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ABSTRACT

A SEQUENTIAL CLASSIFICATION ALGORITHM FOR AUTOREGRESSIVE
PROCESSES

Otlu, Gines
M.Sc., Department of Electrical and Electronics Engineering
Supervisor : Assoc. Prof. Dr. @Qatay Candan

Co-Supervisor : Assoc. Prof. Dr. Tolga Ciilo
September 2011, 70 pages

This study aims to present a sequential method for the classification of theguetssive
processes. [erent from the conventional detectors having fixed sample size, the method
uses Wald'’s sequential probability ratio test and has a variable sampldtsgzshown that

the suggested method produces the classification decisions much earlferad@ample size
alternative on the average. The proposed method is extended to thelmspmcesses have
unknown variance. Thelkects of the unknown process variance on the algorithm performance
are examined. Finally, the suggested algorithm is applied to the classificatfoedfand
rotary wing targets. The average detection time and its relation with signal te ratie are

examined.

Keywords: Sequential Detection, Autoregressive Modeling, Tatgssification, Wald, SPRT
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OZBAGLANIMLI S URECLERICIN DIZISEL SINIFLANDIRMA ALGORITMASI

Otlu, Giines
Yiiksek Lisans, Elektrik ve Elektronik tvhendislgi Bolumi
Tez Yoneticisi : Dog. Dr. Cgatay Candan
Ortak Tez Yoneticisi : Dog. Dr. Tolga Cilglu
Eylul 2011, 70 sayfa

Bu calismapzbajlanimli direcler icin dizisel bir siniflandirma algoritmasi sunmayi1 amaclamaktadir.
Genellikle kullanilan sabit boyutlu algilayicilarin aksine, bu met@igleendrnek boyutlarina

sahip Wald’ un dizisel olasilik oran testini kullanmaktadbnerilen metodun siniflandirma

kararini ortalama olarak saliitnek boyutuna sahip alternatifinden déimae verdji gosterilmistir.
Onerilen metot, reclerin varyansinin bilinmegii durum icin genisletilmistir. Bilinmeyen

siire¢ varyansinin algoritma performaigerindeki etkileri incelenmistir. Son olaraqerilen

algoritma sabit ve dnen kanatl hedeflerin siniflandirmasina uygulanmistir. Ortalama karar

zamani ve bunun sinyaliglltd oraniyla bglantisi arastiriimistir.

Anahtar Kelimeler: Dizisel Tespit, Otoregresif Modelleme, Hedef Siniflandividaéd, SPRT
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

Modern sensor systems can detect targets with low latency at all rardjearmwork properly
under high noise and interference levels. The delay in the detection deigsiaportant in
initiating the counter measures to the targets. A reduced delay is also helgftiéduling
of sensor modes. As an example, a typical surveillance system caneeittacgverage area
by making target present or absent decisions in reduced time. The mdttetkotion with
low delay is desired to work at noisy environments and in the long rangesd&tection of
radar targets has been studied extensively in the literature, but lesseioatie paid to the

detection delay.

The target detection is typically performed on multiple observation samplesdéteetion
with fixed sample size (FSS) is the most well known procedure. This detqutomedure
collects a predefined number of samples first and once the sample collegtiod {3 over,
processes them to make a decision on the target presence. The samjdedsizzgmined

by the desired performance requirements, [2]. The sequential plippadtio test (SPRT)

is another &ective procedure for the multiple-sample detection problem which is dedcribe
originally by Wald, [3]. The sample size of this procedure is variable. Iemotords, the
termination time of the test changes with the input. For two hypothesis case, dbiedpre

is optimal in the sense that the decision sequence ends with the minimum numaepiés
(on the average) to achieve a desired probability of error, [4]. Itasvsithat the SPRT needs

much fewer samples than the procedures having fixed sample sizes, [5].

Since the sequential probability ratio test does not require the samplelsizisein advance,



it is also very suitable for online processing. The decision to terminate tleessaepends
on the scores generated by the observations collected up to that instardv@age sample
number (ASN) is defined as the mean number of sample points to successfeliythrae
desired probability of errors of first and second types. With respediSid measure, it is
known that the sequential probability ratio test usually terminates in an alBopéeibcent
savings in the number of observations over the mégtient test procedure having a fixed

sample size, [3].

The detection time is a random variable in this sequential procedure. Asterpthe targets
that are dificult to discriminate have to be observed for longer periods while the clagmfic
of the targets that are easier to discriminate requires less time. The sedsbe ather com-
putational resources can be utilized moftecgently because of this behavior of the sequential

approach. So that an overall enhancement in the detection perforicembe observed.

The SPRT is also extensively used in the problem of change detectionprbhiem can be
defined as the change of the paramétef the time series fromg to 61 # 6y at an unknown
change time. The main goal is to detect and estimate the change in one or nwneieas
of interest. Changes can be grouped as additive and nonadditierédpehanges. Additive
changes take place in the mean value of the observation. Nonadditiveesatte in changes
in the variance, correlations, spectral characteristics or dynamics dfighal, [6]. Also
these changes can be analyzed as changes in a regression model,/A&MPor in a state-
space model by using fiierent modeling issues. The online change detection algorithms
use the SPRT by processing the online data streams. With the aid of the WARITS the
cumulative sum (CUSUM) algorithm was proposed in [7]. CUSUM method tiszidea that
integration of the probability ratios of the signal with adaptive thresholdstasdrequently
used in the online change detection algorithms for detection of a changeriaragiar in AR
modeling, [8], [9], [10]. In addition CUSUM method can be used for sstjial detection of
atarget in clutter, [11]. Recursive algorithms are also used for thettwiexd a change in the

autoregressive processes, [12], [13].

In a typical detection problem, some target specific parameters are kgoinmplement
the classification algorithm. The required parameters can be obtained by thitdirdata to
available analytical models. For modeling time series, linear regression madetsten

used. The general form of the linear regression models includes FiniteldenResponse



(FIR), Auto-Regressive (AR) and Auto-Regressive Moving AgerARMA) models as some
special cases. The AR model is useful for modeling time series and ofezhingadar
systems (clutter modeling), human EEG, earthquake analysis, speechntsipneareas,

[14].

In many applications, the autoregressive modeling is preferred to anatihely used method
called as periodogram. AR modeling is utilized in the analysis of spectrum seaHLits
better spectral resolution, [15]. Therefore, in areas requiring hpghtsal resolution, such as
determining the doppler spectrum, AR or ARMA models can be preferrednipadson to
simple periodogram, that is the windowed fast Fourier transformation, fetldsy magnitude
squaring and averaging, [16]. In addition, AR modeling has low complerityspectrum

estimation, [17].

The methods of sequential detection and AR models have been propodee pooblems of
underwater acoustics. The sequential detector based on Page tgdted &pactive sonar
detection in [18]. In passive acoustic detection, AR modeling is used in thdergace

cancelation procedure, [19], [20]. In addition, in active sonar dieteadaptive prewhiteners

can be designed by using the autoregressive methods, [21], [22].

In this thesis, we apply the methods of sequential detection with AR models todhkeipr
of plane - helicopter classification. It is well known that a doppler fregyeshift of carrier
frequency proportional to target range rate of the target is obsemetie radar echo. In
addition, the rotating objects such as the rotor blades of the helicoptesauosadulation on
the radar return signal. The analysis of moving and rotary taftgtts is given in [23], [24],
[25], [26]. The work on utilizing the #ect of the main rotor in detection is given in [27], [1].
The discrimination of helicopters from fixed-wing targets is given in [239][ To the best of
our knowledge, the SPRT with AR modeled spectrums has not been appliesl piootiiem

of plane - helicopter (fixed wing - rotary wing) classification.

In [30], a general solution to the target discrimination problem using SPRTAR models
is presented. The suggested methoffedent from the work presented here, uses two mean
square prediction filters. The likelihood ratio is composed of the probabilitgitiefunctions
of the prediction errors for each hypothesis. It is shown that this steigtoptimal for the
signatures with Gaussian distribution. It is also stated that the structureeagpbed to the

signatures with non-Gaussian distributions but its optimality is lost.



