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ABSTRACT

BOUNDING PROCEDURES ON BI-DIRECTIONAL LABELING ALGORITHM OF
TDVRPTW IN BRANCH-AND-CUT-AND-PRICE FRAMEWORK

Kökten, Selen

M.Sc., Department of Industrial Engineering

Supervisor : Assist Prof. Dr. Cem İyigün

Co-Supervisor : Prof. Dr. Tom Van Woensel

September 2011, 98 pages

In this thesis we consider a Time-Dependent Vehicle Routing Problem with Time Windows

(TDVRPTW) which is solved by a Branch and Cut and Price (BCP) algorithm. The decompo-

sition of an arc based formulation leads to a set-partitioning problem as the master problem,

and a Time-Dependent Elementary Shortest Path Problem with Resource Constraints (TDE-

SPPRC) as the pricing problem. The main contribution of this thesis is the modified fathom-

ing and bounding procedures applied on bi-directional Time-Dependent Labeling algorithm

(TDL) which is used solve the TDESPPRC. The aim of the fathoming proposed is to solve

TDVRPTW more efficiently by not extending the unproductive labels in bi-directional TDL

algorithm. Moreover, an arc bounding model is introduced to stop the extension of labels as

an alternative to resource bounding used in bi-directional search. In addition, independent

from the work on TDVRPTW, the thesis includes an effects analysis of a new customer on

Kuehne+Nagel(K+N) Netherlands Fast Moving Consumer Goods (FMCG) and returns distri-

bution network. This study focused on analyzing the current performance of the distribution

network and evaluating the scenarios for K+N’s future distribution network by a simulation

study.
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ÖZ

DAL-VE-KESME-VE-DEĞER ALGORİTMASI ÇERÇEVESİNDE ZAMANA BAĞIMLI
ZAMAN PENCERELİ ARAÇ ROTALAMA PROBLEMİNİN İKİ YÖNLÜ

ETİKETLENDIRME ALGORİTMASI ÜZERİNDE SINIRLANDIRMA YÖNTEMLERİ

Kökten, Selen

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Cem İyigün

Ortak Tez Yöneticisi : Prof. Dr. Tom Van Woensel

Eylül 2011, 98 sayfa

Bu çalışmada Dal-ve-Kesme-ve-Değer (DKD) algoritması çerçevesinde Zamana Bağımlı Za-

man Pencereli Araç Rotalama Problemi (ZBZPARP) ele alınmıştır. Problemin yay temelli for-

mulasyonunun ayrıştırılması sonucu, ana problem küme bölünme problemi ve yan problem de

Zamana-Bağlı Kaynak Kısıtlı Yalın En Kısa Yol Problemine (ZBKKEKYP) dönüşmektedir.

Bu tezin literatüre olan katkısı ZBKKEKYP’ni çözmek için kullanılan çift yönlü Zamana

Bağımlı Etiketlendirme (ZBE) algoritması üzerinde geliştirilen sınırlandırma prosedürleridir.

Sınırlandırma prosedürleri budama için sınırlandırma ve yay sınırlandırmasıdır. Budama

prosedürünün amacı iki yönlü ZBE algoritmasındaki üretken olmayan etiketlerin bulunup bu-

danmasının sağlanarak ZBKKEKYP’ni daha etkin bir şekilde çözmektir. Bunun dışında, kay-

nak sınırlandırmasına alternatif olarak etiketlerin genişletilmesini durduran bir yay sınırlandır-

ması modeli geliştirilmiştir. ZBZPARP için yapı lan çalışmadan bağımsız olarak, bu çalışma

Kuehne+Nagel (K+N) firmasının Hollanda’daki hızlı tüketim ve iade malları dağıtım ağındaki

yeni bir müşterinin etki analizini içermektedir. Mevcut dağıtım ağının analizi yapılmış ve yeni

müşterinin eklenmesiyle oluşacak olan gelecekteki dağıtım ağı için oluşturulan senaryoların

değerlendirilmesi amacıyla da simülasyon çalışması yapılmıştır.
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CHAPTER 1

INTRODUCTION

Logistics in general is concerned with the organization, movement and storage of material

and people. Over the years the meaning of the term has gradually generalized to cover busi-

ness and service activities. Providing the necessary subcomponents for manufacturing,having

inventory on the shelf of a retailer, having the right amount and type of blood available for

hospital surgeries are example of logistics activities. According to the definition of Council

of Logistics Management (CLM), Logistics is the process of planning, implementing, and

controlling the efficient, cost-effective flow and storage of goods, services, and related infor-

mation from the point-of-origin to the point-of-consumption for the purpose of conforming to

customer requirements. It is the one of the most important activities in modern societies. 8%

to 14% of the company sales in EU countries is devoted to total logistics activities, whereas

this percentage changes from 2% to 5% for transportation. According the annual report of the

companies in USA, the companies spent 63% of their logistics costs for transportation ser-

vices which move materials between facilities using vehicles and equipment such as trucks,

tractors, trailers, crews, pallets, containers, cars and trains. Among the transportation ser-

vices, freight transportation plays a key role in today’s economies as it allows production

and consumption to take place at locations very far from each other. Freight transportation

accounts for even two thirds of total logistics cost and has a major impact on the customer

service level. One of the most important decisions in freight transportation is the vehicle fleet

management. A warehouse supplies products to a set of retailers using a fleet of vehicles of

limited capacity. To answer the questions such as how to assign loads to vehicles or how to

determine the vehicle routes well defined mathematical models are constructed throughout

the years. But they are extremely difficult combinatorial problems in the class called NP-hard

problems. It is very unlikely to construct an algorithm that always finds the optimum in com-

1



putation time that is polynomial in the size of the problem. Hence heuristics or approximation

methods are employed most of the time to solve these problems. Especially meta-heuristics

is widely used to solve more difficult variants of these problems.(Ghiani et al., 2004) There

exists a trade-off between using heuristics and exact methods in terms of solution quality and

time if the problem can be solved by exact methods.

In this thesis, two different topics in logistics are introduced. First part is devoted to fathoming

and bounding procedures proposed to improve the solution of Time-Dependent Vehicle Rout-

ing Problem with Time Windows (TDVRPTW) solved by an exact method Branch and Cut

and Price (BCP) algorithm. In the framework of BCP, the pricing problem becomes a Time-

Dependent Elementary Shortest Path Problem with Resource Constraints (TDESPPRC) and

it is solved by bi-directional time-dependent labeling algorithm. Our motivation in this study

is to reduce the number of paths produced by the labeling algorithm to solve TDESPPRC.

We propose that the bounding procedure will speed up the BCP algorithm by decreasing the

number of labels produced in the part of bi-directional time dependent labeling algorithm. To

introduce the proposed methods, we first review the mathematical models for the well known

variants of the Vehicle Routing Problem (VRP) which are Capacitated Vehicle Routing Prob-

lem (CVRP) and Vehicle Routing Problem with Time Windows (VRPTW) in addition to the

TDVRPTW. Next, we review the solution methods exist in the literature for these problems.

In chapter 3, we introduce the solution methodology for TDVRPTW by (Dabia et al., 2011)

and after, in Chapter 4, the fathoming and bounding procedures are proposed for TDVRPTW.

The computational results for the proposed models are given in Chapter 5 and the first part

of the thesis is concluded in Chapter 6. Moreover, Chapter 7 is devoted to the second part of

the thesis in which we analyze the effects of a new customer on the FMCG and Returns dis-

tribution network of Kuehne+Nagel Netherlands. In this chapter, we present the analysis for

the current distribution network of the company and the simulation study performed to search

for the potential improvements in the future distribution network. The chapter is concluded

after presenting the simulation results accompanied by a brief conclusion and future research

directions for this study.
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1.1 THE VEHICLE ROUTING PROBLEM

The Vehicle Routing Problem (VRP) aims to deliver every customer’s demand from the home

depot with a homogenized fleet of vehicles by minimizing the total cost of the routes. Every

customer is visited only once and every vehicle starts and ends the route at the depot. Since

the fist formulation of the problem by Dantzig and Ramser (Dantzig and Ramser, 1959), the

problem has been studied with many variants. In this section, we will first formulate the

basic variant of VRP which is called as Capacitated VRP (CVRP) to distinguish it from other

variants of the problem. Then, Vehicle Routing Problem with Time Windows (VRPTW)

will be introduced. Finally, Time-Dependent Vehicle Routing Problem with Time Windows

(TDVRPTW), which is an extension of VRPTW, is described.

1.1.1 FORMULATION OF CAPACITATED VEHICLE ROUTING PROBLEM

The objective of CVRP is to minimize the total costs considering the following constraints:

• All customers should be visited only once,

• Sum of the customers’ demands in a route should be smaller than the vehicle capacity,

• Number of routes should be less than or equal to the number of vehicles;

given that

• Each customer has a deterministic demand qi and it cannot be split,

• The vehicle fleet has K identical vehicles,

• Each vehicle has a capacity Q.

There are alternative formulations for CVRP. We will introduce a vehicle flow model and the

set partitioning model by Toth and Vigo (Toth and Vigo, 2001b).

1.1.1.1 CVRP TWO-INDEX VEHICLE FLOW MODEL

The vehicle flow model of CVRP is formulated as integer linear programming on a complete

graph G(V, A) where V = {0, 1, ..., n} is the vertex set and A is the arc set. In the formulation, 0
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represents the depot and the set V\ {0} represents the customers. The cost of traveling on arc

(i, j) ∈ A is defined as ci j and these costs are asymmetric. The binary variable xi j takes value

1 if arc (i, j) is traversed by a vehicle, 0 otherwise. Given a customer set S ⊂ V\{0}, r(S ) is

the minimum number of vehicles needed to serve set S . ⌈∑ i∈S qi/Q⌉ is usually taken as the

lower bound on r(S ) where the demand of the depot q0 is 0.

minimize
∑
i∈V

∑
j∈V

ci jxi j

subject to∑
i∈V

xi j = 1 ∀ j ∈ V\ {0} (1.1)

∑
j∈V

xi j = 1 ∀i ∈ V\ {0} (1.2)

∑
i∈V

xi0 = K (1.3)

∑
j∈V

x0 j = K (1.4)

∑
i∈S

∑
j∈S

xi j ≤ |S | − r(S ) ∀S ⊆ V\ {0} , S , ∅ (1.5)

xi j ∈ {0, 1} ∀i, j ∈ V (1.6)

In the vehicle flow model, constraints (1.1) and (1.2) provides that only one arc enters and

leaves each vertex associated with a customer, respectively. Constraints (1.3) and (1.4) also

impose the degree constraints for the depot and can be modified to include less vehicles in

the solution. (1.5) are the well-known Generalized Subtour Elimination Constraints which

require that at least r(S ) arcs leave each customer set S . Figure 1.1 visualizes a solution for a

CVRP where the vehicle capacity is 15.

1.1.1.2 CVRP SET PARTITIONING MODEL

In the set-partitioning model, the aim is to select the minimum number of paths to cover

all customers given that the set of all feasible CVRP routes, Ω. In the formulation, Vc =

{1, 2, ..., n} is the set of customers. cp is the cost of traversing on the path p. The constant

aip is 1 if customer i is visited on the path p, 0 otherwise. The binary decision variable yp

takes value 1 if the path p ∈ Ω is included in the optimal solution, 0 otherwise. Based on
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Figure 1.1: A feasible solution for an example of CVRP

the description of the variables and parameters, the mathematical programming formulation

of the set partitioning model is given as follows:

P 1

minimize
∑
p∈Ω

cpyp

subject to∑
p∈Ω

aipyp = 1 ∀i ∈ Vc (1.7)

∑
p∈Ω

yp = K ∀p ∈ Ω (1.8)

yp ∈ {0, 1} ∀p ∈ Ω (1.9)

In Problem (P1), constraints (1.7) impose that each customer is covered exactly once. (1.8)

requires that exactly K routes are selected. However, this constraint can be modified to select

less than K routes or set K can be defined as unbounded. The set-partitioning model can be

adapted for many VRP models. We will refer to this formulation for other variants of VRP.
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1.1.2 FORMULATION OF THE VEHICLE ROUTING PROBLEM WITH TIME WIN-

DOWS

In the definition of VRPTW, all the constraints and assumptions for CVRP are valid. In

addition,

• Customers must be visited within their time windows,

given that

• Every vertex i has an associated time window [ai, bi] and a service time si,

• Hard time windows are considered which means that a customer must be visited within

specific time windows,i.e. an arc (i, j) is feasible if and only if ai + ti j + si ≤ b j.

• For each arc (i, j) ∈ A there is a defined travel time ti j.

Below, we provide the three index network flow model and the set partitioning model for

VRPTW.

1.1.2.1 VRPTW THREE INDEX NETWORK FLOW MODEL

VRPTW is formulated as mixed integer programming (MIP) on a complete graph G(V, A)

where V = {0, 1, ..., n, n + 1} is the vertex set and A = {(i, j) : i, j ∈ V} is the arc set. In the

formulation, the depot is represented by two different vertices such that 0 is the start depot and

n + 1 is the end depot. Hence,Vc = V\ {0, n + 1} represents the set of customers to be served.

The cost of traversing on an arc (i, j) is denoted as ci j. The sets γ+(S ) = {(i, j) ∈ A : i ∈ S }

and γ−(S ) = {(i, j) ∈ A : j ∈ S } represent the arcs leaving and ending in the customer set

S ∈ V\{0, n + 1}, respectively. They are shown as γ+(i) and γ−(i) instead of γ+({i}) and γ−({i}).

The decision variable xk
i j takes value 1 if arc (i, j) is traversed by the vehicle k. In addition, the

decision variable wk
i indicates the time when the service at vertex i starts if vertex i is visited

by vehicle k, it is undefined otherwise. In addition, for the sake of simplicity, xk(B) is written

instead of
∑

(i, j)∈B xk
i j for the set B. Following this notation, the mathematical programming

model for VRPTW is given below:
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minimize
∑
k∈K

∑
(i, j)∈A

ci jxk
i j

subject to∑
k∈K

xk(γ+(i)) = 1 ∀i ∈ Vc (1.10)

xk(γ+(0)) = 1 ∀k ∈ K (1.11)

xk(γ−( j)) = xk(γ+( j)) ∀k ∈ K,∀ j ∈ V\ {0, n + 1} (1.12)

xk(γ−(n + 1)) = 1 ∀k ∈ K (1.13)

wk
i + ti j + si ≤ wk

j + (1 − xk
i j)M ∀k ∈ K,∀(i, j) ∈ A (1.14)

ai ≤ wk
i ≤ bi ∀k ∈ K,∀(i) ∈ V (1.15)∑

i∈N
qixk(γ+(i)) ≤ Q ∀k ∈ K (1.16)

xk
i j ∈ {0, 1} ∀k ∈ K,∀(i, j) ∈ A (1.17)

wk
i ≥ 0 ∀k ∈ K,∀i ∈ V (1.18)

Constraint set (1.10) requires that a customer is visited by only one vehicle. Constraints (1.11)

ensure that each vehicle leaves the depot once. Constraints (1.12) guarantee that a vehicle k

can leave customer j if it enters to that vertex j, and vice versa. In constraints (1.13), it

is required that each vehicle returns to the depot once. Constraints (1.14) ensure the time

feasibility at the vertices where M is a large number. In addition, constraints (1.15) and (1.16)

ensure the feasibility with respect to time windows and capacity.

1.1.2.2 VRPTW SET PARTITIONING MODEL

VRPTW set-partitioning formulation is same as CVRP set-partitioning model (P 1) where K

route selection is not a constraint. In addition, the set Ω in VRPTW model represents all the

feasible routes for VRPTW. The constraints in the network flow model are included in the set

Ω. The number of feasible routes will be huge in number even for the medium sized problem

instances. Although the solution approach for VRPTW will not be discussed here, we will

elaborate more on the solution methodology of the set partitioning model of TDVRPTW in

the next chapters.
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1.1.3 PROBLEM DEFINITION: TIME-DEPENDENT VEHICLE ROUTING PROB-

LEM WITH TIME WINDOWS

TDVRP is defined by (Malandraki and Daskin, 1992) as follows: ”A vehicle fleet of fixed

capacities serves customers of fixed demands from a central depot. Customers are assigned

to vehicles and the vehicles routed so that the total time of the routes is minimized. The travel

time between two customers or between a customer and the depot depends on the distance

between the points and time of the day. Time windows for serving the customers may also be

given as well as maximum allowable duration of each route.” Accordingly, we will consider

TDVRP with time windows such that the service at the customers can only start within their

time windows.

The general properties and the assumptions in the formulation of TVRPTW are also valid for

TDVRPTW. However, any additional or different parameters and variables are defined in the

table below for the mixed integer programming of the problem.

Table 1.1: Description of Additional Variables and Parameters for TDVRPTW

δi(t) : Arrival time at node i given the dispatch time t at the depot
τi j(ti) : Travel time from node i to j given that the departure time at node i is ti
Zi j : Set of zones of the corresponding travel time function τi j(ti) for arc (i, j)
Zm : A zone ∈ Zi j defined by two breakpoints
θm : The slope of the the travel time function in the time zone Zm

ηm : An intersection with the y axis in the time zone Zm

Z+i j : Set of zones with θm > 0
Z−i j : Set of zones with θm < 0
wk

i (m) : Equals wk
i if the service at node i starts in time zone Zm, 0 otherwise

1.1.3.1 PROBLEM CHARACTERISTICS

VRPTW has been largely studied in the literature. However, scarce resource is found for the

time dependent characteristics of this problem. With the motivation of modeling VRPTWs

more realistically, time dependent characteristics is also considered in TDVRPTWs. In real

life, when traveling between two locations,the speeds of the vehicles change due to traffic

congestion. Therefore, the travel time between the two locations changes depending on the

time of the day. In this study, planning time horizon is divided into time zones to take into
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account the changing traffic congestion during the day and the speeds of the vehicles change

depending within the time zones. (Ichoua et al., 2003) introduced the time dependent travel

speed model to formulate time dependency in vehicle routing problems. The model holds

the ”first-in-first-out” (FIFO) assumption, that is from the two identical vehicles leaving the

same origin node for the same end nodes, the one which left the origin node at an earlier time

always arrives at the end destination earlier than the other vehicle. The main property of the

model is that the travel speed is a step function of the planning horizon. Therefore, speed

changes when the boundary between two consecutive time zones is crossed and the travel

time function turns into a stepwise continuous function of time as it is shown in Figure 1.2.

