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Electrical and Electronics Engineering Dept., METU

Prof. Dr. Aydın ALATAN
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Nihan KESİM ÇİÇEKLİ
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ABSTRACT

AN ALGORITHM FOR MULTISCALE LICENSE PLATE DETECTION AND
RULE-BASED CHARACTER SEGMENTATION

KARALI, Ali Onur

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. İlkay ULUSOY

September 2011, 56 pages

License plate recognition (LPR) technology has great importance for the development of In-

telligent Transportation Systems by automatically identifying the vehicles using image pro-

cessing and pattern recognition techniques. Conventional LPR systems consist of license plate

detection (LPD), character segmentation (CS) and character recognition (CR) steps. Success-

ful detection of license plate and character locations have vital role for proper LPR. Most LPD

and CS techniques in the literature assume fixed distance and orientation from the vehicle to

the imaging system. Hence, application areas of LPR systems using these techniques are

limited to stationary platforms. However, installation of LPR systems on mobile platforms is

required in many applications and algorithms that are invariant to distance, orientation, and

illumination should be developed for this purpose. In this thesis work, a LPD algorithm that

is based on multi-scale vertical edge density feature, and a character segmentation algorithm

based on local thresholding and connected component analysis operations are proposed. Per-

formance of the proposed algorithm is measured using ground truth positions of the license

plate and characters. Algorithm parameters are optimized using recall and precision curves.

Proposed techniques for each step give satisfying results for different license plate datasets

and algorithm complexity is proper for real-time implementation if optimized.
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ÖZ

ÇOK ÖLÇEKLİ PLAKA TESPİT VE KURAL TABANLI KARAKTER BÖLÜTLEME
İÇİN ALGORİTMA

KARALI, Ali Onur

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. İlkay ULUSOY

Eylül 2011, 56 sayfa

Akıllı trafik sistmelerinin geliştirilmesinde otomatik plaka tanıma (OPT) teknolojisi, araçların

görüntü işleme ve örüntü tanıma teknikleri kullanılarak otomatik tanınmasını sağlaması bakı-

mından büyük öneme sahiptir. OPT sistemleri genellikle plaka tespiti (PT), karakter bölütleme

(KB) ve karakter tanıma (KT) basamaklarından oluşmaktadır. Plaka ve karakterlerin konum-

larının başarılı tespitinin doğru OPT işlemi için rolü büyüktür. Literatürde yer alan birçok

plaka tespit ve karakter bölütleme tekniği görüntüleme sisteminden araca sabit uzaklık ve

yönelim varsaymaktadır. Dolayısıyla, bu teknikleri kullanan OPT sistemlerinin kullanım

alanları sabit platformlarla sınırlıdır. Buna rağmen, birçok uygulamada OPT sistemlerinin

hareketli platformlar üzerine kurulması gerekmektedir ve bu amaç doğrultusunda uzaklığa,

yönelime ve aydınlanmaya karşı değişimsiz algoritmaların geliştirilmelidir. Bu tez çalışmasın-

da, çok ölçekli dikey kenar yoğunluğu özelliğine dayalı bir plaka tespit algoritması ve yerel

eşikleme ve bağlantılı bileşen analizine dayalı bir karakter bölütleme algoritması önerilmekte-

dir. Önerilen algoritmanın başarımı plaka ve karakterlerin denektaşı pozisyonları kullanılarak

ölçülmektedir. Algoritma parametreleri anımsama ve kesinlik eğrileri kullanılarak eniyilen-

miştir. Her basamak için önerilen teknikler farklı plaka veritabanlarında tatmin edici sonuçlar

vermektedirler ve algoritmanın karmaşıklığı gerçek zamanlı uygulama için uygundur.
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vii



For Diren, who´s been making the world a better place for me since 2010.

viii



ACKNOWLEDGMENTS

I would like to offer my deep and sincere gratitude to Asst. Prof. Dr. İlkay Ulusoy for her
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CHAPTER 1

INTRODUCTION

Several issues in intelligent transportation systems (ITS) require development and implemen-

tation of automatic license plate recognition (LPR) systems as a solution of autometic vehicle

identification and ongoing researches on more successful LPR systems have been conducted

for decades. Continuous developments in image sensor and processor technologies should

be taken into account in the algorithm development process and robust algorithms should be

developed for mobile LPR systems as well as stationary ones to identify vehicles while the

installed platform keeps moving.

LPR systems can be considered in two different groups with respect to their installation plat-

forms: Stationary LPR systems and mobile LPR systems. Stationary LPR systems take ad-

vantage of the prior knowledge of the position and size of the license plate (LP) in the scene.

Additionally, illumination can be controlled with the help of visible and/or infrared light

sources. For this reason, accurate detection and recognition of LPs at electronic toll gates,

parking lot entrances and highway speed control poles is accomplished and their implemen-

tations become widespread day to day.

Second group of LPR systems are mounted on mobile platforms, usually police cars, and

the LPs of the around vehicles are recognized while the mounted vehicle keeps on driving.

Mobile LPR systems still require performance enhancement and newly developed algorithms

should take the advantage of ongoing technological advancements in the resolution and speed

of the imaging systems. Successful LPR system mounted on a mobile platform should be

invariant against the distance and the orientation to the target vehicles. Furthermore, actions

should be taken in the algorithm against illumination change of the environment since effec-

tiveness of the external light sources decrease due to the uncontrolled target vehicle distance
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and orientation. For this purpose, edge-based techniques are preferred to the intensity and

color based techniques for the detection and recognition of LPs when the system is planned to

be installed on mobile platforms. Besides, multi-scale approaches are adopted to compensate

distances variation from the imaging system to the vehicle, and also, high resolution imag-

ing systems increase the performance of the multi-scale approaches. Another feature that a

mobile LPR system should have is the detection of multiple license plates on a single image

since most scenarios include street views of the roads and parking lots. However, stationary

LPR algorithm scenarios can be restricted to include only a single LP on the image.

General structure of an LPR system consists of three based steps known as license plate

detection (LPD), character segmentation (CS) and character recognition (CR). LPD step aims

to find the exact location of the LP in the image and this step outputs the bounding box

coordinates of them in the image. Second step of the LPR system is known as CS and this

step feeds the CR algorithm with the exact positions of each character inside the LP region. In

fact, if license plate detection and character segmentation algorithms are combined, binarized

version of the license plate region can also be sent to the character segmentation step. Final

step of the LPR system is the CR step and optical character recognition (OCR) algorithms are

implemented in this step. Most algorithms in the literature consider each step as a separate

problem and bring separate solutions to each one. Overall performance of such systems are

calculated as the multiplication of the performance of each step. LPR systems with feedback

between the steps give better results in some scenarios but still, false results obtained in one

step result in false results in the next step and feedback information becomes useless.

1.1 Scope of this Work

In this thesis work, an algorithm is proposed for the LPD and CS steps of an LPR system.

For LPD, a multiscale vertical edge based density technique is proposed. Nextly, a CS tech-

nique, which is based on connected component analysis operations by merging intra and inter

character properties, is proposed. Results of each step is tested using images from different

datasets which cover different scenario conditions.

In the Chapter 2, previous studies on LPR system are summarized. Implementation areas of

the LPR systems are described and effectiveness of these systems are reported in the first part
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of the chapter. Nextly, LPD algorithms proposed in the last two decades are briefly described

in two groups as region-based and edge-based techniques and briefly described. Then, char-

acter segmentation algorithms existent in the literature are introduced and examined in two

different groups, projection-based CS techniques and CCL-based CS techniques, for the ease

of the reader.

In the Chapter 3, proposed algorithms for each step are explained step by step. Each step

of the algorithm is described in detail, theoretical backgrounds are explained using equations

and block diagrams, and results are illustrated using figures. Step results are implemented on

sample images to illustrate scale, orientation and illumination invariance.

