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ABSTRACT 

 

TRACKING SHORT-RANGE BALLISTIC TARGETS 

 

Acar, Recep Serdar 

 

M. Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Mübeccel Demirekler 

 

September 2011, 74 pages 

 

The trajectories of ballistic targets are determined significantly by the characteristics 

that are specific to them. In this thesis, these characteristics are presented and a set of 

algorithms in order to track short-range ballistic targets are given. Firstly, motion and 

measurement models for the ballistic targets are formed and then four different 

filtering techniques are built on these models which are the extended Kalman filter, 

the unscented Kalman filter, the particle filter and the marginalized particle filter. 

The performances of these filters are evaluated by making Monte Carlo simulation. 

The simulations are run using target scenarios obtained according to six degrees-of-

freedom trajectory for ballistic targets. Apart from the tracking errors of the filters, 

drag parameter estimations and the effect of drift calculation on the filter 

performances are investigated. The estimation results obtained by each filter are 

discussed in detail by making various simulations. 

Keywords: Ballistic Target Tracking, Spin-Stabilized Projectile, Short-Range 

Ballistic Target, Kalman Filter, Particle Filter 
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ÖZ 

 

KISA MENZİLLİ BALİSTİK HEDEFLERİN TAKİBİ 

 

Acar, Recep Serdar 

 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Mübeccel Demirekler 

 

Eylül 2011, 74 sayfa 

 

Balistik hedeflerin yörüngeleri önemli ölçüde kendilerine özgü olan özellikleri ile 

belirlenir. Bu tezde, bu özellikler sunulmakta ve kısa menzilli balistik hedefleri takip 

etmek için bir grup algoritma verilmektedir. İlk olarak balistik hedefler için hareket 

ve ölçüm modelleri oluşturulmakta; daha sonra bu modeller üzerine kurulan, 

genişletilmiş Kalman filtresi, kokusuz Kalman filtresi, parçacık filtresi ve ayrılmış 

parçacık filtresi adında dört ayrı filtreleme tekniği sunulmaktadır. Bu filtrelerin 

performansları Monte Carlo simülasyonu ile değerlendirilmektedir. Simülasyonlar, 

balistik hedefler için altı serbestlik-dereceli yörüngeye göre elde edilmiş hedef 

senaryoları ile koşturulmuştur. Hedef takibi hatalarının yanı sıra, sürüklenme 

parametresi kestirimleri ve kayma hesabının filtre performansına etkisi 

incelenmektedir. Çeşitli simülasyonlar yapılarak her filtre ile elde edilen kestirim 

sonuçları ayrıntılı olarak tartışılmaktadır. 

Anahtar Kelimeler: Balistik Hedef Takibi, Dönü ile Dengelenmiş Mermi, Kısa 

Menzilli Balistik Hedef, Kalman Filtresi, Parçacık Filtresi 
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CHAPTER 1 

INTRODUCTION 

The term “ballistic targets” includes a variety of projectiles and missiles which are 

able to perform exo-atmospheric flight. However, in this work, the trajectories of 

short-range ballistic targets which have endo-atmospheric flight are in concern in 

order to be more specific and simple.  

The trajectories of short-range ballistic targets are quite predictable especially when 

they are compared to those of powered vehicles such as fighter aircrafts. Ballistic 

target tracking has drawn attention in recent years due to the need of controlling own 

projectiles and missiles after launching or estimating the trajectories of hostile 

projectiles and missiles. Accordingly, the focus of this thesis is to present methods 

for estimating the trajectories of short-range ballistic targets and evaluate the tracking 

performances of these methods. 

In this chapter, first, the coordinate systems used in ballistic target tracking and 

general knowledge about ballistic targets will be given. Then, the motion model used 

in the thesis will be explained briefly. Finally, the outline of the thesis will be 

presented. 
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1.1. Coordinate Systems 

Three widespread coordinate systems used in ballistic target tracking are depicted in 

Figure 1.1. These are called Earth Centered Inertial, Earth-Centered Earth Fixed and 

East North Up Coordinate Systems [1]. 

1. The Earth Centered Inertial Coordinate System (ECI-CS, OxI yI zI) is a right 

handed coordinate system which is fixed with respect to fixed stars. The 

origin is the Earth‟s center given as O in Figure 1.1. OxI points in the vernal 

equinox direction, OzI points in the North Pole N and OxI yI plane coincides 

with the Earth‟s equatorial plane. ECI-CS does not rotate with the Earth. 

2. The Earth-Centered Earth Fixed Coordinate System (ECEF-CS, OxFyFzF) is 

also a right handed coordinate system and has its origin at the Earth center O. 

OxF points to the prime meridian direction, and OxFyF plane coincides with 

the Earth‟s equatorial plane. However, apart from ECI-CS, ECEF-CS rotates 

with the Earth around its spin axis OzF= OzI. 

3. The final coordinate system given in Figure 1.1 is the East North Up 

Coordinate System (ENU-CS, OxSySzS). OS is the origin and it is located at 

some point on the Earth. OSzS is normal to the Earth‟s reference ellipsoid. 

Therefore, unless spherical Earth model is used, zSOS does not point to Earth‟s 

center O. OSxS and OSyS points to East and North respectively and zS is 

normal to OSxSyS plane. Ø is the angle between OSzS and the Earth‟s 

equatorial plane and it represents the geodetic latitude.  
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Figure 1.1: Coordinate Systems (Figure is adapted from [1]) 

When the point OS is assumed to be the point where the sensor is located, the vector 

r  appearing in Figure 1.1 can be explained as follows. 

r  = OsP , the vector from the sensor to the target where P is the target position. 

In this study ENU coordinate system is used. Therefore, the coordinates of the target 

position is the projection of r
 
onto xs, ys,  and zs.  

1.2. Ballistic Targets 

The lexical meaning of ballistics is the science of mechanics that deals with the 

flight, behavior and effects of projectiles. The trajectory of the ballistic targets is 

determined significantly by the characteristics that are specific to target type [1]. This 

is why these targets are called as the ballistic targets. Ballistic missiles, mortars and 
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projectiles possess more certain motion than many other types of maneuvering 

targets such as aircrafts and agile missiles.  

If it is assumed that the target is tracked in an inertial coordinate system such as ECI-

CS, the total acceleration of the target, a, is composed of four major elements due to 

four major forces acting on it. 

 a = aT + aG + aD + aL (1-1) 

where aT,  aG,  aD  and aL are acceleration due to thrust, gravity, drag force and lift 

force respectively. At some regions of the trajectory these components of the 

acceleration can be omitted or ignored. In addition, there are some other forces acting 

on ballistic targets such as the Coriolis and centrifugal forces which are not 

mentioned in (1-1). These forces should be taken into consideration if very accurate 

results are aimed or if the target‟s trajectory includes a long exo-atmospheric flight. 

Trajectories of projectiles and/or missiles are chronologically divided into three 

phases: Boost Phase, Ballistic Flight and Reentry.  

1.2.1. Boost Phase 

Boost phase is the phase just after the target is launched. If the ballistic target in 

concern is a missile, it is exposed to a considerable thrust in this phase. Thrust can be 

varying which makes the trajectory estimation rather complicated. The total 

acceleration in boost phase can be written as follows. 

 a = aT + aD + aG (1-2) 

 

where aT and aD are large in magnitude relative to aG, the gravity. In this 

representation, aL, is omitted due to its relatively small magnitude. Furthermore, 

Earth rotation can also be omitted in this phase due to its small duration. Therefore, 

the Coriolis effect and the centrifugal force are ignored in Eq. (1-2). As a result, the 
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inertial frame (ECI-CS) and Earth-Centered Earth Fixed Coordinate System (ECEF-

CS) are practically the same. 

1.2.2. Ballistic Flight 

If the target is in an exo-atmospheric flight, the only force acting among the ones in 

Eq. (1-1) would be the gravity. However, it should be noted that if the motion is 

examined in a non-inertial frame such as ENU-CS, and the projectile travels for a 

long period of time, accelerations due to Coriolis effect and the centrifugal force 

should be taken into account. 

Gravity models can be classified according to their approaches to modeling the 

Earth. The most common and well-known model is known as the Flat-Earth Model. 

As its name implies Flat-Earth Model considers the Earth as if it is flat and non-

rotating which makes it the simplest possible model. For a target observed in ENU-

CS the gravity vector is given below. 

 0

0Ga

g

 
 


 
  

  , where g = 9.78m/s
2 

(1-3) 

In Eq. (1-3), the gravity is considered to be constant for different altitudes or the 

change in the magnitude of the gravity with the altitude is negligible. This 

assumption is quite feasible. For example, consider the gravity change at a height of 

10000 meters. The radius of the Earth is approximately 6400km. Let the magnitude 

of gravity at the point of concern be 9.78m/s
2
. According to Newton‟s 2

nd
 law, the 

gravity is inversely proportional to the distance to Earth‟s center. Then, the 

theoretical fall in the magnitude of gravity at an altitude of 10000 meters is 

calculated as 0.31% in Eq. (1-4). 

 

10000

2 2
3

2

3

6400 10
9.78 9.75m/s

10000 6400 10 10000meters

earth
G G

earth

r x
a a

r x

   
     

   

 
(1-4) 
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Note also that the magnitude of gravity is not identical on different locations on the 

Earth due to its non-homogeneous matter distribution. However, this change is also 

negligible similar to the changes in gravity due to the altitude. 

Flat-Earth model is quite sufficient for most of the applications like tracking ballistic 

targets having endo-atmospheric flight. Nonetheless, for better results one can 

assume the Earth as a sphere and make use of Spherical Earth model. In this case the 

gravity model is called as the Spherical Earth Model. 

If the Earth and the targets are assumed to be spherically symmetric and to possess 

even distributions of their masses, the gravity can be calculated according to 

Newton‟s law of universal gravitation, 

 

3|| ||
Ga r

r


 

 
(1-5) 

where   is the standard gravitational parameter. 

For more precise calculations Ellipsoidal Earth or WGS-84 model can also be used. 

However, for the purpose of tracking ballistic targets like cannons or mortars, Flat 

Earth Model is adequate. Therefore, it is preferred to use Flat Earth Model in this 

study. 

1.2.3. Reentry 

The two main forces acting on the targets in reentry phase are the gravity and the 

drag force.  

 
a = aD + aG  (1-6) 

 

The drag force induced acceleration is given by, 

 1
( ) || ||

2
Da h v v     (1-7) 
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where ρ is the air density, h is the target altitude, α is the drag parameter and v is the 

target velocity. 

