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ABSTRACT

SPEECH ENHANCEMENT UTILIZING PHASE CONTINUITY BETWEEN
CONSECUTIVE ANALYSIS WINDOWS

Mehmetcik, Erdal

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Tolga Çiloğlu

Co-Supervisor : Assoc. Prof. Dr. Çağatay Candan

September 2011, 75 pages

It is commonly accepted that the induced noise on DFT phase spectrum has anegligible effect

on speech intelligibility for short durations of analysis windows, as the earlyintelligibility

studies pointed out. This fact is confirmed by recent intelligibility studies as well.Based on

this phenomenon, classical speech enhancement algorithms do not modify DFT phase spec-

trum and only make changes in the DFT magnitude spectrum. However, in recent studies it is

also indicated that these classical speech enhancement algorithms are notcapable of improv-

ing the intelligibility scores of noise degraded speech signals. In other words, the contained

information in a noise degraded signal cannot be increased by classicalenhancement meth-

ods. Instead the ease of listening, i.e. quality, can be improved. Hence additional effort can

be made to increase the amount of quality improvement using both DFT magnitude and DFT

phase. Therefore if the performances of the classical methods are to beimproved in terms of

speech quality, the effect of DFT phase on speech quality needs to be studied.

In this work, the contribution of DFT phase on speech quality is investigated through some

simulations using an objective quality assessment criterion. It is concluded from these simu-

lations that, the phase spectrum has a significant effect on speech quality for short durations of
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analysis windows. Furthermore, phase values of low frequency components are found to have

the largest contribution to this quality improvement. Under the motivation of these results,

a new enhancement method is proposed which modifies the phase of certain low frequency

components as well as the magnitude spectrum. The proposed algorithm is implemented in

MATLAB c© environment. The results indicate that the proposed system improves the perfor-

mance of the classical methods in terms of speech quality.

Keywords: speech enhancement, phase estimation, time frequency analysis
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ÖZ

ARDIŞIK ANAL İZ PENCERELEṘI ARASINDAK İ FAZ SÜREKLİL İĞİNİ
SAĞLAYARAK KONUŞMA İY İLEŞTİRME

Mehmetcik, Erdal

Yüksek Lisans, Elektrik ve Elektronik M̈uhendislĭgi Bölümü

Tez Yöneticisi : Doç. Dr. Tolga Çilŏglu

Ortak Tez Ÿoneticisi : Doç. Dr. Çăgatay Candan

Eylül 2011, 75 sayfa

DFT faz spektrumunun konuşma anlaşılabilirliği üzerinde ihmal edilebilir bir katkısının olduğu

bilinmektedir. Bu olgu yapılan yakın zamanda yapılan araştırmalarda da doğrulanmıştır.

Klasik konuşma iyileştirme algoritmaları, bu bulgulara dayanarak sadece DFT genlik spek-

trumunu dĕgiştirmekte ve faz spektrumunun gürültülü halini kullanmaktadır. Ancak, yakın

zamanda yapılan araştırmalar klasik yöntemlerin anlaşılabilirlĭgi arttıramadı̆gını vurgulamak-

tadır. Bu ÿontemler dinleme rahatlığını, başka bir deyişle konuşma kalitesini, arttırabilmektedir.

Bu băglamda hem DFT genlik hem de DFT faz spektrumu kullanılarak klasik yöntemlerin

performansı konuşma kalitesi açısından arttırılabilir. Bu amaç doğrultusunda faz spektrumu-

nun konuşma kalitesine olan katkısı da incelenmelidir.

Bu tez çalışmasında, faz spektrumunun konuşma kalitesine olan katkısı bazı benzetimler

aracılı̆gıyla incelenmiştir. Bu benzetimlerde objektif kalite belirleme kriterleri kullanılmıştır.

Bu benzetimlerde faz spektrumunun konuşma kalitesineönemli bir katkı săglayabilecĕgi

sonucuna varılmıştır.̈Ozellikle d̈uş̈uk frekans bileşenlerinin fazının bu kalite iyileştirmesindeki

etkisinin çok daha fazla olduğu g̈orülmüşẗur. Bu sonuçlardan yola çıkarak, düş̈uk frekans

bileşenlerinin fazını d̈uzeltmeye ÿonelik yeni bir konuşma iyileştirme algoritmasıönerilmiştir.
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Önerilen ÿontem bileşenlerin fazını değiştirdiği gibi, genlik dĕgerlerini de klasik ÿontemleri

kullanarak dĕgiştirmektedir.Önerilen ÿontem MATLAB ortamında gerçeklenmiş veönerilen

yöntemin performansının klasik yöntemlere oranla daha yüksek oldŭgu g̈orülmüşẗur.

Anahtar Kelimeler: Konuşma iyilestirme, faz kestirimi, zaman-frekans analizi

vii



To my family

viii



ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Assoc. Prof. Dr. TolgaÇiloğlu for his
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CHAPTER 1

INTRODUCTION

Speech is a highly non-stationary signal. Because of this characteristic, itis truly difficult

to accurately analyze and process speech signals. Moreover, when the signal is corrupted

by noise (e.g. in the transmission channel), additional problems emerge. Forinstance, the

transmitted signal may become unintelligible or very disturbing for the listener. Itis therefore

the aim of speech processing researchers to suppress the induced noise, without degrading the

speech signal. The problem here arises in ‘not degrading the speech’part, as there is a trade-

off between the amount of noise suppression and induced distortion [3]. Thenoise suppression

process is commonly referred to as ‘speech enhancement’. The problemis further narrowed

down in most of the studies by identifying the input signal on which the noise suppression

is to be done. For instance, when the only available signal is the degraded speech signal,

the procedure is commonly referred as ‘single channel speech enhancement’. When there are

multiple input signals (from different microphones etc.) the process is named accordingly, for

instance ‘dual-microphone speech enhancement’ etc. In this study, singlechannel narrowband

speech enhancement is the main concern.

The aim of speech enhancement algorithms is to increase the quality and if possible the in-

telligibility of speech signals. It is important to make the distinction between the concepts of

quality and intelligibility. The quality of speech is related to the ease of listening, whereas the

intelligibility is related to the perceived information by the listener. Both quality and intelligi-

bility are subjective quantities; hence it is hard to define a measure to evaluatethe quality and

intelligibility of a signal. There are many performance measures defined for the evaluation

of speech quality (e.g. segmental signal to noise ratio (segmental SNR), perceptual evalua-

tion of speech quality (PESQ), weighted spectral slope (WSS) etc.), though many of these
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measures contradict with each other in certain cases. On the other hand there is no objective

measure defined for the evaluation of speech intelligibility. The intelligibility is generally

tested through subjective listening tests.

There are many applications of speech enhancement. For instance the hearing aids (designed

for the hearing impaired patients) are known to have a high internal noise which disturbs

and tires the patient. Generally speech enhancement algorithms are run in real time on the

processors of these hearing aids to ease the listening conditions. Anotherapplication area

is the communication channels (generally telephone channels). Due to the imperfections in

the communication system, the speech signal to be transmitted is degraded by noise (internal

and/or external). Hence the enhancement algorithms are used in the receivingend as well.

1.1 Scope of thesis

In this work, single channel narrowband (0-4 kHz) speech enhancement algorithms are stud-

ied. Classical methods on the subject, mainly focus on the modification of the DFTmagnitude

spectra of the degraded speech, assuming that the phase spectra has anegligible effect on the

intelligibility of speech, for short analysis frames, [4]. However it is known that none of the

existing algorithms increase the intelligibility scores, [5], and only the quality scores can be

improved. Hence the effect of phase noise on speech quality needs to be studied. In this thesis

study, the effect of phase noise on speech quality is investigated through some simulations

in MATLAB c© environment, employing the PESQ (Perceptual Evaluation of Speech Quality,

[6]) quality measure (explained in Chapter-2). It is concluded from these simulations that the

phase spectra can be utilized to increase the quality as well. Then in the following chapters, an

enhancement algorithm (using the phase spectra together with the magnitude spectra) is pro-

posed. The implementation and performance evaluation of this algorithm are also explained

in detail.

1.2 Outline

In Chapter-2, the basic concepts that are used in speech processing literature are presented.

Some commonly used analysis and synthesis procedures are also studied in this chapter.
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Chapter-3 focuses on the review of the classical methods on speech enhancement.

Chapter-4 illustrates the conducted simulations to investigate the contribution of phase spectra

to speech quality. The previous studies on the contribution of the phase spectra to speech

intelligibility are briefly explained and then the obtained results and comments on these results

are given in this chapter.

In Chapter-5, the proposed speech enhancement system is explained.The block diagram of

the system is given and the sub-processes in this system are explained in detail in Chapter-5.3

(Phase estimation) and Chapter-5.4 (Pitch estimation).

The validation of the proposed system is elaborated in Chapter-6.1. The implementation of

the proposed system is described in detail in Chapter-6.2. The performance of the proposed

system is also tested in this chapter.

Lastly, some concluding remarks are made in Chapter-7 and the suggested future work on the

subject is stated.
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CHAPTER 2

REVIEW OF FUNDAMENTAL CONCEPTS

In this chapter, some basic concepts that are used in speech enhancement literature will be

explained.

2.1 Speech signal

Speech signal has a highly non-stationary nature; i.e. the spectral characteristics change

rapidly over time. However over short periods of time (20-40 msec), the signal can be con-

sidered as stationary. Generally the analysis is done by using short durations of data frames.

The hearing range of humans typically covers the 20Hz - 20kHz frequency band. This is one

of the reasons for the sampling rate selection of audio CDs (44.1 kHz) or digital audio tapes

(48 kHz), so as to satisfy the Nyquist sampling criterion [7], (fs > 2x20 kHz). On the other

hand, a much smaller sampling frequency is enough for speech signals to beintelligible. The

0.3-3.4 kHz band allows 97% of all sounds to be understood, as stated in [8]. This frequency

band is called the ‘telephone band’ and is used in classical telephony. Thesampling rate is

fixed to 8 kHz in these applications, hence covering the (0-4 kHz) band. The speech signals

sampled at this sampling frequency is called ‘narrowband speech’. Wideband speech on the

other hand is defined, in the ITU (International Telecommunication Union) recommendation

[9], to cover the 50-7000 Hz range and sampling frequency is set to 16 kHz.

In this study, single channel narrowband speech enhancement methods isstudied, hence the

signal of interest is band-limited to 0-4 kHz band and sampling frequency is selected as 8

kHz.
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2.2 Voiced-unvoiced speech

Sounds within a speech signal can be separated into two different classes, namely ‘voiced’ and

‘unvoiced’ sounds. Voiced parts of speech are generated by the vibrations of the vocal cords

and exhibit harmonic characteristics. The frequency of the first harmonic (or the fundamental

component) is called the fundamental frequency or the pitch frequency ofthe sound. Sounds

like ‘a’, ‘e’, ‘r’ etc. are voiced sounds.

Unvoiced sounds on the other hand are not driven by the vibrations of thevocal cords and

exhibit a noise-like and wideband structure. Sounds like ‘s’, ‘f’ etc. are unvoiced sounds.

The production of speech can be modeled as in Figure-2.1, indicating that the generated

speech is either driven by a periodic pulse or by noise. This structure is proposed by Ra-

biner and Schafer [1].

Glottal pulse 

model

White noise 

generator

Vocal tract 

model
Voiced / unvoiced 

switch

Impulse train 

generator

Gain for voice 

source

Gain for noise 

source

Radiation 

model
Speech

Pitch period

Figure 2.1: Speech production model of Rabiner and Schafer [1]

To elaborate the spectral characteristics of voiced and unvoiced segments of speech, the spec-

trogram of the word ‘a-s-a’ is given in Figure-2.2.

The oscillatory nature of voiced signals makes it possible to partially model these segments

of the speech as a sum of sinusoids with the following form;
∑M

k=1 Akcos
(

2πk f0
fs

n + φk

)

. This

property of the voiced segments of speech signals will be utilized in the context of speech

enhancement in the following chapters.
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Figure 2.2: Spectrogram of the word ‘asa’, spoken by a female speaker.

