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ABSTRACT

ON THE INDEX OF FIXED POINT SUBGROUP

Turkan, Erkan Murat
Ph.D., Department of Mathematics

Supervisor : Assoc. Prof. Dr.{in Ercan

August 2011, 84 pages

Let G be a finite group and A be a subgroup of Aut(G). In this work, wdistlithe influence

of the index of fixed point subgroup of A in G on the structure of G.
When A is cyclic, we proved the following:
(1) [G,A] is solvable if this index is squarefree and the orders of G anteAaprime.

(2) Gis solvable if the index of the centralizer of each x in H-G is squageftteere H denotes

the semidirect product of G by A.

Moreover, for an arbitrary subgroup A of Aut(G) whose order isroop to the order of G, we
showed that when G is solvable, then the Fitting length f([G,A]) of [G,A] isrmed above by
the number of primes (counted with multiplicities) dividing the index of fixed paibiggsoup

of Ain G and this bound is best possible.

Keywords: automorphism, solvable group, Fitting length, fixed point sulpgro
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SABIT NOKTA ALTGRUBUNUN INDEKSI UZERINE

Turkan, Erkan Murat
Doktora, Matematik BIUmu

Tez Yoneticisi : Dog. Dr. Gilin Ercan

Agustos 2011, 84 sayfa

G sonlu bir grup ve A, Aut(G)'nin bir altgrubu olsun. Bu c¢alismada AningiBideki sabit
nokta altgrubunun indeksinin G grubunun yapiserindeki etkisi calisiimis olup, A grubu

devirli oldugunda su sonuclar elde edilmistir:

(1) Bu indeks higbir tamkareyeotiinmiyor ve G ile Anin mertebeleri aralarinda asal ise

[G,A] altgrubu @zulebilirdir.

(2) H, G’nin A ile yaridolayl carpimini temsil etsin. H’nin G'de olmayan herdemeaninin

merkezleyeninin G i¢indeki indeksi hicbir tamkarey@immiyor ise, G grubu @zilebilirdir.

Bununotesinde A, Aut(G)'nin herhangibir altgrubu, @ziilebilir bir grup ve G ile Anin mer-
tebesi aralarinda asal ise [G,A] altgrubunun Fitting uzgahun, Anin G icindeki sabit nokta
altrubunun indeksinin asal ¢arpan ayrisimindatierin toplami ileistten sinirli oldgu ve

bu sinirin olabilecek enilgiik sinir old@u gosterilmistir.

Anahtar Kelimeler: otomorfizmapelilebilir altgrup, Fitting uzunlgu, sabit nokta altgrubu
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CHAPTER 1

INTRODUCTION

Let G be a finite group and\ a group of automorphisms @&. The structure of the fixed
point subgroupgCg(A) = {g € G| g® = g forall a € A} of the action ofA on G and

the way it is embedded i becomes very restrictive and therefore explanatory about the
structure ofG. Hence a well-established area in the theory of finite groups is the study of
how information orCg(A) may influence the properties such as solvability or non-simplicity
of G. However, in the literature there are only a few works which handle theeinflel of

the index|G : Cg(A)| of Cs(A) in G. It should be noted that if one adds a direct factoGto

on whichA acts trivially, this process does not change the index of the fixed pdagrsup.
Hence rather than asking about the structur&afe should ask about the structure of the
subgroup g~1g? | g € G, a < A) which is denoted byG, A], in terms of |G : Cg(A)|. In

this framework, the first result is due to Kazarin [6]. In 1990, he stataed th
If |G: Cg()|is aprime power for a finite group G ande Aut(G), then[G, ¢] is solvable.

Another result in this direction was obtained by Parker and Quick [27] @12They proved
that

If A < Aut(G) with (|G|, |Al) = 1, then the order ofG, A] is bounded above by¥ ™1 where
the indeXG : Cg(A)| < n.

It should be noted that Kazarin’s work has a distinction of providing altregithout the
assumption that@|, |a|) = 1. In this kind of research, the assumption that the actioh @

G is coprime is very important because there exist certain very useful reddtietween the
groupsG and A which make some inductive arguments very easy to apply under a coprime

action. If the action is noncoprime it becomes rathdlidilt to use this type of arguments



and the situation changes dramatically. Here is a list of some useful relatiocis are valid

under a coprime action:

(1) G =[G, AlCc(A);
(2) [G. Al = [G.AA];

(3) Cg/N(A) = Ge(A)N/N for each normal-invariant subgrouN of G.

Kazarin’s result stated above is a corollary of his main theorem in [25]lwbéneralizes
Burnside’s well-known lemma asserting that a finite group is not simple if the aumwib

elements in a conjugacy class is equal to a power of a prime number. Irefacoved that
If for some xe G, |G : Cg(X)| is a power of a prime, the(x®) is solvable.

This is of course a contribution to the study of the influence on the strucfugead some
arithmetical conditions imposed on the lengths of conjugacy class€s @y giving this
corollary, Kazarin pointed out that the methods of studying the structuf&aot] for

a € Auf(G) in terms of the index ofCs(a) might be very closely related to the methods
in the investigation of the influence of the lengths of conjugacy classes tértiotuse ofG.
Realizing this, the following important results due to Cossey and Wang stimulatéuterest

and led us to the main questions of this thesis.

(Cossey-Wang, 1999 [10]) Let G be a finite group and p be a primeatiaf|G| such that

if g is any prime divisor ofG|, not dividing p— 1. Suppose that no conjugacy class length
of G is divisible by p. Then G is a solvable milpotent group and @Op(G) has a Sylow
p-subgroup of order at most p. Further, if  Syk(G), |P’| < p and if P # Op(G), then
Op(G) is abelian.

(Cossey-Wang, 1999 [10]) Let G be a finite group and supposeCGhista squarefree number
for each Ce ConG). Then G is supersolvable and both I§G) and G are cyclic groups

with squarefree orders. The class of@&) is at most2 and G is metabelian.

In addition, we would like to mention the works [1], [4], [5], [6], [8], [R223], [24] et. al., on
the influence of the sizes of conjugacy classes on the structure of a finitp yhich brought

us to the following:



Question 1. Let G be a finite group and € Aut(G). Is[G, a] solvable, whelG : Cg(a)| is a

squarefree number?

We obtained a counter-example showing that the answer to this question rafiiyrnative
only in the case|(|, |o]) = 1. Then we studied Question 1 first under this additional hypoth-

esis and obtained the following:

Theorem 2: Leta € Aut(G) with (|G|, |a|) = 1. If the indeXG : Cg()| is squarefree, then G

is solvable.