The air density is generally estimated with an exponential function. 

 2

1( ) c hh c e 
 

(1-8) 

where c1=1.227, c2=1.0931x10
-4

 and ρ is given in kg/m
3
. 

1.3. Motion Model Used In the Thesis 

In this study, projectiles in endo-atmospheric flight are studied such as howitzers, 

mortars and cannons which do not experience any thrust in any part of their 

trajectory and these targets are informally called as short-range ballistic targets. For 

this reason, some simplifications and assumptions are made in the models used. As a 

result, the thrust force induced acceleration aT in Eq. (1-1) disappears. For the gravity 

of Earth, Flat Earth model is used and its magnitude is accepted to be 9.78m/s
2
. The 

target is assumed to be in a simplified boost phase. Therefore, ignoring the lift force 

which is relatively small when compared to drag force, the projectile is subjected to 

gravity and drag force and Eq. (1-1) simplifies to the following. 

 a =  aG + aD (1-9) 

The dynamics of the target and the measurement model used are explained in detail 

in Chapter 2 and 3.  

1.4. Outline of the Thesis 

The outline of the thesis is as follows. 

In Chapter 2, the aerodynamic forces and moments acting on ballistic targets are 

explained and the major trajectory models for ballistic targets in the literature are 
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presented. In Chapter 3, tracking methodology, that is the motion and the 

measurement model used in the thesis, is described. In Chapter 4, the tracking filters 

used in the simulations are given. One cycle of the algorithms of the filters are 

presented step by step. In Chapter 5, simulation results of the filters are presented 

and their performances are discussed. In Chapter 6, the thesis is summarized and 

conclusions about the results of the simulations are presented. 
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CHAPTER 2 

DYNAMICS OF BALLISTIC TARGETS 

The detailed information about the dynamics of ballistic targets is not open to general 

public. The few sources that exist in the literature are used in the modeling of the 

motion of a ballistic target in this study. Therefore, the information given in part 2.1 

Aerodynamic Forces and Moments is mainly based on the references [2], [3] and [4].  

2.1. Aerodynamic Forces and Moments  

On a large scale, the trajectory of a symmetric, spinning projectile is determined by 

the gravity of Earth, aerodynamic forces and aerodynamic moments if it is not 

exposed to any thrust. Gravity of Earth is more deterministic and easier to estimate 

when it is compared to the aerodynamic forces and moments. As it is illustrated in 

Eq. (1-4), especially if the projectile will not perform any exo-atmospheric flight, the 

variation in the magnitude of the gravity can be ignored. Therefore, the major 

uncertainty in estimating the trajectory of a ballistic target is due to the aerodynamic 

forces and moments acting on it. Some of the significant ones of these forces and 

moments are explained below. 
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2.1.1. Drag Force 

Drag force can be simply defined as the air resistance. Therefore, it is in the opposite 

direction to the projectile‟s velocity vector.  

Drag force is given by the following equation. 

 
.

1

2
DDrag Force SC VV    (2-1) 

where ρ is the air density, 
2

4

d
S


  is projectile reference area, CD is drag 

coefficient, V  is the scalar magnitude of the projectile velocity and V is the vector of 

the projectile velocity. SCD multiplication can also be denoted as α which is called 

the drag parameter given in Eq. (1-7). 

The drag force is directly related to the velocity of the projectile relative to air. 

Therefore, the effect of wind on drag force can be inserted as follows.  

 1
( )

2
. DDrag Force SC V V W     (2-2) 

where W is the vector of the wind velocity and | |V V W  . 
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Figure 2.1: Drag & Lift Force (Figure is adapted from [2]) 

The drag coefficient, CD, varies with the Mach number of the projectile. Therefore, 

drag coefficient versus Mach number curves are of great importance for ballisticians. 

These curves are calculated according to projectile geometry and the measurements 

made in wind tunnels, firing and spark photography ranges. 

As it can be seen in Figure 2.1, the velocity vector V  and the direction in which the 

projectile‟s tip points are not the same. The angle αt is called as the total yaw angle 

or angle of repose and it is the resultant of the angle of attack (pitch) and angle of 

sideslip (yaw). Due to this total yaw angle the drag coefficient can be further 

decomposed as: 

 
0 2

2

D D DC C C


    (2-3) 
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where 
0DC is called the zero-yaw drag coefficient, 

2DC


is called the yaw drag 

coefficient and δ=sin αt . Unless very exact results are aimed, ignoring total yaw 

angle in drag coefficient calculations is reasonable.  

Furthermore, the total yaw angle αt is not constant due to the epicyclic motion that 

spin-stabilized projectiles perform. Epicyclic motion is the helical path of the nose of 

the projectile around the velocity vector V . 

A typical drag coefficient versus Mach number curve is given in Figure 2.2. Note 

that at Mach 1 there is a highly nonlinear behavior of the drag coefficient which is 

important when tracking high velocity projectiles.  

 

Figure 2.2: Drag Coefficient vs. Mach Number (Figure is adapted from [2]) 

2.1.2. Lift Force 

Lift force is perpendicular to the trajectory and tries to pull the projectile in the 

direction its nose is pointing. The equation that describes lift force is the following. 
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 1
[ x ( x )]

2
. . . . .LLift Force SC V x V


   (2-4) 

where 
LC


is the lift force coefficient and x  is the unit vector in the direction the 

projectile‟s nose points.  The remaining variables are previously defined. 

The angle of attack of the projectile can be negative due to the epicyclic motion. For 

this reason, lift force need not be in upward direction as its name implies and in 

ballistics lift force can also be called as the Cross-Wind force or the Normal force. 

2.1.3. Overturning Moment 

Overturning moment is the aerodynamic moment originating from the lift force. 

 

 2.
1

.x.
2

MOverturning Moment V SdC i x


   (2-5) 

where d is the projectile diameter, 
MC


 is the overturning moment coefficient and i

is the unit vector in the direction of V . 

 V
i

V

 
  
 

  (2-6) 

If the projectile is non-spinning, fins are added to the tail of the projectile. In this 

way, overturning moment is controlled by the tail lift induced by the fins. 

2.1.4. Spin Damping Moment 

Spin damping moment tries to reduce the axial spin continuously and it is given as 

the following equation. 

 
21

2
. .

pL

pd
Spin Damping Moment V Sd C x

V


 
  

 
  (2-7) 
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where 
pLC is the spin damping moment coefficient and p is the axial spin rate usually 

measured in radians/sec. and positive for right-hand spin. 

Spin damping moment is in the direction of x . Therefore, according to the 

convention of the vectors given in Figure 2.1, 
pLC should be negative since spin 

damping moment tries to decrease the axial spin. 

2.1.5. Magnus Force 

Spinning bodies experience Magnus force due to Magnus Effect named after the 

German physicist Heinrich Magnus. As an object spins in a viscous fluid such as air, 

a boundary layer is formed around itself [5]. This boundary layer of air possesses 

different velocities on the forward-moving side (Point A) and backward-moving side 

(Point B) (See Figure 2.3).  The velocity of boundary layer of air due to spin is added 

to the velocity of the wind, Vw, on the backward-moving side and subtracted on the 

forward-moving side. According to Bernoulli‟s theorem, fluid pressure is small at the 

points where fluid speed is high. Therefore, the difference in velocity of air at points 

A and B results in a pressure difference and produces the Magnus force from the 

forward-moving side to the backward-moving side. The direction of this force is 

from A to B as it is shown in Figure 2.3. 

 
 2. .x.

1

2 


 
  

 
pN

pd
Magnus Force V S C i x

V
  (2-8) 

where 
pNC  is the Magnus force coefficient.  

PNC


is negative according to the direction of the Magnus Force vector given in 

Figure 2.4. 
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Figure 2.3: Spinning Body Moving in Air 

It is obvious from Eq. (2-8) that if the total angle of yaw is zero or the projectile does 

not spin, the Magnus force will be zero. 

The magnitude of the Magnus force acting on spinning projectiles is much smaller 

than that of acting on low-velocity spinning bodies. Thus, it can be neglected in 

exterior ballistics calculations.  However, Magnus force results in Magnus moment 

which has great influence on the stability of spin-stabilized projectiles. 
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Figure 2.4: Magnus Force and Magnus Moment (Figure is adapted from [2]) 

2.1.6. Magnus Moment 

The Magnus moment is defined as the following equation: 

 
21

[ x ( x )]. . .
2

. .
PM

pd
Magnus Moment V Sd C x i x

V 


 
  

 
  (2-9) 

where 
PMC


 is the Magnus moment coefficient. 

Similar to center of gravity, a point in the projectile can be defined as the center of 

pressure. This is the point to which the observed force should be applied in order to 

obtain the observed moment. 

The center of pressure and center of gravity locations on projectiles are different. It 

should also be noted that lift force and Magnus force centers of pressure are also not 

the same point. Generally, lift force center of pressure lies between the nose and 

center of gravity, while Magnus force center of pressure is located between the tail 
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and center of gravity. According to the convention of vectors in Figure 2.4, Magnus 

force is negative. Thus, since Magnus force center of pressure is close to the tail, 

Magnus moment vector given in the figure shows the correct direction of the Magnus 

moment. 

Looking from the aft, the tip of the projectile generally points to right during the 

epicyclic motion of the projectile. This situation results in a drift to right at the 

impact point in long range artillery fire. The lift force drags the projectile to right 

since its nose usually points to right (See Figure 2.4 – Projectile rotating clockwise). 

For a counter-clockwise rotating projectile the same amount of drift will be observed 

to the left. According to [4], the drift of the projectile can be simply approximated by 

the following formula. 

 
2

1( )drift d ToF   (2-10) 

where ToF is the total time of flight and 1d  is a constant parameter for the projectile 

in consideration that is ranging between 0.1 and 0.12. 

2.1.7. Pitch Damping Force 

The pitch damping force is defined by the following equation. 

 
. .

1 1

2 2qN N

dx dx di
Pitch Damping Force VSdC VSdC

dt dt dt
 

  
    

   
 

 

(2-11) 

where 
qNC and 

NC


 are pitch damping force coefficients due to qt  and t .  

The pitch damping force vector given in Figure 2.5 is true for positive pitching 

angular velocity. The parameter qt  is called the total transverse angular velocity.  

 
2 2

tq q r   
 

(2-12) 

where q is pitching angular velocity and r is yawing angular velocity. 
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 qt  and 
t  

are small and close to each other in magnitude. For this reason, they are 

generally assumed to be the same and this assumption simplifies Eq. (2-11) as the 

following. 

