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ABSTRACT

TRACKING SHORT-RANGE BALLISTIC TARGETS

Acar, Recep Serdar

M. Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Miibeccel Demirekler

September 2011, 74 pages

The trajectories of ballistic targets are determined significantly by the characteristics
that are specific to them. In this thesis, these characteristics are presented and a set of
algorithms in order to track short-range ballistic targets are given. Firstly, motion and
measurement models for the ballistic targets are formed and then four different
filtering techniques are built on these models which are the extended Kalman filter,
the unscented Kalman filter, the particle filter and the marginalized particle filter.
The performances of these filters are evaluated by making Monte Carlo simulation.
The simulations are run using target scenarios obtained according to six degrees-of-
freedom trajectory for ballistic targets. Apart from the tracking errors of the filters,
drag parameter estimations and the effect of drift calculation on the filter
performances are investigated. The estimation results obtained by each filter are

discussed in detail by making various simulations.

Keywords: Ballistic Target Tracking, Spin-Stabilized Projectile, Short-Range

Ballistic Target, Kalman Filter, Particle Filter
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KISA MENZILLI BALISTIK HEDEFLERIN TAKIBI

Acar, Recep Serdar

Yiiksek Lisans, Elektrik ve Elektronik Miithendisligi Bolimii

Tez Yoneticisi : Prof. Dr. Miibeccel Demirekler

Eylil 2011, 74 sayfa

Balistik hedeflerin yoriingeleri 6nemli 6l¢iide kendilerine 6zgii olan 6zellikleri ile
belirlenir. Bu tezde, bu 6zellikler sunulmakta ve kisa menzilli balistik hedefleri takip
etmek igin bir grup algoritma verilmektedir. Ilk olarak balistik hedefler i¢in hareket
ve Ol¢iim modelleri olusturulmakta; daha sonra bu modeller iizerine kurulan,
genisletilmis Kalman filtresi, kokusuz Kalman filtresi, parcacik filtresi ve ayrilmig
parcacik filtresi adinda dort ayn filtreleme teknigi sunulmaktadir. Bu filtrelerin
performanslari Monte Carlo simiilasyonu ile degerlendirilmektedir. Simiilasyonlar,
balistik hedefler i¢in alt1 serbestlik-dereceli yoriingeye gore elde edilmis hedef
senaryolar1 ile kosturulmustur. Hedef takibi hatalarinin yani sira, siiriiklenme
parametresi  kestirimleri ve kayma hesabimin filtre performansina etkisi
incelenmektedir. Cesitli simiilasyonlar yapilarak her filtre ile elde edilen kestirim

sonuglar1 ayrintili olarak tartisilmaktadir.

Anahtar Kelimeler: Balistik Hedef Takibi, Donii ile Dengelenmis Mermi, Kisa
Menzilli Balistik Hedef, Kalman Filtresi, Parcacik Filtresi
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CHAPTER 1

INTRODUCTION

The term “ballistic targets” includes a variety of projectiles and missiles which are
able to perform exo-atmospheric flight. However, in this work, the trajectories of
short-range ballistic targets which have endo-atmospheric flight are in concern in

order to be more specific and simple.

The trajectories of short-range ballistic targets are quite predictable especially when
they are compared to those of powered vehicles such as fighter aircrafts. Ballistic
target tracking has drawn attention in recent years due to the need of controlling own
projectiles and missiles after launching or estimating the trajectories of hostile
projectiles and missiles. Accordingly, the focus of this thesis is to present methods
for estimating the trajectories of short-range ballistic targets and evaluate the tracking

performances of these methods.

In this chapter, first, the coordinate systems used in ballistic target tracking and
general knowledge about ballistic targets will be given. Then, the motion model used
in the thesis will be explained briefly. Finally, the outline of the thesis will be

presented.



1.1. Coordinate Systems

Three widespread coordinate systems used in ballistic target tracking are depicted in
Figure 1.1. These are called Earth Centered Inertial, Earth-Centered Earth Fixed and
East North Up Coordinate Systems [1].

1. The Earth Centered Inertial Coordinate System (ECI-CS, Ox,y, z)) is a right
handed coordinate system which is fixed with respect to fixed stars. The
origin is the Earth’s center given as O in Figure 1.1. Ox, points in the vernal
equinox direction, Oz, points in the North Pole N and Ox, y; plane coincides
with the Earth’s equatorial plane. ECI-CS does not rotate with the Earth.

2. The Earth-Centered Earth Fixed Coordinate System (ECEF-CS, Oxgyrzg) is
also a right handed coordinate system and has its origin at the Earth center O.
Oxg points to the prime meridian direction, and Oxgyr plane coincides with
the Earth’s equatorial plane. However, apart from ECI-CS, ECEF-CS rotates
with the Earth around its spin axis Ozg= Oz,.

3. The final coordinate system given in Figure 1.1 is the East North Up
Coordinate System (ENU-CS, Oxsyszs). Os is the origin and it is located at
some point on the Earth. Oszs is normal to the Earth’s reference ellipsoid.
Therefore, unless spherical Earth model is used, zsOs does not point to Earth’s
center O. Osxs and Osys points to East and North respectively and zg is
normal to Ogsxsys plane. @ is the angle between Oszs and the Earth’s

equatorial plane and it represents the geodetic latitude.
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Figure 1.1: Coordinate Systems (Figure is adapted from [1])

When the point Os is assumed to be the point where the sensor is located, the vector

¥ appearing in Figure 1.1 can be explained as follows.
r = OsP, the vector from the sensor to the target where P is the target position.

In this study ENU coordinate system is used. Therefore, the coordinates of the target

position is the projection of ¥ onto xs, ys, and zs.

1.2. Ballistic Targets

The lexical meaning of ballistics is the science of mechanics that deals with the
flight, behavior and effects of projectiles. The trajectory of the ballistic targets is
determined significantly by the characteristics that are specific to target type [1]. This

is why these targets are called as the ballistic targets. Ballistic missiles, mortars and



projectiles possess more certain motion than many other types of maneuvering

targets such as aircrafts and agile missiles.

If it is assumed that the target is tracked in an inertial coordinate system such as ECI -
CS, the total acceleration of the target, a, is composed of four major elements due to

four major forces acting on it.
a=ar+agtap+ta. (1-1)

where ar, ag, ap and a_ are acceleration due to thrust, gravity, drag force and lift
force respectively. At some regions of the trajectory these components of the
acceleration can be omitted or ignored. In addition, there are some other forces acting
on ballistic targets such as the Coriolis and centrifugal forces which are not
mentioned in (1-1). These forces should be taken into consideration if very accurate

results are aimed or if the target’s trajectory includes a long exo-atmospheric flight.

Trajectories of projectiles and/or missiles are chronologically divided into three

phases: Boost Phase, Ballistic Flight and Reentry.

1.2.1. Boost Phase

Boost phase is the phase just after the target is launched. If the ballistic target in
concern is a missile, it is exposed to a considerable thrust in this phase. Thrust can be
varying which makes the trajectory estimation rather complicated. The total

acceleration in boost phase can be written as follows.

a=artaptag (1-2)

where ar and ap are large in magnitude relative to ag, the gravity. In this
representation, a. is omitted due to its relatively small magnitude. Furthermore,
Earth rotation can also be omitted in this phase due to its small duration. Therefore,

the Coriolis effect and the centrifugal force are ignored in Eq. (1-2). As a result, the



inertial frame (ECI-CS) and Earth-Centered Earth Fixed Coordinate System (ECEF-

CS) are practically the same.

1.2.2. Ballistic Flight

If the target is in an exo-atmospheric flight, the only force acting among the ones in
Eqg. (1-1) would be the gravity. However, it should be noted that if the motion is
examined in a non-inertial frame such as ENU-CS, and the projectile travels for a
long period of time, accelerations due to Coriolis effect and the centrifugal force

should be taken into account.

Gravity models can be classified according to their approaches to modeling the
Earth. The most common and well-known model is known as the Flat-Earth Model.
As its name implies Flat-Earth Model considers the Earth as if it is flat and non-
rotating which makes it the simplest possible model. For a target observed in ENU-

CS the gravity vector is given below.

0
a,=| 0 | ,whereg=29.78m/s’ (1-3)

-9
In Eq. (1-3), the gravity is considered to be constant for different altitudes or the
change in the magnitude of the gravity with the altitude is negligible. This
assumption is quite feasible. For example, consider the gravity change at a height of
10000 meters. The radius of the Earth is approximately 6400km. Let the magnitude
of gravity at the point of concern be 9.78m/s%. According to Newton’s 2™ law, the
gravity is inversely proportional to the distance to Earth’s center. Then, the
theoretical fall in the magnitude of gravity at an altitude of 10000 meters is
calculated as 0.31% in Eq. (1-4).

2 3 2
ag o~ Tearn a = 64003)(10 9.78=9.75m/s* (1-4)
wooomaes | 410000 6400x10° +10000



Note also that the magnitude of gravity is not identical on different locations on the
Earth due to its non-homogeneous matter distribution. However, this change is also

negligible similar to the changes in gravity due to the altitude.

Flat-Earth model is quite sufficient for most of the applications like tracking ballistic
targets having endo-atmospheric flight. Nonetheless, for better results one can
assume the Earth as a sphere and make use of Spherical Earth model. In this case the

gravity model is called as the Spherical Earth Model.

If the Earth and the targets are assumed to be spherically symmetric and to possess
even distributions of their masses, the gravity can be calculated according to

Newton’s law of universal gravitation,

7,
el

ag == (15)
where 4 is the standard gravitational parameter.

For more precise calculations Ellipsoidal Earth or WGS-84 model can also be used.
However, for the purpose of tracking ballistic targets like cannons or mortars, Flat
Earth Model is adequate. Therefore, it is preferred to use Flat Earth Model in this
study.

1.2.3. Reentry

The two main forces acting on the targets in reentry phase are the gravity and the

drag force.

a=ap+tag (1-6)

The drag force induced acceleration is given by,

a, =—§p(h>a Iviv (1-7)



where p is the air density, h is the target altitude, o is the drag parameter and v is the

target velocity.