Considering the question that how the information alfegtA) influence the structure @

for a noncoprime action, it has been observed by Ercan dnof@i in [11], [12], [13], [14],

[15] that the properties of elements@A\ G may also influence the structure@fwhereGA
stands for the semidirect product®@hby A. They imposed some conditions on these elements
in order to overcome some of thdfilulties arising from a noncoprime action. We modified

Question 1 by imposing similar restrictions on the elements{af \ G.

Question 2. Let G be a finite group and € Aut(G). Is G solvable if|G : Cg()| is squarefree

for each xe H \ G where H denotes the semidirect product of G d)y?

Although we first attempted to impose restrictions onlyxoa H \ G of order equal tda/|,
the same counter-example served as a counter-example in this case aonsdiq@ently, we

showed that the answer to Question 2figranative by proving the following:

Theorem 3: Let G be a finite group and € Aut(G). Assume tha(G : Cs(X)| is squarefree

for each xe H \ G where H= G {a). Then G is solvable.

Apart from these, we considered a p@irA with A < Aut(G) and investigated the influence
of |G : Cs(A)| on the Fitting length of G, A] whenG is a solvable group andqj, |A) = 1.

Namely, we obtained the following:

Theorem 1: Let G be a finite solvable group and A Auf(G) with (|G|,|A) = 1. Then
f([G, A]) is bounded above by the number of primes divididg Cs(A)|, counted with mul-

tiplicities. This bound is the best possible one.

It should be noted that although this bound is best possible, it seemslpdesiprove it in

some special cases.



The outline of the thesis is as follows:

Chapter 2 contains some useful theorems which will be referred throti¢h® presentation

of the main results of this thesis.

In Chapter 3, we state and prove the main results we obtained. This chigateoatains

examples and counterexamples supporting the arguments.

In Appendices A, B and C, we give some arithmetical information and tablé&secgautomor-
phism groups of simple groups which will be referred throughout thefpsbour Theorem
3.



CHAPTER 2

SOME USEFUL THEOREMS

In this chapter, we shall present some useful results pertaining to tb&gdrthe main theo-

rems of this thesis.

In 1904, Burnside proved the solvability of a group of orgég®. Since then many authors
have investigated the relationship between the structure of a finite grouprihohetical
condition on the sizes of its conjugacy classes. His proof depends ory aved-known

result of him,Burnside’g®-lemma, on nonsimplicity.

Theorem 2.0.1 ( Burnside'sp®-lemma, [3] ) If the number of elements in a conjugacy class

of a finite group G is equal to a power of a prime number then G is not simple.

In 1990, Kazarin [25] generalized this lemma as follows:

Theorem 2.0.2 ( [25], Theorem )If for some xe G, |G : Cg(X)| is a power of a prime, then

(x®) is solvable.

Proof. Let G be a minimal counter example to the theorem, that i, i a group with order
less than the order @& and satisfying the assumptions of the theorem, then it satisfies the
theorem. Letx € G such thaiG : Cg(X)| = p*. Thenx # 1 and alsdG is not simple by

Burnside’sp®-lemma.

If M is a proper normal subgroup Gf containingx, then it is obvious thaiM : Cy(X)| = p®
for someg < a. It follows by induction thatxV) is solvable, that isx € S(M) < S(G). This

contradiction shows that there is no proper normal subgro@aintainingx.

5



If1 # M <G, thenCg(X)M/M C Cgm(xM) and hencdG/M : Cgm(xM)| is also a power of
p. Thus,xM € S(G/M) by induction applied tas/M. If S(G/M) = X/M <G/M, thenX <G
and hence € X <1 G, a contradiction. Therefor&§(G/M) = G/M, that is,G/M is solvable
forany 1+ M < G.

If S(G) # 1, then asS(G) # G we getG/S(G) is solvable. Since we also ha&G) is

solvable, we geG is solvable, a contradiction. Therefo®G) = 1.

Let N be a minimal normal subgroup @. Then 1# N # G asG is not simple and also
we havex ¢ N. SetK = N¢x). Itis obvious thatN : Cn(X)| = |[K : Ck(X)| is a power ofp.
If K # G, then by induction applied t& we getx € S(K). As (x\) = [x, N](x), we have
[x,N] € S(K) and hence), N] € S(K) "N < S(N) < S(G) = 1. Thus,x € Cg(N) < G.
It follows thatCg(N) = G, that is,N < Z(G). ThenN is solvable. We also hav&/N is

solvable. It follows thaG is solvable, a contradiction.
Therefore G = N(x), whereN is a minimal nhormal subgroup &.

Suppose thafx = rm for some prime and integem > 1. Sety = x™. Then|G : Cg(y)|
is a power ofp and henceyM) = [N, y](y) is solvable by induction applied td(y). Note
that [N,y] << N(x) = G. Then N,y] = N by the minimality ofN and henceN is solvable.
ThereforeG is solvable, a contradiction. So we may assume|that r wherer is a prime

number.

Suppose thaM is another minimal normal subgroup Gf ThenM NN = 1 andMN = G.
ThenM = G/N = (x) and henceM is solvable. Sinc&/M = N is also solvable, we g& is

solvable, a contradiction. Therefofg,is the uniqgue minimal normal subgroup®f

Suppose that either= porr ¢ n(N). Thenr is coprime to the number of Syloprsubgroups
of N. Hence there exist® € Syl(N) such thatP* = P by Theorem 2.0.8 (c). It follows
that (x, P) = P(x) is a{p,r}-group and hence solvable. Sing&: Cs(X)| = p* we have

G = PCs(x) and therx® = x”. Now, (x®) = (x") < (x, P) is a solvable group, a contradiction.
Thereforey # pandr € n(N).

Consider the principal-block By, of G. Let y € Bo(r). Then

G : Ca(®)lx(Xxr (1) =G : Ca(¥)| (modw) (2.1)

6



wherew is a maximal ideal in the ring of integer algebraic numbers containing
Also |G : Cg(X)| = p* #0 (modw). Thus,

x(X) # 0 for anyy e Bo(r). (2.2)

If p does not divide/(1) then eitheixKery € Z(G/Kery) or y(X) = 0. In our case has a
unique maximal normal subgroup. It follows that eitly€t) = 0 (modp, or N < Kery andy

is a linear character. Thug(1) # 0 (modp for any linear charactey € Bo(r).

We observe that any linear character of the grGugatisfies the relation” = 1 where % is
a principal character and therefore it is easy to seeAl@aBy(r). Thus, there are exactly

linear characters iBo(r).

