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Prof. Dr. İsmet Erkmen
Head of Department,Electrical and Electronics Engineering

Assoc. Prof. Dr. Çăgatay Candan
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ABSTRACT

A SEQUENTIAL CLASSIFICATION ALGORITHM FOR AUTOREGRESSIVE
PROCESSES

Otlu, Güneş

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Çağatay Candan

Co-Supervisor : Assoc. Prof. Dr. Tolga Çiloğlu

September 2011, 70 pages

This study aims to present a sequential method for the classification of the autoregressive

processes. Different from the conventional detectors having fixed sample size, the method

uses Wald’s sequential probability ratio test and has a variable sample size.It is shown that

the suggested method produces the classification decisions much earlier thanfixed sample size

alternative on the average. The proposed method is extended to the case when processes have

unknown variance. The effects of the unknown process variance on the algorithm performance

are examined. Finally, the suggested algorithm is applied to the classification offixed and

rotary wing targets. The average detection time and its relation with signal to noise ratio are

examined.

Keywords: Sequential Detection, Autoregressive Modeling, Target classification, Wald, SPRT
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ÖZ

ÖZBAĞLANIMLI S ÜREÇLERİCİN DİZİSEL SINIFLANDIRMA ALGORİTMASI

Otlu, Güneş

Yüksek Lisans, Elektrik ve Elektronik M̈uhendislĭgi Bölümü

Tez Yöneticisi : Doç. Dr. Çăgatay Candan

Ortak Tez Ÿoneticisi : Doç. Dr. Tolga Çilŏglu

Eylül 2011, 70 sayfa

Bu çalışma,̈ozbăglanımlı s̈ureçler için dizisel bir sınıflandırma algoritması sunmayı amaçlamaktadır.

Genellikle kullanılan sabit boyutlu algılayıcıların aksine, bu metot değişkenörnek boyutlarına

sahip Wald’ un dizisel olasılık oran testini kullanmaktadır.Önerilen metodun sınıflandırma

kararını ortalama olarak sabitörnek boyutuna sahip alternatifinden dahaönce verdĭgi gösterilmiştir.

Önerilen metot, s̈ureçlerin varyansının bilinmediği durum için genişletilmiştir. Bilinmeyen

süreç varyansının algoritma performansıüzerindeki etkileri incelenmiştir. Son olarak,önerilen

algoritma sabit ve d̈onen kanatlı hedeflerin sınıflandırmasına uygulanmıştır. Ortalama karar

zamanı ve bunun sinyal gürültü oranıyla băglantısı araştırılmıştır.

Anahtar Kelimeler: Dizisel Tespit, Otoregresif Modelleme, Hedef Sınıflandırma, Wald, SPRT
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

Modern sensor systems can detect targets with low latency at all ranges and can work properly

under high noise and interference levels. The delay in the detection decision is important in

initiating the counter measures to the targets. A reduced delay is also helpful inscheduling

of sensor modes. As an example, a typical surveillance system can enlarge its coverage area

by making target present or absent decisions in reduced time. The method of detection with

low delay is desired to work at noisy environments and in the long ranges. The detection of

radar targets has been studied extensively in the literature, but lesser attention is paid to the

detection delay.

The target detection is typically performed on multiple observation samples. Thedetection

with fixed sample size (FSS) is the most well known procedure. This detectionprocedure

collects a predefined number of samples first and once the sample collection period is over,

processes them to make a decision on the target presence. The sample sizeis determined

by the desired performance requirements, [2]. The sequential probability ratio test (SPRT)

is another effective procedure for the multiple-sample detection problem which is described

originally by Wald, [3]. The sample size of this procedure is variable. In other words, the

termination time of the test changes with the input. For two hypothesis case, this procedure

is optimal in the sense that the decision sequence ends with the minimum number of samples

(on the average) to achieve a desired probability of error, [4]. It is shown that the SPRT needs

much fewer samples than the procedures having fixed sample sizes, [5].

Since the sequential probability ratio test does not require the sample size selection in advance,
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it is also very suitable for online processing. The decision to terminate the process depends

on the scores generated by the observations collected up to that instant. The average sample

number (ASN) is defined as the mean number of sample points to successfully meet the

desired probability of errors of first and second types. With respect toASN measure, it is

known that the sequential probability ratio test usually terminates in an about 50 per cent

savings in the number of observations over the most efficient test procedure having a fixed

sample size, [3].

The detection time is a random variable in this sequential procedure. As expected, the targets

that are difficult to discriminate have to be observed for longer periods while the classification

of the targets that are easier to discriminate requires less time. The sensor and the other com-

putational resources can be utilized more efficiently because of this behavior of the sequential

approach. So that an overall enhancement in the detection performancecan be observed.

The SPRT is also extensively used in the problem of change detection. Thisproblem can be

defined as the change of the parameterθ of the time series fromθ0 to θ1 , θ0 at an unknown

change time. The main goal is to detect and estimate the change in one or more parameters

of interest. Changes can be grouped as additive and nonadditive (spectral) changes. Additive

changes take place in the mean value of the observation. Nonadditive caseresults in changes

in the variance, correlations, spectral characteristics or dynamics of thesignal, [6]. Also

these changes can be analyzed as changes in a regression model, ARMAmodel or in a state-

space model by using different modeling issues. The online change detection algorithms

use the SPRT by processing the online data streams. With the aid of the Wald’s SPRT, the

cumulative sum (CUSUM) algorithm was proposed in [7]. CUSUM method uses the idea that

integration of the probability ratios of the signal with adaptive thresholds andit is frequently

used in the online change detection algorithms for detection of a change in a parameter in AR

modeling, [8], [9], [10]. In addition CUSUM method can be used for sequential detection of

a target in clutter, [11]. Recursive algorithms are also used for the detection of a change in the

autoregressive processes, [12], [13].

In a typical detection problem, some target specific parameters are required to implement

the classification algorithm. The required parameters can be obtained by fittingthe data to

available analytical models. For modeling time series, linear regression models are often

used. The general form of the linear regression models includes Finite Impulse Response

2



(FIR), Auto-Regressive (AR) and Auto-Regressive Moving Average (ARMA) models as some

special cases. The AR model is useful for modeling time series and often used in radar

systems (clutter modeling), human EEG, earthquake analysis, speech segmentation areas,

[14].

In many applications, the autoregressive modeling is preferred to anotherwidely used method

called as periodogram. AR modeling is utilized in the analysis of spectrum because of its

better spectral resolution, [15]. Therefore, in areas requiring high spectral resolution, such as

determining the doppler spectrum, AR or ARMA models can be preferred in comparison to

simple periodogram, that is the windowed fast Fourier transformation, followed by magnitude

squaring and averaging, [16]. In addition, AR modeling has low complexity for spectrum

estimation, [17].

The methods of sequential detection and AR models have been proposed for the problems of

underwater acoustics. The sequential detector based on Page test is applied to active sonar

detection in [18]. In passive acoustic detection, AR modeling is used in the interference

cancelation procedure, [19], [20]. In addition, in active sonar detection adaptive prewhiteners

can be designed by using the autoregressive methods, [21], [22].

In this thesis, we apply the methods of sequential detection with AR models to the problem

of plane - helicopter classification. It is well known that a doppler frequency shift of carrier

frequency proportional to target range rate of the target is observedon the radar echo. In

addition, the rotating objects such as the rotor blades of the helicopter causes a modulation on

the radar return signal. The analysis of moving and rotary target effects is given in [23], [24],

[25], [26]. The work on utilizing the effect of the main rotor in detection is given in [27], [1].

The discrimination of helicopters from fixed-wing targets is given in [28], [29]. To the best of

our knowledge, the SPRT with AR modeled spectrums has not been applied to the problem

of plane - helicopter (fixed wing - rotary wing) classification.

In [30], a general solution to the target discrimination problem using SPRT and AR models

is presented. The suggested method, different from the work presented here, uses two mean

square prediction filters. The likelihood ratio is composed of the probability density functions

of the prediction errors for each hypothesis. It is shown that this structure is optimal for the

signatures with Gaussian distribution. It is also stated that the structure can be applied to the

signatures with non-Gaussian distributions but its optimality is lost.

3



Lastly in [31], the binary hypothesis test, as in here, is chosen as two different AR processes.