The classification of sounds is actually more detailed than voiced-unvoiced discrimination. A

detailed classification can be found in [10]. However in the context of this work, it is sufficient

to make voiced-unvoiced distinction in a given speech signal.

2.3 Short Time Fourier Transform (STFT)

In this section, a commonly used time-frequency analysis method; namely ‘short time Fourier

transform’ (STFT) is briefly explained. A detailed analysis of STFT can befound in many

signal processing books, e.g. [7], [11], [12].

2.3.1 STFT analysis

Discrete Fourier Transform is a powerful tool for analyzing LTI (Linear Time Invariant) sys-

tems, as the basis functions{e j 2π
N kn}N−1

k=0 are the characteristic functions of discrete-time LTI

systems. However, the signal under consideration must be stationary over the analysis win-

dow, in order DFT coefficients to be able to characterize the signal. If this is not the case, the

variations of the spectral contents in time will be averaged over the analysis window and these

variations in time will not be observed. To overcome this problem, short durations of analysis

windows can be used. Assuming that the signal is stationary in a short analysis window, one

can have a better characterization of the variations of the spectral content in time. This proce-

dure is called ‘Short Time Fourier Transform’ (STFT). The definition of continuous STFT of
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a signalx(t), is as follows;

X(t, ω) =
∫ ∞

−∞

x(τ)w(t − τ)e− jωτdτ (2.1)

wherew(t) is the window function and is non-zero for 0< t < T , T being the window length.

The continuous STFT,X(t, ω), is a complex signal and can be written in polar form as follows;

X(t, ω) = |X(t, ω)| e∠X(t,ω) (2.2)

In this form, |X(t, ω)| is called the short time magnitude spectrum and∠X(t, ω) is called the

short time phase spectrum.

The previous definitions are made for continuous time signalx(t). The discrete-time STFT

for the signalx[n], is defined as follows;

X(n, ω) =
∞
∑

m=−∞

x[m]w[n − m]e− jωm (2.3)

Notice that the frequency variableω is a continuous variable in discrete-time STFT definition.

In order to be able to compute the transform numerically for an arbitrary signal, the transform

must also be sampled in frequency. Hence the discrete STFT (discrete bothin time and

frequency) is defined as in equation-2.4, which is just the sampled version(in frequency) of

equation-2.3 atω = 2πk
N .

X[n, k] =
∞
∑

m=−∞

x[m]w[n − m]e− j 2π
N km (2.4)

whereN is the window length in samples andw[n] is the window function.

Although STFT is an efficient way for time-frequency analysis, it has also some (fundamental)

drawbacks. For instance, the time resolution and frequency resolution can not be increased at

the same time, by changing the analysis window length or sampling frequency. To increase the

time resolution, i.e. to observe the changes in time with increased accuracy, one needs to use

shorter analysis windows . This causes the frequency resolution of the DFT ( fs
N ) to decrease

and vice-versa. As a result the window length becomes a critical parameterin STFT analysis.

Although it might be possible to increase the time resolution by increasing the overlap ratio,

doing so is undesirable because of the increased computational load.
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2.3.2 STFT synthesis

There are two commonly used synthesis methods for STFT, namely filter bank summation

(FBS) and overlap-add (OLA). The methods were first studied in the work of Allen and Ra-

biner [13]. These methods will be briefly explained in the following sections.

2.3.2.1 Filter-bank summation (FBS) method

The STFT can be viewed as a set of filters. For instance, consider equation-2.4 in the follow-

ing form;

X[n, k] =
∞
∑

m=∞

(

x[m]e− j 2π
N km

)

w[n − m]

=
(

x[n]e− jωkn
)

∗ w[n], ωk =
2π
N

k (2.5)

=
(

x[n] ∗ w[n]e jωkn
)

e− jωkn (2.6)

The last two equations can be viewed as modulating the signal then low-pass filtering with

the window function or simply bandpass filtering the signal with the modulated window func-

tions. With this perspective, the signal can be reconstructed by modulating back each filter

outputX[n, k] with e jωkn then summing up the results;

yrec[n] =
1

Nw[0]

N−1
∑

k=0

X[n, k]e j 2πkn
N (2.7)

2.3.2.2 Overlap-add (OLA) method

Another commonly used method for STFT synthesis is the overlap-add procedure. The

flowchart of the method can be seen in Figure-2.3. This flowchart is takenfrom [12] (page

274).

If the STFTX(n, ω) is sampled in time every R samples and a window length of N samples is
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Figure 2.3: Overlap-add method

used, then using OLA method the reconstructed signal (yrec[n]) will have the following form;

yrec =

∞
∑

r=−∞

















1
N

N−1
∑

k=0

X[rR, ωk]e
jωkn

















(2.8)

=

∞
∑

r=−∞

x[n]w[rR − n] (2.9)

=

∞
∑

r=−∞

yr[n] = x[n]
∞
∑

r=−∞

w[rR − n] (2.10)

(2.11)

As seen in the last equation,x[n] can be perfectly reconstructed when OLA method is used,
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if the term
∑∞

r=−∞ w[rR − n] is equal to a constant for alln. This can be achieved if the STFT,

X(n, ω), is sampled properly in time. This constraint can be stated as follows;

∞
∑

r=−∞

w[rR − n] =
W(0)

R
(2.12)

For Hamming window (w[n] = 0.54− 0.46cos( 2πn
N−1)), which is a common choice in speech

enhancement applications, the above condition is satisfied forR = L/4. This means that

%75 overlap is needed between analysis frames for perfect reconstruction, (when the window

function is Hamming). In spite of this perfect reconstruction constraint, a common practice

in speech enhancement algorithms is to use Hamming window with %50 overlap. Inthis case

a small distortion is introduced to the reconstructed signal which is quite negligible.

2.4 Performance evaluation

As mentioned earlier, the aim of the speech enhancement algorithms is to increase the ease

of listening and if possible, increase the amount of perceived information.These two con-

cepts are known as ‘quality’ and ‘intelligibility’ respectively. Since the aim ofenhancement

algorithms is to improve these two attributes, one needs a performance measurein order to

evaluate how good the proposed algorithm is.

Many distance measures are defined for the evaluation of speech quality over the past three

decades. Some of these methods are as follows; segmental SNR, weighted spectral slope

(WSS), Bark distortion measures, perceptual evaluation of speech quality (PESQ, [14]) etc.

In some cases most of these methods contradict with each other. In this work, PESQ measure

will be used to evaluate the performance of the proposed algorithm, as it is theITU standard

for automatic assessment of speech quality and used by phone manufacturers and telecom

operators. The details of PESQ measure will be given in the next section.

Although many performance measures are defined (mathematically) for speech quality, there

isn’t an objective method for intelligibility assessment. Intelligibility performance of an en-

hancement algorithm is generally evaluated by listening tests. There are different types of

listening tests applied for this purpose; such as nonsense syllable, word or sentence tests. In

these tests speech intelligibility is quantified in terms of percentage of words identified cor-

rectly by the listener. Such listening tests are somewhat unconventional, as itrequires a long

10



process of listening and subjective evaluation of many listeners. Nevertheless the ground truth

is taken as the result of such listening tests.

2.4.1 Perceptual Evaluation of Speech Quality (PESQ)

The aforementioned performance measures other than PESQ (segmental SNR, weighted spec-

tral slope (WSS), Bark distortion measures) are suitable for assessing the quality for a limited

range of distortions which do not include the commonly encountered distortions in commu-

nication channels; for instance packet loss, delay, codec distortions etc. Such kind of defor-

mities in the signal causes the aforementioned methods to produce unreasonably low quality

scores. To cope with this problem, in 2000 the International TelecommunicationUnion (ITU)

organized a competition to select a new objective measure which is capable ofhandling the

stated problems. The perceptual evaluation of speech quality (PESQ) measure was selected

as the new ITU recommendation P.862 [6]. The method has a high correlation (ρ > 0.92) with

subjective listening tests as stated in [3].

Figure 2.4: Block diagram of PESQ method

The method has the structure given in Figure-2.4. In this block diagram, the ‘time alignment’

and ‘identify bad intervals’ blocks are the novelties of PESQ method with respect to the previ-

ous ITU recommendation. The system takes the clean and degraded speech, then it computes

the quality score which is between 4.5 and -0.5, with 4.5 corresponding to distortionless and

-0.5 corresponding to noise. Although the lower limit is -0.5, the scores below1 indicate an

unacceptable level of distortion. The perceptual meaning of PESQ scores are described in

Table-2.1.
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Table 2.1: Meaning of PESQ scores

Distortion level PESQ score

Distortionless 4.5
Perceptible but not annoying 3.5

Slightly annoying 3
Annoying 2
Noise-like <1

The technical details of the method will not be discussed, as it is too comprehensive to be

included in this thesis. The PESQ method is explained in detail in [3] and [14].
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CHAPTER 3

CLASSICAL SPEECH ENHANCEMENT METHODS

Speech enhancement has been a major research topic for more than fourdecades. As a re-

sult there is a vast literature of different enhancement algorithms. However almost all of

these algorithms only modify the DFT magnitude spectra and use the noisy DFT phase in

the reconstruction. In this chapter, the main motivation between two of the classical speech

enhancement methods is explained and an overview of other enhancementalgorithms is pre-

sented.

3.1 Spectral subtraction based algorithms

Spectral subtraction based algorithms utilize a simple idea. The algorithms assumeadditive

noise and estimate the noise spectrum; then the clean spectrum estimate is simply obtained by

subtracting the noise spectrum from the noisy speech spectrum. There are many versions of

spectral subtraction based algorithms, for instance [15], [16]. The details of classical spectral

subtraction algorithm can be found in almost any speech enhancement book, e.g. [3]. The

method can be summarized as follows;

Let the input speech (noise corrupted) be denoted byy[n], clean speech byx[n] and noise

signal (or ‘disturbance’) byd[n]. Assuming additive noise;

y[n] = x[n] + d[n] (3.1)

For practical reasons, consider the DFT coefficients (instead of DTFT) of both sides;

Y[k] = X[k] + D[k] (3.2)

For single channel speech enhancement algorithms, onlyY[k] (DFT of noisy signal) is known.
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Hence to obtainX[k], D[k] must somehow be estimated. If equation-(3.2) is written in polar

form, we get;

|Y[k]| e jφy[k] = |X[k]| e jφx[k] + |D[k]| e jφd [k] (3.3)

The phase spectra of noise (φd[k]) can be replaced by the phase spectra of noisy speech (φy[k])

assuming it has little effect on intelligibility, [4]. As a result, the estimated clean speech will

have the following form;
∣

∣

∣X̂[k]
∣

∣

∣ = |Y[k]| −
∣

∣

∣D̂[k]
∣

∣

∣ (3.4)

X̂[k] =
(

|Y[k]| − |D̂[k]|
)

e jφy[k] (3.5)

X̂ andD̂ are used to indicate that the signals are ‘estimated’ versions of the clean speech and

the disturbance signal respectively. It is clear that, the noise power estimation will have a

crucial effect on the performance of the algorithm.

Substituting the noise phase spectra with the noisy speech phase is known to have negligible

effect on speech intelligibility as studied in [4]. Actually this is one of the common assump-

tions in spectral subtraction based algorithms. However, the effect of this assumption on

speech quality may not be negligible, as discussed in Chapter-4.

The problem of estimatinĝD[k] can be solved by simply averaging the noise in ‘silence’

regions, which require a ‘Voice Activity Detector’ (VAD). The noise power can be estimated

by using some other methods as well. An interesting approach is the so called ‘minimum

statistics’ method, described in [17]. In this method, noise power estimate is done for each

frequency bin by tracking the minimum power in long observation windows. Inthe article

[17], it is (empirically) stated that these minimum values are proportional with theactual

noise levels in the corresponding frequency bins.