In the Chapter 4, firstly, test images from three different datasets are introduced, and type of

the datasets, with reasons for selection, are explained. Secondly, simple GUI based software

for ground truth construction is introduced. Then, performance metric used to measure the

effectiveness of the algorithm is introduced. Finally, performance of the algorithm is evaluated

and illustrated using precision and recall curves for different algorithm parameters. Overall

performance of the system is discussed at the end of the chapter.

In the Chapter 5, performance of the algorithms for the image datasets are discussed, conclu-

sions are done and future works are described.
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CHAPTER 2

LICENCE PLATE DETECTION AND CHARACTER

SEGMENTATION

2.1 Image Processing For Intelligent Transportation Systems

Recent advancements in the image sensor technology with the increasing number of manu-

facturer companies introduce the inexpensive digital cameras to our daily lives. Integration of

these novel hardware technologies with the state of the art computer vision algorithms leads

to the design and implementation of several intelligent systems for the good of the societies.

ITS is one of the application areas of intelligent systems that increases the efficiency and

safety of transportation [1]. Utilization of the visual information acquired from image sensors

becomes widespread and vital for the management of transportation problems that arise from

increasing number of vehicles. Traffic flow control, driver assistance and situational aware-

ness are achieved with the emerging information. License plate recognition (LPR) is a crucial

technology to deploy safety and control ability for ITS using visual information by providing

automatic identification of the vehicles. For this reason, many LPR algorithms have been

developed and still there is a need for further developments to cover different scenarios.

Today, LPR systems are used for many different purposes and they can be installed on both

stationary and mobile platforms. Application areas of these systems can be seen in the below

list:

• Speed control in highways,

• Identification of traffic light violations,

• Automated payment systems (billing and ticketing) for bridges, tunnel, highway and
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parking lots,

• Identification and permission of vehicles in security areas such as government buildings

and military zones,

• Analysis of traveling time and average speed,

• Observation of stolen vehicles,

• Situational awareness,

• Collection of large amount of data to be used in search and evidence gathering activities.

Above benefits increase the need for reliable LPR algorithms and numerous LPR techniques

are proposed in the literature. Reliability and efficiency of these techniques are crucial and

detailed surveys on these LPR systems can be found in the literature [2, 3]. Lum explains

the usage of license plates in USA for security applications in [2]. With the help of the

beneficial discussions made in this report, one can have a better insight into LPR technology

and impact of it on social security area. Results of the Lum’s work show that usage of LPR

is an efficient solution for the detection of stolen vehicles, motor vehicle violations and fur-

ther investigations by connecting the LPR output with databases, monitoring and recording

vehicles in high crime locations, and monitoring security in high-risk locations. Lum investi-

gated the deterrent effect of LPR systems on crimes but results show that there is not yet such a

progress. Anagnostopoulos et al. [3] presents the most comprehensive survey on existent LPR

algorithms in the literature. They divide an LPR system into license plate detection (LPD),

character segmentation (CS) and character recognition steps and then performance of the pro-

posed solutions for each step are presented. Anagnostopoulos’s survey enables researchers to

located their own work on LPR in the whole LPR technology and attempt to solve problems

such as blurring effect of relative motion between the system and the target vehicles, existence

of broken characters on the plate, inadequate resolution of the imaging system and complex

backgrounds with many vertical edges, where many of them still remains unsolved.

LPR systems deployed in different platforms secure and simplify our daily lives. In fact,

satisfying results are obtained, and benefits of these systems are proven. However, still there

is a need for further improvements by incorporating the latest advances in signal processing

and imaging technology areas. In the next section, structural analysis of license plates used in

Turkey is given, and then detailed review of LPD techniques in the literature is given.
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Figure 2.1: Vehicle license plate of Turkey [4].

2.2 License Plate Structure

License plates in Turkey are rectangular shape aluminium plates of size 11x52cm with a blue

stripe on the left which shows that country is ”European Customs Union” member. Figure 2.4

shows a sample LP [4].

Size of the blue stripe on the left is equal to 4x10cm and each character height is equal to 8cm.

Character width varies between 0.2 to 0.7 times the height of the character. Black characters

are used on white background, and for official vehicles, white characters are written on black

background.

2.3 License Plate Detection

Detection of the boundaries of license plates in the scene is the first step of most LPR algo-

rithms and known as license plate detection or localization in the literature. License plate de-

tection (LPD) algorithms can be divided into two main categories : Region-based approaches

and Edge-based approaches. In the folowing sections, we briefly describe the literature work

for these two approaches.

2.3.1 Region-Based LPD Techniques

Earlier region based algorithms to detect license plate regions assume fixed size license plate

region in the scene [5, 6, 7]. Naito proposes an adaptive thresholding technique to binarize

the image, and utilizes the know character and license plate dimensions and orientations to

extract candidate regions. Comelli et al. [6] finds the maximum contrast points over rectan-

gular regions in the scene, which correspond to the license plate coordinates and defines that

point as the center of license plate region. Barroso et al. [7] examines the vertical lines along
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the image to locate the LP, and then the vertical projections of the binarized version of the

image in the areas of interest. A peak-to-valley approach described in [8] is adopted to con-

firm licence plate location and character segmentation. Another earlier license plate detection

algorithm based on region aspects is proposed by Zunino et al. [9] where image contain-

ing license plates is split into sub-blocks using local variance values and a set of stripes are

obtained over these blocks. Final decision over license plate location is made using early

training results and score assignment process. A license plate localization algorithm that de-

pends on the statistical properties of the gray-level image is proposed by Anagnostopoulos et

al. [10]. In the proposed method, two step binarization process is defined. In the first step,

two sliding concentric windows are used to compute statistical values around each pixel and

result is binarized using a user-defined threshold value. Result of the first binarization step

is used as a mask for the original gray-level image and masked regions are binarized using

the technique described in [11]. Obtained connected components (CC) are filtered using

structural properties and remaining regions are detected as licence plate regions. Most region

based techniques for LPD use local or global thresholding, followed by connected component

labeling (CCL) operations as described above. Hmouz et al. [12] proposes a region based

algorithm that combines the local thresholding result with the global thresholding results ob-

tained from multiple threshold values. The algorithm has better results against illumination

variance due to multiple thresholding technique. Hmouz models each CC feature as a random

variable and assigns probabilities to the CCs obtained after global and local binarization op-

erations. CC features used in this paper are width/height ratio of the region, character area,

character/plate area density and number of edges in the plate center. A Gabor filter based

license plate detection technique is proposed in [13]. Although, steps are not explained in

detail, 12 Gabor filters are used that consist of three scales in four directions and result is bina-

rized with a threshold value and morphological operations are applied to merge neighboring

regions. Final CCL operation is used to segment each region separately.

Conci et al. [14] proposes a region-based algorithm to locate the plates in the scene which

uses mathematical morphology and local Otsu thresholding technique [15]. In the first step

of the algorithm, top-hat and bottom-hat morphological operations are applied to increase

the contrast between the character and plate regions. Size of the structuring elements in the

algorithm is selected with respect to the know LP character size. After binarizing the enhanced

image, opening operations are applied to remove improper regions which have a width and
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height outside the known plate width/height range.

2.3.2 Edge-Based LPD Techniques

A color edge based license plate region extraction technique is proposed in [16]. Authors de-

fine fuzzy maps using the hue, saturation- intensity and color edge components of the scene

and aggregate the results by assigning weights for each fuzzy map to locate candidate regions.