The order of the AR model is chosen as 2 and the process coefficients are complex valued.

The simulations for probability of detection as a function of sample size and power ratio are

established for constant false alarm rate and an application of this algorithmon the experi-

mental radar data is presented. The presented work contains similar detection results for the

SPRT.

1.2 Scope of Thesis

Radar systems are to detect moving targets or the changes in the received signal as quickly

as possible with a reasonable algorithm complexity. Proposed method brings aconvenient

approach for detection in reduced decision time in comparison to fixed sample size systems.

This method enables reduced power consumption and better scheduling of the radar coverage

area through reduced detection time.

The proposed algorithm is a discrimination algorithm based on the sequential statistical hy-

pothesis testing using AR models. The main idea is to bring the results in literature onthe

Wald’s sequential probability ratio test and AR modeling together and to propose a solution

to the target discrimination problem.

The performance of the proposed method is investigated by means of Monte Carlo simula-

tions. The examined performance criterion are ASN (the dependence of ASN on SNR) the

probability of type-one (False alarm) and type-two (Miss) classification errors.

1.3 Outline of Thesis

Thesis begins with an introduction of the problem and a summary of the literatureresearch

on the related topics. The sequential detection, autoregressive processes and the advantages

of sequential tests are qualitatively summarized.

In Chapter 2, the review of the sequential detection procedure is given by considering the

two-sided scheme of Wald.

In Chapter 3, the problem definition and an explanation of the proposed algorithm are given

4



along with some simulation results. The method is illustrated with the numerical examples

and the feasibility/limitation of the method is studied with simulations. Brief review of the

related methods that are used in the development of the method is also given.

In Chapter 4, the method is applied to the problem of discrimination of the rotary and fixed

wing targets. The experimental data used in this chapter has been collected through the joint

work ASELSAN and METU-EE members.

The last chapter presents the conclusions on the applicability of the proposed method and

outlines some further research directions that can be explored.
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CHAPTER 2

BACKGROUND

In order to provide a foundation for the proposed work, we summarize some basic results in

detection theory, multivariate distributions, sequential tests and auto-regressive processes in

this chapter.

2.1 Detection Theory

2.1.1 Binary Hypothesis Tests

Assume that a set ofN observations,x1, x2, . . . , xN ; is collected together in the vectorx as

shown below:

x ,



x1

x2

...

xN



(2.1)

By processing the observation vector, as a classification decision is to be generated. The

choices of classification are referred as hypotheses. In general, these hypotheses areH0,H1, . . . ,HM−1.

In the binary hypothesis case, the output is reduced toH0 andH1. For binary hypothesis test-

ing, there are four possible assignment cases and their probabilities are denoted as follows:

1) H0 true and the decision isH1: Probability of False Alarm (PFA)

2) H0 true and the decision isH0: (1− PFA)
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3) H1 true and the decision isH1: Probability of Detection (PD)

4) H1 true and the decision isH0: Probability of Miss (PM = 1− PD)

2.1.2 Gaussian Probability Density Function

The Gaussian probability density function (pdf) for a scalar random variablex having a mean

µx and a varianceσ2
x is defined as;

p(x) =
1√

2πσ2
x

exp[− 1

2σ2
x
(x − µx)

2] (2.2)

It can be denoted byN(µx, σ
2
x) and said thatx ∼ N(µx, σ

2
x)

If a nx1 vectorx is composed of the scalar gaussian random variables,x, the multivariate

Gaussian pdf ofx becomes

p(x) =
1

(2π)
N
2 det(Cx)

1
2

exp[−1
2

(x − µx)
T C−1

x (x − µx)] (2.3)

and is denoted byx ∼ N(µx,Cx).

If x is a complex Gaussian random vector, then the pdf ofx is,

p(x) =
1

πN det(Cx)
exp[−(x − µx)

T C−1
x (x − µx)] (2.4)

Likelihood ratio is denoted byΛ(x) and defined as

Λ(x) ,
px(x|H1)
px(x|H0)

(2.5)
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2.2 The Sequential Detection

Let p(x,Θ) denote probability density function (pdf) of the random variablex. Let H0 be the

hypothesis thatΘ = Θ0 andH1 the hypothesis thatΘ = Θ1 , Thus , the pdf of x is given by

p(x,Θ1) whenH1 is true , and byp(x,Θ0) whenH0 is true.

For any positive integerm, the pdf that a samplex1 . . . xk is obtained is given by

p0k =

k∏

n=1

p0(xn) (2.6)

whenH0 is true , and by

p1k =

k∏

n=1

p1(xn) (2.7)

whenH1 is true.

2.2.1 The Derivation of Upper and Lower Limits for Sequential Probability Ratio Test

The relationship among probability of false alarm (α), probability of detect (β), upper limit

(A) and lower limit (B) of the test can be defined as follows: For any given samplex1 . . . xk of

type 1, the probability of obtaining such a sample is at leastA times as large under hypothesis

H1 as under hypothesisH0. Thus, the probability measure of the total of all samples of type

1 is also at leastA times as large underH1 as underH0, [3]. The probability measure of the

totality of all samples of type 1 is the same as the probability that the sequential process will

terminate with the acceptance ofH1 (rejection ofH0). The latter probability is equal toα

whenH0 is true and to 1− β whenH1 is true. Thus, we obtain the inequality

1− β ≤ Aα (2.8)

This inequality can be written as
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A ≤ 1− β
α

(2.9)

Thus,1−β
α

is an upper limit forA, [3].

A lower limit for B can be derived in a similar way. In fact, for any given samplex1 . . . xk of

type 0 the probability of obtaining such a sample underH1 is at mostB times as large as the

probability of obtaining such a sample whenH0 is true. Thus, also the probability of accepting

H0 is at mostB times as large whenH1 is true as whenH0 is true. Since the probability of

acceptingH0 is 1− α whenH0 is true andβ whenH1 is true, we obtain the inequality

β ≤ (1− α)B (2.10)

This inequality can be written as

B ≥ β

1− α
(2.11)

Thus, β1−α is a lower limit forB.

These relations are called as Wald bounds and they are fundamental for setting the detection

thresholds of SPRT, [3]. A practical usage of the Wald sequential probability ratio test is to

use the upper and lower bounds discussed above and by taking logarithmthey are used as

shown below:

ln A = ln

(
1− β
α

)
(2.12)

ln B = ln
(
β

1− α

)
(2.13)

2.2.2 The Test Procedure of Sequential Probability Ratio Test

The sequential probability ratio test for testingH0 againstH1 is defined as follows: Two

positive constantsA andB (B < A) are chosen. At each stage of the experiment (at thekth

trial), the probability ratiop1k
p0k

is computed. If
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B <
p1k

p0k
< A (2.14)

the experiment is continued by taking an additional observation. If

p1k

p0k
≤ B (2.15)

the process is terminated with the rejection ofH0 (acceptance ofH1)

p1k

p0k
≥ A (2.16)

the process is terminated with the acceptance ofH0.

Take logarithm of the both sides and sayλk = ln p1k
p0k

then Equation 2.17 summarizes the SPRT

algorithm.

λk =



≥ ln A → stop and decideH1

≤ ln B → stop and decideH0

otherwise → continue

(2.17)

As an example to illustrate the operation of sequential classification, a DC level classification

algorithm is formed. The hypotheses for the DC level classification algorithmare:

H0 : x[n] = A0 + w0[n] n = 0,1, . . . ,N − 1 (2.18)

H1 : x[n] = A1 + w1[n] n = 0,1, . . . ,N − 1 (2.19)

whereA0 andA1 are mean value of the data of the hypotheses,w0 andw1 are WGN with zero

mean and varianceσ2
w. Then the LRT for these hypothese becomes:

λ(x) =
p(x|H1)
p(x|H0)

=

1√
2πσ2

x

exp[− 1
2σ2

x
(x − A1)2]

1√
2πσ2

x

exp[− 1
2σ2

x
(x − A0)2]

(2.20)
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After taking logarithm and making cancelations, we get the loglikelihood ratio:

logλ(x) =
1

2σ2
x
(A0 − A1)(A0 + A1 − 2x) (2.21)

Let k be the number of observations, or length of the sample sequence, then the loglikelihood

ratio is equal to

logΛk = logΛk−1 +
1

2σ2
x
(A0 − A1)(A0 + A1 − 2x[k]) (2.22)

To illustrate this classification algorithm, the parameters are chosen asA0 = 1, A1 = 2,σ2
w = 1

and Wald limits are set such as type 1 and type 2 errors will be under 0.01. The classification

procedure is illustrated in Figure 2.1.