Lastly in [31], the binary hypothesis test, as in here, is chosen as tievaiit AR processes.
The order of the AR model is chosen as 2 and the procediiaerts are complex valued.
The simulations for probability of detection as a function of sample size anémpatio are
established for constant false alarm rate and an application of this algarithime experi-
mental radar data is presented. The presented work contains similar detestidts for the

SPRT.

1.2 Scope of Thesis

Radar systems are to detect moving targets or the changes in the reéghaddas quickly
as possible with a reasonable algorithm complexity. Proposed method browwenient
approach for detection in reduced decision time in comparison to fixed sainglgystems.
This method enables reduced power consumption and better scheduliegadién coverage

area through reduced detection time.

The proposed algorithm is a discrimination algorithm based on the sequéatisiical hy-
pothesis testing using AR models. The main idea is to bring the results in literatihe on
Wald's sequential probability ratio test and AR modeling together and to peopolution

to the target discrimination problem.

The performance of the proposed method is investigated by means of Maritestnula-
tions. The examined performance criterion are ASN (the dependenc8Nfolh SNR) the

probability of type-one (False alarm) and type-two (Miss) classificaticor&rr

1.3 Outline of Thesis

Thesis begins with an introduction of the problem and a summary of the litenssearch
on the related topics. The sequential detection, autoregressive ggec@® the advantages

of sequential tests are qualitatively summarized.

In Chapter 2, the review of the sequential detection procedure is giveoisidering the

two-sided scheme of Wald.
In Chapter 3, the problem definition and an explanation of the proposedthlg are given

4



along with some simulation results. The method is illustrated with the numerical examples
and the feasibilitflimitation of the method is studied with simulations. Brief review of the

related methods that are used in the development of the method is also given.

In Chapter 4, the method is applied to the problem of discrimination of the rotatyieed
wing targets. The experimental data used in this chapter has been collecigghtlthe joint

work ASELSAN and METU-EE members.

The last chapter presents the conclusions on the applicability of the mp@mpoesthod and

outlines some further research directions that can be explored.



CHAPTER 2

BACKGROUND

In order to provide a foundation for the proposed work, we summarizeedasic results in
detection theory, multivariate distributions, sequential tests and autcssagrgrocesses in

this chapter.

2.1 Detection Theory

2.1.1 Binary Hypothesis Tests

Assume that a set dfl observationsxy, xo, ..., Xn; is collected together in the vectaras

shown below:

X1

X2

(1>

(2.1)

| XN |

By processing the observation vector, as a classification decision is tertszaged. The
choices of classification are referred as hypotheses. In geness liipotheses akéy, Hy, ..., Hu_1.
In the binary hypothesis case, the output is reducedgtandH;. For binary hypothesis test-

ing, there are four possible assignment cases and their probabilitiesrarted as follows:

1) Hp true and the decision id;: Probability of False AlarmRga)

2) Ho true and the decision Hp: (1 — Pra)



3) H; true and the decision id1: Probability of DetectionRp)
4) H; true and the decision idp: Probability of Miss Py = 1 - Pp)

2.1.2 Gaussian Probability Density Function

The Gaussian probability density function (pdf) for a scalar randoimabi@x having a mean

ux and a varianceﬁ is defined as;

p(x) = exp[—T;(x—ux)Z] (2.2)

1
\2ro%
It can be denoted bM(ux, 02) and said thak ~ N(ux, o2)

If a nx1 vectorx is composed of the scalar gaussian random variablethe multivariate

Gaussian pdf ok becomes

P = x5 (x )T C5(¢ - 0] 23)

(27)% det(Cy)?

and is denoted by ~ N(ux, Cy).

If x is a complex Gaussian random vector, then the pafief

p(x) expl-(x — )" CiH(x = ix)] (2.4)

3 1
~ N det(Cy)
Likelihood ratio is denoted by (x) and defined as

N Px(X[H1)

A = o)

(2.5)



2.2 The Sequential Detection

Let p(x, ®) denote probability density function (pdf) of the random variabléet Hg be the
hypothesis tha® = ®¢ andH; the hypothesis thad = ®; , Thus , the pdf of x is given by

p(x, ®1) whenHy is true , and byp(x, ®g) whenHp is true.

For any positive integamn, the pdf that a sample; ... X is obtained is given by

k
pok = | | polxn) (2.6)
n=1
whenHg is true , and by
k
Pk = l—[ P1(Xn) (2.7)
n=1

whenHj is true.

2.2.1 The Derivation of Upper and Lower Limits for Sequential Probability Ratio Test

The relationship among probability of false alara),(probability of detectf), upper limit

(A) and lower limit @) of the test can be defined as follows: For any given sample. xi of
type 1, the probability of obtaining such a sample is at |&aghes as large under hypothesis
H; as under hypothesidg. Thus, the probability measure of the total of all samples of type
1 is also at leasf times as large undéil; as undeHy, [3]. The probability measure of the
totality of all samples of type 1 is the same as the probability that the sequentalgrwill
terminate with the acceptance Hf (rejection ofHp). The latter probability is equal to

whenHp is true and to - g whenHj is true. Thus, we obtain the inequality

1-p<Ax (2.8)

This inequality can be written as



(2.9)

d

Thus, 2 is an upper limit forA, [3].

A lower limit for B can be derived in a similar way. In fact, for any given samgle. . xx of
type 0 the probability of obtaining such a sample undgiis at mostB times as large as the
probability of obtaining such a sample whidpis true. Thus, also the probability of accepting
Hp is at mostB times as large wheHl; is true as wherHg is true. Since the probability of

acceptingHp is 1 — @ whenHg is true ang3 whenH; is true, we obtain the inequality

B<(1-a)B (2.10)

This inequality can be written as

(2.11)

[EEN
I
R

Thus, - is a lower limit for B.

These relations are called as Wald bounds and they are fundamentettiiog $he detection
thresholds of SPRT, [3]. A practical usage of the Wald sequentialgibty ratio test is to
use the upper and lower bounds discussed above and by taking logérglirare used as

shown below:

d

InAzn%l_ﬁ) (2.12)

[

mB=m( (2.13)

1- cx)
2.2.2 The Test Procedure of Sequential Probability Ratio Test

The sequential probability ratio test for testibty againstH; is defined as follows: Two
positive constants andB (B < A) are chosen. At each stage of the experiment (aktihe

trial), the probability ratiog—;t is computed. If

9



B< Pk A (2.14)
Pok

the experiment is continued by taking an additional observation. If

Pik

<B 2.15
Pok ( )

the process is terminated with the rejectiorHaf(acceptance dfl1)

Pics A (2.16)

Pok

the process is terminated with the acceptanddpof

Take logarithm of the both sides and s&y= In % then Equation 2.17 summarizes the SPRT

algorithm.

>InA - stop and decideél;
A = <InB —  stopand decideig (2.17)

otherwise — continue

As an example to illustrate the operation of sequential classification, a DC lasgsification

algorithm is formed. The hypotheses for the DC level classification algoritem

Ho : X[n] = Ao + W[N] n=0,1...,N-1 (2.18)

Hi i X[n] = Ap + wy[n] n=0,1,....,N-1 (2.19)

whereAg andA; are mean value of the data of the hypotheggsgndw; are WGN with zero

mean and variance2,. Then the LRT for these hypothese becomes:

1
_ P(X4H1) _ Voo
p(XHo) \/2171_05 exp[—Ti%(x - Ao)?]

10

expl- 5L (x - A

A(X)

(2.20)




After taking logarithm and making cancelations, we get the loglikelihood ratio:

109409 = > (A0 — An)(Ro + A - 29 (2.21)

Letk be the number of observations, or length of the sample sequence, theglikelitmood

ratio is equal to

1
202

log Ak = log Ak-1 + (Ao — A1) (Ao + A1 — 2X[K]) (2.22)
To illustrate this classification algorithm, the parameters are chos&nad, A; = 2,02, = 1
and Wald limits are set such as type 1 and type 2 errors will be under 0.@Xkld$sification

procedure is illustrated in Figure 2.1.