Guo et al. [17] proposes another edge-based technique, where I component of the HSI color

space is used to detect vertical and horizontal Sobel edges. Guo constructs the edge map of the

image by computing the l2 − norm of the edges and then binarizes the edge map iteratively by

selecting a threshold as the average values of the remaining edge map entries. Hung et al. [18]

proposes a two step license plate detection algorithm, where in the first step, rough localiza-

tion is achieved by analyzing the vertical detail coefficient of the Discrete Wavelet Transform

of the gray scale image by using Haar Wavelet. In the second step of the algorithm, accurate

location of the plate is found using horizontal detail coefficients and morphological opera-

tions. Gabor filter can also be used for license plate localization. Caner et al. [19] proposes

a method that uses a predefined wavelength, orientation and threshold for binarization of Ga-

bor filter output. Binarization operation is followed by CCL analysis to eliminate improper

regions. Mahini et al. [21] defines a bothat operator as subtracting the original image from its

morphological closing operation applied version to emphasize black regions on white back-

grounds, and then applies vertical Sobel edge detection operation to detect vertical edges in

the scene. Next, color information is merged with the vertical edge regions and result is bi-

narized using a soft thresholding technique where threshold value is predetermined. Finally,

some of the connected components are filtered using structural analysis. Yu et al [23] adopts

Sobel edge detection and vertical and horizontal projections of the edge image to locate li-

cense plates. However, global projection based techniques are sensitive against background

clutter and rotation of the license plate. Besides, size of the LP becomes extremely crucial in

projection based localization techniques.

An edge based approach similar to the one proposed in this thesis work is proposed by Li

et al. [22]. Li computes the vertical edges in the image after preprocessing operations and

defines an energy image, where elements of the image are calculated as the average values of

the vertical edge values in a region centered at a pixel. Size of the region is selected as the
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assumed licence plate size. Energy image is segmented by checking neighborhood of the local

extremas in the image. Sample energy image taken from this work can be seen in Figure 2.2.

On the other hand, a multi-scale approach is adopted in this thesis work where edge density

image is segmented using statistical values obtained from the multiscale processing of the

vertical color edges in the scene.

(a) (b)

Figure 2.2: (a) Sample image, (b) Energy image (Source: Li et al. [22]).

2.4 Character Segmentation

CS is the second step of LPR systems and operation applied in this step outputs the exact

location of each character inside the previously detected licence plate region. In most of the

approaches brought to CS, initial binarization operation is applied to the license plate region,

and then, vertical projections or CC aspects are used to segment characters.

In general, CS techniques can be divided into two different categories which will be described

in the following sections: Projection-Based CS techniques, and CCL-Based CS techniques.

2.4.1 Projection-Based CS Techniques

Barroso et al. [7] proposes a vertical projection based character segmentation technique,

which uses binary image of the plate region for vertical projection and seeks peak-to-valley
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structures in the projection. It’s mentioned that the threshold value chosen is scene depen-

dent and peak-to-valley parameters depend on the distance between the car and the imaging

system. Cheng et al. [25] also uses the technique proposed by Barroso, and additionally

applies an orientation adjustment operation and skew correction to compensate rotational ef-

fects. Rahman et al. [24] proposes a similar character segmentation technique to the previous

one. Vertical projection of the LP region is used to find character upper and lower boundaries

and horizontal projection is used to segment characters as seen on Figure 2.3. Although not

mentioned, results show that binarization operation is applied before projection. The result of

projection is also used in character recognition step by using a template matching operation

between the license plate character projection and the previously defined character projection

templates.

(a) (b)

Figure 2.3: (a)Upper and lower boundary extraction through horizontal projection, (b) Char-
acter segmentation using vertical projection( Source : Rahman et al. [24] ).

Although projection based techniques are simple and fast for images as shown in Figure 2.3, in

most of the cases plates are obtained rotated with broken characters and/or merged characters

due to dirt or stickers and possibly have a lower resolution than the sample image shown

in Figure 2.3. Projection based techniques suffer from rotation, motion-blur and dirt effects

seriously and can cause erroneous segmentation results due to weak connections that exist

for characters such as {′L′,′ T ′,′ H′}. To avoid these errors, Shi et al. [27] proposes a detailed

correction procedure that consists removal of non-character objects, top-bottom correction,

tilt correction and merging unconnected characters after projection based segmentation. Shi

also uses horizontal projection of the LP to decide whether it is single or double line. Another

projection based method that adopts tilt correction and iterative CS is proposed by Tyan et
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al. [26]. Tyan defines a cost function as sum of squared values of the projected edge values

and finds the tilt angle which maximizes the cost function. Later, the characters are split and

merged back with respect to the result of character recognition operation.

2.4.2 CCL-Based CS Techniques

Segmentation of an image enables us to group image pixels that have similar features and

treat the whole group as a single object. Inside LP regions, the most distinguishing property

between the LP characters and the background is the intensity difference between these two

regions. Usually, although colors may be different due to regulations around the countries,

there exists a high contrast between the characters and the LP background, and this difference

is the mostly used cue to segment LP characters. Quantization, binarization and region grow-

ing operations are different ways of segmentation that are frequently used in LPR. Result of

segmentation should be labeled to identify each region, and, for this reason, connected com-

ponent labeling (CCL) operations are used. Features of the identified regions at the end of

the CCL operation can be used to decide correct character regions and to remove erroneous

regions appeared due to noise, dirt or other disruptive effects on the LP. Connected component

analysis is adopted for many CS algorithms in the literature and rest of the section gives brief

information about the earlier works that depend on CCL based CS.

Naito et al. [5] proposes a technique where, exact size of the characters are known and bina-

rization result is looked for that regions. If missing characters exist, using the known license

plate character placement, the region where missing character exists is found and sent to the

recognition step. Chang et al. [16] binarizes the plate region using a local adaptive algorithm

proposed by Nakagawa et al. [29] and eliminates the regions due to noise, by using region

placement and region aspect ratio. Character alignment is determined using Hough transform

and divergent characters are removed. Finally, total number of characters are limited to eight

and if more characters are obtained, the ones with less area are eliminated. Guo et al. [17]

proposes a hybrid binarization technique, which adopts two global thresholds that depends

on the peak and valley of the licence plate region histogram and one local thresholding tech-

nique. Through top-down and left-right search processes, using LP size dependent kernels,

LP frames and noise are partially eliminated. Hamey et al. [28] applies CS based on color,

size and position properties of the characters. Their algorithm merges the information of the
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expected placement and fixed width of each character. These information are used to separate

merged characters and to merge broken characters. Giannoukos et al. [30] proposes an adap-

tive thresholding technique that is similar to the approach adopted in this thesis work. Mean

and variance inside a kxk region centered at the examined pixel are found, and then, threshold

value is defined as the sum of the mean and the variance values if the variance is more than the

minimum variance in the scene. Then, they use minimum height, maximum height and aspect

ratio properties to eliminate non-character regions. Initial character segmentation results are

used as a mask and further CC analysis are conducted adopting LP template format. Steps of

this algorithm can be seen in Figure 2.4.

Figure 2.4: Sample CS operation sequence (Source: Giannoukos et al. [30]).
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CHAPTER 3

PROPOSED ALGORITHM

LPR algorithms mostly consist of separate detection, CS and recognition steps as shown in

Figure 3.1. Some adaptive and iterative versions of this structure are proposed in [20], but

still performance of each step significantly affects the overall success of the whole system. In

this chapter, details of the proposed algorithm for the first two steps of a LPR system, which

are LPD and CS steps, are explained.

First part of this chapter explains an LPD algorithm which uses multi-scale vertical color edge

features to detect candidate LP locations. Then, some of the candidates are eliminated using

structural region analysis. In the second part of this chapter, a rule-based character segmenta-

tion algorithm which counts for the Turkish LP regulations, is proposed and algorithm steps

are illustrated on sample images. Steps of each part can be seen in Figure 3.2.