0 10 20 30 40 50
−30

−20
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10

20

30

n

lo
g(

Λ
(x

))

Loglikelihood Ratio vs n

log(Λ(x|H
1
))

log(Λ(x|H
0
))

Upper limit
Lower limit

Figure 2.1: Classification Procedure Example of SPRT

2.3 Autoregressive Models

Filtering white noise with a causal linear shift-invariant filter having a rationalsystem func-

tion can be used to generate random processes. One of the special types of these random

processes, autoregressive processing, is explained in this section. The basic characteristics
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and properties of autoregressive processes, their autocorrelation sequences and power spec-

trum of these processes is given. It is beneficial to start with the generalized form of these

type of the random processes, autoregressive moving average processes.

2.3.1 Autoregressive Moving Average Processes

Autoregressive moving average (ARMA) processes are generated by filtering white noise

w(n) with a causal linear shift-invariant filter that has a rational system function with p poles

andq zeros (Figure 2.23). Therefore, the power spectrum of these processes have, twice of

their filter response, 2p poles and 2q zeros reciprocally.

H(z) =
Bq(z)

Ap(z)
=

∑q
k=0 bq(k)z−k

1+
∑p

k=1 ap(k)z−k
(2.23)

The power spectrum of white noise isPw(z) = σ2
w therefore the power spectrum ofx(n) is

Px(z) = σ
2
w

Bq(z)B∗q(1/z∗)

Ap(z)A∗p(1/z∗)
(2.24)

in terms of the frequency variablew,

Px(e
jw) = σ2

w
|Bq(e jw)|2

|Ap(e jw)|2
(2.25)

Assuming that the filter is stable, the outputx(n) is also wide-sense stationary and related with

w(n) by

x(n) +
p∑

l=1

ap(l)x(n − l) =
q∑

l=0

bq(l)w(n − l) (2.26)

Multiplying both sides byx∗(n − k) and taking expected value the equation becomes

E{x(n)x∗(n − k)} +
p∑

l=1

ap(l)E{x(n − l)x∗(n − k)} =
q∑

l=0

bq(l)E{w(n − l)x∗(n − k)} (2.27)
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w(n) is WSS and thenx(n) andw(n) are jointly WSS therefore,

rx(k) +
p∑

l=1

ap(l)rx(k − l) =
q∑

l=0

bq(l)rwx(k − l) (2.28)

In order to writerwx(k) in terms ofσ2
w andh(k), first find x(n) as

x(n) = h(n) ∗ w(n) =
∞∑

m=−∞
w(m)h(n − m) (2.29)

then the cross-correlationrwx(k) can be written as

E{w(n − l)x∗(n − k)} = E{
∑∞

m=−∞ w(n − l)w∗(m)h∗(n − k − m)}

=
∑∞

m=−∞ E{w(n − l)w∗(m)}h∗(n − k − m)

=
∑∞

m=−∞ σ
2
wδ(n − l − m)h∗(n − k − m)

= σ2
wh∗(l − k)

(2.30)

Substitute Eq.( 2.30) into Eq.( 2.28) then

rx(k) +
p∑

l=1

ap(l)rx(k − l) = σ2
w

q∑

l=0

bq(l)h∗(l − k) (2.31)

Denoting the right side of the equation bycq(k) and assuming thath(n) is causal,cq(k) can be

written as

cq(k) =
q∑

l=k

bq(l)h∗(l − k) =
q−k∑

l=0

bq(l + k)h∗(l) (2.32)

The Yule-Walker equations becomes

rx(k) +
p∑

l=1

ap(l)rx(k − l) =


σ2

wcq(k) ; 0 ≤ k ≤ q

0 ; k > q
(2.33)
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which, in matrix form become



rx(0) rx(−1) . . . rx(−p)

rx(1) rx(0) . . . rx(−p + 1)
...

...
...

rx(q) rx(q − 1) . . . rx(q − p)

rx(q + 1) rx(q) . . . rx(q − p + 1)
...

...
...

rx(q + p) rx(q + p − 1) . . . rx(q)





1

ap(1)

ap(2)
...

ap(p)



= σ2
w



cq(0)

cq(1)
...

cq(p)

0
...

0



(2.34)

2.3.2 Autoregressive Processes

Autoregressive process is a type of ARMA(p, q) processes withq = 0. This type requires

a filter having a rational system function withp poles and no zeros. AR processx(n) is

generated at the output by using white noise at the input of this all-pole filter.(Figure 2.2).

1−z

∑

X

∑

X

1−z

a(2) a(1)

∑

X a(p)

1−z

x(n)Xw(n)

b(0)

Figure 2.2: The Autoregressive filtering

This filtering process has a frequency response (Eqn. 2.35)

H(z) =
b(0)

1+
∑p

k=1 ap(k)z−k
(2.35)

and the output signal has the power spectrum of

Px(z) = σ
2
w

|b(0)|2

Ap(z)A∗p(1/z∗)
(2.36)
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in terms ofw,

Px(e
jw) = σ2

w
|b(0)|2

|Ap(e jw)|2
(2.37)

The Yule-Walker equations for an autoregressive process of orderof p, AR(p) process, can

be found by using Eqn. 2.33 withq = 0, c0(0) = b(0)h∗(0) = |b(0)|2.

rx(k) +
p∑

l=1

ap(l)rx(k − l) =


σ2

w|b(0)|2 ; k = 0

0 ; k > 0
(2.38)



rx(0) rx(−1) . . . rx(−p)

rx(1) rx(0) . . . rx(−p + 1)
...

...
...

rx(p) rx(p − 1) . . . rx(0)





1

ap(1)
...

ap(p)



= σ2
w|b(0)|2



1

0
...

0



(2.39)

2.3.3 Moving Average Processes

This type is the other type of the ARMA(p, q) process withp = 0. An MA(q) process can be

generated by filtering white noise (w(n)) having unit variance with an FIR filter

H(z) =
q∑

k=0

bq(k)z−k (2.40)

Therefore, this type has a power spectrum

Px(z) = σ
2
wBq(z)B∗q(1/z∗) (2.41)

whereσ2
w represents the power spectrum of the input noise. If it is written in terms ofw the

equation becomes
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Px(e
jw) = σ2

w|Ap(e jw)|2 (2.42)

In order to find the Yule-Walker equations for an MA(q) process, Eqn. 2.33 can be used with

ap(k) = 0 andh(n) = b(n) and calculated as

rx(k) = σ2
w

q−|k|∑

l=1

bq(l + |k|)b∗q(l) = (2.43)

2.4 Levinson-Durbin Recursion

Levinson-Durbin recursion is used for solving a specially structed matrix equations (The Yule-

Walker equations). It is capable of order recursively updating the solution. The Yule-Walker

equations for an AR(p) process require to solve a set of linear equations of the formRxap = b.

If standard method is used it would requiresO(p3) operations. However, ifRx is a Hermitian

Toeplitz matrix which is the condition for the autocorrelation matrix, then by using Levinson-

Durbin recursion algorithm these equations can be solved inO(p2) operations. [32]

To develop recursion, at first, error (ǫ) is needed to be modeled. For thepth recursion, the

modeling error isǫp and equivalent to

ǫp = rx(0)+
p∑

l=1

ap(l)rx(l) (2.44)

The normal equations for the autocorrelation is



rx(0) r∗x(1) . . . r∗x(p)

rx(1) rx(0) . . . r∗x(p − 1)
...

...
...

rx(p) rx(p − 1) . . . rx(0)





1

ap(1)
...

ap(p)



= ǫp



1

0
...

0



(2.45)

In vector notation, it can be written as
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Rpap = ǫpu1 (2.46)

This equation leads top+1 equations, so that thep+1 unknowns which areap(1), ap(2), . . . , ap(p)

andǫp can be calculated. The Levinson-Durbin algorithm provides a method to calculate the

solutions of these equations recursively. This means that,ak+1 can be found by the help of

the coefficients calculated before. The recursion is started with the solution for the model of

orderk = 0 as

a0(0) = 1 (2.47)

ǫ0 = rx(0) (2.48)

At the kth-order, the equation becomesRkak = ǫku1. Assumingak is known, in order to

calculateak+1 the equation becomesRk+1ak+1 = ǫk+1u1.