The air density is generally estimated with an exponential function.

p(h)=ce™" (1-8)
where ¢,=1.227, ¢;=1.0931x10™ and p is given in kg/m®.

1.3. Motion Model Used In the Thesis

In this study, projectiles in endo-atmospheric flight are studied such as howitzers,
mortars and cannons which do not experience any thrust in any part of their
trajectory and these targets are informally called as short-range ballistic targets. For
this reason, some simplifications and assumptions are made in the models used. As a
result, the thrust force induced acceleration at in Eq. (1-1) disappears. For the gravity
of Earth, Flat Earth model is used and its magnitude is accepted to be 9.78m/s. The
target is assumed to be in a simplified boost phase. Therefore, ignoring the lift force
which is relatively small when compared to drag force, the projectile is subjected to

gravity and drag force and Eq. (1-1) simplifies to the following.

a= ag+ap (1-9)
The dynamics of the target and the measurement model used are explained in detail

in Chapter 2 and 3.

1.4. Outline of the Thesis

The outline of the thesis is as follows.

In Chapter 2, the aerodynamic forces and moments acting on ballistic targets are

explained and the major trajectory models for ballistic targets in the literature are



presented. In Chapter 3, tracking methodology, that is the motion and the
measurement model used in the thesis, is described. In Chapter 4, the tracking filters
used in the simulations are given. One cycle of the algorithms of the filters are
presented step by step. In Chapter 5, simulation results of the filters are presented
and their performances are discussed. In Chapter 6, the thesis is summarized and

conclusions about the results of the simulations are presented.



CHAPTER 2

DYNAMICS OF BALLISTIC TARGETS

The detailed information about the dynamics of ballistic targets is not open to general
public. The few sources that exist in the literature are used in the modeling of the
motion of a ballistic target in this study. Therefore, the information given in part 2.1

Aerodynamic Forces and Moments is mainly based on the references [2], [3] and [4].

2.1. Aerodynamic Forces and Moments

On a large scale, the trajectory of a symmetric, spinning projectile is determined by
the gravity of Earth, aerodynamic forces and aerodynamic moments if it is not
exposed to any thrust. Gravity of Earth is more deterministic and easier to estimate
when it is compared to the aerodynamic forces and moments. As it is illustrated in
Eq. (1-4), especially if the projectile will not perform any exo-atmospheric flight, the
variation in the magnitude of the gravity can be ignored. Therefore, the major
uncertainty in estimating the trajectory of a ballistic target is due to the aerodynamic
forces and moments acting on it. Some of the significant ones of these forces and

moments are explained below.



2.1.1. Drag Force

Drag force can be simply defined as the air resistance. Therefore, it is in the opposite

direction to the projectile’s velocity vector.

Drag force is given by the following equation.

Drag Force = —% pPSC W (2-1)

d?

where p is the air density, S = is projectile reference area, Cp is drag

coefficient, V is the scalar magnitude of the projectile velocity and V is the vector of
the projectile velocity. SCp multiplication can also be denoted as a which is called

the drag parameter given in Eq. (1-7).

The drag force is directly related to the velocity of the projectile relative to air.

Therefore, the effect of wind on drag force can be inserted as follows.

Drag Force = —% pPSCV (V W) (2-2)

where W is the vector of the wind velocity and VV =V —W |.

10
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Figure 2.1: Drag & Lift Force (Figure is adapted from [2])

The drag coefficient, Cp, varies with the Mach number of the projectile. Therefore,
drag coefficient versus Mach number curves are of great importance for ballisticians.
These curves are calculated according to projectile geometry and the measurements

made in wind tunnels, firing and spark photography ranges.

As it can be seen in Figure 2.1, the velocity vector V' and the direction in which the
projectile’s tip points are not the same. The angle o is called as the total yaw angle
or angle of repose and it is the resultant of the angle of attack (pitch) and angle of
sideslip (yaw). Due to this total yaw angle the drag coefficient can be further

decomposed as:

Cp =Gy, +CD§2 S5 (2-3)

11



where C, is called the zero-yaw drag coefficient, C zis called the yaw drag

D,
5

coefficient and 6=sin a; . Unless very exact results are aimed, ignoring total yaw

angle in drag coefficient calculations is reasonable.

Furthermore, the total yaw angle «; is not constant due to the epicyclic motion that
spin-stabilized projectiles perform. Epicyclic motion is the helical path of the nose of
the projectile around the velocity vector V.

A typical drag coefficient versus Mach number curve is given in Figure 2.2. Note

that at Mach 1 there is a highly nonlinear behavior of the drag coefficient which is

important when tracking high velocity projectiles.

0.7 =
pe 5.19 |
0.6 =
J f— 050 frpe—e 3272"9_‘_’J
0.12
0.5 4 /’Z‘OO/T_C
t { 2.34R
6
0.4
CD
0.3
0.2 M
0.1 -
0 | { T L L ]
1 2 3 4
MACH NUMBER

Figure 2.2: Drag Coefficient vs. Mach Number (Figure is adapted from [2])

2.1.2. Lift Force

Lift force is perpendicular to the trajectory and tries to pull the projectile in the

direction its nose is pointing. The equation that describes lift force is the following.

12



Lift Force = %PSCLa [V x (X x V)] (2-4)

where C_ is the lift force coefficient and X is the unit vector in the direction the

projectile’s nose points. The remaining variables are previously defined.

The angle of attack of the projectile can be negative due to the epicyclic motion. For
this reason, lift force need not be in upward direction as its name implies and in

ballistics lift force can also be called as the Cross-Wind force or the Normal force.

2.1.3. Overturning Moment

Overturning moment is the aerodynamic moment originating from the lift force.

Overturning Moment = %pv ’sdC,, (i xx) (2-5)

where d is the projectile diameter, C,, is the overturning moment coefficient and i

is the unit vector in the direction of vV )

i= (g] (2-6)

If the projectile is non-spinning, fins are added to the tail of the projectile. In this

way, overturning moment is controlled by the tail lift induced by the fins.

2.1.4. Spin Damping Moment

Spin damping moment tries to reduce the axial spin continuously and it is given as

the following equation.

p

Spin Damping Moment = % oV 25d (pvd)q % (2-7)

13



where CLp is the spin damping moment coefficient and p is the axial spin rate usually

measured in radians/sec. and positive for right-hand spin.

Spin damping moment is in the direction of X. Therefore, according to the

convention of the vectors given in Figure 2.1, CLp should be negative since spin

damping moment tries to decrease the axial spin.

2.1.5. Magnus Force

Spinning bodies experience Magnus force due to Magnus Effect named after the
German physicist Heinrich Magnus. As an object spins in a viscous fluid such as air,
a boundary layer is formed around itself [5]. This boundary layer of air possesses
different velocities on the forward-moving side (Point A) and backward-moving side
(Point B) (See Figure 2.3). The velocity of boundary layer of air due to spin is added
to the velocity of the wind, Vy, on the backward-moving side and subtracted on the
forward-moving side. According to Bernoulli’s theorem, fluid pressure is small at the
points where fluid speed is high. Therefore, the difference in velocity of air at points
A and B results in a pressure difference and produces the Magnus force from the
forward-moving side to the backward-moving side. The direction of this force is
from A to B as it is shown in Figure 2.3.

1 .,..(pd -
Magnus Force = Epv S [VJCNM (i xx) (2-8)

where CNpa is the Magnus force coefficient.

C,,, Is negative according to the direction of the Magnus Force vector given in
Figure 2.4.
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Figure 2.3: Spinning Body Moving in Air

It is obvious from Eq. (2-8) that if the total angle of yaw is zero or the projectile does

not spin, the Magnus force will be zero.

The magnitude of the Magnus force acting on spinning projectiles is much smaller
than that of acting on low-velocity spinning bodies. Thus, it can be neglected in
exterior ballistics calculations. However, Magnus force results in Magnus moment

which has great influence on the stability of spin-stabilized projectiles.

15



P

—_—

C s
NJ“'TO
<

£ Magnus Force

Magnus Moment

Y

Figure 2.4: Magnus Force and Magnus Moment (Figure is adapted from [2])

2.1.6. Magnus Moment

The Magnus moment is defined as the following equation:
1 ., pd o
Magnus Moment = E,oV Sd v Cy,, [Xx (i xX)] (2-9)
where C,, is the Magnus moment coefficient.

Similar to center of gravity, a point in the projectile can be defined as the center of
pressure. This is the point to which the observed force should be applied in order to

obtain the observed moment.

The center of pressure and center of gravity locations on projectiles are different. It
should also be noted that lift force and Magnus force centers of pressure are also not
the same point. Generally, lift force center of pressure lies between the nose and

center of gravity, while Magnus force center of pressure is located between the tail
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and center of gravity. According to the convention of vectors in Figure 2.4, Magnus
force is negative. Thus, since Magnus force center of pressure is close to the tail,
Magnus moment vector given in the figure shows the correct direction of the Magnus

moment.

Looking from the aft, the tip of the projectile generally points to right during the
epicyclic motion of the projectile. This situation results in a drift to right at the
impact point in long range artillery fire. The lift force drags the projectile to right
since its nose usually points to right (See Figure 2.4 — Projectile rotating clockwise).
For a counter-clockwise rotating projectile the same amount of drift will be observed
to the left. According to [4], the drift of the projectile can be simply approximated by

the following formula.

drift = d, (ToF)? (2-10)

where ToF is the total time of flight and d, is a constant parameter for the projectile

in consideration that is ranging between 0.1 and 0.12.

2.1.7. Pitch Damping Force

The pitch damping force is defined by the following equation.

. . 1 dx\) 1 dX di
Pitch Damping Force == pVSdC,, | — |+=pVSdC,, | — —— -
Ping ¥ M(mj 27 W[dt mj (2-11)

where CNq and C, are pitch damping force coefficients due to q: and ¢, .

The pitch damping force vector given in Figure 2.5 is true for positive pitching

angular velocity. The parameter q; is called the total transverse angular velocity.