3.1 License Plate Localization

In this thesis work, a multi-scale, vertical color edge density based LPD algorithm is pre-

sented. Number of pixels that a LP region spans shows variation due to the resolution of the

imaging system, the range from the car to the imaging system, and optical lens characteristics

of the system. For this reason, a multi-scale approach should be carried out to avoid strict

Figure 3.1: License plate recognition steps.
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Figure 3.2: Flow chart of the algorithm.
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scenario constraints on these three scenario parameters. Hence, as a first step of the detection

algorithm, a scale space pyramid is constructed using original and down-sampled versions of

the original color image. Then, a color edge detection technique that uses vector operations

is applied to each level of the color image pyramid. But, in some cases, grayscale images are

obtained from the imaging system and in these cases, first derivative of the image in the hor-

izontal direction is used to detect vertical edges. Next, vertical edge densities are calculated

and noisy edge responses are eliminated using a rectangular shape averaging filter. Filtering

results of the edge responses at different scales are fused by resizing and multiplication op-

erations. Single channel, high dynamic range image acquired at the end of the multiplication

operation is segmented using an adaptive thresholding technique. Candidate LP regions are

obtained and refined using morphological operations. Finally, structural analysis of the can-

didate regions are held and improper regions are eliminated. Details of these operations are

given in the following section.

3.1.1 Image Pyramid Construction

In this work, a multi-scale algorithm is developed because the size of the LP is assumed to

be unknown. In other words resolution, field of view of the imaging system and the variable

distance of the LP from the camera can change in a limited range by using this multi-scale

technique. Multi-scale approaches are used in many robust feature detection techniques [31,

32]. For this purpose, an image pyramid is constructed using the down-sampled versions of

the original color image. In this work, a 4-level image pyramid is constructed. 1st level of the

pyramid, denoted by I1, is defined as the original color image. 2nd, 3rd and 4th levels of the

pyramid (I2, I3 and I4) are the resized versions of the original image by ratios 0.75, 0.5 and

0.25, respectively, and they are obtained by subsampling and linear interpolation operation.

Number of image pyramid levels can be selected depending on the time and performance

constraints, as well as recognition system parameters such as distance and resolution. Sample

image pyramid constructed using this method is shown in Figure 3.3.

LP regions contain strong and frequent vertical edges due to the spatial ordering of the char-

acters and plate background and foreground color difference. Considering this, vertical color

edges are used as a cue for LPD and are extracted from each of the pyramid images. Detected

vertical edges are used in region vertical edge density calculation. Results obtained from the
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Figure 3.3: Color image pyramid (I1, I2, I3 and I4).

pyramid images are fused in the subsequent operations. Since a single edge detection filter is

used in the next step, edges with different thickness values can be detected over this pyramid.

Next section describes the color edge detection method applied in this work.

3.1.2 Color Edge Detection

Existence of the dense vertical edges is one of the cues used in the LPD. While detecting

edges of the LPs, often grayscale edge detection techniques are preferred as explained in

Section 2.3.2. Conversion from RGB to grayscale decreases the computational complexity,

however, due to loss of color information, these techniques sometimes give erroneous results.

To have a more robust technique, a color edge detection is used in this work. Each channel of

an image pixel is represented as a component in a three dimensional vector space. Then, image

pixels, which are represented as three dimensional vectors, are used to find edge responses

(En(x, y)). En is calculated as the magnitude of the difference vector calculated from adjacent

image pixels in horizontal dimension where n denotes the image pyramid level. In Figure 3.4,

step by step color edge detection procedure is shown on a sample image I, which is separated

into its R, G and B channels (IR, IG and IB).

First derivative of the image in horizontal direction is used to detect vertical edges. So, a

filter, fh, which is also known as Haar wavelet is used. This filter avoids thickness included

by edge filters such as Sobel or Prewitt, but its noise filtering characteristic is worse than

these. However, the averaging filter applied after edge detection removes noisy responses.

By filtering the channels of the image I with fh, each component of the difference vector is

obtained as seen in the below equation:
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Figure 3.4: Color edge detection steps.

Īn
R,G,B = In

R,G,B ∗ fh (3.1)

First derivatives of the channel images are denoted as Īn
R, Īn

G and Īn
B and n is the level of the

image in the pyramid. Elements of edge images En are computed as seen in the Equation 3.2.

En(x, y) =
√

(Īn
R(x, y))2

+ (Īn
G(x, y))2

+ (Īn
B(x, y))2 (3.2)

LP regions in En for all pyramid levels show vertical edge distribution. Color edge detection

procedure is visualized in Figure 3.4 on a sample image taken from the image pyramid. But

still there can be some other regions which include more frequent vertical edges when each

level image is considered individually. To avoid false detections, information obtained in

each pyramid level is fused and regions with stable edge characteristics along the pyramid

are found. In the next step, vertical edge density images are calculated by further data fusion

operations.

In the literature, some datasets consist of monochrome images and a grayscale edge detection

technique is needed in that cases. In this thesis work, if a grayscale image is given as an input

to the LPD step, En is simply computed as the first derivative of the image Ī in the horizontal

direction.
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3.1.3 Vertical Edge Density Calculation

LP regions can be differentiated from other components of the scene using strong and fre-

quent vertical edges. Some techniques count the number of edges or project edges along the

vertical direction to find LP regions. However, these techniques are not robust against to low

contrast and rotated plates. For this reason, edge response averaging approach is adopted in

this study. An averaging filter fa is applied to the edge images to find vertical edge densities.

Vertical edge density value is calculated for each pixel in the pyramid images as an average

value of the edge responses in a rectangular area centered at that pixel. Size of the averaging

filter fa depends on the resolution of the image and expected size of the LP region. So, a

rectangular filter of size k fa by f fa is used in vertical edge density calculation to get maximum

response around license plate regions. k fa by f fa are defined as given in Equation 3.3 where

W and H correspond to image horizontal and vertical resolutions, respectively. Filter size is

simply adapted to the expected resolution of the original input image using the multiplication

coefficient τ. τ is defined as in Equation 3.3, because, nominal horizontal resolution of the

images is assumed to be 640 and values of the parameters are simply adapted to the changes

of the image resolution. With the help of this filter, impulsive edge responses are filtered out

which are added with the usage of filter fh. After filtering with fa, results are resized to the

original image size (W by H) to fuse edge density information obtained from the pyramid

images. Finally, resized edge density images are element-wise multiplied to combine vertical

edge density results obtained from the whole pyramid. Above operations are illustrated in

Figure 3.5 for a sample image that contains LPs.

τ =
W

640
k fa = 5 ∗ τ (3.3)

l fa = 30 ∗ τ

fa =
1

k fa .l fa
.


1 · · · 1
...
. . .

...

1 · · · 1


k fa xl fa
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Ēn = resize(En ∗ fa) (3.4)

R =
∏

n

Ēn (3.5)

where Ēn denotes the nth level, resized vertical edge density image as n goes from 1 to 4

and R denotes the resultant edge density image. Multiplication is used to fuse edge density

information since we expect to obtain strong vertical edges around LP regions in each of the

pyramid images. As seen in Figure 3.5, in the LP regions R takes high values. Segmentation

of the image R using statistical values of the element values is explained in the following

section.

3.1.4 Candidate Region Segmentation and Correction

In the previous sections, vertical edge density responses are fused and R is obtained as a

result. LP region appears as a peak in R and segmentation process is needed to differentiate

LP regions from the background. The most basic segmentation method is thresholding against

a constant threshold value. However, such a technique depends on scene characteristics and

fails in images with different backgrounds and illumination conditions. In this thesis work,

an adaptive thresholding technique that depends on the statistical properties of the scene is

applied. A threshold value for the scene, λ, is computed by multiplying the standard deviation

of the elements of R, σ, by a coefficient k and adding the result to the mean value of the

elements of R, µ. Calculation of mean µ, standard deviation σ and the overall threshold value

λ is seen below:

µ =
1

W · H
∑

x

∑
y

R(x, y) (3.6)

σ =

 1
(W · H) − 1

∑
x

∑
y

(R(x, y) − µ)2


1
2

(3.7)

λ = µ + k · σ (3.8)

After calculating the threshold value, binary image Rb is obtained by thresholding R with λ.

Sample image segmentation result for k = 2.5 can be seen in Figure 3.6.
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Figure 3.5: Vertical edge density image calculation steps.
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Figure 3.6: Binary segmentation of candidate license plate regions.