Supposing a zero is added to the end of the vectorak, and write the equation as



rx(0) r∗x(1) . . . r∗x(k) r∗x(k + 1)

rx(1) rx(0) . . . r∗x(k − 1) r∗x(k)
...

...
...

...

rx(k) rx(k − 1) . . . rx(0) r∗x(1)

rx(k + 1) rx(k) . . . rx(1) rx(0)





1

ak(1)
...

ak(k)

0



=



ǫk

0
...

0

γk



(2.49)

The new parameterγk is equal to

γk = rx(k + 1)+ +
k∑

i=1

ak(i)rx(k + 1− i) (2.50)

Because of the Hermitian Toeplitz property ofRk+1 the Eqn. 2.49 can be written as
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

rx(0) rx(1) . . . rx(k) rx(k + 1)

r∗x(1) rx(0) . . . rx(k − 1) rx(k)
...

...
...

...

r∗x(k) r∗x(k − 1) . . . rx(0) rx(1)

r∗x(k + 1) r∗x(k) . . . r∗x(1) rx(0)





0

ak(k)
...

ak(1)

1



=



γk

0
...

0

ǫk



(2.51)

If the complex conjugate of Eqn. 2.51 is taken and combined with the Eqn. 2.49,for any

constantΓk+1, the equality of

Rk+1





1

ak(1)
...

ak(k)

0



+ Γk+1



0

a∗k(k)
...

a∗k(1)

1





=



ǫk

0
...

0

γk



+



γ∗k

0
...

0

ǫ∗k



(2.52)

is provided. IfΓk+1 is set as

Γk+1 = −
γk

ǫ∗k
(2.53)

then Eqn. 2.52 becomes

Rk+1ak+1 = ǫk+1u1 (2.54)

where

ak+1 =



1

ak(1)
...

ak(k)

0



+ Γk+1



0

a∗k(k)
...

a∗k(1)

1



(2.55)
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and

ǫk+1 = ǫk + Γk+1γ
∗
k = ǫk(1− |Γk+1|2) (2.56)

Therefore, the Eqn. 2.55 can be written as

ak+1(i) = ak(i) + Γk+1a∗k( j − i + 1) (2.57)

and referred asLevinson order-update equation.
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CHAPTER 3

CLASSIFICATION OF AUTOREGRESSIVE PROCESSES

The main objective of this work is making the quickest detection of one of the twohypotheses

modeled with different Autoregressive (AR) processes through the sequential probability ratio

test. In this method, AR coefficients of the processes of two hypothesis can be assumed to be

either known or unknown non-random variables. Both cases are studied in this chapter. By

using SPRT, the aim is to shorten the average detection time with respect to the fixed sample

size methods.

The detection problem can be interpreted as deciding on the synthesis filter generating the

AR(p) processes that are in the hypothesis test. This can be done by comparing the PSD

(Power Spectrum Density) of the input with the PSD of the AR(p0) process and AR(p1)

process. Under the null hypothesisH0, it is assumed that the data is an AR process withp0

coefficientsa0(1), a0(2), . . . , a0(p0). Under the alternative hypothesisH1, it is assumed that

the data is an AR process havingp1 coefficientsa1(1), a1(2), . . . , a1(p1) (Figure 3.1).

pzpaza −− +++ )(...)1(1

1
1 }{ ix}{ iw

Figure 3.1: The Autoregressive model

If x is a real random variable withx ∼ N(µx, σ
2
x)

Forx = [x1 . . . xk], the multivariate Gaussian pdf is
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p(x) = (2π)−
N
2 (detCx)

− 1
2 e−

1
2 (x−µx)T C−1

x (x−µx) (3.1)

Assuming zero mean data the pdf can be written as;

p(x) = (2π)−
N
2 (detRx)

− 1
2 e−

1
2 (xT R−1

x x) (3.2)

The varianceσ2
w can be written separately from the autocorrelation function (Rx) as

Rx = σ
2
wRa (3.3)

whereRa is the filter autocorrelation function and in the matrix form it is equal to

Ra =



ra[0] ra[−1] ra[−2] . . . ra[−(m − 1)]

ra[1] ra[0] ra[−1] . . . ra[−(m − 2)]

ra[2] ra[1]
. . .

. . .
...

...
...

. . . ra[0] ra[−1]

ra[m − 1] ra[m − 2] . . . ra[1] ra[0]



(3.4)

where each of the matrix elementra[k] is equal to

ra[k] =


−

∑p
l=1 a[l]ra[k − l] for k ≥ 1

−
∑p

l=1 a[l]ra[k − l] + 1 for k = 0
(3.5)

From the equality it is obvious thatra[−k] = r∗a[k] and therefore the filter autocorrelation

matrixRa is Hermitian and Toeplitz.

In order to calculate autocorrelation matrixRa, Yule-Walker equations in matrix form can be

used as:
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

ra[0] ra[−1] ra[−2] . . . ra[−(p − 1)]

ra[1] ra[0] ra[−1] . . . ra[−(p − 2)]

ra[2] ra[1]
. . .

. . .
...

...
...

. . . ra[0] ra[−1]

ra[p − 1] ra[p − 2] . . . ra[1] ra[0]





a[1]

a[2]
...

...

a[p − 1]



= −



ra[1]

ra[2]
...

...

ra[p]



(3.6)

Substitute ( 3.3) in ( 3.2), then

p(x) = (2π)−
N
2σ−N

w (detRa)−
1
2 e
− 1

2σ2
w

(xT R−1
a x)

(3.7)

If the variance of the time series (σ2
x) is known, the variance of the white noise (σ2

x) for each

hypothesis can be calculated as

σ2
w0
=
σ2

x

raH0
(0)

(3.8)

σ2
w1
=
σ2

x

raH1
(0)

(3.9)

Therefore the likelihood ratio for known variance case becomes:

Λ(x) =
p(x|H1, σ

2
w1

)

p(x|H0, σ
2
w0)
=

(2π)−
N
2σ−N

w1
(detRa1)

− 1
2 e
− 1

2σ2
w1

(xT R−1
a1

x)

(2π)−
N
2σ−N

w0 (detRa0)
− 1

2 e
− 1

2σ2
w0

(xT R−1
a0

x)
(3.10)

After making cancelations and taking logarithm of both sides, we get the loglikelihood ratio:

lnΛ(x) = N ln
σ2

w0

σ2
w1

+
1
2

ln
detRa0

detRa1

+
1
2

xT


1

σ2
w0

R−1
a0
− 1

σ2
w1

R−1
a1

 x (3.11)

However, if the varianceσ2
w is unknown, it has to be estimated with the Maximum Likelihood

(ML) method. To maximize lnp(x) with respect toσ2
w, we first take the logarithm of the pdf
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given in equation 3.7, and then take the derivative with respect toσ2
w and equate it to zero as

( 3.12),

∂ ln p(x)

∂σ2
w
= −N

2
1

σ2
w
+

1

2σ4
w

xT R−1
a x = 0 (3.12)

⇒ σ̂2
w =

1
N

xT R−1
a x (3.13)

Therefore, the variance for the hypothesisH0 can be estimated aŝσ2
w0
= 1

N xT R−1
a0

x while the

variance estimate for the hypothesisH1 is equal tôσ2
w1
= 1

N xT R−1
a1

x.