By the orthogonality formula (Theorem 2.0.16), #4(r) and for an arbitrary-elemenig we

have

> x(1x(@) =0, (2.3)
X€Bo(r)
It was mentioned above thate 7(N). Thus, there iy € N of orderr. Substitutingy in the

eqguation (2.3) and selecting terms corresponding to linear charactetstaie o

0= > XM+ D, x(x (2.4)
X€Bo(r), x(1)=1 X€Bo(r), x(1)#1

Sincex(y) = 1 for any linear charactey and y(1) = pn, for any nonlineary € Bo(r), it
follows that the equation (2.4) can be written in the form

r+p Z x(y)n, =0. (2.5)
X€Bo(r), x(1)#1

Hence it follows that /p is an algebraic integer. This is a contradiction proving the theorem.

As a corollary of this theorem, Kazarin stated the following result. By doing bi@gointed
out that the methods of studying the structure®fd¢] for a € Aut(G) in terms of the index
of Cg(a) might be very closely related to the methods in the investigation of the influénce o

the length of the conjugacy classes to the structure. of

Corollary 2.0.3 ([25], Corollary 1) Let G be a finite group and one of its automorphisms.
If Ce() contains a Sylow r-subgroup of the group G for akt ir(G)\{p} thena induces the
identity automorphism on &(G).



The following two theorems are due to A. Camina and R. Camina. We shall mald theem

in proving the main results of this the thesis.

Theorem 2.0.4 ([7], Lemma 6 )If G is simple, therd divides the length of a conjugacy class
of G.

Theorem 2.0.5 ([4], Lemma 1, Corollary 1) Let G be a finite group.

1. If for some prime number p, any-plement has ‘pindex in G, then G has a unique

Sylow p-subgroup which is a direct factor.

2. If for some prime number p, {p|C| for any C € Con(G) then G has a unique Sylow

p-subgroup which is an abelian direct factor.
We present next a result due to Gross which will be referred in the pfaicheorem 3.
Theorem 2.0.6 ([18] ) Let G be a finite simple non-abelian group and let p be an odd prime
dividing the order of G. Let A Aut(G) and let S be a Sylow—subgroup of A. Identifying G
with Inn(G), set P= SN G. Then G(P) = Z(P).

Finally, we shall state some well-known results which will be referred througthe thesis.

Theorem 2.0.7 ( [26], Theorem 8.2.2 Yet N be an A-invariant normal subgroup of G.
Supppose thgtA|, IN|) = 1 and A or G is solvable. Then

(a) CG/N(A) = C(;(A)N/N,

(b) If A acts trivially on N and @N, then A acts trivially on G.

Theorem 2.0.8 ([26], Theorem 8.2.7)Suppose that the action of A on G is coprime. Let p

be a prime divisor ofG|.

(@) G=[G,AlCc(A),

(b) [G,A] =[G, A Al



(c) There exists an A-invariant Sylow p-subgroup of G.

Theorem 2.0.9 ([16], Theorem 2.2.3 (Three Subgroup Lemma) et x y, z be elements of
G and HK, L subgroups of G. Then we have

() xy L2l 21 Xz xHy)* = 1.
(i) If [H,K,L] =1and[K,L,H] =1, then[L,H,K] = 1.
Definition 2.0.10 ([16], Theorem 6.1.2 )Let G be a group. The subgroup of G generated

by all its nilpotent normal subgroups is a nilpotent normal subgroup off@is subgroup is

called the Fitting subgroup of G and shall be denoted &)

Theorem 2.0.11 ([16], Theorem 6.1.3 Jf G is solvable, then g(F(G)) € F(G).

Definition 2.0.12 Let G be a group. The Fitting series of G is the normal series defined by

Fo(G) = 1and F,1(G)/Fi(G) = F (G/Fi(G)) forall i > 1.
If G = Fy(G) for some ne N, then n is called the Fitting length of G and it is denoted by

£(G).

Theorem 2.0.13 ( [30], Section 2.4 )fn > 5, then AufA,) = S,, whenever r¥ 6. Aut(Ag) is
isomorphic to the semidirect product of 8y the automorphism sendifdgcycles to product

of two disjoint3-cycles and sending product of two disjo8itycles ta3-cycles.

Theorem 2.0.14Let G be a group and x and y be two commuting elements of G such that

(IXI.1y) = 1. Then G(xy) = Ca(X) N Ca(Y)-

Proof. It is obvious thaCg(x) N Cs(y) < Ca(Xy).

Set|x = mandly| = n. Since (n,n) = 1, there exist integens s such thatm + sn= 1. As
[x,y] = 1, we have xy)™ = x™My™M = y1=S1 = y and (y)S" = xSMyS" = x1-™M = x,

If a € Co(xy), then 1= [a,(xy)'™] = [a,y] and 1 = [a,(xy)*" = [a X]. It follows that
a e Cg(x) anda € Cg(y). ThereforeCg(xy) = Cs(X) N Cg(y), as desired. [ |

9



Theorem 2.0.151f G is a nonabelian simple group, thes divides the order of G.

Theorem 2.0.16 ([21], 15.23 Y et xy € G with p{ |[x and g |yl. Let B be a p-block of
G. Then

x(¥)x() =0 (2.6)
x€BNIrr (G)

10



CHAPTER 3

MAIN THEOREMS

In this chapter, we shall state and prove the main results of this thesis.

Let G be a finite group ané < Aut(G). We shall discuss the influence|&f : Cg(A)| on the
structure of the grouf. In fact we should ask about the structure®f p] rather than asking
about that ofc. Because by adding a direct factérto G so that K, A] = 1, we can obtain a
groupH = G x K such thatH : Cx(A)| = |G : Cs(A)l.

We shall present our results in two sections according to the actiéroafG being coprime

or noncoprime.

3.1 Results in the Coprime Case

In this section, we shall state and prove two results under the coprimemadisi@n first of
which gives an upper bound for the Fitting length &f B] in terms of |G : Cg(A)| whenG

is solvable.

Theorem 1 Let G be a finite solvable group, A Aut(G) such that(/G|,|Al)) = 1 and
|G : Cs(A) = m. If [G,A] is solvable, then (IG, A]) < I(m) where (m) is the number of

primes dividing m, counted with multiplicities.

Proof. We shall proceed by induction ¢@|.

If [G, A] is properly contained i, it follows by induction that
f([G. A A < I(|[G. Al : Ciea(A)]) = 1([G. AICa(A) : Ce(A) <I(m)  (3.1)
asG = [G, A]Cs(A) by Theorem 2.0.8 (a) in Chapter 2.
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In addition, we have@, A, A] = [G, A] since (G|, |A]) = 1 by Theorem 2.0.8 (b). This leads
to the contradictiorf ([G, A]) < I(m) and hencg¢G, A] = G.

