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ABSTRACT

ON THE INDEX OF FIXED POINT SUBGROUP

Türkan, Erkan Murat

Ph.D., Department of Mathematics

Supervisor : Assoc. Prof. Dr. G̈ulin Ercan

August 2011, 84 pages

Let G be a finite group and A be a subgroup of Aut(G). In this work, we studied the influence

of the index of fixed point subgroup of A in G on the structure of G.

When A is cyclic, we proved the following:

(1) [G,A] is solvable if this index is squarefree and the orders of G and A are coprime.

(2) G is solvable if the index of the centralizer of each x in H-G is squarefree where H denotes

the semidirect product of G by A.

Moreover, for an arbitrary subgroup A of Aut(G) whose order is coprime to the order of G, we

showed that when G is solvable, then the Fitting length f([G,A]) of [G,A] is bounded above by

the number of primes (counted with multiplicities) dividing the index of fixed point subgroup

of A in G and this bound is best possible.

Keywords: automorphism, solvable group, Fitting length, fixed point subgroup
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ÖZ

SABİT NOKTA ALTGRUBUNUN İNDEKSİ ÜZEṘINE

Türkan, Erkan Murat

Doktora, Matematik B̈olümü

Tez Yöneticisi : Doç. Dr. G̈ulin Ercan

Ağustos 2011, 84 sayfa

G sonlu bir grup ve A, Aut(G)’nin bir altgrubu olsun. Bu çalışmada A’nın Giçindeki sabit

nokta altgrubunun indeksinin G grubunun yapısıüzerindeki etkisi çalışılmış olup, A grubu

devirli olduğunda şu sonuçlar elde edilmiştir:

(1) Bu indeks hiçbir tamkareye bölünmüyor ve G ile A’nın mertebeleri aralarında asal ise

[G,A] altgrubu ç̈ozülebilirdir.

(2) H, G’nin A ile yarıdolaylı çarpımını temsil etsin. H’nin G’de olmayan her x elemanının

merkezleyeninin G içindeki indeksi hiçbir tamkareye bölünmüyor ise, G grubu ç̈ozülebilirdir.

Bununötesinde A, Aut(G)’nin herhangibir altgrubu, G çözülebilir bir grup ve G ile A’nın mer-

tebesi aralarında asal ise [G,A] altgrubunun Fitting uzunluğunun, A’nın G içindeki sabit nokta

altrubunun indeksinin asal çarpan ayrışımındakiüstlerin toplamı ilëustten sınırlı oldŭgu ve

bu sınırın olabilecek en k̈uçük sınır oldŭgu g̈osterilmiştir.

Anahtar Kelimeler: otomorfizma, çözülebilir altgrup, Fitting uzunlŭgu, sabit nokta altgrubu
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CHAPTER 1

INTRODUCTION

Let G be a finite group andA a group of automorphisms ofG. The structure of the fixed

point subgroupCG(A) = { g ∈ G | ga
= g for all a ∈ A } of the action ofA on G and

the way it is embedded inG becomes very restrictive and therefore explanatory about the

structure ofG. Hence a well-established area in the theory of finite groups is the study of

how information onCG(A) may influence the properties such as solvability or non-simplicity

of G. However, in the literature there are only a few works which handle the influence of

the index|G : CG(A)| of CG(A) in G. It should be noted that if one adds a direct factor toG

on whichA acts trivially, this process does not change the index of the fixed point subgroup.

Hence rather than asking about the structure ofG one should ask about the structure of the

subgroup〈 g−1ga | g ∈ G, a ∈ A 〉 which is denoted by [G,A], in terms of |G : CG(A)|. In

this framework, the first result is due to Kazarin [6]. In 1990, he stated that

If |G : CG(α)| is a prime power for a finite group G andα ∈ Aut(G), then[G, α] is solvable.

Another result in this direction was obtained by Parker and Quick [27] in 2001. They proved

that

If A ≤ Aut(G) with (|G| , |A|) = 1, then the order of[G,A] is bounded above by nlog2(n+1) where

the index|G : CG(A)| ≤ n.

It should be noted that Kazarin’s work has a distinction of providing a result without the

assumption that (|G| , |α|) = 1. In this kind of research, the assumption that the action ofA on

G is coprime is very important because there exist certain very useful relations between the

groupsG andA which make some inductive arguments very easy to apply under a coprime

action. If the action is noncoprime it becomes rather difficult to use this type of arguments
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and the situation changes dramatically. Here is a list of some useful relations which are valid

under a coprime action:

(1) G = [G,A]CG(A);

(2) [G,A] = [G,A,A];

(3) CG/N(A) = GG(A)N/N for each normalA-invariant subgroupN of G.

Kazarin’s result stated above is a corollary of his main theorem in [25] which generalizes

Burnside’s well-known lemma asserting that a finite group is not simple if the number of

elements in a conjugacy class is equal to a power of a prime number. In fact he proved that

If for some x∈ G, |G : CG(x)| is a power of a prime, then〈xG〉 is solvable.

This is of course a contribution to the study of the influence on the structure of G of some

arithmetical conditions imposed on the lengths of conjugacy classes ofG. By giving this

corollary, Kazarin pointed out that the methods of studying the structure of[G, α] for

α ∈ Aut(G) in terms of the index ofCG(α) might be very closely related to the methods

in the investigation of the influence of the lengths of conjugacy classes to the structure ofG.

Realizing this, the following important results due to Cossey and Wang stimulated our interest

and led us to the main questions of this thesis.

(Cossey-Wang, 1999 [10]) Let G be a finite group and p be a prime divisor of |G| such that

if q is any prime divisor of|G|, not dividing p− 1. Suppose that no conjugacy class length

of G is divisible by p2. Then G is a solvable p−nilpotent group and G/Op(G) has a Sylow

p−subgroup of order at most p. Further, if P∈ S ylp(G), |P′| ≤ p and if P, Op(G), then

Op(G) is abelian.

(Cossey-Wang, 1999 [10]) Let G be a finite group and suppose that|C| is a squarefree number

for each C∈ Con(G). Then G is supersolvable and both G/F(G) and G′ are cyclic groups

with squarefree orders. The class of F(G) is at most2 and G is metabelian.

In addition, we would like to mention the works [1], [4], [5], [6], [8], [22], [23], [24] et. al., on

the influence of the sizes of conjugacy classes on the structure of a finite group which brought

us to the following:

2



Question 1. Let G be a finite group andα ∈ Aut(G). Is [G, α] solvable, when|G : CG(α)| is a

squarefree number?

We obtained a counter-example showing that the answer to this question may beaffirmative

only in the case (|G| , |α|) = 1. Then we studied Question 1 first under this additional hypoth-

esis and obtained the following:

Theorem 2: Letα ∈ Aut(G) with (|G| , |α|) = 1. If the index|G : CG(α)| is squarefree, then G

is solvable.

Considering the question that how the information aboutCG(A) influence the structure ofG

for a noncoprime action, it has been observed by Ercan and Güloğlu in [11], [12], [13], [14],

[15] that the properties of elements inGA\G may also influence the structure ofG whereGA

stands for the semidirect product ofG by A. They imposed some conditions on these elements

in order to overcome some of the difficulties arising from a noncoprime action. We modified

Question 1 by imposing similar restrictions on the elements ofG〈α〉 \G.

Question 2. Let G be a finite group andα ∈ Aut(G). Is G solvable if|G : CG(α)| is squarefree

for each x∈ H \G where H denotes the semidirect product of G by〈α〉?

Although we first attempted to impose restrictions only onx ∈ H \ G of order equal to|α|,

the same counter-example served as a counter-example in this case as well. Consequently, we

showed that the answer to Question 2 is affirmative by proving the following:

Theorem 3: Let G be a finite group andα ∈ Aut(G). Assume that|G : CG(x)| is squarefree

for each x∈ H \G where H= G 〈α〉. Then G is solvable.

Apart from these, we considered a pairG,A with A ≤ Aut(G) and investigated the influence

of |G : CG(A)| on the Fitting length of [G,A] whenG is a solvable group and (|G| , |A|) = 1.

Namely, we obtained the following:

Theorem 1: Let G be a finite solvable group and A≤ Aut(G) with (|G| , |A|) = 1. Then

f ([G,A]) is bounded above by the number of primes dividing|G : CG(A)|, counted with mul-

tiplicities. This bound is the best possible one.

It should be noted that although this bound is best possible, it seems possible to improve it in

some special cases.

3



The outline of the thesis is as follows:

Chapter 2 contains some useful theorems which will be referred throughout the presentation

of the main results of this thesis.

In Chapter 3, we state and prove the main results we obtained. This chapter also contains

examples and counterexamples supporting the arguments.

In Appendices A, B and C, we give some arithmetical information and tables onthe automor-

phism groups of simple groups which will be referred throughout the proof of our Theorem

3.
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CHAPTER 2

SOME USEFUL THEOREMS

In this chapter, we shall present some useful results pertaining to the proof of the main theo-

rems of this thesis.

In 1904, Burnside proved the solvability of a group of orderpαqβ. Since then many authors

have investigated the relationship between the structure of a finite group andarithmetical

condition on the sizes of its conjugacy classes. His proof depends on a very well-known

result of him,Burnside’spα-lemma, on nonsimplicity.

Theorem 2.0.1 ( Burnside’spα-lemma, [3] ) If the number of elements in a conjugacy class

of a finite group G is equal to a power of a prime number then G is not simple.

In 1990, Kazarin [25] generalized this lemma as follows:

Theorem 2.0.2 ( [25], Theorem )If for some x∈ G, |G : CG(x)| is a power of a prime, then

〈xG〉 is solvable.

Proof. Let G be a minimal counter example to the theorem, that is, ifK is a group with order

less than the order ofG and satisfying the assumptions of the theorem, then it satisfies the

theorem. Letx ∈ G such that|G : CG(x)| = pα. Thenx , 1 and alsoG is not simple by

Burnside’spα-lemma.

If M is a proper normal subgroup ofG containingx, then it is obvious that|M : CM(x)| = pβ

for someβ ≤ α. It follows by induction that〈xM〉 is solvable, that is,x ∈ S(M) ≤ S(G). This

contradiction shows that there is no proper normal subgroup ofG containingx.

5



If 1 , M CG, thenCG(x)M/M ⊆ CG/M(xM) and hence
∣

∣

∣G/M : CG/M(xM)
∣

∣

∣ is also a power of

p. Thus,xM ∈ S(G/M) by induction applied toG/M. If S(G/M) = X/MCG/M, thenXCG

and hencex ∈ X C G, a contradiction. Therefore,S(G/M) = G/M, that is,G/M is solvable

for any 1, M C G.

If S(G) , 1, then asS(G) , G we getG/S(G) is solvable. Since we also haveS(G) is

solvable, we getG is solvable, a contradiction. Therefore,S(G) = 1.

Let N be a minimal normal subgroup ofG. Then 1, N , G asG is not simple and also

we havex < N. SetK = N〈x〉. It is obvious that|N : CN(x)| = |K : CK(x)| is a power ofp.

If K , G, then by induction applied toK we getx ∈ S(K). As 〈xN〉 = [x,N]〈x〉, we have

[x,N] ⊆ S(K) and hence [x,N] ⊆ S(K) ∩ N ≤ S(N) ≤ S(G) = 1. Thus,x ∈ CG(N) C G.

It follows that CG(N) = G, that is,N ≤ Z(G). ThenN is solvable. We also haveG/N is

solvable. It follows thatG is solvable, a contradiction.

Therefore,G = N〈x〉, whereN is a minimal normal subgroup ofG.

Suppose that|x| = rm for some primer and integerm > 1. Sety = xm. Then |G : CG(y)|

is a power ofp and hence〈yN〉 = [N, y]〈y〉 is solvable by induction applied toN〈y〉. Note

that [N, y] C N〈x〉 = G. Then [N, y] = N by the minimality ofN and henceN is solvable.

Therefore,G is solvable, a contradiction. So we may assume that|x| = r wherer is a prime

number.

Suppose thatM is another minimal normal subgroup ofG. ThenM ∩ N = 1 andMN = G.

ThenM � G/N � 〈x〉 and henceM is solvable. SinceG/M � N is also solvable, we getG is

solvable, a contradiction. Therefore,N is the unique minimal normal subgroup ofG.

Suppose that eitherr = p or r < π(N). Thenr is coprime to the number of Sylowp-subgroups

of N. Hence there existsP ∈ S ylp(N) such thatPx
= P by Theorem 2.0.8 (c). It follows

that 〈x,P〉 = P〈x〉 is a {p, r}-group and hence solvable. Since|G : CG(x)| = pα we have

G = PCG(x) and thenxG
= xP. Now,〈xG〉 = 〈xP〉 ≤ 〈x,P〉 is a solvable group, a contradiction.

Therefore,r , p andr ∈ π(N).

Consider the principalr-block Br0 of G. Letχ ∈ B0(r). Then

|G : CG(x)|χ(x)χ(1)−1 ≡ |G : CG(x)| ( modω) (2.1)

6



whereω is a maximal ideal in the ring of integer algebraic numbers containingr.

Also |G : CG(x)| = pα . 0 ( modω). Thus,

χ(x) , 0 for anyχ ∈ B0(r). (2.2)

If p does not divideχ(1) then eitherxKerχ ∈ Z(G/Kerχ) or χ(x) = 0. In our case,G has a

unique maximal normal subgroup. It follows that eitherχ(1) ≡ 0 (modp), or N ≤ Kerχ andχ

is a linear character. Thus,χ(1) . 0 (modp) for any linear characterχ ∈ B0(r).

We observe that any linear character of the groupG satisfies the relationλr
= 1G where 1G is

a principal character and therefore it is easy to see thatλ ∈ B0(r). Thus, there are exactlyr

linear characters inB0(r).

By the orthogonality formula (Theorem 2.0.16), forB0(r) and for an arbitraryr-elementg we

have
∑

χ∈B0(r)

χ(1)χ(g) = 0. (2.3)

It was mentioned above thatr ∈ π(N). Thus, there isy ∈ N of orderr. Substitutingy in the

equation (2.3) and selecting terms corresponding to linear characters we obtain

0 =
∑

χ∈B0(r), χ(1)=1

χ(y) +
∑

χ∈B0(r), χ(1),1

χ(1)χ(y) (2.4)

Sinceχ(y) = 1 for any linear characterχ andχ(1) = pnχ for any nonlinearχ ∈ B0(r), it

follows that the equation (2.4) can be written in the form

r + p
∑

χ∈B0(r), χ(1),1

χ(y)nχ = 0. (2.5)

Hence it follows thatr/p is an algebraic integer. This is a contradiction proving the theorem.

�

As a corollary of this theorem, Kazarin stated the following result. By doing this, he pointed

out that the methods of studying the structure of [G, α] for α ∈ Aut(G) in terms of the index

of CG(α) might be very closely related to the methods in the investigation of the influence of

the length of the conjugacy classes to the structure ofG.

Corollary 2.0.3 ( [25], Corollary 1 ) Let G be a finite group andα one of its automorphisms.

If CG(α) contains a Sylow r-subgroup of the group G for all r∈ π(G)\{p} thenα induces the

identity automorphism on G/S(G).

7



The following two theorems are due to A. Camina and R. Camina. We shall make use of them

in proving the main results of this the thesis.

Theorem 2.0.4 ( [7], Lemma 6 )If G is simple, then4 divides the length of a conjugacy class

of G.

Theorem 2.0.5 ( [4], Lemma 1, Corollary 1 ) Let G be a finite group.

1. If for some prime number p, any p′-element has p′-index in G, then G has a unique

Sylow p-subgroup which is a direct factor.

2. If for some prime number p, p- |C| for any C ∈ Con(G) then G has a unique Sylow

p-subgroup which is an abelian direct factor.

We present next a result due to Gross which will be referred in the proof of Theorem 3.

Theorem 2.0.6 ( [18] ) Let G be a finite simple non-abelian group and let p be an odd prime

dividing the order of G. Let A= Aut(G) and let S be a Sylow p−subgroup of A. Identifying G

with Inn(G), set P= S ∩G. Then CS(P) = Z(P).

Finally, we shall state some well-known results which will be referred throughout the thesis.

Theorem 2.0.7 ( [26], Theorem 8.2.2 )Let N be an A-invariant normal subgroup of G.

Supppose that(|A|, |N|) = 1 and A or G is solvable. Then

(a) CG/N(A) = CG(A)N/N,

(b) If A acts trivially on N and G/N, then A acts trivially on G.

Theorem 2.0.8 ( [26], Theorem 8.2.7)Suppose that the action of A on G is coprime. Let p

be a prime divisor of|G|.

(a) G= [G,A]CG(A),

(b) [G,A] = [G,A,A].
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(c) There exists an A-invariant Sylow p-subgroup of G.

Theorem 2.0.9 ( [16], Theorem 2.2.3 (Three Subgroup Lemma) )Let x, y, z be elements of

G and H,K, L subgroups of G. Then we have

(i) [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x
= 1.

(ii) If [H,K, L] = 1 and[K, L,H] = 1, then[L,H,K] = 1.