G =ya+r (2-12)

where q is pitching angular velocity and r is yawing angular velocity.
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gt and ¢, are small and close to each other in magnitude. For this reason, they are

generally assumed to be the same and this assumption simplifies Eq. (2-11) as the

following.
Pitch Damping Force = 1 VSd(C, +C, ) o
p g - 2 p Ng N, dt (2_13)
Z
t
Pitch Damping Force qt
X,
& IT..-—-—’ f}
1‘“.)(;109.'( -
o Pitch Damping Moment
X

Y

Figure 2.5: Pitch Damping Force and Pitch Damping Moment (Figure is adapted
from [2])

2.1.8. Pitch Damping Moment

Pitch damping force is much smaller than the drag or the lift force and it is usually
neglected. However, like the Magnus moment, pitch damping force induced pitch

damping moment is crucial for the stability of spin-stabilized projectiles.
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Similar to pitch damping force calculation in Eq. (2-13), assuming that g; and ¢, are

the same, pitch damping moment is defined as.

Pitch Damping Moment = %pVSd 2(CMq + CMM)(Y( X %j

dt (2-14)

where CMq and C,, are pitch damping moment coefficients due to g; and ¢, .

The sum (CMq +CMd) should be negative for the stability and this is usually the case.

2.2. The Vacuum Trajectory

According to Newton’s 2™ law, the general differential equation of motion for a

projectile can be defined as follows.

dVv . =
mE:2F+mg+mA (2-15)

where m is the mass, V is the velocity vector, F is the aerodynamic forces, § is the

gravity and A is the acceleration due to Coriolis effect.

The vacuum trajectory suggests the simplest possible motion model. As its name
implies it provides the trajectory of a body flying in vacuum. Hence, all the
aerodynamic forces and moments are zero. It is applicable to short range firing. For
this reason Coriolis acceleration can also be omitted. Consequently, Eq. (2-15)

simplifies to,

dt (2-16)
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Figure 2.6: The Vacuum Trajectory

As it is seen in Figure 2.6, the trajectory is symmetric with respect to the symmetry
axis passing through the apogee of the trajectory. It is obvious that the trajectory can
be studied in two-dimensional coordinates. The knowledge of the initial velocity, Vo,
and angle of departure, &y, makes it possible to estimate the whole trajectory using
Eq. (2-16).

2.3. The Point Mass Trajectory

The point mass trajectory, also called as the particle trajectory, is a more realistic
model for the dynamics of ballistic targets than the vacuum trajectory. The term
“point mass” or “particle” implies a non-spinning projectile whose complete mass is

moving as a mathematical point in space.

The significant aerodynamic forces acting on ballistic targets are the drag force, the
lift force and the Magnus force [2]. However, if the angle of repose is small, the lift
force and the Magnus force can be neglected according to the Egs. (2-4) and (2-8).

The trajectory is shaped by the gravity and the drag force since the projectile is
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assumed to be a non-spinning point mass and no angle of repose exists. The Eq.

(2-15) simplifies to the following.

dv _
mEZZFD +mg (2-17)

where Fp is the drag force. The point mass trajectory with the flat-fire approximation

is examined in the following section.

2.3.1. Flat-Fire Point Mass Trajectory

The flat-fire approximation holds if the trajectory is close to the x-axis everywhere.

Naturally, this constraint is valid if Vy is close to Vin magnitude. Thus, the main

assumption in flat-fire approximation calculations is |V |= V.

4

&»

=

’ - 4

Figure 2.7: The Flat-Fire Point Mass Trajectory

Assuming that there is no velocity component other than Vi and V..

VeV = WV2+V7 =V, 14V, IV,)? (2-18)

If right hand side of Eq. (2-18) is expanded in binomial series the following is

obtained.
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V=V, [1%(\/2 IV,)? —%(\/z IV,)* +} (2-19)

It is clear from Eq. (2-19) that if |Vi/Vy<10™?, the magnitude of V differs from V, by

less than 0.5%. V,/Vy ratio gives the tangent of the angle, ¢, between the trajectory

and the ground. Therefore, if ¢ < 5.7° everywhere on the trajectory, the flat fire

approximation holds theoretically. However, in practice the angles smaller than 15

degrees is permissible [2].

2.3.2. Six-Degrees-of-Freedom (6-DOF) and Modified Point Mass

Trajectories

When compared to flat-fire point mass trajectory, six-degrees-of-freedom (6-DOF)
trajectory is a rather sophisticated model in which all the forces and moments
mentioned in part 2.1 Aerodynamic Forces and Moments are taken into
consideration. The projectile is assumed to move in the Cartesian coordinates x, y, z
and to rotate about roll, pitch and yaw axes. In other words, the motion has six
degrees of freedom. If complete ballistic parameters for a projectile are present, one
can obtain the most accurate possible trajectory solution using 6-DOF differential

equations of motion [2].

The high frequency pitching and yawing motion of the projectile can only be
calculated if small integration time steps are used. This high computation load has
lead to modified point mass trajectory where epicyclic pitching and yawing motion is
assumed to be slow everywhere along the trajectory. It is also observed in 6-DOF
calculations that yaw of repose varies slowly along the trajectory and it can be

assumed that its derivative, ¢, , is equal to zero (See Figure 2.5 for «, ). Using these

two assumptions and neglecting the relatively small pitch damping force, 6-DOF

differential equations are refined and the modified point mass trajectory is obtained.
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The differential equations defining 6-DOF and the modified point mass trajectories
for a spinning projectile are given in Table 2-1 and Table 2-2. The modified point
mass trajectory differential equations are obtained after a considerable simplification
which can be found in [2].

Table 2-1: Differential equations of motion for 6-DOF trajectory (Table is adapted

from [2])
6-DOF Trajectory
dv  pVSC,.- pSC. oo pSdCy (1Y L oo
— = V+ <[V X(XXV)]+——=| = |[heX (X XV )+:--
dt 2m 2m [V ) 2m I, ( )( )
VSd(C, +C _ -
--+p (ZN“ N“")(hx>”<)+g+A
m

dn _pvisdC, . _\ pVSI’C_ . | Mow (& o .
E_Z—Iy(l xx)+T(h-x)x+T(h-x)[\/—(V-x)x]+--~

X X

pVSd?(C,,. +ch)[_ dy()
...+ 2I XX_

y

where m is the projectile mass, 1, is the projectile axial moment of inertia, I, is the

projectile transverse moment of inertia about any axis through the center of mass, h
is the vector angular momentum divided by 1 , and A is the Coriolis acceleration

vector. The remaining variables are defined previously.
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Table 2-2: Differential equations of motion for the modified point mass trajectory
(Table is adapted from [2])

The Modified Point Mass Trajectory

/ . pV?sC SdC -
Z_\t/:_p\;SCDV+p 5 = o?R+p 5 Yo p(Vx dg)+G+A
m m m
dp RY
_p:_,o pC,
dt 21 P

X

where « is the angle of repose calculated according to the assumptions of the

modified point mass trajectory. Computation of o, can be found in [2].
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CHAPTER 3

TRACKING METHODOLOGY

In order to predict the trajectory of a ballistic target, a motion model should be
constructed and the predicted trajectory should be updated according to the
measurements of the target and the measurement model. In this chapter, these models
and the assumptions made while obtaining them are explained. The models presented

will then be used in the tracking filter which will perform the trajectory estimations.

3.1. Motion Model

According to point mass approximation, the significant forces acting on the projectile
are the gravity and the drag force as it is given in Eq. (2-17). However, inserting the
drag force into the motion model is somewhat troublesome due to the nonlinear
behavior of the drag coefficient with the Mach number of the projectile. Therefore,
the drag coefficient should also be included in the state vector and should be
estimated together with the trajectory. The other aerodynamic forces are neglected
due to their relatively small magnitude and the nonlinear relationship between them
and the angle of repose which is impossible to measure. The drift effect of the lift

force is included in the model by the approximation given in Eq. (2-10).

The trajectory is estimated in Cartesian coordinates based on a flat, non-rotating
Earth. Since gravity and drag force are the major forces considered, the target is

assumed to be in the reentry phase or in the boost phase with no thrust.

25



Let x, be the target position vector and x, be the target velocity vector. The drag
parameter o is equal to S.Cp (S = projectile reference area, Cp = drag coefficient)
and it is assumed to change slowly between the successive time steps of the tracking

filter. Using Eq. (1-7), the state equations describing the system is obtained as

follows.
dx
e 3-1
praiai’ (3-1)
dx, 1
N o_g_= -2
it Zpalxlev (3-2)
da
—:O 3'3
o (3-3)

However, using the Eqgs. (3-1) through (3-3) as the motion model of the filter is not
trouble-free due to the large differences in magnitudes of xp, Xy and «. It is

problematic to tune the filter parameters, to propagate covariance matrices and to
perform measurement updates since a~10’3(kg/m2) while || x, ||=10%(m/s) and
%, lI~ 10* (m). For this reason, the ballistic coefficient 4 is typically used in the filter

instead of ¢ [6] [16] [17].

B=a (3-4)
Furthermore, due to the poor linearization properties of g, the following change of

variable is done and Af is estimated in the filter.
a=p"=pF" -6t AB (3-5)

where 3, is a reference ballistic coefficient and Af is the deviation of the actual

value from the reference value that is modeled as a new state variable. An initial

value to A, is assigned while starting the filter, and Af is dynamically updated. The

resulting differential equations describing the system are as follows.

dxp
e _ 3-6
at X, (3-6)
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K_g 2 a-ix1x

i 925" 4 (3-7)
dAB _ ]
=0 (3-8)

Consequently, the filter is run with the following state vector, x. The differential
equations Eq. (3-6) through (3-8) can be rearranged and written in continuous time as
itis given in Eq. (3-10).

x=[x x y v z z AS] (3-9)
x| X 1707
% —i(l—%)«/x%y%zzx u,
28, B
y y 0
dx d| . yo, AB\ 2 o2 2.
—=— = ——(Q-—)YX+y +12 u, -
s atl V Zﬁo( ﬂo) y y ; (3-10)
Z 7 0
2 g—i(l—M)afxﬁy%zzz u,
28, B
AB] | 0 | [Uag ]

where x, y, z are the position. X, Y,z are the velocity of the target in Cartesian

coordinates and the last term, u, is zero-mean white Gaussian noise vector injected

for modeling the neglected forces and moments.