If Gis nilpotent thenf (G) = 1 < I(m). Thus, we may assume tha(G) < G.
We observe next thF(G), A] # 1:

Assume otherwise. Their(G),G, A] = 1 = [A, F(G), G]. It follows by the Three Subgroup
Lemma (See Theorem 2.0.9) tH&, A, F(G)] = [G, F(G)] = 1. SinceCg(F(G)) € F(G) by
Theorem 2.0.11, we g& = F(G), which is not the case. Hené&G) « Cg(A) as claimed.

Now, Ce(A)F(G) # Cg(A) and hencé(/G : Cc(A)F(G)l) < I(m). By induction applied to
G/F(G), we see thatf(G) — 1 = f(G/F(G)) < I(IG/F(G) : Cg/r@)(A)). We also have
I(IG/F(G) : Co/re)(A)) < I(IG/F(G) : Ca(AF(G)/F(G)) = I(G: F(G)Ce(A)) = I(m).
Consequentlyf (G) — 1 < I(m) — 1 and hencd (G) < I(m), completing the proof. |

Remark 3.1.1 The bound given by Theorem 1 is best possible because of the following ex
ample:

Let G be the group

(abcd|a®=b"=c*=d =[ac =[ad] =[bc=[bd =1a'ba=b’c'dc=d”)

and leta be the automorphism of G given b{a) = cd®, a(b) = d?, a(c) = ab, a(d) = b*.

Then|G| = 441and|a| = 2 and hence the conditiofiG|, |a|) = 1is satisfied.

We observe by means of GAP that

Co(@) = {1, cd*, ¢2d, c3d®, ¢*d?, c>d®, c®d®, abd abcdP, abZd?, abSd®, abd*d®, ab, abPd?,
aZb?d3, a?b?c, a2b?c2d?, a2bh?c3d, a?b?c*d®, a?b?c®d?, a2b?c8db) = <cd4, abd>.

Thus,|G : Cs(a)| = 21 and hencef(m) = 2. We also observe by GAP thgs, o] = G,

F(G, a]) = (a,c) and R(G) = G. Therefore, (G) = 2 = £(m).

As mentioned in the Introduction part, inspired by a result [10] due to Qossd Wang,
we handled the case whefeis cyclic and|G : Cg(A)| is squarefree. Under the coprimeness

condition we obtained the following:
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Theorem 2 Let G be a finite group and an automorphism of G such th@®|, |«|) = 1.

If |G : Cg(a)|is squarefree. ThefG, a] is solvable.

Proof. We proceed by induction on the ordertéfwhereH stands for the semidirect product

of G by (@), and deduce a contradiction over a series of steps.
1. We may assume thatis of prime order.

Let || = mandp be a prime divisor ofn. Now, |oX| = p wherek = 7. SincelG : Ce(a¥)| is

squarefree a€g(e) C Cs(aX), we see by induction tha€] o] is solvable.

Now, [G,a¥] < G andG = G/[G,aX] is e-invariant. |G : Cg(a)| divides|G : Cg(e) and
hence dividesG : Cg(e)|. It follows by induction that G, a] = [G,a] = [G,a]/[G, ] is

solvable. Therefored, «] is solvable.
2. ais not contained in a proper normal subgroup of HG(«).

Let N be a proper normal subgroup dfcontaininge. ThenN = (N N G){a).

It is obvious thaiN; = N N G is e-invariant. SincéN; : Cy, («)| divides|G : Cg(a)|, we have
[N1, @] =[N, «] is solvable by induction applied td1{a). This yields that
(@) = [N, ](a) is solvable and henee e S(N) < S(H).

It follows that (") = (a®) = [G, a](e@) < S(H). Then [G, ] is solvable, a contradiction.
3. For any nontrivial proper normal subgroup N of #, = H/N is solvable.

By Step 2@ # 1. Now,H = G(a) and|G : Cz(a)| divides|G : Cg(a)l. Hence, by induction
applied to H, we have G,a] = [H,a] is solvable. It follows that

@"y = [H,a](@) is solvable and hende € S(H).

It is obvious thatS(H) = X/N for someX containinge. In addition,X < H. By Step 2, this

is the case only wheK = H.
ThusS(H) = H, that is,H is solvable.
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4. S(H)=1

If not, then both S(H) and H/S(H) are solvable, leading to the contradiction thhtis

solvable.
5. G is the unique minimal normal subgroup of H and HG.

Let N be a minimal normal subgroup &f. If N £ G, thenN NG = 1 andH = GN as
[H : G| = |af is prime. It follows thaiN| is prime and henc8l < S(H) = 1, which is not the

case. Thud < G. SetK = N{a). We shall observe thad = K:

Assume otherwise. Then by inductior, ] is solvable and henc&"N) = [N, a](a) is

solvable. Sar € (V) = (oK) < S(K).

Now, [a,N] < S(K)n'N < S(N) < S(H) = 1, implying thate € C(N) < H. By Step 2,
we get the equalit€(N) = H. ThusN < Z(H) < S(H) = 1. This contradiction shows that
H = N(a) = K. As a consequenc& = N is the unique minimal normal subgroupldfand

H =G.
6. G is simple.

Now, G is characteristically simple, and so it is a direct product of isomorphic capgies
simple group. More preciselg = E; x - - - X Ex where eaclk; is a simple group isomorphic

to E1, andE; is not abelian because otherwidenvould be & p, g}-group and hence solvable.

We consider the action af on the set of subgroups &f. Let{ E;, Ef..... E‘lZk } be the orbit
of this action containing;. ThenC = Ey x Ef x... X E‘fk is ana-invariant normal subgroup
of G. That is,C is normal inH. Now, H/C is solvable by Step 3. It follows th&/C is

solvable. This is the case only whén= G = E3 X E{ x... X E‘l’k.

Now, k = 1 ork = p. If the former holds, the@g(a) = { x| xePt | x € E1 } and hence
ICs(a)| = |E1] implying that|G : Cg(a)| = |E1|P~t is squarefree. This is a contradiction since
the simplicity of E; implies that|E;| is divisible by 4 by Theorem 2.0.15. Therefokes= 1,

that is,G is a nonabelian simple group, as claimed.
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7. Final Contradiction

From AppendixA we observe tha6 is not a Sporadic simple group. By Theorem 2.0.13,
we observe also th& is not an Alternating group. Thu&§ is a simple group of Lie type.