Using ( 3.13) in ( 3.7) the equation becomes

p(x) = (2π)−
N
2

(
1
N

xT R−1
a x

)− N
2

(detRa)−
1
2 e−

N
2 (3.14)

Therefore, in the unknown power case the likelihood ratio is equal to

Λ(x) =
(2π)−

N
2 ( 1

N xT R−1
a1

x)−
N
2 (detRa1)

− 1
2 e−

N
2

(2π)−
N
2 ( 1

N xT R−1
a0 x)−

N
2 (detRa0)

− 1
2 e−

N
2

(3.15)

Taking logarithm and making cancelations yields the final loglikelihood ratio:

lnΛ(x) =
1
2

(
ln detRa0 − ln detRa1

)
+

N
2

(
ln(xT R−1

a0
x) − ln(xT R−1

a1
x)

)
(3.16)

In order to calculateR−1
a and detRa in the loglikelihood ratio, the proposed method uses

inverse Levinson-Durbin Recursion, [33], as shown in Algorithm 1.
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Algorithm 1 The Recursion method to updateR−1
a and detRa

Initialize recursion

ρ0 = 1

ǫ0 = r a(0)

R−1
a =

1
ra(0)

detRa0 = r a(0)

for all n = 0,1, . . . ,m − 1 do

Γn+1 = − ra(0:n)ρR
n

ǫn

ρn+1 = [ρn 0] + Γn+1[0 (ρR
n )∗]

ǫn+1 = ǫn[1 − |Γn+1|]2

detRan+1 = ǫn+1 detRan

R−1
an+1
=


0

R−1
an

 +
1
ǫn+1
ρn+1ρ

H
n+1

end for

In order to find the inverse autocorrelation matrix of the AR processes having pth order,

Eqn. 3.17 also can be used, [34].

R−1
a =

1

σ2
w

(A1AH
1 − A2AH

2 ) (3.17)

whereA1 andA2 are lower triangular Toeplitz matrices and forN ≥ p can be calculated as

(A1)i, j =



1, i = j

ai− j, i > j

0, i > j

(3.18)

(A2)i, j =


a∗N−i+ j, i ≥ j

0, i < j
(3.19)

andak = 0 for k < 0 andk > p.

The outline of the proposed algorithm is given in Algorithm 2
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Algorithm 2 Summary of the Proposed Algorithm
Initialize x[0],aH0,aH1

For a desiredPFA (α) andPMIS S (β) compute test bounds from ( 2.12) and ( 2.13)

for all n > 0 do

UpdateR−1
0 ,R

−1
1 by using Algorithm 1

Update detR−1
0 ,detR−1

1 by using Algorithm 1

Update loglikelihoodη = lnΛ(x) from ( 3.16)

if η ≥ ln A then

DecideH1, break;

else if η ≤ ln B then

DecideH0, break;

else

Continue;

end if

end for

In the next section, the described algorithm is examined using Monte Carlo simulations. At

the beginning, the variance of the observation data is assumed to be known,i.e. no need to

estimate the variance. In this section, the effects of closeness and the value of the AR coef-

ficients are investigated. Then, the accuracy of Wald limits, the upper and lower thresholds,

are examined by changing false alarm and miss rates. In the second part, the algorithm with

unknown variance is studied and the performance of this part is comparedwith the first part

(known variance) in order to observe the effect of the ML estimation. Finally, the proposed

algorithm is compared with a similar classification algorithm having a fixed decisionperiod.

In other words, the results of the proposed algorithm are compared with theresults of a similar

algorithm based on the fixed observation length.

3.1 Sequential Classification of AR(p) Processes : Known Variance Case

In this section, the variance of the processes is assumed to be known as well as the filter

coefficients generating processes. In order to produce the test data, white noise is filtered with

causal linear shift-invariant filters in order to generate the AR processes. The hypotheses for

the classification of AR(1) processes are equal to
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H0 : x[n] = aH0 x0[n − 1] + w0[n]n = 0,1, . . . ,N − 1 (3.20)

H1 : x[n] = aH1 x1[n − 1] + w1[n]n = 0,1, . . . ,N − 1 (3.21)

(3.22)

whereaH0 andaH1 are AR(1) coefficients of the processes,w0[n] andw1[n] are WGN samples.

The performance of the algorithm is investigated by means of numerical comparisons through

Monte Carlo simulations. The examined metrics are the probability of false alarm, miss and

average sampling number (ASN) or average detection time. Simulations are madeby setting

the upper and lower thresholds to the Wald bounds. The parameters are set such that the false

alarm rateα = 0.01 and the miss rateβ = 0.01. Also Monte Carlo simulations are made for

2000 trials and each data vector have a length of 500.

3.1.1 Effect of AR Coefficient Closeness on the Performance of the Algorithm

When the AR coefficients of the models toH0 andH1 hypotheses,aH0 andaH1 gets closer to

each other and the false alarm rate and miss rate are fixed, we may expect the tests to take a

larger number of samples until termination.

To investigate the effect of the closeness of AR coefficients, we first set AR(1) coefficients

to the AR models asaH0 = −0.1 andaH1 = 0.1 and then increase the difference in between

these coefficients and compare the results. The input to the classification algorithm is thex0

vector generated under hypothesisH0. When the input is fixed to process related to theH0

hypothesis, false alarm rate of the system is examined. (Figure 3.2(a)) Then, the input is fixed

to H1 hypothesis and miss rate is studied. (Figure 3.2(b))

Bar graph represents the percentage of the number of decisions after the 2000 trials. The

SPRT algorithm makes 3 types of decisions. The test can terminate with a decision H0 or H1.

If the algorithm can not be able to make any decision after 500 samples, the test is said to be

unterminated. The histogram plot represents the distribution of the termination of total 2000

trials. The mean of the distribution is equal to the ASN of the trial.

Secondly, we repeat the same procedure foraH0 = −0.125 andaH1 = 0.125. (Figure 3.3(a),
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(a) aH0 = −0.1, aH1 = 0.1, FA=0.0059, ASN=227.3160, Unterminated Percent
6.45%
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(b) aH0 = −0.1, aH1 = 0.1, MISS=0.0085, ASN=230.1190, Unterminated Per-
cent 6.05%

Figure 3.2:aH0 = −0.1, aH1 = 0.1 False Alarm and Miss statistics for known variance case

Figure 3.3(b)) And finally, the algorithm is tested by setting the AR(1) coefficients asaH0 =

−0.15 andaH1 = 0.15. (Figure 3.4(a), Figure 3.4(b))

As expected, as the distance between the AR coefficients increases, unterminated trials and

the average detection number decreases at fixed false alarm and miss ratevalues. (Figure 3.1)

Because the rates are decided by the Wald thresholds and they are adjusted to the same value
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(b) aH0 = −0.125,aH1 = 0.125, MISS=0.0066, ASN=160.8205, Unterminated
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Figure 3.3:aH0 = −0.125,aH1 = 0.125 False Alarm and Miss statistics for known variance
case

(1%) for all the trials.

3.1.2 Accuracy of Wald Thresholds and Achieved False Alarm and Miss Rates

Finding the correct threshold value is the critical task and for many tests moredifficult than

constructing the optimal detector. However, the Wald limits bypass this problem effortlessly
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Figure 3.4:aH0 = −0.15,aH1 = 0.15 False Alarm and Miss statistics for known variance case

Table 3.1: ASN with respect to the closeness of AR(1) coefficients for known variance case

aH0 aH1 ASN UnderH0 ASN UnderH1

-0.1 0.1 227.3160 230.1190
-0.125 0.125 153.3720 160.8205
-0.15 0.15 110.3460 109.2190
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and they are extreme easy to calculate and valid for all likelihood ratio tests, [3]. The sequen-

tial probability ratio test with Wald limits says that,

λk =



≥ ln A → stop and decideH1

≤ ln B → stop and decideH0

otherwise → continue

(3.23)

where1−β
α

is an upper limit forA and β

1−α is a lower limit for B. And using this limit values

as upper and lower thresholds guarantees to provide desired false alarm and miss rates.

α is the parameter that sets the false alarm rate in Wald sequential probability ratiotest. By

setting this parameter according to Wald limits, the actual false alarm probability (p(H1|H0))

is guaranteed to be below the desired rate. Also, for the miss rate the parameter β is used

and also setting this parameter guarantees that actual miss rate (p(H0|H1) is below the desired

value. In this section, the accuracy of these limits is examined by setting the error rates

initially to 0.01 and then increasing these parameter to 0.05. To examine the actualfalse alarm

rate andα relation, as an input underH0 hypothesis is applied to the algorithm. (Figure 3.5(a))

An input underH1 hypothesis is applied to the algorithm so that the relation of actual miss

rate andβ is checked. (Figure 3.5(b))

3.1.3 Effects of the Value of the AR Coefficients to the Performance of the Algorithm

In a typical signal modeling problem, the outputs of stable filters are used to model a given

random process. With AR modeling, the filter response of the rational system function has

poles according to the AR coefficients of the process. When the AR coefficients are cho-

sen, special attention should be paid on the stability of the filter. For an AR(1)process AR

coefficients can take the values between 1 and -1 in order to make the filter stable.