3.2. Discrete Time Motion Model

The motion model given in the previous section should be converted to a discrete
time model since the measurements are taken in discrete times. A natural way of

obtaining the discrete time motion model is to integrate the derivative of the state in
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between two consecutive radar measurement times. However, integration is not easy
because of two reasons. First, the differential equation is not linear so integration can
only be done numerically. The second reason is that it is stochastic. Solution of the
stochastic differential equations is beyond the scope of this thesis. In the following
part of this section, the numerical solution of the deterministic, (i.e., the process
noise is assumed to be zero) continuous time state equation will be given. This will
also serve as the ‘predicted’ state in the filtering application. Consideration of the

process noise will later be described.

3.2.1. Prediction of the State with Discrete Time Model

Since the motion model is nonlinear, the discrete time conversion step will
correspond to the solution of the nonlinear differential equation given in Eqg. (3-10).
In this study, 4™ order Runge-Kutta method is used to iterate the state in time. The
procedure explained below is the application of 4™ order Runge-Kutta method to our

problem.

Let the current time be k. Then, x

a1 Will be predicted, i.e., its expected value is

calculated using the following equations.

1
Xes = FX 1 K E(kl +2k, + 2k, +k,) (3-11)
. }
i ) A 0 0
1 At O O O 0 O 2 0 o
01 00 0 00O At
At?
0 01 At O 0O 0 - 0
F=0 0 0 1 0 0 0|, K= o At 0 (3-12)
0 00 0 1 At O ,
At
0 000 0 10 0 0 -
0 0 0 0 0 0 1] 0 0 At
|0 0 0 |

28



) _
SR
[, At 1
1 =000 00
2 % 0 0
01000 00 "
0 0 1 % 0 0 0 0 4 0
Far =0 0 0 1 0 0 of =] % 0
At
000 0 1 =0 2
2 0 0 A_t
000 0 O0 1 0 A8t
0 0 0 0 0 0 1] 0o 0 =
0 0 0|
0 " X (2
Cle_czxk (5) X (7) k( )
k= 0 |- 2 1- 4 )y % (202 + %, (8)2 + % (6)%)| ¢ (4)
-9.81 0 % (6)
Xy, = Far X + KKy Xe =X
0 . X (2)
ce C2%my (5)
=| 0 |- 0 )(\/x (27 + %, (87 + %, (6))] X, (4)
—9.81 0 . ©)
X, = Frare % + Kpa K,
0 Cle—czxmz(s) %) X (2)
k=l 0 |- 24 (- mz )(\jx (27 + %, (42 +X,, (6)*)| X, (4)
~9.81 0 . ©
X, = FX + Kk,
0 Cle—czxm3(5) () X (2)
k,=| 0 |- 27 a- m3 )(\/x (2) + X, (4)% + X, (6)?)] X, (4)
~9.81 0 . ©
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kq is the slope at the beginning of At, that is, the result of Eq. (3-10) when the noise

is omitted.

ko is the slope at the middle of At, which is calculated using Euler's method with

slope Kj.

ks is the slope at the middle of At, which is calculated using Euler's method with

slope Kka.

ks is the slope at the end of At, which is calculated using Euler's method with slope
Ks.

The drift of the projectile is also calculated in every time step according to Eq. (2-10)

where d, is set to 0.11. For this reason, the total time of flight of the projectile is

updated and kept in every time step.

3.2.2. Computation of the Covariance Matrix of the State and Discrete

Time Process Noise

The angle of repose of the projectile varies slowly with time as it is observed from
the trajectories obtained in real world [2]. Therefore, the noise vector in Eg. (3-10)
i.e. the neglected forces and moments, which are closely related to the angle of
repose, also vary slowly with time. Besides, the sampling period is on the order of
milliseconds for projectile tracking radars. Thus, it is assumed that the ‘noise’ and
the Jacobian matrix F of Eq. (3-10) is constant during the sampling period and the

covariance matrices are calculated under these assumptions.

The covariance matrix of the state can be obtained from the sigma points if
unscented Kalman filter is used. For the extended Kalman filter case, however, the
Jacobian of the differential state equations (Eqg. (3-10)) is calculated and the

covariance matrix of the state is updated as follows.
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o, ()

= (3-21)
aXJ" X=X_1
@, , =e™ (3-22)
Pklk—l = (Dk—lpk—ﬂk—lq)l—l + Qk—l (3-23)
where @, , is the state transition matrix, B_,, , is the state covariance matrix at time

k-1, Q,_, is the covariance matrix of the process noise which is obtained by the
method described below. Note that Q, , is also used in the filters other than the
extended Kalman filter whose algorithms are given in Chapter 4.

As explained in the previous section, 4™ order Runge-Kutta method solves the

nonlinear deterministic differential equation in the time interval [k-1, K]. Let Eq.

(3-11) be written in the following form.

X =Dy Xy +Wey (3-24)
where w, , is a white Gaussian noise. The probability density function of w, , can be

obtained by calculating its mean and the covariance matrix. It is clear that the mean

is zero. However, the computation of the covariance of w,_, is not trivial. According

to the continuous-time differential equation Eq. (3-10), the following integral should

be evaluated in order to determine the covariance matrix Q, ;.

Qs =cov(w, ;)

—E{[ | 01, HOEUEAE | Ot E)GENWENET Y

tea 0%

(3-25)

where u is the noise vector which is the last term in Eq. (3-10) and G is the matrix
given in Eq. (3-30). Since the noise is assumed to be white-Gaussian, Eq. (3-25)
simplifies to Eq. (3-27) given below.
Eu@u'(}=0 if&=¢ (3-26)
tic
Q.= | @t HGEOE{UE (E)JGT (D' (t,,)dE (3-27)

ta
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According to [7] and [8], a systematic way of computing Eqg. (3-27) is to compute the

matrix exponential of the following matrix A.

-F

c

Il
O O O O O o o
O O O o o+~ O

®

I
O O O o o o o
O o o o r o

0

O O O O o o o

O O O O O o

0

GUG'

O O O O O O

o O r O O O

0

FT

O O O O O o o

O O O O o o

0

At

O r O O O O O

o B O O O O O

O O O O O o

100 |

P O O O O O O

(3-28)

(3-29)

(3-30)

where U is the power spectral density matrix for u and F is the Jacobian of Eq.

(3-10). The derivative of the position is equal to the velocity. Therefore, the noise

vector u contains zeros which imply that the position of the target is modeled

perfectly and there is no need for the noise (See Eg. (3-10)). For this reason, the

diagonal elements of U which are related to the position of the target are zero.

Moreover, the diagonal element of U which corresponds to Af is set to 100 because

of the relatively high uncertainty in the drag parameter.

Let the matrix B is defined as the matrix exponential of A and it is equal to the

following matrix [7].
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Qs

B=e?=|... (3-31)

0 : @,

Then, the covariance matrix of the noise is calculated by using the upper-right and

lower-right partitions of B.

3.3. Measurement Model

Measurements are assumed to be taken by radar as range, bearing and elevation.

Hence, they are related to the states by the following equations.

r=JyX®+y+2° +v, (3-32)

0=tan™ Gj v, (3-33)

- _1 Z
¢ =sin (—2 — J—H/Vj (3-34)
«fx +y +z
where r, 6 and ¢ are range, bearing and elevation measurements of the radar. v, ,

v, and v, are radar measurement errors in spherical coordinates with standard

¢

deviations o,, o, and o,. The errors are assumed to be white zero-mean Gaussian.

The measurements are in spherical coordinates while the state vector is in Cartesian
coordinates. Therefore, they are not linearly related to each other as it is observed
from the equations above and nonlinear measurement update should be done by the
tracking filter. However, extended Kalman filter type linearization techniques
produce bias due to measurement nonlinearities. To eliminate the bias, the unbiased
converted measurement method which is a popular technique for tracking in

Cartesian coordinates is used [9].
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3.3.1. Unbiased Converted Measurements in 2D

The basic idea of unbiased converted measurements is explained in 2D in detail since
it is much easier to understand. The results for the 3D case are also given in the

succeeding section. [9]

Let the measured range and bearing be r, and &, .

r,=r+v, (3-35)
0,=0+v, (3-36)
where rand @ are the true range and bearing while v, and v, are zero-mean

measurement errors with standard deviations o, and o, .

X, =I,C0sE, (3-37)
Y, =r,sing, (3-38)
where X, and Y, are the classical converted measurements which are biased due to

the nonlinear transformation. Taking the expectation of x_, , we have.

E{x,}=E{(r+v,)cos(8+v,)}
= E{(r+v,)(cos@cosv, —singsinv,)} (3-39)
Assuming that v, and v, are independent random variables and have symmetric
probability density functions about v=0.
E{v,}=0. E{sinv,}=0 (3-40)
E{x,}=E{rcosécosv,}
= A,rcosd (3-41)

where A, = E{cosv,}.
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Similarly,
E{y,}=4,rsin@ (3-42)
However, it is clear that 4, #1 and Egs. (3-37) and (3-38) are biased. If it is assumed

that the measurement errors are independent and possess symmetric probability

density functions about v=0, the unbiased converted measurements are.

x: =2,'r, cos6, (3-43)
ye =4 sing. (3-44)

On the other hand, finding the uncertainty in X and Yy, is a relatively more

difficult problem. In practice, the measurement errors are on the order of
milliradians, so it may be thought that bias removal is not crucial. Indeed,
determining the covariance matrix properly for X, and Yy, is more important than
their being biased. For instance, let the range and bearing of a target be 5000 meters

and 30° which are measured by a radar that has a 16 measurement error of 2mrads.