Then by Theorem B.0.14y is of the formid fg. Any inner automorphism and any diagonal
automorphism has order dividing order®f Since order of graph automorphisms of simple

groups of Lie type is either 2 or 3, we observe thas a field automorphism.
By Theorem B.0.15, if| = r?S for some integes andG = L(q), thenCg(a) = L(rS).
If G = An(r?S) for m> 2 thenCg(a) = An(rs) or Co(a) =2 An(r®). It follows that

2s m(m+1) sm{m+1
IG : Ce(a), = ((f )> n;il = T
rS

s 2
If G = Bm(r2S) for m > 2 thenCg(a) = Bm(r). It follows that|G : Cg()|, = (’S)) = s

2s5ym?
If G = Cm(g25) for m > 3 thenCg(@) = Cm(r). It follows that|G : Cg(a)|, = ('5)) o = st

If G = Dm(g?°) for m > 4 thenCg(a) = Dim(rS) or Cg(a) =2 Dm(rS) or Co(a) =2 Da(r9). It

follows that|G : Cg(e)|, = % = rSM™-1) or |G : Cg(a)|, = ((rri;)llzj _ rlzs

If G = Eg(0°) thenCg(a) = Eg(rS) or Co(a) = Eg(rS). It follows that|G : Cg(a)|, =

()% _ 365
% r

If G = E7(¢®) thenCg(a) = E(rd). It follows that|G : Cg(a)|, = ks = r63s

(rs)63
If G = Eg(q®) thenCg() = Eg(r®). It follows that|G : Cg(a)|, = (r:s?ll;;) =126

If G = F4(0%) thenCg(a) = Fa(rS) or Cg(a) =2 F4(rs). It follows that|G : Cg(a)|, =

2s 2s\24
((rrS))24 =r¥®or IG : Co(a)l; = ((rrS))12 =36

If G = G,(0®) thenCg(a) = Gz(rs) or Cg(a) =2 Gy(rd). It follows that|G : Cg(a)|, =
L =1%0r(G : Co(@)); = &k =

9% — (93

)
If G =2 An(r?S) for m > 2 thenCg(a) =2 Am(r®). It follows that|G : Cg(a)l, = 22— =
9"
sm(m+1)
r—z

rZS) m(m-1)

If G =2 Din(0%S) for m > 4 thenCg(e) =2 Din(r9). It follows that|G : Cg(a)|, = W =

rsr’r(m—l)
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If G =2 Eg(6?) thenCg(a) =2 Eq(r9). It follows that|G : Cg(a), = ke = r36s

(rs)36

If G =3 Da(6?) thenCg(a) =3 Da(rd). It follows that|G : Ca(a)l, = s = ri%s,

(rs)lz

In all casesy? divides|G : Cg(e)|. This contradiction completes the proof. |

Remark 3.1.2 One may ask if it is possible to replace the assumption [(Bat Cg(a)| is
squarefree by the assumption th@t: Cs()| is not divisible by4. The following example

shows that this is not possible:

Let G= PS L(3,F3) and leto be the field automorphism of ordBr Since
|G| = 2#.315.114.13.61.4561, we have(G|,|o]) = 1. We also know €(c) = PS I(3,F3), and
hencdCg(o)| = 2*.3%.13. Then|G : Cg(o)| = 3'2.11*.61.4561is odd.

3.2 Results in the Noncoprime Case

In this section we shall study without the coprimeness condition. The folloekample

shows that it is not possible to obtain the conclusion of Theorem 2 if the @stirmmcoprime.

Example 3.2.1Let G = As with @ = 71 2) € Aut(G) \ Inn(G). Then|G : Cg(a)| = 10 but
[As, (1 2)] = As is simple.

Considering the question that how the information ali@tA) influence the structure @,

it has been observed by Ercan andl@glu in [11], [12], [13], [14] that the properties of
elements irGA\ G may also influence the structure®f They imposed some conditions on
these elements in order to overcome some of tifeedities arising from a noncoprime action.

This brought us to the following:

Question 2. Let G be a finite group and € Au(G). Is G solvable if|G : Cg(X)| is squarefree

for each xe H \ G where H denotes the semidirect product of G d)y?

We should note that we first attempted to use this hypothesis only ®oHH \ G of order
equal toja|. But the same counter-example mentioned above served as a coumgiexa
this case as well. Consequently, we showed that the answer to Question &figmative.

Namely, we proved the following:
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Theorem 3 Let G be a finite group and € Aut(G). Assume thats : Cs(X)| is squarefree

for each xe H \ G where H= G{(«). Then G is solvable.

3.2.1 Some Technical Lemmas

Before giving a proof of Theorem 3, we shall first observe that itdssble to eliminate
PS L(n, Fy) under the weaker hypothesis th@t: Cg(x)| is not divisible by 4 for each
xe H\G.

This observation will be presented in a series of technical lemmas.

Remark 3.2.2 Throughout this section, K denotes @.F,) for a prime power g and an
integer n> 2 so that n# 2when g= 2 or g = 3. In addition, G denotes P, ) = K/Z(K)
and L denotes G(n, IFy).

Remark 3.2.3 Since 4K) is characteristic in K, every automorphism of K induce an auto-
morphism of G. Conversely, every automorphism of G determines a.alasitomorphisms

of K. More precisely, we first define the relatieron A= Aut(K) as follows:
Fora,B8 e A,a ~ B ifand only if a(g)B(g™t) € Z(K) forall g € K.

This allows us to regard as an automorphism of K rather than an automorphism of G.

Lemma 3.2.4 Leta be a diagonal automorphism of G. Then there is an elemerBia) \ G

so that4 divides|G : Cg(X)|.

Proof. LetV = Fq. We regardv as a vector space ovEy. Let x be an element df of order
g"-1. Thenﬁ?an = (X) andx can be thought as an elementofo thatx(v) = x.vonV. Thenx
has a matrix representatiénin L andA is similar to the diagonal matridiag(x, x4, .. ., xq”'l)
overFq. It follows that the determinant ofis its norm, that is,

det(x) = Normgg, 5, (x) = ... x4 = X5t . since detg) € Fy, with |det)| = g - 1, we
haveFx, = (det(x)).

We observe first thaf (x) = (X): Lety € L such thatyx = xy. Then for 1= 1y, we have
¥(¥) = y(x1) = y(X(1)) = (y¥)(1) = (xy)(1) = x¥(2). (3.2)
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We observe next by induction thatx™) = x™y(1) for any positive integem.

Assume thaty(x¥) = x*y(1) for a fixed but arbitrary positive integkr Now,

Xy (1) = XY (1) = xp(X) = ()(X) = K = y(x(X) = y(XY).  (3.3)

Thus, by inductiony(x™) = x™y(1) for any positive integem.

For eachv € V \ {0}, v = x™ for some integem and hencey(v) = y(x™) = x™y(1). Since
0 # y(1) € V we havey(1) = x® for some integes. Theny(v) = y(x™) = X™S3, that isy € (x)

and hencé&| (X) = (x). To simplify the notation we séft = (x).