Definition 2.0.10 ( [16], Theorem 6.1.2 )Let G be a group. The subgroup of G generated

by all its nilpotent normal subgroups is a nilpotent normal subgroup of G. This subgroup is

called the Fitting subgroup of G and shall be denoted by F(G).

Theorem 2.0.11 ( [16], Theorem 6.1.3 )If G is solvable, then CG(F(G)) ⊆ F(G).

Definition 2.0.12 Let G be a group. The Fitting series of G is the normal series defined by

F0(G) = 1 and Fi+1(G)/Fi(G) = F (G/Fi(G)) for all i ≥ 1.

If G = Fn(G) for some n∈ N, then n is called the Fitting length of G and it is denoted by

f (G).

Theorem 2.0.13 ( [30], Section 2.4 )If n ≥ 5, then Aut(An) � Sn whenever n, 6. Aut(A6) is

isomorphic to the semidirect product of S6 by the automorphism sending3-cycles to product

of two disjoint3-cycles and sending product of two disjoint3-cycles to3-cycles.

Theorem 2.0.14Let G be a group and x and y be two commuting elements of G such that

(|x| , |y|) = 1. Then CG(xy) = CG(x) ∩CG(y).

Proof. It is obvious thatCG(x) ∩CG(y) ≤ CG(xy).

Set |x| = m and |y| = n. Since (m,n) = 1, there exist integersr, s such thatrm + sn= 1. As

[x, y] = 1, we have (xy)rm
= xrmyrm

= y1−sn
= y and (xy)sn

= xsnysn
= x1−rm

= x.

If a ∈ CG(xy), then 1= [a, (xy)rm] = [a, y] and 1 = [a, (xy)sn] = [a, x]. It follows that

a ∈ CG(x) anda ∈ CG(y). Therefore,CG(xy) = CG(x) ∩CG(y), as desired. �
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Theorem 2.0.15 If G is a nonabelian simple group, then4 divides the order of G.

Theorem 2.0.16 ( [21], 15.23 )Let x, y ∈ G with p - |x| and p| |y|. Let B be a p-block of

G. Then
∑

χ∈B∩Irr (G)

χ(x) χ(y) = 0 (2.6)
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CHAPTER 3

MAIN THEOREMS

In this chapter, we shall state and prove the main results of this thesis.

Let G be a finite group andA ≤ Aut(G). We shall discuss the influence of|G : CG(A)| on the

structure of the groupG. In fact we should ask about the structure of [G,A] rather than asking

about that ofG. Because by adding a direct factorK to G so that [K,A] = 1, we can obtain a

groupH = G × K such that|H : CH(A)| = |G : CG(A)|.

We shall present our results in two sections according to the action ofA onG being coprime

or noncoprime.

3.1 Results in the Coprime Case

In this section, we shall state and prove two results under the coprimeness condition first of

which gives an upper bound for the Fitting length of [G,A] in terms of |G : CG(A)| whenG

is solvable.

Theorem 1 Let G be a finite solvable group, A≤ Aut(G) such that(|G| , |A|) = 1 and

|G : CG(A)| = m. If [G,A] is solvable, then f([G,A]) ≤ l(m) where l(m) is the number of

primes dividing m, counted with multiplicities.

Proof. We shall proceed by induction on|G|.

If [G,A] is properly contained inG, it follows by induction that

f ([G,A,A]) ≤ l(
∣

∣

∣[G,A] : C[G,A](A)
∣

∣

∣) = l(|[G,A] CG(A) : CG(A)|) ≤ l(m) (3.1)

asG = [G,A]CG(A) by Theorem 2.0.8 (a) in Chapter 2.
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In addition, we have [G,A,A] = [G,A] since (|G| , |A|) = 1 by Theorem 2.0.8 (b). This leads

to the contradictionf ([G,A]) ≤ l(m) and hence[G,A] = G.

If G is nilpotent thenf (G) = 1 ≤ l(m). Thus, we may assume thatF(G) � G.

We observe next that[F(G),A] , 1:

Assume otherwise. Then[F(G),G,A] = 1 = [A, F(G),G]. It follows by the Three Subgroup

Lemma (See Theorem 2.0.9) that[G,A, F(G)] = [G, F(G)] = 1. SinceCG(F(G)) ⊆ F(G) by

Theorem 2.0.11, we getG = F(G), which is not the case. HenceF(G) � CG(A) as claimed.

Now, CG(A)F(G) , CG(A) and hencel(|G : CG(A)F(G)|) � l(m). By induction applied to

G/F(G), we see thatf (G) − 1 = f (G/F(G)) ≤ l(|G/F(G) : CG/F(G)(A)|). We also have

l(|G/F(G) : CG/F(G)(A)|) ≤ l(|G/F(G) : CG(A)F(G)/F(G)|) = l(|G : F(G)CG(A)|) � l(m).

Consequentlyf (G) − 1 ≤ l(m) − 1 and hencef (G) ≤ l(m), completing the proof. �

Remark 3.1.1 The bound given by Theorem 1 is best possible because of the following ex-

ample:

Let G be the group

〈

a,b, c,d | a3
= b7

= c3
= d7

= [a, c] = [a,d] = [b, c] = [b,d] = 1,a−1ba= b2, c−1dc= d2
〉

and letα be the automorphism of G given byα(a) = cd5, α(b) = d2, α(c) = ab,α(d) = b4.

Then|G| = 441and |α| = 2 and hence the condition(|G| , |α|) = 1 is satisfied.

We observe by means of GAP that

CG(α) = {1, cd4, c2d, c3d5, c4d2, c5d6, c6d3,abd,abcd5,abc2d2,abc3d6,abc4d3,abc5,abc6d4,

a2b2d3,a2b2c,a2b2c2d4,a2b2c3d,a2b2c4d5,a2b2c5d2,a2b2c6d6} =
〈

cd4,abd
〉

.

Thus, |G : CG(α)| = 21 and hencè (m) = 2. We also observe by GAP that[G, α] = G,

F([G, α]) = 〈a, c〉 and F2(G) = G. Therefore, f(G) = 2 = `(m).

As mentioned in the Introduction part, inspired by a result [10] due to Cossey and Wang,

we handled the case whereA is cyclic and|G : CG(A)| is squarefree. Under the coprimeness

condition we obtained the following:
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Theorem 2 Let G be a finite group andα an automorphism of G such that(|G| , |α|) = 1.

If |G : CG(α)| is squarefree. Then[G, α] is solvable.

Proof. We proceed by induction on the order ofH whereH stands for the semidirect product

of G by 〈α〉, and deduce a contradiction over a series of steps.

1. We may assume thatα is of prime order.

Let |α| = m andp be a prime divisor ofm. Now, |αk| = p wherek = m
p . Since|G : CG(αk)| is

squarefree asCG(α) ⊆ CG(αk), we see by induction that [G, αk] is solvable.

Now, [G, αk] E G andG = G/[G, αk] is α-invariant. |G : CG(α)| divides |G : CG(α)| and

hence divides|G : CG(α)|. It follows by induction that [G, α] = [G, α] = [G, α]/[G, αk] is

solvable. Therefore [G, α] is solvable.

2. α is not contained in a proper normal subgroup of H= G〈α〉.

Let N be a proper normal subgroup ofH containingα. ThenN = (N ∩G)〈α〉.

It is obvious thatN1 = N ∩G is α-invariant. Since|N1 : CN1(α)| divides|G : CG(α)|, we have

[N1, α] = [N, α] is solvable by induction applied toN1〈α〉. This yields that

〈αN〉 = [N, α]〈α〉 is solvable and henceα ∈ S(N) ≤ S(H).

It follows that 〈αH〉 = 〈αG〉 = [G, α]〈α〉 ≤ S(H). Then [G, α] is solvable, a contradiction.

3. For any nontrivial proper normal subgroup N of H,H = H/N is solvable.

By Step 2,α , 1. Now,H = G〈α〉 and
∣

∣

∣G : CG(α)
∣

∣

∣ divides|G : CG(α)|. Hence, by induction

applied to H, we have [G, α] = [H, α] is solvable. It follows that

〈αH
〉 = [H, α]〈α〉 is solvable and henceα ∈ S(H).

It is obvious thatS(H) = X/N for someX containingα. In addition,X C H. By Step 2, this

is the case only whenX = H.

ThusS(H) = H, that is,H is solvable.
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4. S(H) = 1

If not, then both S(H) and H/S(H) are solvable, leading to the contradiction thatH is

solvable.

5. G is the unique minimal normal subgroup of H and H′ = G.

Let N be a minimal normal subgroup ofH. If N � G, thenN ∩ G = 1 andH = GN as

|H : G| = |α| is prime. It follows that|N| is prime and henceN ≤ S(H) = 1, which is not the

case. ThusN ≤ G. SetK = N〈α〉. We shall observe thatH = K:

Assume otherwise. Then by induction, [N, α] is solvable and hence〈αN〉 = [N, α]〈α〉 is

solvable. Soα ∈ 〈αN〉 = 〈αK〉 ≤ S(K).

Now, [α,N] ≤ S(K) ∩ N ≤ S(N) ≤ S(H) = 1, implying thatα ∈ CH(N) E H. By Step 2,

we get the equalityCH(N) = H. ThusN ≤ Z(H) ≤ S(H) = 1. This contradiction shows that

H = N〈α〉 = K. As a consequenceG = N is the unique minimal normal subgroup ofH and

H′ = G.

6. G is simple.

Now, G is characteristically simple, and so it is a direct product of isomorphic copiesof a

simple group. More precisely,G = E1 × · · · × Ek where eachEi is a simple group isomorphic

to E1, andE1 is not abelian because otherwiseH would be a{p,q}-group and hence solvable.

We consider the action ofα on the set of subgroups ofG. Let { E1,Eα1 , . . . ,E
αk

1 } be the orbit

of this action containingE1. ThenC = E1×Eα1 × . . .×Eα
k

1 is anα-invariant normal subgroup

of G. That is,C is normal inH. Now, H/C is solvable by Step 3. It follows thatG/C is

solvable. This is the case only whenC = G = E1 × Eα1 × . . . × Eα
k

1 .

Now, k = 1 ork = p. If the former holds, thenCG(α) = { xxαxα
2
. . . xα

p−1
| x ∈ E1 } and hence

|CG(α)| = |E1| implying that|G : CG(α)| = |E1|
p−1 is squarefree. This is a contradiction since

the simplicity ofE1 implies that|E1| is divisible by 4 by Theorem 2.0.15. Therefore,k = 1,

that is,G is a nonabelian simple group, as claimed.
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7. Final Contradiction

From AppendixA we observe thatG is not a Sporadic simple group. By Theorem 2.0.13,

we observe also thatG is not an Alternating group. Thus,G is a simple group of Lie type.

Then by Theorem B.0.14,α is of the formid f g. Any inner automorphism and any diagonal

automorphism has order dividing order ofG. Since order of graph automorphisms of simple

groups of Lie type is either 2 or 3, we observe thatα is a field automorphism.

By Theorem B.0.15, ifq = r2s for some integers andG = L(q), thenCG(α) � L(r s).

If G = Am(r2s) for m≥ 2 thenCG(α) = Am(r s) or CG(α) =2 Am(r s). It follows that

|G : CG(α)|r =
(r2s)

m(m+1)
2

(r s)
m(m+1)

2
= r

sm(m+1)
2

If G = Bm(r2s) for m≥ 2 thenCG(α) = Bm(r s). It follows that|G : CG(α)|r =
(r2s)m2

(r s)m2 = r sm2

If G = Cm(q2s) for m≥ 3 thenCG(α) = Cm(r s). It follows that|G : CG(α)|r =
(r2s)m2

(r s)m2 = r sm2

If G = Dm(q2s) for m ≥ 4 thenCG(α) = Dm(r s) or CG(α) =2 Dm(r s) or CG(α) =3 D4(r s). It

follows that|G : CG(α)|r =
(r2s)m(m−1)

(r s)m(m−1) = r sm(m−1) or |G : CG(α)|r =
(r2s)12

(r s)12) = r12s

If G = E6(q2s) thenCG(α) = E6(r s) or CG(α) =2 E6(r s). It follows that |G : CG(α)|r =
(r2s)36

(r s)36 = r36s

If G = E7(q2s) thenCG(α) = E7(r s). It follows that|G : CG(α)|r =
(r2s)63

(r s)63 = r63s

If G = E8(q2s) thenCG(α) = E8(r s). It follows that|G : CG(α)|r =
(r2s)120

(r s)120 = r120s

If G = F4(q2s) thenCG(α) = F4(r s) or CG(α) =2 F4(r s). It follows that |G : CG(α)|r =
(r2s)24

(r s)24 = r24s or |G : CG(α)|r =
(r2s)24

(r s)12 = r36s

If G = G2(q2s) thenCG(α) = G2(r s) or CG(α) =2 G2(r s). It follows that |G : CG(α)|r =
(r2s)6

(r s)6 = r6s or |G : CG(α)|r =
(r2s)6

(r s)3 = r9s

If G =2 Am(r2s) for m ≥ 2 thenCG(α) =2 Am(r s). It follows that |G : CG(α)|r =
(r2s)

m(m+1)
2

(r s)
m(m+1)

2
=

r
sm(m+1)

2

If G =2 Dm(q2s) for m ≥ 4 thenCG(α) =2 Dm(r s). It follows that |G : CG(α)|r =
(r2s)m(m−1)

(r s)m(m−1) =

r sm(m−1)
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If G =2 E6(q2s) thenCG(α) =2 E6(r s). It follows that|G : CG(α)|r =
(r2s)36

(r s)36 = r36s

If G =3 D4(q2s) thenCG(α) =3 D4(r s). It follows that|G : CG(α)|r =
(r2s)12

(r s)12 = r12s.

In all cases,r2 divides|G : CG(α)|. This contradiction completes the proof. �

Remark 3.1.2 One may ask if it is possible to replace the assumption that|G : CG(α)| is

squarefree by the assumption that|G : CG(α)| is not divisible by4. The following example

shows that this is not possible:

Let G= PS L(3,F35) and letσ be the field automorphism of order5. Since

|G| = 24.315.114.13.61.4561, we have(|G| , |σ|) = 1. We also know CG(σ) = PS L(3,F3), and

hence|CG(σ)| = 24.33.13. Then|G : CG(σ)| = 312.114.61.4561is odd.

3.2 Results in the Noncoprime Case

In this section we shall study without the coprimeness condition. The followingexample

shows that it is not possible to obtain the conclusion of Theorem 2 if the actionis noncoprime.

Example 3.2.1 Let G = A5 with α = τ(1 2) ∈ Aut(G) \ Inn(G). Then|G : CG(α)| = 10 but

[A5, (1 2)] = A5 is simple.

Considering the question that how the information aboutCG(A) influence the structure ofG,

it has been observed by Ercan and Güloğlu in [11], [12], [13], [14] that the properties of

elements inGA\G may also influence the structure ofG. They imposed some conditions on

these elements in order to overcome some of the difficulties arising from a noncoprime action.

This brought us to the following:

Question 2. Let G be a finite group andα ∈ Aut(G). Is G solvable if|G : CG(x)| is squarefree

for each x∈ H \G where H denotes the semidirect product of G by〈α〉?

We should note that we first attempted to use this hypothesis only forx ∈ H \ G of order

equal to|α|. But the same counter-example mentioned above served as a counter-example in

this case as well. Consequently, we showed that the answer to Question 2 is inaffirmative.

Namely, we proved the following:
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Theorem 3 Let G be a finite group andα ∈ Aut(G). Assume that|G : CG(x)| is squarefree

for each x∈ H \G where H= G〈α〉. Then G is solvable.

3.2.1 Some Technical Lemmas

Before giving a proof of Theorem 3, we shall first observe that it is possible to eliminate

PS L(n,Fq) under the weaker hypothesis that|G : CG(x)| is not divisible by 4 for each

x ∈ H \G.

This observation will be presented in a series of technical lemmas.

Remark 3.2.2 Throughout this section, K denotes S L(n,Fq) for a prime power q and an

integer n≥ 2 so that n, 2 when q= 2 or q = 3. In addition, G denotes PS L(n,Fq) = K/Z(K)

and L denotes GL(n,Fq).

Remark 3.2.3 Since Z(K) is characteristic in K, every automorphism of K induce an auto-

morphism of G. Conversely, every automorphism of G determines a class of automorphisms

of K. More precisely, we first define the relation∼ on A= Aut(K) as follows:

For α, β ∈ A ,α ∼ β if and only if α(g)β(g−1) ∈ Z(K) for all g ∈ K.

This allows us to regardα as an automorphism of K rather than an automorphism of G.

Lemma 3.2.4 Letα be a diagonal automorphism of G. Then there is an element x∈ G〈α〉\G

so that4 divides|G : CG(x)|.

Proof. Let V = Fqn. We regardV as a vector space overFq. Let x be an element ofV of order

qn−1. ThenF∗qn = 〈x〉 andx can be thought as an element ofL so thatx(v) = x.v onV. Thenx

has a matrix representationA in L andA is similar to the diagonal matrixdiag(x, xq, . . . , xqn−1
)

overFqn. It follows that the determinant ofx is its norm, that is,

det(x) = NormFqn→Fq(x) = xxq . . . xqn−1
= x

qn−1
q−1 . Since det(x) ∈ F∗q with |det(x)| = q− 1, we

haveF∗q = 〈det(x)〉.