Hence, for any time within a time zone, travel time is computed by using the breakpoints of

the corresponding time zone.

Figure 1.2: Travel Speed and the corresponding travel time function (Ichoua et al., 2003)

As the travel times are time dependent, the arrival time of a partial path at an end node depends

on the dispatch time from the depot. Due to FIFO property of the time dependent travel speed

model, a later departure at the depot will always end up with a later arrival at the end node of

the path. Therefore, if a path is infeasible for a dispatch time t, it will also be infeasible for
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a later dispatch time t′ > t. Given a partial path with an end node i and parent node j, which

is directly visited before i, the arrival time function δi(t) of the partial path with the dispatch

time δ0(t) = t from the depot is calculated as in equation (1.19). The arrival time function

includes the service and waiting time at the end node visited.

δi(t) = δ j(t) + τ ji(δ j(t)) (1.19)

As the right hand side of the equation (1.19) is composed of piecewise linear functions, the

arrival time function can be represented by the arrival time function breakpoints. Moreover,

the optimal dispatch time from the depot to find the shortest duration of a path can also be

calculated by using the arrival time function breakpoints such that

t∗ = arg mint∈T {δi(t) − t} (1.20)

where T is the domain for the feasible dispatch times from the depot.

1.1.3.2 TDVRPTW ARC BASED MODEL

The definition of the sets, variables and parameters are analogous to the ones in VRPTW.

However, in the arc based formulation of TDVRPTW, an additional time zone index m is

added to the decision variables. The binary decision variable xk
i j(m) takes value 1 if arc (i, j)

is traversed by the vehicle k and the departure time from node i is within time zone Zm.

wk
i (m) indicates the time when the service at vertex i starts if vertex i is visited by vehicle k if

xk
i j(m) = 1 and it is undefined otherwise. It is assumed that the demand at the start and end

depot is zero and the set of vehicles K is taken as unbounded. Following the descriptions in
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Table 1.1, the mathematical programming model for TDVRPTW is given below:

minimize
∑
k∈K

∑
(i, j)∈A

|Zi j |∑
m=1

(θmwk
i (m) + ηmxk

i j(m))

subject to∑
k∈K

xk(γ+(i)) = 1 ∀i ∈ Vc (1.21)

xk(γ+(0)) = 1 ∀k ∈ K (1.22)

xk(γ−( j)) = xk(γ+( j)) ∀k ∈ K,∀ j ∈ Vc (1.23)

xk(γ−(n + 1)) = 1 ∀k ∈ K (1.24)

(1 + θm)wk
i (m) − si + ηm ≤

minimizennnwk
j(m) − s j + (1 − xk

i j(m))M ∀k ∈ K,∀(i, j) ∈ A,∀m ∈ |Zi j| (1.25)

wk
i (m) ≥ wk

i − (1 − xk
i j(m))M ∀k ∈ K,∀(i, j) ∈ A,∀m ∈ |Z+i j| (1.26)

wk
i (m) ≤ min(wk

i ,Mxk
i j(m)) ∀k ∈ K,∀(i, j) ∈ A,∀m ∈ |Z−i j| (1.27)

ai + si ≤ wk
i (m) ≤ bi + si ∀k ∈ K,∀(i) ∈ V (1.28)∑

i∈N
qixk(γ+(i)) ≤ Q ∀k ∈ K (1.29)

xk
i j(m) ∈ {0, 1} ∀k ∈ K,∀(i, j) ∈ A,∀m ∈ |Zi j| (1.30)

rm ≤ wk
i (m) < rm+1 ∀k ∈ K,∀i ∈ V,∀m ∈ |Zi j| (1.31)

Constraint (1.21) requires that each customer is visited by one vehicle. Constraints (1.22)

ensure that each vehicle leaves the depot once. Constraints (1.23) guarantee that a vehicle

k can leave customer j if it enters to that vertex j, and vice versa. In constraints (1.24), it

is required that each vehicle returns to the depot once. With (1.25) the time feasibility at

the vertices is ensured. In addition, constraints (1.26) and (1.27) put bound on the value of

wk
i (m) in case the departure from vertex i is at positive and negative slope region, respectively.

Finally, inequalities (1.28) and (1.29) ensure the feasibility with respect to time windows and

capacity.

1.1.3.3 TDVRPTW SET PARTITIONING MODEL

In the set partitioning model of TDVRPTW, Ω represents the set of all feasible paths p for

TDVRPTW. The cost of a path cp is the duration of that path and it is the difference between

the end time ep and the start time sp of path p. The constant aip is 1 if customer i is visited
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on the path p and 0 otherwise. yp is the binary decision variable which takes value 1 if the

path p ∈ Ω is included in the optimal solution, 0 otherwise. Following these definitions, the

formulation of set partitioning model is given in (P2).

P 2

minimize
∑
p∈Ω

cpyp

subject to∑
p∈Ω

aipyp = 1 ∀i ∈ Vc (1.32)

yp ∈ {0, 1} ∀p ∈ Ω (1.33)

As the set of vehicles is assumed as unbounded. So,there is not a constraint on the number of

vehicles selected as in (P1).

In this thesis, TDVRPTW is solved by branch and cut and price algorithm which merges

the enumeration approach of branch and bound algorithms with the polyhedral approach of

cutting planes (Padberg and Rinaldi, 1991). In chapter 3, we refer to the BCP algorithm of

(Dabia et al., 2011) on TDVRPTW and introduce their solution approach.

In this chapter, the basic mathematical models for VRP, VRPTW and TDVRPTW are intro-

duced before the solution methodology of TDVRPTW is discussed. In the next chapter, a

review of the related literature on the solution approaches for these problems is provided.
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CHAPTER 2

LITERATURE REVIEW

The vehicle routing problem was introduced by (Dantzig and Ramser, 1959). They consid-

ered the problem of gasoline delivery from a bulk terminal to service stations so that every

customer’s demand is satisfied and the total distance covered by the vehicle fleet is minimized.

They formulated a mathematical model for the problem and solved it by an algorithmic ap-

proach. In 1964, Clarke and Wright developed a greedy heuristic to improve Dantzig and

Ramser’s approach. Since then the vehicle routing problem has been the most studied com-

binatorial optimization problem in the literature because of its practical relevance to real life

applications and difficulty. In addition, the problem has been studied with many variants. In

this section, we will briefly review the solution approaches on VRPs, VRPTWs and finally

TDVRPTWs. In addition, the solution approaches of elementary shortest path problem with

resource constraints in the column generation problem will be discussed.

2.1 VEHICLE ROUTING PROBLEM (VRP)

Study of VRP in the literature has given rise to several exact and heuristic solution tech-

niques of general applicability. It can be shown as a specific case of traveling salesman prob-

lem (TSP) (VRP with one vehicle and infinite capacity) and is therefore a non-deterministic

polynomial-time (NP) hard problem. (Cordeau et al., 2007) VRP is considerably more dif-

ficult to solve than a TSP of the same size. Although TSPs with hundred or even thousands

of customers can be solved by exact algorithms routinely, the most advanced exact algo-

rithms can solve VRPs up to 100 customer with a success rate. However, heuristics can solve

instances with more customers with flexibility to deal with many variants of VRP in prac-

tice.(Laporte, 2007) Therefore, considerable amount of research for solving VRPs is concen-
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trated on heuristics. Below, exact algorithms and heuristics that mostly drew the attention of

researchers are presented. A recent review on the solution procedures on VRP is provided

by (Laporte, 2007) and (Cordeau et al., 2007). For a more detailed review on the variants of

VRP, reader is refereed to the book edited by (Toth and Vigo, 2001b).

2.1.1 EXACT ALGORITHMS

An exact algorithm is an algorithm that solves a problem to optimality. NP-hard problems are

a special kind of optimization problems for which most probably no polynomial time algo-

rithm exists. It cannot be expected to construct exact algorithms that solve NP-hard problems

in polynomial time unless NP = P. For some classes of problems there are hope of find-

ing algorithms that solve problem instances occurring in practice in reasonable time though.

(Røpke, 2005)

In the literature, exact methods for solving VRPs are generalized into three main categories:

Direct tree search methods: (Christofides et al., 1981b) presents tree search algorithms by

incorporating lower bounds computed from shortest spanning k-degree center tree and q-

routes.(Hadjiconstantinou et al., 1995) uses lower bounds obtained from a combination of

two relaxations of the original problem which are based on the computation of q-paths and

k-shortest paths.

Dynamic programming: (Christofides et al., 1981a) introduced the dynamic programming

formulation with the state-space relaxation method which provided an efficient way of reduc-

ing the number of states.

Integer linear programming: (Naddef and Rinaldi, 2002) solves the two index vehicle flow

formulation of VRP with branch and cut algorithm by solving 15 instance at the root node.

Another successful application of branch and cut algorithm is introduced by (Baldacci et al.,

2004) for two index vehicle flow formulation of VRP. (Baldacci et al., 2008) presents a set

partitioning formulation of the CVRP with additional capacity cuts which are the capacity and

clique inequalities. (Fukasawa et al., 2006) solves CVRP by combining branch and cut with

the q-routes relaxation. The resulting branch and cut and price algorithm can solve important

number of instances up to 100 vertices to optimality.
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2.1.2 HEURISTICS

The heuristics developed for VRPs extended from classical heuristics to metaheuristics over

ten years in the past 40 years. The early classical heuristics usually first finds a feasible solu-

tion in the construction phase and applies a post optimization procedure afterwards. On the

other hand, metaheuristics uses mainly two two principles: local search and population search.

In local search methods, an intensive exploration of the solution space is performed by mov-

ing at each step from the current solution to another promising solution in its neighborhood.

Population search consists of maintaining a pool of good parent solutions and recombining

them to produce offspring. (Cordeau et al., 2002)

Next, the most promising heuristics methods to solve VRPs are presented:

Classical Heuristics: The classical heuristics is classified into two categories as constructive

and improvement heuristics. The most well known constructive heuristics are savings algo-

rithm (Clarke and Wright, 1964), sweep algorithm (Gillett and Miller, 1974) and a heuristics

based on a two phase decomposition procedure (Fisher and Jaikumar, 1981). The general

frameworks described in (Thompson and Psaraftis, 1993) and (Kindervater and Savelsbergh,

1997) encompass most available improvement heuristics.

Metaheuristics: Tabu search algorithms (Gendreau et al., 1994), simulated annealing (Os-

man, 1993) and genetic algorithms and their variants are mostly available to solve VRPs in

the literature. A recent review on VRP heuristics is provided in (Cordeau et al., 2005).

2.2 VEHICLE ROUTING PROBLEM WITH TIME WINDOWS (VRPTW)

VRPTW has been solved in the literature by both exact methods ((Kallehauge et al., 2005),

(Kallehauge, 2008)) and heuristics ((Bräysy and Gendreau, 2005a), (Bräysy and Gendreau,

2005b)). In this section, we review the most promising solution techniques used in the litera-

ture.

2.2.1 EXACT ALGORITHMS

The research on the solution of VRPTW by exact algorithms mostly focuses on column gen-

eration methodology introduced by (Dantzig and Wolfe, 1960). Since VRPTW is hard to
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solve as an MIP, it is recommended to use Lagrangean relaxation (LR) or decomposition, for

example Dantzig-Wolfe Decomposition (DWD), to break up the overall problem into a mas-

ter problem (set partitioning formulation of VRPTW) and a subproblem. ”To date, the most

successful decomposition approaches for the VRPTW cast the subproblem as a constrained

shortest path structure. The master problem is an integer program whose solution cannot be

obtained directly, so its LP relaxation is solved. The column generation process alternates

between solving this linear master problem and the subproblem. The former finds new mul-

tipliers to send to the latter which uses this information to find new columns to send back.

A lower bound on the optimal integer solution of the VRPTW model is obtained at the end

of this back and forth process. This is then used within a branch-and-bound framework to

obtain the optimal VRPTW solution. If the vehicles are identical, all subproblems will be

equivalent and therefore it is necessary to only solve one.((Kallehauge et al., 2005) Applying

cutting planes either in the master or the pricing subproblem leads to a branch-and-cut-

price algorithm(BCP).” Column generation is first used in a DWD framework by (Desrochers

et al., 1992). (Feillet et al., 2004),(Irnich and Villeneuve, 2005),(Chabrier, 2006),(Righini and

Salani, 2006), (Jepsen et al., 2008), (Desaulniers et al., 2008) proposed enhanced algorithms

to solve the subproblem.

2.2.2 SPPRC AS THE PRICING PROBLEM IN COLUMN GENERATION

In most vehicle routing applications solved by column generation, the subproblem corre-

sponds to a Shortest Path Problem with Resource Constraints (SPPRC) or one of its variant.

In (Irnich and Desaulniers, 2005), the contribution of SPPRC to the success of column gen-

eration of this class of problems is based on there main reasons. Firstly, through the resource

constraints, it constitutes a flexible tool for modeling complex cost structures for an individual

route and a wide variety of rules that define the feasibility of a route. Secondly, because it

does not possess the integrality property, the column generation approach can derive tighter

bounds than those obtained from the linear relaxation of arc-based formulations. Thirdly,

there exist efficient algorithms available for important variants of SPPRC. In many vehicle

routing problems, the pricing problem is an Elementary Shortest Path Problem with Resource

Constraints (ESPPRC). (Feillet et al., 2004),(Chabrier, 2002),(Rousseau et al., 2004) solved

ESPRRC in the context of VRPTW. ESPPRC was proposed to solve by using Lagrangian

relaxation by (Beasley and Christofides, 1989).
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The most recent and promising method to solve ESPPRC recently is the label setting algo-

rithm proposed by (Feillet et al., 2004),(Righini and Salani, 2006). ESPPRC is solved by

bi-directional label setting algorithm in (Righini and Salani, 2006) which uses Dijkstra’s bi-

directional shortest path algorithm that expands paths both forward from the start depot and

backward from the end depot. The paths are spliced in the middle which reduces the running

time of the algorithm since the running time is dependent on the length of the path. Figure

2.1 illustrates the comparison of mono and bi-directional search performance. On the left of

the figure, there is a visualization of the extension of a label from the start depot to the end

depot which forms a complete path. The right hand side of the figure visualizes the extension

of a label from the start depot and another label from the end depot until half of the resource

is consumed. The splicing of the two labels form a complete path which is produced in less

time than the mono-directional search.

Figure 2.1: Comparison of mono-directional and bi-directional search to find a feasible path
from start depot s to end depot t. (Petersen, 2006)

Furthermore (Righini and Salani, 2008) and (Boland et al., 2006) proposed to solve ESPPRC

by use of a decremental state space algorithm that iteratively solves a SPPRC by applying re-

sources forcing nodes to be visited at most once. In (Righini and Salani, 2008), three methods
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to solve ESPPRC are proposed. The first method is exact dynamic-programming algorithm

improved by new ideas, such as bidirectional search with resource-based bounding. The sec-

ond method consists of a branch-and-bound algorithm, where lower bounds are computed by

dynamic-programming with state-space relaxation where bounded bidirectional search can be

adapted to state-space relaxation with different branching strategies and their hybridization.

The third method, decremental state-space relaxation (DSSR), is a new one; exact dynamic-

programming and state-space relaxation are two special cases of this new method. According

to the experimental comparisons of the three methods,decremental state-space relaxation has

the most promising results. In addition to (Righini and Salani, 2008),(Chabrier, 2006) suc-

cessfully solved several previously unsolved instances of the VRPTW from the benchmarks

of (Solomon, 1987) using a label-setting algorithm for the ESPPRC.

2.2.3 HEURISTICS

Classical Heuristics: Route construction, route improvement and composite heuristics are

the reported in the literature as approximations methods to VRPTW. For a detailed review

and comparison of the heuristics, the reader is referred to (Bräysy and Gendreau, 2005a).

Metaheuristics: The research focus on the approximation methods of TDVRPTW is on meta-

heuristics, mainly simulated annealing, tabu search (Pisinger and Ropke, 2007),(Potvin et al.,

1996) and mostly evolutionary algorithms (Potvin and Bengio, 1996),(Homberger, 2005).

2.2.4 TIME-DEPENDENT VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

(TDVRPTW)

The solution methods proposed to solve TDVRPTW in the literature is mostly based on meta-

heuristics, especially tabu search ((Ichoua et al., 2003), (Woensel et al., 2008), (Jabali et al.,

2009)). On the other hand, for the time dependent vehicle problem, (Malandraki and Daskin,

1992) proposes heuristics based on nearest neighbor and cutting planes. Metaheuristics such

as genetic algorithm by (Haghani and Jung, 2005) and ant colony optimization in (Donati

et al., 2008), (Balseiro et al., 2011) are also present for time dependent vehicle routing prob-

lem.
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CHAPTER 3

TDVRPTW SOLUTION METHODOLOGY

In this chapter, we refer to the exact solution method of Dabia et al.(2011) in which TD-

VRPTW is solved by branch and cut and price. The decomposition of the arc based formu-

lation of TDVRPTW leads to a set partitioning model, described in Section 1.1.3.3, as the

master problem and a time dependent elementary shortest path problem with resource con-

straint as the subproblem. However, the capacity constraint of the vehicles is handled in the

master problem by the capacity cuts. Therefore, time is considered as the only resource con-

straint in the subproblem.In Figure 3.1, the general framework of the algorithm is presented

with a flowchart. In this chapter, we will introduce the steps of the BCP algorithm through

the column generation process, capacity cuts and the pricing subproblem.