Adaptive selection of threshold λ gives better results for the images taken under nonuniform

illumination and localization conditions. However, existence of highly cluttered background

objects such as tree branches, guard rails or wire meshes result in a dense vertical edge density

regions. These regions increases the threshold level and LP regions can not be detected.

After thresholding operation, correction of the segmentation result Rb is needed using mor-

phological operations. For this purpose, binary erosion and dilation operations are applied

sequentially using different sized structuring elements. Firstly, a binary erosion operation us-

ing a 3-by-3 square structuring element eliminates the small regions and then binary dilation

operation with an adaptive size m by n is applied to merge neighboring candidate LP regions.

After detection and correction steps, candidate regions are analyzed and eliminated.These op-

erations are explained in detail in the next section. Effect of binary morphological operations

is shown in Figure 3.7.

m = 10 ∗ τ,

n = 40 ∗ τ (3.9)

3.1.5 Candidate Region Labeling and Elimination

After morphological operations, each connected component of Rb is structurally analyzed and

final candidates are obtained. After segmentation operation, some regions are obtained that

are not suitable to be an LP and one more elimination step is required to remove false detec-
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Figure 3.7: Binary erosion and dilation operations on candidate license plate regions.

Figure 3.8: Region elimination result.

tions. For this purpose, connected components in Rb are found using a connected component

labeling operation. Then, firstly, area of the labeled regions are examined and the ones that

have a pixel area less than 200 pixels are removed. 200 pixels of LP area should have ap-

proximately a width/height ratio of 6 for an approximate LP region, hence, have an height

of approximately 6 pixels. In experimental trials, characters are poorly segmented in LP re-

gions that have less than 10 pixel height and this explains why 200 is selected as minimum

area condition. Secondly, width/height ratio of each connected component bounding box is

checked to be greater than 2. In turkish regulations, this ratio is approximately equal to 5

and can decrease down to 2 due to the orientation of the imaging system and the car. After

elimination operation, regions shown in Figure 3.9 are obtained.

3.2 Character Segmentation

Next step after detection of the LP regions is the segmentation of the LP characters. In this step

of the algorithm, each candidate LP region is segmented and using CCL and an elimination

process, character-like CCs are obtained. While obtaining characters, rule-based elimination
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Figure 3.9: License plate region detection results.

process is defined and further consistency check of remaining characters are applied. Then,

broken characters are corrected and merged characters are divided. Finally, least squares

algorithm [33] is used to fit characters’ centers and further missing character extraction and

connected character division operations are performed over this line. This part of the chapter

requires insertion of each country’s regulations over LPs for better character extraction results

and some parameters are defined to adapt the algorithm for better performance on different LP

types. LP character extraction steps are explained in detail in the following sections. Sample

detected LP regions can be seen in Figure 3.9 where rw and rh denotes width and height of

the detected region.

As seen in Figure 3.9, both LP and non-LP regions are obtained at the end of the LPD step.

Proposed algorithms is robust against false LP region inputs and most of them are discarded

at the end of the character character elimination of consistency check steps. Steps of CS

technique is explained in detail in the following sections.

3.2.1 Segmentation of License Plate Region

Most of the LPs in Turkey consist of black numbers and letters on a white background. Back-

ground and foreground differentiation is needed to find each character region inside LP region.

In this thesis work, intensity values inside the LP region are used to segment characters from

the background of the plate. Global thresholding technique is used in most characters seg-

mentation algorithms described at Section 2.4. Global thresholding techniques generally have
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the following disadvantages:

• Constant thresholds are not robust against illumination,

• Otsu thresholding in some cases results in false segmentation due to rough detection of

plate region and contribution of vehicle’s body color in threshold computation,

• Application of a global threshold can result in incorrect segmentation of the plate char-

acters due to nonuniform illumination such as darkening of a plate region as a result of

shadow.

To avoid these disadvantages, an adaptive thresholding technique that uses local intensity

values for background and foreground differentiation is adopted. For this purpose, firstly,

original color image I1 is cropped using the plate region boundary values obtained by the

LPD step. Then, a grayscale conversion operation given in Equation 3.10is applied to this

color image to be used in binarization operation. Weights of grayscale conversion operation

can be seen in Equation 3.10. At the end of this conversion, Igray
roi is obtained.

Igray(x, y) = 0.2989 ∗ I1
R(x, y) + 0.5870 ∗ I1

G(x, y) + 0.1140 ∗ I1
B(x, y) (3.10)

A threshold value denoted as γ(x, y) is computed for each pixel in the Igray
roi . Average value

of the intensities around a square region centered at position (x, y) is found and added to a

constant K, to compute γ(x, y) as seen in the below equations:

d =
rh

4
(3.11)

γ(x, y) =

 1
d2

x+ d
2−1∑

x′=x− d
2

y′=y+ d
2−1∑

y′=y− d
2

Igray
roi (x′, y′)

 + K (3.12)

Selection of parameter K depends on the scenario properties, and discussed in detail in the

experimental results. d denotes a single dimension of the square region. Sample results of

local thresholding technique can be seen in Figure 3.10 with the values of K = 10 and d = 15
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Figure 3.10: Segmentation result of the license plate regions using adaptive thresholding
(K=10).

Results obtained at the end of the local thresholding operation are used to segment license

plate characters, since most of them are obtained as a single CC after binarization. However,

there are still lots of non-character regions, and merged and broken characters. In this thesis

work LP characters are obtained using CC analysis. Through CC analysis, improper LP

regions are eliminated, merged characters are divided and broken characters are detected.

Next section describes the elimination process non-character regions.

3.2.2 Elimination of Non-License Plate Characters

At the end of the segmentation operation, CCL is applied to binary plate region and CCs with

different sizes and shapes are obtained. Since, most of the character regions obtained at the

end of the localization step include LP frame and its neighborhood, some of the obtained CCs

belong to non-character regions. These non-character regions include LP frame, stickers on

the plate, brand and model logo of the car and dirt. Hence, further elimination process is

required to extract characters. To eliminate these non-character regions, features extracted

from each CC are used. In this thesis work, the features for a proper LP character to meet are

listed below;

• Minimum character area,

• Minimum character height,
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• Minimum character area to character region area ratio,

• Maximum character region area to plate region area ratio,

• Maximum character region width/height ratio.

An LP character which does not meet any of these conditions is removed and if at the end of

the elimination process, more than three characters are remaining, the process is continued.

Most of the conditions meet the scale invariance requirements and some conditions are defined

for giving a proper output to the recognition phase in terms of minimum size and area that

can be recognized. By analyzing each CC with respect to these conditions, elimination of the

false detections is achieved.

3.2.2.1 Minimum Character Area

Character area is one of the mostly used property to segment characters and most of the algo-

rithms use this property to decide whether a CC is a character or not. Since most algorithms

define an exact range for character area, successful results can be obtained only in a limited

distance between the camera and the vehicle. In this thesis work, only the minimum value it

can have is defined and CCs obtained after segmentation are checked whether they hold this

condition or not. Selected minimum number is equal to 30 pixels and most of the undesired

responses obtained after segmentation due to noise, dirt or stickers are removed. Charac-

ters that have less than 30 pixels are also removed because further difficulties are met at the

recognition step for such small characters. Effectiveness of this condition at removing noisy

responses in and around plate region can be seen in Figure 3.11.

3.2.2.2 Minimum Character Height

Similar to the minimum character area condition, to be robust against distance parameter,

instead of a character height range, only its minimum value is defined as a condition and

characters are eliminated by checking whether this condition is met or not. Characters that

have a height less than 10 pixels are more prone to be a non character structure such as dirt

and stickers, broken character segments or vertical LP frame edges. Even if the detected char-

acter is a real LP character, most of the recognition algorithms can still not detect such small
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Figure 3.11: Elimination with respect to character area condition, CCs that have less than 30
pixels area are removed.

characters. On the sample LP segmentation result given in Figure 3.10, result of elimination

process for characters that have less than 10 pixels of height can be seen in Figure 3.12.