Let nowGal(Fqn/Fqg) = (o). Theno has orden and it can be viewed as an elementofVe

now observe that

(X ™H)V) = o(X(@THV) = o(xo V) = o(X).o(HV) = o().v = (e()(V)  (3.4)
foranyv e V.
This gives thatrxo~! = o°(x) € T and hencer € N (T).

If 8 € NL(T) thengxst € T. The maps : y — By 1 is a field automorphism df s fixing
every element of g as(det(x)) = F. So6 € (o) such thap=16 € CL(T) = T. Thus we obtain
NL(T) = (o, T).

We shall claim thaCyz)(T) = C(T)/Z(L) :

To verify this claim, pick an elemerntfrom L such thatxy = zyxfor somez € Z(L). Then
y Ixye T asze T. This implies thay € N.(T) = (o, T). If y ¢ T theny = xXo—2 for some
integerk and for soma € {1,2,...,n - 1}. It follows that

a

yIxy = o *xxo @ = 0% = o ¥(X) = X (3.5)

Thusx® = zxwhich implies that®@ -1 = z a contradiction. Consequently,e T = C_(T)

establishing the claim.

I o_ g1

-1 ¢g-1°

Therefore|Cpzw)(X)| =

We first handle the case> 2. Note that
(q”—l)(q”—q)i.(q“—q”‘l)
. . q-
|G . CG(X)| = |PG L(n, Fq) . CPGL(n,]Fq)(X)| = i
q_

-1

>

n

-qd). (3.6

(g

[y
W.
[N
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Then @ - 9)(q" — ¢?) divides|G : Cg(X)|. So 4 dividesG : Cg(X)|, as desired.

We suppose next that= 2. Then we have

L
ICLzy(X) = g-1_ gq-1 9% 1 (3.7)
and
(qz—l)(gz—q)
G Co(¥) = [POLR.F) : Cratezg (9| = — 'y — =& - a (38)

Assume thathar Fq = 2:

SincePS (2, 2) is not simple we havg > 2 in this case and hence 4 dividgdt follows that

4 divides|G : Cs(x)|, as desired.

Thuschar Fq # 2 andq = ¥1(mod4). We can also notice that{4] — 1, because otherwise 4

divides|G : Cg(X)|. Now, we may assume that 4 dividgs- 1.

a o0
We consider next that the group = {

a o0
|ab¢0;a,beIFq}. Let A= e H
01

c O
whereais a primitiveq— 15t root of unity and choosé = € H suchthat degA) = 1.
0 c

ac O
Then BA=
0 c

and 1= detBA) = ac® and hence

a = (c"1)? which contradicts the primitivity of asq is odd. So the coset & in L containing

Ais not an element db.

ax

Xy Xxa vy
Let nowC = € LsuchthaCA=
z t za t

a
ﬂ = AC. Theny = ayandz = az
z t

givey = 0 = z This shows tha€ (A) = H.
We are now ready to observe ti@t,z(A) = H/Z(L):

Xy xa y| |dax Jay
LetE = € L anda € Fq such thaEA =

z t za t

= 1AE. This leads to
Az At

the following equations:
ax = dax (which meansc = Ax asa # 0) andy = layandaz= Azandt = at.
If x=0,theny # 0 # z Thenla =1 andA = a. Now, a? = 1 which givesg—1 =2, that is,
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g = 3. ButPS (2, IF3) is not simple. Therefore, we haxet 0 and henca = 1.

It follows that,Cyzq)(A) = H/Z(L). Then|Cyzw)(A)l = @17 _ g- 1, implying that

q-1
+1 -1
6: Cal¥l = |POLR Fo) : Craiony®] = o0 ~q@+ 1. (39)
Since 4 dividesy + 1, 4 dividesG : Cg(x)|, as desired. [ ]

Lemma 3.2.5 Let charFq = 2 and leto be a field automorphism of G. Then there is an

element x G(o) \ G so that 4 divides|G : Cg(X)|.

Proof. Let o be a field automorphism d{ of orderr for some prime numbar. LetFq, be
the fixed field ofo onFq and selg = GL(n,Fg,). PutCyx,zk)(c) = C/Z(K). Then forx € C,
x7Z(K) = (xZ(K))? = xZ(K) implying thatx” = o(x) = Ax for somed € Z(K). It follows
that

X=x" = (7 = ()" = ... = D) . .. () Ax. (3.10)

So,
Normg, —r, (1) = " ()" ?()...o(D)a = 1. (3.11)

By Hilbert’s Theorem 90 [20], there exisig € Fgq such thatl = "T(”) Then

(X = o(u Hax = T X=X (3.12)
and henceu*x € Lo.
This implies thatuu=1x = x € Z(L)Lo. Therefore, we hav€ c K N LoZ(L).

Letnow, A€ KN LpZ(L). ThenA=2ZY forsomeZ e Z(L) and Y € Lo where
1= detA = detZdetY. So dety = (detZ)™* = y™" for somey € F;.

Now,Y € Cg = { X € Lo | detXis an n-th power ¥y }. Thus, there existsy € Cgo so that

_ 1
A= ety Y.
Define ¢ : Co — C/Z(K) by X — WXZ(K). By the above argumenty is surjective.
Furthermore, for anyX, Y € Co,
(XV) = XYZK) = XYZK) = ¢(e(Y).  (3.19)
ARUZ ety ~ (detxX dety)/n ERAANE '
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that is,¢ is a homomorphism. We also observe that

Keryp

{waWXeZ(K)}
{XeCy|XeZ(L)}
ConZ(L)

Co N Z(Lo)

(3.14)

So, C/Z(K) = Cy/(Con Z(Lg) = CoZ(Lo)/Z(Lo) and as

CoZ(Lo)/Z(Lo) < PGL(n,Fy,), we see thalCg(0)| = |C/Z(K)| divides|PGL(n, Fg,)I.

Then|PGL(n, Fg,)l = mCg(o)| for some positive integem, giving

G Gl _ €]
ool = Mmce@) = Mpsinry- Hence, IPGL(n]F ~y divides |G : Cg(0)l.
N
- IPSUNF)l _  q-bi2 qd-1  t-nnn-12
Notice that POUNFe) (- 1)/2 g1 =0 nq- 1)1_lq0 1

n o4
Since charFg = 2, —(”’q‘l)ljz[—qg s odd.