 1
( )

2
. .

qN N

dx
Pitch Damping Force VSd C C

dt


 
   

 
 

 

(2-13) 

 

Figure 2.5: Pitch Damping Force and Pitch Damping Moment  (Figure is adapted 

from [2]) 

2.1.8. Pitch Damping Moment 

Pitch damping force is much smaller than the drag or the lift force and it is usually 

neglected. However, like the Magnus moment, pitch damping force induced pitch 

damping moment is crucial for the stability of spin-stabilized projectiles.  
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Similar to pitch damping force calculation in Eq. (2-13), assuming that qt  and 
t  

are 

the same, pitch damping moment is defined as. 

 
21
( ). . x.

2
.

qM M

dx
Pitch Damping Moment VSd C C x

dt


 
   

 
 

 

(2-14) 

 

where 
qMC and 

MC


 are pitch damping moment coefficients due to qt  and 
t .  

The sum (
qM MC C


 ) should be negative for the stability and this is usually the case.  

2.2. The Vacuum Trajectory 

According to Newton‟s 2
nd

 law, the general differential equation of motion for a 

projectile can be defined as follows. 

 dV
m F mg m

dt
     

 

(2-15) 

where m is the mass, V is the velocity vector, F is the aerodynamic forces, g  is the 

gravity and   is the acceleration due to Coriolis effect. 

The vacuum trajectory suggests the simplest possible motion model. As its name 

implies it provides the trajectory of a body flying in vacuum. Hence, all the 

aerodynamic forces and moments are zero. It is applicable to short range firing. For 

this reason Coriolis acceleration can also be omitted. Consequently, Eq. (2-15) 

simplifies to, 

 
dV

g
dt

  
 

(2-16) 
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Figure 2.6: The Vacuum Trajectory 

As it is seen in Figure 2.6, the trajectory is symmetric with respect to the symmetry 

axis passing through the apogee of the trajectory. It is obvious that the trajectory can 

be studied in two-dimensional coordinates. The knowledge of the initial velocity, V0, 

and angle of departure, Ø0, makes it possible to estimate the whole trajectory using 

Eq. (2-16). 

2.3. The Point Mass Trajectory 

The point mass trajectory, also called as the particle trajectory, is a more realistic 

model for the dynamics of ballistic targets than the vacuum trajectory. The term 

“point mass” or “particle” implies a non-spinning projectile whose complete mass is 

moving as a mathematical point in space.  

The significant aerodynamic forces acting on ballistic targets are the drag force, the 

lift force and the Magnus force [2]. However, if the angle of repose is small, the lift 

force and the Magnus force can be neglected according to the Eqs. (2-4) and (2-8). 

The trajectory is shaped by the gravity and the drag force since the projectile is 
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assumed to be a non-spinning point mass and no angle of repose exists. The Eq. 

(2-15) simplifies to the following. 

 

D

dV
m F mg

dt
   

 

(2-17) 

where FD is the drag force. The point mass trajectory with the flat-fire approximation 

is examined in the following section.  

2.3.1. Flat-Fire Point Mass Trajectory 

The flat-fire approximation holds if the trajectory is close to the x-axis everywhere. 

Naturally, this constraint is valid if Vx is close to V in magnitude. Thus, the main 

assumption in flat-fire approximation calculations is | |V = Vx. 

 

Figure 2.7: The Flat-Fire Point Mass Trajectory 

Assuming that there is no velocity component other than Vx and Vz. 

 2 2 2| | 1 ( / )x z x z xV V V V V V V      (2-18) 

If right hand side of Eq. (2-18) is expanded in binomial series the following is 

obtained. 
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2 41 1

1 ( / ) ( / )
2 8

x z x z xV V V V V V
 

    
 

 (2-19) 

It is clear from Eq. (2-19) that if |Vz/Vx|<10
-1

, the magnitude of V differs from Vx by 

less than 0.5%. Vz/Vx ratio gives the tangent of the angle,  , between the trajectory 

and the ground. Therefore, if   < 5.7° everywhere on the trajectory, the flat fire 

approximation holds theoretically. However, in practice the angles smaller than 15 

degrees is permissible [2]. 

2.3.2. Six-Degrees-of-Freedom (6-DOF) and Modified Point Mass 

Trajectories 

When compared to flat-fire point mass trajectory, six-degrees-of-freedom (6-DOF) 

trajectory is a rather sophisticated model in which all the forces and moments 

mentioned in part 2.1 Aerodynamic Forces and Moments are taken into 

consideration. The projectile is assumed to move in the Cartesian coordinates x, y, z 

and to rotate about roll, pitch and yaw axes. In other words, the motion has six 

degrees of freedom. If complete ballistic parameters for a projectile are present, one 

can obtain the most accurate possible trajectory solution using 6-DOF differential 

equations of motion [2]. 

The high frequency pitching and yawing motion of the projectile can only be 

calculated if small integration time steps are used. This high computation load has 

lead to modified point mass trajectory where epicyclic pitching and yawing motion is 

assumed to be slow everywhere along the trajectory. It is also observed in 6-DOF 

calculations that yaw of repose varies slowly along the trajectory and it can be 

assumed that its derivative, t , is equal to zero (See Figure 2.5 for t ). Using these 

two assumptions and neglecting the relatively small pitch damping force, 6-DOF 

differential equations are refined and the modified point mass trajectory is obtained. 
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The differential equations defining 6-DOF and the modified point mass trajectories 

for a spinning projectile are given in Table 2-1 and Table 2-2. The modified point 

mass trajectory differential equations are obtained after a considerable simplification 

which can be found in [2]. 

Table 2-1: Differential equations of motion for 6-DOF trajectory (Table is adapted 

from [2]) 

6-DOF Trajectory 

  [ x ( x )] x
2 2

. . . . . .
2


  

     
 

pNL yD

x

SdCSC IVSCdV
V V x V h x x V

dt m m m I  

             
( )

( x )
2

. .


 
  

qN NVSd C C
h x g

m
 

     
22 2

x [ ( ) ]
2

. .
2 2

 
 

    
p P

LM M

y x x

VSd CV SdC Sd Cdh
i x h x x h x V V x x

dt I I I  

            

2 ( )
. .x

2


   

  
 

qM M

y

VSd C C dx
x

I dt
 

where m is the projectile mass, xI  is the projectile axial moment of inertia, 
yI  is the 

projectile transverse moment of inertia about any axis through the center of mass, h  

is the vector angular momentum divided by 
yI , and   is the Coriolis acceleration 

vector. The remaining variables are defined previously. 
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Table 2-2: Differential equations of motion for the modified point mass trajectory 

(Table is adapted from [2]) 

The Modified Point Mass Trajectory 

 
2

x
2 2 2

. .



      

pNLD
R R

SdCV SCVSCdV
V p v g

dt m m m
 

2

2


 

pL

x

dp Sd V
pC

dt I
 

where R  is the angle of repose calculated according to the assumptions of the 

modified point mass trajectory. Computation of R  can be found in [2].  
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CHAPTER 3 

TRACKING METHODOLOGY 

In order to predict the trajectory of a ballistic target, a motion model should be 

constructed and the predicted trajectory should be updated according to the 

measurements of the target and the measurement model. In this chapter, these models 

and the assumptions made while obtaining them are explained. The models presented 

will then be used in the tracking filter which will perform the trajectory estimations. 

3.1. Motion Model 

According to point mass approximation, the significant forces acting on the projectile 

are the gravity and the drag force as it is given in Eq. (2-17). However, inserting the 

drag force into the motion model is somewhat troublesome due to the nonlinear 

behavior of the drag coefficient with the Mach number of the projectile. Therefore, 

the drag coefficient should also be included in the state vector and should be 

estimated together with the trajectory. The other aerodynamic forces are neglected 

due to their relatively small magnitude and the nonlinear relationship between them 

and the angle of repose which is impossible to measure. The drift effect of the lift 

force is included in the model by the approximation given in Eq. (2-10). 

The trajectory is estimated in Cartesian coordinates based on a flat, non-rotating 

Earth. Since gravity and drag force are the major forces considered, the target is 

assumed to be in the reentry phase or in the boost phase with no thrust. 
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Let xp be the target position vector and xv be the target velocity vector. The drag 

parameter   is equal to S.CD (S = projectile reference area, CD = drag coefficient) 

and it is assumed to change slowly between the successive time steps of the tracking 

filter. Using Eq. (1-7), the state equations describing the system is obtained as 

follows. 

 p

v

dx
x

dt
  (3-1) 

 
1

| |
2

v
v v

dx
g x x

dt
 

 
(3-2) 

 0
d

dt




 
(3-3) 

However, using the Eqs. (3-1) through (3-3) as the motion model of the filter is not 

trouble-free due to the large differences in magnitudes of xp, xv and  . It is 

problematic to tune the filter parameters, to propagate covariance matrices and to 

perform measurement updates since 
3

10


 (kg/m
2
) while 2|| || 10vx (m/s) and 

4|| || 10px (m). For this reason, the ballistic coefficient β is typically used in the filter 

instead of   [6] [16] [17]. 

 1    (3-4) 

Furthermore, due to the poor linearization properties of β, the following change of 

variable is done and ∆β is estimated in the filter. 

 
1 1 2

0 0
           (3-5) 

where 0  is a reference ballistic coefficient and   is the deviation of the actual 

value from the reference value that is modeled as a new state variable. An initial 

value to 0  is assigned while starting the filter, and   is dynamically updated. The 

resulting differential equations describing the system are as follows. 

 
p

v

dx
x

dt
  (3-6) 
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0 0

(1 ) | |
2

v
v v

dx
g x x

dt

 

 


  

 (3-7) 

 0
d

dt




 
(3-8) 

Consequently, the filter is run with the following state vector, x . The differential 

equations Eq. (3-6) through (3-8) can be rearranged and written in continuous time as 

it is given in Eq. (3-10). 

   
T

x x x y y z z  (3-9) 
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 (3-10) 

 

where x, y, z are the position. x , y , z  are the velocity of the target in Cartesian 

coordinates and the last term, u , is zero-mean white Gaussian noise vector injected 

for modeling the neglected forces and moments. 