Then, the classical and unbiased converted measurements are the following.

X, =TI, cos6, =5000cos(30) =4330.127m (3-45)
Yo, = I, sing, =5000sin(30) = 2500m (3-46)

Xo =A,'r, cosd, =4330.135m (3-47)

Yo = 4,1, sin@, =2500.005m (3-48)

It is clear that the difference between the classical and the unbiased conversion is

insignificant for small measurement errors. (Note that 2, calculation is omitted in

the above equations. The detailed information about determiningA’s is given in
Chapter 3.3.3.)

If rand @ are known, the exact covariance matrix of X, and y,, can be calculated

by evaluatingvar(x. [r,0), var(y |r,6) and cov(x.,y. |r,6). Although the
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measured range and bearing are not equal to r and &, a quite accurate covariance

matrix can still be obtained as follows [9].

| Ry Ry
"= |:R21 sz (349)

R, =var(x, |r.,6,)
=E{[4,'r, cos®, —rcosd)|r. .0}
=E{[4,"r, cos@, —(r,—Vv,)cos(8, -V, |r,. 0.}

=(4,°—2)r’cos’ O+ % (r’ +o%)(1+ 4, cos 20.) (3-50)

R22 = Var(y; | rm ! gm)
=E{[4,'r,sing, —rsin0) |r,, 0.}

= E{[/?ﬂ;lrm sin em _(rm _Vr)Sin(em _VQ)]Z | r-m’em}
= (4,7 -2)r’sin’ 0, +%(rr§ +07)(1- 4, c0s26,) (3-51)

R, =cov(X., Y. |T..6,)
=E{(4,"r, cosd, —rcosO)(A,'r, sing, —rsind)|r .60}

=(4,°-2)r’cosf_sing, +%(rj +07)A,sin 20 (3-52)
where 4, = E{cosv,}and A, = E{cos2v,}.
The intermediate steps of the derivations of Egs. (3-50) through (3-52) can be found

in [9].

3.3.2. Unbiased Converted Measurements in 3D

In the measurement update of the tracking filter, conversion from spherical to the

Cartesian coordinates can be done by using the unbiased converted measurements in
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3D. Measurements taken in spherical coordinates are transformed into Cartesian

coordinates in an unbiased fashion which is given below.

Xo = Ay A, T COSO, COS G, (3-53)
Yo =252, T siNG, cOS ¢, (3-54)
Z,=2,T,sing, (3-55)

where 2, = E{cosv,}, 4, = E{cosv,}.

The covariance matrix of the measurements in Cartesian coordinates is calculated by

the following equations [9].

Ry R. Ry
R=IRy Ry Ry (3-56)
R, R, R

31 32 33

R, =var(x, |r.,6. ,4.)
= ((44,)* - 2)r’ cos® 4, cos’ ¢,

1., > , (3-57)
+Z(r’” +0o7)1+4,c0s26, )1+ /1; €0S24,.)
R, =var(y,|r..0.,4.)
= ((44,) 2 —2)r%sin’ 9, cos’ g,
1., , , (3-58)
+Z(rm +07)(1- 2, €026, )(1+ 4, c0s 24,
R33 = Var(zgn | r.miem’¢m)
= (42 =2)rsin’ ¢, +%(r; +0?)(1- 4, c0s24,) (3-59)
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R12 = R21 :COV(Xrl:]’ yrl:I | r-m1(9m’¢m)
= ((44,) " —2)r;sin g, cos g, cos’ ¢,

1, (3-60)
+Z(rm +0,)4,8In 20, (1+ 4508 24, )
R13 = R31 :COV(X:N Zrl:1 | rm"gm’¢m)
= (44" =25 — A )r; cOS G, sing, cosg,
o (3-61)
+E(rm +0,) 4,4, 086, sin24, )
R23 = R32 :Cov(y:w Z?n | r.m’é)m’¢m)
= (42" = A" = 2,)rasing, sin g, cosg,
(3-62)

+% (rs +07) A2, 5iN 6, sin 24, )
where 1, = E{cos2v,}, 4, = E{cos2v,}.

3.3.3. Compensation Factor Computation for Unbiased Converted

Measurements

A’s, which are also called as the compensation factors of unbiased converted

measurements, are calculated using the moment generating function of Normal

distribution N(z,o°) given below.

ty+102t2

My () = Efe"}=e " 2 (3-63)

Then, the expected value of cosv, is calculated as follows.
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vy — vy ) )
E{cosv,}= E{%} = % (E{e}+E{e ™})

1 1
LR

t=] t=—j

%

=e ? (3-64)
Remaining compensation factors are also calculated by the approach given above.

The results are given in Table 3-1.

Table 3-1: Compensation Factors for the Unbiased Converted Measurements

>  A,=E{cosv,}=e ?

%
> A, =E{cosv}=e ?
> A =E{cos2v,}=e?"

> A =E{cos2y}= g 2%
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CHAPTER 4

FILTERS USED IN THE SIMULATIONS

In Chapter 3, a discrete time model of the motion of the projectile is obtained as a
nonlinear equation written as the numerical integral of the continuous time equations.
The nonlinear equations relating the state vector to the measurements are also
presented in the previous chapter. The nonlinear motion and measurement models

resulted in the need of working with nonlinear filters.

The tracking methodology is applied to simulations by four different filters: the
extended Kalman filter (EKF), the unscented Kalman filter (UKF), the particle filter
(PF) and the marginalized particle filter (MPF). The details of these four filters are

given in this chapter.

4.1. The Kalman Filter

Before talking about the extended and unscented Kalman filters, it is appropriate to
give some information about the Kalman filter. The Kalman filter is a widely used
tool for the estimation of linear discrete-time dynamic systems expressed in the

following form.

X = F Xt Wy (4-1)

Y = Hi X +V, (4-2)
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where x is the state vector, F is the transition matrix, wis the discrete-time process

noise, y is the measurement, H is the measurement model matrix and v is the

measurement noise [10].

In every time step of the Kalman filter, the state estimation is composed of time
update and measurement update. Time update is the step where the state and the
measurement are predicted. The predicted state is then corrected in measurement
update step according to the measurements [11], [10]. In the following two sections,
the time update and the measurement update are explained in accordance with the

tracking methodology which is presented in the previous chapter.

4.1.1. Time Update

The ballistic target tracking problem is first modeled in continuous time and then,
this model is converted to discrete time. So the time update stage of the problem
basically uses the integration of continuous time solution of the differential equation
of the state where the noise vector is omitted. In other words, it is the computation of

E{X. | E{X,_,}}. The procedure given in Chapter 3.2. Discrete Time Motion Model’
is used for the time update stages of all the filters in concern.

Measurement prediction is a straightforward conversion to spherical coordinates after
the state is predicted in the UKF. There is no conversion for the measurement

prediction in the EKF since measurement update is done using the unbiased

converted measurements technique.

4.1.2. Measurement Update

Unlike the time update, measurement update is linear for EKF since unbiased
converted measurements are used. The measurement update for the unscented

Kalman filter, however, is nonlinear and it is performed by the help of unscented
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transform. The details of the algorithm are given in Chapter 4.3. The Unscented

Kalman Filter’.

4.2. The Extended Kalman Filter

The extended Kalman filter is a very widely used estimation algorithm for nonlinear
systems. It is obtained by the linearization (a series expansion) of the nonlinearities

in the dynamic system.

Since the system described by the Egs. (3-10) and (3-32), (3-33), (3-34) is nonlinear,
a first order EKF is used in the simulations. The second order EKF includes second-
order correction terms and it gives better results theoretically. However, computation
of second derivates is rather difficult and error-prone. Moreover, the sampling time
of projectile tracking radars are so small that the system is almost linear between two
consecutive measurement times. Therefore, a first order EKF is quite sufficient for

this study. The EKF algorithm is summarized in Table 4-1 where z, is the

measurement at time k.

Table 4-1: The Extended Kalman Filter

[Xk|k ) Pk\k] = EKF [Xk—ljk—l’ Pk 1 z,]

e Calculate x,, , using x, ,, , and 4™ order Runke-Kutta. (Eq. (3-11))
e Calculate B, ;. (Eq. (3-23))
e Convert the radar measurement z, to Cartesian coordinates and calculate its

covariance matrix, R (Egs. (3-53) through (3-62))

e Calculate x,, and B, (ordinary Kalman filter measurement update).
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4.3. The Unscented Kalman Filter

The unscented Kalman filter is based on unscented transformation which was
developed as a method to propagate mean and covariance information through
nonlinear transformations [12]. A set of points, which are called as the sigma points,
are chosen in such a way that the mean and covariance computed from these points
are equal to the actual mean and the covariance matrix. The crucial point here is that
the nonlinear function is applied to the sigma points individually and the sigma
points are turned into transformed points. The mean and the covariance of the
transformed points are the estimates of the state or the measurement after the

nonlinearity is applied.

Although the methodology seems to be the same as that of particle filters, the sigma
points make all the difference. Contrary to the particles in the particle filter, sigma
points are drawn deterministically and they can possess weights that are out of the
range [0, 1]. The sum of these weights is equal to 1 which is the same for particle

filters.

After the weights of the sigma points, W, and W_, are determined, the unscented

Kalman filter algorithm given in Table 4-3 is applied. The sigma point selection
method used in this study is given in Table 4-2. 2n+1 sigma points are drawn

according to this method where n is the dimension of the state vector.
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Table 4-2: Sigma Point Selection Method (SPSM) [11]

[Xli<—:uk—1] = SPSM [Xk—uk—l' Pk—:uk—l]

o A=a’(n+k)-n

o WO =2/(n+A1)

W =A/(n+A)+L—a®+p)

WO =@1-W?)/2n i=1,...2n
WO = @1-W.?)/2n i=1,..2n
XIE(i)]Jk—l = X _qka

° Xﬁi,)uk,l =X qka T \/(n +4) (\/Pk—l]k—l )i i=1..n

° Xlﬁi_)uk_l = Xi_aka _\/(n +4) (\/Pk—uk—l)i i=ntl,....2n

where o, B and k are the parameters of the method and (‘/Pk_uk_l)i is the i

column of the matrix B_,, ;.