Notice that, in equation-(3.5)|X̂[k]| can be negative if the estimated noise power exceeds the

noisy signal power at a specific frequency bin, which is of course meaningless and is one

of the main problems of spectral subtraction. To prevent such an occasion, usually some

extra constraints are imposed. For instance, if the magnitude of the estimated coefficient is

negative, it can simply be half wave rectified (negative values are set to zero or set to the

minimum value in the spectrum). However, this procedure creates isolated peaks in different

frequency bins of the spectrum. The locations of these peaks also change at each frame. As a

result a somewhat ‘tonal’ noise is generated by the process. This type ofnoise (introduced by
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the enhancement process) is referred as the ‘musical noise’ in speechenhancement literature

and it is the main problem in spectral subtraction based algorithms.

To improve the performance of the algorithms in terms of generation of the ‘musical noise’, a

method called ’oversubtraction’ can be employed [18]. In this method, the ‘overestimate’ of

the noise power spectrum is subtracted while preventing the the resulting spectral components

to fall below a minimum value, called the ‘spectral floor’. The magnitude estimatorin this

method has the following form;

∣

∣

∣X̂[k]
∣

∣

∣

2
=



















|Y[k]|2 − α
∣

∣

∣D̂[k]
∣

∣

∣

2
, i f |Y[k]|2 > (α + β)

∣

∣

∣D̂[k]
∣

∣

∣

2

β
∣

∣

∣D̂[k]
∣

∣

∣

2
, else

(3.6)

In this equationα is called the oversubtraction factor (α ≥ 1), andβ is called the spectral floor

parameter (0< β << 1). The main idea behind the oversubtraction method is to decrease

the amplitudes of the peaks in the spectrum that are artificially generated by thespectral sub-

traction algorithm itself. It is known that, speech processed by this oversubtraction algorithm

possesses less amount of musical noise than the original spectral subtraction method as in

equation-3.5. However the musical noise is still present. Although the oversubtraction factor

suppresses the artificial peaks, it introduces additional distortion to the speech signal. The

additional parametersα andβ gives the control of making an adjustment between the mu-

sical noise suppression and introduced distortion. This adjustment can beoptimized in the

mean square sense and the values ofα andβ can be determined accordingly. This optimiza-

tion is proposed by Sim et. al. [19]. The details of their method will not be discussed in

this study. However it is worth mentioning that the method also introduces musicalnoise.

Hence the spectral subtraction based algorithms has certain limitations. Depending on the

induced phase noise, the performance of the spectral subtraction based algorithms inevitably

decreases.

3.2 MMSE estimator

Several researchers have proposed methods that minimize the mean squared error between

the estimated magnitude spectra and the true magnitude spectra. More specifically;

ek = E
{

(

X̂k − Xk

)2
}

(3.7)
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where X̂k is the estimated magnitude for thekth frequency bin andXk is the magnitude of

thekth bin for the clean signal. The optimal (in MSE sense) coefficients can be obtained by

minimizing the Bayesian MSE error given by;

I(X̂k) =
∫ ∫

(Xk − X̂k)
2p(Y, Xk)dYdXk (3.8)

The minimization of the Bayesian MSE with respect toX̂k yields the optimal MMSE estimator

as follows;

X̂k =

∫

Xk p(Xk|Y)dXk (3.9)

= E{Xk|Y} (3.10)

= E{Xk|Y(ω0),Y(ω1), ...,Y(ωN−1)} (3.11)

whereY = [Y(ω0),Y(ω1), ...,Y(ωN−1)] is the vector containing the DFT coefficients of the

observed noisy speech.

To calculate equation-3.11, one needs the distribution functions of the DFT coefficients. How-

ever it is not possible to measure the density functions of the DFT coefficients by evaluating

the histograms from a large amount of data, simply because of the fact that speech is not a

stationary and ergodic process. That is to say the statistics of the coefficients will change over

time and the time averages will not correspond to the actual density function. At this point

Eprahim and Malah proposed a method [16] by assuming that the DFT coefficients have a

Gaussian distribution and the coefficients are uncorrelated (since it is Gaussian and uncorre-

lated then independent as well). The assumptions are justified by utilizing the central limit

theorem [20] and by pointing out the fact that as the analysis frame gets longer the correlation

between the coefficients decays to zero.

The MMSE magnitude estimator will not be derived here. The details of the derivation can be

found in the original paper of Eprahim and Malah [16] and almost in any speech enhancement

book (e.g. [3], [8], [21]).

The mean-squared error criterion is actually questioned if it was the right cost function to

increase intelligibility, in a recent study by Loizou and Kim [5]. In this study thedistortions

caused by the additive noise and enhancement process are divided intotwo groups as am-

plification and attenuation. It is stated that the effects of these two types of distortions can

not be the same aiming the mean squared error criterion, as the MSE metric can not make a

distinction between a+5 or -5 difference between the actual and estimated values.
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3.3 Other methods

There are many derivatives of the spectral subtraction based methods and MMSE estimators

that are briefly explained in the previous sections. There are some other main classes of

enhancement algorithms such as Wiener filtering and subspace methods [3].To apply Wiener

filtering, it is assumed that the clean speech can be obtained by a linear filteringoperation on

noisy speech. Then the ‘optimal’ filter coefficients are determined in the MSE (Mean Squared

Error) sense. Wiener filtering is a classical signal processing subject,the details of which can

be found in many statistical signal processing books (e.g. [22], [23]).Wiener filtering can

be applied to speech enhancement by imposing different constraints on the signal as well, as

explained in [3].

In literature there are some methods that modify the phase spectra as well. Oneof those meth-

ods is presented in [24]. In this method the phase of the noisy signal is intentionally distorted

by adding a real number to first half of the DFT coefficients and subtracting the same real

number from the second half. Then using the phase of the resulting coefficient set and the

magnitude of the original coefficient set, the inverse STFT is computed. By adding and sub-

tracting a real number, the phases of weak components are shifted almost 180 degrees out of

phase to its conjugate counterparts. These components cancel each other in the reconstruction

process.With this property, the method seems like an efficient way of linear filtering, where

the linear filter is designed so that the suppression of the components is inversely proportional

to the strength of the corresponding component.
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CHAPTER 4

CONTRIBUTION OF PHASE INFORMATION TO SPEECH

QUALITY

4.1 Introduction

In this chapter the importance of phase information on speech quality is studied. Previous

work on the subject is briefly explained and the results of the conducted experiments are

given.

4.2 Previous work

As mentioned in the previous chapters, classical speech enhancement methods (e.g. [15],

[16], [25] and many others) rely on the assumption that the human perception is less sensitive

to phase distortions, citing the study of Wang and Lim [4]. In their article [4],Wang and Lim

presented the results of their intelligibility tests. These tests are conducted to measure the

contribution of DFT phase and magnitude to speech intelligibility. They used two analysis

blocks in parallel to estimate the phase and magnitude spectra by using both clean and noisy

speech. By altering the amount of induced noise for phase and magnitude estimation seper-

ately, the structure is capable of controlling the amount of phase and magnitude distortions

independently. Using this structure and carrying out listening tests, they conclude that [4];

”. . . It is unwarranted to make an effort to more accurately estimate the phase from the noisy

speech in the context of speech enhancement if the estimate is used to reconstruct a signal

by combining it with an independently estimated magnitude or to reconstruct the signal using

the phase-only signal reconstruction algorithm”, [4].
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A recent study, by Paliwal and Alsteris [26], confirms the results of Wangand Lim [4] for short

durations of analysis windows and also points out that phase information can be important

when the analysis window is long (in the order of 500 msec), in terms of intelligibility.

These studies were done in the context of speech intelligibility. However, asstated in [5]

current enhancement algorithms are not capable of improving the intelligibility scores of de-

graded speech signals. What they are capable of is to improve the ease oflistening, i.e.

quality; hence the contribution of phase information to speech quality needs tobe investi-

gated. For that purpose, some simulations are carried out in MATLABc©. The details of these

simulations are given in the next section.

4.2.1 Simulations on the effect of phase information on speech quality

The simulations are carried out using the structure given in Figure-4.1.

 

STFT 

STFT 
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s[n] 

s[n] : Clean speech 

w[n] : Noise 

Inverse STFT 

PESQ 

Reconstructed 

speech 

Clean speech 

PESQ 

 score 

Band 
selection 

Magnitude 

Figure 4.1: Implemented test structure which is designed to investigate the contribution of the
phase of a specific frequency band

As seen in Figure-4.1 a hybrid signal is generated using the magnitude spectra of the clean

speech and phase spectra of both noisy and clean speech. The clean phase is used for a par-

ticular frequency band using the band selection block. The reason for doing this, is to observe

the quality improvement when a specific part of the phase spectra is estimated perfectly. The
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band selection block in Figure-4.1 is elaborated in Figure-4.2. As the figureindicates, the task

of this block is to arrange the frequency band, in which the clean phase willbe used and these

bands are shown in Figure-4.3.

  

d[k] 

c[k] 

 

"Band Selection" block 

Phase spectrum of 

the noisy signal 

 

Phase spectrum of 

the clean signal 

 

Phase spectrum of 

the reconstructed 

 signal 
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d[k] + c[k] = 1 

Figure 4.2: Details of the band selection block
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Figure 4.3: Frequency bands over which the clean phase is used

The sampling frequency for the narrowband speech is 8 kHz, hence thefrequency spectrum

is limited to 4 kHz for these tests. As seen in Figure-4.3, the 4kHz band is divided into 8

non-overlapping subbands over which the clean phase is used.

While generating these hybrid signals ‘NOIZEUS’ speech database is used. The details of

this database are given in [27] and [28]. The database consists of 30 IEEE sentences ([29])

recorded under 8 different colored noises at 4 different SNR levels. The sentences are pro-
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Figure 4.4: Average PESQ scores scores of 30 sentences for 0 dB signal to noise ratio with
window lengths of 20, 40 and 80 msec. The first 8 subbands in the x-axis correspond to the
subbands shown in Figure-4.3, over which clean phase is used. The 9th subband corresponds
to the all noisy phase case (base score).

nounced by 3 male and 3 female speakers. Each audio file in this database is processed

using the system in Figure-4.1 and the resulting PESQ scores of the reconstructed signals are

recorded.

The tests are conducted for 20, 40 and 80 msec long analysis frames with %50 overlap, using

Hamming window. The STFT reconstruction procedure is explained in Chapter-2.

The PESQ scores are evaluated (for the structure in Figure-4.1) for 8 different noise types

which are given in Figure-4.4, Figure-4.5, Figure-4.6 for 0dB, 5dB and 10dB noise levels, re-

spectively. The lines in each figure correspond to a specific type of exposed noise. The PESQ

scores are obtained for 30 different audio files and the average score of these 30 sentences
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Figure 4.5: Average PESQ scores scores of 30 sentences for 5 dB signal to noise ratio with
window lengths of 20, 40 and 80 msec. The first 8 subbands in the x-axis correspond to the
subbands shown in Figure-4.3, over which clean phase is used. The 9th subband corresponds
to the all noisy phase case (base score).

for each band is plotted. X-axis in the figures corresponds to the subband index over which

the phase of the clean speech is used (rest of the phase spectrum usesnoisy phase). The first

subband corresponds to 0-500Hz, the second corresponds to 500-1000Hz and so on, as shown

in Figure-4.3.

The results of the conducted simulations are quite interesting. As seen in Figure-4.4, for 0dB

noise level, most of the quality gain is obtained from the 0-500 and 500-1000Hz bands. These

bands actually contain the first few harmonics, when the speech is voiced.When the noise

level decreases, Figure- 4.5 and Figure-4.6, we observe that the effect of the first subband

(0-500Hz) decreases and the second subband (500-1000Hz) becomes dominant.
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Figure 4.6: Average PESQ scores scores of 30 sentences for 10 dB signal to noise ratio with
window lengths of 20, 40 and 80 msec. The first 8 subbands in the x-axis correspond to the
subbands shown in Figure-4.3, over which clean phase is used. The 9th subband corresponds
to the all noisy phase case (base score).