3.2. Discrete Time Motion Model 

The motion model given in the previous section should be converted to a discrete 

time model since the measurements are taken in discrete times. A natural way of 

obtaining the discrete time motion model is to integrate the derivative of the state in 
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between two consecutive radar measurement times. However, integration is not easy 

because of two reasons. First, the differential equation is not linear so integration can 

only be done numerically. The second reason is that it is stochastic. Solution of the 

stochastic differential equations is beyond the scope of this thesis. In the following 

part of this section, the numerical solution of the deterministic, (i.e., the process 

noise is assumed to be zero) continuous time state equation will be given. This will 

also serve as the „predicted‟ state in the filtering application. Consideration of the 

process noise will later be described.   

3.2.1. Prediction of the State with Discrete Time Model 

Since the motion model is nonlinear, the discrete time conversion step will 

correspond to the solution of the nonlinear differential equation given in Eq. (3-10). 

In this study, 4
th

 order Runge-Kutta method is used to iterate the state in time. The 

procedure explained below is the application of 4
th

 order Runge-Kutta method to our 

problem. 

Let the current time be k. Then, 
| 1k kx  will be predicted, i.e., its expected value is 

calculated using the following equations. 

 | 1 1 1 2 3 4

1
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6
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k1 is the slope at the beginning of t , that is, the result of Eq. (3-10) when the noise 

is omitted. 

k2 is the slope at the middle of t , which is calculated using Euler's method with 

slope k1.  

k3 is the slope at the middle of t , which is calculated using Euler's method with 

slope k2. 

k4 is the slope at the end of t , which is calculated using Euler's method with slope 

k3.  

The drift of the projectile is also calculated in every time step according to Eq. (2-10) 

where 1d  is set to 0.11. For this reason, the total time of flight of the projectile is 

updated and kept in every time step. 

3.2.2. Computation of the Covariance Matrix of the State and Discrete 

Time Process Noise 

The angle of repose of the projectile varies slowly with time as it is observed from 

the trajectories obtained in real world [2]. Therefore, the noise vector in Eq. (3-10) 

i.e. the neglected forces and moments, which are closely related to the angle of 

repose, also vary slowly with time. Besides, the sampling period is on the order of 

milliseconds for projectile tracking radars. Thus, it is assumed that the „noise‟ and 

the Jacobian matrix F of Eq. (3-10) is constant during the sampling period and the 

covariance matrices are calculated under these assumptions. 

The covariance matrix of the state can be obtained from the sigma points if 

unscented Kalman filter is used. For the extended Kalman filter case, however, the 

Jacobian of the differential state equations (Eq. (3-10)) is calculated and the 

covariance matrix of the state is updated as follows. 
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 1


  F t
k e

 

(3-22) 

 | 1 1 1| 1 1 1     
   

T

k k k k k k k
P P Q

 

(3-23) 

where 
1k  is the state transition matrix,

 1| 1 k kP  is the state covariance matrix at time 

k-1, 1kQ   is the covariance matrix of the process noise which is obtained by the 

method described below. Note that 1kQ   is also used in the filters other than the 

extended Kalman filter whose algorithms are given in Chapter 4. 

As explained in the previous section, 4
th

 order Runge-Kutta method solves the 

nonlinear deterministic differential equation in the time interval [k-1, k]. Let Eq. 

(3-11) be written in the following form. 

 1 1 1k k k k
x x w

  
   (3-24) 

where 1kw  is a white Gaussian noise. The probability density function of 1kw  can be 

obtained by calculating its mean and the covariance matrix. It is clear that the mean 

is zero. However, the computation of the covariance of 1kw  is not trivial. According 

to the continuous-time differential equation Eq. (3-10), the following integral should 

be evaluated in order to determine the covariance matrix 1kQ  . 

 

1 1

1 1cov( )

{[ ( , ) ( ) ( ) ][ ( , ) ( ) ( ) ] }
k k

k k

k k

t t

T
k k

t t

Q w

E t G u d t G u d       
 

 

      
 (3-25) 

where u  is the noise vector which is the last term in Eq. (3-10) and G is the matrix 

given in Eq. (3-30). Since the noise is assumed to be white-Gaussian, Eq. (3-25) 

simplifies to Eq. (3-27) given below. 

 { ( ) ( )} 0TE u u if     
 

(3-26) 

 1

1

( , ) ( ) ( ) ( ) ( ) ( , ){ }
k

T T T

k k k

k

t

t

Q t G E u u G t d      




    (3-27) 
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According to [7] and [8], a systematic way of computing Eq. (3-27) is to compute the 

matrix exponential of the following matrix A. 

 

F

0 F

T

T

GUG

A t

 
 

  
 
 

  
 (3-28) 

   

 

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 100

U

 
 
 
 
 

  
 
 
 
 
 

    
 

(3-29) 

   

 

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

G

 
 
 
 
 

  
 
 
 
 
 

 

(3-30) 

where U is the power spectral density matrix for u  and F is the Jacobian of Eq. 

(3-10). The derivative of the position is equal to the velocity. Therefore, the noise 

vector u  contains zeros which imply that the position of the target is modeled 

perfectly and there is no need for the noise (See Eq. (3-10)). For this reason, the 

diagonal elements of U which are related to the position of the target are zero. 

Moreover, the diagonal element of U which corresponds to   is set to 100 because 

of the relatively high uncertainty in the drag parameter. 

Let the matrix B is defined as the matrix exponential of A and it is equal to the 

following matrix [7]. 
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(3-31) 

Then, the covariance matrix of the noise is calculated by using the upper-right and 

lower-right partitions of B. 

3.3. Measurement Model 

Measurements are assumed to be taken by radar as range, bearing and elevation. 

Hence, they are related to the states by the following equations. 

 2 2 2    rr x y z v  (3-32) 

 
1tan    

  
 

y
v

x  
(3-33) 

 
1

2 2 2
sin

 
  
   

z
v

x y z


 
(3-34) 

where r ,   and    are range, bearing and elevation measurements of the radar. rv , 

v  and 
v  are radar measurement errors in spherical coordinates with standard 

deviations r ,   and 
 . The errors are assumed to be white zero-mean Gaussian.  

The measurements are in spherical coordinates while the state vector is in Cartesian 

coordinates. Therefore, they are not linearly related to each other as it is observed 

from the equations above and nonlinear measurement update should be done by the 

tracking filter. However, extended Kalman filter type linearization techniques 

produce bias due to measurement nonlinearities. To eliminate the bias, the unbiased 

converted measurement method which is a popular technique for tracking in 

Cartesian coordinates is used [9]. 
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3.3.1. Unbiased Converted Measurements in 2D 

The basic idea of unbiased converted measurements is explained in 2D in detail since 

it is much easier to understand. The results for the 3D case are also given in the 

succeeding section. [9] 

Let the measured range and bearing be mr  and m . 

 m rr r v   (3-35) 

   m v  (3-36) 

where r and   are the true range and bearing while rv  and v  are zero-mean  

measurement errors with standard deviations  r  and  . 

 cosm m mx r  (3-37) 

 sinm m my r  (3-38) 

where mx  and my  are the classical converted measurements which are biased due to 

the nonlinear transformation. Taking the expectation of mx , we have. 

 { } {( )cos( )}  m rE x E r v v   

 
   

{( )(cos cos sin sin )}    rE r v v v
 (3-39) 

Assuming that rv  and v  are independent random variables and have symmetric 

probability density functions about v=0. 

 { } 0rE v  .      {sin } 0 E v  (3-40) 

 

 

 

 { } { cos cos }mE x E r v
  

  
cos  r

 (3-41) 

where {cos }   E v . 
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Similarly, 

 { } sin mE y r  (3-42) 

However, it is clear that 1   and Eqs. (3-37) and (3-38) are biased. If it is assumed 

that the measurement errors are independent and possess symmetric probability 

density functions about v=0, the unbiased converted measurements are. 

 
1 cos u

m m mx r  (3-43) 

 
1 sinu

m m my r 
 

(3-44) 

On the other hand, finding the uncertainty in mx  and my  is a relatively more 

difficult problem. In practice, the measurement errors are on the order of 

milliradians, so it may be thought that bias removal is not crucial. Indeed, 

determining the covariance matrix properly for mx  and my  is more important than 

their being biased. For instance, let the range and bearing of a target be 5000 meters 

and 30° which are measured by a radar that has a 1σ measurement error of 2mrads. 

Then, the classical and unbiased converted measurements are the following. 

 cos 5000cos(30) 4330.127m  m m mx r  (3-45) 

 sin 5000sin(30) 2500m  m m my r
 (3-46) 

 
1 cos 4330.135m  u

m m mx r
 

(3-47) 

 
1 sin 2500.005m  u

m m my r
 

(3-48) 

It is clear that the difference between the classical and the unbiased conversion is 

insignificant for small measurement errors. (Note that 
  calculation is omitted in 

the above equations. The detailed information about determining ‟s is given in 

Chapter 3.3.3.) 

If r and   are known, the exact covariance matrix of mx  and my  can be calculated 

by evaluating var( | , )
u

m
x r  , var( | , )

u

m
y r   and cov( , | , )

u u

m m
x y r  . Although the 
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measured range and bearing are not equal to r and  , a quite accurate covariance 

matrix can still be obtained as follows [9]. 

 
11 12

21 22

R R
R

R R

 
  
 

 (3-49) 

   

 
11 var( | , ) u

m m mR x r
 

 

 
           

1 2{[ cos cos ] | , }    m m m mE r r r
  

 
           

1 2{[ cos ( )cos( )] | , }       m m m r m m mE r r v v r
 

 

 
2 2 2 2 21

( 2) cos ( )(1 cos2 )
2

          m m m r mr r
 

(3-50) 

   

 22 var( | , ) u

m m mR y r
 

 

 
           

1 2{[ sin sin ] | , }    m m m mE r r r
  

 
           

1 2{[ sin ( )sin( )] | , }       m m m r m m mE r r v v r
 

 

 
2 2 2 2 21

( 2) sin ( )(1 cos2 )
2

          m m m r mr r
 

(3-51) 

   

 12 cov( , | , ) u u

m m m mR x y r
 

 

 
1 1{( cos cos )( sin sin ) | , }          m m m m m mE r r r r r

  

 
2 2 2 21

( 2) cos sin ( ) sin 2
2

          m m m m r mr r
 

(3-52) 

   

where {cos }   E v and {cos2 }   E v . 

The intermediate steps of the derivations of Eqs. (3-50) through (3-52) can be found 

in [9]. 