Loglikelihood Ratio vs n
30 T T

20

10

log(A(X)
o

-10+

log(A(XIH,)
log(A(XIH,)

—— Upper limit
Lower limit

-20}

10 20 30 40 50

Figure 2.1: Classification Procedure Example of SPRT

2.3 Autoregressive Models

Filtering white noise with a causal linear shift-invariant filter having a ratieyatem func-
tion can be used to generate random processes. One of the spectabtythese random

processes, autoregressive processing, is explained in this sechierbasic characteristics
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and properties of autoregressive processes, their autocorrelatjaerees and power spec-
trum of these processes is given. It is beneficial to start with the gerestdorm of these

type of the random processes, autoregressive moving averagespesc

2.3.1 Autoregressive Moving Average Processes

Autoregressive moving average (ARMA) processes are genergtdittdsing white noise
w(n) with a causal linear shift-invariant filter that has a rational system fumetith p poles
andq zeros (Figure 2.23). Therefore, the power spectrum of these ggesdave, twice of

their filter response, 2poles and g zeros reciprocally.

H() = Bo@  iobaz*

CA@ 1+ 3 apkzk (2.23)

The power spectrum of white noiseR§,(2) = o2, therefore the power spectrum x(h) is

, Bq(@B(1/2)

PX(Z) = O-WA\p(Z)A—E(l/Z*) (224)
in terms of the frequency variable
() = o2 B (2.25)
T YA '

Assuming that the filter is stable, the outp() is also wide-sense stationary and related with

w(n) by

P q
X(n) + >~ ap()x(n-1) = > by(w(n - 1) (2.26)
I=1 =0

Multiplying both sides byx*(n — k) and taking expected value the equation becomes

P q
E{x(n)x"(n—Kk)} + Z ap(NE{x(n=Nx'(n-Kk)} = Z bg(NEfw(n - x*(n-Kk)} (2.27)
I=1 1=0
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w(n) is WSS and themx(n) andw(n) are jointly WSS therefore,

P q
r(K) + Z ap(hrx(k —1) = Z bg()rw(k = 1) (2.28)
=1 1=0

In order to writery(K) in terms ofo2, andh(k), first find x(n) as

x(n) = h(n) «w(n) = i w(m)h(n — m) (2.29)

mM=—oco

then the cross-correlatiaf(k) can be written as

E{w(n - 1)x*(n - K)}

E{> e W(N = Hw*(m)h*(n — k — m)}
Yim=—eo E{W(n = Hw*(m)}h*(n — k — m)

(2.30)
= Y _Lozs(n—1-mh*(n-k-m)
= o2h*(l - K)
Substitute Eq.( 2.30) into Eq.( 2.28) then
p q
r) + D ap(rx(k = 1) = 0, > be(h*(1 = k) (2.31)
=1 =0

Denoting the right side of the equation byk) and assuming thdi(n) is causalcy(k) can be

written as

q g-k
Ca(K) = > g (1 = k) = > byl + Kh"(1) (2.32)
1=k 1=0

The Yule-Walker equations becomes

p 2 .
@+ aprak—1) = Tucalk) 1 0<k=q (2.33)
-1 0 ;. k>q

13



which, in matrix form become

O  rx-1) .. ix=p) | [ ¢q(0) |
r(1) r«(0) coo=p+D) | 1] cq(1)
: : : ap(1) :
@ na-1) . n@-p || &) =0 clp) (2.34)
a+1) @ ... r@-p+1) || 0
. . . ait) | .
| rx(@+p) r«(@+p-1) ... () | 0

2.3.2 Autoregressive Processes

Autoregressive process is a type of ARMA() processes witlyg = 0. This type requires
a filter having a rational system function with poles and no zeros. AR procesg) is

generated at the output by using white noise at the input of this all-pole Figurg 2.2).

»X(n)

Figure 2.2: The Autoregressive filtering

This filtering process has a frequency response (Eqgn. 2.35)

b(0)

H(2) = 2.35
@ 1+ 30, apzk (2.35)
and the output signal has the power spectrum of
b(0)1*
P2 = 08— 2.
O = T @ ANL/) (239
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in terms ofw,

> b(O)?

Py(e") = 02 2N

(2.37)

The Yule-Walker equations for an autoregressive process of ofdgrAR(p) process, can

be found by using Eqgn. 2.33 with= 0, cy(0) = b(0)h*(0) = |b(0)[?.

p 2 2 .
rx(k) + Z ap(ry(k—=1) = { Tulo@) 5 k=0 (2.38)
=1 0 . k>0
[ 1 (0) (=1 ... rx=p) || 1 | 1]
rx$1) rx$0) . rx(—? +1) apFl) _ O'fv bO)? 0 (2.39)
| rx(p) rx(p-1) ... r<(0) || ap(p) | | O]

2.3.3 Moving Average Processes

This type is the other type of the ARMA( Q) process withp = 0. An MA(q) process can be

generated by filtering white noise/(n)) having unit variance with an FIR filter

q
H@ = > by()z™* (2.40)
k=0

Therefore, this type has a power spectrum

P«(2) = 05,B(2)B(1/2) (2.41)

whereco?, represents the power spectrum of the input noise. If it is written in termstbé

equation becomes

15



Px(€") = 02| Ap(eM™)? (2.42)

In order to find the Yule-Walker equations for an M\frocess, Eqn. 2.33 can be used with

ap(k) = 0 andh(n) = b(n) and calculated as

-1k
1K) = o2 > byl + K)by(1) = (2.43)
=1

2.4 Levinson-Durbin Recursion

Levinson-Durbin recursion is used for solving a specially structed majtiatons (The Yule-
Walker equations). It is capable of order recursively updating thdisoluThe Yule-Walker
equations for an ARY) process require to solve a set of linear equations of the Ryag = b.

If standard method is used it would requi@g?®) operations. However, Ry is a Hermitian
Toeplitz matrix which is the condition for the autocorrelation matrix, then by usewjison-

Durbin recursion algorithm these equations can be solv&{3) operations. [32]

To develop recursion, at first, erras) (is needed to be modeled. For th#h recursion, the

modeling error isp, and equivalent to

P
e = 1x(0) + ) ap(ru(l) (2.44)
=1

The normal equations for the autocorrelation is

IO NEE) I 10 N | N R I
rxfl) rX$O) e r;"((p‘— 1) ap'(l) e O (2.45)
| 1x(P) rx(P—1) ... x(0) || ap(p) | | O |

In vector notation, it can be written as
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This equation leads tp+1 equations, so that the-1 unknowns which aray(1), ap(2), . . ., ap(p)
ande, can be calculated. The Levinson-Durbin algorithm provides a method tolatddhe

solutions of these equations recursively. This means #at,can be found by the help of
the codficients calculated before. The recursion is started with the solution for thelrabd

orderk =0 as

ao(0) = 1 (2.47)

€0 = I'x(0) (2.48)

At the kth-order, the equation becomBgax = eui. Assumingay is known, in order to

calculateay. 1 the equation becomé®1ax.1 = ek1U1.

Supposing a zero is added to the end of the vesgtoand write the equation as

(0 @) .ok nk+n |l 1] | e
r«(1) r«0) ... rk-1) (K a(1) 0
: : : : : =1 : (2.49)
K rk=1) ... ry(0) ri(1) a(K) 0
| rk+1) ) . (D) @ || 0 | | ]
The new parameteyy is equal to
k
yie = Ix(k+ 1) + +Zak(i)rx(k+ 1-1) (2.50)

i=1

Because of the Hermitian Toeplitz propertyRif.1 the Egn. 2.49 can be written as
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0 ) . o nk+D ]| 0 ] ||
1) x(0) ... rk=1) (k) ak(K) 0
: : : : : = : (2.51)
r® rik=1) ... rx0) re(1) a(1) 0
| ry(k+1) ik rx(1) «©0) || 1 | | & |

If the complex conjugate of Eqn. 2.51 is taken and combined with the Eqgn. 2Aany

constant’y, 1, the equality of

1] 0 ] ' € [l Yr
ax(1) ay (k) 0 0
Ru1 P Dea| = o+ (2.52)
a(k) a (1) 0 0
0 | | 1 ] Lk ]| &

is provided. IfT,1 is set as

oy = -2 (2.53)
&
then Eqgn. 2.52 becomes
Rik+18k+1 = €ks1U1 (2.54)
where
1 0
a(1) a (k)
A+l = +Tks1 (2.55)
ax(k) a.(1)
0 1

18



and

€1 = & + D17y = &(d — [Tkral?) (2.56)

Therefore, the Eqn. 2.55 can be written as

a1(1) = a(i) + Neragy (j — 1+ 1) (2.57)

and referred akevinson order-update equation.
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CHAPTER 3

CLASSIFICATION OF AUTOREGRESSIVE PROCESSES

The main objective of this work is making the quickest detection of one of théypotheses
modeled with diferent Autoregressive (AR) processes through the sequentialmtibpratio

test. In this method, AR cdicients of the processes of two hypothesis can be assumed to be
either known or unknown non-random variables. Both cases are dturdibis chapter. By
using SPRT, the aim is to shorten the average detection time with respect taethedixple

Size methods.