Another observation is that; for short durations of analysis windows (20msec) the contribution

of higher frequency bands are somewhat negligible compared to the low frequency bands.

For longer analysis windows, the contribution of higher frequency bands are still less than

low frequency bands however the quality gain is somewhat spread to the whole spectrum in a

more balanced manner. This fact is better observed for lower SNR values. As seen in Figure-

4.4, for 20 msec window; the average PESQ score for the reconstructedsignals using the clean

phase in the first subband is about 3.6, however the score drops to 3.2 when the clean phase

is used in either one of the 4th, 5th, 6th, 7th or 8th subband. When the analysis window length

is 80 msec, the gap between the average PESQ scores reduces to 0.1 points(3.2 to 3.1) which

indicates a more balanced contribution from all subbands compared to 20 msec window.
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It can be concluded that, most of the quality gain can be attained by correcting the phase

spectra of the low frequency components, especially for short analysiswindows when the

SNR is low. Hence a better phase estimate of the low frequency components should provide

a considerable improvement. Considering the fact that such low frequencyband (0-500Hz) is

dominated by a few sinusoids (fundamental component and its harmonics) in voiced speech;

the phase estimation problem can be narrowed down to a few frequency bins. Therefore, the

problem is converted to the estimation of phase values of these frequency bins. The proposed

solution for the phase estimation of low frequency components is presented inChapter-5.
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CHAPTER 5

THE PROPOSED METHOD

In this chapter, the structure of the proposed method for maintaining the phase continuity

in the classical speech enhancement algorithms is explained. The advantages as well as the

drawbacks of the system are also stated. The methods used to solve the phase estimation and

pitch estimation problems are also explained in detail. The validation of the system and the

implementation results will be given in the following chapters.

5.1 Voiced segments of speech signals

Voiced segments of speech signals exhibit highly tonal characteristics. These parts of speech

signals can be modeled as a sum of sinusoids in the following form;
∑M

k=1 Akcos
(

2πk f0
fs

n + φk

)

.

This sinusoidal structure imposes a certain constraint on the signal, as it willbe explained in

the next section. If the imposed constraint is taken into consideration in the signal reconstruc-

tion procedure, a better phase estimate can be obtained for the frequency bins that encompass

the fundamental frequency and even for the frequency bins that cover the higher harmonics.

5.2 General formulation

As mentioned in the previous chapters, classical speech enhancement algorithms do not mod-

ify the phase spectra of the corrupted signal and simply use the phase spectra of the noisy

signal in the reconstruction process. The effects of this phase distortion were explained in

Chapter-4.

The main idea in the proposed system is to maintain the phase continuity in the reconstructed
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signal. To achieve this, the following simple fact will be utilized;

• Let x(t) = cos (2π f0t + φ0) be continuous time signal andx[n] = cos
(

2π f0
f s n + φ0

)

be

the sampled version ofx(t).

• The instantaneous phase of a sinusoid, in continuous time, is defined as follows;

θ(t) =
∫ t

−∞

ω(τ)dτ (5.1)

whereω(t) is the instantaneous radial frequency and is equal to 2π f0(t).

The instantaneous phase can be calculated by numerically evaluating the above integral,

using the discrete time data. However, it is not practically efficient to calculate pitch

frequency estimates densely in time. Instead the fundamental frequency (or pitch) can

be estimated over a rather longer time frame. In this case the estimate will represent

the average value of thef0(t) over that time frame. This estimate can be utilized to

numerically evaluate the above integral by using the rectangle rule. This fact can be

stated as follows;

Let the instantaneous phase at timen = n0, (t = n0
fs

) be equal toθ[n0] = φ0 and the

fundamental frequency estimate over the time interval [t0, t0+ N
fs

] be f1. In this case the

instantaneous phase estimate forn = n0 + N, (t = t0 + N
fs

) will be;

θ[n0 + N] = φ0 + 2π
∫ t0+ N

fs

t0
f0(τ)dτ (5.2)

θ[n0 + N] ≈ φ0 + 2π f1∆t

≈ φ0 + 2π f1
N
fs

(5.3)

• The difference between the instantaneous phase values is seen in equation 5.4. Notice

that the phase difference is independent of the initial phaseφ0.

∆θ = θ[n0 + N] − θ[n0] = 2π
f1
fs

N (5.4)

This simple fact (5.4) can be applied to speech enhancement algorithms. If the fundamental

frequency is somehow estimated, equation-5.4 can be used to correct the phase difference

between two consecutive frames, since the voiced segments of the input signals have a tonal
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harmonic structure. The phase valuesθ[n0 + N] and θ[n0] correspond to the instantaneous

phase values at the beginning of these two consecutive analysis frames.

Figure-5.1 summarizes the proposed method. The system is built upon classical speech en-

hancement methods which only modify the magnitude spectra of the noisy signal.As seen in

the figure, there are 3 analysis processes acting in parallel, namely; ‘spectral analysis’, ‘phase

estimation’ and ‘pitch extraction’. Spectral analysis can be done by using STFT (Short Time

Fourier Transform, see Chapter-2). Due to the inadequacy of STFT in phase and pitch esti-

mation, other methods are employed as explained in detail in the following chapters. Using

the outputs of the three analysis bocks, at each frame, the phase of the current frame will be

corrected by using the phase of the previous frame and the extracted pitch. In order to achieve

this, the input speech must be voiced within these two consecutive analysis frames. And the

mentioned ‘phase’ refers to the phase of the corresponding frequency bins of the extracted

pitch and its harmonics.

Figure 5.1: Proposed system

The proposed method modifies the phase spectra of the input speech. In that respect, the

method differs from the classical enhancement algorithms. Moreover, the algorithm keeps

the improvements obtained by the classical algorithms, as it uses the output of the classical

methods and combines it with its own.

In the following sections; phase estimation and pitch estimation algorithms will be presented.
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Then, in the following chapters; validation of the algorithm is demonstrated usingthe simula-

tion results and showing that equation-(5.4) holds. Lastly the implementation of the proposed

structure and the results will be presented.

Note : The idea presented in this chapter has been thought to be original, however a similar

approach is used in [30] in the context of speech synthesis. Nevertheless the concept is not

applied to speech enhancement algorithms in any previous work.

5.3 Phase estimation of tonal signals

In this section, an efficient method for phase estimation and spectral analysis, namely the all-

phase DFT (although we believe that the method is not named appropriately, the same naming

as the original paper [2] will be used throughout this work), is presented. A rigorous derivation

of the method, which the original paper [2] lacked, is stated. Furthermore, areconstruction

method for the all-phase DFT analysis is proposed.

5.3.1 Introduction

Discrete Fourier Transform is one of the most commonly used signal analysis method, due

to the fact that its basis functions,{e j 2π
N kn}N−1

k=0 , are the eigen-functions of discrete-time linear

time invariant (LTI) systems. Hence it is a good way to characterize LTI systems. Also the

fast implementation algorithms (FFT: [7], FFTW: [31], [32]) made this transform even more

popular.

Although the aforementioned properties of DFT are very attractive, thereare some drawbacks

of this transform for certain applications; for instance, the phase estimationof a sinusoid is

problematic when the period of the signal does not fit to the observation window. In other

words, when the observation window length is not an integer multiple of the period of the

(tonal) signal to be observed, the phase spectrum gives a function of the desired phase value,

instead of directly giving the phase value of the sinusoid. The mathematical derivation of this

fact is as follows;

Consider the simplest case where the input signal is a single complex exponential as in
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equation-5.5.

x[n] = A0e
j
(

2π
f0
fs

n+φ0

)

, A0 ∈ R (5.5)

The DFT ofx[n] (using rectangular window of lengthN) will be equal to;

X[k] =
N−1
∑

n=0

x[n]e− j 2π
N kn (5.6)

=

N−1
∑

n=0

A0e
j
(

2π
f0
fs

n+φ0

)

e− j 2π
N kn (5.7)

X[k] = A0e jφ
N−1
∑

n=0

e
j2π

(

f0
fs
− k

N

)

n
(5.8)

= A0e jφ1− e
j2π

(

f0
fs
− k

N

)

N

1− e
j2π

(

f0
fs
− k

N

) (5.9)

= A0e jφ e
jπ

(

f0
fs
− k

N

)

N

e
jπ

(

f0
fs
− k

N

)

e
− jπ

(

f0
fs
− k

N

)

N
− e

jπ
(

f0
fs
− k

N

)

N

e
− jπ

(

f0
fs
− k

N

)

− e
jπ

(

f0
fs
− k

N

) (5.10)

= A0e jφe
jπ

(

f0
fs
− k

N

)

(N−1) sin
(

π
(

f0
fs
− k

N

)

N
)

sin
(

π
(

f0
fs
− k

N

)) (5.11)

The magnitude spectrum ofX[k] is in the following form;

|X[k]| = |A0|
sin

(

π
(

f0
fs
− k

N

)

N
)

sin
(

π
(

f0
fs
− k

N

)) (5.12)

It is important to note that the input signal is actually multiplied by the window function in

time domain. This operation corresponds to convolution operation in the frequency domain

and in order not to corrupt the signal properties, the frequency response of the window func-

tion should be an impulse function. Since the window function is bounded in time domain, its

frequency response will be unbounded and can never be equal to animpulse function. Hence
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in the transform domain, the energy of the signal components will spread along the entire

spectrum. This problem is called the ”spectral leakage” and it can be observed in equation

5.12, as the energy of a single complex exponential spreads over the entire spectrum because

of the sin(.)
sin(..) term.

There is also a problem with the phase value obtained throughX[k]. The phase of theX[k] is;

∠X[k] = arctan

(

Im{X[k]}
Re{X[k]}

)

(5.13)

∠X[k] = φ0 + π

(

f0
fs
−

k
N

)

(N − 1) (5.14)

As seen in equation (5.14), unless the condition in (5.15) is satisfied, the phase of DFT result

will be a function of both thef0
fs

ratio as well as the window length N, and it will not be

possible to directly observeφ0 via the phase of DFT.

π

(

f0
fs
−

k
N

)

≡ 0, (mod 2π)

π

fs

(

f0 −
k fs

N

)

≡ 0, (mod 2π) (5.15)

The condition in (5.15) actually states that, in order to observe the phase of the sinusoid

directly from the phase of DFT, the frequency of the sinusoid (f0) must be equal to the center

frequency of thekth frequency bin (k fs
N ).

In other words, the duration of the observation window (N/ fs) must be an integer multiple of

the signal period (1/ f0). Note that, it is also possible to find the exact frequency of the signal

in this case, since thesin(.)
sin(..) function in equation (5.12) yields one when (5.15) is satisfied.

However, this is hardly the case in practice, i.e. the condition in (5.15) is rarely satisfied. Also

the input signal in general does not consist of a single tone and the aforementioned ‘spectral

leakage’ effect creates other problems as well.

As explained above, even in the simplest case (single complex exponential) the actual phase

of a tonal signal cannot be observed directly by using the DFT phase, unless a very stringent

condition is satisfied. Hence, the instantaneous phase of a tonal signal must be estimated by

using some other means.
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5.3.2 All-phase DFT analysis

As explained in the previous section it is not possible to observe the actual phase values of

the signal components directly from the DFT phase.

A computationally efficient method for instantaneous phase estimation and spectral analysis

is proposed in [2], called the all-phase DFT. In this methodN-point DFT of the signal is

estimated using 2N-1 observation points. The procedure is as follows;

• Get a (2N-1) point frame, centered at time n= 0.

x[n] = [x(−N+1) x(−N+2) . . . x−1 x0 x1 . . . x(N−2) x(N−1)],

where x[0] = x0.