The effect of chosen AR coefficients on the false alarm and miss rates, ASN and the number

of unterminated trials are observed by running the algorithm for different AR coefficients.

Firstly, the effect of the AR coefficients to the performance of the algorithm with known

power is examined and the simulation results are in Appendix A.1 and the ASN’ s are listed

in Table 3.2.
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Figure 3.5:aH0 = −0.15,aH1 = 0.15 FA vsα and MISS vsβ for known variance case

Table 3.2: ASN with respect to the value of AR(1) coefficients for known power case

aH0 aH1 ASN UnderH0 ASN UnderH1

0 0.3 110.1410 111.3980
0.3 0.6 104.8395 117.5130
0.6 0.9 95.5640 140.9580
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Secondly, the effect of the AR coefficients to the performance of the algorithm with unknown

power is examined and the simulation results can be reached in Appendix A.2. The resultant

ASN’ s are listed in Table 3.3.

Table 3.3: ASN with respect to the value of AR(1) coefficients for unknown power case

aH0 aH1 ASN UnderH0 ASN UnderH1

0 0.3 112.8660 107.6575
0.3 0.6 97.5770 81.4765
0.6 0.9 66.5160 42.7900

Against the expectations, the ASN values for the unknown variance caseare smaller than

the ASN values for the known variance case. However, the results of theknown power case

and the unknown power case have to be evaluated independently because assumptions are

different in the derivation of the loglikelihood ratios. For the unknown power case, as the pole

of the filter approaches the unit circle in the complex plane, the resultant ASNdecreases.
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3.2 Sequential Classification of AR(p) Processes : Unknown Variance Case

If the variance of the random processes is not known, the maximum likelihood (ML) esti-

mation of the time series has to be calculated according to Equation 3.24 and inserted in to

likelihood ratio.

σ̂2
w =

1
N

xT R−1
a x (3.24)

The algorithm estimates the variance of a white Gaussian random noise with zero mean and

a powerσ2
w. (Figure 3.6)
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Figure 3.6: Performance of the estimation algorithm, trueσ2
w = 0 dB

Because of using an estimate instead of the true value for the variance, the algorithm may

require some additional samples for the initial variance calculation to be reliable. To reduce

the negative effects of this delay in decision, this number is chosen by considering the results

of the previous simulation. The decision start sample number (the first outputof the SPRT

test) is chosen as 10. In this way, the likelihood ratio is calculated using first 10 samples and

then SPRT test proceeds by updating both the hypotheses scores and thevariance estimate.
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Due to the fact that the Wald limits are pessimistic bounds for the false alarm and miss rates,

the simulation results show that the bounds are still valid for the unknown variance case

despite the inaccuracies of the initial estimations. (Figure 3.7)
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Figure 3.7:aH0 = −0.15,aH1 = 0.15 FA vsα and MISS vsβ Unknown Variance

For the unknown variance case, histogram of the required sample numbers, resultant error

rates, ASN and unterminated percentage of the trials are illustrated in Figure 3.8 by choosing

AR coefficients ofH0 asaH0 = −0.15 andH1 asaH1 = 0.15. Figures are prepared by using

simulated data underH0 (Figure 3.8(a)) andH1 (Figure 3.8(b)) hypotheses. The Wald limits
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are set toα = β = 0.01, i.e. the expected false alarm and miss rates have to be under 1%.

The ASN (Average Sample Number) which is the mean number of sample points demanded

to make a decision is 111.9560 underH0 and 111.2125 underH1. Also resulted false alarm

rate is 0.0075 and miss rate is 0.0085 which are below the Wald limits as expected.
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3.2.1 Unknown Variance Sequential Detection of AR(p) Processes for Complex Time

Series

If the time series vector is complex Gaussian distributed random process with zero mean, the

associated multivariate complex Gaussian pdf is

p(x) =
1

πN det(Cx)
exp[−(x)HC−1

x (x)] (3.25)

and is denoted byx ∼ CN(0,Cx).

Loglikelihood ratio is denoted by lnΛ(x) and it is

lnΛ(x) = (ln detRa0 − ln detRa1) + N(ln(xHR−1
a0

x) − ln(xHR−1
a1

x)) (3.26)

3.3 The Effect of SNR on the Detection of AR(p) Processes

The aim of this section is to examine the effect of the additive white noise on the detection of

AR signals . AR signals are produced by filtering the white noise byp AR coefficients for the

pth order AR processes. As the white noise is added to these AR processesthe structure of

these signals are distorted. (This distortion due to the noise is not accountedin the hypothesis

definitions in this work.) In this section, the algorithm is tried for different SNR values by

fixing other parameters. Firstly, by adding white noise to the AR signal, the SNRof this signal

is adjusted as 30dB. (Figure 3.9)

The simulations are repeated for the SNR values of 20dB and 10dB and the results are illus-

trated in Figure 3.10 and Figure 3.11 respectively. The ASN underH0 is equal to 112.5365

at 30dB SNR but it increases to 113.3295 and 120.5155 as the value of the SNR decreases to

20 dB and 10dB respectively. The results are similar for the hypothesisH1. Finally at 10dB

SNR the error rates exceed the adjusted limits (α = β = 0.01) by the Wald thresholds.

It is observed that as the SNR decreases the ASN is increased and also the probability of

errors are increased (Figure 3.9, Figure 3.10, Figure 3.11) Therefore, the probability of errors

vs. SNR is examined in the next set of simulations.
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Figure 3.9: The Histograms for the Detection Times with SNR=30 dB, aH0 = −0.15,
aH1=0.15

In order to study the effect of additive CWGN, after the production of AR process by filtering

the white noise with complex AR coefficients, extra complex Gaussian white noise is added

to the output process. In these simulations, the value used for the AR coefficients of the hy-

pothesesH0 andH1 are listed in the Table 3.4 and the hypotheses represented the helicopter

echo and CWGN respectively. The value of the AR(5) coefficients for the helicopter hypoth-

esis (H0) is derived at the Section 4.1.2 by fitting the AR model to the experimental data. The
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Figure 3.10: The Histograms for the Detection Times with SNR=20dB, aH0 = −0.15,
aH1=0.15

alternative hypothesis represents the CWGN. (By this configuration, it is aimed to examine

the detection performance of the sequential algorithm when one hypothesisis related to the

helicopter echo and the other one is the white noise.)

The Wald limits are also valid for the detection of signals in CWGN. However, as the decision

start number (Nstart) gets larger the algorithm is able to work for the signals having low SNR
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Figure 3.11: The Histograms for the Detection Times with SNR=10dB, aH0 = −0.15,
aH1=0.15

values. If the decision start number is chosen as 20, the algorithm starts to take an action

after 20th sample. For the first simulationNstart is chosen as 20 and it is observed that the

algorithm works under the adjusted error rates above 19dB SNR by increasing the value of the

α parameter from 0.01 to 0.05 (Figure 3.12(a)). The power spectrum estimates of the the data

vectors under helicopter hypothesis (H0), under CWGN hypothesis (H1) and under helicopter

hypothesis (H0) having 19dB SNR by adding CWGN are illustrated at Figure 3.12(b).
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Table 3.4: AR coefficients for the helicopter (H0) and CWGN (H1) hypothesis

Hypothesis H0 H1

a(1) 0 -1.2542-0.4250i
a(2) 0 0.5051+0.3334i
a(3) 0 -0.7718+0.0352i
a(4) 0 0.6383+0.2075i
a(5) 0 -0.1109-0.1649i

The simulation is repeated for the case ofNstart = 50. The method operates adequately at

14 dB SNR (Figure 3.13(a)). And it is observed that by increasing the parameter Nstart, the

algorithm is able to work under lower SNR’s.
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Figure 3.13: Power Spectrum Estimates forNstart = 50
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3.4 Comparison of Sequential and Fixed Length Detection of AR(p) Processes

In this section, we compare the proposed method with a fixed sample size classifier. We first

outline an algorithm that makes detection with a fixed sample size. The performance of this

method is compared with the performance of SPRT test given in the earlier sections.

In the figure below,N (Fixed sample size) is increased to 250 andPFA = PMIS S is chosen so

thatPD vs N is analyzed.
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Figure 3.14:PD vs Sample Number foraH0 = −0.15,aH1 = 0.15

For different SNR values the previous experiment is repeated in the next figure.In order to

achieve same error rates, the requirement for increasing FSS can be observed.