3.3.2. Unbiased Converted Measurements in 3D 

In the measurement update of the tracking filter, conversion from spherical to the 

Cartesian coordinates can be done by using the unbiased converted measurements in 
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3D. Measurements taken in spherical coordinates are transformed into Cartesian 

coordinates in an unbiased fashion which is given below.  

 
1 1 cos cosu

m m m mx r       (3-53) 

 
1 1 sin cosu

m m m my r     
 (3-54) 

 
1 sinu

m m mz r   (3-55) 

where {cos }   E v , {cos }   E v . 

The covariance matrix of the measurements in Cartesian coordinates is calculated by 

the following equations [9]. 

 

11 12 13

21 22 23

31 32 33

 
 


 
  

R R R

R R R R

R R R

 (3-56) 

   

 
 11 var( | , , )  u

m m m mR x r
 

 

 
            

2 2 2 2(( ) 2) cos cos      m m mr
 

2 21
( )(1 cos2 )(1 cos2 )

4
         m r m mr

 

(3-57) 

   

 
22 var( | , , )  u

m m m mR y r
 

 

 
            

2 2 2 2(( ) 2) sin cos      m m mr
 

2 21
( )(1 cos2 )(1 cos2 )

4
         m r m mr

 

(3-58) 

   

 
33 var( | , , )  u

m m m mR z r
 

 

 
2 2 2 2 21

( 2) sin ( )(1 cos2 )
2

          m m m r mr r
 

(3-59) 
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12 21 cov( , | , , )   u u

m m m m mR R x y r
 

 

 
  

2 2 2(( ) 2) sin cos cos       m m m mr
 

         

2 21
( ) sin 2 (1 cos2 )

4
        m r m mr

 

(3-60) 

   

 
13 31 cov( , | , , )   u u

m m m m mR R x z r
 

 

 
         

1 2 1 2( ) cos sin cos              m m m mr
 

2 21
( ) cos sin 2 )

2
      m r m mr

 

(3-61) 

   

 23 32 cov( , | , , )   u u

m m m m mR R y z r
 

 

 
         

1 2 1 2( ) sin sin cos              m m m mr
 

2 21
( ) sin sin 2 )

2
      m r m mr

 

(3-62) 

   

where {cos2 }   E v ,
 

{cos2 }   E v . 

3.3.3. Compensation Factor Computation for Unbiased Converted 

Measurements 

 ‟s, which are also called as the compensation factors of unbiased converted 

measurements, are calculated using the moment generating function of Normal 

distribution 
2( , ) N  given below. 

 
2 21

2( ) { }
 

 
t t

tX

XM t E e e  (3-63) 

Then, the expected value of cos v  is calculated as follows. 
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(3-64) 

Remaining compensation factors are also calculated by the approach given above. 

The results are given in Table 3-1. 

Table 3-1: Compensation Factors for the Unbiased Converted Measurements 

 

2

2{cos }


 


 E v e  

 

2

2{cos }


 


 E v e  

 
22

{cos2 } 

    E v e  

 
22

{cos2 } 

 


  E v e  
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CHAPTER 4 

FILTERS USED IN THE SIMULATIONS 

In Chapter 3, a discrete time model of the motion of the projectile is obtained as a 

nonlinear equation written as the numerical integral of the continuous time equations. 

The nonlinear equations relating the state vector to the measurements are also 

presented in the previous chapter. The nonlinear motion and measurement models 

resulted in the need of working with nonlinear filters. 

The tracking methodology is applied to simulations by four different filters: the 

extended Kalman filter (EKF), the unscented Kalman filter (UKF), the particle filter 

(PF) and the marginalized particle filter (MPF). The details of these four filters are 

given in this chapter. 

4.1. The Kalman Filter 

Before talking about the extended and unscented Kalman filters, it is appropriate to 

give some information about the Kalman filter. The Kalman filter is a widely used 

tool for the estimation of linear discrete-time dynamic systems expressed in the 

following form.  

 1 1 1   k k k kx F x w  (4-1) 

 1 k k k ky H x v
 (4-2) 
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where x  is the state vector, F  is the transition matrix, w is the discrete-time process 

noise, y  is the measurement, H  is the measurement model matrix and v  is the 

measurement noise [10]. 

In every time step of the Kalman filter, the state estimation is composed of time 

update and measurement update. Time update is the step where the state and the 

measurement are predicted. The predicted state is then corrected in measurement 

update step according to the measurements [11], [10]. In the following two sections, 

the time update and the measurement update are explained in accordance with the 

tracking methodology which is presented in the previous chapter. 

4.1.1. Time Update 

The ballistic target tracking problem is first modeled in continuous time and then, 

this model is converted to discrete time. So the time update stage of the problem 

basically uses the integration of continuous time solution of the differential equation 

of the state where the noise vector is omitted. In other words, it is the computation of 

1{ | { }}k kE x E x . The procedure given in Chapter 3.2.‘Discrete Time Motion Model’ 

is used for the time update stages of all the filters in concern. 

Measurement prediction is a straightforward conversion to spherical coordinates after 

the state is predicted in the UKF. There is no conversion for the measurement 

prediction in the EKF since measurement update is done using the unbiased 

converted measurements technique. 

4.1.2. Measurement Update 

Unlike the time update, measurement update is linear for EKF since unbiased 

converted measurements are used. The measurement update for the unscented 

Kalman filter, however, is nonlinear and it is performed by the help of unscented 
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transform. The details of the algorithm are given in Chapter 4.3.‘The Unscented 

Kalman Filter’. 

4.2. The Extended Kalman Filter 

The extended Kalman filter is a very widely used estimation algorithm for nonlinear 

systems. It is obtained by the linearization (a series expansion) of the nonlinearities 

in the dynamic system.  

Since the system described by the Eqs. (3-10) and (3-32), (3-33), (3-34) is nonlinear, 

a first order EKF is used in the simulations. The second order EKF includes second-

order correction terms and it gives better results theoretically. However, computation 

of second derivates is rather difficult and error-prone. Moreover, the sampling time 

of projectile tracking radars are so small that the system is almost linear between two 

consecutive measurement times. Therefore, a first order EKF is quite sufficient for 

this study. The EKF algorithm is summarized in Table 4-1 where kz  is the 

measurement at time k. 

Table 4-1: The Extended Kalman Filter 

[
|k kx , 

|k kP ] = EKF [
1| 1 k kx , 

1| 1 k kP , kz ] 

 Calculate 
| 1k kx 

 using 
1| 1k kx  

 and 4
th

 order Runke-Kutta. (Eq. (3-11)) 

 Calculate 
| 1k kP 

. (Eq. (3-23)) 

 Convert the radar measurement kz  to Cartesian coordinates and calculate its 

covariance matrix, R  (Eqs. (3-53) through (3-62)) 

 Calculate 
|k kx  and 

|k kP  (ordinary Kalman filter measurement update). 
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4.3. The Unscented Kalman Filter 

The unscented Kalman filter is based on unscented transformation which was 

developed as a method to propagate mean and covariance information through 

nonlinear transformations [12]. A set of points, which are called as the sigma points, 

are chosen in such a way that the mean and covariance computed from these points 

are equal to the actual mean and the covariance matrix. The crucial point here is that 

the nonlinear function is applied to the sigma points individually and the sigma 

points are turned into transformed points. The mean and the covariance of the 

transformed points are the estimates of the state or the measurement after the 

nonlinearity is applied.  

Although the methodology seems to be the same as that of particle filters, the sigma 

points make all the difference. Contrary to the particles in the particle filter, sigma 

points are drawn deterministically and they can possess weights that are out of the 

range [0, 1]. The sum of these weights is equal to 1 which is the same for particle 

filters. 

After the weights of the sigma points, mW  and cW , are determined, the unscented 

Kalman filter algorithm given in Table 4-3 is applied. The sigma point selection 

method used in this study is given in Table 4-2. 2n+1 sigma points are drawn 

according to this method where n is the dimension of the state vector. 
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Table 4-2: Sigma Point Selection Method (SPSM) [11] 

[
1| 1 

i

k kx ] = SPSM [
1| 1 k kx , 

1| 1 k kP ] 

 2( )   n k n  

 (0) / ( )  mW n  

(0) 2/ ( ) (1 )       cW n
 

( ) (0)(1 ) / 2 i

m mW W n
  

i = 1,…,2n
  

 

( ) (0)(1 ) / 2 i

c cW W n
  

i = 1,…,2n
 

 

 (0)

1| 1 1| 1   k k k kx x  

 ( )

1| 1 1| 1 1| 1( )( )       i

k k k k k kx x n P i   
i = 1,…,n 

 ( )

1| 1 1| 1 1| 1( )( )       i

k k k k k kx x n P i   
i = n+1,…,2n 

where  ,   and k are the parameters of the method and 
1| 1( ) k kP i  is the i

th
 

column of the matrix 
1| 1 k kP . 

Note that the square root of a positive definite matrix is given as A P  where 

 TP AA . If the matrix square root A  of P  is of the form  TP A A , then the sigma 

points should be formed from the rows of 1| 1 k kP  [12].  
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Table 4-3: The Unscented Kalman Filter 

[
|k kx , 

|k kP ] = UKF [
1| 1 k kx , 

1| 1 k kP , 
kz ] 

 Generate the set of sigma points according to the sigma point selection 

algorithm given in Table 4-2 and obtain 
1| 1 

i

k kx ‟s from 
1| 1 k kx . 

 Calculate 
| 1

i

k kx ‟s using 
1| 1 

i

k kx ‟s and 4
th
 order Runke-Kutta (Eq. (3-11)) and 

obtain the predicted mean 
| 1 | 1

1

ˆ ( )  




p

i

k k m k k

i

W i x  where 2 1 p n . 

 Calculate the predicted covariance matrix. 

| 1 | 1 | 1 | 1 | 1

1

ˆ ˆ( ){ }{ }     



   
p

i i T

k k k m k k k k k k k k

i

P Q W i x x . (See Eqs. (3-28) through 

(3-31) for kQ ) 

 Calculate the predicted measurements, | 1

i

k kz ‟s, for the sigma points and their 

mean, 
| 1

ˆ
k kz , using the Eqs. (3-32), (3-33), (3-34) and the vector mW . 

 | 1 | 1( ) i i

k k k kz h x ,    
| 1 | 1

1

ˆ ( ) 




p

i

k k m k k

i

z W i z  

 Calculate the measurement prediction covariance matrix. 

| 1 | 1 | 1 | 1

1

ˆ ˆ( ){ }{ }   



   
p

i i T

k k c k k k k k k k k

i

S R W i z z z z
  
(See Eqs. (3-56) through 

(3-62) for kR .) 