The detection problem can be interpreted as deciding on the synthesis filematieg the
AR(p) processes that are in the hypothesis test. This can be done bwaognthe PSD
(Power Spectrum Density) of the input with the PSD of the pdR(process and ARt;)
process. Under the null hypothesis, it is assumed that the data is an AR process \pith
codficientsag(l), ap(2), ..., ag(po). Under the alternative hypothedi, it is assumed that
the data is an AR process havipg codficientsai (1), a1(2),.. ., ai(p1) (Figure 3.1).

1
! l1+a@)z*t+...+a(p)z®

—{ Xi}

Figure 3.1: The Autoregressive model

If xis a real random variable witki~ N(ux, 072)
Forx = [X1... ], the multivariate Gaussian pdf is

20



P(X) = (27) "2 (detCy) 2 e 20T Ci (xund) (3.1)

Assuming zero mean data the pdf can be written as;

p(x) = (27)" % (detR,)2e 'R (3.2)

The variancer, can be written separately from the autocorrelation functiRy) s

Ry = Unga (3.3)

whereR; is the filter autocorrelation function and in the matrix form it is equal to

0] ra[-1]  ra[-2] ... ra[-(m-1)] |
ralll  ral0] =1 ... ra[~(m-2)]
Ra=| ra2  raf . : (3.4)
: 0] ral-1]
| ralm=1] ra[m-2] ... rg[1] ra[0]

where each of the matrix elemenfk] is equal to

P _
ra[k]:{ 3P all]ralk— 1] fork> 1 5

-yl allralk-11+1  fork=0

From the equality it is obvious that[—-k] = r3[K] and therefore the filter autocorrelation

matrix R, is Hermitian and Toeplitz.

In order to calculate autocorrelation matRy, Yule-Walker equations in matrix form can be

used as:
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O] ral-11 a2 ... ral-(p-D1 || am || a1 |
falll a0l ra-1 ... ra—(p-2)1 || al2] ral2]
ra[2] ra1] : : = — : (3.6)
: : 0] ral-1]

ralp-11 ralp-21 ... rafll  ra0] || ap-1| | ralpl |

Substitute ( 3.3) in ( 3.2), then

(X"Rzx)

1
p(X) = (27) 2o N(detR,) 2e 2% (3.7)

If the variance of the time series¥) is known, the variance of the white noise?j for each

hypothesis can be calculated as

2 Tx

ol = 3.8
=) (3.8)

2

2 Oy
o, = 3.9
W1 raHl(O) ( )

Therefore the likelihood ratio for known variance case becomes:
-1 (xTR31x)
xHy,a3,) (21 ZopN(detRq) 2e 0

AK) = pP(X|H1 Wl)z( ) 20y, ( a) (3.10)

~ p(xIHo, o4 ~ 5 (<TRad)
POIHO o) oy 4 oN(detRag) de 20 0

After making cancelations and taking logarithm of both sides, we get the ltigtioel ratio:

2
Tw 1. detRy 1 1 1
INA(X) = NIn —2 + = In + x| =R - —R:1|x 3.11
( ) O-\%Vl 2 detRal 2 O-\%Vo a o-\%,l a ( )

However, if the variance\%, is unknown, it has to be estimated with the Maximum Likelihood

(ML) method. To maximize Ip(x) with respect tar2, we first take the logarithm of the pdf
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given in equation 3.7, and then take the derivative with respee§,tand equate it to zero as

(3.12),

| N1 o1
onp) _ NI, L rix=o0 (3.12)
dog 208 20y

_ 1
=02 = NXTRglx (3.13)

Therefore, the variance for the hypotheldigcan be estimated a’fﬁ,o = ﬁxT Rgolx while the

variance estimate for the hypothebisis equal torz, = £x"Rz1x.

Using ( 3.13) in ( 3.7) the equation becomes

Nz

p(x) = (27)" % (%XTRglx)_ (detRy) 2e°2 (3.14)

Therefore, in the unknown power case the likelihood ratio is equal to

(27)% (XTR31%) "2 (detR,,) 2e”

Nz| Nz

AX) = (3.15)
(27)" 2 (FXTRalx) "2 (detRq,) 2"
Taking logarithm and making cancelations yields the final loglikelihood ratio:
1 N Tp-1 Tp-1
INAKX) = 5 (IndetRg, — INdetRz,) + - (In(x"Rz1x) - In(x"R31x)) (3.16)

In order to calculatR;! and deR, in the loglikelihood ratio, the proposed method uses

inverse Levinson-Durbin Recursion, [33], as shown in Algorithm 1.
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Algorithm 1 The Recursion method to updd®g! and deR,
Initialize recursion

po=1

€0 = ra(0)
1.
Ra™ = 7

forall n=0,1,...,m-1do

ra(0:n)pR
1“n+1 = S a .

pne1 = [pn 0] + I'nya[0 (prl?)*]
€n+l = En[l - |1—‘n+1|]2

detRaml = €n+1 detRan

-1 _ 1 H
Ran+l - R_l + en+1p”+1pn+l
an
end for

In order to find the inverse autocorrelation matrix of the AR processemdnygth order,

Eqgn. 3.17 also can be used, [34].

41
Ryt = S(AAT - A2AY) (3.17)
Ow

whereA; andA, are lower triangular Toeplitz matrices and fér> p can be calculated as

1, i=]
(Aij=1 aj, i>] (3.18)
0, i>]
- T
(Ayj=q N . (3.19)
0, i<

anday = 0 fork < 0 andk > p.
The outline of the proposed algorithm is given in Algorithm 2
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Algorithm 2 Summary of the Proposed Algorithm
Initialize x[0], an,, an,

For a desiredPra (@) andPyss (B) compute test bounds from (2.12) and ( 2.13)
forall n> 0do
UpdateR;*, R;* by using Algorithm 1
Update deR;*, detR;* by using Algorithm 1
Update loglikelihood; = In A(x) from ( 3.16)
if n>InAthen
DecideH;, break;
elseif n < In Bthen
DecideHg, break;
else
Continue;
end if

end for

In the next section, the described algorithm is examined using Monte Carléasioms. At
the beginning, the variance of the observation data is assumed to be krewmy need to
estimate the variance. In this section, ttigeets of closeness and the value of the AR coef-
ficients are investigated. Then, the accuracy of Wald limits, the upper ared tvesholds,
are examined by changing false alarm and miss rates. In the second @afgdhthm with
unknown variance is studied and the performance of this part is compéttethe first part
(known variance) in order to observe thgeet of the ML estimation. Finally, the proposed
algorithm is compared with a similar classification algorithm having a fixed deqg@adnd.

In other words, the results of the proposed algorithm are compared witbghks of a similar

algorithm based on the fixed observation length.

3.1 Sequential Classification of ARp) Processes : Known Variance Case

In this section, the variance of the processes is assumed to be knownl @&s e filter
codficients generating processes. In order to produce the test data, wikiesitered with
causal linear shift-invariant filters in order to generate the AR prose3se hypotheses for

the classification of AR(1) processes are equal to
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Ho : X[n] = apy Xo[n— 1] + Wo[nIn=0,1,...,N-1 (3.20)
Hi: x[n] = ay, xa[n—-1]+wy[nln=0,1,...,N-1 (3.21)

(3.22)

whereay, anday, are AR(1) coéficients of the processesp[n] andw;[n] are WGN samples.

The performance of the algorithm is investigated by means of numerical cmopsthrough
Monte Carlo simulations. The examined metrics are the probability of false alaris amils
average sampling number (ASN) or average detection time. Simulations arebgnaeting
the upper and lower thresholds to the Wald bounds. The parameters suetséhat the false
alarm ratex = 0.01 and the miss raje = 0.01. Also Monte Carlo simulations are made for

2000 trials and each data vector have a length of 500.