To achieve the same error rates, the sample size for an FSS algorithm has to increase as the

SNR of the time series decreases. This simulations (Figure 3.15(b)) can be compared with

the results of the sequential algorithm (Figure 3.9, Figure 3.10, Figure 3.11). In order to

achieve same error rates (PFA = PMIS S = 0.01) in equal detection conditions (aH0 = −0.15,

aH1 = 0.15) the requirement of average sampling numbers (ASN) are shown in Table 3.5:
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Table 3.5: The ASN for Sequential and Fixed Sample Size algorithms

SNR 30dB 20dB 10dB

Wald’ s SPRT 112 113 121
Fixed Sample Size 238 246 290
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In order to examine the proposed method at lower than 10dB SNR, we increase theNstart

number and make some simulations. The results of these simulations are listed in Table 3.6:

Table 3.6: The performance results of proposed method at low SNR’s

Nstart SNR Error Rate ASN Unterminated

20 8 dB 0.0175 122.0 % 0.20
25 8 dB 0.0130 122.3 % 0.15
30 8 dB 0.0125 124.9 % 0.15
30 6 dB 0.0221 134.8 % 0.55
30 4 dB 0.0273 145.7 % 1.05

Below 10dB SNR, an increase in theNstart number is not enough to provide the preset error

probability by Wald limits. This problem can be arouse from the addition of WGN disrupt the

AR structure of the hypotheses. As a future work, how to reflect the effect of the noise on the

hypotheses will be analyzed.
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CHAPTER 4

AN APPLICATION EXAMPLE : ROTARY - FIXED WING

CLASSIFICATION

In the previous chapter, a sequential algorithm to make a fast decision with an acceptable false

alarm and miss rates, is given. This method uses the sequential probability ratio test with

Wald’s thresholds. Also in order to decrease the complexity of the algorithm, the Levinson-

Durbin recursions is implemented to calculate required matrix inverses. The algorithm can

also be used if the process has unknown variance with some initial delay to reliable estimate

the unknown variance. The other parameters of the processes (the order of the process and

the pole locations) are assumed to be known.

The advantages of variable sample size detection can be utilized in rapid detection of targets

having different spectral characteristics such as rotary and fixed wing targets. The only pre-

processing step requirement to use the suggested algorithm is to model the hypotheses with

autoregressive models.

4.1 Target Models

In the proposed algorithm requires AR models for each hypothesis. To calculate the model

coefficients, the algorithm need to have some knowledge of PSD of the each process.

4.1.1 Modeling of Backscattering from Hovering Helicopter

When the radar pulse impinges on the hovering helicopter, the backscattered signal is affected

by several components of the helicopter. Basically, the components of the helicopter that
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affects the echo signal can be divided into 4 parts. These parts are the bodyof the helicopter,

the hub, the main rotor blade and the tail rotor blade. (Figure 4.1)

Figure 4.1: Contributions to EM backscattering from the parts of the Hovering Helicopter, [1]

The contribution of the body to the PSD is at only zero frequency. The hubhas a triangle

shaped PSD centered atf = 0 Hz . The value offhub is dependent to the radar cross section

(RCS) and the radial velocity of the hub. The approaching and recedingparts of the main rotor

blade impacts the PSD differently because of the shape of the blade. The part that approaches

have a greater RCS with respect to the receding part. Therefore, the approaching blade has a

higher level of the PSD than receding blade.fmax has a relationship with the tip speed. The

final part is the tail rotor blades. The rotation plane of the tail rotor blades isperpendicular to

the radar generally. Therefore, the contribution of the scattering from the tail rotor blades is

little with respect to the other parts, [1]. Figure 4.2.

Following simulations and comparisons are prepared with the experimental datawhich is

gathered from an experiment for the analysis of the doppler and flash effects of a helicopter.

If the experimental data from the helicopter returns is analyzed, the constructed PSD estimate

(Periodogram) given in Figure 4.3 is closely related to the one given in [1].
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Figure 4.2: PSD of signal backscattered from the parts of the Hovering Helicopter, [1]

4.1.2 Autoregressive Modeling

A parametric model is selected to model a given time series The only requirement,after the

selection of the model, is to estimate the parameters of the model. The number of parameters

and their values should be properly chosen to accurately model the time series. It is also

desired to represent the time series with as few parameters as necessary.

Parametric modeling have 3 types: Autoregressive (AR) model, Moving Average (MA) model

and the Autoregressive-Moving Average (ARMA) model. Each of them isappropriate for

different PSD forms. The AR Model can be used for PSD’s having sharp peaks, and not having

deep valleys. The MA models is suitable for the opposite type of PSD’s, i.e., having deep

valleys and not sharp peaks. Because the ARMA model comprises the characteristics of this

two models, it is appropriate for the spectra containing both of these contrast characteristics.

[32]

In our detection procedure, each of the two hypothesis has a different power spectrum density

(PSD) with sharp peaks. Therefore, they have to be modeled by AR processes. AR coef-

ficients for each of the two hypotheses have to be known or estimated from the collected

data. (The data used in this modeling is collected through the collaboration of ASELSAN and

METU-EE members.) From the time series data, the autocorrelation matrix are estimated.

Then, these autocorrelation estimations are used to find the AR coefficients of the autoregres-

sive processes.
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Figure 4.3: PSD estimate of the signal backscattered from the Helicopter

In order to model a process as an autoregressive process of thepth order AR(p), the parameter

set of (σ2
x, ap(1), ap(2), . . . , ap(p)) has to be calculated. If it is assumed that the AR process is

generated by filtering white noise having unit variance,w(n), then the all pole filter equation

has the form of

H(z) =
b(0)

1+
∑p

k=1 ap(k)z−k
(4.1)

Therefore, the Yule-Walker equations are satisfied by this autocorrelation sequence of AR

process (Eqn. 4.2).

rx(k) +
p∑

l=1

ap(l)rx(k − l) =


σ2

w|b(0)|2 ; k = 0

0 ; k > 0
(4.2)

Using the conjugate symmetry ofrx(k), for k = 1,2, . . . , p, these equations can be written in

matrix form as
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

rx(0) r∗x(1) . . . r∗x(p − 1)

rx(1) rx(0) . . . r∗x(p − 2)
...

...
...

rx(p − 1) rx(p − 2) . . . rx(0)





ap(1)

ap(2)
...

ap(p)



= σ2
w|b(0)|2



rx(1)

rx(2)
...

rx(p)



(4.3)

Yule-Walker method says that if the autocorrelationsrx(k) are known or estimated, a linear

equation system is to be solved for the AR coefficients. Therefore, using this method the

AR spectral estimation can be done and the results are illustrated for different number of AR

coefficient as

4.1.3 Modeling of Backscattering from a Fixed Wing Target

The backscattering of a radar pulse from a constant object contributesno Doppler shift, or

a DC component after down conversion. If the object is moving, then it hasa spread with

respect to its unknown velocity which can be modeled as a random variable spread around

the mean velocity. However, the spread of velocity for a fixed wing target isvery low during

coherent processing interval in comparison with the rotating parts of the helicopter. Therefore,

the spectrum spread of the fixed wing target is narrower than the spreadof the helicopter.

In addition, if the radar antenna is also rotating, the spread originating fromthis rotation can

be wider than the spread due to velocity differences of the the fixed wing target. Therefore,

the spread of PSD around the center frequency corresponding to meanvelocity can be solely

due to antenna rotation.

In this thesis, the fixed wing target is modeled as an AR(1) process with the correlation co-

efficient of -0.999. (This model is similar to the exponential clutter models.) In otherwords

the model parameter is chosen such as the pole of the filter is close to z=1 in the z-plane.

The final AR model coefficients for the hypotheses are listed in the Table 4.1. And the PSD

estimates of the AR modeled hypotheses are illustrated in the Figure 4.5.
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Figure 4.4: PSD estimates of the AR modeled Helicopter signal

4.2 Simulation Results and Analysis of the Algorithm with the Estimated Mod-

els

In this section, the performance of the classification algorithm is tested. For this aim, the

complex white Gaussian noise is added to the input signals. CWGN has a negative effect on

the performance. In order to see this negative effect, the SNR is decreased by adding CWGN

until the algorithm can not operate at the desired false alarm and miss rates.False alarm and
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Figure 4.5: PSD estimates of the AR modeled Plane and Helicopter signals

miss rates are adjusted to (α = β = 10−6) for all of these simulations in this section.