 Calculate the cross covariance matrix. 

| 1 | 1 | 1 | 1

1

ˆ ˆ( ){ }{ }   



  
p

i i T

xy c k k k k k k k k

i

P W i x z z  

 Calculate 
|k kx  and 

|k kP . 

1

| 1

| | 1 | | 1

ˆ

̂





 

  

   

k xy k k k k k

T

k k k k k k k k k k k k k

K P S v z z

P P K S K x K v
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4.4. The Particle Filter 

The particle filter is a numerical approximation to nonlinear Bayesian filtering which 

performs sequential Monte Carlo estimation. In PF approach the probability density 

function is represented as point masses or particles as the filter‟s name implies. The 

method followed for this purpose is called as the sequential importance sampling 

which represents the probability density by a set of random samples with associated 

weights. Filtering is done using these random samples and weights [13].  

The particle filter algorithm given in Table 4-4 is based on Gaussian optimal 

importance function which is given for a system represented by  

 1 1 1( )   k k k kx f x w  (4-3) 

 1 k k k ky H x v  (4-4) 

Here, state dynamics is nonlinear and given by the function f  which corresponds to 

the numerical solution of a differential equation by 4
th

 order Runge-Kutta method. 

The measurements taken in spherical coordinates are converted into Cartesian 

coordinates using unbiased converted measurements technique. 1kw  and kv  are 

assumed to be mutually independent zero-mean white Gaussian noise whose 

covariance matrices are Q  and R . 

Stated in other words, the importance density and 
1( | )k kp z x 

 are assumed to be 

Gaussian and given by the following equations [13]. 

 1( | , ) ( ; , )k k k k k kp x x z x a  N  (4-5) 

 1( | ) ( ; , )k k k k kp z x z b S N
 (4-6) 

where ka , kb , k , kS  are given in Table 4-4. 
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4.4.1. Degeneracy Problem and Resampling 

The variance of the weights of the particles can only increase in time [13]. This 

increase results in the degeneracy problem which means that after some time the 

normalized weights of a few particles approach to a reasonably large positive value 

while the others have negligible weights. In order to avoid the degeneracy problem, 

resampling is required which eliminates particles with negligible weights and 

multiplies particles possessing relatively high weights. The resampling algorithm 

used in this study is given in Table 4-5.  

As it is seen in Table 4-4, resampling is performed after a threshold value, thrN , 

exceeds the number of effective samples, 
effN . Although the threshold is determined 

as N in this study [14], still it can be chosen as a different value. If computation load 

of the filter is of no significance, thrN  can be set to N which is equal to the upper 

bound of 
effN . In this way, resampling can be performed in every time step of the 

filter.  

It should also be noted that resampling in every time step may decrease the sample 

diversity and decrease the filter performance (sample impoverishment). However, in 

the simulations it is observed that the performance of PF does not decrease by setting 

thrN N  for our tracking problem. Contrarily, it is observed that the filter performs 

better if the particles are resampled in every time step. Still, in Table 4-4, the check 

for the number of effective particles is included for the completeness of the particle 

filter algorithm with Gaussian optimal importance function. 
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Table 4-4: The Particle Filter with Gaussian Optimal Importance Function [13] 

[
1{ , } 

i i N

k k ix w ] = PF [
1 1 1{ , }  

i i N

k k ix w ,
kz ] 

 FOR i=1:N     \\ N= number of particles 

 Pick i

kx  from 
1( | , )

i

k k kq x x z = ( ; , )k k kN x a  where 

  1

1 1( ) ( )

   T

k k k k k k k ka f x H R z b  

  1

1 1 1



     T

k k k k k k kQ Q H S H Q  

  
1 T

k k k k kS H Q H R  

  1 1( ) k k k kb H f x  

 
1 1( | ) i i i

k k k kw w p z x  

 END FOR 

 Calculate total weight 
1


N

i

k

i

T w . 

 FOR i=1:N 

 Normalize 
i

i k
k

w
w

T
 

 END FOR 

 Calculate the number of effective samples 
2

1

1
and

( )
eff thrN

i

k

i

N N N

w


 


. 

 IF 
eff thrN N  

 [
1{ , } 

i i N

k k ix w ]=RSMPL[
1{ , } 

i i N

k k ix w ]  \\ See Table 4-5 

 END IF 

Note that using the Gaussian optimal importance function makes it possible to update 

the importance weights before the particles are propagated in time. The nonlinear 

function 1 1( )k kf x   is numerically calculated by using 4
th

 order Runge-Kutta as it is 

done in EKF and UKF algorithms. 
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Table 4-5: Resampling Algorithm [13] 

 [
1{ , } 

i i N

k k ix w ]=RSMPL[
1{ , } 

j j N

k k jx w ] 

 1

1  kc w     \\ Initialize cumulative sum of weights 

 FOR j=2:N 

 
1  j

j j kc c w  

 END FOR 

 Pick 1

1
[0, ]u U

N
   \\ U  represents the uniform distribution. 

 j=1    \\ Start from the first 
jc  

 FOR i=1:N 

 1

1
 i

i
u u

N
 

 WHILE i ju c  

 1 j j  

 END WHILE 

 i j

k kx x  

 
1

i

kw
N

 

 END FOR 

4.5. The Marginalized Particle Filter 

As the dimension of the state vector increases, the particle representation becomes 

too sparse to represent the posterior distribution of the state [14] [13]. In other words, 

the performance of the particle filter decreases with increasing state dimension. In 

order to overcome this problem, the marginalized particle filter is proposed which 
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partitions the state into two as linear and nonlinear and applies the particle filter 

solution to the nonlinear part [14]. 

In this thesis a marginalized particle filter is proposed where the state vector given in 

(3-10) is divided into two parts as follows. 

 
l n

k k

x
x

y
x y x

z
z



 
   
    
   
    

 

 (4-7) 

where 
l

kx
 and 

n

kx
 are informally linear and nonlinear parts of the state. Note that both 

parts of the state vector possess nonlinear behavior so it is not possible to apply the 

existing algorithms.   

Similar to the previous algorithms presented, the time update of both the linear and 

the nonlinear parts is performed by 4
th

 order Runge-Kutta method. The nonlinear part 

of the state is represented by particles and an EKF is applied to each particle in order 

to obtain the posterior of the linear part since it is not truly linear. The MPF 

algorithm is given in Table 4-6 where ,l i

kP  represents the covariance matrix of l

kx  at 

time k. 
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Table 4-6: The Marginalized Particle Filter with Gaussian Optimal Importance 
Function [14] 

[ ,

1{ , } ,i i N l i

k k i kx w P
] = MPF [ ,

1 1 1 1{ , } ,i i N l i

k k i kx w P   
,

kz ] 

 FOR i=1:N 

 Pick i

kx  from 
1( | , )

i

k k kq x x z = ( ; , )k k kN x a  where 

  1

1 1( ) ( )

   T

k k k k k k k ka f x H R z b  

  1

1 1 1



     T

k k k k k k kQ Q H S H Q  

  
1 T

k k k k kS H Q H R  

  1 1( ) k k k kb H f x  

 
1 1( | ) i i i

k k k kw w p z x  

 Pick ,

1

l i

kx ‟s from 
1

i

kx 
‟s and pick its covariance matrix ,

1

l i

kP 
 

  [ ,l i

kx , ,l i

kP ] = EKF [ ,

1

l i

kx 
, ,

1

l i

kP 
, kz ] 

 END FOR 

 Insert the linear state ,l i

kx
 
into i

kx ‟s 

 Calculate total weight 
1


N

i

k

i

T w . 

 FOR i=1:N 

 Normalize 
i

i k
k

w
w

T
 

 END FOR 

 Calculate the number of effective samples 
2

1

1
and

( )
eff thrN

i

k

i

N N N

w


 


. 

 IF 
eff thrN N  

 [
1{ , } 

i i N

k k ix w ]=RSMPL[
1{ , } 

i i N

k k ix w ]  \\ See Table 4-5 

 END IF 
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CHAPTER 5 

SIMULATIONS AND DISCUSSION 

The tracking methodology and the algorithms that are used for ballistic target 

tracking are given in the previous chapters. In this chapter, the estimates of these 

algorithms and their performances will be discussed and compared. 

5.1. Target Scenarios 

In the simulations, the measurements are produced based on the data taken from a 

software which is able to produce 6-DOF trajectories of different kinds of 

ammunitions. The target trajectories are assumed to be taken from four kinds of 

simulated radars and the ground truth data obtained by this program is disturbed by 

adding zero mean Gaussian noise. 

5.1.1. PRODAS V3 

The filters mentioned in Chapter 4 are run using predetermined target scenarios. In 

other words, the measurements of the radar are fed to the filter offline. In this study, 

these measurements are based on PRODAS V3 (Projectile Rocket Ordnance Design 

& Analysis System), a computer program running on Windows OS. This program is 

used in simulating test firings, projectile modeling and estimating aerodynamics and 



 

53 
 

stability. PRODAS V3 can compute 4 or 6 degrees of freedom projectile trajectories 

[15]. 

The ground truth data from PRODAS V3 is given in Cartesian coordinates and it is 

converted to „radar measurements‟ by inserting noise. Before the noise is inserted, 

this data is converted to spherical coordinates since radar measures the position of 

the target in this coordinate system. All of the simulations are performed with radar 

measurements that are assumed to be taken in spherical coordinates. The drag 

parameter curves of the projectiles are also obtained from PRODAS V3 

5.1.2. Radar Measurements 

In order to observe the performance of the filters, 4 simulated radars with different 

measurement errors are assumed to exist. 1σ measurement error of the radars is given 

in Table 5-1. In practice, Radar 1 and 2 are not realistic as projectile tracking radars 

because of their small measurement frequency. However, for comparing the 

performances of the filters they are somewhat good examples.  

Table 5-1: Measurement Frequency and Measurement Error of the Radars 

 
Measurement 

Frequency (Hz) 

1σ  Range 

Measurement Error 
(meters) 

1σ  Bearing & 

Elevation Error 
(degrees) 

Radar 1 1 10 
1  

(~17.5mrad) 

Radar 2 1 10 
0.1  

(~1.75mrad) 

Radar 3 10 10 
1  

(~17.5mrad) 

Radar 4 10 10 
0.1  

(~1.75mrad) 
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All of the radars given in Table 5-1 are assumed to have a probability of detection of 

0.9 in the simulations.  