3.1.1 Hfect of AR Codficient Closeness on the Performance of the Algorithm

When the AR cofficients of the models tblp andH; hypothesesay, anday, gets closer to
each other and the false alarm rate and miss rate are fixed, we may expedtthto take a

larger number of samples until termination.

To investigate theféect of the closeness of AR cfieients, we first set AR(1) cdigcients

to the AR models aay, = —0.1 anday, = 0.1 and then increase thefidirence in between
these cofficients and compare the results. The input to the classification algorithm»g the
vector generated under hypothebBig. When the input is fixed to process related to He
hypothesis, false alarm rate of the system is examined. (Figure 3.2@)) thte input is fixed

to Hy hypothesis and miss rate is studied. (Figure 3.2(b))

Bar graph represents the percentage of the number of decisions &ft20@b trials. The
SPRT algorithm makes 3 types of decisions. The test can terminate with a detjsio H;.

If the algorithm can not be able to make any decision after 500 samples, tliedakl to be
unterminated. The histogram plot represents the distribution of the termindtiotalb2000

trials. The mean of the distribution is equal to the ASN of the trial.
Secondly, we repeat the same procedureafgr= —0.125 anday, = 0.125. (Figure 3.3(a),
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Figure 3.2:a4, = —0.1, a4y, = 0.1 False Alarm and Miss statistics for known variance case

Figure 3.3(b)) And finally, the algorithm is tested by setting the AR(1ffoments asay, =
—0.15 anday, = 0.15. (Figure 3.4(a), Figure 3.4(b))

As expected, as the distance between the ARfTodents increases, unterminated trials and
the average detection number decreases at fixed false alarm and misduese (Figure 3.1)

Because the rates are decided by the Wald thresholds and they aredatfjukesame value
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Figure 3.3:an, = —0.125,ay, = 0.125 False Alarm and Miss statistics for known variance
case

(1%) for all the trials.

3.1.2 Accuracy of Wald Thresholds and Achieved False Alarm and Miss Ras

Finding the correct threshold value is the critical task and for many tests diftieilt than

constructing the optimal detector. However, the Wald limits bypass this prolfeniessly
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Figure 3.4:a4, = —0.15, a4, = 0.15 False Alarm and Miss statistics for known variance case

Table 3.1: ASN with respect to the closeness of AR(1Yiecients for known variance case

| a4, | an, | ASNUnderHo | ASN UnderH; |

-0.1 0.1 227.3160 230.1190
-0.125| 0.125 153.3720 160.8205
-0.15 | 0.15 110.3460 109.2190
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and they are extreme easy to calculate and valid for all likelihood ratio tegt3H8 sequen-

tial probability ratio test with Wald limits says that,

>InA — stop and decidély
k=4 <InB — stopand decidely (3.23)

otherwise — continue

whereX2 is an upper limit forA andl% is a lower limit for B. And using this limit values

@
as upper and lower thresholds guarantees to provide desired falseagldmiss rates.
a is the parameter that sets the false alarm rate in Wald sequential probabilitiesiti@®y
setting this parameter according to Wald limits, the actual false alarm probabiliy|Ho))
is guaranteed to be below the desired rate. Also, for the miss rate the pargnetesed
and also setting this parameter guarantees that actual misp(dtgH1) is below the desired
value. In this section, the accuracy of these limits is examined by setting therates
initially to 0.01 and then increasing these parameter to 0.05. To examine thefatsealarm
rate andy relation, as an input undéty hypothesis is applied to the algorithm. (Figure 3.5(a))
An input underH, hypothesis is applied to the algorithm so that the relation of actual miss

rate angs is checked. (Figure 3.5(b))

3.1.3 Hfects of the Value of the AR Co#ficients to the Performance of the Algorithm

In a typical signal modeling problem, the outputs of stable filters are used telraagiven
random process. With AR modeling, the filter response of the rationalmsyfsitection has
poles according to the AR cfiients of the process. When the AR fliagents are cho-
sen, special attention should be paid on the stability of the filter. For an AR¢tEss AR

codficients can take the values between 1 and -1 in order to make the filter stable.

The dfect of chosen AR cdicients on the false alarm and miss rates, ASN and the number
of unterminated trials are observed by running the algorithm ffierdint AR coéicients.
Firstly, the dfect of the AR cofficients to the performance of the algorithm with known
power is examined and the simulation results are in Appendix A.1 and the ASN'list@d

in Table 3.2.

30



FA Rate vs.a

0.05

Actual FA Rate -
0.045r| — — — wald Bound -

0.035 4

0.03} p g

0.025 - !

FA Rate

0.02 e i
0.015} P .
0.01f - 1

0.005 - b

0 0.01 0.02 0.03 0.04 0.05
a

(a) ay, = -0.15,a4,=0.15, FA rate vsr

Miss Rate vs. 3

0.05

Actual Miss Rate -
0.0451| _ _ _\yald Bound -

0.04} p i

0.035 4 b

0.03} p g

0.025 - !

Miss Rate
N\

0.02 ) i
0.015} P .
0.01f - 1

0.005 - b

0 0.01 0.02 0.03 0.04 0.05
B

(b) ay, = —0.15,84,=0.15, Miss rate v§

Figure 3.5:a4, = —0.15,ay, = 0.15 FA vse and MISS vg5 for known variance case

Table 3.2: ASN with respect to the value of AR(1) fibments for known power case

[ an, [ a4, [ ASN UnderHo | ASN UnderH |

0 | 03 110.1410 111.3980
0.3 ] 0.6 104.8395 117.5130
0.6 | 0.9 95.5640 140.9580
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Secondly, the féect of the AR co#icients to the performance of the algorithm with unknown

power is examined and the simulation results can be reached in Appendixe2e3ultant
ASN’ s are listed in Table 3.3.

Table 3.3: ASN with respect to the value of AR(1) io@ents for unknown power case

| @, | an, | ASN UnderHo [ ASN UnderH; |

0 | 03 112.8660 107.6575
03| 0.6 97.5770 81.4765
06| 0.9 66.5160 42.7900

Against the expectations, the ASN values for the unknown varianceazasemaller than
the ASN values for the known variance case. However, the results &hthven power case
and the unknown power case have to be evaluated independently &essusnptions are
different in the derivation of the loglikelihood ratios. For the unknown powsecas the pole

of the filter approaches the unit circle in the complex plane, the resultantdeSiases.
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3.2 Sequential Classification of ARp) Processes : Unknown Variance Case

If the variance of the random processes is not known, the maximum likelifidt) esti-

mation of the time series has to be calculated according to Equation 3.24 anddriseio

likelihood ratio.

5, 1
72 = NXTRglx (3.24)

The algorithm estimates the variance of a white Gaussian random noise vatmean and

a powero2,. (Figure 3.6)

Performance of the ofv estimation algorithm
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Figure 3.6: Performance of the estimation algorithm, trge= 0 dB

Because of using an estimate instead of the true value for the variancdgadinghan may
require some additional samples for the initial variance calculation to be reliébleeduce

the negative fects of this delay in decision, this number is chosen by considering the results
of the previous simulation. The decision start sample number (the first coftploe SPRT

test) is chosen as 10. In this way, the likelihood ratio is calculated using @irsarhples and

then SPRT test proceeds by updating both the hypotheses scores sadahee estimate.

33



Due to the fact that the Wald limits are pessimistic bounds for the false alarm asdatgs,
the simulation results show that the bounds are still valid for the unknownneariaase

despite the inaccuracies of the initial estimations. (Figure 3.7)
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Figure 3.7:ay, = —0.15,an, = 0.15 FA vsa and MISS vg3 Unknown Variance

For the unknown variance case, histogram of the required sample rgjnnbsultant error
rates, ASN and unterminated percentage of the trials are illustrated in Figupg 8hoosing
AR codficients ofHg asan, = —0.15 andH; asay, = 0.15. Figures are prepared by using
simulated data undétly (Figure 3.8(a)) andH, (Figure 3.8(b)) hypotheses. The Wald limits
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are set tax = B = 0.01, i.e. the expected false alarm and miss rates have to be under 1%.
The ASN (Average Sample Number) which is the mean number of sample pomg&nded
to make a decision is 111.9560 undéy and 111.2125 unddil;. Also resulted false alarm

rate is 0.0075 and miss rate is 0.0085 which are below the Wald limits as expected.