3.1 THE MASTER PROBLEM

The set of feasible routes Ω can be a very large set even for medium sized customers. The set

usually grows exponentially with the number of customers. Therefore, the master problem

cannot be solved directly. The linear relaxation of the problem P3 is considered to handle the

complexity of the problem.
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Figure 3.1: Flowchart of BCP algorithm for TDVRPTW

P 3

minimize
∑
p∈Ω′

cpyp

subject to∑
p∈Ω′

aipyp = 1 ∀i ∈ Vc (3.1)

0 ≤ yp ≤ 1 ∀p ∈ Ω′ (3.2)

However, the linear programming model of the problem is not sufficient to handle the com-

plexity of the problem. Therefore, the column generation methodology starts with a Restricted

Master Problem(RMP) which considers a subset Ω′ ⊆ Ω of the feasible routes. However,

RMP keeps growing during column generation process. With the definition of the master
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problem, the dual variable Πi associated with the constraint 3.1 becomes

c̄p = ep − sp −
∑

(i, j)∈A
Πixi j. (3.3)

Since the constant aip is 1 if customer i is visited on the path p and 0 otherwise, it can be

rewritten as

aip =
∑

(i, j)∈γ+( j)

xi jp. (3.4)

where xi jp is a binary variable which takes value 1 if arc (i, j) is traversed in path p. Hence,

the reduced cost of a path becomes:

c̄p =ep − sp −
∑
i∈Vc

Πi

∑
(i, j)∈γ+( j)

xi jp

 (3.5)

=ep − sp −
∑

(i, j)∈A
Πixi jp (3.6)

3.2 THE CAPACITY CUTS

In the formulation of the capacitated vehicle routing problem, we introduced the subtour elim-

ination constraints which are the alternative formulations of the capacity cut constraints(Toth

and Vigo, 2001a). In order to include the capacity cuts in the master problem, the arc vari-

ables xi j are transformed into path variables yp. With this addition of these capacity cuts, a

new dual variable is introduced in the pricing problem for each of the inequalities. For, k

capacity constraints defined by the set S 1, S 2, ..., S k and the corresponding k dual variables

λ1, λ2, ..., λk, the reduced cost of a path p becomes

c̄p = ep − sp −
∑

(i, j)∈A
Πix

p
i j −

k∑
l=1

∑
(i, j)∈A(S l)

λlxi jp (3.7)

As the contributions of the dual variables λ and Π are aggregated into the dual variable φi j,
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the reduced cost c̄p is defined as

c̄p = ep − sp −
∑

(i, j)∈A
φi jxi jp (3.8)

In conclusion, by handling the capacity cuts in the restricted master problem, an additional

dual variable is introduced in the reduced cost of a path. Accordingly,the objective of the

pricing problem changes and vehicle capacity restrictions are not a constraint for the pricing

problem. In the next section, the labeling algorithm used to solve the pricing problem is

introduced.

3.3 THE PRICING PROBLEM

In the BCP framework of TDVRPTW, the pricing problem becomes Time-Dependent El-

ementary Shortest Path Problem with Resource Constraint (TDESPPRC)in which only re-

source is time.Dabia et al.(2011) introduces the time dependent labeling algorithm (TDL)

with bi-directional search to solve TDESPPRC by adapting the solution method by (Righini

and Salani, 2006) to the time dependent case of ESPPRC. In this section we introduce the

bi-directional search algorithm for TDESPPRC.

3.3.1 FORWARD TDL ALGORITHM

In the forward TDL algorithm, labels are extended from the start depot to the end depot

through the successors of start depot and the extension is restricted by time which is the only

resource considered. A forward label’s ,L f , extension is feasible until the earliest arrival time

at the end node of the partial path is no further than a fixed time tm. The functions in Table

3.1 are defined to describe the forward TDL algorithm.

Table 3.1: The attributes of label L f

v(L f ) : The last node visited on the partial path L f

c(L f ) : The sum of the dual variable associated with the arcs traversed on the partial
path L f

δL f (t) : The arrival time function of L f which gives the arrival time (including waiting
and service time) at the end node v(L f ) when the depot is left at time t .

S (L f ) : The set of nodes visited along the partial path L f
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When a label L′f is extended to a new path L f by traversing an arc (v(L′f ), j), the arrival time

at node j is calculated as

δL f (t) = δL′f
(t) + τv(L′f ) j(δL′f

(t)) (3.9)

As a new node is visited along the path, the set of nodes visited and the sum of the dual

variables of the path are updated as

S (L f ) = S (L′f ) ∪ { j} and c(L f ) = c(L′f ) − φv(L′f ) j (3.10)

These extension of the label is feasible if node j is not visited before such that S (L′f )∩{ j} = ∅

and the earliest arrival time to node j satisfies the condition δL f (0) ≤ min
{
tm, b j + s j

}
. As the

label reaches the end node v(L f ), the reduced cost of the path becomes

c̄(L f ) = mint∈T
{
δL f (t) − t

}
+ c(L f ) (3.11)

where T is the domain definition of δL f (t).

In the extension of the labels, it is not desirable to extend labels that will not be part of

an optimal solution. Therefore, dominance criterion are introduced for the dominance test

in order to reduce the number of labels that are created during the execution phase of the

TDL algorithm. Let E(L f ) denote the set of all feasible extensions of L f ,i.e. the partial

paths departing at node v(L f ) at time δL f (0) and reaching the end depot n + 1 satisfying the

feasibility constraints. If L ∈ E(L f ), then the label results from extending the path L f by L is

denoted as L f ⊕ L. With these definitions as building blocks, the domination is defined:

Definition 3.3.1 Label L2
f is dominated by L1

f if

1. v(L1
f ) = v(L2

f )

2. E(L2
f ) ⊆ E(L1

f )

3. c̄(L1
f ⊕ L) ≤ c̄(L2

f ⊕ L), ∀L ∈ E(L2
f ).

Definition 3.3.1 implies that label L1
f dominates L2

f if the partial paths end at the same depot,

all feasible extensions of label L1
f is also a feasible extension of L2

f and extending the former

label is not more costly than extending the latter. Since, the computational effort of extending

all the paths to their feasible extensions is high, two propositions with efficient dominance

criterion are introduced. We will not give a detailed explanation for these dominations since

it is not in the scope of this thesis.
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3.3.2 BACKWARD TDL ALGORITHM

The backward TDL algorithm works in the same way with forward TDL algorithm. How-

ever, the labels are extended from the end depot to its predecessors. A backward label’s ,Lb,

extension is feasible if the latest possible departure time from the end node is larger than the

fixed time tm. The following functions in Table 3.2 are defined to describe the backward TDL

algorithm.

Table 3.2: The attributes of label Lb

v(Lb) : The last node visited on the partial path Lb

c(Lb) : The sum of the dual variable associated with the arcs traversed on the
partial path Lb

δLb(t) : The arrival time function of Lb which gives the arrival time (including waiting
and service time)at the end depot when the end node v(Lb) of the partial path is
left at time t

S (Lb) : The set of nodes visited along the partial path Lb

When a label L′b is extended to a new path Lb by traversing an arc ( j, (v(L′b)), the arrival time

function associated with the label Lb is computed as

δLb(t) = δL′b
(t + τ jv(L′b)(δL′b

(t))). (3.12)

As a new node is visited along the path, the set of nodes visited and the sum of the dual

variables of the path are updated as

S (Lb) = S (L′b) ∪ { j} and c(Lb) = c(L′b) − φ jv(L′b). (3.13)

These extension of the label is feasible if node j is not visited before such that S (L′b)∩{ j} = ∅

and the latest possible departure time t(Lb) at node j satisfies the condition t(Lb) ≥ (a j + s j).

Furthermore, as the extension of the labels are bounded by time, the latest possible departure

time should be t(L′b) ≥ tm.

As the label reaches the end node j, the reduced cost of the path becomes

c̄(Lb) = mint∈T
{
δLb(t) − t

}
+ c(Lb) (3.14)

where T is the domain definition of δLb(t).

Let E(Lb) denote the set of feasible extensions of Lb, i.e. all partial paths departing at the

start depot at time 0 and arrival time at node v(Lb) is smaller than t(Lb) which is the latest
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departure time from the fist node visited on Lb. As it is computationally expensive to extend

all the labels, it is not desirable to extend labels that will not be part of an optimal solution.

Therefore, efficient dominance tests are proposed to reduce the number of labels extended.

We will not give a detailed explanation for these dominations since it is not in the scope of

this thesis.

3.3.3 SPLICING FORWARD AND BACKWARD LABELS

After all the forward and backward labels are extended, they are combined to obtain a path.

Let Lb be in the extension of forward path L f . The labels are then merged to obtain a path

L = L f ⊕ Lb such that

1. v(L) = n + 1

2. c(L) = c(L f ) + c(Lb)

3. S (L) = S (L f ) ∪ S (Lb)

4. δL(t) = δLb(δLb(t)), ∀t ∈ DδL f (t) such that DδL f (t) ∈ DδLb (t).

The bi-directional TDL algorithm generates paths all with negative reduced costs. Let P =

v0 → ...→ vp be a path in the optimal solution, it is proposed that

Proposition 3.3.2 Let vi be a node in P. P can be found as P = P f ⊕ Pb where P f = v0 →

... → vi is generated by the forward TDL algorithm and Pb = vi → ... → vp is generated by

the backward TDL algorithm.

Let P = v0 → v1 → vi → vi+1...vp−1 → vp be an arbitrary path where v0 is the start depot, vp

is the end depot and vi+1 is the node visited right after vi. The splicing node is defined as :

Definition 3.3.3 Node vi is a splicing path of path P if

• δL f (0) ≤ tm

and
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• δLi+1(0) > tm or,

• δLi+1(0) ≤ tm and vi+1 = n + 1.

The bi-directional TDL algorithm can generate duplicate paths and a path can be spliced at

different nodes.However, any node that can be defined uniquely makes sure that a path spliced

at that node is found only once. Therefore, according to the definition , it is proposed that

Proposition 3.3.4 The splicing node of P exists and it is unique.

For the proof of the propositions, the reader is referred to (Dabia et al., 2011).

3.3.4 PRICING PROBLEM HEURISTICS

In BCP framework, pricing heuristics are used to generate columns with negative reduced

cost in the pricing problem. If heuristics cannot find any more columns with negative reduced

costs, then the bi-directional TDL algorithm is called to check if a path can be found with

negative reduced cost. Therefore, for every node in the branching tree, TDL algorithm is

called only once.

3.4 BRANCHING

Best bound strategy is used to select the next active node in the branch and bound tree. The

branching is done on the arc variables. The pairs (i, j), i, j ∈ Vc are searched such that the

current fractional solutions expressed in arc pairs (x∗i j + x∗ji) is close to 0.5. Then the branch

on the tree node is (xi j + x ji) ≤ ⌊(x∗i j + x∗ji)⌋ and (xi j + x ji) ≥ ⌈(x∗i j + x∗ji)⌉. If (x∗i j + x∗ji)

is integer for all pairs, then the a fractional value for xi j is searched and branching is done

on that instance instead. The algorithm uses strong branching and performs the branch that

maximizes the lower bound in the weakest of two child nodes. 15 branch candidates in the

first 10 nodes of the brnch and bound tree and 10 candidates in the rest is considered.
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CHAPTER 4

BOUNDING MODELS ON BI-DIRECTIONAL TDL

ALGORITHM

When introducing the bi-directional dynamic programming for elementary shortest path prob-

lem with more than one resource, (Righini and Salani, 2006) also proposed bounding proce-

dures to limit the number of labels produced by :

• Bounding for Fathoming: Recognizes and fathoms states that cannot produce optimal

solutions

• Arc and Resource Bounding: Stops the extension of forward and backward paths in

order to reduce the number of labels generated, while preserving the guarantee that the

optimal solution will be found.

In arc bounding, this is done by computing the number of arcs that can be added

to the corresponding partial path without exceeding the resource constraints. A multi-

knapsack problem is solved and an upper bound on the number of vertices that can

be added along the path after the last reached vertex of the label is obtained. If the

number of nodes visited on the corresponding path is less than the result of the knapsack

problem than the extension of the label is stopped.

On the other hand, it is also possible to stop the extension of the paths when at least

half of available amount of the selected resource is consumed. It is necessary to select

a resource whose consumption is monotone along the path.

Within their computational experiments,(Righini and Salani, 2006) always uses fathoming

with arc and resource bounding. In most of the instances with different resource constraints,
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resource bounded bi-directional dynamic programming outperforms arc bounded bi-directional

dynamic programming. Although the performance of the bounded bi-directional search is bet-

ter than mono-directional search in general, latter produces less labels for instances with tight

time windows. Furthermore, arc bounding is useful only when the optimal path is made of a

significant number of arcs (Righini and Salani, 2006).

In this study, TDESPPRC is solved with resource bounded bi-directional search without

bounding for fathoming. In this chapter, we will develop

• A bounding technique in order to fathom unpromising states in bi-directional TDL

algorithm,

• An arc bounding procedure for bi-directional search TDL algorithm.

4.1 BOUNDING FOR FATHOMING

The aim of the bounding technique proposed in this section is to limit the number of labels

in the T DL algorithm. The labels whose extensions will lead to a worse solution than a

known one are fathomed by applying the bounding procedure. Within the pricing algorithm,

this technique should be applied after the dominance tests are done on forward on backward

labels. In this section, we first introduce the fathoming technique on forward labels and then

backward labels.

4.1.1 BOUNDING FOR FATHOMING ON FORWARD LABEL EXTENSION

For each of the non-dominated label L f , we are looking for an upper bound PL f which is

the maximum gain that can be obtained by extending that label using minimum resources.

To find this upper bound, an optimization problem is solved to maximize the prize collected

subject to available resources. The only resource considered in this problem is time. The cost

of traveling on an arc is also defined in terms of time. It is the time between the arrival times

of the two end nodes of an arc, called duration. In addition, arrival time function includes the

waiting time and the service time of the visited node. Therefore, duration of traveling on an

arc consists of the traveling time between two nodes, waiting time and service time at the end

node.
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The description of the variables and parameters used in the optimization problem for fathom-

ing (P4) is listed in Table 4.1.

Table 4.1: Description of Parameters and Variables

φk j : Dual variable of traveling on arc (k, j)
γk j(ηk) : Duration of traveling on arc (k, j) where ηk is the arrival time at node k
γ j : Minimum duration needed to visit node j
u j : Maximum prize collected when node j is visited
y j : Decision variable of visiting node j

For each of the non-dominated label L f , optimization problem (P4) should be solved in order

to decide whether to fathom the label:

P 4

maximize PL f =
∑

j∈Vc\S (L f )

u jy j + un+1

subject to δL f (0) +
∑

j∈Vc\S (L f )

γ jy j + γn+1 ≤ T

y j ∈ {0, 1} ∀ j ∈ Vc\S (L f )

In the objective function of the problem (P4), we are searching for the maximum gain that

can be collected by visiting unvisited customers, Vc\S (L f ) , of label L f within the planning

horizon T . Due to FIFO property of the arrival time functions, a later dispatch time results

in a later arrival at the end node of the path. Hence, to increase the allocated time for the

unvisited nodes in the inequality constraint, the departure time at the start depot is taken as

”0”. Therefore, we consider the arrival time at the end node of the label L f as δL f (0). In the

objective function, u j is the maximum gain that can be collected by visiting node j. To find

the maximum gain, the dual variable of a possible arc is reduced by the minimum duration of

the outgoing arc since it is always needed when a node is selected such that

u j = maxk∈{Vc\S (L f )}∪{v(L f )}


φk j −minmax

{
(ak+sk),δL f (0)

}
≤ηk

ηk≤(bk+sk)

γk j(ηk) if
(k, j) ∈ A,

δL f (0) ≤ (bk + sk).

−M otherwise.
(4.1)
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un+1 = maxk∈{Vc\S (L f )}∪{v(L f )}


φkn+1 −minmax

{
(ak+sk),δL f (0)

}
≤ηk

ηk≤(bk+sk)

γkn+1(ηk) if
(k, n + 1) ∈ A,

δL f (0) ≤ (bk + sk).

−M otherwise.
(4.2)

where M is a very big positive number. As defined before, γk j(ηk) is the duration of traveling

on arc (k, j) and depends on the arrival time at node k. Since we are searching for an upper

bound on the prize collected by visiting all possible reachable nodes, the arrival time at node

k is taken as the the arrival time at the end node visited on label L f which is δL f (t). The

departure time from the depot, t, is taken as 0 to increase the search space on the arrival

time function in order to find the minimum duration when calculating u j and un+1 which are

defined in the equations (4.1) and (4.2), respectively. However, if δL f (0) is smaller than the

minimum possible arrival time at node k, then (ak + sk) is taken as the arrival time of node

k for reachable nodes. In addition, the upper bound on ηk is taken as (bk + sk) since it is the

maximum feasible arrival time at node k. To conclude, the aim is to calculate the maximum

gain with regards to the end time windows. Therefore, we do not consider the lower bound

by the start time windows of the nodes that can be visited as a feasibility condition.

γ j, on the other hand, is the minimum resource used to visit node j. Following the same

approach as in the calculation of u j and un+1 ,the bounds on the arrival time, ηk, are taken the

same as in the equations (4.1) and (4.2). Therefore, the minimum time needed to visit node j,

which is γ j, and the end depot, which is γn+1, are defined as in the following:

γ j =


mink∈{Vc\S (L f )}∪{v(L f )}

max
{
(ak+sk),δL f (0)

}
≤ηk

ηk≤(bk+sk)

{
γk j(ηk)

}
if

(k, j) ∈ A,

δL f (0) ≤ (bk + sk).

bn+1 otherwise.

(4.3)

γn+1 =


mink∈{Vc\S (L f )}∪{v(L f )}

max
{
(ak+sk),δL f (0)

}
≤ηk

ηk≤(bk+sk)

{γkn+1(ηk)} if
(k, n + 1) ∈ A,

δL f (0) ≤ (bk + sk)

bn+1 otherwise.

