Vector Splitting for the Euler Equations”, ICASE
Report 82-30,September 1982.

[37] Liou, M.-S. “A sequel to AUSM: AUSM+” Journal of Computational
Physics, Vol 129(1996),pp.364-382

[38] Roe, P. L., “Characteristics-Based Schemes for the Euler Equations”,
Annual Review of Fluid Mechanics, Vol. 18, 1986,pp.337-365.

[39] Van Leer, B., “Towards the Ultimate Conservative Difference Scheme, V.
A Second Order Sequel to Godunov’s Method”, Journal of Computational
Physics, Vol. 32, “979,pp.”0”-“36.

[40] Van Albada, G.D., Van Leer, B., Roberts, W.W., “A Comparative Study of
Computational Methods in Cosmic Gas Dynamics”, Astronomy and
Astrophysics, Vol 108, 1982, pp. 76-84,

[41] Venkatakrihnan, V., “Preconditioned conjugate gradient methods for the
compressible Navier- Stokes equations”, AIAA Journal, Vol. 29, June 1991, pp.
1092-1100.

[42] Blazek J., “Computational Fluid Dynamics: Principles and Applications”,
Elsevier, 2005.

[43] Ni, R. H., “Aa Multiple-Grid Scheme for Solving the Euler Equations",
AIAA Journal, Vol.20, no.11, 1982, pp.1565-1571.

76

[44] AGARD Subcomitte C., Test Cases for Inviscid Flow Field Methods,
AGARD Advisory Repor 2111, 1986.

.