Histogram of detection times under HO for a0=-0.15, a1=0.15
30 T T T T T

Number of Decisions

T T |
0 100 200 300 400 500 600
n

(a) ay, = —0.15,a4,=0.15, FA=0.0075, ASN-111.9560, Unterminated Percent
0.1000%

Histogram of detection times under H1 for a0=-0.15, a1=0.15
25 T T T T T

20 b

Number of Decisions

1
0 100 200 300 400 500 600
n

(b) ay, = —0.15,a4,=0.15, MISS=0.0085, ASN-111.2125, Unterminated Per-
cent 0.1000%

Figure 3.8: The Histograms for the Detection Times weitl) = —0.15,a4,=0.15
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3.2.1 Unknown Variance Sequential Detection of AR{) Processes for Complex Time

Series

If the time series vector is complex Gaussian distributed random processangtimean, the

associated multivariate complex Gaussian pdf is

p(x) = exp[-()" C*(x)] (3.25)

_ 1
aN det(Cy)
and is denoted by ~ CN(0, Cy).

Loglikelihood ratio is denoted by In(x) and it is

In A(X) = (IndetR4, — IndetR,,) + N(In(x"Rz1x) — In(x" R;1x)) (3.26)

3.3 The Hfect of SNR on the Detection of ARp) Processes

The aim of this section is to examine théeet of the additive white noise on the detection of
AR signals . AR signals are produced by filtering the white noisp BYR codficients for the
pth order AR processes. As the white noise is added to these AR protieestructure of
these signals are distorted. (This distortion due to the noise is not accauthedcypothesis
definitions in this work.) In this section, the algorithm is tried foffelient SNR values by
fixing other parameters. Firstly, by adding white noise to the AR signal, the @K signal

is adjusted as 36B. (Figure 3.9)

The simulations are repeated for the SNR values afR@nd 10dB and the results are illus-
trated in Figure 3.10 and Figure 3.11 respectively. The ASN uhigdés equal to 112.5365
at 30dB SNR but it increases to 113.3295 and 120.5155 as the value of the Skéaisles to
20dB and 10dB respectively. The results are similar for the hypothékisFinally at 10dB
SNR the error rates exceed the adjusted limits- (3 = 0.01) by the Wald thresholds.

It is observed that as the SNR decreases the ASN is increased andeajs@ability of
errors are increased (Figure 3.9, Figure 3.10, Figure 3.11) Theréffe probability of errors

vs. SNR is examined in the next set of simulations.
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Histogram of detection times under HO for a0=-0.15, a1=0.15, SNR=30 dB
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(a) ap, = —0.15,a4,=0.15, FA=0.0070, ASN-112.5365, Unterminated Percent
0.0500%
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(b) an, = —0.15, a4, =0.15, MISS=0.0055, ASN-111.7505, Unterminated Per-
cent 0.0500%

Figure 3.9: The Histograms for the Detection Times with S8R dB, ay, = —0.15,
aH1:0.15

In order to study theféect of additive CWGN, after the production of AR process by filtering
the white noise with complex AR cfiicients, extra complex Gaussian white noise is added
to the output process. In these simulations, the value used for the ARceads of the hy-
potheseddy andH; are listed in the Table 3.4 and the hypotheses represented the helicopter
echo and CWGN respectively. The value of the AR(5)ffoients for the helicopter hypoth-

esis Ho) is derived at the Section 4.1.2 by fitting the AR model to the experimental daga. T
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Histogram of detection times under HO for a0=-0.15, a1=0.15, SNR=20 dB
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(a) ap, = —0.15,a4,=0.15, FA=0.0075, ASN-113.3295, Unterminated Percent
0.1000%
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(b) an, = —0.15, a4, =0.15, MISS=0.0090, ASN-112.5795, Unterminated Per-
cent 0.1000%

Figure 3.10: The Histograms for the Detection Times with SI®IB, ay, = —0.15,
aH1:0.15

alternative hypothesis represents the CWGN. (By this configuration, it isdaionexamine
the detection performance of the sequential algorithm when one hypoihesiated to the

helicopter echo and the other one is the white noise.)

The Wald limits are also valid for the detection of signals in CWGN. However,eadehision

start numberNgart) gets larger the algorithm is able to work for the signals having low SNR
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Histogram of detection times under HO for a0=-0.15, a1=0.15, SNR=10 dB
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(a) ap, = —0.15,a4,=0.15, FA=0.0115, ASN-120.5155, Unterminated Percent
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Figure 3.11: The Histograms for the Detection Times with SN®IB, ay, = —0.15,
aH1:0.15

values. If the decision start number is chosen as 20, the algorithm starteetartaaction
after 20th sample. For the first simulatibiy4 is chosen as 20 and it is observed that the
algorithm works under the adjusted error rates abov@BISNR by increasing the value of the
a parameter from 0.01 to 0.05 (Figure 3.12(a)). The power spectrum estiofates the data
vectors under helicopter hypothesitf, under CWGN hypothesi$i;) and under helicopter
hypothesisflg) having 19dB SNR by adding CWGN are illustrated at Figure 3.12(b).
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Table 3.4: AR cofficients for the helicopteiHp) and CWGN H1) hypothesis

] HypothesisH Ho \ Hq \
a(l) ~1.2542-0.4250i

0
a(2) 0 | 0.505%0.3334i
a(3) 0 | -0.7718-0.0352]
0
0

a(4) 0.6383-0.2075i
a(5) -0.1109-0.1649i

The simulation is repeated for the caseNyfy1 = 50. The method operates adequately at
14 dB SNR (Figure 3.13(a)). And it is observed that by increasing the paramNgtg, the

algorithm is able to work under lower SNR’s.
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Figure 3.12: Power Spectrum EstimatesNayt = 20
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3.4 Comparison of Sequential and Fixed Length Detection of Afp) Processes

In this section, we compare the proposed method with a fixed sample size eta¥gdifirst
outline an algorithm that makes detection with a fixed sample size. The perfoeroéthis

method is compared with the performance of SPRT test given in the earlismsec

In the figure belowN (Fixed sample size) is increased to 250 &d = Py ss is chosen so

thatPp vs N is analyzed.

Pd vs N for a0=-0.15 and a1=0.15

l T T T T
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Figure 3.14:Pp vs Sample Number faay, = —0.15,a4, = 0.15

For different SNR values the previous experiment is repeated in the next figuoeder to

achieve same error rates, the requirement for increasing FSS casdreeaih

To achieve the same error rates, the sample size for an FSS algorithm has#ts@as the
SNR of the time series decreases. This simulations (Figure 3.15(b)) canipaed with
the results of the sequential algorithm (Figure 3.9, Figure 3.10, Figurg. 3lfhlorder to
achieve same error rateBHa = Pyiss = 0.01) in equal detection conditionay, = —0.15,

aq, = 0.15) the requirement of average sampling numbers (ASN) are shown lie 3&b
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Pd vs N for a0=-0.15 and al1=0.15
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Figure 3.15:Pp vs Fixed Sample Siz#&|) for different SNR’say, = —0.15,an, = 0.15

Table 3.5: The ASN for Sequential and Fixed Sample Size algorithms

] SNR \ 30dB \ 20dB \ 10dB \
Wald’ s SPRT 112 | 113 | 121
Fixed Sample Size 238 | 246 | 290
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In order to examine the proposed method at lower thadB@NR, we increase thBgart
number and make some simulations. The results of these simulations are listetkiB.Bab

Table 3.6: The performance results of proposed method at low SNR’s

] Nstart \ SNR\ Error Rate\ ASN \ Unterminated\

20 8dB | 0.0175 | 122.0 % 0.20
25 8dB | 0.0130 | 122.3 % 0.15
30 8dB | 0.0125 | 124.9 % 0.15
30 6dB | 0.0221 | 134.8 % 0.55
30 4dB | 0.0273 | 145.7 % 1.05

Below 10dB SNR, an increase in tiéstart number is not enough to provide the preset error
probability by Wald limits. This problem can be arouse from the addition of W&hugdt the
AR structure of the hypotheses. As a future work, how to reflect fiieeteof the noise on the

hypotheses will be analyzed.
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CHAPTER 4

AN APPLICATION EXAMPLE : ROTARY - FIXED WING
CLASSIFICATION

In the previous chapter, a sequential algorithm to make a fast decisionmattcaptable false
alarm and miss rates, is given. This method uses the sequential probabidityest with
Wald's thresholds. Also in order to decrease the complexity of the algoritheri,ghinson-
Durbin recursions is implemented to calculate required matrix inverses. Togtllg can
also be used if the process has unknown variance with some initial deldiatieestimate
the unknown variance. The other parameters of the processes (#reobittie process and

the pole locations) are assumed to be known.