(4.4)

where duration on arc (k, j) and (k, n + 1) are calculated as
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γk j(ηk) = τk j(ηk)︸ ︷︷ ︸
Travel Time

+max
{
0, a j − (ηk + τk j(ηk))

}︸                             ︷︷                             ︸
Waiting Time

+ s j︸︷︷︸
Service Time

. (4.5)

γkn+1(ηk) = τkn+1(ηk) +max {0, an+1 − (ηk + τkn+1(ηk))} + sn+1. (4.6)

The duration on arc (k, j) is the sum of the traveling time τk j(ηk) on arc (k, j), the waiting time

at node j if it exists and the service at the end node j of arc (k, j). Similarly, the components

of the duration on arc (k, n + 1) are travel time on arc (k, n + 1), the waiting time

By solving the knapsack problem, an upper bound PL f is obtained on the maximum gain that

can be collected by extending the label L f . If

mint≤t(L f )(δL f (t) − t) + c(L f )︸                               ︷︷                               ︸
Reduced Cost of L f

−PL f ≥ UB, (4.7)

then the label L f is fathomed. In the inequality (4.7), mint≤t(L f )(δL f (t) − t) is the minimum

duration of the label L f and c(L f ) is the sum of the dual variables associated with arcs tra-

versed along the partial path L f . To find the minimum duration,departure time from the

depot is searched over the arrival time function breakpoints. The departure time from the

start depot which results in the minimum duration belongs to a breakpoint. Moreover, UB

represents an incumbent upper bound which is the value of a known feasible solution. UB

is calculated by comparing the reduced costs of the columns found in the solution of the

linear relaxation of RMP. If this value is positive, than UB is taken ”0” such that UB =

min {0,min {column reduced cost}}. By subtracting the upper bound,P, from the reduced cost

of the label L f , a lower bound on the reduced cost of a total path by extending label L f is

obtained. Notice that, when solving the optimization problem (P4), only the reachable nodes

from L f can be in the extension. In conclusion, if the lower bound on the reduced cost of a

potential path is not better than the reduced cost of a known feasible solution, then the label

L f should be fathomed. The intuition behind this rule is that if we cannot get a better solution

by extending a label with maximum gain and minimum resource, than it is not meaningful to

keep the label in the set of non dominated labels and we can fathom it.

4.1.2 BOUNDING FOR FATHOMING ON BACKWARD LABEL EXTENSION

As in the fathoming procedure proposed for forward labels, the same steps are followed for

fathoming backward labels. However, we should customize the problems,parameters and
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their calculation steps according to backward label extension.

For each of the non-dominated label Lb, optimization problem (P5) should be solved for the

decision of fathoming Lb:

P 5
maximize PLb =

∑
j∈Vc\S (Lb)

u jy j + u0

subject to
∑

j∈Vc\S (Lb)

γ jy j + γ0 ≤ t(Lb)

y j ∈ {0, 1} ∀ j ∈ Vc\S (Lb)

In the objective function of the problem (P5), we are searching for the maximum gain that

can be collected by traversing unvisited customers, Vc\S (Lb), of label Lb within the planning

horizon T . To increase the allocated time for the unvisited nodes in the inequality constraint,

the latest possible departure time t(Lb) is taken as the departure time from v(Lb). Hence, the

available time for traversing the unvisited nodes of label Lb becomes t(Lb). The maximum

gain that can be collected by visiting node j and the start depot, 0, is calculated by subtracting

the minimum duration of an incoming arc from the dual variable of that arc :

u j = maxk∈{Vc\S (Lb)}∪{v(Lb)}


φ jk −minmax{(a j+s j),t′(Lb)}≤η j

η j≤(b j+s j)

γ jk(η j) if
( j, k) ∈ A,

t(Lb) ≤ (bk + sk)

−M otherwise.
(4.8)

u0 = maxk∈{Vc\S (Lb)}∪{v(Lb)}


φ0k −minmax{(a0+s0),t′(Lb)}≤ηk

η0≤(b0+s0)
γ0k(η0) if

(0, k) ∈ A,

t(Lb) ≤ (bk + sk)

−M otherwise.
(4.9)

where M ia a very big positive number. In the equation (4.8, γ jk(η j) is the duration of traveling

on arc ( j, k) and depends on the arrival time at node j. The arrival time η j is restricted by the

time windows of that node. However, if the earliest possible departure time from the end node

v(Lb), which is denoted as t′(Lb), is between the time windows of node j, then t′(Lb) is taken

as the arrival time for reachable nodes. Node k is reachable from node j if there exists an arc

between ( j, k) and the latest possible departure time of Lb, t(Lb), is not larger than b j + s j.
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γ j, on the other hand, is the minimum resource used to visit node j. Following the same

approach as in the calculation of u j and u0, the bounds on the arrival times, η j and η0, are

taken the same as in the equations (4.8) and (4.9). Therefore, the minimum time needed to

visit node j, which is γ j, and the start depot, which is γ0, are defined as in the following:

γ j =


mink∈{Vc\S (Lb)}∪{v(Lb)}

η j≥max{(a j+s j),t(Lb)}
η j≤(b j+s j)

{
γ jk(η j)

}
if

( j, k) ∈ A,

t(Lb) ≤ (bk + sk).

b0 otherwise.

(4.10)

γ0 =


mink∈{Vc\S (Lb)}∪{v(Lb)}

max{(a0+s0),t(Lb)}≤η0
η0≤(b0+s0)

{γ0k(η0)} if
(0, k) ∈ A,

t(Lb) ≤ (bk + sk)

b0 otherwise.

(4.11)

where duration on arc ( j, k) and (0, k) are calculated as

γ jk(η j) = τ jk(η j)︸ ︷︷ ︸
Travel Time

+max
{
0, ak − (η j + τ jk(η j))

}︸                             ︷︷                             ︸
Waiting Time

+ sk︸︷︷︸
Service Time

. (4.12)

γ0k(η0) = τ0k(η0) +max
{
0, ak − (η0 + τ0 j(η0))

}
+ s0. (4.13)

By solving the knapsack problem, an upper bound PLb is obtained on the maximum gain that

can be collected by extending the label Lb. If

mint≤t(Lb)(δLb(t) − t) + c(Lb)︸                              ︷︷                              ︸
Reduced Cost of Lb

−PLb ≥ UB, (4.14)

then the label Lb is fathomed.

In the inequality (4.14), mint≤t(Lb)(δLb(t) − t) + c(Lb) is the minimum duration of the label

Lb and c(Lb) is the sum of the dual variables associated with arcs traversed along the partial

path Lb. To find the minimum duration, departure time from the depot is searched over the

arrival time function breakpoints. The departure time from the start depot which results in the

minimum duration belongs to an arrival time function breakpoint. Moreover, UB represents

an incumbent upper bound which is the value of a known feasible solution which is the same

value calculated in fathoming forward labels. By subtracting the upper bound,PLb , from the
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reduced cost of the label Lb, a lower bound on the reduced cost of a total path by extending

label Lb is obtained. Notice that, when solving the optimization problem (P5), only the reach-

able nodes from Lb can be in the extension. In conclusion, if the lower bound on the reduced

cost of a potential path is not better than the reduced cost of a known feasible solution, then

Lb shouldn’t be in the set of non-dominated labels and we can fathom it.

4.1.3 IMPLEMENTATION OF FATHOMING TO BCP FRAMEWORK

The fathoming procedure is implemented on the TDL algorithm of the solution procedure

of TDVRPTW by BCP. Therefore, the knapsack problems 4 and 5 are implemented in the

pricing problem for the non-dominated labels. If the forward or the backward labels satisfy

the inequalities 4.7 and 4.14, then they are fathomed and their extensions to form a path is

not considered anymore. Hence, we expect to produce less number of labels when the pricing

algorithm is called in the BCP algorithm.

4.2 ARC BOUNDING

Another way to reduce to stop the extension of forward and backward labels is arc bounding

instead of resource bounding. In this bounding technique, it is aimed to stop the extension

of a backward or forward label if the maximum number of vertices that can be added to that

label is less than the number of visited nodes on the label. Following the notation in Table

4.1, an upper bound on the number of arcs that can be added to the path L f without exceeding

the available resource is obtained by solving a similar optimization problem as in (P4):

P 6
maximize

∑
j∈Vc\S (L f )

y j + 1

subject to δL f (0) +
∑

j∈Vc\S (L f )

γ jy j + γn+1 ≤ T

y j ∈ {0, 1} ∀ j ∈ Vc\S (L f )

If the solution of the problem (P6) is less than the number of nodes visited on the label L f , |S |,

then the extension of the label is stopped. The remaining part of the path will be generated by

the labels extended in the other direction due to the bi-directional search.
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In a similar way, the same procedure is followed to stop the extension of the backward labels.

The knapsack problem that is solved to find the upper bound on the maximum number of

nodes that can be visited on a backward label Lb is given in (P7) below:

P 7
maximize

∑
j∈Vc\S (Lb)

y j + 1

subject to
∑

j∈Vc\S (Lb)

γ jy j + γ0 ≤ t(Lb)

y j ∈ {0, 1} ∀ j ∈ Vc\S (Lb)

The resource and arc bounding are two different types of bounding. Arc bounding is a spe-

cial case of resource bounding in which the critical resource is the number of visits. Either

resource or arc bounding is used in the solution of TDVRPTW.
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CHAPTER 5

COMPUTATIONAL RESULTS

5.1 DATA SET

The test instances are derived from Solomon test instances which are originally designed

by Marius Solomon in 1983 for VRPTW with 100 customers. The instances used in this

thesis are from (Dabia et al., 2011) which adapts the original test instances of VRPTW for

TDVRPTW. The instances are designed taking into several factors. These factors are listed as

follows.

• Geographical distribution of the customers: The customers are in Randomly(R),

Clustered(C), Randomly Clustered (RC) categories according to their displacements.

• Width of the time windows: The time windows of the customers is classified into two

categories as (1) with tight time windows and (2) as the wide time windows.

• Number of customers: The number of customers in the test instances are up to 100

customers. We will present the results for 25, 50 and 100 customers.

Time dependency is adapted to test instances by considering different speed profiles. The

speed profiles change during the planning horizon due to road congestion. In addition to

the speed profiles, different type of links connect these speed profiles. Three different links:

slow, normal and fast represent the type for the change of speed within city center, traveling

from highways to city center and within the highways. These links are selected randomly

and is the same for all instances. The speed profiles with 3 type of links can be found in the

Appendix A. The planning time horizon is divided into five planning time zones with regards

to the speed profiles. The zones are defined as Zone1 = [0, 0.2T [, Zone2 = [0.2T, 0.3T [,
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Zone3 = [0.3T, 0.7T [, Zone4 = [0.7T,O.8T [ and Zone5 = [0.8T,T [ where T is the end time

window of the end depot bn+1.

In the notation DTm.n, ”D” shows the type of geographic distribution of customers, ”T”

represents width of the time windows, ”m” denotes the number of the instance and finally

”n” shows the number of customers to be served.

5.2 COMPUTATIONAL RESULTS

The procedures proposed in chapter 4 for the BCP framework were tested on Intel(R) Core(TM)2

Quad CPU, 2.83 GHz, 4 GB of RAM computer. The linear relaxation of the master problem

is solved by LP solver CLP from open source framework COIN, (COIN-OR, 2011). The

knapsack problems were solved in the bounding procedures by using the optimization soft-

ware IBM ILOG CPLEX version 12.1 including ILOG Concert Technology libraries (IBM,

2011). CPLEX was called in the BCP framework each time a knapsack problem is needed to

be solved. The knapsack problems are solved in the DLL memory.

In Appendix B, we present the computational results for the TDVRPTW instances with 25

and 50 customers solved by BCP framework in which the solution to the pricing problem

TDESPPRC is found by resource bounded bi-directional TDL algorithm and for the instances

Table 5.1: Average % decrease in the number of labels by instance type

Instance Type Forward labels Backward labels Total # of Labels # of instances
R
R1m.25 11% 6% 7% 12
R2m.25 53% 46% 55% 3
R1m.50 19% 21% 19% 9
R Average 19% 17% 17% 24
C
C1m.25 48% 64% 51% 7
C2m.25 93% 83% 83% 5
C1m.50 45% 75% 48% 3
C Average 62% 73% 61% 15
RC
RC1m.25 4% 5% 4% 8
RC2m.25 32% 31% 32% 3
RC1m.50 2% 1% 1% 1
RC Average 11% 11% 11% 12
Overall Average 30% 33% 29% 51
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when fathoming is implemented. The average of the percentage improvements (according to

(Dabia et al., 2011)) in the number of labels produced can be seen in Table 5.1.

The results in Table 5.1 show that the ”best improvement on average in the total number of

labels produced” is in the instance type with 25 customers who have clustered displacements

and wide time windows. If we base the comparison only on the geographical distribution

of the customers, on average the best improvement in the number of labels produced is also

for instances with customers having clustered displacements. Moreover, Table 5.2 shows the

average % decrease in the number of labels based on the width of the time windows of the

customers. From the table, it can be concluded that the percentage decrease in the number of

labels is larger for the instances with wide time windows.

Table 5.2: Average % decrease in the number of labels according to the classification of the
width of time windows

Tight Time Window (T=1) Wide Time Window (T=2)
Average % decrease 20% 59%
# of instances solved 40 11

Figure 5.1 shows the percentage decrease in total number of labels in all instances. From

the figure, it can also be seen that the higher percentages are around the instance types with

clustered displacements of the customers and wide time windows.

Figure 5.1: Percentage decrease in the total number of labels produced for each instance

Furthermore, in addition to the decrease in the number of labels, in 10 instances out of 51,

less number of columns are generated in column generation, the pricing algorithm is called

less frequently in 9 instances out of 51 and the size of the branching tree is smaller in 3 out of
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51 instances compared to the results of (Dabia et al., 2011). Although solving the knapsack

problem in the fathoming procedure increases the time spent solving the exact pricing algo-

rithm, the time to solve an instance decreased in 5 instances. The results for those instances

are given in Table 5.3.

Table 5.3: The instances where CPU time (in seconds) reduced

Original Original+Fathoming % Reduction in % Reduction in
Instance Total # of Labels Time Total # of Labels Time # of Labels Time
c201.25 26350 1.778 149 0.921 99% 48%
c202.25 8463532 39313.5 725817 5258.36 91% 87%
c205.25 392357 250.897 36191 208.667 91% 17%
c206.25 1580432 2476.97 319160 2145.64 80% 13%
r205.25 3283207 10373.3 1265508 7762.53 61% 25%

As it can be seen from the Table 5.3, the reduction in CPU time is observed for the instances

with wide time windows with 25 customers. 4 out of 5 instances have clustered topology

of displacements. This is because of the structure of the bound developed on the labels.

The knapsack problems are solved over nodes that can be extended feasibly. In the case of

instances with clustered data set, mostly nodes are selected in the same cluster and other

nodes in other clusters are eliminated in the feasible extension of the label. Therefore, the

knapsack problems are solved with less number of variables in these instances. In addition,

wide time window characteristics strengthens this impact. Finally, the solution can be found

in less seconds.

A good example of the bounding procedure is the instance c206.25 in which labels are pro-

duced more efficiently with fathoming. Hence, in BCP framework less columns are gener-

ated and less number of calls are made to the pricing problem which led the algorithm to

find the optimal solution in less time. To give it in figures, without fathoming, c206.25 is

solved in 2476.97 seconds by generating 2067 columns and calling the exact pricing algo-

rithm 5 times. However, c206.25 is solved in 2145.64 seconds by generating 2013 columns

and calling the exact pricing algorithm 4 times when fathoming is introduced to bi-directional

TDL algorithm. Accordingly, the time spent for the pricing algorithm reduces from 2476.094

seconds to 2144.778 seconds with the change of the final upper bound from 24928.4714 to

24937.5214. The routes change as in the Table 5.4.

The results for the instances with 50 customers are also provided in Appendix B. As in

the case with 25 customers, there is a larger improvement in the instances with clustered
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Table 5.4: Paths produced for instance c206.25 with and without fathoming

Original +Fathoming Path Path Reduced Cost
Route 0 (0 4 3 7 26 ) -5904
Route 1 (0 2 1 5 26 ) -289.4
Route 2 (0 20 24 6 22 26 ) -313.9
Route 3 (0 23 18 19 16 14 12 15 17 13 25 9 11 10 8 21 26 ) -20.25
Original
Route 0 (0 4 3 7 26 ) -5904
Route 1 (0 2 1 5 26 ) -289.4
Route 2 (0 20 24 6 22 26 ) -313.9
Route 3 (0 23 19 16 18 17 14 12 15 13 25 9 11 10 8 21 26 ) -9.25

geographical distribution of the customers in terms of number of labels produced. In addition,

in 5 of the instances out of 14, the time to solve an instance could be reduced. However, there

are cases where the time to solve the knapsack problems increase the solution time although

the solution is reached in less steps in branching tree, by generating less number of columns

and calling the exact pricing algorithm less frequently. Table 5.5 represents the results of

instance r112.50 as an example.

Table 5.5: Comparison of results for the instance r112.50 with and without fathoming

Σ labels Time Tree N.cols N.pric exact
Original 74119389 44282 138 5821 323

Original+Fathoming 13878032 259200 22 3117 61

As discussed in chapter 4, in the original problem solved by (Dabia et al., 2011) by using

bi-directional search, the author already uses resource bounding. When we implemented arc

bounding, in the test instances we realized that the resource bounding performs much better

than arc bounding. Although we present the theoretical derivations of arc bounding procedure,

it is not applied in this study because resource bounding already gives better results than arc

bounding.
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CHAPTER 6

CONCLUSION

In this study we proposed fathoming and arc bounding procedure to the pricing problem of

TDVRPTW in BCP framework and implemented fathoming procedure to bi-directional TDL

algorithm. In all of the instances in which fathoming is implemented, the number of labels

produced reduced.In the analysis performed for the instances solved, we realized that the

fathoming procedure works well in general for the instances with clustered geographical dis-

tribution of the customers and instances with customers having wide time windows, in terms

of the number of labels produced. In addition, the efficient production of forward and back-

ward labels led to a decrease in the solution time in 5 instances out of 51 in total. In the other

instances there were not improvements according to the results of the existing solution by

(Dabia et al., 2011).