We observe first thatCL(x) = 〈x〉: Let γ ∈ L such thatγx = xγ. Then for 1= 1V, we have

γ(x) = γ(x.1) = γ(x(1)) = (γx)(1) = (xγ)(1) = x.γ(1). (3.2)
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We observe next by induction thatγ(xm) = xmγ(1) for any positive integerm.

Assume thatγ(xk) = xkγ(1) for a fixed but arbitrary positive integerk. Now,

xk+1γ(1) = xxkγ(1) = xγ(xk) = (xγ)(xk) = (γx)(xk) = γ(x(xk)) = γ(xk+1). (3.3)

Thus, by inductionγ(xm) = xmγ(1) for any positive integerm.

For eachv ∈ V \ {0}, v = xm for some integerm and henceγ(v) = γ(xm) = xmγ(1). Since

0 , γ(1) ∈ V we haveγ(1) = xs for some integers. Thenγ(v) = γ(xm) = xm+s, that isγ ∈ 〈x〉

and henceCL(x) = 〈x〉. To simplify the notation we setT = 〈x〉.

Let nowGal(Fqn/Fq) = 〈σ〉. Thenσ has ordern and it can be viewed as an element ofL. We

now observe that

(σxσ−1)(v) = σ(x(σ−1(v))) = σ(x.σ−1(v)) = σ(x).σ(σ−1(v)) = σ(x).v = (σ(x))(v) (3.4)

for anyv ∈ V.

This gives thatσxσ−1
= σ(x) ∈ T and henceσ ∈ NL(T).

If β ∈ NL(T) thenβxβ−1 ∈ T. The mapθ : y 7→ βyβ−1 is a field automorphism ofFqn fixing

every element ofFq as〈det(x)〉 = F∗q. Soθ ∈ 〈σ〉 such thatβ−1θ ∈ CL(T) = T. Thus we obtain

NL(T) = 〈σ,T〉.

We shall claim thatCL/Z(L)(T) = CL(T)/Z(L) :

To verify this claim, pick an elementy from L such thatxy = zyxfor somez ∈ Z(L). Then

y−1xy ∈ T asz ∈ T. This implies thaty ∈ NL(T) = 〈σ,T〉. If y < T theny = xkσ−a for some

integerk and for somea ∈ {1,2, . . . ,n− 1}. It follows that

y−1xy= σax−kxxkσ−a
= σaxσ−a

= σa(x) = xqa
. (3.5)

Thusxqa
= zxwhich implies thatxqa−1

= z, a contradiction. Consequently,y ∈ T = CL(T)

establishing the claim.

Therefore,|CL/Z(L)(x)| = |T |
q−1 =

qn−1
q−1 .

We first handle the casen > 2. Note that

|G : CG(x)| =
∣

∣

∣PGL(n,Fq) : CPGL(n,Fq)(x)
∣

∣

∣ =

(qn−1)(qn−q)...(qn−qn−1)
q−1

qn−1
q−1

=

n−1
∏

i=1

(qn − qi). (3.6)
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Then (qn − q)(qn − q2) divides|G : CG(x)|. So 4 divides|G : CG(x)|, as desired.

We suppose next thatn = 2. Then we have

|CL/Z(L)(x)| =
|T |

q− 1
=

q2 − 1
q− 1

= q+ 1 (3.7)

and

|G : CG(x)| =
∣

∣

∣PGL(2,Fq) : CPGL(2,Fq)(x)
∣

∣

∣ =

(q2−1)(q2−q)
q−1

q+ 1
= q2 − q. (3.8)

Assume thatchar Fq = 2:

SincePS L(2,2) is not simple we haveq > 2 in this case and hence 4 dividesq. It follows that

4 divides|G : CG(x)|, as desired.

Thuschar Fq , 2 andq ≡ ∓1(mod4). We can also notice that 4- q− 1, because otherwise 4

divides|G : CG(x)|. Now, we may assume that 4 dividesq+ 1.

We consider next that the groupH =







































a 0

0 b





















| ab, 0; a,b ∈ Fq



















. Let A =





















a 0

0 1





















∈ H

wherea is a primitiveq−1st root of unity and chooseB =





















c 0

0 c





















∈ H such that det(BA) = 1.

Then BA=





















ac 0

0 c





















and 1= det(BA) = ac2 and hence

a = (c−1)2 which contradicts the primitivity ofa asq is odd. So the coset ofG in L containing

A is not an element ofG.

Let nowC =





















x y

z t





















∈ L such thatCA=





















xa y

za t





















=





















ax ay

z t





















= AC. Theny = ayandz= az

givey = 0 = z. This shows thatCL(A) = H.

We are now ready to observe thatCL/Z(L)(A) = H/Z(L):

Let E =





















x y

z t





















∈ L andλ ∈ Fq such thatEA=





















xa y

za t





















=





















λax λay

λz λt





















= λAE. This leads to

the following equations:

ax= λax (which meansx = λx asa , 0) andy = λayandaz= λz andt = αt.

If x = 0, theny , 0 , z. Thenλa = 1 andλ = a. Now, a2
= 1 which givesq− 1 = 2, that is,
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q = 3. ButPS L(2,F3) is not simple. Therefore, we havex , 0 and henceλ = 1.

It follows that,CL/Z(L)(A) = H/Z(L). Then|CL/Z(L)(A)| = (q−1)2

q−1 = q− 1, implying that

|G : CG(x)| =
∣

∣

∣PGL(2,Fq) : CPGL(2,Fq)(x)
∣

∣

∣ =
(q+ 1)q(q− 1)

q− 1
= q(q+ 1). (3.9)

Since 4 dividesq+ 1, 4 divides|G : CG(x)|, as desired. �

Lemma 3.2.5 Let charFq = 2 and letσ be a field automorphism of G. Then there is an

element x∈ G〈σ〉 \G so that 4 divides|G : CG(x)|.

Proof. Let σ be a field automorphism ofK of orderr for some prime numberr. Let Fq0 be

the fixed field ofσ onFq and setL0 = GL(n,Fq0). PutCK/Z(K)(σ) = C/Z(K). Then forx ∈ C,

xσZ(K) = (xZ(K))σ = xZ(K) implying thatxσ = σ(x) = λx for someλ ∈ Z(K). It follows

that

x = xσ
r
= (λx)σ

r−1
= (σ(λ)λx)σ

r−2
= . . . = σr−1(λ)σr−2(λ) . . . σ(λ)λx. (3.10)

So,

NormFq−→Fq0
(λ) = σr−1(λ)σr−2(λ) . . . σ(λ)λ = 1. (3.11)

By Hilbert’s Theorem 90 [20], there existsµ ∈ Fq such thatλ = σ(µ)
µ

. Then

(µ−1x)σ = σ(µ−1)λx =
1
σ(µ)

σ(µ)
µ

x = µ−1x (3.12)

and henceµ−1x ∈ L0.

This implies thatµµ−1x = x ∈ Z(L)L0. Therefore, we haveC ⊆ K ∩ L0Z(L).

Let now, A ∈ K ∩ L0Z(L). ThenA = ZY for some Z ∈ Z(L) and Y ∈ L0 where

1 = detA = detZ detY. So detY = (detZ)−1
= γ−n for someγ ∈ F∗q.

Now, Y ∈ C0 = { X ∈ L0 | detX is an n-th power inFq }. Thus, there existsY ∈ C0 so that

A = 1
(detY)1/n Y.

Define ϕ : C0 −→ C/Z(K) by X 7→ 1
(detX)1/n XZ(K). By the above argument,ϕ is surjective.

Furthermore, for anyX,Y ∈ C0,

ϕ(XY) =
1

(det(XY))1/n
XYZ(K) =

1

(detX detY)1/n
XYZ(K) = ϕ(X)ϕ(Y), (3.13)
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that is,ϕ is a homomorphism. We also observe that

Kerϕ =
{

X ∈ C0 |
1

(detX)1/n X ∈ Z(K)
}

= { X ∈ C0 | X ∈ Z(L) }

= C0 ∩ Z(L)

= C0 ∩ Z(L0)

(3.14)

So, C/Z(K) � C0/(C0 ∩ Z(L0) � C0Z(L0)/Z(L0) and as

C0Z(L0)/Z(L0) ≤ PGL(n,Fq0), we see that|CG(σ)| = |C/Z(K)| divides|PGL(n,Fq0)|.

Then|PGL(n,Fq0)| = m|CG(σ)| for some positive integerm, giving

|G|
|CG(σ)| = m |G|

m|CG(σ)| = m |G|
|PGL(n,Fq0)| . Hence, |G|

|PGL(n,Fq0)| divides |G : CG(σ)|.

Notice that
|PS L(n,Fq)|
|PGL(n,Fq0)| =

qn(n−1)/2

(n,q−1)qn(n−1)/2
0

n
∏

i=2

qi − 1

qi
0 − 1

= q(r−1)n(n−1)/2
0

1
(n,q− 1)

n
∏

i=2

qi − 1

qi
0 − 1

.

Since charFq = 2, 1
(n,q−1)

n
∏

i=2

qi − 1

qi
0 − 1

is odd.

Hence we have 4-
|PS L(n,Fq)|
|PGL(n,Fq0)| ⇔ 4 - q(r−1)n(n−1)/2

0

⇔ q0 = 2 and (r−1)n(n−1)
2 = 1

⇔ q0 = 2 and (r − 1)n(n− 1) = 2

⇔ q0 = 2, r = 2 andn = 2

It follows thatG = PS L(2,F4) � A5. Then there existsx = (1 5)(2 4 3)∈ G 〈σ〉 \G such that

CG(x) = { (1), (2 3 4), (2 4 3)} |G : CG(x)| = 20 is divisible by 4, as desired. �

Lemma 3.2.6 Let q be odd and letσ be a field automorphism of G. Then there is an element

x ∈ G〈σ〉 \G so that 4 divides |G : CG(x)|.

Proof. Pick an elementA =







































































































1 x1

1 x2

0

. . .
. . .

0 1 xn−1

1







































































































from K.
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Let σ be a field automorphism ofK of orderr induced by a field automorphism ofFq with

fixed fieldFq0. We shall consider the elementσA ∈ K 〈σ〉 \ K and show by induction that

(σA)m
= σmσm−1(A) . . . σ(A)A for anyk ≥ 1. Now,

(σA)2
= σAσA = σσσ−1AσA = σ2σ(A)A. (3.15)

Assume that (σA)k
= σkσk−1(A) . . . σ(A)A for a fixed but arbitrary integerk ≥ 2.

Then (σA)k+1
= σA(σA)k

= σAσkσk−1(A) . . . σ(A)A

= σσkσ−kAσkσk−1(A) . . . σ(A)A

= σk+1σk(A)σk−1(A) . . . σ(A)A.

Thus, (σA)m
= σmσm−1(A) . . . σ(A)A for any m ≥ 1, as desired. In particular, we have

(σA)r
= σrσr−1(A) . . . σ(A)A = σr−1(A) . . . σ(A)A. More precisely,

(σA)r
=







































































































1 trFq→Fq0
(x1)

1 trFq→Fq0
(x2)

*

. . .
. . .

0 1 trFq→Fq0
(xn−1)

1







































































































.

Since the trace function is surjective, we can findx1, x2, . . . , xn−1 so that
∑r−1

j=0σ
j(xi) = trFq→Fq0

(xi) = 1 for i = 1,2, . . . ,n− 1. This yields that

(σA)r
=







































































































1 1

1 1
*

. . .
. . .

0 1 1

1







































































































. Notice that J =







































































































1 1

1 1
0

. . .
. . .

0 1 1

1







































































































is the
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Jordan form of (σA)r .

We shall observe next thatCG(J) = CK(J)/Z(K). To see this, pickC =





































a11 . . . a1n

: :

an1 . . . ann





































∈ K

such thatCJ = λJC for some 1, λ ∈ F∗q. Then we obtain

CJ =





































































a11 a11+ a12 a12+ a13 . . . a1(n−1) + a1n

a21 a21+ a22 a22+ a23 . . . a2(n−1) + a2n

a31 a31+ a32 a32+ a33 . . . a3(n−1) + a3n

: : : :

an1 an1 + an2 an2 + an3 . . . an(n−1) + ann





































































=





















































































λa11+ λa21 λa12+ λa22 λa13+ λa23 . . . λa1n + λa2n

λa21+ λa31 λa22+ λa32 λa23+ λa33 . . . λa2n + λa3n

λa31+ λa41 λa32+ λa42 λa33+ λa43 . . . λa3n + λa4n

: : : :

λa(n−1)1+ λan1 λa(n−1)2+ λan2 λa(n−1)3+ λan3 . . . λa(n−1)n + λann

λan1 λan2 λan3 . . . λann





















































































= λJC.

It follows thatan1 = λan1 andan(i−1) + ani = λani for i = 2, . . . ,n.

an1 = λan1 givesan1 = 0 as 1, λ. Thenan2 = λan2 and hencean2 = 0. We may see by an

inductive argument thatani = 0 for i = 3, . . . ,n:

Assumean(i−1) = 0, then an(i−1) + ani = λani becomesani = λani and henceani = 0.

Consequently, if 1, λ thenani = 0 for i = 1, . . . ,n which is a contradiction as in this case

det(C) = 0.

Therefore, we getCG(J) = CK(J)/Z(K).

Let nowD =





































a11 . . . a1n

: :

an1 . . . ann





































∈ CK(J). Then we obtain

23



DJ =





































































a11 a11+ a12 a12+ a13 . . . a1(n−1) + a1n

a21 a21+ a22 a22+ a23 . . . a2(n−1) + a2n

a31 a31+ a32 a32+ a33 . . . a3(n−1) + a3n

: : : :

an1 an1 + an2 an2 + an3 . . . an(n−1) + ann





































































=





















































































a11+ a21 a12+ a22 a13+ a23 . . . a1n + a2n

a21+ a31 a22+ a32 a23+ a33 . . . a2n + a3n

a31+ a41 a32+ a42 a33+ a43 . . . a3n + a4n

: : : :

a(n−1)1+ an1 a(n−1)2+ an2 a(n−1)3+ an3 . . . a(n−1)n + ann

an1 an2 an3 . . . ann





















































































= JD.

In the first row, we have

a11 = a11+ a21 anda1(i−1) + a1i = a1i + a2i for i = 2, . . . ,n. Then we get

a21 = 0 anda1(i−1) = a2i for i = 2, . . . ,n.

In the second row, we have

0 = a31, a22 = a22+ a32 anda2(i−1) + a2i = a2i + a3i for i = 3, . . . ,n. Then we get

a31 = 0, a32 = 0 anda2(i−1) = a3i for i = 2, . . . ,n.

In the third row, we have

0 = a41, 0 = a42, a33 = a33+ a43 anda3(i−1) + a3i = a3i + a4i for i = 4, . . . ,n. Then we get

a41 = 0, a42 = 0, a43 = 0 anda3(i−1) = a4i for i = 4, . . . ,n.

Continuing these calculations we can describe the matrixD more explicitly as follows:

D =







































































a1 a2 . . . an−1 an

0
. . .
. . . an−1

...
. . .
. . .

. . .
...

...
. . .

. . . a2

0 . . . . . . 0 a1






































































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Consequently,|CK((σA)r )| = |CK(J)| = (n,q− 1)qn−1 and hence

|G : CG((σA)r )| =

qn(n−1)/2

n
∏

i=2

(qi − 1)

qn−1 = q(n2−3n+2)/2
n
∏

i=2

(qi − 1) is divisible by 4. This com-

pletes the proof of Lemma 3.2.6. �

Lemma 3.2.7 Letσ be the graph automorphism of G. Then there is an element x∈ G〈σ〉 \G

so that4 divides|G : CG(x)|.

Proof. Let A =





















































0 1

−1 1
0

0 In−2





















































∈ K. ThenA−t
=





















































1 1

−1 0
0

0 In−2





















































andB = AA−t
=





















































−1 0

−2 −1
0

0 In−2





















































.

We shall observe thatCG(B) = CK/Z(K)(B) = CK(B)/Z(K):

Let C =





































a11 . . . a1n

: :

an1 . . . ann





































∈ K be such thatCB= λBC for some 1, λ ∈ F∗q. Then we obtain

CB=





































































−a11 −a12 −a13 . . . −a1n

−2a11− a21 −2a12− a22 −2a13− a23 . . . −2a1n − a2n

a31 a32 a33 . . . a3n

: : : :

an1 an2 an3 . . . ann




































































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=





































































−λa11− 2λa12 −λa12 λa13 . . . λa1n

−λa21− 2λa22 −λa22 λa23 . . . λa2n

−λa31− 2λa32 −λa32 λa33 . . . λa3n

: : : :

−λan1 − 2λan2 −λan2 λan3 . . . λann





































































= λBC.