Note that the square root of a positive definite matrix is given as A:«/E where
P =AA". If the matrix square root A of P is of the form P = A" A, then the sigma
points should be formed from the rows of ‘/PHH [12].
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Table 4-3: The Unscented Kalman Filter

[Xk|k ) Pk\k] = UKF [Xk—]Jk—l’ Pk z,]

e Generate the set of sigma points according to the sigma point selection

algorithm given in Table 4-2 and obtain Xli—ﬂk—l s from x g ;-
e Calculate xi, ,’susing x_,, ,’s and 4" order Runke-Kutta (Eq. (3-11)) and
obtain the predicted mean 4, , = Zp:Wm ()X, Where p=2n+1.
i=1
o Calculate the predicted covariance matrix.
Pk =Qc + iZ::Wm (%2 = A1 H M1 — s} - (See Egs. (3-28) through

(3-31) for Q,)
e Calculate the predicted measurements, ziklk,l ’s, for the sigma points and their

mean, 2,,,, using the Egs. (3-32), (3-33), (3-34) and the vector W, .

L CAP T YRS SUACCH
e Calculate the measurement prediction covariance matrix.
S, =R, WLZE)l“WC(i){zqu_l — 2y HZgs— 2y} (See Egs. (3-56) through
(3-62) for R, .)
e Calculate the cross covariance matrix.
Ry = W0~ Helys =2y Y

e Calculate x,, and B, .

-1 5
K¢ = nysk Vi =4 — 4

Pk|k = Pk|k—l =Ky Sy KkT X = /&k|k—l + Ky,
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4.4. The Particle Filter

The particle filter is a numerical approximation to nonlinear Bayesian filtering which
performs sequential Monte Carlo estimation. In PF approach the probability density
function is represented as point masses or particles as the filter’s name implies. The
method followed for this purpose is called as the sequential importance sampling
which represents the probability density by a set of random samples with associated

weights. Filtering is done using these random samples and weights [13].

The particle filter algorithm given in Table 4-4 is based on Gaussian optimal

importance function which is given for a system represented by

X = fk—l(xk—1)+Wk—l (4-3)
Yo = Hia X+ (4-4)
Here, state dynamics is nonlinear and given by the function f which corresponds to

the numerical solution of a differential equation by 4™ order Runge-Kutta method.
The measurements taken in spherical coordinates are converted into Cartesian

coordinates using unbiased converted measurements technique. w, , and v, are
assumed to be mutually independent zero-mean white Gaussian noise whose

covariance matricesare Q and R.

Stated in other words, the importance density and p(z, |x _,) are assumed to be

Gaussian and given by the following equations [13].

P(X | X 1, Z) =N (X a,Z,) (4-5)
p(z, | X 1) =N (z;b,,S,) (4-6)

where a,, b,, X,, S, are given in Table 4-4.
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4.4.1. Degeneracy Problem and Resampling

The variance of the weights of the particles can only increase in time [13]. This
increase results in the degeneracy problem which means that after some time the
normalized weights of a few particles approach to a reasonably large positive value
while the others have negligible weights. In order to avoid the degeneracy problem,
resampling is required which eliminates particles with negligible weights and
multiplies particles possessing relatively high weights. The resampling algorithm
used in this study is given in Table 4-5.

As it is seen in Table 4-4, resampling is performed after a threshold value, N,,,
exceeds the number of effective samples, N, . Although the threshold is determined

as N in this study [14], still it can be chosen as a different value. If computation load

of the filter is of no significance, N, can be set to N which is equal to the upper
bound of N, . In this way, resampling can be performed in every time step of the

filter.

It should also be noted that resampling in every time step may decrease the sample
diversity and decrease the filter performance (sample impoverishment). However, in

the simulations it is observed that the performance of PF does not decrease by setting

N, = N for our tracking problem. Contrarily, it is observed that the filter performs

better if the particles are resampled in every time step. Still, in Table 4-4, the check
for the number of effective particles is included for the completeness of the particle

filter algorithm with Gaussian optimal importance function.
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Table 4-4: The Particle Filter with Gaussian Optimal Importance Function [13]

[ W] = PR X w1 2]

e FORIi=1:N \\ N= number of particles
> Pick x| from q(x, | x._,,z)=N(X;a,,%,) where
a, = f_,(x_)+Z.H R*(z, —b)
2 =Qy —QuuHy STH Qe
S, =H,Q_,H, +R,
b =H, fi (%)
> W oc Wy P(Z | %)

e ENDFOR

N

e Calculate total weight T =>", .
i=1

e FORIi=1:N

W
» Normalize W,'(:?k

e ENDFOR
» Calculate the number of effective samples N, = — and Ny, =N.
2 (W)’
i=1
° IF Neff = Nthr
> [{x, W, ]=RSMPL[{x, , w, }",] \\ See Table 4-5
e ENDIF

Note that using the Gaussian optimal importance function makes it possible to update
the importance weights before the particles are propagated in time. The nonlinear

function f,_,(x_,) is numerically calculated by using 4" order Runge-Kutta as it is

done in EKF and UKF algorithms.
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Table 4-5: Resampling Algorithm [13]

[{4 WL I=RSMPLIE, wibL ]

C, =W,

FOR j=2:N

> ¢ =c,+w

END FOR

Pick u, ~U [0,1]
N

j=1

FOR i=1:N

i-1
> U=U+—
N

> WHILE u;>c,

> j=]+1
> END WHILE

X, =X/
1
> wWo=—
N

END FOR

\\ Initialize cumulative sum of weights

\\ U represents the uniform distribution.

\\ Start from the first o

4.5. The Marginalized Particle Filter

As the dimension of the state vector increases, the particle representation becomes
too sparse to represent the posterior distribution of the state [14] [13]. In other words,
the performance of the particle filter decreases with increasing state dimension. In

order to overcome this problem, the marginalized particle filter is proposed which
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partitions the state into two as linear and nonlinear and applies the particle filter

solution to the nonlinear part [14].

In this thesis a marginalized particle filter is proposed where the state vector given in

(3-10) is divided into two parts as follows.

" y
=yl x= ) (4-7)
Z
L AB

| n
where *« and %« are informally linear and nonlinear parts of the state. Note that both
parts of the state vector possess nonlinear behavior so it is not possible to apply the

existing algorithms.

Similar to the previous algorithms presented, the time update of both the linear and
the nonlinear parts is performed by 4™ order Runge-Kutta method. The nonlinear part
of the state is represented by particles and an EKF is applied to each particle in order
to obtain the posterior of the linear part since it is not truly linear. The MPF

algorithm is given in Table 4-6 where B/ represents the covariance matrix of x| at

time k.
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Table 4-6: The Marginalized Particle Filter with Gaussian Optimal Importance
Function [14]

[, WY, R 1= MPF [{x ,,w 3} P",z]

e FORIi=1:N
> Pick x; from q(x, | x ,,z,)=N(X;a.,XZ,) where
a, =f_,(x)+ZH/R*(z, —b)
% =Q1 —QH{SH,Q
S, =H. Q. H, +R,
b =H, fi . (%)
> W e W, p(Z | % q)
» Pick x',’s from x!_ ’s and pick its covariance matrix P}
> X, RUT=EKF X, B, 2]
e END FOR

o Insert the linear state x;' into x| ’s

N

o Calculate total weight T =", .
i=1

e FORI=1:N

W
» Normalize w'k:?k

e ENDFOR
e Calculate the number of effective samples N, = — and N, =N.
2w’
i=1
® IF Neff = Nthr
> [ W, ]=RSMPL[{x ,w/}",] \\ See Table 4-5
e ENDIF

51




CHAPTER 5

SIMULATIONS AND DISCUSSION

The tracking methodology and the algorithms that are used for ballistic target
tracking are given in the previous chapters. In this chapter, the estimates of these

algorithms and their performances will be discussed and compared.

5.1. Target Scenarios

In the simulations, the measurements are produced based on the data taken from a
software which is able to produce 6-DOF trajectories of different kinds of
ammunitions. The target trajectories are assumed to be taken from four kinds of
simulated radars and the ground truth data obtained by this program is disturbed by

adding zero mean Gaussian noise.

5.1.1. PRODAS V3

The filters mentioned in Chapter 4 are run using predetermined target scenarios. In
other words, the measurements of the radar are fed to the filter offline. In this study,
these measurements are based on PRODAS V3 (Projectile Rocket Ordnance Design
& Analysis System), a computer program running on Windows OS. This program is

used in simulating test firings, projectile modeling and estimating aerodynamics and
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stability. PRODAS V3 can compute 4 or 6 degrees of freedom projectile trajectories
[15].

The ground truth data from PRODAS V3 is given in Cartesian coordinates and it is
converted to ‘radar measurements’ by inserting noise. Before the noise is inserted,
this data is converted to spherical coordinates since radar measures the position of
the target in this coordinate system. All of the simulations are performed with radar
measurements that are assumed to be taken in spherical coordinates. The drag

parameter curves of the projectiles are also obtained from PRODAS V3

5.1.2. Radar Measurements

In order to observe the performance of the filters, 4 simulated radars with different
measurement errors are assumed to exist. 16 measurement error of the radars is given
in Table 5-1. In practice, Radar 1 and 2 are not realistic as projectile tracking radars
because of their small measurement frequency. However, for comparing the

performances of the filters they are somewhat good examples.

Table 5-1: Measurement Frequency and Measurement Error of the Radars

Measurement lc Range lo Bearing &
Frequency (Hz) Measurement Error Elevation Error
Heney (meters) (degrees)
1
e ' 10 (~17.5mrad)
0.1
recr® ' 10 (~1.75mrad)
Radar 3 10 10 1
(~17.5mrad)
0.1
e v 10 (~1.75mrad)
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All of the radars given in Table 5-1 are assumed to have a probability of detection of

0.9 in the simulations.