• Obtain all shifted windows of length N from this frame.

x0[n] = [ x0 x1 . . . x(N−2) x(N−1) ], x0[0] = x0

x1[n] = [ x−1 x0 . . . x(N−3) x(N−2) ], x1[0] = x−1

x2[n] = [ x−2 x−1 . . . x(N−4) x(N−3) ], x2[0] = x−2

...

x(N−1)[n] = [ x−N+1 x−N+2 . . . x−1 x0 ], xN−1[0] = x−N+1

The general form of these windows is as follows;

xi[m] = x[m − i], i = 0, . . . ,N − 1 m = 0, . . . ,N − 1 (5.16)

Notice that all windows include the samplex0.

• Circularly shift each window, such that the samplex0 is the first element in all windows.

x′0[n] = [ x0 x(−N+1) x(−N+2) x(−N+3) x−2 x(−1) ]

x′1[n] = [ x0 x1 x(−N+2) x(−N+3) x−2 x(−1) ]

x′2[n] = [ x0 x1 x2 x(−N+3) x−2 x(−1) ]
...

...
...

...
...

...
...

x′(N−2)[n] = [ x0 x1 x2 x3 x(N−2) x(−1) ]

x′(N−1)[n] = [ x0 x1 x2 x3 x(N−2) x(N−1) ]

Notice that the DFT coefficients of the circularly shifted sequences will be in the fol-

lowing form;

X′i [k] = Xi[k]e j 2π
N ki (5.17)
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• Lastly, take the average of the signals{x′0[n] . . . x′(N−1)[n]} and take the DFT of the result.

The subscript ‘ap’ in the latter equations stands for ‘all-phase’.

xap[n] =
1
N

N−1
∑

i=1

x′i [n] (5.18)

Xap[k] =
1
N

N−1
∑

i=1

Xi[k]e j 2π
N ki (5.19)

We can write the all-phase DFT ofx[n], in terms ofx[n] as follows;

Xap[k] =
1
N

N−1
∑

i=0

















N−1
∑

n=0

xi[n]e− j 2π
N kn

















e j 2π
N ki

=
1
N

N−1
∑

i=0

















N−1
∑

n=0

x[n − i]e− j 2π
N kn

















e j 2π
N ki (5.20)

Equation 5.20 summarizes the implementation of all-phase DFT analysis. To observe the

properties of the all-phase DFT, consider a single complex exponential in the following form;

y[n] = A0e
j
(

2π
f0
fs

n+φ0

)

, A0 ∈ R. The all-phase DFT of this signal is as follows;

Yap[k] =
1
N

N−1
∑

i=0

















N−1
∑

n=0

y[n − i]e− j 2π
N kn

















e j 2π
N ki

=
1
N

N−1
∑

i=0

















N−1
∑

n=0

A0e
j
(

2π
f0
fs

(n−i)+φ0

)

e− j 2π
N kn

















e j 2π
N ki

=
A0e jφ0

N

N−1
∑

i=0

















N−1
∑

n=0

e j2π
f0
fs

ne− j2π
f0
fs

ie− j 2π
N kn

















e j 2π
N ki

=
A0e jφ0

N

N−1
∑

i=0

N−1
∑

n=0

e
j2π

(

f0
fs
− k

N

)

n
e
− j2π

(

f0
fs
− k

N

)

i

=
A0e jφ0

N
1− e

j2π
(

f0
fs
− k

N

)

N

1− e
j2π

(

f0
fs
− k

N

)

1− e
− j2π

(

f0
fs
− k

N

)

N

1− e
− j2π

(

f0
fs
− k

N

) (5.21)
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Let θ = 2π
(

f0
fs
− k

N

)

. Then;

Yap[k] =
A0e jφ0

N
1− e jθN

1− e jθ

1− e− jθN

1− e− jθ

=
A0e jφ0

N

∣

∣

∣

∣

∣

∣

1− e jθN

1− e jθ

∣

∣

∣

∣

∣

∣

2

=
A0e jφ0

N
[1 − cos(θN)]2 + sin2(θN)

[1 − cos(θ)]2 + sin2(θ)

=
A0e jφ0

N
1− 2cos(θN) + cos2(θN) + sin2(θN)

1− 2cos(θ) + cos2(θ) + sin2(θ)

=
A0e jφ0

N
2− 2cos(θN)
2− 2cos(θ)

(5.22)

Using the trigonometric identitycos(θ) = 1− 2sin2
(

θ
2

)

;

Yap[k] =
A0e jφ0

N

sin2
(

θN
2

)

sin2
(

θ
2

) (5.23)

And putting backθ = 2π
(

f0
fs
− k

N

)

. Then;

Yap[k] = e jφ0
A0

N

sin2
(

π
(

f0
fs
− k

N

)

N
)

sin2
(

π
(

f0
fs
− k

N

)) (5.24)

∣

∣

∣Yap[k]
∣

∣

∣ =
|A0|

N

sin2
(

π
(

f0
fs
− k

N

)

N
)

sin2
(

π
(

f0
fs
− k

N

)) (5.25)

∠Yap[k] = φ0 (5.26)

Equations (5.25) and (5.26) depict the most important properties of all-phase DFT analysis.

The phase of the k-th coefficient of all-phase DFT simply gives the phase value of the complex

exponential whose frequency falls into thekth frequency bin. The key point here is that the

phase value is not a function of the signal frequency, unlike the traditional DFT. Also notice

that, the magnitudes of the coefficients have better side-lobe suppression than that of the

traditional DFTs’.
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5.3.2.1 Efficient structure for calculating all-phase DFT

Up to this point, the mathematical derivation of all-phase DFT and some of its important

properties are presented. However it is highly inefficient to use equation (5.20) to calculate

the all-phase DFT of a signal, as it requires the calculation ofN-point DFTs ofN different

sequences and their average. Also the circular shift operation is addedto this computational

load. Fortunately there is an efficient way to calculate the transform. Instead of calculatingN

differentN-point DFTs, consider equation (5.18) again;

xap[n] =
1
N

N−1
∑

i=1

xi[n] =
1
N

N−1
∑

i=0

x[n − i] (5.27)

=
1
N
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T

(5.28)

Equation (5.28) can be written in the following form;

xap[n] =
1
N
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(5.29)

The important point in equation (5.29) is that, the elements of each vector can be obtained

from the windowed version of the original 2N − 1 point data. Equation (5.29) can be written

in the form of equation (5.30) to clarify the previous statement. Also it is easily seen that

the window function is a 2N − 1 point triangular window and is depicted asw[n] in the next
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equation.

xap[n] =







































































































0

w[−N + 1]x[−N + 1]

w[−N + 2]x[−N + 2]

w[−N + 3]x[−N + 3]
...

w[−2]x[−2]

w[−1]x[−1]







































































































T

+







































































































w[0]x[0]

0

0

0
...

0

0







































































































T

+







































































































0

w[1]x[1]

w[2]x[2]

w[3]x[3]
...

w[N − 2]x[N − 2]

w[N − 1]x[N − 1]







































































































T

(5.30)

Using equation (5.30) the structure in Figure 5.2 can be implemented. This structure is also

given in [2].

X(-N+1) X(-N+2) . . . X(-2) X(-1) X0 X1 X2 . . . X(N-2) X(N-1)

W(-N+1) W(-N+2) . . . W(-2) W(-1) W0 W1 W2 . . . W(N-2) W(N-1)

T0 T1 T2 . . . T(N-2) T(N-1)

N-point DFT

F0 F1 F2 . . . F(N-2) F(N-1)

2N-1 point data

Time warped data

2N-1 point window

All-phase DFT output

Figure 5.2: Efficient structure for calculating all-phase DFT, (taken from [2])

As a summary, the outputs of all-phase DFT and traditional DFT for a single complex expo-

nential are given in Table 5.1.

When Table 5.1 is examined it might be concluded that all-phase DFT has superior character-

istics than the traditional DFT. However there are some drawbacks which maybe summarized

as follows;
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Table 5.1: Comparison of the traditional DFT and all-phase DFT

Method Time domain signal Transform magnitude Transform phase

DFT A0e
j
(

2π
f0
fs

n+φ0

)

|A0|
sin

(

π

(

f0
fs
− k

N

)

N
)

sin
(

π

(

f0
fs
− k

N

)) φ0 + π
(

f0
fs
− k

N

)

(N − 1)

all-phase DFT A0e
j
(

2π
f0
fs

n+φ0

)

|A0|

N

sin2
(

π

(

f0
fs
− k

N

)

N
)

sin2
(

π

(

f0
fs
− k

N

)) φ0

• To computeN-point all-phase DFT, one has to have 2N−1 samples. Although all-phase

DFT requires 2N − 1 samples, it combines these data samples in way that it ends up

with anN-point hybrid data set and it outputs the DFT of this hybrid data set. Hence the

frequency resolution is the same as theN-point DFT while the time resolution is about

half theN-point DFT’s time resolution. A solution to this problem is given in [33]. In

this solution the frequency resolution is increased through some some additional proce-

dures and made equal to 2N − 1 point DFT’s frequency resolution. The problem might

also be partially solved by using overlapping frames; however increasingoverlap ratio

will increase the computational load as well as the complexity of synthesis procedure

if required.

• The computational complexity of all-phase DFT can be calculated for 2N−1 point data,

as follows; Computational load= (2N − 2) multiplication+ (N − 1) addition+ N-point

FFT

• Although the all-phase DFT is a powerful analysis tool, a well-defined modification and

synthesis procedure is not available for a general class of signals. Due to this reason

the method might be undesirable in some applications.

5.3.2.2 Simulation results

The performance of all-phase DFT is tested with some simulations in MATLAB. The outputs

of the traditional DFT and all-phase DFT are compared.

36



−200 −150 −100 −50 0 50 100 150 200
−1

0

1

x[
n]

n

Figure 5.3: Input signal for the first simulation (Single tone)

Case study: Single tone input
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Figure 5.4: DFT output for the first simulation

The first simulation is carried out with a cosine input in the following form;

x[n] = cos

(

2π
f0
fs

n + φ0

)

, φ0 = 112◦,3 (5.31)

For the first simulationf0 is taken as 1025 Hz and window lengthN is taken as 160 points

with a sampling frequency of 8 kHz. The initial phaseφ0 is chosen to be 112.3 degrees.

Notice that all-phase DFT will be computed for 2N − 1 points. Hence the signal is computed

for n = −N + 1, . . . ,N + 1 for the all-phase DFT process. The reason for this selection

of time index ‘n’ (starting from−N + 1 instead of zero) is to observe the phase value of

the input signal directly. Because the phase of the all-phase DFT output corresponds to the
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Figure 5.5: All-phase DFT output for the first simulation

instantaneous phase value of the middle point in the frame and when ‘n’ is chosen in the

aforementioned way, the instantaneous frequency of the point in the middle of the frame is;

2π f0
fs

n+φ0 evaluated atn = 0, which simply yieldsφ0. For the evaluation of DFT, the signal is

evaluated forn = 0, . . . ,N − 1 in order to have the same frequency resolution as the all-phase

DFT and to observe the instantaneous phase estimate of DFT forn = 0, since DFT phase

corresponds to the instantaneous phase of the signal at the beginning ofthe frame. The input

signal can be observed in Figure-5.3.

With the parameters selected as above, the condition which was elaborated in equation-(5.15),
(

f0 − k fs
N

)

is not equivalent to zero in mod 2π for integer values of k. Actually the window

length is the worst possible selection, since the frequency resolution is 8000Hz/160= 50Hz

and the signal frequency falls just into the middle of two consecutive frequency bins; 1000 Hz

and 1050 Hz. As a result, most of the signal energy is divided between these two frequency

bins.

The output of traditional DFT is given in Figure-5.4. As indicated in the figure the phase

values corresponding to 1000 Hz and 1050 Hz bins are -158.2 and 22.84degrees respectively.