 0.9DP
 

(5-1) 

In case the measurement of the target is not obtained at a particular time step, the 

filter is not run and the state estimate is calculated using the previous state estimate 

and 4
th

 order Runge-Kutta method. In other words, the state is propagated to the next 

time step using the previous estimate. 

Apart from the radars given in Table 5-1, it is assumed that an additional radar exists 

with 100 Hz measurement frequency. This radar is denoted as Radar 5 and it is used 

for drag parameter estimation simulations. 1 σ measurement error of Radar 5 is equal 

to 10 meters for range and 0.1° for bearing and elevation. 

5.1.3. Obtaining the Target Scenarios 

Three ground truth data is obtained from PRODAS V3 for 40, 35 and 25mm 

projectiles according to 6-DOF trajectory. The trajectories are for the above 3 

projectiles fired at 30° elevation and they are given the name Target Scenario 1, 2 

and 3 respectively. The curve given in the following figure, for example, is the 

ground truth data for Target Scenario 2 and the measurements from Radar 2 are the 

stars. The projectile is launched from the ground at 90° bearing and 30° elevation. 

Note that the grids for x, y and z axes are not identical in the figure. 
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Figure 5.1: Target Scenario 2 - 35HEI_MSDCartridge 

5.1.4. Performance Evaluation 

The filter performances are compared with Monte Carlo simulation using the 3 target 

scenarios and the set of radars given in Table 5-1. In every run of the Monte Carlo 

simulation, the ground truth trajectory is disturbed with a new zero-mean Gaussian 

noise to obtain the current measurement. The filter‟s estimation error is calculated by 

comparing the state estimate with the ground truth. Root-Mean-Square Error 

(RMSE) of the state estimate is the main criterion of performance evaluation. It is 

calculated as follows. 

 2 2 2

1 1

1 1
(( ) ( ) ( ) )

 

      
MCN K

GT GT GT

k k k k k k

n kMC

RMSE x x y y z z
N K  

(5-2) 
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where 
MCN  is the number of Monte Carlo runs and K  is the number of time steps in 

the target scenario. GT

kx , GT

ky  and GT

kz  are the ground truth data while 
kx , 

ky  and 
kz  

are the position estimates of the filter at time k. 

The RMSE results for EKF and UKF are obtained after 1000 Monte Carlo runs while 

the ones for PF and MPF are obtained after 100 Monte Carlo runs. This is due to the 

high computation load of particle filters. 

5.2. Filter Initialization 

In order to create a fair comparison, the filters are started using the same method to 

obtain the initial state and state covariance matrix. After converting the first two data 

of the radar to Cartesian coordinates, all of the filters are initialized with the 

following state vector and the covariance matrix related to it. 

 
0|0 0

T

x y zx x V y V z V     (5-3) 

   

 

11 12 13

2

12 22 23

2

0|0

12 23 33

2

2

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 

 
 
 
 
 

  
 
 
 
 
 

v

v

v

R R R

R R R

P

R R R











 
(5-4) 

   

where x, y and z are the radar measurement taken in second time step. xV , 
yV  and zV  

are the velocity estimations of the target using the first two radar measurements. 

They are obtained by dividing the distance covered by t . 2

v  is the variance of the 

velocity in Cartesian coordinates. 2

  is the variance of  . and 'sijR  are obtained 



 

57 
 

from the Eqs. (3-56) through (3-62).
 

2

  and 2

v  are set to 10000 and 1000 

respectively.  

For Radar 1 and 2 the perceived motion of the projectile is quite nonlinear at the very 

beginning of the trajectory. This is due to two reasons. First, the projectile that is 

close to the muzzle experiences huge drag force since the velocity is at its maximum. 

Second, the measurement frequency of Radar 1 and 2 is 1 Hz which increases the 

nonlinearity of the motion since sampling period is relatively large. For this reason, 

at the initialization of the particle filter simulations with Radar 1 and 2, the particles 

are drawn from a Gaussian distribution whose mean and covariance are 
0|0x  and 

0|010P  in order to deal with the high nonlinearity. 

Apart from the state variables, there is also one more parameter to be set before filter 

initialization which is the 0  of Eq. (3-5). The reference ballistic coefficient 0  

should be selected close to 
1  for the filter to converge to the true parameter as soon 

as possible. It is known that the drag parameter   of spin-stabilized projectiles is on 

the order of 10
-3

 [2]. Therefore, 0  is set to 1000 for all the simulations. Note that 

the deviation of the actual value from the reference value is   and it is estimated by 

the filter. 

5.2.1. Number of Particles in PF and MPF 

Particle filter‟s accuracy is definitely a function of number of particles used in the 

filter. However, the increase in the number of particles makes the filter impractical 

since it increases the computation load significantly. Therefore, particle filter‟s 

performance is observed for a set of number of particles for Target Scenario 2 

tracked with Radar 2. The mean of the RMSE curves given in the following figure 

are obtained after 100 Monte Carlo runs. 
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Figure 5.2: Target Scenario 2 – PF RMSE (100 Monte Carlo Runs) 

It is observed that the performance of the filter at the beginning of the trajectory is 

directly related to the number of particles. However, it is also seen in Figure 5.2 that 

the performance does not differ much after a few steps from the filter initialization. 

Moreover, the RMSE results in Table 5-2 show that the performance improvement is 

insignificant after the number of particles exceed 10000. Thus, keeping the 

computation load in mind, the number of particles for PF and MPF in the simulations 

is set to 10000. 
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Table 5-2: RMSE of PF for Target Scenario 2 (Radar 2) 

Number of Particles PF-RMSE (meter) 

500 particles 19.83 

1000 particles 18.46 

5000 particles 17.65 

10000 particles 17.13 

20000 particles 17.51 

30000 particles 17.01 

5.3. Simulation Results 

The performances of the filters mentioned in Chapter 4 are evaluated by Monte Carlo 

simulation. The performance evaluation of all of the filters for the target scenarios 1 

to 3 are presented in this section. 

In order to obtain the possible best results, the power spectral density matrix for the 

noise which is given in Eq. (3-29) is multiplied by a scaling factor in every particular 

tracking simulation. In this way, the most suitable process covariance matrix 

calculation for the filters is obtained for each individual filter. These scaling factors 

are determined beforehand again by Monte Carlo runs. 

Note that the time of flight and maximum range of the three projectiles are not the 

same. In other words, the target scenarios are quite different from each other. 

Therefore, the RMSE results are presented at separate tables for the three target 

scenarios. 
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5.3.1. Target Scenario 1 

Target Scenario 1 is the trajectory of 40mm projectile launched at 30° elevation. The 

muzzle velocity of the projectile is 871m/s which is the smallest among the three 

target scenarios. Therefore, Target Scenario 1 possesses relatively the most linear 

trajectory and the RMSE of the trajectory estimation is the smallest. The RMSE 

results of the estimation obtained by Monte Carlo simulation are given in Table 5-3 

below. 

Table 5-3: RMSE for Target Scenario 1 

 
EKF-RMSE 

(meter) 

UKF-RMSE 

(meter) 

PF-RMSE 

(meter) 

MPF-RMSE 

(meter) 

Radar 1 41.87 40.99 78.34 72.98 

Radar 2 14.05 12.58 15.76 15.56 

Radar 3 14.62 14.33 24.14 23.83 

Radar 4 5.87 5.51 6.35 6.42 

It is observed from Table 5-3 that UKF performs the best for all of the cases. PF and 

MPF perform relatively poorly due to several reasons. In order to prevent 

degeneracy, resampling is done at each step in PF and MPF algorithms. However, 

since the actual process noise has low power, sample impoverishment problem 

occurs. To overcome this problem process noise covariance is unrealistically 

enlarged. Such an approach gives poor estimations as the results show. As a future 

study a new technique should be generated to prevent sample impoverishment. 

Moreover, the large dimension of the state decreases the performances of PF and 

MPF [14]. However, it should be stated that partitioning the state decreases the 

RMSE of PF as MPF‟s performance is superior to that of PF according to the results 

given in the table. Even though PF and MPF are run with 10000 particles whose 

computation load is enormous, the RMSE of these filters are the biggest. 
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It is also clear that the RMSE of all of the filters increases inevitably as the 

measurement frequency of the radar decreases. This is because the increase in 

measurement frequency decreases the nonlinearity of the target‟s perceived motion. 

Moreover, it enables the filter to estimate the same trajectory with a larger number of 

measurements. 

The RMSE results of the filters obtained for Target Scenario 1 tracked with Radar 2 

is given in Figure 5.3. The given error curves represent the mean of the error curves 

obtained after Monte Carlo simulation for a particular filter. As it is mentioned 

earlier, the curves for EKF and UKF are obtained after 1000 Monte Carlo runs while 

the curves for PF and MPF are obtained after 100 Monte Carlo runs. One more time, 

it can be seen in Figure 5.3 that UKF has the minimum RMSE. PF and MPF, on the 

other hand, perform almost the same. The slight difference is due to the relatively 

fast convergence of MPF when it is compared to PF. 

 

Figure 5.3: RMSE for Target Scenario 1 Tracked by Radar 2 
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5.3.2. Target Scenario 2 

Target Scenario 2 belongs to the 35mm projectile fired at 30° elevation with a 

1170m/s of muzzle velocity. The ground truth trajectory for this scenario can be seen 

in Figure 5.1.  

The RMSE of the trajectory estimations obtained with this scenario is given in Table 

5-4. It is observed that the general trend of the results is almost the same with the 

ones obtained for Target Scenario 1 in Table 5-3. The only difference is that the error 

values increased in Target Scenario 2 because of the increase in the nonlinearity of 

the projectile motion. 

Table 5-4: RMSE for Target Scenario 2 

 
EKF-RMSE 

(meter) 

UKF-RMSE 

(meter) 

PF-RMSE 

(meter) 

MPF-RMSE 

(meter) 

Radar 1 52.55 42.93 89.48 88.46 

Radar 2 16.50 12.83 17.13 16.23 

Radar 3 17.36 16.39 29.04 27.03 

Radar 4 6.98 6.43 7.82 7.34 

The RMSE results for UKF where the target is tracked with Radar 2 are given in the 

figure below. The figure is obtained after 1000 Monte Carlo runs. 
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Figure 5.4: Target Scenario 2 – UKF RMSE (1000 Monte Carlo Runs) 

It is clear in Figure 5.4 that the standard deviation of the error decreases first and 

then increases again towards the end of the trajectory. The first decrease is due to the 

decrease in the uncertainty of the state as radar measurements are received. At time 

step 20, it reaches its minimum with 4.48. However, at time step 44 it increases to 

6.26 as the measurement errors in Cartesian coordinates increase with the increasing 

range of the projectile. For all of the filters, the behavior of the standard deviation of 

the errors is approximately the same as the one given in Figure 5.4. 