The advantages of variable sample size detection can be utilized in rapitiatetdcargets
having diferent spectral characteristics such as rotary and fixed wing targegsonly pre-
processing step requirement to use the suggested algorithm is to modeptithdses with

autoregressive models.

4.1 Target Models

In the proposed algorithm requires AR models for each hypothesis. IGolaiz the model

codficients, the algorithm need to have some knowledge of PSD of the eaclsproce

4.1.1 Modeling of Backscattering from Hovering Helicopter

When the radar pulse impinges on the hovering helicopter, the backsdatigmal is &ected

by several components of the helicopter. Basically, the components oktlwegter that
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affects the echo signal can be divided into 4 parts. These parts are theftbeyhelicopter,

the hub, the main rotor blade and the tail rotor blade. (Figure 4.1)

main rotor blade

tail rotor blade

%

body
not in scale
center of rotation
C 4
\ \ ¢ ” /

\ { Nt
_,r_.._.._..ii_z.. L |
b _

main rotor blade

Figure 4.1: Contributions to EM backscattering from the parts of the Hoyétfelicopter, [1]

The contribution of the body to the PSD is at only zero frequency. Thehlagha triangle
shaped PSD centered at= 0 Hz. The value off,, is dependent to the radar cross section
(RCS) and the radial velocity of the hub. The approaching and recgdingjof the main rotor
blade impacts the PSDftkrently because of the shape of the blade. The part that approaches
have a greater RCS with respect to the receding part. Therefore,gh@aahing blade has a
higher level of the PSD than receding bladgax has a relationship with the tip speed. The
final part is the tail rotor blades. The rotation plane of the tail rotor bladesrigendicular to

the radar generally. Therefore, the contribution of the scattering frenteihrotor blades is

little with respect to the other parts, [1]. Figure 4.2.

Following simulations and comparisons are prepared with the experimentawtatha is
gathered from an experiment for the analysis of the doppler and ffeestiseof a helicopter.
If the experimental data from the helicopter returns is analyzed, the ootesfrPSD estimate

(Periodogram) given in Figure 4.3 is closely related to the one given in [1].
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Figure 4.2: PSD of signal backscattered from the parts of the Hoverétigditer, [1]

4.1.2 Autoregressive Modeling

A parametric model is selected to model a given time series The only requiresftenthe
selection of the model, is to estimate the parameters of the model. The numbesiroepens
and their values should be properly chosen to accurately model the timse. séris also

desired to represent the time series with as few parameters as necessary.

Parametric modeling have 3 types: Autoregressive (AR) model, Movingg&es(MA) model

and the Autoregressive-Moving Average (ARMA) model. Each of thempigropriate for

different PSD forms. The AR Model can be used for PSD’s having slealospand not having
deep valleys. The MA models is suitable for the opposite type of PSD's, iéindhdeep

valleys and not sharp peaks. Because the ARMA model comprises tteetdréstics of this

two models, it is appropriate for the spectra containing both of these cbaltr@ascteristics.
[32]

In our detection procedure, each of the two hypothesis ha$eaeht power spectrum density
(PSD) with sharp peaks. Therefore, they have to be modeled by AR$ses. AR coef-
ficients for each of the two hypotheses have to be known or estimated fimotlected
data. (The data used in this modeling is collected through the collaborationEif&¥SN and
METU-EE members.) From the time series data, the autocorrelation matrix aretestima
Then, these autocorrelation estimations are used to find the AfRaiests of the autoregres-

sive processes.
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Figure 4.3: PSD estimate of the signal backscattered from the Helicopter

In order to model a process as an autoregressive processphtbeder AR(), the parameter
set of @2, ap(1), ap(2), ..., ap(p)) has to be calculated. If it is assumed that the AR process is
generated by filtering white noise having unit variamgga), then the all pole filter equation

has the form of

b(0)

T 1+ yp az* (4.1)

H(2)

Therefore, the Yule-Walker equations are satisfied by this autocorrels¢giguence of AR

process (Eqn. 4.2).

P 2Ib(0)? ; k=0
rx(k)+§ap(l)rx(k—l):{a-lo()l e 4.2)

Using the conjugate symmetry of(k), fork = 1,2, ..., p, these equations can be written in

matrix form as
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rx(0)
rx(1)

i rx(p - 1)

(1)
r«(0)

rx(p - 2)

rp-1) |
rx(p—2)

r«(0)

) (1) ]
ap(2)

I a(p) |

= 02|b(0)?

- rx(1) _

r«(2)

| rx(p) |

(4.3)

Yule-Walker method says that if the autocorrelatioglk) are known or estimated, a linear

equation system is to be solved for the AR fm#ents. Therefore, using this method the

AR spectral estimation can be done and the results are illustratedifenedit number of AR

codficient as

4.1.3 Modeling of Backscattering from a Fixed Wing Target

The backscattering of a radar pulse from a constant object contribat@oppler shift, or

a DC component after down conversion. If the object is moving, then iehgwead with

respect to its unknown velocity which can be modeled as a random varagladsaround

the mean velocity. However, the spread of velocity for a fixed wing targegriglow during

coherent processing interval in comparison with the rotating parts of tieepeer. Therefore,

the spectrum spread of the fixed wing target is narrower than the spféaelhelicopter.

In addition, if the radar antenna is also rotating, the spread originatingtfrisnnotation can

be wider than the spread due to velocityfeliences of the the fixed wing target. Therefore,

the spread of PSD around the center frequency corresponding tousleaity can be solely

due to antenna rotation.

In this thesis, the fixed wing target is modeled as an AR(1) process with thelat@n co-

efficient of -0.999. (This model is similar to the exponential clutter models.) In otbeds

the model parameter is chosen such as the pole of the filter is clos€ltmzhe z-plane.

The final AR model cofficients for the hypotheses are listed in the Table 4.1. And the PSD

estimates of the AR modeled hypotheses are illustrated in the Figure 4.5.

50



AR Modeled System (Helicopter) Frequency Response

60

Original
50 —AR(1) |4

AR(2)
40 ——ARE®) |+

PSD estimate (peridogram)

05 1 15 2 25 3 35 4 45
Frequency (Hz) x 10"
(a) PSD estimates of the AR modeled Helicopter signal AR(1), AR(2) 3AR(

AR Modeled System (Helicopter) Frequency Response
60 T T T T T ‘ ‘ ‘

Original
50 —— AR(5) |-

AR(10)
40 — AR(20) |

30 b

20

10

PSD estimate (peridogram)
i
o

0.5 1 15 2 2.5 3 35 4 4.5
Frequency (Hz) x 10°

(b) PSD estimates of the AR modeled Helicopter signal AR(5), AR(10) 28R

Figure 4.4: PSD estimates of the AR modeled Helicopter signal

4.2 Simulation Results and Analysis of the Algorithm with the Estimated Mod-

els

In this section, the performance of the classification algorithm is tested. Boaith, the
complex white Gaussian noise is added to the input signals. CWGN has avaetfaiit on
the performance. In order to see this negati¥ect, the SNR is decreased by adding CWGN

until the algorithm can not operate at the desired false alarm and misskatss.alarm and
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AR Modeled Systems (Plane & Helicopter) Frequency Response
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Figure 4.5: PSD estimates of the AR modeled Plane and Helicopter signals

miss rates are adjusted i@ £ 8 = 107°) for all of these simulations in this section.

By analyzing the PSD estimates of the echo returned from the helicopterdFag), the
echo signallp hypothesis) can be assumed to have a noise floor atB2td therefore, the
SNR of the experiment data unddp hypothesis can be calculated asdB At this SNR,
the classiication algorithm with AR(5) helicopter model decides the targetiasbter at the

samples =[43 87] as illustrated in Figure 4.6.