Either of these values can be used to obtainφ0 using equation-(5.14), with the additional
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knowledge of signal frequency as follows;

∠X[k] = φ0 +
π

fs

(

f0 − k
fs

N

)

(N − 1)

22.84
π

180
= φ0 +

π

8000
(1025− 1000)(N − 1)

φ0 ≡ 112◦.3

There is a method in literature for estimating the frequency and phase of suchtonal signals

using DFT output [34]. However the method has a drawback as it is also stated in [34] that;

”the method will not work well when the distance between two spectral peaksis less than

5 frequency resolutions”. Unfortunately this is the case when the application is narrowband

( fs=8kHz) speech enhancement, as the fundamental frequency can be as low as 100 Hz and

its harmonics will be very closely packed when the traditional 20-40 msec window duration

is used. Hence one needs to increase the frequency resolution, but it isnot possible without

decreasing the time resolution. As a result the problem needs to be solved byother means.

The output of the all-phase DFT on the other hand, is given in Figure-5.5.As indicated in

the figure, maximum amplitude is observed both in 1000 Hz and 1050 Hz frequency bins

due to the reason mentioned above. The phase of the output however, gives the same result

which is 112.3 degrees and is the same as the instantaneous phase of the input signal at time

n = 0. Notice that no additional information about signal content was used to predict the

signal phase.

Case study: Sum of harmonics

−200 −150 −100 −50 0 50 100 150 200
−10

0
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20

x[
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n

Figure 5.6: Input signal for the second simulation (Sum of 6 harmonics)

In order to observe the performance of the two methods when the input is a speech-like sig-

nal, the second simulation is conducted with an input signal of the following form; x[n] =
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∑M
k=1 Akcos(2πk f0

fs
n + φk). In this simulationf0 was chosen as 120 Hz (a typical pitch fre-

quency for a male speaker) and 6 harmonics are used. The phase values are selected as

φi = 10i degrees. The amplitudesAi are chosen as [1, 3, 2, 3, 1, 4] for i=1,. . . ,6 respectively.

The sampling frequency,fs, is taken as 8 kHz again. With these parameters the generated

input signal can be observed in Figure-5.6.
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Figure 5.7: DFT output for the second simulation

The output of traditional DFT for the second simulation is given in Figure-5.7. Notice that

in the figures the spectrum is zoomed to [0, fs
2 ] frequency band for better visualization, since

the signal under consideration is real hence the spectrum is conjugate symmetric. In this case

since the tones are closely packed, spectral leakage phenomenon becomes a serious problem,

both for phase estimation and magnitude estimation. The frequency bins of the observed

peaks and the corresponding phase values are given in Table-5.2. The ”interpolated phase”

tab in this table indicates the operation of estimating the actual phase of the corresponding

component, using equation-(5.14) and assuming the actual frequency of that component is

known.

An important problem in STFT analysis can be observed in Table-5.2. Although the ampli-

tudes of the first (120 Hz) and fifth (600 Hz) harmonic components are the same, the DFT

magnitudes of the corresponding components differ significantly. One of the underlying rea-
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Table 5.2: Attributes of the observed peaks in DFT magnitude spectrum in Figure-5.7

Actual DFT DFT Interpolated Actual
frequency bin center Magnitude Phase phase (eq.5.14) phase

120Hz 100Hz 67.17 112◦.20 39◦.65 10◦

240Hz 250Hz 204.2 −15◦.78 19◦.99 20◦

360Hz 350Hz 146.7 71◦.98 36◦.20 30◦

480Hz 500Hz 176.3 −36◦.16 35◦.39 40◦

600Hz 600Hz 78.53 47◦.10 47◦.10 50◦

720Hz 700Hz 213.3 132◦.70 61◦.15 60◦

sons for this problem is the fact that there are stronger tones in the neighboring frequency bins

and the energy spread of these components modifies the content of the nearby frequency bins.

The DFT phase is also modified by the same reason and it is not possible to obtain the actual

phase of each component by using the knowledge of the exact frequency and DFT phase,

using only equation-(5.14). That was possible in the single tone case where the amplitude of

the tone was not affected by other components. As seen in Table-5.2 the difference between

the actual phase and interpolated phase values is larger for the weak components. Also notice

that the interpolated phase value is equal to DFT phase for 600Hz component, since the sig-

nal frequency is exactly equal to the center frequency of the corresponding frequency bin. In

other words the condition in (5.15) is satisfied for the 600Hz component.
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Figure 5.8: All-phase DFT output for the second simulation
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The output of all-phase DFT for the second simulation is given in Figure-5.8. If the figure is

observed closely the fact that the phase spectra remains locally constantaround the frequency

bins where the tones reside in the spectrum. The frequency bins of the observed peaks in this

figure and the corresponding phase values are given in Table-5.3. Itis clear that the obtained

results are superior to those obtained via DFT.

Table 5.3: Attributes of the observed peaks in all-phase DFT magnitude spectrum in Figure-
5.8

Actual All-phase DFT All-phase DFT Actual
frequency bin center Magnitude Phase phase

120Hz 100Hz 48.24 10◦.12 10◦

240Hz 250Hz 213.80 20◦.07 20◦

360Hz 350Hz 145.90 30◦.06 30◦

480Hz 500Hz 140.10 40◦.01 40◦

600Hz 600Hz 89.23 49◦.89 50◦

720Hz 700Hz 184.60 59◦.78 60◦

5.3.3 Reconstruction from all-phase DFT spectrum

One of the major drawbacks of all-phase DFT analysis is the lack of a well-defined synthesis

procedure. Although in [35] the signal is reconstructed by simply summing upthe sinusoids,

after estimating their frequency, amplitude and phase values; it would not bepossible to use

the same procedure when the input signal has wideband components. Themethod in [35]

is already designed for power systems in which the signal of interest is quitestationary and

consists of the sum of harmonic signals. However, when the input signal isspeech, the spectral

characteristics change rapidly in time. Even in the voiced parts of the speech, there are small

fragments of wideband components.

In this section, the proposed synthesis structure for the all-phase DFT willbe explained. Be-

fore going into the details of the proposed structure, some manipulations on theall-phase DFT

analysis equations will be made. After shortening the notation, proposed synthesis structure

will be explained.
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Consider theith 2N − 1 point input framexm
i , centered at the pointx[m];

xm
i =
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(5.32)

The reason for naming theN − 1 point data blocks asHm
i−1 and Hm

i will be clear in the

following steps. Next, let the 2N−1 point triangular window functionw be defined as follows;

w =
1
N

[

1 2 . . . (N − 1) N (N − 1) . . . 2 1
]T
=
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(5.33)

With the above definitions of theith input frame and the window function, equation-(5.30) can

be written in the following form;

xap[n, i] =





















x[n]

Hn
i−1 ⊗ wu + Hn

i ⊗ wd





















(5.34)

The notation is changed toxap[n, i] to indicate that the sequence is generated using theith

frame. The operator ‘⊗’ is used to indicate ‘elementwise multiplication’, i.e.;
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(5.35)

If the 2N − 1 point frames are taken withN − 1 point overlaps, the frames will have the

structure in Figure-5.9. Notice that when the specified overlap amount is used, consecutive

data frames will have the following property;

HiN
i = H(i+1)N

i , Hi (5.36)

Hn
i is defined in (5.32). Using the notation in (5.32) and the property in (5.36) thestructure

can be reduced to the form shown in Figure-5.10.

43



Figure 5.9: (2N-1) point frames with (N-1) point overlap

H0 H1 x[4N]H2 H3

Figure 5.10: Renaming of the data blocks in Figure-5.9

As a result, when 2N − 1 point frames withN − 1 point overlap are used, the all-phase DFT

sequences will have the following form;

xap[iN, i] =





















x[iN]

HiN
i−1 ⊗ wu + HiN

i ⊗ wd





















=





















x[iN]

Hi−1 ⊗ wu + Hi ⊗ wd





















(5.37)

Where⊗ symbol represents elementwise multiplication, as explained in equation-(5.35).Af-

ter obtainingxap[iN, i], the all-phase DFT output is obtained by taking the DFT of these

sequences;

Xap[k, i] = DFT{xap[iN, i]} (5.38)

The problem arises when one needs to reconstruct the signal using all-phase DFT outputs,

namelyXap[k, i]. The inverse DFT will yieldxap[iN, i] sequences in time domain and it is

clear that these sequences are the time-aliased form of the input signal. Tosolve this aliasing

problem the following algorithm can be implemented;

• Take the inverse DFT of the given frequency domain signals,Xap[k, i];

xap[iN, i] = IDFT {Xap[k, i]}

• Assume that the blockH0 is known, and calculateH1 as follows;
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(5.41)

Notice that the symbols⊗ and⊘ are used to indicate ‘elementwise multiplication’

and‘elementwise division’ respectively. Alsoxap[N, k] is defined in equation-(5.37).

• After calculatingH1, the procedure can be continued in a similar way; asH1 and

xap[N,2] are enough to calculateH1.

• For mathematical completeness, the calculation ofHk with the use ofHk−1 andxap[N, k]

is as follows;
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=





















x[kN]

Hk





















(5.44)

Where⊗ symbol represents elementwise multiplication, as explained in equation-(5.35).With

the above algorithmHk andx[kN] can be evaluated and the original signal can be formed as

Xrec =[H0 x[0] H1 x[1] Hk . . . ].

However, there are two major problems with the algorithm defined above. One of these

problems is the availability ofH0. It might be possible to knowH0 by imposing a condition

to not to modify the first frame and simply using the data acquired in the first frame. Another
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option might be to add a frame of zeros in front of the signal. By doing so, theelements of

H0 are known to be zeros.

The second problem with the above algorithm is the accumulating error. In a standard DFT-

IDFT procedure there will be a small amount of numerical error. For instance, using ‘double’

precision in Matlab, if the FFT of a sequence is calculated and then the inverse FFT of the

result is subtracted from the original sequence, the maximum difference between these two

sequences will be in the order of 10−15 to 10−14. This error can be ignored in many cases

since it does not increase in time. However, in the algorithm defined above,since the previous

frame is used to calculate the current frame, the numerical error caused by IDFT procedure

is accumulated. Unfortunately, the elementwise divisions with the window functions amplify

the error in each step since the elements of the window function are smaller thanone. The

accumulated error can be observed for a test signal (a sinusoid) in Figure-5.11. The frame

length is used as 1000 points for better visualization.
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Figure 5.11: Difference between the original and reconstructed signals (Reconstruction
started from the first frame)
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Figure 5.12: Difference between the original and reconstructed signals (Reconstruction
started from the last frame)

It is clearly seen in Figure-5.11 that the error is amplified in the second half of the frame.
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Taking this fact into account, the algorithm can be executed backwards, i.e. instead of starting

from H0, one can start from the last frameHM and go backwards, findingHM−1, thenHM−2

and so on. This ‘backwards’ process can be formulated as follows;





















x[MN]

HM−1





















=





















xap[MN,M] −





















0

HM ⊗ wd









































⊘





















1

wu





















(5.45)
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(5.47)

In this case the error between the original signal and the reconstructed signal will be as in

Figure-5.12 and is just the symmetric version of Figure-5.11. This time the error is amplified

in the first half of each frame.
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Figure 5.13: Accumulated error, when two approaches are combined

A much better result can be obtained by combining the results of the two aforementioned

methods. Using the defined algorithm the first halves of the frames are retrieved with only the

numerical error of the FFT process. Running the algorithm starting from the last frame, the

second halves of the frames are retrieved in the same fashion. Applying thisprocedure, the

error between the original signal and the reconstructed signal becomesas in Figure-5.13.

It is at last possible to reconstruct the signal with an acceptable degree of distortion. The

method can not be directly applied in real time, as a backwards reconstruction procedure is

required. However it might be possible to implement it in real time with some delay if short

durations of input signals are used.