3.2.2.3 Minimum Character Area to Character Region Area Ratio

Another scale independent character feature, that is defined as a condition, is the ratio be-

tween the character area and the area of the bounding box that surrounds the character. This

condition is mostly used to eliminate thin lines inside the LP such as license plate frame. Al-

though, next condition defined is used to eliminate LP frames, this condition helps with the

removal of the broken LP frame parts. Hence, CCs which have a ratio between the character

area (number of white pixels inside character bounding box) and the area of the bounding box

of the character less than 0.2 are removed. Results obtained after elimination process with

respect to this constraint can be seen in Figure 3.13.

3.2.2.4 Maximum Character Region Area to Plate Region Area Ratio

In properly segmented LP regions, character bounding box area is approximately equal to

5% of the licence plate region and this value can not be more than 20%. At the end of the

segmentation results, some CCs from the body of the vehicle or frame of the license plate are

obtained which do not meet above condition. Therefore, this condition is especially defined to
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Figure 3.12: Elimination with respect to character height condition.

Figure 3.13: Elimination with respect to character area to character bounding box area ratio.
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Figure 3.14: Elimination with respect to character bounding box area to plate region area
ratio.

eliminate license plate frames because in most of the scenarios, license plate frame is extracted

as a unique structure and it has a bounding box area which is approximately equal to licence

plate region area. Results obtained after elimination process with respect to this constraint

can be seen in Figure 3.14. Results show that licence plate frames are removed completely or

partially using this condition. Remaining parts of the frames that can not be removed can be

eliminated using one of the other conditions explained in this section.

3.2.2.5 Maximum Character Region Width/Height Ratio

In Turkish license plates, each character has a width/height ratio of approximately 0.6. How-

ever, due to some effects discussed previously, license plate characters can be merged at the

end of the segmentation operation. Turkish license plates consist of groups of numbers and

characters and a group can include at most 4 characters. Considering these four characters are

all merged and obtained as a single character, it can have a width/height ratio of at most three.

So, using this constraint, the license plate character regions are eliminated and result obtained

on samples can be seen on Figure 3.15.

3.2.3 Consistency Check of License Plate Characters

In the previous section, components inside license plate region are eliminated with respect to

their individual CC properties. However, individual character properties is not adequate for
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Figure 3.15: Elimination with respect to character width/height ratio.

final character decisions. In this section, one more elimination step is applied to check con-

sistency of inter character properties. LP characters are all lined up and have equal height so

consistency of these properties give strong cues about LP existence and characters’ positions.

Consistency is searched using median value of the corresponding property. If more than three

characters remain at the end of the consistency check operations, then process is continued,

otherwise, LP region is discarded and CS algorithm does not return a result. In the next two

sections, consistency check operations are explained in detail.

3.2.3.1 Consistency of Character Heights

Regulations of most country LPs requires that all characters should have equal height. There-

fore, after individual blob analysis, inter-character analysis are carried out to remove CCs

that have inconsistent height. To eliminate divergent characters with respect to their heights,

median value of the character heights which is denoted as Hmed is calculated. If absolute dif-

ference from each characters height to Hmean is more than λH , that character is removed from

the candidate character list. Hmean and λH are calculated as seen in Equations 3.14 and 3.13.

Hmed = Median(Hchar(i)), 3 < i ≤ p (3.13)

λH =
Hmed

8
(3.14)
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Figure 3.16: Results of inconsistent height elimination step. 1st column: Segmentation output,
2nd column: Individual blob analysis output, and 3rd column: Height consistency elimination
results.

where Hchar denotes the height of remaining characters and p is equal to remaining number

of characters. Result of height consistency elimination can be seen on sample LP regions in

Figure 3.16. If remaining character number is less than 3 at the end of this elimination process,

region is regarded as a non-LP region and CS operation is invoked for the next region.

3.2.3.2 Consistency of Character Placement

All characters in LPs are lined up along a linear line. Therefore, we can define a line as

given in Equation 3.15 which passes through the bounding box (BB) centers of the charac-

ters. Hence, by checking their divergence in position with respect to this line, inconsistent

characters are removed. Divergent characters are found by checking the perpendicular dis-

tance from the character BB center to the line. Using a procedure similar to described in

the previous section , median value of the character height Hmed is updated by discarding the

values removed in the previous section and if absolute distance from each character’s center

to line is more than λV , that character is removed from the candidate character list.

y = a + b ∗ x (3.15)

λV =
Hmed

8
(3.16)

Coefficient a and b of the line given in Equation 3.15 are calculated using least square fit-

ting [33] as seen below:
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Figure 3.17: Results of inconsistent character placement elimination step. 1st column: Seg-
mentation output, 2nd column: Individual blob analysis + character height consistency elimi-
nation output, and 3rd column: Character placement consistency elimination results.

a =
C̄y

(
m∑

i=1
Cx(i)2

)
− C̄x

m∑
i=1

Cx(i)Cy(i)

m∑
i=1

Cx(i)2 − mC̄2
x

(3.17)

b =

(
m∑

i=1
Cx(i)Cy(i)

)
− mC̄xC̄y

m∑
i=1

Cx(i)2 − mC̄2
x

(3.18)

where Cx and Cy are defined as arrays that contain characters’ BB center positions in terms of

horizontal and vertical coordinates, and C̄x and C̄y are average values of the array entries.

This step of the algorithm includes two iterations. In the first iteration, divergent characters

are found but not removed. In the second iteration, line coefficients are computed excluding

the previous divergent characters center positions and distance from all characters to this line

is computed again. This time, divergent characters are removed and if remaining number of

characters is greater than three, process is continued, otherwise, region is regarded as a non-

LP region and CS operation is invoked for the next region. Result of character placement

consistency elimination can be seen on sample LP regions in Figure 3.17.

3.2.4 Merged and Broken Character Correction

After LP characters are eliminated using inter and intra character feature analysis, some char-

acters can be merged with the neighboring ones and can be segmented as a single character.

For this reason, further operations are required to separate merged characters and to merge

broken characters. For this purpose, median height of the characters is used. If p characters

are obtained at the end of the previous section, median height of these characters are defined
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Figure 3.18: Examples of merged and broken character correction.

as Hmed and median width, Wmed, of the characters are obtained using Hmed as in equation 3.13

and 3.17.

Wmed = Hmed ∗ 0.6 (3.19)

If any of the characters has a height less than 0.6 times Hmed, its size is updated to be Hmed

and its vertical center position is re-calculated using its horizontal center position and the

Equation 3.15. Nextly, if any of the characters have a width of more than 1.6 times the

Wmed,then character is divided by 2 in horizontal direction with two equal parts. Characters

which have width/height ratio more than 2.6 are divided into 3 equal parts. Merged and broken

character correction operations are shown on sample images in Figure 3.18.

At the end of the merged and broken character correction step, the values of Hmed and Wmed

are updated and newly defined characters are replaced with the old ones in the LP character

list.

3.2.5 Missing Character Extraction

Final step of the CS process is extraction of missing characters. Missing characters occur at

the end of the character elimination process because of the following reasons:

• Merging with the license plate frame,

• Broken character parts,
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Figure 3.19: Missing character extraction at boundaries.

• Insufficient pixel area.