The structure of the bound developed on the labels effected the results to a large extent. The

knapsack problems are solved over nodes that can be extended feasibly. In the case of in-

stances with clustered data set, mostly nodes are selected in the same cluster and other nodes

in other clusters are eliminated in the feasible extension of the label. Therefore, the knap-

sack problems are solved with less number of variables in these instances. In addition, wide

time window characteristics strengthens this impact. Finally, the solution can be found in less

seconds. However, in the other types of instances there is an increase in time to solve the

instance because the time to solve the knapsack problem cannot compensate the time to find

the solution in total though there is a reduction in the number of labels produced.

41



6.1 FUTURE RESEARCH DIRECTIONS

In the future studies of the proposed bounding procedures on TDESSPRC, it would be in-

teresting to develop efficient heuristics to on the knapsack problems. As it was discussed

before, the time spend on solving the knapsack problems becomes an important problem on

the CPU time of the instance. Therefore, more attention should be focused on solving the

knapsack problems. Finding near optimal solutions for the knapsack problems and not solv-

ing the knapsack problems for all non-dominated labels but for some non-dominated labels

which are selected according to a pre-defined rule.

With the introduction of bi directional dynamic programming by (Righini and Salani, 2006),

researchers’ attention increased to solve the resource constrained elementary shortest path

problems by bi-directional search algorithm within the branch-and-price and branch-and-cut-

and-price algorithms. This led to the emerge of more promising methods to solve ESPPRC.

One of these methods is the decremental state space relaxation proposed by (Righini and

Salani, 2008). The method has comparable computational performances with exact dynamic

programming when the resource constraints are very tight. Therefore, the future extension of

this research could be implementing decremental state space relaxation to solve ESPPRC.
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CHAPTER 7

EFFECTS ANALYSIS OF A NEW CUSTOMER ON KUEHNE

NAGEL NETHERLANDS FMCG DISTRIBUTION NETWORK

Logistics plays an increasingly important strategic role for organizations that strive to keep

pace with market changes and supply chain integration. (Meade, 1998)Therefore, third party

logistics (3PLs) play an increasing role in the supply chain of the companies who outsource

logistics activities. The main advantage of outsourcing services to 3PLs is that these 3PLs al-

low companies to get into a new business, a new market, or a reverse logistics program without

interrupting forward flows; in addition, logistics costs can be greatly reduced. Accordingly,

an important reason for the growth of 3PL services is that companies compete in a number

of businesses that are logistically distinct due to varied customer needs. Most providers have

specialized their services through differentiation, with the scope of services encompassing

a variety of options ranging from limited services (for example transportation) to broad ac-

tivities covering the supply chain.(Fuller et al., 1993). In addition, 3PLs have also become

important players in reverse logistics since the implementation of return operations requires

a specialized infrastructure needing special information systems for tracking/capturing data,

dedicated equipment for the processing of returns, and specialist trained nonstandard man-

ufacturing processes. Some 3PLs, on the other hand, offer complete supply chain solutions

on warehousing, order fulfillment, and especially value-added services such as repackaging,

re-labeling, assembly, light manufacturing, and repair.(Ko and Evans, 2007)

In this chapter, we will introduce an effects analysis of a new customer on the Dutch dis-

tribution network of Kuehne+Nagel (K+N), a 3PLs firm who provides its customers inte-

grated services including all aspects of logistics planning, control and execution. Recently,

Kuehne+Nagel signed a contract with a new customer PepsiCO whose main business is man-
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ufacturing, marketing and distribution of grain-based snack foods, beverages and other prod-

ucts. PepsiCo decided to outsource its warehousing, freight management and distribution op-

erations in the Netherlands in order to improve customer service by responding even quicker

to changing market demands while at the same time reducing supply chain costs as well as the

environmental impact of its transportation activities. Therefore, the company decided to have

a contract with Kuehne+Nagel for 10 years and outsource its logistics activities.The company

chose Kuehne+Nagel since KN ensured an integrated and flexible solution that copes with

the daily patterns and seasonality of the food industry with their in depth knowledge of Fast

Moving Consumer Goods (FMCG) industry. Within the scope of 10 year contract, K+N pro-

vides supply chain solutions tailored to PepsiCo’s specific needs. By integrating PepsiCo into

Kuehne + Nagel’s Dutch distribution network, fewer kilometers will be needed to transport

salty snacks, cereals and nuts from manufacturing sites to the distribution center in Utrecht

and further to retailers throughout the Netherlands. In addition, Kuehne + Nagel will de-

velop a new state-of-the-art, multi-user FMCG warehouse in Utrecht, equipped with high bay

storage and automatic layer picking during the first year of the agreement. (K+N, 2011)

The aim of the study that will be provided in this chapter is to give an insight to K+N logistics

team about the possible effects of the new customer on K+N distribution network and eval-

uate possible alternative scenarios for the operational changes by constructing a simulation

model. In the next sections, we introduce the 3PLs company, the problem definition in detail,

our solution methodology and the corresponding simulation study performed to evaluate the

future scenarios on K+N distribution network.

7.1 KUEHNE+NAGEL (K+N)

Kuehne+Nagel delivers integrated supply chain solutions to its customers. It has many loca-

tions in more than 100 countries all over the world with over 58000 employees. K+N offices

are mainly located in Africa, Asia Pacific, Europe, Middle East, and North America ((K+N,

2011)). The countries in the global logistics network are listed in Appendix C. The key busi-

ness activities and market positions in the located regions are built on the company’s world

class capabilities which are

• Seafreight,
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• Airfreight,

• Contract logistics and lead logistics

• Road and rail logistics.

The company provides logistics services to virtually all key industry sectors including aerospace,

automotive, FMCG, high technology, industrials, oil and gas logistics, pharma and healthcare

and retail.

7.2 K+N NETHERLANDS CONTRACT LOGISTICS

The company has been present in the Netherlands since 1955. In addition to sea freight

and air freight activities, contract logistics also contributes to the company’s business within

Netherlands.

Figure 7.1: Key Business Activities of K+N in Netherlands

In the scope of contract logistics, K+N provides service to different customer profiles. Con-

tract logistics in the company is divided into three business units:

• Technology Solutions,

• Fast Moving Consumer Goods (FMCG),

• Returns.

The contract logistics in K+N Netherlands is specialized in solutions to high technology and

FMCG. In addition, reverse logistics activities for the FMCG customers are also provided.

In the further sub-sections, business units, their functions and specialized facilities for these
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business units are explained. To provide a general view, K+N warehouses located in the

Netherlands are shown in Figure 7.2. The company has many warehouses allocated to differ-

ent business units to cover the distribution of goods. Besides these warehouses are specialized

according to the main customers they are dedicated to.

Figure 7.2: Contract Logistics - Netherlands

7.2.1 TECHNOLOGY SOLUTIONS

Facilities in Moerdijk, Zoetermeer, Tiel, Helmond, Born and Wijchen are dedicated to the

Business Unit Technology Solutions. Products such as engines, small spare parts, complete

communication systems, printers, etc. are stored and distributed over these warehouses. Also,

this business unit is specialized in aftermarket sales technology in terms of Reverse Logistics

and Service Logistics. A detailed overview of the facilities can be seen in Appendix D.
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7.2.2 FMCG

FMCG is the biggest division of contract logistics within Netherlands. The distribution and

storage of the retail goods to the retail distribution centers are provided by Kuehne+Nagel.

The warehousing and dispatching of the retail goods are mainly handled in K+N FMCG fa-

cilities located in Nieuwegein, Veghel and Raamsdonskveer.

Facility Nieuwegein: The facility is located on 34000 m2. The unloading and loading of

the goods are handled manually or by Automatic Layer Picker (ALP) system. The facility

is specialized for FMCG Food warehousing and it is utilized for only national distribution.

The main customers served via Nieuwegein are Sara Lee, Nutricia, SCA and Britvic. Among

these customers, products for SCA are distributed over Benelux and the customer Britvic is

leaving the network.

Facility Veghel: The facility is located on 103000 m2 and composed of three buildings. The

buildings have different properties. One of them is a high bay warehouse with ALP. The fa-

cility serves as a national distribution center for Mars, Unilever and Nespresso and it serves

as a duty free DC for Mars, Cadbury, Ferrero and Nestle. In addition, it serves for Interna-

tional Travel Retail (ITR) of Mars, Ferroro, Cadbury and Nespresso. Therefore, the facility is

mostly specialized for these main customers.

Facility Raamsdonksveer: The facility is located on 40000 m2. The unloading and loading

of the goods are handled manually or by ALP system. The facility serves as a manufactur-

ing consolidation center for its customers. There are approximately 400 types of dangerous

goods stored and handled in the facility. Therefore, the operations done within the facility dif-

fer from other facilities. The employees get special training to deal with the dangerous goods.

The main customers served are Kimberly Clark Consumer, Reckitt Benckiser and Unilever

Home and Personal Care.

More information about these warehouses and smaller facilities (Vaassen, Ede, Oud Beijer-

land) are provided in Appendix D.

7.2.3 RETURNS

The facilities in Zaandam, Zwolle, Tilburg and Pijnacker serve as return centers. These four

return centers are recently taken over from Albert Heijn. The return centers are responsible for

performing needed operations for all return goods such as boxes, packaging and crates which
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return from approximately 900 Albert Heijn stores in The Netherlands. There are different

types of returns in the network:

• One type of return is collected from Albert Heijn distribution centers and delivered

to K+N return centers. These type of returns are composed of wastes, boxes, recycle

bottles and empty crates. These returns are sorted and processed in return centers and

some of them are delivered back to the sourcing units. For example, after empty crates

are washed in Tilburg facility, they are delivered back to the sourcing unit.

• The second type of return is the scheduled returns. These returns are collected from the

retailer distribution centers and brought back to the K+N warehouses. These types of

returns are mostly the excess promotions.

• The third type of returns is composed of wrong deliveries. These type of returns have

to be collected from the retailer distributions centers and delivered back to the K+N

warehouses.

More information for the return centers can be seen in Appendix D.

7.2.4 CURRENT DISTRIBUTION (AS IS) NETWORK FOR FMCG and RETURNS

The company provides storage and distribution of FMCG to its customers. The transportation

activities over the distribution network include:

• Primary Transport: Collection of goods from the sourcing units to K+N distribution

centers,

• Secondary Transport: Delivery of goods from K+N distribution centers to retail dis-

tribution centers,

• All type of returns explained in section 7.2.3,

• Inter K+N: Delivery of all type of products between K+N depots,

• Direct Shipments: Pick-up and delivery orders from the customer site to the end cus-

tomer’s delivery address.
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As it is listed, both forward and backward logistics are performed in the distribution network

of FMCG within K+N Netherlands. The transportation activities over the distribution network

are shown in the following figure:

Figure 7.3: Current Distribution Network - FMCG and Returns

This current distribution network in other words ”AS IS” network runs with the following

characteristics:

• Transport home base warehouses: Veghel, Raamsdonskveer , Nieuwegein

• Supporting home bases: Vaassen ,Ede, Oud Beijerland

• Retail return centers: Zaandam, Zwolle, Tilburg, Pijnacker.

7.2.4.1 PLANNING OVER AS-IS NETWORK

The planning over the distribution network is done by the planners on site. Every planner is

responsible for his/her own trucks and truck drivers. The aim of the planners is to optimize the

flows taking into account both the inbound and outbound logistics. The planners use the tool

”Intertour” for the transport optimization. However, in the current situation, planners do not

utilize the optimization part of the software. Instead, the software is used as a visualization

tool to plan the routes manually. After the routes are planned, these routes are assigned
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to the trucks to check the capacity. Hence, the capacity allocation is done as the second

step. For the secondary transport, generally customer orders are consolidated and delivered to

retail distribution centers. However, in these processes, there is not a complete integration of

forward and reverse logistics because of the complexity of the network. The most important

factors that affect the transportation planning are the customers’ market pressure and strict

time windows of the end customers. The company has three types of customer orders which

are called Type A, Type B, Type C. Type C orders have lead time of 2 days, type B orders

have lead time of 1 day and type A orders belongs to the orders delivered to Albert Heijn

Retail Distribution Centers (RDCs). Type A orders are given at 12:00 every day and have to

be delivered to Albert Heijn RDCs at night. In addition, according to the interview done with

the transport planning manager, 80% of the deliveries have a specific time which means the

delivery is assigned to the same day of the week to the same time window.

7.3 PROBLEM DEFINITION

”3PLs’ logistics networks typically differ from the logistics networks owned by single com-

pany. The primary purpose of the company-owned network is to take care of its own products

and customers. However, 3PLs’ networks must consider a number of various clients over

time. The network design issues can be divided into two categories with respect to the mate-

rial flows: forward flow and reverse flow. Current 3PLs tend to provide logistics services for

both flows.”(Ko and Evans, 2007)

As mentioned before, Kuehne + Nagel is a 3PL that performs both forward and reverse logis-

tics for a variety of customers. For a 3PL to survive in the market, it is important to satisfy

its customers with a high customer service level and low costs. In the dynamic environment

of the retail sector it is important to take control over the costs and re-develop the existing

network to keep pace with the changing market requirements.

Recently, K+N had a new contract with a new customer, PepsiCo. PepsiCo has products with

lightweight but high volume products. The company expects an increase of approximately 50

% in the transportation activities with the addition of the new customer to the existing net-

work. Therefore, it is important to analyze the current and future network, define the strategies

for the future with the changing structure of the network.

System boundary is defined to decide which part of the network is in interest in Figure 7.4.

50



The distribution network of the business units FMCGs and returns is in the system of interest

since they are the components of the system that will be directly affected by the changing

conditions. Among FMCGs and returns, we are not interested in the distribution over out

of home (OOH) customers in Belgium (and partially in Netherlands) since the distribution is

outsourced. The planning and distribution of goods are done by outsourcing transport com-

panies. In addition, the facilities Vaasen, Ede and Oud Beijerland are described as supporting

home bases which means they are not warehouses but there are trucks assigned to these facil-

ities and most of the trucks start and end the trip in these facilities. Therefore, these facilities

are also taken in the system boundary. In the environment of the system, there will be cus-

tomers, end customers and subcontractors since they will be affected by the changes in the

system.

Figure 7.4: System of interest in terms of business units and facilities

The system boundary is defined but with PepsiCO there will be new opportunities and alter-

natives in the system. With the PepsiCo contract, the products will be distributed via K+N

network by January 2011 which will lead to several changes in the network. With the addition

of PepsiCo, it is foreseen an extension of the transport network activities. Therefore, a new

warehouse will be opened in Utrecht by 2012 and the facility in Nieuwegein will be closed.

The view of the main warehouses in the current (AS IS) and the future (TO BE) networks are

provided on the maps in Figure 7.5.
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Figure 7.5: The AS IS network (on the left) and the TO BE network (on the right)

In addition to the changes in warehouses with PepsiCO contract, the firm will be able to use 3

LZVs (Langere en Zwaardere Vrachtautocombinatie) which are 25 meter long vehicles. The

firm wants to know how to utilize these LZVs in TO BE network, including the decision of

automatic or non-automatic unloading. Further investment on these vehicles is also in consid-

eration if it is profitable. Moreover, more night and weekend deliveries are in consideration

with changing conditions.

The company does not know precisely how much value is added by its recent customer to the

network. Besides, it is not known how much value will be added by PepsiCo to the existing

network and which companies will be more or less valuable when PepsiCo enters into the

network. Hence, the company is looking for an assessment of the customer contributions to

the network.

As mentioned before, in the current situation the primary transport is done between a specific

warehouse and sourcing unit and the products of that sourcing unit is done via that specific

warehouse. Another topic for the customer contribution is that the effect of change in the

network in case of changing the gravity of the customer to other warehouses.

All in all, it is clearly seen that the new customer PepsiCO will change the AS IS network and

there will be new alternatives over the distribution network. For the future of the distribution

network, it is important to know the effect of PepsiCO over the AS IS and analyze further al-

ternatives for TO BE. However, one important thing is to know about the current performance
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of AS IS network which will also guide us in the further phases of the research. The possible

causes for the need of analysis of the AS IS network is given in the cause-effect diagram in

Figure 7.6.

Figure 7.6: Cause-effect diagram for the analysis of the current network

In accordance with the information and problems provided, it is necessary to define the re-

search scope and the research questions in terms of what should be done in the further phases

of the study.

7.4 RESEARCH DESIGN

As the distribution network is introduced and problems are described, it is decided to go

through the following steps during the research study:

• There is a lack of analysis in the current system. As the first step; the current situation of

the distribution network in the system of interest should be analyzed. The performance

of the current distribution network should be measured to evaluate the efficiency and

the effectiveness of AS IS network.
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• The second step is the measure the impact of the new customer on the current network

and operational processes.

• Finally, in line with the second step, what if analysis of the possible alternatives should

be performed. In what if analysis, it is important to define different scenarios and alter-

natives to reach an optimized solution. The steps in the research scope are summarized

in Figure 7.7. It is clearly seen that every step leads to a research question.

Figure 7.7: Research Scope

Throughout the study, in every research question same measures is used to evaluate the net-

work performance and alternatives over the network. These performance measures are:

• Empty KMs traveled vs. Loaded KMs

• Capacity utilizations of the trucks

• Number of deliveries per period
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• Order fulfilments

• Number of vehicles required per vehicle type

• Kilometers traveled and hours spent for each trip.

7.4.1 RESEARCH QUESTION 1

How does the current distribution network perform in K+N Netherlands for FMCGs and re-

turns?

The objective of the first research question is to gain an insight on the current network perfor-

mance of the company. Therefore, it is necessary to process the past data in order to derive

quantitative results for performance measures. In addition to understanding the past perfor-

mance, it is aimed to compare the performance of the network with the theoretical optimum.