As λ , 1 and −a12 = −λa12 we get a12 = 0 and hence−a11 = −λa11. It follows that

a11 = 0.

If λ , −1 then −a1i = λa1i gives a1i = 0 for eachi = 3, . . . ,n. It is now straightforward to

verify that detC = 0, a contradiction. Henceλ = −1.

As −2a1i − a2i = λa2i for eachi = 3, . . . ,n, we get a1i = 0 for eachi = 3, . . . ,n, and hence

detC = 0 again, which is a contradiction. ThusCG(B) = CK(B)/Z(K), as claimed.

Let now C =





































a11 . . . a1n

: :

an1 . . . ann





































∈ CK(B). Then we have

CB=





































































−a11 −a12 −a13 . . . −a1n

−2a11− a21 −2a12− a22 −2a13− a23 . . . −2a1n − a2n

a31 a32 a33 . . . a3n

: : : :

an1 an2 an3 . . . ann





































































=





































































−a11− 2a12 −a12 a13 . . . a1n

−a21− 2a22 −a22 a23 . . . a2n

−a31− 2a32 −a32 a33 . . . a3n

: : : :

−an1 − 2an2 −an2 an3 . . . ann





































































= BC.

This leads to the equations,−a1i = a1i andai2 = −ai2 for eachi = 3, . . . ,n. Hencea1i = 0

and ai2 = 0 implying that −a2i = a2i and −ai1 = ai1 for eachi = 3, . . . ,n. Thus ai1 = 0

anda2i = 0 for eachi = 3, . . . ,n.

Notice also that−2a11−a21 = −a21−2a22 gives a11 = a22 and also that−2a12−a22 = −a22

26



gives a12 = 0.

This argument enables us to give a more precise description ofCK(B), namely we have

CK(B) =







































































































































a11 0

a21 a11

0

0
a33 . . . a3n

: :

an3 . . . ann





































































| ai j ∈ Fq



































































.

It follows that |CK(B)| = q(q− 1)|S L(n− 2,Fq)|

= q(q− 1)q(n−2)(n−3)/2
n−2
∏

i=2

(qi − 1)

= (q− 1)q(n2−5n+8)/2
n−2
∏

i=2

(qi − 1)

and hence|CG(B)| = q−1
(n,q−1)q

(n2−5n+8)/2
n−2
∏

i=2

(qi − 1).

Consequently,|G : CG(B)| =

1
(n,q−1)q

n(n−1)/2

n
∏

i=2

(qi − 1)

q−1
(n,q−1)q

(n2−5n+8)/2

n−2
∏

i=2

(qi − 1)

=
1

q−1q2n−4(qn − 1)(qn−1 − 1)

If charFq = 2, we see that 22.3−4
= 4 divides |G : CG(B)| asn ≥ 3. Thus, we may assume

that q is odd.

If n = 2k for some integerk ≥ 2, then |G : CG(B)| = 1
q−1q2n−4(qk − 1)(qk

+ 1)(qn−1 − 1)

which is divisible by (qk
+ 1)(qn−1 − 1) as q − 1 dividesqk − 1. Since bothqk

+ 1 and

qn−1 − 1 are even,|G : CG(B)| is divisible by 4.

If n = 2k+ 1 for some integerk ≥ 1, then |G : CG(B)| = 1
q−1q2n−4(qn − 1)(qk

+ 1)(qk − 1) is

divisible by (qk
+1)(qn−1) as q−1 dividesqk−1. Since bothqk

+1 and qn−1 are even,

|G : CG(B)| is divisible by 4. This completes the proof. �

27



Lemma 3.2.8 Let q be odd. Ifα is a diagonal automorphism of G andσ is the graph auto-

morphism of G, then there is an element x∈ G〈ασ〉 \G so that 4 divides|G : CG(x)|.

Proof. We observe thatn is even as the order of a diagonal automorphism inOut(G) divides

gcd(n,q− 1). Let A =





































































0 0 1

0 1 1

1 0 1

0

0 In−3





































































. As detA = −1, there is an inner automorphism

τg of K such thatτgα = τA. Letσ be the graph automorphism ofG and setB = AσAσ. That

is, B = AA−t where B =





































































1 0 0

1 1 0

0 −1 1

0

0 In−3





































































as A−t
=





































































−1 −1 1

0 1 0

1 0 0

0

0 In−3





































































.

We will observe next thatCG(B) = CK(B)/Z(K):

To see this, pickC =





































a11 . . . a1n

: :

an1 . . . ann





































from K such thatBC = λCB for some 1, λ ∈ F∗q.

Now, we have

BC =





















































































a11 a12 a13 a14 . . . a1n

a11+ a21 a12+ a22 a13+ a23 a14+ a24 . . . a1n + a2n

−a21+ a31 −a22+ a32 −a23+ a33 −a24+ a34 . . . −a2n + a3n

a41 a42 a43 a44 . . . a4n

: : : : :

an1 an2 an3 an4 . . . ann




















































































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=





















































































λa11+ λa12 λa12− λa13 λa13 λa14 . . . λa1n

λa21+ λa22 λa22− λa23 λa23 λa24 . . . λa2n

λa31+ λa32 λa32− λa33 λa33 λa34 . . . λa3n

λa41+ λa42 λa42− λa43 λa43 λa44 . . . λa4n
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Then ani = λani and henceani = 0 for eachi = 3, . . . ,n. This forces thatan2 = λan2

implying an2 = 0. Thus an1 = λan1 and so an1 = 0. Consequently, we obtainCG(B) =

CK(B)/Z(K), as desired.
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= CB.

Notice that a11 = a11+ a12 giving a12 = 0. It follows that a13 = 0. We also have

a11+ a21 = a21+ a22 and hencea11 = a22.

The equationa12+ a22 = a22− a23 implies a12 = −a23 and hencea23 = 0.
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Moreover, we have the equationsa1i + a2i = a2i for i = 3, . . . ,n. It follows that a1i = 0 for

i = 3, . . . ,n.

We also have−a21+ a31 = a31+ a32 which forces−a21 = a32.

The equation−a22+ a32 = a32− a33 holds and soa22 = a33.

Moreover we have−a2i + a3i = a3i for i = . . . ,n giving a2i = 0 for i = 3, . . . ,n.

Finally, we haveai1 = ai1 + ai2 and ai2 = ai2 − ai3 for i = 4, . . . ,n implying ai2 = 0 and

ai3 = 0 for i = 4, . . . ,n, respectively.

The above observation provides a more precise description ofCK(B); namely
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. (3.16)

Then |CK(B)| = qn−1.qn−3.(q− 1).|S L(n− 3,Fq)| = (q− 1).q2n−4.q(n−3)(n−4)/2.

n−3
∏

i=2

(qi − 1)

and hence

|G : CG(B)| = |K : CK(B)| =

qn(n−1)/2

n
∏

i=2

(qi − 1)

(q−1)q2n−4q(n−3)(n−4)/2

n−3
∏

i=2

(qi − 1)

= qn−2 (qn−1)(qn−1−1)(qn−2−1)
q−1

(3.17)

which is divisible by 4. This completes the proof. �

Lemma 3.2.9 Let char(Fq) = 2. If α is a diagonal automorphism of G andσ is the graph

automorphism of G, then there is an element x∈ G〈ασ〉 \G so that4 divides|G : CG(x)|.

Proof. We observe thatn is odd as the order of a diagonal automorphism inOut(G) divides

30



gcd(n,q− 1). Let A =
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where c ∈ Fq \ {0,1}.

As detA = c, there is an elementg ∈ K which induces the inner automorphismτg of K

such thatτgα = τA. Letσ be the graph automorphism ofG and setB = AσAσ. That is,
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.

We will observe next thatCG(B) = CK(B)/Z(K). To see this, pickC =
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K such thatBC = λCB for some 1, λ ∈ F∗q. Now, we have
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31



Then ani = λani and henceani = 0 for eachi = 3, . . . ,n. This forces thatan2 = λan2

implying an2 = 0. Thus an1 = λan1 and soan1 = 0.

Consequently, we obtainCG(B) = CK(B)/Z(K), as desired.

Let now C =
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= CB.

Notice that a11 = a11+ a12 giving a12 = 0. It follows that a13 = 0. We also have

a11+ a21 = a21+ a22 and hencea11 = a22.

The equationa12+ a22 = a22+ c−1a23 implies a12 = c−1a23 and hencea23 = 0.

Moreover, we have the equationsa1i + a2i = a2i for i = 3, . . . ,n. It follows that a1i = 0 for

i = 3, . . . ,n.

We also havec−1a21+ a31 = a31+ a32 which forcesc−1a21 = a32.

The equationc−1a22+ a32 = a32+ c−1a33 holds and soa22 = a33.

Moreover we havec−1a2i + a3i = a3i for i = . . . ,n giving a2i = 0 for i = 3, . . . ,n.

32



Finally, we haveai1 = ai1 + ai2 and ai2 = ai2 + c−1ai3 for i = 4, . . . ,n implying ai2 = 0

and ai3 = 0 for i = 4, . . . ,n, respectively.

The above observation provides a more precise description ofCK(B), that is,
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.

Then

|CK(B)| = qn−1.qn−3.(q− 1).|S L(n− 3,Fq)| = (q− 1).q2n−4.q(n−3)(n−4)/2.

n−3
∏

i=2

(qi − 1) (3.18)

and hence

|G : CG(B)| = |K : CK(B)| =

qn(n−1)/2

n
∏

i=2

(qi − 1)

(q−1)q2n−4q(n−3)(n−4)/2

n−3
∏

i=2

(qi − 1)

= qn−2 (qn−1)(qn−1−1)(qn−2−1)
q−1

(3.19)

which is divisible by 4. This completes the proof. �

Lemma 3.2.10 Letα be a field automorphism of G and letσ be the graph automorphism of

G. Then there is an element x∈ G〈ασ〉 \G so that 4 divides|G : CG(x)|.

Proof. Assume first that|α| is odd. As the graph automorphism commutes with every field

automorphism,σ is a power ofασ and the result follows by Lemma 3.2.7. Thus we may

assume that|α| is even. If|α| , 2, then (ασ)2
= α2 and the result follows by Lemma 3.2.5 and

Lemma 3.2.6. Thus,|α| = 2.

Let A =





















































0 1

−1 1
0

0 In−2





















































∈ K. Then A−t
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.
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Notice that (Aασ)2
= AασAασ = AσαAασ = AσAσ = AA−t. To simplify the notation we

set B = AA−t. Then B =
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
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.

Here, we have to note that from now on one can proceed as in the proof of Lemma 3.2.7

following the same notation and see that|G : CG(B)| is divisible by 4. �

Lemma 3.2.11 Let q be odd. Ifα is a diagonal automorphism andσ is a field automorphism

of G, then there is an element x∈ G〈σα〉 \G so that4 divides|G : CG(x)|.

Proof. Set αA =
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. Letσ be the field automorphism ofK

of orderr which is induced from the automorphism ofFq of orderr with fixed fieldFq0. We

observe that

(σαA)2
= (σαA)(σαA) = σσσ−1αAσαA = σ2σ(αA)αA. (3.20)

Assume next that

(σαA)k
= σkσk−1(αA) . . . σ(αA)αA (3.21)

for a fixed but arbitrary integerk ≥ 2.

Then (σαA)k+1
= σαA(σαA)k

= σαAσkσk−1(αA) . . . σ(αA)αA

= σσkσ−kαAσkσk−1(αA) . . . σ(αA)αA

= σk+1σk(αA)σk−1(αA) . . . σ(αA)αA.
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It follows by induction that

(σαA)k
= σkσk−1(αA) . . . σ(αA)αA (3.22)

for any integerk ≥ 1. In particular,

(σαA)r
= σrσr−1(αA) . . . σ(αA)αA = σr−1(αA) . . . σ(αA)αA. (3.23)
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. It follows that
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.

Since the trace function is surjective, we can findx1, x2, . . . , xn−1 in Fq so that

trFq→Fq0
(xi) = 1 for eachi = 1, . . . ,n−1. Then (σαA)r
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If r is even then the Jordan form of (σαA)r is J =
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. Then using

the same notation and following the same steps as in Lemma 3.2.6, it is easy to show that 4

divides |G : CG((σA)r )| = |G : CG(J)|.

Next consider the case wherer is odd. Then the Jordan form of (σαA)r is
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.

We shall observe next thatCG(J) = CK(J)/Z(K). To see this pickC =
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such thatCJ = λJC for some 1, λ ∈ F∗q. Then we obtain
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a21 a21+ a22 . . . a2(n−2) + a2(n−1) −a2n

a31 a31+ a32 . . . a3(n−2) + a3(n−1) −a3n

...
...

...
...

a(n−1)1 a(n−1)1+ a(n−1)2 . . . a(n−1)(n−2) + a(n−1)(n−1) −a(n−1)n

an1 an1 + an2 . . . an(n−2) + an(n−1) −ann























































































=





















































































λa11+ λa21 λa12+ λa22 λa13+ λa23 . . . λa1n + λa2n

λa21+ λa31 λa22+ λa32 λa23+ λa33 . . . λa2n + λa3n

λa31+ λa41 λa32+ λa42 λa33+ λa43 . . . λa3n + λa4n

: : : :

λa(n−1)1 λa(n−1)2 λa(n−1)3 . . . λa(n−1)n

−λan1 −λan2 −λan3 . . . −λann





















































































= λJC.

Now, an1 = −λan1. If λ , −1, then an1 = 0. It follows that an2 = −λan2, which gives

an2 = 0. Continuing in this manner we getani = 0 for i = 1, . . . ,n − 1. We also have

−ann = −λann which gives ann = 0. Thus det(C) = 0, a contradiction. Therefore,λ = −1.

Then we have the equality
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CJ =























































































a11 a11+ a12 . . . a1(n−2) + a1(n−1) −a1n

a21 a21+ a22 . . . a2(n−2) + a2(n−1) −a2n

a31 a31+ a32 . . . a3(n−2) + a3(n−1) −a3n

...
...

...
...

a(n−1)1 a(n−1)1+ a(n−1)2 . . . a(n−1)(n−2) + a(n−1)(n−1) −a(n−1)n

an1 an1 + an2 . . . an(n−2) + an(n−1) −ann























































































=





















































































−a11− a21 −a12− a22 −a13− a23 . . . −a1n − a2n

−a21− a31 −a22− a32 −a23− a33 . . . −a2n − a3n

−a31− a41 −a32− a42 −a33− a43 . . . −a3n − a4n

: : : :

−a(n−1)1 −a(n−1)2 −a(n−1)3 . . . −a(n−1)n

an1 an2 an3 . . . ann





















































































= λJC.

In the first column, we have

ai1 = −ai1 − a(i+1)1 for i = 1, . . . ,n− 2 and a(n−1)1 = −a(n−1)1. Then we get

ai1 = 0 for i = 1, . . . ,n− 1.

In the second column, we have

ai2 = −ai2 − a(i+1)2 for i = 1, . . . ,n− 2, a(n−1)2 = −a(n−1)2 and an1 + an2 = an2. Then we get

ai2 = 0 for i = 1, . . . ,n − 1 and eitheran1 = 0 or an2 = 0. This means that either first

or second column is a zero column and so det(C) = 0, a contradiction. Therefore, we get

CG(J) = CK(J)/Z(K).

Let nowD =





































a11 . . . a1n

: :

an1 . . . ann





































∈ CK(J). Then we obtain
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DJ =





































































a11 a11+ a12 a12+ a13 . . . a1(n−2) + a1(n−1) −a1n

a21 a21+ a22 a22+ a23 . . . a2(n−2) + a2(n−1) −a2n

a31 a31+ a32 a32+ a33 . . . a3(n−2) + a3(n−1) −a3n

: : : :

an1 an1 + an2 an2 + an3 . . . an(n−2) + an(n−1) −ann





































































=





















































































a11+ a21 a12+ a22 a13+ a23 . . . a1n + a2n

a21+ a31 a22+ a32 a23+ a33 . . . a2n + a3n

a31+ a41 a32+ a42 a33+ a43 . . . a3n + a4n

: : : :

a(n−1)1 a(n−1)2 a(n−1)3 . . . a(n−1)n

−an1 −an2 −an3 . . . −ann





















































































= JD.

In the first row, we have

a11 = a11+a21, a1(i−1)+a1i = a1i +a2i for i = 2, . . . ,n−1 and−a1n = a1n+a2n. Then we get

a21 = 0, a1(i−1) = a2i for i = 2, . . . ,n− 1 and a2n = −2a1n.

In the second row, we have

0 = a31, a22 = a22 + a32, a2(i−1) + a2i = a2i + a3i for i = 3, . . . ,n− 1 and −a2n = a2n + a3n.

Then we get

a31 = 0, a32 = 0, a2(i−1) = a3i for i = 2, . . . ,n− 1 and a3n = −2a2n.

In the third row, we have

0 = a41, 0 = a42, a33 = a33 + a43, a3(i−1) + a3i = a3i + a4i for i = 4, . . . ,n − 1 and

−a3n = a3n + a4n. Then we get

a41 = 0, a42 = 0, a43 = 0, a3(i−1) = a4i for i = 4, . . . ,n and a3n = −2a3n.