47



Although the proposed reconstruction scheme is capable of perfect reconstruction, when some

modifications are done on the phase spectrum, reconstructed signal suffers from some addi-

tional distortions. For instance, consider a single sinusoid whose frequency is not an integer

multiple of the frequency resolution of the system(fs
N ). In this case a modification in the phase

spectrum needs to be extended to more than one frequency bin, as most ofthe signal energy

will be divided between more than one frequency bin. Actually to avoid any kind of ampli-

tude modulation, the modifications must be extended to the entire spectrum even for a single

sinusoid. Also the modifications in the phase spectra together with the modifications in the

magnitude spectra may correspond to a filtering operation in time domain which is equivalent

to a convolution operation. Due to this convolution operation, resulting signalis longer than

N-points; however the frequency domain modifications andN-point inverse DFT will result

in an N-point sequence and the obtained sequence will be aliased. This problemalso exis-

tent in STFT based enhancement applications. In these applications the problem is solved by

paddingN zeros to the end of theN-point analysis frame. By doing so, even if the modifi-

cations correspond to anN-tap filter, the output signal will be a 3N − 1 point long sequence

whose lastN-points are zeros. As a result, aliasing will not occur in the firstN-points of the

output. After the modifications and 2N-point inverse DFT operations the lastN-points of the

output is simply discarded. The same approach can be used in all-phase DFT reconstruction

process to avoid such problems.

5.4 Pitch estimation

In this section, some of the classical pitch estimation methods are presented. A more detailed

overview on the subject can be found in [36].

5.4.1 Overview

Pitch determination is one of the fundamental problems in speech processing and a major

research topic. There are many algorithms proposed for this problem. However in the context

of this work, only the basic methodology is explained here.
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5.4.2 Time domain waveform similarity methods

The most obvious feature of a periodic signal is, by definition, the similarity between differ-

ent segments of it. Hence a time domain self-similarity measure can be employed forpitch

detection purposes. One of the most popular self-similarity measure is the auto-correlation

function (ACF), which is defined for a stationary signal x(t) as follows;

rx(τ) =
∫ ∞

−∞

x(t)x(t + τ)dt (5.48)

As its name implies the auto-correlation function (ACF) is a similarity measure. As a result

the ACF must take its maximum value for zero lag (rx(0)), since the similarity is maximized

when two of the signals are the same. If the signal is periodic, then it means that it will repeat

itself with a certain frequency. As a result the signals x(t) and x(t + nT0) will be the same for

all integer values of n, for a periodic signal with periodT0. In this case the auto-correlation

function takes maximum values as well for the lags of length (nT0). Hence for a periodic

signal with periodT0, the following observation is true;

rx(nT0) = rx(0), ∀nǫZ (5.49)

If there are no global maxima exceptτ = 0, then there might still be some local maxima.

In this case, if the highest of the local maxima, sayrx(τmax), is large enough (comparable to

rx(0)) then the signal is said to have a periodic part.

The signal of interest for pitch detection, is generally speech and it is nota stationary signal for

long durations. Hence the short-term auto-correlation function makes moresense for speech

signals, which is defined as follows;

Rx[τ] =
N−1
∑

n=0

s[n]s[n + τ] (5.50)

The value ofτ that maximizesRx(τ) would yield the pitch period of the periodic signal. An-

other time domain similarity measure is the so called average magnitude difference function

(AMDF) defined as;

E(τ) =
1
N

N−1
∑

n=0

|s[n] − s[n − τ]| (5.51)

It is clearly seen that the AMDF measures the dissimilarity unlike ACF which measures sim-

ilarity. Because of this propoerty AMDF is also referred as anti-correlation function and to

find the pitch period one needs to search for the minimum values instead of peaks.
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Aforementioned methods are two of the most fundamental methods for pitch detection. Their

performance significantly degrades under noise. Hence more sophisticated algorithms are

needed for better pitch estimates under noise. There are many algorithms proposed for this

purpose (See [36] for a review). The pitch detection block in the proposed method (Chapter-5)

is implemented by using the pitch output of PRAAT software [37] which uses anautocorre-

lation based pitch detection algorithm [38].
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CHAPTER 6

VALIDATION AND IMPLEMENTATION OF THE

ALGORITHM

In this chapter, the algorithm proposed in Chapter-5 is tested with a clean speech signal to

show that speech signals possess the aforementioned property. The phase distortion intro-

duced by the additive noise is also illustrated using a noisy input. The implementation of the

proposed method (in Chapter-5) and obtained results are presented.

6.1 Validation of the proposed structure

Based on the development in Chapter-5, the phase difference between two consecutive frames

(of the frequency bin of interest) is expected to be 2π f0
fs

N, where the input sinusoid has the

frequency f0 and the observation window is N-point long. This is expected to be true, if

the input signal is stationary during the observation window or iff0 estimate represents the

average value of the fundamental frequency over the analysis frame.

When the input signal is narrowband speech (fs=8kHz), the analysis problem becomes more

difficult as the harmonics are closely packed in the spectrum and the effect of spectral leak-

age starts to dominate. Nevertheless, the signal retains the same property, as the following

simulations indicate.

An ‘a-C-a’ word (a-consonant-a) is used as input in the first simulation,spoken by a female

speaker. Such words (aCa, VCV (vowel-consonant-vowel) or CVC etc.) are commonly used

in intelligibility tests, in order to prevent the listener using his/her vocabulary (training data)

to fill in the unperceived parts, as these words are generally meaningless. Such tests are
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called ‘nonsense syllable tests’ and they are first introduced by Fletcherand Steinberg [39].

The selection of this ‘a-C-a’ word in the first simulation has a completely different reason

however. These words are spoken in a rather prolonged and calm manner, hence making it a

very stationary signal over the voiced segments. As a result, this input signal can almost be

considered as the ‘best case scenario’.

Figure-6.1 illustrates the characteristics of the clean input signal.
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Figure 6.1: Time domain signal, spectrogram and extracted pitch of the word ‘a-b-a’, spoken
by a female speaker

The pitch of the signal is extracted using the Praat software [37]. When the output of the pitch

estimation algorithm is not in the range of 75-400 Hz the output is simply discarded. Using

this pitch estimate and equation-5.4, (∆θ = 2π f0
fs

N), the phase difference between consecutive

frames is calculated and sketched in Figure-6.2. The phase differences of the consecutive

frames (of the frequency bins corresponding tof0) are also drawn on the same plot for com-

parison. All-phase DFT analysis is used instead of traditional DFT as it hasbetter side-lobe

suppression. One other reason is the fact that the phase value obtainedfrom the traditional

DFT will be a function of the difference between the fundamental frequency and the corre-
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sponding frequency bin. Since this difference will change in each frame, so does the phase

estimate of DFT. As a result the difference between consecutive phase estimates will deviate

more than it will if all-phase analysis were used.

As seen in Figure-6.2, the estimated phase differences almost coincide with the analysis re-

sults. The small differences between the estimated values and the analysis results arise be-

cause of the following reasons;

• As the pitch estimates clearly indicate, the fundamental frequency is not constant and

the estimate does not exactly correspond to the average value off0 over the analysis

frame.

• Spectral leakage problem introduces some amount of distortion to phase estimates.

• The pitch estimate is not 100% accurate, hence this estimation error may also cause

some deviations.
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Figure 6.2: Comparison of the all-phase DFT analysis result and the proposed estimation

The analysis can be extended to include the harmonic components as well. By multiplying the

extracted pitch with the harmonic number, the frequency of thekth harmonic can be estimated.

Hence the phase-difference of thekth harmonic, between consecutive frames can be estimated

as well.

To observe the phase distortion introduced by additive noise, the previous analysis is repeated

by adding a white Gaussian noise (using Matlab) to the clean signal such thatthe SNR is

approximately 3 dB. The estimation results on the noisy signal as well as the analysis results

of the clean signal are demonstrated in Figure-6.3.
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Figure 6.3: Comparison of the all-phase DFT analysis result and the proposed estimation

6.2 Implementation of the proposed structure

The proposed structure in Chapter-5 is implemented in MATLABc© environment. All-phase

DFT is employed for phase estimation. The pitch exraction is executed using thePraat soft-

ware. The details of the used methods are given in Chapter-5.3 and [37],[38]. The imple-

mented version of the proposed system can be seen in Figure-6.4.

Figure 6.4: Implemented version of the proposed method

Notice that instead of STFT, all-phase DFT could have been used. However, when some mod-

ifications are done in all-phase DFT spectra, the proposed reconstruction method in Chapter-
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5.3 becomes very unstable due to the time-aliasing and accumulating error problems. Hence,

a more stable and well defined method (STFT) is used instead of all-phase DFT analysis in

spectral analysis block. To exploit the advantages of all-phase DFT over STFT, the all-phase

DFT analysis is run in parallel with STFT for phase estimation purposes. By doing so, the

algorithm benefits from the better phase estimates of all-phase DFT without introducing dis-

tortions in the reconstruction process.

The algorithm is implemented with 3 different magnitude based algorithms, namely; MMSE

[16], log-MMSE [25] and spectral subtraction using oversubtraction [18].

6.2.1 Parameters of analysis blocks

It is important to synchronize analysis blocks, as the proposed method combines the outputs

of these blocks. To achieve this, the following parameters are selected foranalysis blocks;

• 2N point STFT length with N point overlap.

• 2N-1 point all-phase DFT length with (N-1) point overlap.

• Pitch estimate update at every (kN)th point for k=1,2,3. . ..

Figure 6.5: Frame lengths and overlap ratios for STFT and all-phase DFT
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The analysis blocks use the frames shown in Figure-6.5, with the above parameters. Notice

that all-phase DFT output phase corresponds to the instantaneous phase at the middle point

of the frame. Hence the STFT frames are aligned to the middle points of the all-phase DFT

frames.

6.2.2 Phase modification

If pitch estimation block is able to output reasonable estimates (between 75-400Hz range) for

two consecutive analysis frames, phase modification process is triggeredfor the latter frame.

Using the extracted pitch, the corresponding frequency bin of the fundamental frequency is

identified for STFT and all-phase DFT as follows;

mS T FT = round

(

f0
fs

2N

)

(6.1)

mapDFT = round

(

f0
fs

N

)

(6.2)

Although all-phase DFT uses 2N − 1 point long data, it combines these points to form an

N-point dataset and outputs the DFT of thisN-point dataset (see Chapter-5.3 for details). As

a result, the frequency resolution of 2N − 1 point all-phase DFT isNfs
and 2N point STFT is

2N
fs

.

After calculating the frequency bins of the extracted pitch for each frame,the phase difference

between the frames are evaluated using all-phase DFT and the deviation from the expected

phase difference value, 2π f0
fs

N, is calculated. This error signal must be subtracted from the

phase of the frequency bins of interest in STFT spectrum. As explained inChapter-5.3 the

phase of the DFT coefficients is in the form of equation-6.3, for a single complex exponential

(e j(2π f0
fs

n + φ0));

∠X[k] = φ0 +
π

fs

(

f0 − k
fs

N

)

(N − 1) (6.3)

This result was obtained for a rectangular window. The STFT analysis onthe other hand is

carried out using Hamming window, to benefit from its better side-lobe suppression and better

phase estimation. The phase of the DFT coefficients give the following expression for a single

complex exponential when Hamming window is used;
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X[k] =
N−1
∑

n=0

e
j
(

2π
f0
fs

n+φ0

)

e− j 2π
N knw[n], w[n] = 0.54− 0.46cos

(

2πn
N − 1

)

(6.4)

= e jφ0

N−1
∑

n=0

e
j2πn

(

f0
fs
− k

N k
)

w[n] (6.5)

= e jφ0 R(N, f0, fs, k)e jθ(N, f0, fs,k) (6.6)

∠X[k] = φ0 + θ(N, f0, fs, k) (6.7)

It is hard to analytically contain∠X[k] for Hamming windowed complex exponential. Fortu-

nately this is not needed. As seen in equation-6.7, the phase is equal to the actual value (φ0)

plus a function of other parameters (N, f0, fs,). As a result; if the window lengthN, signal

frequency (f0) and sampling frequency (fs) are unchanged, then the phase of the tonal signal

can be changed by adding the desired offset value to the phase of the related frequency bins.