Hence, the approach that should be followed for this part is to first model the current network.

For this, we can construct a simulation model, and then verify and validate the model so that

we can compare the actual costs and simulation costs. According to the research conducted,

the software SHORTREC is a suitable tool for simulation study. It is an automated trip rout-

ing and scheduling system and optimizes transport and distribution planning. The optimum

allocation of the vehicle fleet by efficiently filling in trips, combined with the fastest routes,

enables the user to agree more accurate delivery times with its clients. In addition, the best

planning can be determined in a unique situation by comparing various scenarios. Accord-

ingly, we can compare the performance of the current network with the optimum solution

found by SHORTREC.

7.4.2 RESEARCH QUESTION 2

How will the new customer affect the performance of the current distribution network with

FMCGs and returns?

The objective of the second research question is to see the affect of the new customer in the

network in terms of transportation costs. Therefore, the approach that should be followed for

the second research question is to construct the model with the new customer included in the

network. For the simulation study it is decided to use the software SHORTREC.
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7.4.3 RESEARCH QUESTION 3

How to minimize costs in an expanding network within a dynamic environment?

How to utilize alternative methods to find the optimum solution for FMCGs and returns net-

work?

There will be new alternatives to be evaluated such as

• A new warehouse: This alternative includes the new warehouse that will be opened in

Utrecht.

• New vehicles (LZVs) utilized: In this alternative, it is aimed to evaluate the optimal use

of LZVs.

• Operational changes in the system:

• Allowing more night deliveries and more Sunday deliveries: With this alternative, the

company will be assumed to work for 24 hours over 7 days a week.

• Overnight stay of truck drivers which also means multi-day planning.

With the new warehouse the network will become TO BE network. Hence, the alternatives

should be evaluated to minimize the costs over TO BE network. In Figure 7.8, the structure

of the research design is provided. The research will be conducted starting with analysis of

the AS IS network followed by measuring the impact of PepsiCo. Lastly TO BE network

will be constructed and new alternatives over TO BE network will be evaluated. Throughout

this study, detail planning is not in research scope since the network is dealt with at high

level. Therefore, it is more convenient to conduct the research with SHORTREC in which

the planning over the FMCG network can be determined and various alternatives can be com-

pared. Accordingly, the defined alternatives can be evaluated in an easy manner by using

SHORTREC.

7.5 AS IS NETWORK

The data to perform the necessary analysis for AS IS network were collected from the Trans-

portation Management System (TMS) of the company. However, it is important to select the
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Figure 7.8: Structure of Research Design

data within the system boundary. The transportation services within the company are per-

formed by their own trucks, subcontractors and charters. When the company cannot satisfy

the demand of its customers by its own trucks, subcontractors’ trucks are utilized. In addi-

tion, there are two different uses of charters. The first type of charter firms work for Kuehne

+ Nagel but make their own planning. The second type of charter service is used when there

is excess demand within the distribution network. We exclude the first type of charter firms

in the analysis since they are responsible of their own planning. Therefore, the data collected

for the analysis do not include the trips performed by these companies such that 20 carriers

out of 50 are excluded in the analysis.

To perform analysis of the transportation network of the company 26 weeks data were col-

lected. However, it was costly in terms of time and effort, to make the analysis for all the

collected data. Therefore, three representative weeks were chosen for the analysis, simulation

and the comparison of the two. The total kilometers covered and the total demand volume

were taken into account to select the representative weeks. The distance calculations in the

system are based on the theoretical distances and a common weight-volume measure, which

is called chep equivalent units, is used for all types of products in the company database.

Moreover, in the selection, the weeks with very high or very low demand were ignored. The

weeks in which there were national holidays or the weeks in vacation time were also ignored.
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Thus, the following weeks were chosen for the analyses in general:

• High volume week: Week 35

• Medium volume week: Week 11

• Low volume week: Week 23

Kilometers covered for the 26 weeks data on a weekly basis can be seen in Figure 7.9.

Figure 7.9: Total overview kilometers traveled in 26 weeks

A general statistics of the empty and full kilometers is provided in Table 7.1.

Table 7.1: Summary of the kilometers covered

Minimum Average Maximum
Full KMs 130906 148036 168795
Empty KMs 64039 75072 87318
Total KMs 195300 223108 245802
% of empty KMs 31% 34% 36%

Figure 7.10 shows the KMs traveled per trip execution type. In the graph, when it is referred

to K+N KMs, the kilometers traveled the temporary workers hired to service customers by

using KN trucks is also included. Though, it is seen that KMs covered by subcontractor
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firms increases from the week with low level of demand, KMs covered by K+N owned trucks

decreases.

Figure 7.10: Trip execution type KM distributions

In Figure 7.11, we also see the decrease in the number of trips performed in AS IS network

decrease from low to high. However, the average trip length is much higher in the week

medium and high than the week low. Thus it can be concluded that, KN used its own trucks

more efficiently when then demand level increased. This is also due to the temporary workers

hired in this period. The temporary workers were only utilized at the week with high level of

demand. Temporary workers were used in 15 weeks in total out of 26 week data.

7.6 SIMULATION STUDY

7.6.1 SIMULATION TOOL

In order to simulate the TO-BE Network, commercial routing software SHORTREC was

used as the simulation tool to solve the VRPTW. SHORTREC is a program for trip and route

planning developed by ORTEC consultants. The route planning indicates the best route for

a vehicle to take between two or more addresses. The trip planner, on the other hand, as-

signs orders to the entire vehicle fleet in an efficient way. The objective of the program is to
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Figure 7.11: Number of trips vs. average trip length

minimize the total related costs by taking into account various type of restrictions such as

• Heterogeneous and fixed vehicle fleet

• Multiple capacity constraints of vehicles (volume, height and weight)

• Product requirements (eg. Cooling)

• Handling of backhaul customers (suppliers)

• The sequence of the service of the customer (first or last)

• Load capacity

• Multiple service intervals (loading and unloading time windows)

• Distance

• Depots

• Drivers’ working hours

• Driving times.

By the allowance of these factors, SHORTREC makes efficient plans for the user. These plans

can be analyzed in various ways and can be adapted according to the planner’s preferences.
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Although SHORTERC is an automated planning system, manual adjustments can be made

within trips after the planning is done. The software has many different interfaces which

makes it easier for the user to make modifications in the plan. In addition, the scenario analysis

option enables to draw up various plans and compare them with each other. Furthermore, the

output of the software provides detailed reports about the kilometers driven, the overtime

of drivers, service levels etc. All in all, SHORTREC has many features for efficient route

planning. However, it is important for the user to define the requirements before deciding

to implement the software. The tool’s comparison with different vehicle routing softwares

in terms of their specifications, features and capabilities is presented in (Hall, 2006). The

detailed solution approach of SHORTREC is beyond our knowledge. However, there is basic

information in the literature ((Kant et al., 2008) and (Poot et al., 1999)) about how the software

handles real life vehicle routing problem restrictions.

7.6.2 SHORTREC SOLUTION METHODOLOGY

SHORTREC first finds a basic solution by construction heuristics and then improves the first

solution by improvement heuristics. Sequential insertion algorithm and saving based algo-

rithm are used as constructive heuristics to find a feasible solution. The main idea behind the

insertion algorithm is to add non-served customers to the current plan by inserting them at the

best position. Once it is not possible to insert a customer into the current trip anymore, the

algorithm starts with a new trip (Poot et al., 1999). Figure 7.12 summarizes the steps for the

sequential insertion algorithm used in SHORTREC.

In order to overcome the unattractive view of the results of the sequential insertion algorithm,

SHORTREC developers also used saving based algorithm. The idea behind the algorithm

is to start with each customer in a separate trip and then try to find improvements on this

solution (”savings”) by combining the customers of two trips into one trip without changing

the order in which the customers are visited (Poot et al., 1999). In order to handle the real life

restriction of vehicle routing problem, adjustments were made on the algorithm. The main

steps of the saving based algorithm are summarized in Figure 7.13.

After the basic solution is found variable neighborhood search is utilized as improvement

heuristics. Several neighborhood structures (the opt algorithms) are used, the order and fre-
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Figure 7.12: The Sequential Insertion Algorithm for VRP (Poot et al., 1999)

quency of which can be determined by the user. In a way, these neighborhoods are used as

building blocks, to create a heuristic solution method that is adapted to the specificities of the

routing problem at hand. By this way the solver can be adapted by the user, so that a balance

is reached between computing time and solution quality. Moreover, a large degree of control

over the length of the search can be defined. (Schittekat, 2010). In the version of SHORT-

REC used in this study, a repetition cycle of the following option settings can be formed and

a maximum run time can be specified in total and for each of the options to improve the basic

solution:

1. Basic Solution: The basic solution involves preliminary allocation of orders to ve-

hicles (trips). The basic algorithm adds the orders to the schedule, and then all other

algorithms seek to improve it. The basic algorithm is the so called construction algo-

rithm; the following are the enhancement algorithms and their calculation times can be

adjusted.

2. Optimize within trip: SHORTREC seeks to improve on the sequence of orders as-

signed to each trip, so as to reduce the cost of the plan. The optimization process does

not involve moving orders within trips.

3. Replacing of orders: The optimization option involves assessing each possible pair

of planned trips to establish whether a cost saving is possible by moving one or more
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Figure 7.13: The Savings Based Algorithm for VRP (Poot et al., 1999)

orders from one trip to the other.

4. Optimize within trips: This procedure is a combination of the optimization options 7

and 8.

5. Equalize workload: SHORTREC tries to equalize the number of hours worked in

different trips. This is done by applying a notional surcharge the time that each vehicle

is in use in excess of the average. If this optimization option is activated, the plan is

liable to become more expensive in terms of kilometers covered and overall resource

utilization time. However, the work will be more evenly distributed across the vehicle

fleet.

6. Selection of cheapest vehicles: This optimization process involves assigning each
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complete set of tasks to the vehicle that can perform at the lowest cost. SHORTREC’s

basic solution is based only on capacity and availability. Some trips may, therefore,

initially be assigned to vehicles that are relatively expensive to operate or are locate a

considerable distance from the trip’s starting point. The purpose of this optimization

process is to identify vehicles that could do the work more cheaply, because they are

either cheaper to operate or located more conventionally.

7. Trip swapping: In the context of this optimization process, each pair of trips is as-

sessed, to see whether the cost of the plan could be reduced by swapping them over.

8. Stop swapping: This option also entails trying to minimize the cost of the plan. Every

trip pairing examined to assess the cost implications of swapping some of their orders

(i.e. moving one or more orders from trip A to trip B and one or more orders from trip

B to trip A.)

A view of the option settings for the opt algorithms in SHORTREC can be seen in Appendix

E. In addition to these explanations, the reader is referred to (Close, 2009) for a more detailed

explanation of SHORTERC solution approach.

7.6.3 SIMULATION MODEL PARAMETERS SETTINGS

In order to simulate the transportation system of the company, the parameters in the simulation

software were defined and estimated. The data collected from the TMS were used in order to

estimate the parameters. Furthermore, an Excel tool coded in VBA is created to transfer the

data from TMS into simulation input. This was needed to customize the input data according

to SHORTREC specifications. In addition a template was formed for the company to perform

further simulations for different purposes. The parameters were tested on the AS-IS network

simulations and then utilized in the TO-BE network simulations.

7.6.3.1 PLANNING HORIZON

In the sample simulation runs, the rolling horizon was taken as one week in order to simulate

the representative weeks at one time. However, the results couldn’t be validated with the real

figures of the AS-IS network. Therefore, the planning horizon was taken as one day for the
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simulation. Another arrangement was done in order to plan the night delivery orders. These

orders couldn’t be planned when the working hours of the depots and the vehicle fleet were

taken as 24 hours. For example, the orders to be delivered at 23:30 or 00:30 couldn’t be

planned since the vehicle cannot return the depot in 30 minutes from the delivery address or

cannot leave the depot and be at the delivery address in 30 minutes. Hence, in the simulations,

the working hours of the depots, trucks and drivers were taken as from 00:01 to 30:00. It

was tested that the six hours extension would be sufficient to prevent the planning problem

discussed. Unfortunately, with this setting all the possible scenario analysis for operational

changes within the system such as multi-day planning were eliminated.

7.6.3.2 LOADING AND UNLOADING TIMES

The unloading and loading time analysis was done for the depots and non-depot points sepa-

rately because of two reasons. Firstly, in the company database, only the vehicle arrival and

departure times at an address exist. Therefore, the time between the arrival and departure time

not only includes the time required to load or unload the orders but also the waiting time at

the address. Secondly, when drivers arrive at the depot, the trailers are already loaded.The

drivers only couple the trailer to the truck. Time is needed only for paper work. This is the

same for unloading. The drivers only uncouple the trailer and do the paperwork when they

arrive to the depot with loaded truck. Therefore, the time between the departure and arrival

times in the database does not include any information about the times of the loading and

unloading processes. On the basis of this information, the following calculations were done

for the loading and unloading time analysis.

Depot Loading and Unloading Times: The loading and unloading time of the orders at

the depot does not depend on the number of pallets loaded at the depots. Therefore, a simple

average of the loading and unloading durations was taken.

Non-Depot Loading and Unloading Times: The following times are meant by the loading

and unloading times at non-depots:

• The loading time at customer’s pick-up address for direct shipment
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• The loading time at sourcing unit for primary transport

• The unloading time at end customer’s delivery address for direct shipment

• The unloading time at customer’s delivery address for secondary transport.

Every driver is responsible for loading and unloading the orders at specified points on the

route. Differently from the loading and unloading times at the depots, the times in this section

also depend on the loaded or the unloaded quantities. Moreover, the duration in the database

includes the time for loading or unloading activity, waiting time at the point and the time

needed for paperwork. In order to calculate the times for the simulation, a linear regression

model was constructed such that the dependent variable in the model is the loading/unloading

time and the loaded/unloaded quantity is the only explanatory variable. Figure 7.14 and Figure

7.15 shows the loaded quantity line fit plots respectively. The descriptive statistics for the two

regression models is provided in Appendix F.

Figure 7.14: Quantity loaded line fit plot

Based on the results of the two regression models the fixed and variables times for loading and

unloading times at customers’ addresses were defined. However, in the test simulations, it is

realized that the loading and unloading times in total is larger than the actual figures. Hence,

it was decided to decrease the fixed times for loading and unloading activities considering that

the durations also includes the waiting times at the depots. In conclusion, the parameters for

loading and unloading times are defined as in Table 7.2.
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Figure 7.15: Quantity unloaded line fit plot

Table 7.2: Loading and unloading time parameters

Depots Non-Depots
Loading
Time

Unloading
Time

Loading
Time

Unloading
Time

Fixed Time (min.) 27 27 24 30
Variable Time per chep
equivalent unit (min.)

0 0 1 1

7.6.3.3 FIXED AND VARIABLE COSTS

The fixed cost of utilizing a truck in the planning horizon was provided by the logistics engi-

neers in the firm. In the simulations, the fixed cost of utilizing a KN truck is the lowest and

utilizing a charter truck is the highest. A comparison of the costs are presented in Figure 7.16.

The variable cost a truck based on the kilometers traveled and hours spent are calculated using

shipment costs. To calculate the shipment costs all weekly costs were summarized. Average

hour and kilometer costs were calculated based on these total weekly costs. These costs are

also used in the contracts with the customers. The variable cost comparison for each vehicle

type is provided in Figure 7.17.
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Figure 7.16: Fixed cost comparison of utilizing a truck

Figure 7.17: Variable cost comparison of utilizing a truck

7.6.3.4 THE OPT ALGORITHMS SETTINGS

The opt algorithms which were used for improving the basic solution and constructing a

complete solution are described in section 7.6.2. According to the list of these options, the

following sequence of opt algorithms were utilized to obtain the complete solution:

1. The solution starts with the basic solution

2. The repetition cycle starts and repeated five times with the following sequence of opt

algorithms:

a.Selection of the cheapest vehicle

b.Optimize within trips

c.Trip swapping

d.Equalize workload

e.Optimize within trips
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f.Trip Swapping

7.6.4 VERIFICATION and VALIDATION OF THE SIMULATION MODEL

7.6.4.1 VERIFICATION

Verification is defined by (Law and Kelton, 1991) as determining that a simulation computer

program performs as intended. Based on this definition, the companies who use SHORTREC

as a vehicle routing and simulation tool are the main references to verify the simulation soft-

ware. (Quak and Koster, 2005) used SHORTREC to calculate the impacts of different time

window pressure scenarios for fourteen Dutch retailers. In addition, SHORTREC is used

by several of the retail organizations involved in their study. Moreover, several implemen-

tations were made for companies such as Coca-Cola Enterprises, InBev, BP, DHL, Yellow

Transportation, Philips, Royal Ahold etc. (Kant et al., 2008),(Hall, 2006)

7.6.4.2 VALIDATION

”Validation is concerned with determining whether the conceptual simulation model (as op-

posed to the computer program) is an accurate representation of the system under study”(Law

and Kelton, 1991). In this study, actual figures of three representative weeks were compared

with the results in SHORTREC in order to validate settings in the software program. The

actual figures represent the results of the manual planning.

Table 7.3: AS IS network actual figures and simulation results

Weekly Average Weeks’
HIGH MEDIUM LOW Average

# of trucks:
ACTUAL 125 126 117 122.67

SIM. AS IS 122 119 108 116.33
%∆ (ACTUAL-SIM.) 2% 6% 8% 5%

# KMs:
ACTUAL 63892 65139 59275 62768.67

SIM. AS IS 64877 61460 57666 61334.33
%∆ (ACTUAL-SIM.) -2% 6% 3% 2%

# of hours:
ACTUAL 1991 1969 1853 1938.67

SIM. AS IS 1931 1790 1662 1794.33
%∆ (ACTUAL-SIM.) 3% 9% 10% 7%
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In Table 7.3, a summary of the actual figures and the simulation results in terms of the number

of trucks utilized, kilometers covered and number of hours worked for the representative

weeks is given. These figures were accepted as good enough to validate the simulation results.