Continuing these calculations along firstn− 1 rows we getai j = 0 for 1≤ j < i ≤ n− 1 and

ain = 0 for i = 1, . . . ,n− 1.

In the last row, we have

an1 = −an1, an(i−1) + ani = −ani for i = 2, . . . ,n− 1. Then we get
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ani = 0 for i = 1, . . . ,n− 1.

Consequently, we obtainedD =







































































































a1 a2

a1

an−2 an−1 0

an−2 0
. . .
. . .

0
a1 a2 0

a1 0

an







































































































It is easy now to observe that|CK((σA)r )| = (q− 1)qn−2 and hence

|G : CG((σA)r )| =

qn(n−1)/2

n
∏

i=2

(qi − 1)

(q−1)qn−2 =
1

q−1q(n2−3n+4)/2
n
∏

i=2

(qi − 1) is divisible by 4, as desired.

�

Lemma 3.2.12 Let char(Fq) = 2. If α is a diagonal automorphism andσ is a field automor-

phism of G, then there is an element x∈ G〈σα〉 \G so that 4 divides |G : CG(x)|.

Proof. Let q = 2ar for some integera and

αA =























































































































1 x1

1 x2

0

. . .
. . .

0
xn−2 0

1 0

c























































































































, wherec ∈ Fq andc1+2a
+22a
+...+2a(r−1)

, 1. Letσ be

the field automorphism ofK of order r which is induced from the automorphism ofFq of

orderr with fixed fieldFq0. We observe that

(σαA)2
= (σαA)(σαA) = σσσ−1αAσαA = σ2σ(αA)αA. (3.24)
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Assume next that

(σαA)k
= σkσk−1(αA) . . . σ(αA)αA (3.25)

for a fixed but arbitrary integerk ≥ 2.

Then (σαA)k+1
= σαA(σαA)k

= σαAσkσk−1(αA) . . . σ(αA)αA

= σσkσ−kαAσkσk−1(αA) . . . σ(αA)αA

= σk+1σk(αA)σk−1(αA) . . . σ(αA)αA

It follows by induction that

(σαA)k
= σkσk−1(αA) . . . σ(αA)αA (3.26)

for any integerk ≥ 1. In particular,

(σαA)r
= σrσr−1(αA) . . . σ(αA)αA = σr−1(αA) . . . σ(αA)αA. (3.27)

Pick nowB =























































































































1 y1

1 y2

*

. . .
. . .

0
yn−2 0

1 0

d























































































































from K. Then

αAB=























































































































1 x1 + y1

1 x2 + y2

*

. . .
. . .

0
xn−1 + yn−1 0

1 0

cd























































































































.
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It follows that (σαA)r
=























































































































1 trFq→Fq0
(x1)

1 trFq→Fq0
(x2)

*

. . .
. . .

0
trFq→Fq0

(xn−2) 0

1 0

e


































































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



























wheree= c1+2a
+22a
+...+2a(r−1)

, 1.

Since the trace function is surjective, we can findx1, x2, . . . , xn−1 in Fq so thattrFq→Fq0
(xi) = 1

for eachi = 1, . . . ,n− 1}. Then (σαA)r
=






























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











1 1

1 1
*

. . .
. . .

0
1 0

1 0

e
























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


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
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
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


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













































.

Then the Jordan form of (σαA)r is J =


















































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

























1 1

1 1
0

. . .
. . .

0
1 0

1 0

e







































































































.

We will observe next thatCG(J) = CK(J)/Z(K). To see this pickC =





































a11 . . . a1n

: :

an1 . . . ann





































∈ K be
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such thatCJ = λJC for some 1, λ ∈ F∗q. Then we obtain

CJ =























































































a11 a11+ a12 . . . a1(n−2) + a1(n−1) ea1n

a21 a21+ a22 . . . a2(n−2) + a2(n−1) ea2n

a31 a31+ a32 . . . a3(n−2) + a3(n−1) ea3n

...
...

...
...

a(n−1)1 a(n−1)1+ a(n−1)2 . . . a(n−1)(n−2) + a(n−1)(n−1) ea(n−1)n

an1 an1 + an2 . . . an(n−2) + an(n−1) eann























































































=





















































































λa11+ λa21 λa12+ λa22 λa13+ λa23 . . . λa1n + λa2n

λa21+ λa31 λa22+ λa32 λa23+ λa33 . . . λa2n + λa3n

λa31+ λa41 λa32+ λa42 λa33+ λa43 . . . λa3n + λa4n

: : : :

λa(n−1)1 λa(n−1)2 λa(n−1)3 . . . λa(n−1)n

λean1 λean2 λean3 . . . λeann








































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
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





































= λJC.

Thenan1 = λean1. If λ , e−1, thenan1 = 0. It follows thatan2 = λean2, which givesan2 = 0.

Continuing in this manner we getani = 0 for i = 1, . . . ,n − 1. We also haveeann = λeann

which givesann = 0. Thus det(C) = 0, a contradiction. Therefore,λ = e−1.

Then we have the equality

CJ =


























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









a11 a11+ a12 . . . a1(n−2) + a1(n−1) e−1a1n

a21 a21+ a22 . . . a2(n−2) + a2(n−1) e−1a2n

a31 a31+ a32 . . . a3(n−2) + a3(n−1) e−1a3n

...
...

...
...

a(n−1)1 a(n−1)1+ a(n−1)2 . . . a(n−1)(n−2) + a(n−1)(n−1) e−1a(n−1)n

an1 an1 + an2 . . . an(n−2) + an(n−1) e−1ann


















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
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
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=






























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



e−1a11+ e−1a21 e−1a12+ e−1a22 e−1a13+ e−1a23 . . . e−1a1n + e−1a2n

e−1a21+ e−1a31 e−1a22+ e−1a32 e−1a23+ e−1a33 . . . e−1a2n + e−1a3n

e−1a31+ e−1a41 e−1a32+ e−1a42 e−1a33+ e−1a43 . . . e−1a3n + e−1a4n

: : : :

e−1a(n−1)1 e−1a(n−1)2 e−1a(n−1)3 . . . e−1a(n−1)n

an1 an2 an3 . . . ann


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
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
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
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
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





= λJC.

In the first column, we have

ai1 = e−1ai1 + e−1a(i+1)1 for i = 1, . . . ,n− 2 anda(n−1)1 = e−1a(n−1)1. Then we get

ai1 = 0 for i = 1, . . . ,n− 1.

In the second column, we have

ai2 = e−1ai2 + e−1a(i+1)2 for i = 1, . . . ,n − 2, a(n−1)2 = e−1a(n−1)2 andan1 + an2 = an2. Then

we get

ai2 = 0 for i = 1, . . . ,n − 1 and eitheran1 = 0 or an2 = 0. This means, either first or

second column is a zero column and so det(C) = 0, a contradiction. Therefore, we get

CG(J) = CK(J)/Z(K).

Let nowD =





































a11 . . . a1n

: :

an1 . . . ann
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








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






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
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∈ CK(J). Then we obtain

DJ =














































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
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











a11 a11+ a12 a12+ a13 . . . a1(n−2) + a1(n−1) ea1n

a21 a21+ a22 a22+ a23 . . . a2(n−2) + a2(n−1) ea2n

a31 a31+ a32 a32+ a33 . . . a3(n−2) + a3(n−1) ea3n

: : : :

an1 an1 + an2 an2 + an3 . . . an(n−2) + an(n−1) eann




































































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=




















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


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
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



a11+ a21 a12+ a22 a13+ a23 . . . a1n + a2n

a21+ a31 a22+ a32 a23+ a33 . . . a2n + a3n

a31+ a41 a32+ a42 a33+ a43 . . . a3n + a4n

: : : :

a(n−1)1 a(n−1)2 a(n−1)3 . . . a(n−1)n

ean1 ean2 ean3 . . . eann


























































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























= JD.

In the first row, we have

a11 = a11+a21, a1(i−1)+a1i = a1i +a2i for i = 2, . . . ,n−1 andea1n = a1n+a2n. Then we get,

a21 = 0, a1(i−1) = a2i for i = 2, . . . ,n− 1 anda2n = (e+ 1)a1n.

In the second row, we have

0 = a31, a22 = a22 + a32, a2(i−1) + a2i = a2i + a3i for i = 3, . . . ,n − 1 andea2n = a2n + a3n.

Then we get,

a31 = 0, a32 = 0, a2(i−1) = a3i for i = 2, . . . ,n− 1 anda3n = (e− 1)a2n.

In the third row, we have

0 = a41, 0 = a42, a33 = a33+a43, a3(i−1)+a3i = a3i+a4i for i = 4, . . . ,n−1 andea3n = a3n+a4n.

Then we get,

a41 = 0, a42 = 0, a43 = 0, a3(i−1) = a4i for i = 4, . . . ,n anda3n = (e− 1)a3n.

By means of these calculations we have from the firstn− 1 rows that

ai j = 0 for 1≤ j < i ≤ n− 1 andain = 0 for i = 1, . . . ,n− 1.

In the last row, we have

an1 = ean1, an(i−1) + ani = eani for i = 2, . . . ,n− 1. Then we get

ani = 0 for i = 1, . . . ,n− 1.

By means of these calculations we found that
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D =






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
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
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
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
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



























































a1 a2

a1

an−2 an−1 0

an−2 0
. . .
. . .

0
a1 a2 0

a1 0

an







































































































(3.28)

It is easy now to observe that|CK((σA)r )| = (q− 1)qn−2 and hence

|G : CG((σA)r )| =

qn(n−1)/2

n
∏

i=2

(qi − 1)

(q−1)qn−2 =
1

q−1q(n2−3n+4)/2
n
∏

i=2

(qi − 1) is divisible by 4, as desired.

�

3.2.2 Proof of Theorem 3

We are now ready to prove the last main result of this thesis.

Theorem 3 Let G be a finite group andα ∈ Aut(G). Assume that|G : CG(x)| is squarefree

for each x∈ H \G where H= G 〈α〉. Then G is solvable.

Proof. We proceed by induction on the order ofH and obtain a contradiction over a series of

steps.

1. We may assume that G has no nontrivial proper normalα−invariant subgroup. In

particular, G= [G, α].

Let N be a nontrivialα−invariant proper normal subgroup ofG. Set L = N 〈α〉 and let

x ∈ L \ N. Thenx ∈ H \ G and |N : CN(x)| = |N : N ∩CG(x)| = |CG(x)N : CG(x)| divides

|G : CG(x)|. It follows that |N : CN(x)| is squarefree. As|L| � |H| , N is solvable by

induction.

Set G = G/N and H = G 〈α〉. Let y ∈ H \G. Then y = (xN)αk for some x ∈ G and for

some integerk. It is obvious thatxαk ∈ H \G and
∣

∣

∣G : CG(y)
∣

∣

∣ divides
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∣

∣

∣G/N : CG(xαk)N/N
∣

∣

∣ =

∣

∣

∣G : CG(xαk)N
∣

∣

∣. Since
∣

∣

∣G : CG(xαk)N
∣

∣

∣ divides
∣

∣

∣G : CG(xαk)
∣

∣

∣, we

see that
∣

∣

∣G : CG(y)
∣

∣

∣ is also squarefree. Now, by induction,G is solvable as
∣

∣

∣H
∣

∣

∣ < |H|. This

forces thatG is solvable, a contradiction.

In particular, we obtain [G, α] = G.

2. We may assume that|α| is a prime dividing|G|.

Let α be of order m for some composite integerm and p be a prime divisor ofm such

that m = kp. Then
∣

∣

∣αk
∣

∣

∣ = p. Set K = G
〈

αk
〉

and let x ∈ K \ G. It is obvious that

|G : CG(x)| is squarefree asx ∈ H \G. By induction applied toK, we see thatG is solvable.

This contradiction shows thatα is of prime orderp. Theorem 2 implies thatp divides |G|.

3. G is simple.

G is characteristically simple by Step 1. That is,G = E1× . . .×Es where eachEi , i = 1, . . . , s,

is a nonabelian simple group isomorphic toE1. Let { E1,Eα1 , . . . ,E
αk

1 } be the orbit containing

E1 under the action ofα on the subgroups ofG. ThenC = E1×Eα1×. . .×Eα
k

1 is anα−invariant

normal subgroup ofG and henceG = C by Step 1. Now, ifs > 1 then|CG(α)| = |E1| and

we have|G : CG(α)| = |E1|
s−1 is squarefree. This is impossible as 4 divides|E1| by Theorem

2.0.15. Therefores= 1, that is,G is a nonabelian simple group.

4. α is not an inner automorphism.

Assume the contrary. Thenα is an inner automorphismτg : G −→ G given by x 7→ g−1xg

for some g ∈ G. Now, xτg = τ−1
g xτg = g−1xg. For all x ∈ G,

xg−1τg = τ−1
g gxg−1τg = g−1gxg−1g = x. (3.29)

This yields thatCG(g−1τg) = G. Thus, H = G〈τg〉 = G× 〈g−1τg〉.

Let a ∈ G. Then ag−1τg ∈ H \G. For b ∈ G, ba
= b if and only if

bag−1τg = (ba)g−1τg = bg−1τg = b if and only if b ∈ CG(ag−1τg). Then CG(a) = CG(ag−1τg)

and hence|G : CG(a)| =
∣

∣

∣G : CG(ag−1τg)
∣

∣

∣ is squarefree. Then 4 divides no conjugacy class

length in G and we get a contradiction by Theorem 2.0.4.
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5. G is not an alternating group:

Assume first thatG = An wheren ≥ 5, andn , 6. It is well known thatAutAn � Sn for

n , 6 and every automorphism ofAn is the restriction of an inner automorphismτρ of Sn

to An for someρ ∈ Sn. Sinceα is a non-inner automorphism of prime order, it must be an

automorphism of order 2 which is the restriction ofτρ to An for some involutionρ ∈ Sn \ An

(see Theorem 2.0.13).

Set H = An

〈

τρ
〉

and K = Sn

〈

τρ
〉

. Now, asτρ is an inner automorphism ofSn we have

K = Sn×
〈

ρ−1τρ
〉

. For anyx ∈ K \Sn, x = gρ−1τρ for someg ∈ Sn. A similar argument as in

Step 4 shows thatCAn(x) = CAn(gρ
−1τρ) = CAn(g).

Next let y ∈ H \ An. Theny = hτρ for someh ∈ An. Also y ∈ K \ Sn implies thaty = gρ−1τρ

for someg ∈ Sn. Henceg = hρ ∈ Sn \ An. Then

∣

∣

∣An : CAn(y)
∣

∣

∣ =

∣

∣

∣An : CAn(hτρ)
∣

∣

∣ =

∣

∣

∣Sn : CSn(gρ
−1τρ)

∣

∣

∣ =

∣

∣

∣Sn : CSn(g)
∣

∣

∣ . (3.30)

If n is odd, then we may chooseρ = (1 2) and leth be an (n− 2)-cycle fixing 1 and 2. Then

g = hρ is a{2,n− 2}-cycle and
∣

∣

∣CSn(g)
∣

∣

∣ = 2(n− 2). It follows that
∣

∣

∣An : CAn(g)
∣

∣

∣ =

∣

∣

∣Sn : CSn(g)
∣

∣

∣ =
n!

2(n−2) is divisible by 4, which is not the case.

If n is even, then we may chooseρ = (1 2) and leth be an (n− 3)-cycle fixing 1 and 2. Then

g = hρ is a{2,n− 2}-cycle and
∣

∣

∣CSn(g)
∣

∣

∣ = 2(n− 3). It follows that
∣

∣

∣An : CAn(g)
∣

∣

∣ =

∣

∣

∣Sn : CSn(g)
∣

∣

∣ =
n!

2(n−3) is divisible by 4, which is impossible.

Finally we letG = A6. Then any non-inner automorphismα of G of prime order is of order

2 and it is either an inner automorphism ofS6 or an outer automorphism sending 3−cycles

to {3,3}−cycles and{3,3}−cycles to 3−cycles (see Theorem2.0.13). Any 3−element ofG

is either a 3−cycle or a{3,3}−cycle. In the latter case, if 3 divides|CG(α)|, then there will

be a 3-cyle or a{3,3}-cyle which is fixed byα which contradicts the definition ofα. Thus,

|G : CG(α)| is divisible by 9, which is not the case. In the former forg = hρ whereρ = (1 2)

and h = (3 4 5), CG(gρ−1τρ) = CG(g) has order 2.3 = 6. Hence
∣

∣

∣An : CAn(gρ
−1τρ)

∣

∣

∣ =

∣

∣

∣Sn : CSn(gρ
−1τρ)

∣

∣

∣ =
6!
6 = 120 is divisible by 4, establishing the claim.

6. G is not a sporadic group. In fact, G is either solvable or a simple group of Lie type
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which is not isomorphic to PS L(n,Fq) where q is a prime power and n≥ 2 with excep-

tions n= 2, q = 2 and n= 2, q = 3.

By Theorem A.0.13, every Sporadic group having a noninner automorphism has a conjugacy

class of noninner automorphisms whose length is divisible by 4. Thus,G is not a Sporadic

simple group.