3.2.5.1 Missing Character Extraction at the Boundaries

Rightmost and leftmost characters are more prone to be merged with the LP frame. For this

reason, left region of the leftmost and right region of the rightmost characters are searched

for proper character existence. Median width and height of the characters including the ones

obtained at the end of the correction step are used in the search process. Minimum character

distance is calculated as 0.1 times the median character height. License plate frames at both

sides can appear like the letter I or number 1 and to avoid false detections, search area is

enlarged vertically and horizontal projection of the binary image Ibin
roi in this sub-region is

examined to discard frame edges. If the projection result is more than or equal to height

threshold value th, that region is regarded as the LP frame and not added to the character

region list. Calculation of th can be seen in Equation 3.20

th = Hmed ∗ 1.2 (3.20)

3.2.5.2 Missing Character Extraction in-between Characters

The gaps between the characters which are longer than the median character width are searched

for the existence of characters. Lengths of the gaps are defined as the distances between se-

quent characters. Each gap is divided into s sub-regions and number of sub-regions are cal-

culated using Equation 3.21. s is defined as an integer and fractional results obtained at the

end of the operation are rounded towards zeros to the nearest integer value.
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Figure 3.20: Missing character extraction in-between detected characters.

s =
dist

wmed + dmin
(3.21)

where dist is the distance between the consequent characters, and dmin is the minimum dis-

tance between the characters. If s is greater than zero, then the following s regions on the

segmentation result image Ibin
roi which have a height hmed and width wmed next to the character

where the gap begins are checked for character existence. This regions are added to the char-

acter list if the sum of the white pixels in the examined area is more than 12, 5% and less than

80% of the total character bounding box area.
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CHAPTER 4

EXPERIMENTAL RESULTS

To examine the performance of the proposed algorithm, LP images from three different

datasets are used that cover different scenario conditions for a mobile LPR systems. In the fol-

lowing sections of this chapter, datasets are introduced and reasons of selection are explained.

Nextly, works done for ground truth extraction is explained and ground truth structure with

developed GUI-based software is described. Finally, performance analysis of the system is

done for different system variables using recall and precision rates. Performance analysis for

LPD and CS are conducted separately since no feedback exists between these two stages.

4.1 Image Datasets

In this thesis work, 3 datasets are used for performance analysis of the proposed algorithm.

These image datasets are labeled as Dataset-1, Dataset-2 and Dataset-3. Below you can find

the detailed descriptions for each dataset.

4.1.1 Dataset-1

This dataset includes 64 images taken from parking lots during daytime with a camera of

resolution 1280x960. Distance between the camera and vehicles varies between 3 to 15 me-

ters and most of the images contain more than one LPs. This scenario simulates the parking

lot check usage of an LPR system and images are taken from the street. Image backgrounds

consist of highly cluttered textures such as tree branches and leaves, or guard rails of the apart-

ment gardens. Mentioned structures in the image create high vertical edge density regions and

sometimes cause serious difficulties at localization of LPs. Some of the images have motion
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Figure 4.1: Sample images from Dataset-1

blur effect due to vibration of the camera while capturing operation, noise due to insufficient

illumination and again blur due to de-focus. LPs with dirt, broken characters, stickers and

even without frames (same color with the body) are included in the dataset. Sample images

from this dataset can be seen in Figure 4.1.

4.1.2 Dataset-2

This dataset includes 100 grayscale images taken from a border gate by “ITU Computer Vi-

sion and Image Processing (CVIP) Laboratory” researchers, during day and night conditions

from a fixed distance and orientation. Resolution of the images is 768x576. This scenario is

useful to simulate the performance of the algorithm for systems such as automated payment,

and automatic permission systems. Also, this set enables performance evaluation for variable

illumination conditions such as day and night conditions, and reflections from sun. In most

of the images both imaging system and vehicle are stationary. Hence, there is no blur effect

in the images due to motion or defocus. However, trucks with brand and model name or

some other informal texts written on the front face make LPD a difficult issue and increases

the false alarm rate of the algorithm. Besides, different type of plates located in different

positions check the algorithm’s robustness against different LP size and orientations. Sample

images from this dataset can be seen in Figure 4.2.
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Figure 4.2: Sample images from Dataset-2

4.1.3 Dataset-3

Although there are plenty of LPR algorithms existent in the literature, rarely the database

used to test the performance of the system is shared publicly. Lacking number of common

databases to test LPR algorithms’ performance create an ambiguity about the applicability and

the performance of the algorithms. Anagnostopoulos has collected and grouped many license

plate images which are taken under different illumination conditions at different positions and

shared the result at http://www.medialab.ntua.gr/research/LPRdatabase.html [3]. Dataset-3

used in this thesis work is the group of images that are shared in this dataset and labeled

as ”Day (color images-large sample)”. Dataset-3 includes 135 images that are taken during

daytime from different distances. Resolutions of the images are 640x480 and 1792x1312 and

sample images taken from the Dataset-3 can be seen in Figure 4.3.

4.2 Ground Truth Construction

Performance of LPD and CS algorithms are mostly indicated using detection ratios [3]. But

complicated algorithms used for LPR mostly requires many parameter inputs for scene adap-

tation. In this more than one dimensional parameter space, points which maximize the perfor-

mance of the algorithm should be found. ROC curves which interpret the sensitivity or true
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Figure 4.3: Sample images from Dataset-3

positive rate vs. false positive rate of a detection algorithm in a graphical way, are defined for

this purpose [34]. Either for LP and character regions, true positive (TP), false positive (FP),

false negative (FN) and Recall and Precision values are defines as follows:

T P = # of true plate (characters) regions found,

FP = # of false plate (characters) regions found,

FN = # of plate (characters) regions not found,

Recall =
T P

T P + FN
,

Precision =
T P

T P + FP
. (4.1)

Although ROC curves are very useful, construction of them is not an easy task for multi-

parameter optimization purpose, hence automating the performance calculation steps is re-

quired. For this reason, a software with graphical user interface is built and LP and character

locations are signed over the image to obtain ground truth data of the image datasets used in

this thesis work as seen on Figure 4.4.

39



Figure 4.4: User interface for construction of the ground truth data.

4.3 LPD Results

As an output of the LPD algorithm, firstly, we obtain the coordinates of the rectangular regions

in the scene in terms of x and y offsets, and width and height of the regions. Then, actual

positions of the LPs are inquired from the ground truth database using the image filename.

Next, overlap ratios of the regions with respect to the ground truth area ORgt and detection

result area ORdr are computed as seen in Equation 4.2. Regions are illustrated in Figure 4.5.

ORgt= 100∗Area(DR ∩ GT)
Area(GT)

,

ORdr= 100∗Area(DR ∩ GT)
Area(DR)

. (4.2)

ORgt and ORdr are calculated from the results obtained for each image. Detection result is

assumed to be true if ORgt is greater than 80% and ORdr is greater than 20% since these ratios

allow true CS. Such ratios are chosen due to the fact that, characters can still be extracted

correctly by the proposed CS algorithm in this thesis work even if they cover a small region in

the detected LP region. If an LP region satisfies the above ratios, then T P value is increased

by one. If above overlap ratios are not satisfied, then false detection is assumed and FP is

increased by one. At the end of the process, number of correctly located plates are subtracted

from the exact number of LPs in the scene, and the result is added to the FN.
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Figure 4.5: Overlapping regions.

One of the most significant parameters that affects the performance of the LPD algorithm is

k in Equation 3.8. k determines the variance multiplication coefficient to segment image R.

So, LPD algorithm performance is examined for varying values of k over the datasets given in

Section 4.1. Figure 4.6 gives the recall and precision values for varying values of k between

1.5 to 5. Highest detection rate of 94% is achieved for k = 3 for Dataset-1, and 93% detection

rates are achieved for Datasets-2 and 3 for k = 1.5. As seen on the detection results, increasing

values of k decreases the false alarm rate but there is not an exact correlation between recall

and precision values, since, in some cases, increasing values of k results in a more accurate

LP region detection and results in true LP detection. Previously selected 20% limit ratio for

ORdr causes this fact and shows that larger LP region does not indicate a true detection.

Another significant property of the proposed LPD technique is the image pyramid concept for

variable size LP detection. Fusion of the multiscale information obtained from vertical edge

density images enhances the performance of the detection algorithm and decreases the false

detection ratio. Performance of the algorithm for varying values of k on Dataset-1, Dataset-2

and Dataset-3 can be seen on Figure 4.7, Figure 4.8 and Figure 4.9, respectively.