Hence we have #—lstL((r? %Fs))'l & 4f g Hn-brz
E 0]

oqp=2 and&;"‘” =1
s@p=2and(-1nin-1)=2
eSp=2,r=2andn=2
It follows thatG = PS (2, F4) = As. Then there exists = (1 5)(2 4 3)e G (o) \ G such that

Ce(X) =1{(1),(234)(243)}|G: Cs(x)| = 20 is divisible by 4, as desired. |

Lemma 3.2.6 Let q be odd and let be a field automorphism of G. Then there is an element

X € G{o) \ G so that4 divides |G : Cg(X)|.

71 X1 0
1 X
Proof. Pick an elementA = from K.
O 1 X1
1
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Let o be a field automorphism d{ of orderr induced by a field automorphism &, with
fixed fieldIFq,. We shall consider the elementA € K (o) \ K and show by induction that
(cAM = oM™ (A) ... o(A)Afor anyk > 1. Now,

(0A)? = cATA = coo ATA = o (AA. (3.15)

Assume that €A = oKok1(A)...o(A)A for a fixed but arbitrary integde > 2.
Then AL = cA(TA)X

= oAk (A ... (AA

ook KA (A) .. o (A)A

LKA TL(A) ... o (AA.

Thus, ¢A™ = "™ Y(A)...c(A)A for any m > 1, as desired. In particular, we have

(A =d'dHA)...c(AA=c""LA)...c(AA. More precisely,

1 trpgk, (%) *

1 trrg—Fg, (X2)

(A" =

0 1 trpg-Fg, (Xn-1)
1

Since the trace function is surjective, we can fiRd Xo, ..., X,-1 SO that

25;3 oI(%) = tre,op, (%) = 1 fori =1,2,...,n— 1. This yields that

11 * 11 0
11 11
(A" = . Notice that J = is the
11 11
0 o)
1] 1
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Jordan form of ¢A)".

a1 ... n
We shall observe next thatg(J) = Ck(J)/Z(K). To see this, piclC = | ek
anl ... @nmn
such thatCJ = 1JC for some 1# A € Fg. Then we obtain
a1 apptaz a2+ ai3 ... Aun-1) + an
dp1 axtagy aAxp+az3 ... An-1)t+an
Cl=|ag; as1+ag asp+ass ... az3(n-1) + Asn
301 @ni+ a2 a2+ an3 ... ann-1) + nn|
» Aagy + danq Aago + dano Adaz + Adaos ... Aan + Adagn ]
Aan1 + daz; Aao + dagy Aaos + dazs . Aaon + Adagn
Aagy + daag Aago + dagr Aagz + dass . Aazn + Adaun
Aqn-1)1+Aan  Aqnp-1)2+4Aa2  Aqnp-1)3t+Aa3 ...  A@n-1)n t 4@nn
= AJC.

It follows thatan; = Adan andan-1) + ani = dani fori =2,...,n.

an = dap; givesan; = 0 as 1# A. Thenay, = da,, and hence,, = 0. We may see by an

inductive argument thab, = 0 fori=3,...,n:
Assume ani-1) = 0, then ayi-1) + an = Aa, becomesan = dan and henceay, = 0.

Consequently, if = A thena,; = 0 fori = 1,...,n which is a contradiction as in this case

detC) = 0.
Therefore, we geCg(J) = Ck(J)/Z(K).

a1 ... Ain
LetnowD =| : . | € Ck(J). Then we obtain

81 ... ann
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A anntalz a2t+a13 ... Qn-1) + n
A1 axtagy adxpptag ... aAn-1)tan
Dl=lag; asi+azg asp+ass ... az(n-1) + azn
18n1 @n1t+ a2 a2+ an3 ... ann-1) t+ ann]
a1 +a 12 + a2 a3+ a3 ces Ain + an
dz1 + agzy a2 + ag2 a3 + az3 cee dzn + azn
B ag1 + aa1 azz + as2 az3 + au3 azn + dan _ 1D
An-1)1t+an1  ap-12+tan2  dn-13+a3 ...  An-1)nt ann
an1 an2 an3 e ann

In the first row, we have

a;1 = all+ app andagg-1) + agy = agj + a fori = 2,...,n. Then we get
apyr=0andagj_y =ag fori=2,...,n.

In the second row, we have

0 = agy, ax2 = @ + agz andap_1) + ay = @y + ag fori = 3,...,n. Then we get
ag1=0,az32=0anday;_yy =ag fori =2,...,n.

In the third row, we have

0= ay1, 0= ayp, agz = agz + agz andag(_1) + ag = agi + ayj fori = 4,...,n. Then we get
a1 =0,a42 = 0,43 = 0 andag-1) = a4 fori = 4,...,n.

Continuing these calculations we can describe the mBtrixore explicitly as follows:

a1 @ ... a1 an |
o . an-1
D=
a
0 0 a
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Consequently)|Ck ((cA)")| = ICk(J)] = (n,g - 1)g™* and hence

n
qn(n_l)/zn(qi - 1) n
= = (=22 [(d - 1) is divisible by 4. This com-
i=2

pletes the proof of Lemma 3.2.6. [ |

IG : Ce((eA))l =

Lemma 3.2.7 Leto be the graph automorphism of G. Then there is an elemer®io) \ G
so that4 divides|G : Cg(X)|.

0 1 ' 1 1
0 0
-1 1 -1 0
Proof. Let A = e K. ThenAt =
0 In—2_ 0 In-2
-1 0 0 |
-2 -1
andB = AAt =
0 In—2,

We shall observe th&lg(B) = Ck/zk)(B) = Ck(B)/Z(K):

a1 ... Adn
Let C=]| - - | € K be such thatCB = ABC forsome 1+ 1 € IF;;. Then we obtain
an1 ... @nn
—ai1 —aj2 —ai3 cee —ain
—2a11—ay; —2aj;p—axp -—-2a3—a3 ... —2a&;n—an
CB= agy az2 azs BN azn
an1 an2 an3 ann
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>—/la11 —21a;2 —Aag;p  Aayz ... /lalni
—Adagy — 2dagp; —Adayy Adapz ... Adag

=| —Adaz1 — 2/1&32 —Aazy Aazs ... Adazn
| —A@n1 —21a,  —dapz  Aaw ... A&y

= ABC.

As 2 # 1 and —a;» = —da;» we get a;p = 0 and hence-aj; = —1ag;. It follows that

a;1 = 0.

If 1# -1 then —ajj = da; gives a;; = 0 foreach = 3,...,n. Itis now straightforward to

verify that delC = 0, a contradiction. Hencé= -1.