Technical lemmas proved in the previous section show thatG � PS L(n,Fq) whereq is a

prime power andn ≥ 2 with exceptionsn = 2, q = 2 andn = 2, q = 3.

Therefore,G is either solvable or a simple group of Lie type which is not isomorphic to

PS L(n,Fq) for n,q with the properties given above.

7. |G : CG(α)| is divisible by p when p is odd.

Assume thatp is odd. Ifp does not divide|G : CG (α)|, thenα centralizes a Sylowp−subgroup

P of G. A result due to Gross (Theorem 2.0.6) implies thatα is induced by an element ofZ(P)

which is impossible by Step 4.

8. We may assume that p= 2.

Suppose thatp is odd. Thenp divides|G : CG(α)| by Step 7. Lety be ap′-element ofCG(α).

By Theorem 2.0.14 we haveCCG(α)(y) = CG(α) ∩CG(y) = CG(yα) ⊆ CG(α). Then

|G : CG(yα)| = |G : CG(α)|
∣

∣

∣CG(α) : CCG(α)(y)
∣

∣

∣ is squarefree and hencep -
∣

∣

∣CG(α) : CCG(α)(y)
∣

∣

∣.

It follows by Theorem 2.0.5 (1) thatCG(α) has a unique Sylowp-subgroupP which is a direct

factor, that is,CG(α) = P× A whereA is a p′-group. Leta ∈ A. Now,

CCG(α)(a) = P×CA(a) and alsoCCG(α)(a) = CG(α) ∩CG(a) = CG(aα) ⊆ CG(α) by Theorem

2.0.14. So
∣

∣

∣CG(α) : CCG(α)(a)
∣

∣

∣ = |P× A : P×CA(a)| = |A : CA(a)| divides |G : CG(aα)| and

hence squarefree.

Let nowa ∈ A be an involution. ThenK = A〈τa〉 = A×〈a−1τa〉. For anyx ∈ K \A there exists

c ∈ A such thatx = ca−1τa and henceCA(c) = CA(x), that is,|A : CA(x)| is squarefree. Asp is

odd we have|K| < |H|. It follows by induction thatA is solvable. This forces the solvability

of CG(α) if it contains ap′-element. In caseCG(α) is a p-group, it is already solvable.
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By Theorem B.0.14, Table B.13, Theorem B.0.15 and Theorem B.0.16,CG(α) has a simple

subgroup. This contradicts to the solvability ofCG(α).

Therefore, we may assume thatp = 2.

9. Final Contradiction.

By the classification of finite simple groupsα is either an inner diagonal or a graph or a field

or a graph-field automorphism. Setq = r f .

We shall study in three cases:

Case 1.α is an inner-diagonal or graph automorphism where q is odd.

We shall eliminate all the families of simple groups of possible Lie type.

First of all we consider the familyAεm(q) for m ≥ 2, ε = ±1. Here are all the possibilities for

Or′(CG(α)):

P1 = Aεm−1(q). Then|P1|r = q
(m−1)m

2 and hence|G : P1|r =
q

m(m+1)
2

q
(m−1)m

2
= qm.

P2 = Aεi−1(q)Aεm−i(q) and 2≤ i ≤ m
2 . Then |P2|r = q

(i−1)i
2 q

(m−i)(m−i+1)
2 and hence|G : P2|r =

q
m(m+1)

2

q
(i−1)i

2 q
(m−i)(m−i+1)

2
= qmi−i2.

P3 = Aεm−1
2

(q)2 andm is odd. Then|P3|r = q2
m−1

2
m+1

2
2 and hence|G : P3|r =

q
m(m+1)

2

q2
m−1

2
m+1

2
2

= q
(m+1)2

4 .

P4 = Aεm−1
2

(q2) andm is odd. Then|P4|r = q2
m−1

2
m+1

2
2 and hence|G : P4|r =

q
m(m+1)

2

q2
m−1

2
m+1

2
2

= q
(m+1)2

4 .

P5 = Cm+1
2

(q) andm is odd. Then|P5|r = q( m+1
2 )2

and hence|G : P5|r =
q

m(m+1)
2

q( m+1
2 )2
= q

m2−1
4 .

P6 = Bm
2
(q) andm is even. Then|P6|r = q( m

2 )2
and hence|G : P6|r =

q
m(m+1)

2

q( m
2 )2
= q

m2
+2m
4 .

P7 = D m+1
2

(q) andm is odd. Then|P7|r = q
m+1

2
m−1

2 and hence|G : P7|r =
q

m(m+1)
2

q
m+1

2
m−1

2
= q

(m+1)2

4 .

P8 =
2 D m+1

2
(q) andm is odd. Then|P8|r = q

m+1
2

m−1
2 and hence|G : P8|r =

q
m(m+1)

2

q
m+1

2
m−1

2
= q

(m+1)2

4 .

Notice that in all the above casesr2 divides|G : CG(α)|, and hence none of them is possible.
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We consider next the familyBm(q) for m≥ 2. Here are all the possibilities forOr′(CG(α)):

Q1 = Bm−1(q). Then|Q1|r = q(m−1)2 and hence|G : Q1|r =
qm2

q(m−1)2
= q2m−1.

Q2 = Bm−1(q). Then|Q2|r = q(m−1)2 and hence|G : Q2|r =
qm2

q(m−1)2
= q2m−1.

Q3 = Di(q)Bm−i(q) and 2 ≤ i < m. Then |Q3|r = qi(i−1)q(m−i)2
and hence|G : Q3|r =

qm2

qi(i−1)q(m−i)2
= q2mi+i−2i2.

Q4 =
2 Di(q)Bm−i(q) and 2 ≤ i < m. Then |Q4|r = qi(i−1)q(m−i)2

and hence|G : Q4|r =

qm2

qi(i−1)q(m−i)2
= q2mi+i−2i2.

Q5 = Dm(q). Then|Q5|r = qm(m−1) and hence|G : Q5|r =
qm2

qm(m−1) = qm.

Q6 =
2 Dm(q). Then|Q6|r = qm(m−1) and hence|G : Q6|r =

qm2

qm(m−1) = qm.

Notice that in all the above casesr2 divides|G : CG(α)|, and hence none of them is possible.

We consider now the familyCm(q) for m≥ 2. Here are all the possibilities forOr′(CG(α)):

R1 = Ci(q)Cm−i(q) and 1≤ i < m
2 . Then|R1|r = qi2q(m−i)2

and hence|G : R1|r =
qm2

qi2q(m−i)2
=

q2mi−2i2.

R2 = Cm
2
(q)2 andm is even. Then|R2|r = q2(m

2 )2
and hence|G : R2|r =

qm2

q2( m
2 )2
= q

m2
2 .

R3 = Cm
2
(q2) andm is even. Then|R3|r = q2(m

2 )2
and hence|G : R3|r =

qm2

q2( m
2 )2
= q

m2
2 .

R4 = Am−1(q). Then|R4|r = q
m(m−1)

2 and hence|G : R4|r =
qm2

q
m(m−1)

2
= q

m2
+m
2 .

R5 =
2 Am−1(q). Then|R5|r = q

m(m−1)
2 and hence|G : R5|r =

qm2

q
m(m−1)

2
= q

m2
+m
2 .

Notice that in all the above casesr2 divides|G : CG(α)|, and hence none of them is possible.

We consider next the familyDεm(q) for m ≥ 4, ε = ±1. Here are all the possibilities for

Or′(CG(α)):

S1 = Dεm−1(q). Then|S1|r = q(m−1)(m−2) and hence|G : S1|r =
qm(m−1)

q(m−1)(m−2) = q2m−2.

S2 = D−εm−1(q). Then|S2|r = q(m−1)(m−2) and hence|G : S2|r =
qm(m−1)

q(m−1)(m−2) = q2m−2.

S3 = Di(q)Dεm−i(q) and 2≤ i < m
2 . Then |S3|r = qi(i−1)q(m−i)(m−i−1) and hence|G : S3|r =
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qm(m−1)

qi(i−1)q(m−i)(m−i−1) = q2mi−2i2.

S4 =
2 Di(q)D−εm−i(q) and 2≤ i < m

2 . Then |S4|r = qi(i−1)q(m−i)(m−i−1) and hence|G : S4|r =

qm(m−1)

qi(i−1)q(m−i)(m−i−1) = q2mi−2i2.

S5 = D m
2
(q)2 andG = D+2k(q). Then|S5|r = q2m

2
m−2

2 and hence|G : S5|r =
qm(m−1)

q2 m
2

m−2
2
= q

m2−2m+2
2 .

S6 =
2 D m

2
(q)2 and

G = D+2k(q). Then|S6|r = q2m
2

m−2
2 and hence|G : S6|r =

qm(m−1)

q2 m
2

m−2
2
= q

m2−2m+2
2 .

S7 = Am−1(q) andG = D+2k(q). Then|S7|r = q
m(m−1)

2 and hence|G : S7|r =
qm(m−1)

q
m(m−1)

2
= q

m2−m
2 .

S8 =
2 Am−1(q) andG = D+2k(q). Then|S8|r = q

m(m−1)
2 and hence|G : S8|r =

qm(m−1)

q
m(m−1)

2
= q

m2−m
2 .

S9 =
2 D m

2
(q)D m

2
(q) andG = D−2k(q). Then|S9|r = q2m

2
m−2

2 and hence|G : S9|r =
qm(m−1)

q2 m
2

m−2
2
=

q
m2−2m+2

2 .

S10 =
2 D m

2
(q2) andG = D−2k(q). Then |S10|r = q2m

2
m−2

2 and hence|G : S10|r =
qm(m−1)

q2 m
2

m−2
2
=

q
m2−2m+2

2 .

S11 = Aεm−1(q) andG = Dε2k+1(q). Then |S11|r = q
m(m−1)

2 and hence|G : S11|r =
qm(m−1)

q
m(m−1)

2
=

q
m2−m

2 .

S12 = Bm−1(q). Then|S12|r = q(m−1)2 and hence|G : S12|r =
qm(m−1)

q(m−1)2
= qm−1.

S13 = Bi−1(q)Bm−i(q) and 2≤ i ≤ m
2 . Then |S13|r = q(i−1)2q(m−i)2

and hence|G : S13|r =

qm(m−1)

q(i−1)2q(m−i)2
= q2mi−i2+2i−m−1.

S14 = Bm−1
2

(q)2 andG = Dε2k+1(q). Then|S14|r = q2(m−1
2 )2

and hence|G : S14|r =
qm(m−1)

q2( m−1
2 )2
=

q
m2−1

2 .

S15 = Bm−1
2

(q2) andG = Dε2k+1(q). Then|S15|r = q2(m−1
2 )2

and hence|G : S15|r =
qm(m−1)

q2( m−1
2 )2
=

q
m2−1

2 .

S16 = B3(q) andG = D+4 (q). Then|S16|r = q9 and hence|G : S16|r =
q4.3

q9 = q3.

S17 = A1(q)B2(q) andG = D+4 (q). Then|S17|r = q
1.2
2 q4
= q5 and hence|G : S17|r =

q4.3

q5 = q7.

Notice that in all the above casesr2 divides|G : CG(α)|, and hence none of them is possible.
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We then consider the familyEε6(q) for ε = ±1. Here are all the possibilities forOr′(CG(α)):

T1 = Dε5(q). Then|T1|r = q5.4
= q20 and hence|G : T1|r =

q36

q20 = q16.

T2 = A1(q)Aε5(q). Then|T2|r = q
1.2
2 q

5.6
2 = q16 and hence|G : T2|r =

q36

q16 = q20.

T3 = F4(q). Then|T3|r = q24 and hence|G : T3|r =
q36

q24 = q12.

T4 = C4(q). Then|T4|r = q
1.2
2 q

5.6
2 = q16 and hence|T : P4|r =

q36

q16 = q20.

Notice that in all the above casesr2 divides|G : CG(α)|, and hence none of them is possible.

We consider next the familyE7(q). Here are all the possibilities forOr′(CG(α)):

U1 = A1(q)D6(q). Then|U1|r = q
1.2
2 q6.5

= q31 and hence|G : U1|r =
q63

q31 = q32.

U2 = A7(q). Then|U2|r = q
7.8
2 = q28 and hence|G : U2|r =

q63

q28 = q35.

U3 =
2 A7(q). Then|U3|r = q

7.8
2 = q28 and hence|T : U3|r =

q63

q28 = q35.

U4 = E6(q). Then|U4|r = q36 and hence|G : U4|r =
q63

q36 = q27.

U5 =
2 E6(q). Then|U5|r = q36 and hence|G : U5|r =

q63

q36 = q27.

Notice that in all the above casesr2 divides|G : CG(α)|, and hence none of them is possible.

We consider next the family 3D4 (q). Here is the only possibility forOr′(CG(α)):

V = A1(q)A1(q3). Then|V|r = q
1.2
2 (q3)

1.2
2 = q4 and hence|G : V|r =

q12

q4 = q8.

Notice thatr2 divides|G : CG(α)|, and hence it is not possible.

We consider next the familyG2(q). Here is the only possibility forOr′(CG(α)):

W = A1(q2). Then|W|r = (q2)
1.2
2 = q2 and hence|G : W|r =

q6

q2 = q4.

Notice thatr2 divides|G : CG(α)|, and hence it is not possible.

We consider next the family2G2(q) whereq = 32n+1 for n > 1. Here is the only possibility

for Or′(CG(α)):

Y = A1(q2). Then|Y|r = (q2)
1.2
2 = q2 and hence|G : Y|r =

q3

q2 = q = 32n+1.
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Notice that 9 divides|G : CG(α)|, and hence it is not possible.

We consider next the familyF4(q). Here are all the possibilities forOr′(CG(α)):

Z1 = A1(q)C3(q). Then|Z1|r = q
1.2
2 q32

= q10 and hence|G : Z1|r =
q24

q10 = q14.

Z2 = B4(q). Then|Z2|r = q42
= q16 and hence|G : Z2|r =

q24

q16 = q8.

Notice that in all the above casesr2 divides|G : CG(α)|, and hence none of them is possible.

Finally, we consider the familyE8(q). Here are all the possibilities forOr′(CG(α)):

H1 = D8(q). Then|H1|r = q8.7
= q56 and hence|G : H1|r =

q120

q56 = q64.

H2 = A1(q)E7(q). Then|H2|r = q
1.2
2 q63

= q64 and hence|G : H2|r =
q120

q63 = q57.

Notice that in all the above casesr2 divides|G : CG(α)|, and hence none of them is possible.

Case 2:α is a field automorphism or a graph-field automorphism.

By Theorem B.0.15, ifq = r2s for some integers andG = L(q), thenCG(α) � L(r s).

If G = Am(r2s) for m≥ 2 thenCG(α) = Am(r s) or CG(α) =2 Am(r s). It follows that

|G : CG(α)|r =
(r2s)

m(m+1)
2

(r s)
m(m+1)

2
= r

sm(m+1)
2

If G = Bm(r2s) for m≥ 2 thenCG(α) = Bm(r s). It follows that|G : CG(α)|r =
(r2s)m2

(r s)m2 = r sm2

If G = Cm(q2s) for m≥ 3 thenCG(α) = Cm(r s). It follows that|G : CG(α)|r =
(r2s)m2

(r s)m2 = r sm2

If G = Dm(q2s) for m ≥ 4 thenCG(α) = Dm(r s) or CG(α) =2 Dm(r s) or CG(α) =3 D4(r s). It

follows that|G : CG(α)|r =
(r2s)m(m−1)

(r s)m(m−1) = r sm(m−1) or |G : CG(α)|r =
(r2s)12

(r s)12) = r12s

If G = E6(q2s) thenCG(α) = E6(r s) or CG(α) =2 E6(r s). It follows that |G : CG(α)|r =
(r2s)36

(r s)36 = r36s

If G = E7(q2s) thenCG(α) = E7(r s). It follows that|G : CG(α)|r =
(r2s)63

(r s)63 = r63s

If G = E8(q2s) thenCG(α) = E8(r s). It follows that|G : CG(α)|r =
(r2s)120

(r s)120 = r120s

If G = F4(q2s) thenCG(α) = F4(r s) or CG(α) =2 F4(r s). It follows that |G : CG(α)|r =
(r2s)24

(r s)24 = r24s or |G : CG(α)|r =
(r2s)24

(r s)12 = r36s
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If G = G2(q2s) thenCG(α) = G2(r s) or CG(α) =2 G2(r s). It follows that |G : CG(α)|r =
(r2s)6

(r s)6 = r6s or |G : CG(α)|r =
(r2s)6

(r s)3 = r9s

If G =2 Am(r2s) for m ≥ 2 thenCG(α) =2 Am(r s). It follows that |G : CG(α)|r =
(r2s)

m(m+1)
2

(r s)
m(m+1)

2
=

r
sm(m+1)

2

If G =2 Dm(q2s) for m ≥ 4 thenCG(α) =2 Dm(r s). It follows that |G : CG(α)|r =
(r2s)m(m−1)

(r s)m(m−1) =

r sm(m−1)

If G =2 E6(q2s) thenCG(α) =2 E6(r s). It follows that|G : CG(α)|r =
(r2s)36

(r s)36 = r36s

If G =3 D4(q2s) thenCG(α) =3 D4(r s). It follows that|G : CG(α)|r =
(r2s)12

(r s)12 = r12s.