Results show that, multiscale detection concept enhances both the recall and precision ratios
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(a)

(b)

Figure 4.6: (a) Recall vs k curves, (b) Precision vs k curves.
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(a)

(b)

Figure 4.7: (a) Recall vs k curves, (b) Precision vs k curves for Dataset-1 for different number
of image pyramid levels.
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(a)

(b)

Figure 4.8: (a) Recall vs k curves, (b) Precision vs k curves for Dataset-2 for different number
of image pyramid levels.
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(a)

(b)

Figure 4.9: (a) Recall vs k curves, (b) Precision vs k curves for Dataset-3 for different number
of image pyramid levels.
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significantly and gives better results over each image datasets that include licence plates with

different sizes under different illumination, orientation and background clutter conditions.

4.4 CS Results

CS algorithm takes the original image and the BB parameters of the LPs located in the image

as input and gives the BB parameters of the detected characters as an output. CS algorithm

performance is measured similar to the LPD performance measuring operations. ORgt and

ORdr are calculated as seen in Equation 4.2 for each character output of the CS algorithms. If

ORgt and ORdr are both greater than 60%, then character is assumed to be located correctly.

Selection of characters in the image such as 1 and I can be difficult and user can select a

region twice larger than the original character. In these situations, to have a tolerance against

erroneous selections, such ratios are defined for correct detection decision. If above overlap

ratios are not satisfied, then false detection is assumed and FP is increased by one. At the

end of the process, number of correctly segmented are subtracted from the exact number of

characters in the plate, and result is added to the FN.

The most crucial parameter that affect the result of CS algorithms is K which was previously

defined in Equation 3.12 and determines the difference level from the mean local region in-

tensity. For this reason, CS algorithm performance for varying values of K is examined over

the datasets and Figure 4.10 gives the recall and precision values for varying values of K be-

tween 2 to 20. Highest CS rate of 95% is achieved for k = 10 for Dataset-1, 94% CS rate id

achieved for Datasets-2 for K = 8, and 88% CS rate is achieved for Datasets-3 for K = 10.

As seen on the CS results, increasing values of K does not necessarily decrease the false CS

rate because, 60% limiting factor eliminates characters that are both smaller or greater than

the ground truth character region.

4.5 Overall Performance

In the previous two sections, performance results of LPD and CS algorithms for varying

values of the parameters k and K are given. As seen in Figure 4.6, k = 2.5 gives best result for

LPD and Figure 4.10 shows that K = 8 should be selected for local thresholding. Using these

parameter values, successful results obtained on sample images can be seen in Figure 4.11.
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(a)

(b)

Figure 4.10: (a) Recall vs K curves, (b) Precision vs K curves.
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Figure 4.11: Successful license plate detection and character segmentation results for k = 2.5,
and K = 8.
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Figure 4.12: False license plate detection and character segmentation results for k = 2.5, and
K = 8.

Sample images are chosen to cover different distance, orientation and illumination conditions.

Figure 4.12 shows the erroneous results due to false LPD and CS. In low illumination condi-

tions with noise and highly cluttered background, LPD algorithm can not locate the correct

LP region in the scene. Also, CS algorithm can not divide merged characters since their total

width lies outside the range defined for character division.

´´1 − precision, recall´´ curves are not given in this work since we can not obtain an exact

correlation between the increasing values of recall and decreasing values of precision due to

the correct detection constraints.

Overall performance results obtained for LPD and CS steps are compared with the techniques

proposed in the work [10] and [13], since common datasets are used in performance evalu-

ation step. Performance evaluation results are written as indicated in the papers and although

not exactly mentioned, datasets are assumed to be same. More detailed comparison of the

algorithm performances are given et al [3]
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Table 4.1: Comparison of the techniques [10] and [13] with the proposed algorithm in terms
of LPD and CS performances.

LPD CS
Proposed Algorithm 93%(Dataset-2 and 3) 94%(Dataset-2)

88%(Dataset-3)
Anagnostopoulos et al. [10] 98%(Dataset-2) 94.4%(Dataset-2)
Kahraman et al. [13] 96.5%(Dataset-3) 89.1%(Dataset-3)

Algorithm is applied using MATLAB 7.9, average processing time for a 1280x960 image is

measured to be 1.3 seconds for an Intel i3-350 core PC with 2.0GB of RAM and Windows 7

operating system. Considering the code is still not optimized, algorithm can be implemented

in real-time after some optimization operations.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis work, a multi-scale license plate detection algorithm and a rule-based character

extraction algorithm were developed and tested. License plate recognition algorithms consist

of three steps known as license plate detection, character extraction and character recognition

and first two steps are crucial for robustness against distance, orientation and illumination

changes. The performance of the algorithms implemented in each step were tested on three

different datasets and results are presented individually using recall and precision rates for dif-

ferent algorithm parameter values. An average success rate of 88% for license plate detection

and 91% for character segmentation is achieved using optimized parameters for the datasets.

Considering variable distance license plates under different orientation and illumination con-

ditions, this success rate is significant for mobile LPR systems.

In the license plate detection step, a multi-scale color edge density based approach was

adopted. Firstly, a color image pyramid was constructed using fixed scale factors and color

edges for each pyramid image were found. Edge based license plate detection is invariant

against illumination changes and better performance was achieved under different day and

time conditions. Then edge density over each pyramid image was found by using averaging

filter with a similar structure to a license plate structure. Edge density images over the pyra-

mid were fused based on the fact that vertical edges can be extracted from the license plate

regions in more than one scales. Regions that have high edge density response at the fused

edge density image were segmented by using a threshold value that depends on statistical

values of the fused density image. Segmented image is labeled, and then, final elimination
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process was applied using connected component analysis. License plate detection algorithm

proposed in this thesis achieved a success rate between 85% to 95% for the license plate

datasets introduced in the Chapter 4.

In the character segmentation step, license plate regions obtained in the previous step were

converted to grayscale images, and were binarized using a local thresholding technique.

Therefore, false segmentation results due to shadow, dirt or insufficient illumination can be

avoided. Segmented license plate region was labeled and inter and intra connected component

features are used to eliminate improper segmentation results. Firstly, individual connected

components were removed using minimum character area, minimum character height, mini-

mum character area to character region area ratio and maximum character region area to plate

region area ratio criteria. Then, consistency of remaining CCs were checked with respect to

character height and character alignment and inconsistent CCs were removed. Finally, miss-

ing characters were searched and broken characters were corrected using updated character

alignment information. As a result, a success rate between 87% to 93% was achieved for the

test datasets.

In Chapter 4, results obtained for each step on the sample datasets which were chosen to

cover different scenario conditions were evaluated. For this purpose, ground truths for each

dataset were constructed by using a GUI based software and then performance calculation

for different parameter values was automated using these ground truths. Recall and precision

curves for different parameter values for license plate detection and character segmentation

algorithms were given.

Consequently, license plate detection and character segmentation algorithms that are invariant

to scale and illumination were described and result of the algorithms were presented in this

thesis work. Our main contribution is the multiscale processing of the scene to enable detec-

tion of different size LPs, selection of scene dependent threshold values for segmentation, and

fusion of inter and intra character properties for CS. Therefore, it is considered that algorithm

proposed in this work can be used in a mobile LPR system.
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5.2 Future Work

Calculation of edge densities depends on a fixed size averaging filter and selection of the

width and height of the filter depends on the nominal resolution of the image. Future work

of this study should include the usage of a filter bank for better scale and rotation invariance.

Also, license plate detection algorithm outputs rough location of the plate in the scene and

some characteristic properties of a license plate region should be merged to give the exact

coordinates of the license plate boundary as an output.

Character segmentation operation depends on a local thresholding technique and size of the

local regions are simply adapted to the height of the license plate region. Multiple segmen-

tation results can be obtained using variable size local regions and best result can be selected

for the further operations according to a score assignment process.

The software was implemented on MATLAB 7.9 and average time it takes to locate the li-

cense plate and character positions in the scene for an image of resolution 1280x960 is ap-

proximately equal to 1.3 seconds. Future works include the optimization of the algorithms to

satisfy real-time implementation requirements.
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