5.3.3. Target Scenario 3 

Target Scenario 3 is the trajectory of 25mm projectile launched at 30° elevation. The 

muzzle velocity is 1090 m/s. Although the muzzle velocity is less than that of 35mm, 

it is observed that the trajectory of 25mm projectile possesses more nonlinear motion 
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especially in the first three seconds of its flight. The velocity curves of all of the 

projectiles studied are given in the figure below. 

 

Figure 5.5: Velocity of 25mm, 35mm and 40mm Projectiles 

It can be seen in Figure 5.5 that in the earlier parts of the trajectory, the velocity of 

25mm projectile decreases sharply and the motion is quite nonlinear when it is 

compared to the trajectories of 35mm and 40mm. As a result, the performances of PF 

and MPF approach the performance of EKF which performs worse due to severe 

nonlinearity. Moreover, for some cases of Target Scenario 3, PF and MPF are 

superior to EKF as it is seen in Table 5-5. It is clear that UKF performs the best with 

the smallest RMSE as in the case of Target Scenarios 1 and 2. However, contrary to 

the results obtained for Target Scenarios 1 and 2, EKF has larger RMSE than PF and 

MPF for the projectile tracked by radar 2, 3 and 4. 
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Table 5-5: RMSE for Target Scenario 3 

 
EKF-RMSE 

(meter) 

UKF-RMSE 

(meter) 

PF-RMSE 

(meter) 

MPF-RMSE 

(meter) 

Radar 1 55.73 34.69 63.45 61.59 

Radar 2 14.51 11.93 13.35 12.91 

Radar 3 23.61 15.38 21.69 20.71 

Radar 4 8.19 6.75 6.94 6.87 

The particle filter performs quite well in low-dimensional state space [14]. However, 

after examining the RMSE results given for Target Scenarios 1 to 3, it is observed 

that for most of the cases, UKF and EKF outperform PF and MPF as a result of the 

relatively large state dimension [14] [13]. Still, it should be noted that the particle 

filter algorithms given in this thesis can be improved since we believe that poor 

performances of the PF and the MPF are due to the artificial increase of the process 

noise covariance to prevent sample impoverishment. Sample impoverishment 

problem is a hot topic in particle filter literature that some results can be applied to 

our problem [18]. 

Among the algorithms presented in this work, UKF performs obviously the best for 

all of the target scenarios. If the PF and MPF are put aside, this result can be 

explained as follows. The time update of UKF uses unscented transform with 4
th

 

order Runge-Kutta, while the time update of EKF uses Taylor series expansion with 

4
th
 order Runge-Kutta. UKF performs nonlinear measurement update where EKF has 

linear measurement update thanks to the unbiased converted measurements. 

Consequently, as the nonlinearity increases, the performance of EKF decreases 

considerably and UKF performs better. 
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5.3.4. Drag Parameter Estimation 

As it is given in Chapter 2, drag parameter versus Mach number curves are extremely 

nonlinear (See Figure 2.2). In other words, the drag parameter varies continuously 

throughout the trajectory. In order to estimate it properly, the measurement frequency 

of the radar should be high. For this reason, the drag parameter estimation simulation 

is made by tracking the projectile with Radar 5 whose measurement frequency is 

assumed to be 100Hz. 

The drag parameter,  , of the projectile is indirectly estimated since   is in the 

state vector together with the position and velocity of the projectile (See Eq. (3-5)). 

0  , which does not change throughout the simulation, is set to 1000 and  is set to 

0 in the filter initialization as it is mentioned previously. According to the value set 

to 

0  and Eq. (3-5), the correct value of   can be calculated from the drag 

parameter curves obtained from PRODAS V3. In addition to the estimated 

curve, the curve for the correct   is also given in Figure 5.6 below. 
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Figure 5.6: Target Scenario 1 tracked by Radar 5 – PF – ∆β Estimation 

As a drag parameter estimation example,  curve obtained by the PF is given in 

Figure 5.6 for the Target Scenario 1 tracked with radar 5. It is clear from the figure 

that when the measurement frequency is high, the drag parameter of the projectile 

can be estimated effectively. Thus, it is observed that if drag parameter curves of 

various projectiles are available, the target can be identified from its   estimations. 

5.3.5. Effect of Drift Calculation on Filter’s Performance 

Spin-stabilized projectiles are subjected to significant lateral drift, especially in long 

range firing. For instance, the drift of the projectile in Target Scenario 2 can be 

observed in Figure 5.7. Although the projectile is fired at 90° bearing, the impact 

point of the projectile drifts 208 meters in x axis. 
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Figure 5.7: Target Scenario 2 (x-y view) 

The drift of the projectile is simply approximated by Eq. (2-10) in the simulations. 

The results given on the left column of Table 5-6, for example, are obtained for UKF 

where drift calculation is not taken into account. It is clear that the performance of 

the filter decreases without drift correction especially for Radar 1 and 3 which have 

relatively large measurement errors. In the simulations, similar results are obtained 

for the other filters as well. Therefore, it is observed that if the measurement error of 

the radar is large, drift calculation should be considered in order to improve the 

filter‟s performance. Note that if the projectile is not spin-stabilized, there is no need 

for drift calculation in the filter since the projectile will not experience any drift. 
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Table 5-6: RMSE of UKF in Target Scenario 2 – Effect of Drift Correction 

 

RMSE of UKF with Drift 

Correction  

(meter) 

RMSE of UKF without Drift 

Correction  

(meter) 

Radar 1 42.93 53.84 

Radar 2 12.83 13.20 

Radar 3 16.39 38.63 

Radar 4 6.43 7.51 
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CHAPTER 6 

CONCLUSIONS 

In this thesis, ballistic target tracking problem is examined and four recursive 

estimation algorithms are studied in this context. The dynamics of ballistic targets is 

presented and the nonlinear system is estimated using extended Kalman filter, 

unscented Kalman filter, particle filter and marginalized particle filter. The 

performances of these filters are compared by Monte Carlo simulation using 6-DOF 

target trajectories. 

Initially, the forces and moments acting on ballistic targets are given in detail. Then, 

the motion of the projectile is modeled considering the drag force and gravity which 

are the main factors determining the trajectory of a short-range ballistic target. The 

state vector is determined by augmenting the usual vector that contains the position 

and velocity of the target with a parameter called as   in order to estimate the drag 

force effectively. Unbiased converted measurements are reviewed since the 

measurements of projectile tracking radars are in spherical coordinates while the 

position and the velocity of the target are in Cartesian coordinates in the state vector. 

After the state space model is described, the aforementioned possible four techniques 

for tracking short-range ballistic targets are presented. First, brief information about 

the Kalman filter is given. Then, the extended Kalman filter, which is probably the 

most widely used estimation algorithm for nonlinear systems, and the unscented 

Kalman filter are introduced. Thereafter, the particle filter and the marginalized 
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particle filter algorithms used in the thesis are presented. One cycle of all of the 

algorithms are given step by step in tables. 

In order to measure the performance of the filtering techniques presented, 6-DOF 

projectile trajectories that are provided by PRODAS V3 are used. Since it is desired 

to see filter performances in a variety of situations, the targets are assumed to be 

tracked by four different simulated radars with different specifications. 

One of the important and expected results of the simulations is that the RMSE of 

estimations of all the filters decreases as the frequency of the measurements 

increases. This is because the nonlinearity of the perceived motion decreases with 

decreasing sampling period and the trajectory is estimated with more measurements 

as the measurement frequency increases.  

It is found that the most accurate filter is the unscented Kalman filter with the 

smallest RMSE in all target scenarios. Better performance of the UKF compared to 

EKF is expected especially at the highly nonlinear regions of the state equation. The 

unexpected, but reported result [17] is the poor performance of the particle filters. 

Measurement update is nonlinear in UKF while it is linear in EKF where unbiased 

converted measurements are used for the conversion from the spherical coordinates 

to the Cartesian coordinates. The time update, on the other hand, is performed by 

sigma points in UKF with the help of unscented transform and 4
th

 order Runge-

Kutta. EKF uses linearization (a series expansion) of the nonlinearities and 4
th
 order 

Runge-Kutta for the time update. Consequently, UKF gives better trajectory 

estimations than EKF as it is verified by the Monte Carlo simulation. 

The reasons for the poor performances of the particle filters can be described as 

follows. 

The dimension of the state vector is large for particle filter to represent the posterior 

distribution of the state effectively. Marginalized particle filters aim to overcome this 

problem. Accordingly, it is observed that the performance of the particle filter 
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improves when the state vector is partitioned and marginalized particle filter is used. 

However, in the context of our tracking problem, the performance of MPF is still 

inferior to that of UKF. We believe that this result is due to the mismatch of the 

actual process noise power and the one that is used in the simulations to overcome 

the sample impoverishment problem. The artificial increase of the process noise 

power obviously generates a deviation from the correct model that may cause such 

degradation in the performance. Sample impoverishment problem is a well known 

problem that is still hot in the particle filter literature [18]. 

Lateral drift of the spinning projectile is approximated by a simple formula in the 

simulations. It is observed that this simple correction to target dynamics resulted in a 

remarkable improvement especially when the measurement error of the radar is 

relatively high. 

As a future work, the tracking algorithms can be modified so that when the radar 

measurements of a particular segment of the target trajectory are available, the 

impact point or the launching point of the projectile is estimated. For these purposes, 

one can benefit from 4
th

 order Runge-Kutta method in a similar approach used in this 

work. If a library for various projectiles can be constructed, the type of the projectile 

can be identified by the drag parameter estimations. Again as a future work, PF and 

MPF algorithms presented in this thesis can be studied further. These algorithms 

have several variations and they are open to improvement. Therefore, it wouldn‟t be 

wrong to say that better results can be obtained for PF and MPF than the ones 

presented in this thesis. Moreover, the method applied for filter initialization can also 

be modified in order to decrease the time required for the filter to converge and in 

this way the RMSE of the filters can be reduced. Finally,  in order to see the effect 

of the observer‟s location, the simulations made for this study can be repeated with 

different simulated radars that are observing the target in different locations other 

than the origin. 
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