Notice thatr2 divides|G : CG(α)| in all the above cases and hence none of them is possible.

Case 3:α is a graph automorphism.

If G = A±2m+1(q) for m≥ 1 thenCG(α) = Cm(q). It follows that

|G : CG(α)|r =
q

(2m+1)2m
2

qm2 = qm2
+m

If G = A±2m(q) for m≥ 1 thenCG(α) = Cm(q). It follows that|G : CG(α)|r =
q

2m(2m−1)
2

qm2 = qm2−m

If G = D±m(q) for m≥ 4 thenCG(α) = Bm−1(q). It follows that|G : CG(α)|r =
qm(m−1)

q(m−1)2
= qm−1

If G = E±6 (q) thenCG(α) = F4(q). It follows that|G : CG(α)|r =
q36

q24 = q12

Notice thatq2 divides|G : CG(α)| in all the above cases and hence none of them is possible.

This completes the proof of Theorem 3. �
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Appendix A

FIXED POINT SUBGROUPS OF AUTOMORPHISM GROUPS

OF SPORADIC SIMPLE GROUPS

In this part we shall give some arithmetical information about the sporadic simple groups

and some information about conjugacy classes of their noninner automorphisms that contains

only lengths and names of the conjugacy classes and the order of their fixed point subgroups.

In the tables we give below,G denotes the name of the corresponding sporadic simple group,

andx denotes a representative of a conjugacy class of noninner automorphisms.

First of all we shall describe these tables column-by-column.

In the first column, we give the name of the information given in the corresponding row.

Each of the remaining columns gives the information about the conjugacy class of noninner

automorphisms containingx.

Next, we shall describe the tables row-by-row. This is almost the same description as it is in

Atlas of Finite Groups ([9], pages xxv-xxx).

In the first row, the numbers given are the orders of fixed point subgroups in the base group

G.

For a conjugacy class, the set of thekth power of the elements forms another conjugacy class.

The resultingpower maps, for a composite numberl, between the classes can be obtained by

repeated use of theprime power maps, the particular case whenk is prime, for prime divisors

of l.

The second row gives the tag letters of the name of the classes that contain respectively the

powersxp, xq, xr , . . . of x, wherep < q < r < . . . are the prime divisors of the order ofx. For
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example if we have an entryABC for the power map of an elementx of order 84, then we

mean thatx2 is in class 42A, x3 in class 28B, x7 in class 12C.

Let x ∈ Aut(G) andπ be a subset ofπ(Aut(G)), the set of prime divisors of order ofAut(G). A

certain power ofx is called theπ-part ofx, denoted byx(π), if the set of prime divisors of order

of x(π) is contained inπ while none of those of order ofx(π)−1x. x(π)−1x is called theπ′-part

of x and it is denoted byx(π′). For eachx ∈ Aut(G), we can writex = x(π)x(π′) = x(π′)x(π)

uniquely. If π consists of a single primep, then we denote them respectively byx(p) and

x(p′) and call them thep-part andp′-part ofx. Theπ-parts for general setsπ can be found by

repeated use of thep′-parts.

The third row of the table gives the tag letters of the name of the classes that contain respec-

tively the powersx(p′), x(q′), x(r ′), . . ., wherep < q < r < . . . are the prime divisors of the

order ofx.

nA,nB,nC, . . . denote the conjugacy classes that contain elements of ordern. The alphabet

used here is potentially infinite, and reads

A, B,C,D,E, F,G,H, I , J,K, L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1, B1, . . . ,A2, B2, . . .

The class name row contains the following information:

Entries of the formnX are called ‘Master’ class name entries. It just means that the column

refers to a conjugacy classnX;

Entries of the formY ∗ k (or Y ∗ ∗k,Y ∗ ∗,Y∗) are called ‘Slave’ class name entries. It just

means that the column refers to a conjugacy classnY, and one can obtainnY by applying the

algebraic conjugacy operator∗k (or ∗ ∗ k, ∗∗, ∗) to the most recent ‘master’ classnX.

An algebraically conjugate family of classes consists of a ‘master’ class andthe immediately

subsequent ‘slave’ classes.

We define the algebraic conjugacy operators on classes as follows [9]:

(nX)∗k contains thekth powers of elements ofnX;

(nX)∗∗k contains the (−k)th powers of elements ofnX;

(nX)∗∗ contains the inverses of elements ofnX;
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and

(nX)∗ is the class other thannX containing elements of ordern that are powers of elements

of nX, when this class is unique. It is to be understood thatk is prime ton. The values of

characters on these classes are the images of their values onnXunder the appropriate algebraic

conjugacies.

The last row gives the prime decomposition of the index of the corresponding fixed point

subgroup in the base groupG.

SPORADIC MATHIEU GROUP M11 ([9], page 18)

The order ofM11 is 7,920 = 24.32.5.11. The automorphism group ofM11 is isomorphic to

itself and hence there is no noninner automorphism ofM11.

SPORADIC MATHIEU GROUP M12 ([9], pages 31-33)

The order ofM12 is 95,040= 26.33.5.11. The index of inner automorphism group ofM12 in

the automorphism group ofM12 is 2.

Table A.1: Some of the Conjugacy Classes of Noninner Automorphisms ofM12

|CG(x)| 120 24 12 6 10 10

p power A B A BC AC AC

p′ part A A A BC AC AC

Class Name 2C 4C 4D 6C 10B C*

|G : CG(x)| 23.32.11 23.32.5.11 24.32.5.11 25.32.5.11 25.33.11 25.33.11
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SPORADIC MATHIEU GROUP M22 ([9], pages 39-41)

The order ofM22 is 443,520= 27.32.5.7.11. The index of inner automorphism group ofM22

in the automorphism group ofM22 is 2.

Table A.2: Some of the Conjugacy Classes of Noninner Automorphisms ofM22

|CG(x)| 1344 320 48 32 6

p power A A A A AB

p′ part A A A A AB

Class Name 2B 2C 4C 4D 6B

|G : CG(x)| 2.3.5.11 2.32.7.11 23.3.5.7.11 22.32.5.7.11 26.3.5.7.11

SPORADIC MATHIEU GROUP M23 ([9], page 71)

The order ofM23 is 10,200,960 = 27.32.5.7.11.23. The automorphism group ofM23 is

isomorphic to itself and hence there is no noninner automorphism ofM23.

SPORADIC MATHIEU GROUP M24 ([9], pages 94-96)

The order ofM24 is 244,823,040 = 210.33.5.7.11.23. The automorphism group ofM24 is

isomorphic to itself and hence there is no noninner automorphism ofM24.

SPORADIC JANKO GROUP J1 ([9], page 36)

The order ofJ1 is 175,560= 23.3.5.7.11.19. The automorphism group ofJ1 is isomorphic to

itself and hence there is no noninner automorphism ofJ1.

61



SPORADIC JANKO GROUP J2 ([9], pages 42-43)

The order ofJ2 is 604,800= 27.33.52.7. The index of inner automorphism group ofJ2 in the

automorphism group ofJ2 is 2.

Table A.3: Some of the Conjugacy Classes of Noninner Automorphisms ofJ2

|CG(x)| 336 48 12 6 48 16

p power A A B BC A A

p′ part A A A BC A A

Class Name 2C 4B 4C 6C 8B 8C

|G : CG(x)| 23.32.52 23.32.52.7 25.32.52.7 26.32.52.7 23.32.52.7 23.33.52.7

SPORADIC JANKO GROUP J3 ([9], pages 82-83)

The order ofJ3 is 50,232,960 = 27.35.5.17.19. The index of inner automorphism group of

J3 in the automorphism group ofJ3 is 2.

Table A.4: Some of the Conjugacy Classes of Noninner Automorphisms ofJ3

|CG(x)| 2,448 48 9 48 16

p power A A BB A A

p′ part A A BB A A

Class Name 2B 4B 6B 8B 8C

|G : CG(x)| 23.33.5.19 23.34.5.17.19 27.33.5.17.19 23.34.5.17.19 23.35.5.17.19
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SPORADIC JANKO GROUP J4 ([9], pages 188-190)

The order ofJ4 is 86,775,571,046,077,562,880 = 221.33.5.7.113.23.29.31.37.43. The au-

tomorphism group ofJ4 is isomorphic to itself and hence there is no noninner automorphism

of J4.

SPORADIC CONWAY GROUP Co1 ([9], pages 180-187)

The order ofCo1 is 4,157,776,806,543,360,000 = 221.39.54.72.11.13.23. The automor-

phism group ofCo1 is isomorphic to itself and hence there is no noninner automorphism of

Co1.

SPORADIC CONWAY GROUP Co2 ([9], pages 154-155)

The order ofCo2 is 42,305,421,312,000= 218.36.53.7.11.23. The automorphism group of

Co2 is isomorphic to itself and hence there is no noninner automorphism ofCo2.

SPORADIC CONWAY GROUP Co3 ([9], pages 134-135)

The order ofCo3 is 495,766,656,000= 210.37.53.7.11.23. The automorphism group ofCo3

is isomorphic to itself and hence there is no noninner automorphism ofCo3.

SPORADIC FISCHER GROUP Fi22 ([9], pages 156-163)

The order ofFi22 is 64,561,751,654,400= 217.39.52.7.11.13. The index of inner automor-

phism group ofFi22 in the automorphism group ofFi22 is 2.
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Table A.5: Some of the Conjugacy Classes of Noninner Automorphisms ofFi22

|CG(x)| 1,045,094,400 3,317,760 663,552 122,880

p power A A B B

p′ part A A A A

Class Name 2D 2E 4F 4G

|G : CG(x)| 24.33.11.13 24.35.5.7.11.13 24.35.52.7.11.13 24.38.5.7.11.13

SPORADIC FISCHER GROUP Fi23 ([9], pages 177-179)

The order ofFi23 is 4,089,470,473,293,004,800= 218.313.52.7.11.13.17.23. The automor-

phism group ofFi23 is isomorphic to itself and hence there is no noninner automorphism of

Fi23.

SPORADIC FISCHER GROUP Fi24 ([9], pages 200-207)

The order ofFi24 is 1,255,205,709,190,661,721,292,800= 221.316.52.73.11.13.17.23.29.

The index of inner automorphism group ofFi24 in the automorphism group ofFi24 is 2.

Table A.6: Some of the Conjugacy Classes of Noninner Automorphisms ofFi24

|CG(x)| 220,723,937,280 2,090,188,800

p power A A

p′ part A A

Class Name 2D 4D

|G : CG(x)| 23.39.5.72.13.17.23.29 27.310.72.11.13.17.23.29
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SPORADIC HIGMAN-SIMS GROUP HS ([9], pages 80-81)

The order ofHS is 44,352,000= 29.32.53.7.11. The index of inner automorphism group of

HS in the automorphism group ofHS is 2.

Table A.7: Some of the Conjugacy Classes of Noninner Automorphisms ofHS

|CG(x)| 40,320 1,920 320 96 40

p power A A A A B

p′ part A A A A A

Class Name 2C 2D 4D 4E 4F

|G : CG(x)| 22.52.11 22.3.52.7.11 23.32.52.7.11 24.3.53.7.11 26.32.52.7.11

SPORADIC McLAUGHLIN GROUP McL ([9], pages 100-101)

The order ofMcL is 898,128,000= 27.36.53.7.11. The index of inner automorphism group

of McL in the automorphism group ofMcL is 2.

Table A.8: Some of the Conjugacy Classes of Noninner Automorphisms ofMcL

|CG(x)| 7,920 720 18 48

p power A A BB A

p′ part A A BB A

Class Name 2B 4B 6C 8B

|G : CG(x)| 23.34.52.7 23.34.52.7.11 26.34.53.7.11 23.35.53.7.11
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SPORADIC HELD GROUP He ([9], pages 104-105)

The order ofHe is 4,030,387,200= 210.33.52.73.17. The index of inner automorphism group

of He in the automorphism group ofHe is 2.

Table A.9: Some of the Conjugacy Classes of Noninner Automorphisms ofHe

|CG(x)| 15,120 240 7,560 72 18

p power A A AC AC BC

p′ part A A AC AC BC

Class Name 2C 4C 6C 6D 6E

|G : CG(x)| 26.5.72.17 26.32.5.73.17 27.5.72.17 27.3.52.73.17 29.3.52.73.17

SPORADIC RUDVALIS GROUP Ru([9], pages 126-127)

The order ofRu is 145,926,144,000= 214.33.53.7.13.29. The automorphism group ofRu is

isomorphic to itself and hence there is no noninner automorphism ofRu.

SPORADIC SUZUKI GROUP S uz([9], pages 128-131)

The order ofS uzis 448,345,497,600= 213.37.52.7.11.13. The index of inner automorphism

group ofS uzin the automorphism group ofS uzis 2.

Table A.10: Some of the Conjugacy Classes of Noninner Automorphisms ofS uz

index 1,209,600 190,080 2,304 672

p power A A A B

p′ part A A A A

Class Name 2C 2D 4E 4F

|G : CG(x)| 25.34.11.13 26.34.5.7.13 25.35.52.7.11.13 28.36.5.7.11.13
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SPORADIC O’NAN GROUP O′N ([9], pages 132-133)

The order ofO′N is 460,815,505,920 = 29.34.5.73.11.19.31. The index of inner automor-

phism group ofO′N in the automorphism group ofO′N is 2.

Table A.11: Some of the Conjugacy Classes of Noninner Automorphisms ofO′N

|CG(x)| 175,560 30 672

p power A AB A

p′ part A AB A

Class Name 2B 6B 8C

|G : CG(x)| 23.33.72.31 28.33.73.11.19.31 24.33.5.72.11.19.31

SPORADIC HARADA-NORTON GROUP HN ([9], pages 164-166)

The order ofHN is 273,030,912,000,000= 214.36.56.7.11.19. The index of inner automor-

phism group ofHN in the automorphism group ofHN is 2.

Table A.12: Some of the Conjugacy Classes of Noninner Automorphisms ofHN

|CG(x)| 3,628,800 88,704,000 15,360 1,280

p power A A A B

p′ part A A A A

Class Name 2C 4D 4E 4F

|G : CG(x)| 26.32.54.11.19 24.34.53.19 24.35.55.7.11.19 26.36.55.7.11.19
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SPORADIC LYONS GROUP Ly ([9], pages 174-175)

The order ofLy is 51,765,179,004,000,000 = 28.37.56.7.11.31.37.67. The automorphism

group ofLy is isomorphic to itself and hence there is no noninner automorphism ofLy.

SPORADIC THOMPSON GROUP Th ([9], pages 176-177)

The order ofTh is 90,745,943,887,872,000 = 215.310.53.72.13.19.31. The automorphism

group ofTh is isomorphic to itself and hence there is no noninner automorphism ofTh.

SPORADIC “BABY MONSTER” GROUP B ([9], pages 208-218)

The order ofB is 241.313.56.72.11.13.17.19.23.31.47. The automorphism group ofB is iso-

morphic to itself and hence there is no noninner automorphism ofB.

SPORADIC FISCHER-GRIESS “MONSTER” OR

“FRIENDLY GIANT” GROUP M ([9], pages 220-234)

The order of M is 246.320.59.76.112.133.17.19.23.29.31.41.47.59.71. The automorphism

group ofM is isomorphic to itself and hence there is no noninner automorphism ofM.

Theorem A.0.13 Let G be a sporadic simple group. If G has a noninner automorphism, then

(a) G is one of the following groups

M12, M22, J2, J3, Fi22, Fi24, HS, McL, He, S uz, O′N, HN.

(b) G has a noninner automorphism x such that|G : CG(x)| is divisible by4.
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Proof. From the tables given above it is obvious that ifG has a noninner automorphism then

G is one of the following groups

M12, M22, J2, J3, Fi22, Fi24, HS, McL, He, S uz, O′N, HN.

If A is M11, then any noninner automorphism in the conjugacy class 2C has index 23.32.11 in

G which is divisible by 4.

If A is M22, then any noninner automorphism in the conjugacy class 4C has index 23.3.5.7.11

in G which is divisible by 4.

If A is J2, then any noninner automorphism in the conjugacy class 2C has index 23.32.52 in G

which is divisible by 4.

If A is J3, then any noninner automorphism in the conjugacy class 2B has index 23.33.5.19 in

G which is divisible by 4.

If A is Fi22, then any noninner automorphism in the conjugacy class 2D has index 24.33.11.13

in G which is divisible by 4.

If A is Fi24, then any noninner automorphism in the conjugacy class 2D has index

23.39.5.72.13.17.23.29 inG which is divisible by 4.

If A is HS, then any noninner automorphism in the conjugacy class 2C has index 22.52.11 in

G which is divisible by 4.

If A is McL, then any noninner automorphism in the conjugacy class 2B has index 23.34.52.7

in G which is divisible by 4.

If A is He, then any noninner automorphism in the conjugacy class 2C has index 26.5.72.17

in G which is divisible by 4.