However, it was observed that the performance of the software decreases as the number of

orders increases, i.e. the number of orders approaches to 1000 for a day. The percentage

difference between the simulation and the actual figures increases from the week with high

level of demand to the week with low level of demand. Although we expected the simulation

software would perform better than the actual performance of the network, in some cases we

see that the actual figures are better than the results of the simulation tool. For example, in

the case of the week with high demand level, the average kilometers covered for the actual

figures are even lower than the planning results. Therefore, this issue was considered when

interpreting the results of the TO BE network. In addition, in order to test this argument, very

small orders which were assigned to the same address were combined. This combination was

allowed up to 20% of the vehicle capacity not to affect the planning process of the software.

Thus fewer orders were obtained for all the days within representative weeks. In conclusion,

average number of trucks used decreased for all weeks. However, kilometers covered and

number of hours worked increased for the week with low demand. The detailed figures for

Table 7.3 and AS IS network with combined orders can be seen in Appendix G.

7.6.5 TO BE NETWORK SIMULATION

The definition of TO BE network and the changes with this definition are described with the

problem definition in Section 7.3. To validate the simulation settings, a base simulation model

was constructed and TO BE network simulation was constructed with some changes on this

base simulation model. The changes are listed below:

• The orders in the TO BE network are the combination of the AS IS orders and PepsiCO

orders. To select the representative PepsiCo orders, the same approach was followed

with AS IS orders. However, only the data of PepsiCo with medium level demand

week were used due to data inaccuracy. Therefore, TO BE network was planned to be

simulated with three representative weeks with additional PepsiCo orders with medium

demand level.

• The vehicle fleet in the TO BE network is the combination of the AS IS trucks and
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the trucks utilized by PepsiCo before the contract. The new trucks are included in the

simulation as

22 additional trucks owned by KN,

3 LZVs and

5 subcontractors’ truck.

• All orders that belong to the depot Nieuwegein are simulated as if they are distributed

by the new warehouse that will be opened in Utrecht, Lageweide.

One important decision in TO BE distribution network simulation was to allocate the trans-

portation lines that LVZs would be in use since every vehicle in the simulation model has to

be assigned to a depot. It is not possible in SHORTREC to optimally decide on the allocation

decision. Therefore, the lines with most full truck load orders were defined over 26 week

data. The lines with most frequent full truck loads per day were selected. The selected lines

can be seen in AppendixH. For the decision of allocating the three LZVs (taken over from

PepsiCo) to depots, four alternative scenarios were created. The allocation of LZVs to depots

for different scenarios is represented in Table 7.4.

Table 7.4: Alternative Scenarios for LZV allocations

ALLOCATION S0 S1 S2 S3
LZV1 UTRECHT UTRECHT UTRECHT UTRECHT
LZV2 UTRECHT UTRECHT VEGHEL VEGHEL
LZV3 UTRECHT VEGHEL VEGHEL RAAMSDONKSVEER

Moreover, for the case of addition of extra LZVs to the transportation network which is de-

fined as scenario ”S4”, 10 more LZVs were added to each depot and simulations were per-

formed. The results are presented in the next section.

7.6.6 SIMULATION RESULTS

Simulation results of the scenarios S0, S1, S2 and S3 for the weeks with low, medium and high

level weeks can be seen in Appendix I. The averages for the simulation days are given in Table

7.5 for each scenario. The aim was to simulate TO BE network with different allocations of

LZVs to defined depots in Table 7.4. In the figures, it can be noticed that 5% of the available
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trucks are not used. In the results of the AS IS network simulation for validation, it can also

be seen that 5% of trucks are not utilized. Therefore, based on this argument, it may be

concluded that with the addition of PepsiCO to the AS IS network, the performance of the

network would not change.

Table 7.5: Average figures for the simulation results

S0 S1 S2 S3
KMs 82175.3 82012.5 82050 81621.4
% of Empty KMs 35% 35% 35% 35%
# of Hours 2340.7 2340.3 2341.7 2177.8
# of Available Trucks 149.8 149.8 149.8 149.8
# of Trucks Used 142.9 142.9 142.9 142.8
% of trucks Used 95% 95% 95% 95%
# of LZVs Used 3 3 3 3

According to results in Table 7.5, there is not a big difference between the scenarios chosen.

This is due to the size of the network. Changing the assignment of LZVs to different locations

does not affect the performance of the network significantly. This conclusion led us to sim-

ulate the network in an alternative scenario ”S4” where 10 extra LZVs are assigned to each

depot in TO BE network. Table 7.6 represents the results for scenarios S0 and S4. In addition,

detailed results are given in Appendix J.

Table 7.6: Average simulation results for scenarios ”S0” and ”S4”

S0 Avg. S4 Avg.
KMs 81486.8 80457.7
% of Empty KMs 35% 35%
# of Hours 2298.6 2279.2
# of Available Trucks 148.3 148.5
# of Trucks Used 130.7 140.4
% of Trucks Used 88% 95%
# of LZVs Used 15.5 3

The results in Table 7.6 show that adding more LZVs to TO BE network will not make a big

difference such that the KMs covered decreased by only 1.26% on average in S4. The per-

centage of empty KMs traveled did not change and the number of hours worked on average

decreased by 0.86%. The chep equivalent units carried per km in each scenario is also com-

pared as an alternative performance indicator. While the chep equivalent units carried per km

is 11.8 in scenario S0, it is 11.7 in scenario S4 which means on average less chep equivalent
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units are carried per km by utilizing more LZVs in the latter scenario. Although the number

of available trucks utilized decreased in S4 compared to S0, on average 12.5 more LZVs are

used in S0 instead. The allocation of the average number of LZVs used is listed in Table 7.7

which shows that all the extra LZVs are used in Utrecht for all the simulation days. However,

it is not needed to utilize the LZVs for other depots as much as in the case of Utrecht. For

example, the LZVs assigned to Raamsdonksveer, Ede and Oud Beijerland are not utilized at

all as we restricted the usage of the LZVs to lines on which most FTL orders are carried per

day.

Table 7.7: Allocation of LZVs used

Utrecht Veghel Vaassen
Day 1 13 1 1
Day 2 13 1 1
Day 3 13 1.5 1.5
Day 4 13 1.5 -
Day 5 13 2 2

7.7 CONCLUDING REMARKS

In the final section dedicated to the research project of Kuehne+Nagel Netherlands, we sum-

marize what has been done and recommend future research directions.

7.7.1 CONCLUSION

The aim of the project conducted for Kuehne+Nagel was to analyze the affect of the new cus-

tomer in the distribution network of FMCG and returns. To reach this aim, it was proposed

to simulate the network by the routing software SHORTREC since detailed planning was not

in the scope of the project. In the project, firstly, AS-IS network was analyzed and three

representative weeks for the simulation was chosen. These representative weeks were used

to validate the results of the simulation tool with the actual figures calculated from the TMS

of K+N. Since SHORTREC is an optimization tool, we expected that the simulation results

would be better than the actual figures. However, it was observed that this argument was not

always true, especially when the number of orders increased the performance of the simula-

tion tool decreased. Based on this observation, in the scenarios created for TO-BE network, it
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can be concluded that with the additional trucks and LZVs taken over from the new customer

to the distribution network, there will not be a change in the performance of the distribution

network of Kuehne+Nagel. Nevertheless, it is not necessary for K+N to buy new LZVs with

the aim of increasing the network performance. But it is clear that, if new LZVs are utilized

within the network, they should be assigned to the new depot which is to be constructed in

Utrecht.

One important issue with the project was that because of the restriction of the software, not

all the performance indicators mentioned in the beginning could be measured or alternative

scenarios could be simulated. For example, as we had to choose the planning horizon as

29 hours in order to simulate the night deliveries, overnight stay of truck drivers or central

planning could not be evaluated. However, with the Excel tool coded in VBA to generate

SHORTREC input from the data of TMS, a template was built for the company to simulate

further scenarios in the future. As the distribution network of K+N has a very dynamic en-

vironment, it is better for the company to have a standard for the simulations and build more

scenarios on it.

Last but not least, compared to the current regional planning system ,where route planning

is performed manually by on site planners ,the routing software could perform good enough.

In terms of costs, the planning software can be less costly to the company compared to the

manual route planning if it is implemented.

7.7.2 FUTURE RESEARCH DIRECTIONS

At the accomplishment of this project, it is noticed that there are directions for future research

in the transportation network design of the distribution system of the company.

First of all, during the AS-IS analysis, it is observed that the company plans customers’ orders

regionally. It will be interesting to re-cluster these customers in order to optimize the network

efficiency and comparing it with the current assignment of the customers to the depots. There

can be improvement opportunities to increase the performance of the distribution network.

Secondly, instead of regional planning, improvement opportunities can be searched by central

planning. This can be an interesting future research though the implementation would require

a lot of effort.
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APPENDIX A

SPEED PROFILES

Table A shows the speed profiles used to include the time dependency in the Solomon in-

stances. The travel time breakpoints are calculated as in the procedure described in Ichoua

et al. (2003) by using these speed profiles.

Table A.1: Speed Profiles

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5
Fast 1.5 1 1.67 1.17 1.33
Normal 1.17 0.67 1.33 0.83 1
Slow 1 0.33 0.67 0.5 0.83
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APPENDIX B

RESULTS

The explanation for the columns in the tables used in this Appendix are given as in the fol-

lowing:

• ”Instance” : Name of the instance

• ”Forw. labels” : Total number of labels produced by forward TDL algorithm

• ”Back. labels” : Total number of labels produced by backward TDL algorithm

• ”Σ labels” : Total number of labels produced in the pricing problem

• ”Time” : The total time spent to solve an instance

• ”Tree” : The size of the branching tree

• ”N.cols” : Number of columns produced by column generation

• ”N.pric exact” : Number of calls to the exact pricing algorithm.

Tables B.1 and B.3 summarize the results for the case (Original) in which pricing problems

is solved as TDESSPRC by bi-directional TDL algorithm for instances with 25 and 50 cus-

tomers, respectively. In addition, Tables B.2 and B.4 show the results when fathoming is

implemented in the pricing problem ,which is indicated as (Original+Fathoming) for the in-

stance with 25 and 50 customers, respectively.
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Table B.1: Computational results for instances with 25 customers (Original)

Instance Forw. labels Back. labels Σ labels Time Tree N. cols N. pric exact
r101.25 133 155 288 0.078 0 162 1
r102.25 984 7002 7986 0.593 0 311 3
r103.25 14436 68898 83334 9.454 2 778 9
r104.25 105128 362044 467172 74.116 4 823 16
r105.25 970 966 1936 0.234 0 241 3
r106.25 2568 13415 15983 1.482 0 404 4
r107.25 9384 41399 50783 5.335 0 676 4
r108.25 79362 224115 303477 58.079 2 911 9
r109.25 5993 4844 10837 0.952 0 459 5
r110.25 5773 7703 13476 1.248 0 413 3
r111.25 38882 149892 188774 22.495 8 708 20
r112.25 476583 502501 979084 157,951 26 1276 55
r201.25 167881 8637 176518 13993 2 914 10
r202.25 965449 996932 1962381 5746.73 0 778 3
r205.25 3255326 27881 3283207 10373.3 0 1514 7
c101.25 5475 1483 6958 0.515 0 423 2
c102.25 402253 343139 745392 136.469 6 2914 22
c103.25 4333772 8577834 12911606 33685.1 6 5528 25
c105.25 69714 13131 82845 12418 4 1361 15
c106.25 6884 3080 9964 0.733 0 479 4
c107.25 229615 102148 331763 62.837 10 2599 26
c108.25 1330492 501380 1831872 337.071 36 5020 129
c201.25 660 25690 26350 1.778 0 702 1
c202.25 102857 8360675 8463532 39313.5 0 2679 5
c205.25 5148 387209 392357 250.897 0 1177 4
c206.25 34464 1545968 1580432 2476.97 0 2067 5
c208.25 150398 4360321 4510719 12876.1 0 3033 7
rc101.25 14490 9447 23937 7.691 14 1035 32
rc102.25 86929 164258 251187 25.522 18 2283 51
rc103.25 36946 46247 83193 7.629 0 2067 6
rc104.25 58897 70941 129838 24.305 0 1667 4
rc105.25 11849 11705 23554 3.058 2 698 9
rc106.25 8744 4906 13650 0.826 0 406 4
rc107.25 32235 11322 43557 3.448 0 1022 4
rc108.25 135129 45378 180507 24.71 0 968 5
rc201.25 1315775 10181 1325956 772.688 2 1546 12
rc202.25 10277231 2028870 12306101 38118.9 0 4779 11
rc205.25 984611 21830 1006441 928.892 0 1310 5
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Table B.2: Computational results for instances with 25 customers (Original+Fathoming)

Instance Forw. labels Back. labels Σ labels Time Tree N. cols N. pric exact
r101.25 131 128 259 0.453 0 311 3
r102.25 981 6859 7840 26598 0 311 3
r103.25 11063 66915 77978 322095 2 778 9
r104.25 47167 264122 311289 1053.44 4 816 12
r105.25 964 928 1892 3369 0 241 3
r106.25 2494 13254 15748 74725 0 404 4
r107.25 8169 40032 48201 276371 0 676 4
r108.25 69151 218995 288146 1352.04 2 911 9
r109.25 5052 4596 9648 33478 0 459 5
r110.25 5732 7471 13203 69842 0 413 3
r111.25 38155 148453 186608 943323 8 708 20
r112.25 474519 494809 969328 5659.37 26 1276 55
r201.25 62105 3197 65302 256996 2 914 10
r202.25 639173 539461 1178634 11224.8 0 778 3
r205.25 1245796 19712 1265508 7762.53 0 1514 7
c101.25 622 266 888 2808 0 423 2
c102.25 276836 234750 511586 2447.08 6 2881 23
c103.25 1166775 4253207 5419982 57410,1 6 5528 25
c105.25 54277 4177 58454 133786 4 1361 15
c106.25 2129 639 2768 7.036 0 460 4
c107.25 157244 19595 176839 386571 10 2532 23
c108.25 1072969 215616 1288585 6324.08 32 5151 109
c201.25 39 110 149 0.921 0 702 1
c202.25 17751 708066 725817 5258.36 0 2814 6
c205.25 299 35892 36191 208667 0 1077 4
c206.25 1016 318144 319160 2145.64 0 2013 4
c208.25 7703 1979448 1987151 15639.3 0 3031 7
rc101.25 13355 8866 22221 67.33 14 1036 31
rc102.25 86239 163811 250050 1201.89 18 2283 51
rc103.25 36943 46247 83190 282.533 0 2067 6
rc104.25 55640 70670 126310 630.54 0 1667 4
rc105.25 10091 9499 19590 66.784 2 670 8
rc106.25 8723 4662 13385 69.233 0 406 4
rc107.25 32212 10970 43182 266.809 0 1022 4
rc108.25 135035 44081 179116 1770.42 0 968 5
rc201.25 671029 4970 675999 2246.37 2 1562 11
rc202.25 7756773 1718828 9475601 59263.8 0 4779 11
rc205.25 750276 15811 766087 4020.93 0 1310 5
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Table B.3: Computational results for instances with 50 customers (Original)

Instance Forw. labels Back. labels Σ labels Time Tree N. cols N. pric exact
r101.50 2311 2309 4620 0.889 0 567 3
r102.50 11148 116634 127782 13759 0 1660 4
r103.50 408146 2989145 3397291 1282.75 4 2874 17
r105.50 28273 13175 41448 16239 2 1330 8
r106.50 74357 506042 580399 95052 2 2584 12
r107.50 1048387 7176299 8224686 3293.23 12 3963 36
r109.50 84082 73983 158065 25366 2 1560 12
r110.50 1920768 1884639 3805407 848.77 44 3217 100
r112.50 37062871 37056518 74119389 44282 138 5821 323
c101.50 1104023 109248 1213271 196031 6 5309 25
c105.50 2058015 220219 2278234 609262 8 5804 28
c106.50 1893087 234841 2127928 409487 10 6864 42
rc101.50 1858406 1336968 3195374 1328.1 696 5998 1059

Table B.4: Computational results for instances with 50 customers (Original+Fathoming)

Instance Forw. labels Back. labels Σ labels Time Tree N. cols N. pric exact
r101.50 2311 1553 3864 12465 0 567 3
r102.50 11148 116387 127535 727791 0 1660 4
r103.50 370287 2980732 3351019 21330,1 4 2874 17
r105.50 10128 4388 14516 182116 2 1330 8
r106.50 73783 505190 578973 5288,04 2 2584 12
r107.50 1039924 6994055 8033979 62746,1 12 3963 36
r109.50 83021 69775 152796 1595,16 2 1560 12
r110.50 1915469 1818913 3734382 62453,3 44 3217 100
r112.50 6950952 6927080 13878032 259200 22 3117 61
c101.50 474101 17237 491338 2053,11 6 5429 21
c105.50 1425043 74055 1499098 7593,6 8 5600 29
c106.50 1016543 58214 1074757 4849,31 10 6918 42
rc101.50 1814061 1322109 3136170 15734,6 686 6243 1063
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APPENDIX C

GLOBAL LOGISTICS NETWORK OF K+N

Table C.1: The Global Logistics Network of KUEHNE+NAGEL

Africa Europe Asia Pacific Middle East North America South & Central
America

Angola Albania Afghanistan Azerbaijan Canada Argentina
Equatorial
Guinea

Austria Australia Bahrain Mexico Bolivia

Kenya Belarus Bangladesh Egypt United States Brazil
Mauritius Belgium Cambodia Iran Chile
Mozambique Bosnia & Herze-

govina
China Israel Colombia

Namibia Bulgaria Hong
Kong/China

Jordan Costa Rica

Nigeria Croatia India Kazakhstan Cuba
Réunion Cyprus Indonesia Kuwait Ecuador
South Africa Czech Republic Japan Lebanon El Salvador
Tanzania Denmark Korea Qatar Guatemala
Uganda Estonia Macau/China Saudi Arabia Honduras
Zambia Finland Malaysia Turkey Nicaragua
Zimbabwe France Maldives Turkmenistan Panama