By analyzing the PSD estimates of the echo returned from the helicopter (Figure 4.3), the

echo signal (H0 hypothesis) can be assumed to have a noise floor at -35dB and therefore, the

SNR of the experiment data underH0 hypothesis can be calculated as 25dB. At this SNR,

the classiication algorithm with AR(5) helicopter model decides the target as helicopter at the

samplesn =[43 87] as illustrated in Figure 4.6.

To examine the effect of the used AR model order on the performance of the classification of

helicopter, Monte-Carlo simulations are made for 2000 trials by using different AR helicopter

Table 4.1: AR coefficients for the fixed wing target or plane (H0) and helicopter (H1) hypothe-
ses

Hypothesis Plane (H0) Helicopter (H1)

a(1) -0.999 -1.2542-0.4250i
a(2) 0 0.5051+0.3334i
a(3) 0 -0.7718+0.0352i
a(4) 0 0.6383+0.2075i
a(5) 0 -0.1109-0.1649i
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Figure 4.6: Performance of the Detection of Helicopter at 25dB SNR

models having different number of coefficients. To obtain the histogram of the termination

times, we run the algorithm for the same helicopter data by using AR(3), AR(5)and AR(10)

helicopter models at 23dB SNR.

AR(3) model results in the all trials are unterminated in other words no decisionis made

during 100 samples in 2000 trials. (Figure 4.7) By using AR(5) model, the %9.55of the trials

are unterminated but the remaining trials end with helicopter decision and no wrong decision

is made. (Figure 4.8) In AR(10) model, %30.15 of the trials remain unterminated after 100

sample and more than half of the remaining trials end with plane decision so the error rate is

0.6822. (Figure 4.9)

Adding CWGN to the helicopter time series to get an SNR of 23dB results in a delay in the

detection time of the helicopter. While making the first decision atn =43 with 25dB SNR, the

algorithm makes helicopter decision with an ASN of 75.6795 with 23dB SNR. (Figure 4.8)

To examine the performance of the algorithm with AR models having different number of

coefficients, the test is repeated for 21dB SNR. AR(3) model remains mostly unterminated,

however this time, it makes 2 wrong decisions in 2000 trials. (Figure 4.10) In AR(5) model,

the unterminated percent increases to %85.15 however the error rate does not increased in
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Figure 4.7: Helicopter classification(AR(3)) at 23dB SNR, ASN=100, FA=0, Unterminated
Percent=%100
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Figure 4.8: Helicopter classification(AR(5)) at 23dB SNR, ASN=75.6795, FA=0, Untermi-
nated Percent=%9.55
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Figure 4.9: Helicopter classification(AR(10)) at 23dB SNR, ASN=67.8885, FA=0.6822,
Unterminated Percent=%30.15

comparison to other models. Addition of CWGN makes the classification algorithm more

likely to decide plane hypothesis. (Figure 4.11) AR(10) model results in the fact that almost

all of the trials end with wrong decision. (Figure 4.12)

In contrary to the expectations, the performance of the AR(10) model is notbetter than the

two alternatives. The reason of this bad performance may be the fact thatAR(10) model

is modeling also the spurious peaks in the PSD estimate of the real helicopter data. These

peaks do not stay in the portion of the used helicopter data and therefore this results in poor

performance. All of these statistics show that the AR(5) model is more suitablefor this

classification algorithm among these three models. As a future work, the choice of AR model

order will be studied.

For the plane hypothesis 25dB SNR, the plane decisions are made in ASN of 22.7920. (Fig-

ure 4.13)

If the SNR value decreases to the 23dB for the plane hypothesis, the ASN to make a decision

decreases to 15.7410. (Figure 4.14)

In this chapter, the suggested method is applied on the problem of classification of rotary
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Figure 4.10: Helicopter classification(AR(3)) at 21dB SNR, ASN=99.9895, FA=1, Untermi-
nated Percent=%99.85
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Figure 4.11: Helicopter classification(AR(5)) at 21dB SNR, ASN=96.5335, FA=0.1684,
Unterminated Percent=%85.15
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Figure 4.12: Helicopter classification(AR(10)) at 21dB SNR, ASN=35.7990, FA=0.9903,
Unterminated Percent=%1.75
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Figure 4.13: Plane classification at 25dB SNR, ASN=22.7920, FA=0, Unterminated Per-
cent=%0
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Figure 4.14: Plane classification at 23dB SNR, ASN=15.7410, FA=0, Unterminated Per-
cent=%0

- fixed wing target. To model the hypotheses with autoregressive models, we calculate the

model coefficients by the help of Yule - Walker method. As the number of coefficient used in

AR modeling increases, it is illustrated that the hypotheses are representedbetter. However,

the increment in the number of coefficient also increases the complexity of the algorithm.

The performance of the suggested classification algorithm is studied by using experimentally

collected real data of an helicopter and simulated data of moving fixed wing target at different

SNR levels. The CWGN has a negative effect on the classification of the helicopter by in-

creasing the required samples to terminate the test while a positive effect on the moving fixed

wing target hypothesis.
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CHAPTER 5

CONCLUSION

In this thesis, a sequential method is presented for the classification of the autoregressive

processes. This method requires fewer number of samples than the conventional systems

having fixed sample sizes. The use of suggested method can result in a decrease in the dwell

times in search systems. The simulation results show that the proposed sequential method

requires about half the number of samples that the method with a predefined sample size.

The thresholds of the suggested method can be accurately calculated through Wald limits. An

additional advantage of the sequential method is that the error probabilities of first and second

type can be easily adjusted by two thresholds.

The complexity which arises from the need of inverting larger and larger matrices for each

new coming sample is eliminated by using recursive algorithms to calculate inverseof the

autocorrelation matrix and also the required determinant of the autocorrelation matrix value.

The method is examined for signals having different SNR values and it is observed that by

increasing the decision start sample number (Nstart) the algorithm is able to estimate the un-

known process variance reasonably well and work with low SNR signals.

As an application example, the problem of fixed and rotary wing classificationproblem is

examined. For this aim, the experimentally collected real data of an helicopter is modeled

by different AR models and a fixed wing moving target is simulated. Using these models,

the performance of the proposed classification algorithm is examined on experimental data at

different SNR levels.

The future work related to the proposed method is the development of an analytical study
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for the case of unknown process variance (a study on the accuracy of Wald’s thresholds and

the detection probabilities in the presence of estimation errors) and the development of the

framework for AR signals under noise and an extension to the M-Ary hypothesis testing.
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APPENDIX A

EFFECTS OF THE VALUE OF THE AR COEFFICIENTS TO

THE PERFORMANCE OF THE ALGORITHM

A.1 Known Power Case

In this section, the effect of chosen AR coefficients on the false alarm and miss rates, ASN

and the number of unterminated trials are investigated by means of numerical comparisons

through Monte Carlo simulations for the known power case. The parametersare set such that

the false alarm rateα = 0.01 and the miss rateβ = 0.01. Also Monte Carlo simulations are

done for 2000 trials and each data vector have a length of 500. Firstly, theeffect of the AR

coefficients on the performance of the algorithm for the known power case is examined and

the simulation results are illustrated.
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Figure A.1: Algorithm performance for known variance case,a0 = 0, a1=0.3
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Figure A.2: Algorithm performance for known variance case,a0 = 0.3, a1=0.6
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Figure A.3: Algorithm performance for known variance case,a0 = 0.6, a1=0.9
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A.2 Unknown Power Case

In the previous section, the effect of chosen AR coefficients on the false alarm and miss

rates, ASN and the number of unterminated trials are investigated by means of numerical

comparisons through Monte Carlo simulations for the known power case. Inthis section, The

effect of the AR coefficients on the performance of the algorithm is examined for the unknown

power case.
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Figure A.4: Algorithm performance for unknown variance case,a0 = 0, a1=0.3
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Figure A.5: Algorithm performance for unknown variance case,a0 = 0.3, a1=0.6
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Figure A.6: Algorithm performance for unknown variance case,a0 = 0.6, a1=0.9

70