P,=0.9 (5-1)
In case the measurement of the target is not obtained at a particular time step, the
filter is not run and the state estimate is calculated using the previous state estimate
and 4™ order Runge-Kutta method. In other words, the state is propagated to the next

time step using the previous estimate.

Apart from the radars given in Table 5-1, it is assumed that an additional radar exists
with 100 Hz measurement frequency. This radar is denoted as Radar 5 and it is used
for drag parameter estimation simulations. 1 ¢ measurement error of Radar 5 is equal

to 10 meters for range and 0.1° for bearing and elevation.

5.1.3. Obtaining the Target Scenarios

Three ground truth data is obtained from PRODAS V3 for 40, 35 and 25mm
projectiles according to 6-DOF trajectory. The trajectories are for the above 3
projectiles fired at 30° elevation and they are given the name Target Scenario 1, 2
and 3 respectively. The curve given in the following figure, for example, is the
ground truth data for Target Scenario 2 and the measurements from Radar 2 are the
stars. The projectile is launched from the ground at 90° bearing and 30° elevation.

Note that the grids for x, y and z axes are not identical in the figure.
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Target Scenario 2 - 35mm projectile fired from the origin with 30° elevation
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Figure 5.1: Target Scenario 2 - 35HEI_MSDCartridge

5.1.4. Performance Evaluation

The filter performances are compared with Monte Carlo simulation using the 3 target
scenarios and the set of radars given in Table 5-1. In every run of the Monte Carlo
simulation, the ground truth trajectory is disturbed with a new zero-mean Gaussian
noise to obtain the current measurement. The filter’s estimation error is calculated by
comparing the state estimate with the ground truth. Root-Mean-Square Error

(RMSE) of the state estimate is the main criterion of performance evaluation. It is
calculated as follows.

11
RMSE = \/EZ((Xk =X+ =Y ) + (@ -7T)) (5-2)
k=1

Mc n=l =
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where N,,. is the number of Monte Carlo runs and K is the number of time steps in

the target scenario. xZ™, y°" and z°" are the ground truth data while x,, y, and z,

are the position estimates of the filter at time k.

The RMSE results for EKF and UKF are obtained after 1000 Monte Carlo runs while
the ones for PF and MPF are obtained after 100 Monte Carlo runs. This is due to the

high computation load of particle filters.

5.2. Filter Initialization

In order to create a fair comparison, the filters are started using the same method to
obtain the initial state and state covariance matrix. After converting the first two data
of the radar to Cartesian coordinates, all of the filters are initialized with the

following state vector and the covariance matrix related to it.

Xo=[X V, y V, zV, 0 (5-3)
Ry O R, 0 R; 0 0]
0 62 0 0 0 0 0
R, 0 R, 0 R, 0 O
Po={0 0 0 o/ 0 0 O (5-4)
R, 0 Ry, 0 R, 0 O
0 0 0 0 0 o 0
0 0 0 0 0 0 o

where x, y and z are the radar measurement taken in second time step. V,, v, and V,

are the velocity estimations of the target using the first two radar measurements.

They are obtained by dividing the distance covered by At. &7 is the variance of the

velocity in Cartesian coordinates. o2

»s 15 the variance of AS. and R;'s are obtained
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from the Egs. (3-56) through (3-62). o, and o7 are set to 10000 and 1000

\

respectively.

For Radar 1 and 2 the perceived motion of the projectile is quite nonlinear at the very
beginning of the trajectory. This is due to two reasons. First, the projectile that is
close to the muzzle experiences huge drag force since the velocity is at its maximum.
Second, the measurement frequency of Radar 1 and 2 is 1 Hz which increases the
nonlinearity of the motion since sampling period is relatively large. For this reason,
at the initialization of the particle filter simulations with Radar 1 and 2, the particles

are drawn from a Gaussian distribution whose mean and covariance are x_ . and

00

10R,, in order to deal with the high nonlinearity.

Apart from the state variables, there is also one more parameter to be set before filter

initialization which is the £, of Eq. (3-5). The reference ballistic coefficient f,

should be selected close to a for the filter to converge to the true parameter as soon
as possible. It is known that the drag parameter o of spin-stabilized projectiles is on

the order of 10 [2]. Therefore, B, is set to 1000 for all the simulations. Note that

the deviation of the actual value from the reference value is Af and it is estimated by

the filter.

5.2.1. Number of Particles in PF and MPF

Particle filter’s accuracy is definitely a function of number of particles used in the
filter. However, the increase in the number of particles makes the filter impractical
since it increases the computation load significantly. Therefore, particle filter’s
performance is observed for a set of number of particles for Target Scenario 2
tracked with Radar 2. The mean of the RMSE curves given in the following figure

are obtained after 100 Monte Carlo runs.
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RMSE of PF - Target Scenario 2
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Figure 5.2: Target Scenario 2 — PF RMSE (100 Monte Carlo Runs)

It is observed that the performance of the filter at the beginning of the trajectory is
directly related to the number of particles. However, it is also seen in Figure 5.2 that
the performance does not differ much after a few steps from the filter initialization.
Moreover, the RMSE results in Table 5-2 show that the performance improvement is
insignificant after the number of particles exceed 10000. Thus, keeping the
computation load in mind, the number of particles for PF and MPF in the simulations
is set to 10000.
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Table 5-2: RMSE of PF for Target Scenario 2 (Radar 2)

Number of Particles PF-RMSE (meter)
500 particles 19.83
1000 particles 18.46
5000 particles 17.65
10000 particles 17.13
20000 particles 1751
30000 particles 17.01

5.3.  Simulation Results

The performances of the filters mentioned in Chapter 4 are evaluated by Monte Carlo
simulation. The performance evaluation of all of the filters for the target scenarios 1

to 3 are presented in this section.

In order to obtain the possible best results, the power spectral density matrix for the
noise which is given in Eq. (3-29) is multiplied by a scaling factor in every particular
tracking simulation. In this way, the most suitable process covariance matrix
calculation for the filters is obtained for each individual filter. These scaling factors

are determined beforehand again by Monte Carlo runs.

Note that the time of flight and maximum range of the three projectiles are not the
same. In other words, the target scenarios are quite different from each other.
Therefore, the RMSE results are presented at separate tables for the three target

scenarios.
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5.3.1. Target Scenario 1

Target Scenario 1 is the trajectory of 40mm projectile launched at 30° elevation. The
muzzle velocity of the projectile is 871m/s which is the smallest among the three
target scenarios. Therefore, Target Scenario 1 possesses relatively the most linear
trajectory and the RMSE of the trajectory estimation is the smallest. The RMSE

results of the estimation obtained by Monte Carlo simulation are given in Table 5-3

below.
Table 5-3: RMSE for Target Scenario 1
EKF-RMSE UKF-RMSE PF-RMSE MPF-RMSE

(meter) (meter) (meter) (meter)
Radar 1 41.87 40.99 78.34 72.98
Radar 2 14.05 12.58 15.76 15.56
Radar 3 14.62 14.33 24.14 23.83
Radar 4 5.87 551 6.35 6.42

It is observed from Table 5-3 that UKF performs the best for all of the cases. PF and
MPF perform relatively poorly due to several reasons. In order to prevent
degeneracy, resampling is done at each step in PF and MPF algorithms. However,
since the actual process noise has low power, sample impoverishment problem
occurs. To overcome this problem process noise covariance is unrealistically
enlarged. Such an approach gives poor estimations as the results show. As a future
study a new technique should be generated to prevent sample impoverishment.
Moreover, the large dimension of the state decreases the performances of PF and
MPF [14]. However, it should be stated that partitioning the state decreases the
RMSE of PF as MPF’s performance is superior to that of PF according to the results
given in the table. Even though PF and MPF are run with 10000 particles whose

computation load is enormous, the RMSE of these filters are the biggest.
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It is also clear that the RMSE of all of the filters increases inevitably as the
measurement frequency of the radar decreases. This is because the increase in
measurement frequency decreases the nonlinearity of the target’s perceived motion.
Moreover, it enables the filter to estimate the same trajectory with a larger number of

measurements.

The RMSE results of the filters obtained for Target Scenario 1 tracked with Radar 2
is given in Figure 5.3. The given error curves represent the mean of the error curves
obtained after Monte Carlo simulation for a particular filter. As it is mentioned
earlier, the curves for EKF and UKF are obtained after 1000 Monte Carlo runs while
the curves for PF and MPF are obtained after 100 Monte Carlo runs. One more time,
it can be seen in Figure 5.3 that UKF has the minimum RMSE. PF and MPF, on the
other hand, perform almost the same. The slight difference is due to the relatively

fast convergence of MPF when it is compared to PF.

RMSE of the Filters - Target Scenario 1 Tracked by Radar 2
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Figure 5.3: RMSE for Target Scenario 1 Tracked by Radar 2
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5.3.2. Target Scenario 2

Target Scenario 2 belongs to the 35mm projectile fired at 30° elevation with a
1170m/s of muzzle velocity. The ground truth trajectory for this scenario can be seen

in Figure 5.1.

The RMSE of the trajectory estimations obtained with this scenario is given in Table
5-4. It is observed that the general trend of the results is almost the same with the
ones obtained for Target Scenario 1 in Table 5-3. The only difference is that the error
values increased in Target Scenario 2 because of the increase in the nonlinearity of

the projectile motion.

Table 5-4: RMSE for Target Scenario 2

EKF-RMSE UKF-RMSE PF-RMSE MPF-RMSE
(meter) (meter) (meter) (meter)
Radar 1 52.55 42.93 89.48 88.46
Radar 2 16.50 12.83 17.13 16.23
Radar 3 17.36 16.39 29.04 27.03
Radar 4 6.98 6.43 7.82 7.34

The RMSE results for UKF where the target is tracked with Radar 2 are given in the

figure below. The figure is obtained after 1000 Monte Carlo runs.
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Figure 5.4: Target Scenario 2 — UKF RMSE (1000 Monte Carlo Runs)

It is clear in Figure 5.4 that the standard deviation of the error decreases first and
then increases again towards the end of the trajectory. The first decrease is due to the
decrease in the uncertainty of the state as radar measurements are received. At time
step 20, it reaches its minimum with 4.48. However, at time step 44 it increases to
6.26 as the measurement errors in Cartesian coordinates increase with the increasing
range of the projectile. For all of the filters, the behavior of the standard deviation of

the errors is approximately the same as the one given in Figure 5.4.