To examine theféect of the used AR model order on the performance of the classification of

helicopter, Monte-Carlo simulations are made for 2000 trials by usiffigrdint AR helicopter

Table 4.1: AR cofficients for the fixed wing target or plane{) and helicopterkl) hypothe-
ses

| Hypothesis|| Plane Ho) | Helicopter H1) |

a(1) -0.999 | -1.2542-0.4250i
a(2) 0 0.5051+0.3334]
a(3) 0 -0.7718-0.0352i
a(4) 0 0.6383-0.2075i
a(5) 0 -0.1109-0.1649i
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Figure 4.6: Performance of the Detection of Helicopter atiBSSNR

models having dierent number of cdicients. To obtain the histogram of the termination

times, we run the algorithm for the same helicopter data by using AR(3), AdbAR(10)

helicopter models at 28B SNR.

AR(3) model results in the all trials are unterminated in other words no dedssiorade

during 100 samples in 2000 trials. (Figure 4.7) By using AR(5) model, the % i trials

are unterminated but the remaining trials end with helicopter decision and mg\dexision

is made. (Figure 4.8) In AR(10) model, %30.15 of the trials remain unterminéed1®0

sample and more than half of the remaining trials end with plane decision so theateris

0.6822. (Figure 4.9)

Adding CWGN to the helicopter time series to get an SNR ofiB3esults in a delay in the

detection time of the helicopter. While making the first decisiam-a#3 with 25dB SNR, the
algorithm makes helicopter decision with an ASN of 75.6795 witliBEBNR. (Figure 4.8)

To examine the performance of the algorithm with AR models havifigrdint number of

codficients, the test is repeated for @B SNR. AR(3) model remains mostly unterminated,

however this time, it makes 2 wrong decisions in 2000 trials. (Figure 4.10) i{b)ARRodel,

the unterminated percent increases to %85.15 however the error ratealomcreased in
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Histogram of detection times under HO for SNR=23 dB
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Figure 4.7: Helicopter classification(AR(3)) at 8B SNR, ASN=100, FA=0, Unterminated
Percent%100
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Figure 4.8: Helicopter classification(AR(5)) at 8B SNR, ASN=75.6795, FA-0, Untermi-
nated Percer®09.55
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Histogram of detection times under HO for SNR=23 dB
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Figure 4.9: Helicopter classification(AR(10)) at 28 SNR, ASN=67.8885, FA-0.6822,
Unterminated Percen%630.15

comparison to other models. Addition of CWGN makes the classification algorithra mo
likely to decide plane hypothesis. (Figure 4.11) AR(10) model results inatttettiat almost

all of the trials end with wrong decision. (Figure 4.12)

In contrary to the expectations, the performance of the AR(10) model ibeitdr than the
two alternatives. The reason of this bad performance may be the facAR{a0) model
is modeling also the spurious peaks in the PSD estimate of the real helicopteMtatse
peaks do not stay in the portion of the used helicopter data and thereiforegstlts in poor
performance. All of these statistics show that the AR(5) model is more suitabldis
classification algorithm among these three models. As a future work, thesabfoddR model

order will be studied.

For the plane hypothesis 2 SNR, the plane decisions are made in ASN of 22.7920. (Fig-
ure 4.13)

If the SNR value decreases to thedBfor the plane hypothesis, the ASN to make a decision

decreases to 15.7410. (Figure 4.14)
In this chapter, the suggested method is applied on the problem of classifichtiotary
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Histogram of detection times under HO for SNR=21 dB
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Figure 4.10: Helicopter classification(AR(3)) at @B SNR, ASN=99.9895, FA-1, Untermi-
nated Percer099.85
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Figure 4.11: Helicopter classification(AR(5)) at 2B SNR, ASN=96.5335, FA-0.1684,
Unterminated Percen%85.15
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Histogram of detection times under HO for SNR=21 dB
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Figure 4.12: Helicopter classification(AR(10)) at @B SNR, ASN=35.7990, FA-0.9903,
Unterminated Percea%1.75

Histogram of detection times under H1 for SNR=25 dB
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Figure 4.13: Plane classification at 88 SNR, ASN=22.7920, FA-0, Unterminated Per-
cent%0
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Histogram of detection times under H1 for SNR=23 dB
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Figure 4.14: Plane classification at 28 SNR, ASN=15.7410, FA-0, Unterminated Per-
cente%0

- fixed wing target. To model the hypotheses with autoregressive modelsaleulate the
model codficients by the help of Yule - Walker method. As the number ofitcient used in
AR modeling increases, it is illustrated that the hypotheses are repregetted However,
the increment in the number of déieient also increases the complexity of the algorithm.
The performance of the suggested classification algorithm is studied ly exgderimentally
collected real data of an helicopter and simulated data of moving fixed wirgf trditerent
SNR levels. The CWGN has a negativiéeet on the classification of the helicopter by in-
creasing the required samples to terminate the test while a podiiat en the moving fixed

wing target hypothesis.
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CHAPTER 5

CONCLUSION

In this thesis, a sequential method is presented for the classification of thregressive
processes. This method requires fewer number of samples than thenttomaksystems
having fixed sample sizes. The use of suggested method can result ireasiein the dwell
times in search systems. The simulation results show that the proposedtsgquethod

requires about half the number of samples that the method with a prededimgtessize.

The thresholds of the suggested method can be accurately calculateghthvald limits. An
additional advantage of the sequential method is that the error probabififiet and second

type can be easily adjusted by two thresholds.

The complexity which arises from the need of inverting larger and largerigeatfor each
new coming sample is eliminated by using recursive algorithms to calculate irvetise

autocorrelation matrix and also the required determinant of the autocomefasitrix value.

The method is examined for signhals havingfelient SNR values and it is observed that by
increasing the decision start sample numidég,f;) the algorithm is able to estimate the un-

known process variance reasonably well and work with low SNR signals.

As an application example, the problem of fixed and rotary wing classificatioblem is
examined. For this aim, the experimentally collected real data of an helicopterdislexo
by different AR models and a fixed wing moving target is simulated. Using these models,
the performance of the proposed classification algorithm is examined eniegntal data at

different SNR levels.

The future work related to the proposed method is the development of fyticalastudy
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for the case of unknown process variance (a study on the accuir&¢gld's thresholds and
the detection probabilities in the presence of estimation errors) and the pievio of the

framework for AR signals under noise and an extension to the M-Ary thgsis testing.
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APPENDIX A

EFFECTS OF THE VALUE OF THE AR COEFFICIENTS TO
THE PERFORMANCE OF THE ALGORITHM

A.1 Known Power Case

In this section, the féect of chosen AR cdicients on the false alarm and miss rates, ASN
and the number of unterminated trials are investigated by means of numericphigsons
through Monte Carlo simulations for the known power case. The paranagteset such that
the false alarm rate = 0.01 and the miss rae = 0.01. Also Monte Carlo simulations are
done for 2000 trials and each data vector have a length of 500. Firstlgffdw of the AR
codficients on the performance of the algorithm for the known power case fisiead and

the simulation results are illustrated.
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Figure A.1: Algorithm performance for known variance cages 0,a;=0.3
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Histogram of detection times under HO for a0=0.3 and a1=0.6
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Figure A.2: Algorithm performance for known variance cages 0.3, a;=0.6
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Histogram for detection times under HO for a0=0.6 and a1=0.9
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Figure A.3: Algorithm performance for known variance cages 0.6, a;=0.9
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A.2 Unknown Power Case

In the previous section, thefect of chosen AR cdicients on the false alarm and miss
rates, ASN and the number of unterminated trials are investigated by meansnefical
comparisons through Monte Carlo simulations for the known power cadlgislsection, The
effect of the AR co#icients on the performance of the algorithm is examined for the unknown

power case.
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Figure A.4: Algorithm performance for unknown variance cages 0, a;=0.3
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Histogram of detection times under HO for a0=0.3, a1=0.6
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Figure A.5: Algorithm performance for unknown variance cages 0.3, a;=0.6
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Histogram of detection times under HO for a0=0.6, a1=0.9
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Figure A.6: Algorithm performance for unknown variance cages 0.6, a;=0.9
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