Germany New Zealand United Arab Emi-
rates

Peru

Greece Pakistan Uzbekistan Puerto Rico
Hungary Philippines Uruguay
Ireland Singapore Venezuela
Italy Sri Lanka
Latvia Taiwan
Lithuania Thailand
Luxembourg Vietnam
Macedonia
Malta
Netherlands
Norway
Poland
Portugal
Romania
Russian Federa-
tion
Serbia
Slovak Republic
Slovenia
Spain
Sweden
Switzerland
United Kingdom
Ukraine
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APPENDIX D

K+N NETHERLANDS FACILITIES

Table D.1: Facilities dedicated to technology solutions business unit

TECHNOLOGY SOLUTIONS
Zoetermeer Moerdijk Tiel

Characteristics Dedicated solution for Siemens 12000 m2 54000 m2, 3000 m2 office
2500 m2 Very high security level, 24/7 4 bulk compartments
500 m2 shelving of 30400 m2

Spare parts operation 67 Docks
Fully sprinkled
Tapa C secured

Key Capabilities Centrally Located Warehousing Warehousing
High Security Level X-dock Multimodal trans. sol.
RF Based Transport Management Transport Management
Complete Service Offering Multi modal transport solutions Value Added Services
24/7 Standby Service Custom solutions RF based operation

Buyers consolidation

Wijchen - PACT Helmond Born
Characteristics 7000 m2 x-dock for High Tech 22000 m2 21025 m2

TAPA A secured High Security Level / TAPA C 886 m2 office
Zero-damage driven processes Operating hours Mon-Fri 24 hours High security level
Trucking and delivery to Benelux, FR

Key Capabilities Highly Secured Transport network Return logistics Warehousing
Visibility during transport Warehousing Multimodal trans. sol.
1 single IT system in all countries Packing and Labeling Transport Management
Customized IT support Transport Management Value Added Services
Control Tower: Configuration
pro-active process control Customs activities (cust. clearance)

RF based / paperless operation
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Table D.2: Facilities dedicated to FMCG business unit

FAST MOVING CONSUMER GOODS
Veghel Raamsdonksveer Nieuwegein

Characteristics 103000 m2 (3 buildings) 40000 m2 34000 m2

High bay Warehouse 36 Loading docks Automatic Layer Picker
Automatic Layer Picker (ALP) Centrally Located

Key Capabilities Warehousing (ALP) Manufacturing Consolidation Centre FMCG Food oriented
Raw materials and Packaging National distribution Multilingual
National Distribution Co-packing Complete Service Offering
Transport co-ordination Very high security level National Transport
Co-packing RF based / paperless operation
RF based / paperless operation Multilingual
Complete service offering
Oud Beijerland Ede Vaassen

Characteristics 5600 m2 Ambient storage 23000 m2 16000 m2

200 m2 temperature controlled area 10 m free height Crate Washing Machines
Fully sprinkled
Centrally located

Key Capabilities Warehousing Warehousing and Co-packing National platform
for Chilled distribution

Co-packing RF based / paperless operation Cross docking activities
Transport Management Focused on non food customers Conditioned Warehousing
Custom solutions Multilingual Services:
RF based / paperless operation Crate and pallet
Multilingual rental/washing

Complete chilled service
offerings

Table D.3: Facilities dedicated to returns business unit

Pijnacker Tilburg
Characteristics 14000 m2 1000 m2 Crates washing machine

700-1000 trucks a day 14000 m2 Sorting area
1750 m2 Docks in-out

Key Capabilities Inhouse Return Centre: Multi user crate and washing centre
Processing of returns and waste Crates rental / pallet rental
Processing of re-usable packaging FTL transport
Crate and pallet washing/rental Pool management
RF based / paperless operation Receiving, sorting and sending returns
Multilingual Control returning goods

In addition to these return centers Zaandam and Zwolle are taken over from Albert Heijn.
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APPENDIX E

SHORTREC OPTION SETTINGS

Figure E.1: Option Settings for Opt Algorithms in SHORTREC
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APPENDIX F

DESCRIPTIVE STATISTICS FOR REGRESSION MODELS OF

LOADING AND UNLOADING TIMES

Table F.1: Summary output of loading time regression model

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.215178
R Square 0.046302
Adjusted R Square 0.045309
Standard Error 0.017337
Observations 963

ANOVA
df SS MS F Significance F

Regression 1 0.014024 0.014024 4.665.616 1.5E-11
Residual 961 0.288865 0.000301
Total 962 0.302889

Coefficients Standard Error t Stat P-value Lower 90.0% Upper 90.0%
Intercept 0.018918 0.002198 8.608.555 2.99E-17 0.0153 0.022536
Quantity Loaded 0.000589 8.63E-05 6.830.532 1.5E-11 0.000447 0.000732

Table F.2: Summary output of unloading time regression model

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.410407
R Square 0.168434
Adjusted R Square 0.167908
Standard Error 0.018167
Observations 1582

ANOVA
df SS MS F Significance F

Regression 1 0.105623 0.105623 3.200.301 2.55E-65
Residual 1580 0.521463 0.00033
Total 1581 0.627086

Coefficients Standard Error t Stat P-value Lower 90.0% Upper 90.0%
Intercept 0.022071 0.001033 2.137.099 3.23E-89 0.020371 0.023771
Quantity Unloaded 0.000883 4.93E-05 1.788.938 2.55E-65 0.000801 0.000964
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APPENDIX G

AS IS NETWORK SIMULATION RESULTS

Table G.1: Results for the week with high level of demand

(1) ACTUAL
DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

# of trucks: 120 123 132 130 122
# of km: 58956 68849 65724 69340 56592
# of hours: 1888 2131 2017 2131 1790

(2) ORDERs AS IS
DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

Total costs: 73175 83343 85655 86071 72918
# of scheduled orders: 904 1008 1052 1082 907
# of unscheduled orders: 0 8 0 4 0
# of trips: 275 323 303 310 284
# of trucks: 117 123 129 130 112
# of km: 57867 70584 68954 69271 57707
# of hours: 1779 2042 2051 2041 1744

(3) SMALL ORDERs COMBINED
DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

Total costs: 66571 76013 78294 77917 66207
# of scheduled orders: 706 740 785 760 698
# of unscheduled orders: 0 1 0 0 0
# of trips: 262 301 286 292 267
# of trucks: 106 112 119 120 102
# of km: 55340 66588 62920 62433 53485
# of hours: 1656 1862 1851 1842 1549
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Table G.2: Results for the week with medium level of demand

(1) ACTUAL
DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

# of trucks: 127 125 127 127 122
# of km: 63133 64047 69004 68639 60870
# of hours: 1983 1982 2057 2053 1771

(2) ORDERs AS IS
DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

Total costs: 73385 76811 80768 77114 72456
# of scheduled orders: 941 987 978 985 937
# of unscheduled orders: 1 0 0 0 0
# of trips: 257 279 281 269 258
# of trucks: 119 119 124 119 113
# of km: 56490 63241 65651 62717 59199
# of hours: 1696 1866 1854 1852 1680

(3) SMALL ORDERs COMBINED
DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

Total costs: 80954 79360 81877 77892 61528
# of scheduled orders: 668 682 667 663 617
# of unscheduled orders: 1 0 0 0 0
# of trips: 209 203 193 182 243
# of trucks: 119 115 117 110 96
# of km: 79536 81953 85040 82446 54664

Table G.3: Results for the week with low level of demand

(1) ACTUAL
DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

# of trucks: 118 116 116 116 121
# of km: 49467 64533 60835 66713 54827
# of hours: 1608 1941 1907 2063 1747

(2) ORDERs AS IS
DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

Total costs: 66483 66005 73669 77973 66197
# of scheduled orders: 828 853 922 951 796
# of unscheduled orders: 1 1 1 11 0
# of trips: 249 250 252 288 247
# of trucks: 104 105 114 116 100
# of km: 57311 52673 59234 65102 54011
# of hours: 1531 1600 1719 1869 1592

(3) SMALL ORDERs COMBINED
DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

Total costs: 55529 67198 64345 65889 60309
# of scheduled orders: 620 826 706 693 716
# of unscheduled orders: 0 0 5 6 0
# of trips: 207 248 226 247 222
# of trucks: 90 104 99 100 93
# of km: 45467 56531 52479 55938 50443
# of hours: 1357 1635 1539 1579 1484
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APPENDIX H

SELECTION OF LINES WITH MOST FREQUENT FULL

TRUCK LOAD ORDERS

As the number of full truck load orders are calculated on the distribution lines, the average

figures for the number of FTL orders are derived. LZVs are allowed to serve only on these

lines.

Table H.1: Transportation lines with full truck load orders

From Address Description To Address Description FTL orders ∼ FTL/day
City Customer City Customer
Rotterdam Unilever Nederland Veghel Kuehne+Nagel 2041 15.7
Utrecht Den Koffiefabriek Utrecht Kuehne+Nagel 1271 9.78
Oss Vdbn Sourcing Unit Veghel Kuehne+Nagel 844 6.49
Vaassen Kuehne+Nagel Log. Wezep Plukon Poultry BV 889 6.84
Veghel Vetipak Veghel Kuehne+Nagel 638 4.91
Joure De Nl Tea (M008) Utrecht Kuehne+Nagel 360 2.77
Veghel Kuehne+Nagel Veghel Vetipak 341 2.62
Wezep Plukon Poultry BV Veghel Jumbo S. 320 2.46
Vaassen Kuehne+Nagel Beilen Super de Boer 219 1.68
Veghel Kuehne+Nagel Veghel Vetipak 211 1.62
Vaassen Kuehne+Nagel Log. B. Spakenburg Mayonna B.V. 194 1.49
Beilen Super de Boer Vaassen Kuehne+Nagel Log. 193 1.48
Zwolle K+N Log. MCO Wezep Plukon Poultry BV 179 1.38
Veghel Jumbo Supermarkten Vaassen Kuehne+Nagel Log. 176 1.35
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APPENDIX I

TO BE NETWORK SIMULATION RESULTS

Table I.1: Results for the week with low level of demand

SIM. TO BE, WEEK : LOW SIM. STATISTICS
S0 S1 S2 S3 MIN. AVG. MAX.

DAY 1 KMs 70757 70757 70757 70757 70757 70757 70757
% Empty 36% 36% 36% 36% 36% 36% 36%
# of Hours 2037 2039 2039 2039 2037 2039 2039
# of Available Trucks 145 145 145 145 145 145 145
# of Trucks Used 131 131 131 131 131 131 131
# of LZVs Used 3 3 3 3 3 3 3

DAY 2 KMs 80256 80256 80099 80099 80099 80178 80256
% Empty 35% 35% 35% 35% 35% 35% 35%
# of Hours 2266 2269 2265 2265 2265 2266 2269
# of Available Trucks 143 143 143 143 143 143 143
# of Trucks Used 138 138 138 138 138 138 138
# of LZVs Used 3 3 3 3 3 3 3

DAY3 KMs 83141 83213 83284 83265 83141 83226 83284
% Empty 34% 34% 34% 34% 34% 34% 34%
# of Hours 2286 2288 2291 2290 2286 2289 2291
# of Available Trucks 143 143 143 143 143 143 143
# of Trucks Used 142 142 142 142 142 142 142
# of LZVs Used 3 3 3 3 3 3 3

DAY 4 KMs 88740 88812 88812 83265 83265 87407 88812
% Empty 35% 35% 35% 36% 35% 35% 36%
# of Hours 2478 2481 2483 2454 2454 2474 2483
# of Available Trucks 143 143 143 143 143 143 143
# of Trucks Used 143 143 143 143 143 143 143
# of LZVs Used 3 3 3 3 3 3 3

DAY 5 KMs 75011 75011 75082 75082 75011 75047 75082
% Empty 35% 35% 35% 35% 35% 35% 35%
# of Hours 2043 2046 2047 2047 2043 2046 2047
# of Available Trucks 148 148 148 148 148 148 148
# of Trucks Used 122 122 122 122 122 122 122
# of LZVs Used 3 3 3 3 3 3 3
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Table I.2: Results for the week with medium level of demand

SIM. TO BE, WEEK : MEDIUM SIM. STATISTICS
S0 S1 S2 S3 MIN. AVG. MAX.

DAY 1 KMs 72619 71945 72380 69260 69260 71551 72619
% Empty 34% 35% 35% 34% 34% 34% 35%
# of Hours 2100 2085 2084 2084 2084 2088 2100
# of Available Trucks 154 154 154 154 154 154 154
# of Trucks Used 139 138 138 138 138 138 139
# of LZVs Used 3 3 3 3 3 3 3

DAY 2 KMs 82455 82455 82455 82455 82455 82455 82455
% Empty 33% 33% 33% 33% 33% 33% 33%
# of Hours 2421 2422 2425 2424 2421 2423 2425
# of Available Trucks 152 152 152 152 152 152 152
# of Trucks Used 146 146 146 146 146 146 146
# of LZVs Used 3 3 3 3 3 3 3

DAY3 KMs 86481 86552 86552 86536 86481 86530 86552
% Empty 35% 35% 35% 35% 35% 35% 35%
# of Hours 2422 2422 2426 2425 2422 2424 2426
# of Available Trucks 154 154 154 154 154 154 154
# of Trucks Used 154 154 154 154 154 154 154
# of LZVs Used 3 3 3 3 3 3 3

DAY 4 KMs 87107 87107 87107 86118 86118 86860 87107
% Empty 35% 35% 35% 34% 34% 35% 35%
# of Hours 2537 2536 2536 2511 2511 2530 2537
# of Available Trucks 154 154 154 154 154 154 154
# of Trucks Used 150 150 150 150 150 150 150
# of LZVs Used 3 3 3 3 3 3 3

DAY 5 KMs 78010 79255 79255 79236 78010 78939 79255
% Empty 33% 34% 34% 34% 33% 34% 34%
# of Hours 2202 2205 2208 2202 2202 2204 2208
# of Available Trucks 149 149 149 149 149 149 149
# of Trucks Used 139 139 139 139 139 139 139
# of LZVs Used 3 3 3 3 3 3 3
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Table I.3: Results for the week with high level of demand

SIM. TO BE, WEEK : HIGH SIM. STATISTICS
S0 S1 S2 S3 MIN. AVG. MAX.

DAY 1 KMs 71834 71905 71905 71886 71834 71883 71905
% Empty 34% 34% 34% 34% 34% 34% 34%
# of Hours 2173 2175 2177 2174 2173 2175 2177
# of Available Trucks 147 147 147 147 147 147 147
# of Trucks Used 136 136 136 136 136 136 136
# of LZVs Used 3 3 3 3 3 3 3

DAY 2 KMs 90447 90447 90447 90447 90447 90447 90447
% Empty 35% 35% 35% 35% 35% 35% 35%
# of Hours 2579 2576 2579 2578 2576 2578 2579
# of Available Trucks 150 150 150 150 150 150 150
# of Trucks Used 150 150 150 150 150 150 150
# of LZVs Used 3 3 3 3 3 3 3

DAY3 KMs 92159 92159 92159 92159 92159 92159 92159
% Empty 34% 34% 34% 34% 34% 34% 34%
# of Hours 2660 2663 2665 264 264 2063 2665
# of Available Trucks 159 159 159 159 159 159 159
# of Trucks Used 159 159 159 159 159 159 159
# of LZVs Used 3 3 3 3 3 3 3

DAY 4 KMs 95903 92603 92675 95975 92603 94289 95975
% Empty 37% 37% 37% 37% 37% 37% 37%
# of Hours 2653 2639 2639 2650 2639 2645 2653
# of Available Trucks 157 157 157 157 157 157 157
# of Trucks Used 156 157 157 156 156 157 157
# of LZVs Used 3 3 3 3 3 3 3

DAY 5 KMs 77710 77710 77781 77781 77710 77746 77781
% Empty 36% 36% 36% 36% 36% 36% 36%
# of Hours 2254 2259 2261 2261 2254 2259 2261
# of Available Trucks 149 149 149 149 149 149 149
# of Trucks Used 139 139 139 139 139 139 139
# of LZVs Used 3 3 3 3 3 3 3
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APPENDIX J

SIMULATION RESULTS FOR SCENARIOS S0 AND S4

Table J.1: Results of scenarios S0 and S4

SIM. TO BE (S0) SIM. TO BE (S4)
LOW MEDIUM LOW MEDIUM

DAY 1 KMs 70757 72619 69163 72701
% Empty 36% 34% 36% 35%
# of Hours 2037 2100 1976 2076
# of Available Trucks 145 154 145 154
# of Trucks Used 131 139 116 128
# of LZVs Used 3 3 15 15

DAY 2 KMs 80256 82455 79145 84395
% Empty 35% 33% 34% 35%
# of Hours 2266 2421 2254 2408
# of Available Trucks 143 152 143 152
# of Trucks Used 138 146 123 137
# of LZVs Used 3 3 16 14

DAY 3 KMs 83141 86481 83758 91469
% Empty 34% 35% 33% 36%
# of Hours 2286 2422 2361 2521
# of Available Trucks 143 154 143 153
# of Trucks Used 142 153 136 145
# of LZVs Used 3 3 15 17

DAY 4 KMs 88740 87107 90182 90643
% Empty 35% 35% 34% 33%
# of Hours 2478 2536 2517 2556
# of Available Trucks 143 154 143 153
# of Trucks Used 143 150 139 142
# of LZVs Used 3 3 15 14

DAY 5 KMs 75011 78010 74240 79172
% Empty 35% 33% 35% 33%
# of Hours 2043 2202 2100 2217
# of Available Trucks 148 149 148 149
# of Trucks Used 132 139 114 127
# of LZVs Used 3 3 17 17
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