If A is S uz, then any noninner automorphism in the conjugacy class 2C has index 25.34.11.13

in G which is divisible by 4.

If A is O′N, then any noninner automorphism in the conjugacy class 2B has index 23.33.72.31

in G which is divisible by 4.

If A is HN, then any noninner automorphism in the conjugacy class 2C has index

26.32.54.11.19 inG which is divisible by 4. �
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Appendix B

FIXED POINT SUBGROUP OF AUTOMORPHISMS OF

SIMPLE GROUPS

In this part, we shall give some information about the fixed point subgroepof automorphisms

of finite simple groups of Lie type.

Let K be a simple group of Lie type constructed on a fieldF of characteristicr and (K, σ) be

a standardσ-setup defined in [17] with subgroupsB, B,T,H,U,U,etc. and root system
∑

as

in [17]. Let xα̂(.) andhα̂(.) be Chevalley generators ofK as in [17].

Theorem B.0.14 ( [17], Tables 2.5.1 and 2.5.2)Every automorphism of K is a product id f g

such that

(a) i ∈ Inn(K)

(b) d is a “diagonal” automorphism of K. d is induced by conjugation by an element

h ∈ NT(K), so that xα(t)d
= xα(α(h)t) for all α ∈

∑

.

(c) f is a “field” automorphism of K, that is, it arises from an automorphismφ of F, and

carries the generators xα̂(t), xα̂(t,u), etc. and ĥα(t) to xα̂(tφ), xα̂(tφ,uφ), etc. and ĥα(tφ).

(d) g is a “graph” automorphism of K. g= 1 unless K is untwisted, and one of the

following holds:

(1)
∑

has one root length, and for some isometryρ of
∑

carrying
∏

to
∏

,

xα(t)g
=xαp(εαt) for all α ∈

∑

, t ∈ Fq, where theεα are signs andε = 1 if α ∈
∏

or −α ∈
∏

; or
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(2)
∑

= B2, F4, or G2, with r = 2,2, or 3, respectively and g carries

xα(t) 7→



















xαp(t) if α is long

xαp(tr ) if α is short

Hereρ is the unique angle-preserving and length-changing bijection from
∑

to
∑

carrying
∏

to
∏

.

We shall consider automorphisms ofK of prime order. Ifα is an automorphism ofK of prime

orderp, we shall consider such possible automorphisms in four cases:

(i) p = 2, r is odd andα is an inner-diagonal or graph automorphism;

(ii) r , p, p is odd andα is an inner-diagonal or graph automorphism;

(iii) α is a field automorphism or a graph-field automorphism;

(iv) r = p andα is a graph automorphism.

Case 1 :p = 2, r is odd andα is an inner-diagonal or graph automorphism

As the first case we shall consider inner-diagonal involutions and graph involutions of finite

simple groups of Lie type.

The tables given below for each family of finite simple groups of Lie type giveinformation

about the structure ofCK(α).

Each table has four columns each of which has a speciality.

The first column of each table gives information about the family.

The second column of each table gives special conditions for which suchan automorphism

exists.

The third column tells the name of the automorphism.

The last column gives the structure ofOr′(C) whereC = CK(α).
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We start with the familiesAm(q) for m≥ 1 and 2Am(q) for m> 1. In the table,Aεm(q) denotes

Am(q) for ε = 1, and 2Am(q) otherwise.

|Am(q)| = 1
(m+1,q−1)q

m(m+1)
2
∏m

i=1(qi+1 − 1) and|2Am(q)| = 1
(m+1,q+1)q

m(m+1)
2
∏m

i=1(qi+1 − (−1)i+1).

We have the following table ([17], Table 4.5.2).

Table B.1: Inner-diagonal and graph involutions ofAm(q) and2Am(q)

K Conditions t Or′(C)

A1(q)

t1 1

t′1 1

Aεm(q)

m≥ 2

ε = ±1

t1 Aεm−1(q)

2 ≤ i ≤ m
2 ti Aεi−1(q)Aεm−i(q)

modd t m+1
2

Aεm−1
2

(q)2

modd t′m+1
2

Aεm−1
2

(q2)

modd γ1 Cm+1
2

(q)

meven γ1 Bm
2
(q)

modd γ2 D m+1
2

(q)

modd γ′2
2D m+1

2
(q)
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We consider next the familyBm(q) for m> 1. We have|Bm(q)| = 1
(2,q−1)q

m2∏m
i=1(q2i − 1)

We have the following table ([17], Table 4.5.2).

Table B.2: Inner-diagonal and graph involutions ofBm(q)

K Conditions t Or′(C)

Bm(q)

m≥ 2

t1 Bm−1(q)

t′1 Bm−1(q)

2 ≤ i < m ti Di(q)Bm−i(q)

2 ≤ i < m t′i
2Di(q)Bm−i(q)

tm Dm(q)

t′m
2Dm(q)

Then we consider the familyCm(q) for m> 2. We have|Cm(q)| = 1
(2,q−1)q

m2∏m
i=1(q2i − 1)

We have the following table ([17], Table 4.5.2).

Table B.3: Inner-diagonal and graph involutions ofCm(q)

K Conditions t Or′(C)

Cm(q)

m≥ 2

1 ≤ i < m
2 ti Ci(q)Cm−i(q)

meven t m
2

Cm
2
(q)2

meven t′m
2

Cm
2
(q2)

tm Am−1(q)

t′m
2Am−1(q)
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We continue with the familiesDm(q) for m > 3 and 2Dm(q) for m > 3. In the table,Dεm(q)

denotesDm(q) for ε = 1, and 2Dm(q) otherwise.

|Dm(q)| = 1
(4,qm−1)q

m(m−1)(qm− 1)
∏m−1

i=1 (q2i − 1) and

|2Dm(q)| = 1
(4,qm+1)q

m(m−1)(qm
+ 1)
∏m−1

i=1 (q2i − 1).

We have the following table ([17], Table 4.5.2 and 4.5.3).

Table B.4: Inner-diagonal and graph involutions ofDm(q) and2Dm(q)

K Conditions t Or′(C)

Dεm(q)

m≥ 4

ε = ±1

t1 Dεm−1(q)

t′1 D−εm−1(q)

2 ≤ i < m
2 ti Di(q)Dεm−i(q)

2 ≤ i < m
2 t′i

2Di(q)Dεm−i(q)

K = D+2k(q) t m
2

D m
2
(q)2

K = D+2k(q) t′m
2

D m
2
(q2)

K = D+2k(q) t′′m
2

D m
2
(q2)

K = D+2k(q) t′′′m
2

D m
2
(q2)

K = D+2k(q) tm−1 Am−1(q)

K = D+2k(q) t′m−1
2Am−1(q)

K = D+2k(q) tm Am−1(q)

K = D+2k(q) t′m
2Am−1(q)

K = D−2k(q) t m
2

2D m
2
(q)D m

2
(q)

K = D−2k(q) t′m
2

2D m
2
(q2)
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Table B.5: Inner-diagonal and graph involutions ofDm(q) and2Dm(q) continued

K Conditions t Or′(C)

Dεm(q)

m≥ 4

ε = ±1

K = Dε2k+1(q) tm Aεm−1(q)

γ1 Bm−1(q)

2 ≤ i ≤ m
2 γi Bi−1(q)Bm−i(q)

K = Dε2k+1(q) γm+1
2

Bm−1
2

(q)2

K = Dε2k+1(q) γ′m+1
2

Bm−1
2

(q2)

K = D+4 (q) γ∗1 B3(q)

K = D+4 (q) γ∗∗1 B3(q)

K = D+4 (q) γ∗2 A1(q)B2(q)

K = D+4 (q) γ∗∗2 A1(q)B2(q)
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We consider next the familiesE6(q) and 2E6(q). In the table,Eε6(q) denotesE6(q) for ε = 1,

and 2E6(q) otherwise.

|E6(q)| = 1
(3,q−1)q

36(q12− 1)(q9 − 1)(q8 − 1)(q6 − 1)(q5 − 1)(q2 − 1) and

|2E6(q)| = 1
(3,q+1)q

36(q12− 1)(q9
+ 1)(q8 − 1)(q6 − 1)(q5

+ 1)(q2 − 1).

We have the following table ([17], Table 4.5.2).

Table B.6: Inner-diagonal and graph involutions ofE6(q) and2E6(q)

K Conditions t Or′(C)

Eε6(q)

ε = ±1

t1 Dε5(q)

t2 A1(q)Aε5(q)

γ1 F4(q)

γ1 C4(q)

We consider next the familyE7(q). We have

|E7(q)| = 1
(2,q−1)q

63(q18− 1)(q14− 1)(q12− 1)(q10− 1)(q8 − 1)(q6 − 1)(q2 − 1)

We have the following table ([17], Table 4.5.2).
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Table B.7: Inner-diagonal and graph involutions ofE7(q)

K Conditions t Or′(C)

E7(q)

t1 A1(q)D6(q)

t4 A7(q)

t′4
2A7(q)

t7 E6(q)

t′7
2E6(q)

We consider next the family3D4(q). We have

|3D4(q)| = q12(q8
+ q4
+ 1)(q6 − 1)(q2 − 1).

We have the following table ([17], Table 4.5.1).

Table B.8: Inner-diagonal and graph involutions of3D4(q)

K Conditions t Or′(C)

3D4(q) t2 A1(q)A1(q3)

We consider next the familyG2(q). We have

|G2(q)| = q6(q6 − 1)(q2 − 1).

We have the following table ([17], Table 4.5.1).
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Table B.9: Inner-diagonal and graph involutions ofG2(q)

K Conditions t Or′(C)

G2(q) t1 A1(q2)

We consider next the family2G2(q). We have

|2G2(q)| = q3(q3
+ 1)(q− 1).

We have the following table ([17], Table 4.5.1).

Table B.10: Inner-diagonal and graph involutions of2G2(q)

K Conditions t Or′(C)

2G2(q) q = 3a+ 1
2 t1 A1(q2)

We consider next the familyF4(q). We have

|F4(q)| = q24(q12− 1)(q8 − 1)(q6 − 1)(q2 − 1).

We have the following table ([17], Table 4.5.1).

Table B.11: Inner-diagonal and graph involutions ofF4(q)

K Conditions t Or′(C)

F4(q)
t1 A1(q)C3(q)

t4 B4(q)
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We consider next the familyE8(q). We have

|E8(q)| = q120(q30− 1)(q24− 1)(q20− 1)(q18− 1)(q14− 1)(q12− 1)(q8 − 1)(q2− 1).

We have the following table ([17], Table 4.5.1).

Table B.12: Inner-diagonal and graph involutions ofE8(q)

K Conditions t Or′(C)

E8(q)
t1 D8(q)

t8 A1(q)E7(q)

Case 2:r , p, p is odd andα is an inner-diagonal or graph automorphism

In this case,G is eitherAm(q) or 2Am(q) or E6(q).

We have the following theorem forAm(q) and2Am(q):

Theorem B.0.15 ( [17], Theorem 4.8.4 )Let K be a classical group with underlying classi-

cal space V. Let p be an odd prime and let x be an inner-diagonal automorphism of K of

order p which is not inducced by an element of Isom(V) of order p. Then Isom(V) = GLεn(q)

for some signε such that p divides both m+ 1 and q− ε. Letω be a generator of a Sylow

p-subgroup of the cyclic subgroup ofF
×

of order q−ε. For a suitable choice ofω, x is induced

by an element x0 of Isom(V) such that xp0 is scalar multiplication byω.

Let C= CGLε(V)(x0) and let C∗ be the preimage in GLε(V) of CPGLε(V)(x). Then C� GLεn/p(qp)

and C∗ = C〈φ〉, whereφp
= 1 andφ induces a field automorphism on C.

We next give a table about the structure ofCK∗(t) whereK∗ denotes the extension groupK by

its diagonal automorphisms whereK is eitherE6(q) or 2E6(q).

The second column of the table gives the name of automorphism and the last column gives

the structure ofOr′(C) whereC = CK∗(t).
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We have the following table ([17], Table 4.7.3A).

Table B.13:C = CK∗(t), t ∈ Inndiag(K)ΓK of orderp = 3, q ≡ ε (mod3)

K t Or′(C)

Eε6(q)

t±1
1 Dε5(q)

t±1
2 A1(q)Aε4(q)

t3 Aε2(q)3

t
′±1
3 Aε2(q3)

t4 Aε5(q)

t1,6 D4(q)

t
′±1
1,6

3D4(q)

E−ε6 (q)

t3 Aε2(q)A2(q2)

t4 A−ε5 (q)

t1,6 2D4(q)

Case 3:α is a field automorphism or a graph-field automorphism

Next, we consider the case of field or graph-field automorphisms with no restriction on r.

Then, we have an important theorem in the classification of finite simple groups:

Theorem B.0.16 ( [17], Proposition 4.9.1 )Let K =d ∑(q) be a simple group of Lie type

over a base field of characteristic r, let x be a field or graph-field automorphism of K of prime

order p, and set Kx = Or′(CK(x)). Then

If x is a field automorphism, then Kx �
d ∑(q1/p), while if x is a graph-field automorphism,

then d= 1, p = 2 or 3, and Kx �
p ∑(q1/p).
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Case 4:r = p andα is a graph automorphism

Theorem B.0.17 ( [17], Proposition 4.9.2 )If K ∈ Lie(p) has a graph automorphism of or-

der p then the following conditions hold:

(a) Either K is untwisted and there isγ ∈ ΓK of order p, or K is a Steinberg group and

there isγ ∈ ΦK of order p.

(b) For γ as in (a), CK(γ) ∈ Lie(p) and one of the following holds:

(1) p= 2, K � A±m(q), m odd, m> 1, and CK(γ) � Cm+1
2

(q);

(2) p= 2, K � A±m(q), m even, and CK(γ) � Cm
2
(q);

(3) p= 2, K � D±m(q)(� Ω±2m(q),m> 3), K〈γ〉 � O±2m(q) and CK(γ) � Bm−1(q);

(4) p= 2, K � E±6 (q) and CK(γ) � F4(q); or

(5) p= 3, K � D4(q) or 3D4(q), and CK(γ) � G2(q).
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Appendix C

OUTER AUTOMORPHISMS OF PS L(n,Fq)

In this chapter, we shall give some information on the outer automorphism groups of

PS L(n,Fq) whereq = r f for some prime numberr and integerf . These information can also

be found in [30], Section 3.3.4 in more detail.

From Appendix B we know that the outer automorphism groups of all the classical groups

have a uniform description in terms of diagonal, field, and graph automorphisms.

As being induced by conjugation by diagonal matrices with respect to a suitable basis, we call

the first type as diagonal automorphisms. AsS L(n,Fq) is a normal subgroup ofGL(n,Fq),

GL(n,Fq) acts by conjugation onS L(n,Fq) as a group of automorphism. This action induces

the action ofPGL(n,Fq) on PS L(n,Fq) as a group of automorphisms ofPS L(n,Fq). This

group is called the group of diagonal outer automorphisms and corresponds to the quotient

groupPGL(n,Fq)/PS L(n,Fq) which is a cyclic group of orderd = (n,q− 1).

The automorphism group of the underlying fieldFq, a cyclic group of orderf , is the group

generated by the Frobenius automorphism,σ : Fq → Fq given byσ(x) = xr . The field

automorphisms ofGL(n,Fq) are induced by automorphisms of the underlying field. The

automorphism ofGL(n,Fq) induced byσ is given by Aσ = (Ar
i j ) for each elementA =

(Ai j ) of GL(n,Fq. The groupG〈σ〉 which is the semidirect product ofGL(n,Fq) with the

group of field automorphisms is denoted byΓL(n,Fq), and correspondingly the extension of

S L(n,Fq),PGL(n,Fq) or PS L(n,Fq) by the induced group of field automorphisms is denoted

by
∑

L(n,Fq),PΓL(n,Fq) or P
∑

L(n,Fq).

The graph automorphisms are induced by an automorphism of the Dynkin diagram. The

classical concept of duality is the best explanation of the graph automorphism in the case of

the linear groups. For a vector spaceV and a basis{e1, . . . ,en} of V, the basis{e∗1, . . . ,e
∗
n} of
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V∗ given bye∗i (ei) = 1 ande∗i (ej) = 0 if i , j is a well-defined dual basis.

If the action ofg ∈ GL(V) onV andV∗ are given respectively by

ei 7→

n
∑

i=1

gi j ej

and

e∗i 7→
n
∑

i=1

hi j e
∗
j

then asa∗i (a j) = δi j whereδi j is the kronecker delta, we have

δi j =

n
∑

k=1

hike∗k

















n
∑

l=1

g jl el

















=

n
∑

k=1

hik

















n
∑

l=1

g jl e
∗
k(el)

















=

n
∑

k=1

hikg jk

Thus, if h = (hi j ) andg = (gi j ), thenhgT
= In and henceh = (g−1)T

= (gT)−1. The duality

automorphism (with respect to these bases) ofGL(V) is the map which replaces each matrix

by the transpose of its inverse. This is the so called graph automorphism ofGL(V).
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