5.3.3. Target Scenario 3

Target Scenario 3 is the trajectory of 25mm projectile launched at 30° elevation. The
muzzle velocity is 1090 m/s. Although the muzzle velocity is less than that of 35mm,

it is observed that the trajectory of 25mm projectile possesses more nonlinear motion
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especially in the first three seconds of its flight. The velocity curves of all of the

projectiles studied are given in the figure below.
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Figure 5.5: Velocity of 25mm, 35mm and 40mm Projectiles

It can be seen in Figure 5.5 that in the earlier parts of the trajectory, the velocity of
25mm projectile decreases sharply and the motion is quite nonlinear when it is
compared to the trajectories of 35mm and 40mm. As a result, the performances of PF
and MPF approach the performance of EKF which performs worse due to severe
nonlinearity. Moreover, for some cases of Target Scenario 3, PF and MPF are
superior to EKF as it is seen in Table 5-5. It is clear that UKF performs the best with
the smallest RMSE as in the case of Target Scenarios 1 and 2. However, contrary to
the results obtained for Target Scenarios 1 and 2, EKF has larger RMSE than PF and
MPF for the projectile tracked by radar 2, 3 and 4.
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Table 5-5: RMSE for Target Scenario 3

EKF-RMSE UKF-RMSE PF-RMSE MPF-RMSE
(meter) (meter) (meter) (meter)
Radar 1 55.73 34.69 63.45 61.59
Radar 2 14.51 11.93 13.35 12.91
Radar 3 23.61 15.38 21.69 20.71
Radar 4 8.19 6.75 6.94 6.87

The particle filter performs quite well in low-dimensional state space [14]. However,
after examining the RMSE results given for Target Scenarios 1 to 3, it is observed
that for most of the cases, UKF and EKF outperform PF and MPF as a result of the
relatively large state dimension [14] [13]. Still, it should be noted that the particle
filter algorithms given in this thesis can be improved since we believe that poor
performances of the PF and the MPF are due to the artificial increase of the process
noise covariance to prevent sample impoverishment. Sample impoverishment
problem is a hot topic in particle filter literature that some results can be applied to

our problem [18].

Among the algorithms presented in this work, UKF performs obviously the best for
all of the target scenarios. If the PF and MPF are put aside, this result can be
explained as follows. The time update of UKF uses unscented transform with 4"
order Runge-Kutta, while the time update of EKF uses Taylor series expansion with
4" order Runge-Kutta. UKF performs nonlinear measurement update where EKF has
linear measurement update thanks to the unbiased converted measurements.
Consequently, as the nonlinearity increases, the performance of EKF decreases

considerably and UKF performs better.
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5.3.4. Drag Parameter Estimation

As it is given in Chapter 2, drag parameter versus Mach number curves are extremely
nonlinear (See Figure 2.2). In other words, the drag parameter varies continuously
throughout the trajectory. In order to estimate it properly, the measurement frequency
of the radar should be high. For this reason, the drag parameter estimation simulation
is made by tracking the projectile with Radar 5 whose measurement frequency is

assumed to be 100Hz.

The drag parameter, «, of the projectile is indirectly estimated since A is in the

state vector together with the position and velocity of the projectile (See Eq. (3-5)).
S, » Which does not change throughout the simulation, is set to 1000 and A is set to

0 in the filter initialization as it is mentioned previously. According to the value set

to 5, and Eq. (3-5), the correct value of Ag can be calculated from the drag
parameter curves obtained from PRODAS V3. In addition to the estimated AS

curve, the curve for the correct Af is also given in Figure 5.6 below.
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Figure 5.6: Target Scenario 1 tracked by Radar 5 — PF — Af Estimation

As a drag parameter estimation example, A/ curve obtained by the PF is given in
Figure 5.6 for the Target Scenario 1 tracked with radar 5. It is clear from the figure
that when the measurement frequency is high, the drag parameter of the projectile
can be estimated effectively. Thus, it is observed that if drag parameter curves of

various projectiles are available, the target can be identified from its AS estimations.

5.3.5. Effect of Drift Calculation on Filter’s Performance

Spin-stabilized projectiles are subjected to significant lateral drift, especially in long
range firing. For instance, the drift of the projectile in Target Scenario 2 can be
observed in Figure 5.7. Although the projectile is fired at 90° bearing, the impact

point of the projectile drifts 208 meters in x axis.
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Lateral Drift in Target Scenario 2
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Figure 5.7: Target Scenario 2 (X-y view)

The drift of the projectile is simply approximated by Eq. (2-10) in the simulations.
The results given on the left column of Table 5-6, for example, are obtained for UKF
where drift calculation is not taken into account. It is clear that the performance of
the filter decreases without drift correction especially for Radar 1 and 3 which have
relatively large measurement errors. In the simulations, similar results are obtained
for the other filters as well. Therefore, it is observed that if the measurement error of
the radar is large, drift calculation should be considered in order to improve the
filter’s performance. Note that if the projectile is not spin-stabilized, there is no need

for drift calculation in the filter since the projectile will not experience any drift.
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Table 5-6: RMSE of UKF in Target Scenario 2 — Effect of Drift Correction

RMSE of UKF with Drift RMSE of UKF without Drift
Correction Correction
(meter) (meter)
Radar 1 42 .93 53.84
Radar 2 12.83 13.20
Radar 3 16.39 38.63
Radar 4 6.43 7.51
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CHAPTER 6

CONCLUSIONS

In this thesis, ballistic target tracking problem is examined and four recursive
estimation algorithms are studied in this context. The dynamics of ballistic targets is
presented and the nonlinear system is estimated using extended Kalman filter,
unscented Kalman filter, particle filter and marginalized particle filter. The
performances of these filters are compared by Monte Carlo simulation using 6-DOF

target trajectories.

Initially, the forces and moments acting on ballistic targets are given in detail. Then,
the motion of the projectile is modeled considering the drag force and gravity which
are the main factors determining the trajectory of a short-range ballistic target. The
state vector is determined by augmenting the usual vector that contains the position
and velocity of the target with a parameter called as AS in order to estimate the drag
force effectively. Unbiased converted measurements are reviewed since the
measurements of projectile tracking radars are in spherical coordinates while the

position and the velocity of the target are in Cartesian coordinates in the state vector.

After the state space model is described, the aforementioned possible four techniques
for tracking short-range ballistic targets are presented. First, brief information about
the Kalman filter is given. Then, the extended Kalman filter, which is probably the
most widely used estimation algorithm for nonlinear systems, and the unscented

Kalman filter are introduced. Thereafter, the particle filter and the marginalized
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particle filter algorithms used in the thesis are presented. One cycle of all of the

algorithms are given step by step in tables.

In order to measure the performance of the filtering techniques presented, 6-DOF
projectile trajectories that are provided by PRODAS V3 are used. Since it is desired
to see filter performances in a variety of situations, the targets are assumed to be

tracked by four different simulated radars with different specifications.

One of the important and expected results of the simulations is that the RMSE of
estimations of all the filters decreases as the frequency of the measurements
increases. This is because the nonlinearity of the perceived motion decreases with
decreasing sampling period and the trajectory is estimated with more measurements

as the measurement frequency increases.

It is found that the most accurate filter is the unscented Kalman filter with the
smallest RMSE in all target scenarios. Better performance of the UKF compared to
EKF is expected especially at the highly nonlinear regions of the state equation. The

unexpected, but reported result [17] is the poor performance of the particle filters.

Measurement update is nonlinear in UKF while it is linear in EKF where unbiased
converted measurements are used for the conversion from the spherical coordinates
to the Cartesian coordinates. The time update, on the other hand, is performed by
sigma points in UKF with the help of unscented transform and 4" order Runge-
Kutta. EKF uses linearization (a series expansion) of the nonlinearities and 4™ order
Runge-Kutta for the time update. Consequently, UKF gives better trajectory
estimations than EKF as it is verified by the Monte Carlo simulation.

The reasons for the poor performances of the particle filters can be described as

follows.

The dimension of the state vector is large for particle filter to represent the posterior
distribution of the state effectively. Marginalized particle filters aim to overcome this

problem. Accordingly, it is observed that the performance of the particle filter
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improves when the state vector is partitioned and marginalized particle filter is used.
However, in the context of our tracking problem, the performance of MPF is still
inferior to that of UKF. We believe that this result is due to the mismatch of the
actual process noise power and the one that is used in the simulations to overcome
the sample impoverishment problem. The artificial increase of the process noise
power obviously generates a deviation from the correct model that may cause such
degradation in the performance. Sample impoverishment problem is a well known

problem that is still hot in the particle filter literature [18].

Lateral drift of the spinning projectile is approximated by a simple formula in the
simulations. It is observed that this simple correction to target dynamics resulted in a
remarkable improvement especially when the measurement error of the radar is

relatively high.

As a future work, the tracking algorithms can be modified so that when the radar
measurements of a particular segment of the target trajectory are available, the
impact point or the launching point of the projectile is estimated. For these purposes,
one can benefit from 4" order Runge-Kutta method in a similar approach used in this
work. If a library for various projectiles can be constructed, the type of the projectile
can be identified by the drag parameter estimations. Again as a future work, PF and
MPF algorithms presented in this thesis can be studied further. These algorithms
have several variations and they are open to improvement. Therefore, it wouldn’t be
wrong to say that better results can be obtained for PF and MPF than the ones
presented in this thesis. Moreover, the method applied for filter initialization can also
be modified in order to decrease the time required for the filter to converge and in
this way the RMSE of the filters can be reduced. Finally, in order to see the effect
of the observer’s location, the simulations made for this study can be repeated with
different simulated radars that are observing the target in different locations other

than the origin.
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