And this is exactly what is tried to be done in the proposed algorithm.

Although the signal of interest is a single tone, due to spectral leakage effect (see Chapter-

5.3) its energy spreads over the entire spectrum. Hence phase corrections must be extended to

more than one frequency bin. The modification must also be limited to those frequency bins

where the signal of interest dominates, in order not to distort the phase ofthe other strong

components in the neighboring frequency bins. In other words, phase modification should

not be extended to the bins where the energy spread of the interested component becomes

negligible.

The window length for STFT in the implemented structure was selected as 160 samples at 8

kHz sampling rate (≡ 20msec), with Hamming window. In this case the phase modification is

done at the frequency bin of the tone of interest and its neighboring bins as well; because of

the reason explained above. To justify this operation, consider the DFT of160 point Hamming

window which is shown in Figure-6.6, with discrete pulses for better visualization.

It is clearly observable that the energy of a single pulse will spread amongthe entire spectrum,

however most of the energy (more than %99.99) will be contained in the 3 frequency bins. As

a result, utilization of the aforementioned phase modification to the center frequency bin and

two neighboring bins seems an acceptable approximation.

After the phase modification is done on the target bins, the signal is reconstructed using the

57



−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−50

−40

−30

−20

−10

0

10

20

Magnitude DFT of (160 point) Hamming window

Normalized frequency
M

ag
ni

tu
de

, d
B

Figure 6.6: Magnitude response of Hamming window

modified phase spectra and the modified magnitude spectra (using a spectralsubtraction based

enhancement algorithm). The synthesis procedure is carried out with the overlap-add (OLA)

method, as explained in Chapter-2.

6.2.3 Test results

The implemented structure is tested using the NOIZEUS database ([27], [28]). The database

consists of 30 sentences, spoken by 3 male and 3 female speakers. The audio-files are de-

graded with 8 different colored noises at 4 different SNR levels. In addition to these SNR

levels (0dB, 5dB, 10dB and 15dB) -5dB level is also generated, by subtracting the clean sig-

nals from their degraded versions and amplifying the residual with an appropriate constant.

Then adding these amplified noise signals to the clean signals the new set of audio files are

obtained. Also another noise type (white Gaussian) is artificially generated and added to

clean audio signals, to extend the database with a stationary noise type as well.As a result, 9

different noise-degraded audio files became available in the test database asseen in Table-6.1.

As seen in Table-6.1, the database includes highly non-stationary noise types (airport, babble,

exhibition, restaurant). Only the artificially generated white Gaussian and in aweaker sense

car noise can be considered as stationary.

As mentioned before the algorithm is implemented using 3 different magnitude based en-

hancement algorithms for magnitude modification, namely; MMSE [16], log-MMSE [25]

and spectral subtraction using oversubtraction [18]. The new algorithmis named for each

of the different method used, as ‘phase modified MMSE’, ‘phase modified log-MMSE’ and

‘phase modified spectral subtraction’. The PESQ scores (see Chapter-2) of these classical
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Table 6.1: Noise types in the database

Noise type
Airport
Babble

Car
Exhibition
Restaurant

Station
Street
Train

White Gaussian

(magnitude based) algorithms are evaluated in parallel with the PESQ scores of the phase

modified versions (the proposed method) of these algorithms for 30 different noise degraded

speech signals. The difference between these PESQ scores (Proposed - classical) are plotted

and labeled as ‘improvement’. Figures 6.7 to 6.15 show the improvement of the proposed

method over the classical magnitude based methods. The improvements in these figures are

obtained by correcting only the phase of the fundamental component (f0). The algorithms are

also tested when phase of more than one harmonic components are corrected. Table-6.2 and

Table-6.3 summarize the average quality improvements of 30 sentences for different noise

types and different magnitude based enhancement algorithms.

The results indicate significant improvements especially for phase modified spectral subtrac-

tion over the classical spectral subtraction. Considering the fact that about 0.1 PESQ differ-

ence can be differentiated by the listener, even on the average the performance of the spectral

subtraction algorithm is improved about a perceivable amount for each ofthe noise types. For

phase modified MMSE and phase modified log-MMSE significant improvements are obtained

for certain noise types. The performance is degraded in many cases dueto poor pitch esti-

mates. These estimates generally fail to differentiate the fundamental component and higher

harmonics and sudden jumps are observed in the extracted pitch. As a result the desired con-

tinuity of phase values can not be maintained in such sections. As a future work, additional

constraints can be imposed on the extracted pitch to maintain its smoothness. Also apitch

tracking algorithm can be implemented for further improvements.

The improvements are more prominent when signal to noise ratio (SNR) is low. This can be

explained by the trade-off between phase correction and the induced distortion while modi-
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fying the phase spectra. As explained before, the phase modification is done for certain fre-

quency bins with an approximation that causes an amplitude modulation in the reconstructed

signal. Hence for high SNR values, the effect of phase correction for a single tone is domi-

nated by the effect of the induced distortion. As a result the algorithm works better for low

SNR values. As a future work, phase modification scheme can be revised.

Table 6.2: Average PESQ improvements of 30 sentences (only the phase ofthe fundamental
component (f0) is corrected )

Noise type SNR Phase modified Phase modified Phase modified
MMSE logMMSE spectral subtraction

Airport -5 dB -0.0168 0.0222 0.0521
Babble -5 dB -0.0040 -0.0256 0.0267

Car -5 dB 0.0067 0.0057 0.0382
Exhibition -5 dB 0.0170 0.0184 0.0317
Restaurant -5 dB 0.0247 0.0075 0.0305

Station -5 dB 0.0132 0.0068 0.0412
Street -5 dB -0.0073 0.0028 0.0321
Train -5 dB -0.0016 -0.0207 0.0455
WGN -5 dB 0.0635 0.0627 0.0386

Airport 0 dB 0.0008 -0.0097 0.0342
Babble 0 dB 0.0032 -0.0093 0.0336

Car 0 dB 0.0204 0.0046 0.0361
Exhibition 0 dB -0.0044 0.0015 0.0258
Restaurant 0 dB -0.0052 0.0246 0.0167

Station 0 dB 0.0111 -0.0060 0.0438
Street 0 dB 0.0029 0.0093 0.0245
Train 0 dB 0.0089 -0.0016 0.0363
WGN 0 dB 0.0271 -0.0005 0.0365
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Table 6.3: Average PESQ improvements of 30 sentences (phase of the fundamental compo-
nent (f0) and second harmonic (2f0) are corrected )

Noise type SNR Phase modified Phase modified Phase modified
MMSE logMMSE spectral subtraction

Airport -5 dB -0.0555 -0.0339 0.0458
Babble -5 dB -0.0285 -0.0133 0.0439

Car -5 dB 0.0160 0.0162 0.0368
Exhibition -5 dB 0.0124 -0.0118 0.0398
Restaurant -5 dB 0.0514 -0.0174 0.0149

Station -5 dB 0.0155 -0.0065 0.0301
Street -5 dB 0.0089 0.0259 0.0314
Train -5 dB -0.0008 -0.0118 0.0397
WGN -5 dB 0.0654 0.0610 0.0431

Airport 0 dB -0.0156 -0.0253 0.0283
Babble 0 dB -0.0101 -0.0260 0.0321

Car 0 dB 0.0245 0.0091 0.0367
Exhibition 0 dB -0.0194 -0.0266 0.0273
Restaurant 0 dB -0.0395 -0.0716 0.0011

Station 0 dB 0.0087 -0.0208 0.0441
Street 0 dB -0.0107 -0.0021 0.0257
Train 0 dB -0.0018 -0.0096 0.0327
WGN 0 dB 0.0177 -0.0096 0.0290
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Figure 6.7: Quality improvements under airport noise, only the phase of (f0) is corrected
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Figure 6.8: Quality improvements under babble noise, only the phase of (f0) is corrected
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Figure 6.9: Quality improvements under car noise, only the phase of (f0) is corrected
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Figure 6.10: Quality improvements under exhibition noise, only the phase of (f0) is corrected
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Figure 6.11: Quality improvements under restaurant noise, only the phase of ( f0) is corrected

66



0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

Sentence number
 
 

P
E

S
Q

 im
pr

ov
em

en
t

 
Method : MMSE

Station noise, 0dB
Average PESQ improvement : 0.013 for −5dB,  0.011 for 0dB

 

 
−5dB
0dB

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5

Sentence number
 
 

P
E

S
Q

 im
pr

ov
em

en
t

 
Method : logMMSE
Station noise, 0dB

Average PESQ improvement : 0.007 for −5dB,  −0.006 for 0dB

 

 
−5dB
0dB

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

Sentence number
 
 

P
E

S
Q

 im
pr

ov
em

en
t

 
Method : Spectral subtraction

Station noise, 0dB
Average PESQ improvement : 0.041 for −5dB,  0.044 for 0dB

 

 
−5dB
0dB

Figure 6.12: Quality improvements under station noise, only the phase of (f0) is corrected
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Figure 6.13: Quality improvements under street noise, only the phase of (f0) is corrected
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Figure 6.14: Quality improvements under train noise, only the phase of (f0) is corrected
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Figure 6.15: Quality improvements under white Gaussian noise, only the phaseof ( f0) is
corrected
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CHAPTER 7

CONCLUSION

7.1 Summary of the thesis

In this thesis study, it is shown that the tonal components in voiced parts of clean speech

signals possess an important property, namely the phase continuity. It is also shown that the

phase of these tonal components can be predicted with the use of phase continuity assumption

and estimated frequency values. Then using this prediction technique, a novel method is

presented for single channel narrowband speech enhancement. Themethod can be applied to

wideband speech without any modifications as there are no constraints imposed on the input

signal. The proposed method maintains the phase continuity of certain tonal components in

voiced parts of the input speech by modifying the DFT phase spectra; unlike most of the

classical enhancement algorithms which only modify the magnitude spectra. The proposed

method makes use of the detected average fundamental frequency to estimatethe phase of

the corresponding DFT coefficient. The proposed algorithm uses the classical enhancement

algorithms to modify the magnitude spectra in addition to the conducted phase corrections.

As the implementation results indicate, the proposed system improves the performance of the

classical methods, in terms of speech quality.

It is important to note that the proposed method makes no assumptions about thenoise statis-

tics, in the phase modification block.

It is also worth mentioning that the phase estimation block of the proposed structure is imple-

mented by using a recently developed method, namely the ‘all-phase DFT analysis’. Further-

more, a signal reconstruction scheme is presented for all-phase DFT analysis.
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The performance improvement of the proposed system is strongly dependent on the quality

of pitch detection and signal to noise ratio of the input signal. The estimated fundamental

frequency must be a smooth function as it is in clean speech. When SNR is toolow, or the

noise is highly non-stationary (e.g. bable noise) the quality of pitch estimation degrades.

Hence there is a lower bound on the signal SNR for the proposed algorithmto work properly.

When SNR is high, there is not much phase distortion on the tonal components and the utilized

approximation while modifying the phase spectra causes additional distortions. As a result

there is also an upper limit on the signal SNR, as expected. In the conductedtests, it is

observed that for SNR values less than or equal to 0 dB, the algorithm produces better results

than the classical methods.

7.2 Future work

The performance of the proposed enhancement algorithm strongly depends on the quality

of the pitch detection algorithm and input SNR. To improve the performance ofthe proposed

method additional algorithms should be designed to check and interpret the degree of smooth-

ness of the detected pitch and input SNR. Furthermore, the phase modificationscheme can be

improved as the applied approximation introduces amplitude modulations to the reconstructed

signal. The all-phase DFT method is not used in the modification and synthesis procedures

of the implemented algorithm, to avoid accumulating error problem. This problem can be

investigated and all-phase DFT analysis can be used for spectral modification as well. To do

so, classical methods should be derived for all-phase DFT transform.
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