As —2a;; — ay = day foreachi =3,...,n, we geta;; =0 foreach =3,...,n, and hence

detC = 0 again, which is a contradiction. ThiGg(B) = Ck(B)/Z(K), as claimed.

a1 ... Ain
Letnow C = : . | € Ck(B). Then we have
anl ... ann
—ai1 —aj2 —a13 —ain
—2a11 —ap; —2Zaj;p—axp —2a13-—axg —2a1n — an
CB= as1 az2 az3 aan
an1 an2 an3 ann
—a11—- 2312 —a12 A3 ... an
—ap1— 23 —axp a3 ... agn
=|-ag1—2a3 -as2 a3 ... asn|=BC
|—@n1— 2802 —an2 @3 ... ann|

This leads to the equationsay; = a;; andaj, = —aj»

and a» = 0 implying that —ay; = ay and —a1 = g

anday =0 foreach =3,...,n.
Notice also that—2a;1—ap1 = —ap1—2ap, gives a1 =
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for eachi = 3,...,n. Hencea;j = 0

1 foreachi =3,...,n. Thusg; =0

ap> and also that-2a;—ap, = —ap»



gives a;» = 0.
This argument enables us to give a more precise descriptiGR (@), namely we have

ail 0 O
a1 an
Ck(B) = a3 ... agn | la&j€lq

83 ... am |

It follows that |Ck (B)| = q(q— 1)IS L(n — 2, Fy)I

n-2

= q(q - 1)g20-372] I(q - 1)
[

n-2

— (q _ 1)q(n2_5n+8)/21—[(qi _ 1)

i=2

n-2
and hencelCg(B)| = ﬁ_ll)q(nz—Snw)/zn(qi ~1).
i=2

n
- i
wipde 2] @ - 1)
i=2
n-2

nqq:ll q(n2—5n+8)/2n(qi — 1)
i=2

Consequently|G : Cg(B)| =

= g0 - D@ - 1)

If charFq = 2, we see that 24 = 4 divides |G : Cg(B)| asn > 3. Thus, we may assume

that q is odd.

If n= 2k for some integek > 2, then |G : Cg(B)| = ququn—él(qk - 1)F + 1)@+t - 1)
which is divisible by ¢+ 1)(@ ! -1) as q-1 dividesg‘ — 1. Since bothg¢ +1 and

g1 -1 are even|G : Cg(B)| is divisible by 4.

If n= 2k + 1 for some integek > 1, then |G : Cg(B)| = qfllqzn“‘(q” -1+ 1)< -1) is
divisible by @<+ 1)(q"-1) as q- 1 dividesg<— 1. Since bothg“+1 and q"—1 are even,
|G : Cs(B)| is divisible by 4. This completes the proof. [ |
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Lemma 3.2.8 Let g be odd. It is a diagonal automorphism of G anxlis the graph auto-

morphism of G, then there is an element &{ao) \ G so that 4 divides|G : Cs(X)|.

Proof. We observe that is even as the order of a diagonal automorphisi®in(G) divides

0 0 1
011 0
gcdn,g-1). Let A=|1 0 1 . As detA = -1, there is an inner automorphism
0 In—3,

79 Of K such thatrga = 7a. Leto be the graph automorphism Gfand seB = AcAo. That

1 0 0 1 -1 1
1 1 0 0 0 1 0 0
is, B= AAt whereB=|0 -1 1 asAt=|1 0 0
O In_3_ | O In_3_

We will observe next thats(B) = Ck(B)/Z(K):

a1 ... un
To see this, pickC = | : : | fromK such thatBC = ACB for some 1# 1 € F,
an1 ... @nn
Now, we have
ai a2 a3 a4 e ain
dir+a Q2+ adx a&3tadxz astags ... aintan
BC = —adp1+agy —adp2+agz2 —aA3+azz —aAxtazs ... —axtasn
a4l as2 a43 aaq cee aan
an1 an2 an3 an4 ann
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7/18.11 + dajp Adajp—Adayz Adayz Aagy /laln—
Aap + dapy  Adagy — dapy Adagy Aagg Aaon
Adagy + dagy Adagzgp — dagzz Adagzz Aazs Aag
- "| = CB.
Adayr + dayy Aayp — Aayz Adauz  Aass Aagn
|1an1 + 4@z A@n2 — A8n3  Aan3 A3 Aann]

Then ay = Aay and hencean = 0 for eachi = 3,...,n. This forces thata,, = Aap
implying an, = 0. Thus an; = a1 and soa,; = 0. Consequently, we obtai€g(B) =
Ck(B)/Z(K), as desired.

ail ain
Let now C = € K be such thatBC = CB.
an1 ann
an a2 a3 g ain
a1 +an Ai2t+azy Aztaz astax Ain + a2n
—dp1+ag1 —adxpt+azg2 —ax3+azz —adxy+az —apn + agzn
ThenBC =
as1 as? as3 auq Aun
an1 an2 an3 ang ann
app+a12 12— 13 A3 Ay ain
dp1+a2 dpp— a3 aAzz Ay aon
az1+3adgz2 aAz2—agz Az azg Aan
= = C B
ay1+a42 42— 43 43 Ay un
[Gn1+ a2 3n2 —an3 an3 A ann|

Notice thata;1 = a;1 + a2 giving ai» = 0. It follows that a;3 = 0. We also have
a1 + a1 = a1 + a2 and henceag; = aps.

The equationass + ago = ag2 — ax3 implies a;» = —ap3 and henceags = 0.
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Moreover, we have the equatiorsg; + ayj = ay fori =3,...,n. It follows that a;; = 0 for

i=3,...,n

We also have—ay1 + ag1 = ag1 + agz which forces —ay1 = ago.

The equation—ay, + azp = azp — agz holds and soay, = aga.

Moreover we have-ay + ag = ag for i=...,n giving az =0 fori=3,...,n.

Finally, we haveaj; = a1 + a2 and aj = a» — a3 fori =4,...,n implying a, =0 and

a3 =0for i =4,...,n, respectively.

The above observation provides a more precise descriptiGr @); namely

lay, 0 0 0 ... O]
a1 ap 0 0 ... O
a —a a a L..oa
ck(B)={ | A NeKlajeFqy . (3.16)
asg O 0O aua ... aun
EN 0 auw ... ann

n-3
Then [Ck(B)l = o™ L.q"3.(q - 1)IS Ln - 3, Fg)| = (4 - ). 432[ [(d - 1)
i=2

and hence
n
qevz] (o - 1)
G:Cs(B)l = IK:Ck(B) = =2
(q_l)an—4q(n—3)(n—4)/21_[(q' _ ]_) (3.17)
i=2
_ qn—z(q”—l)(q”‘l—l)(q”‘z—l)
q-1
which is divisible by 4. This completes the proof. [ |

Lemma 3.2.9 Let chalFg) = 2. If a is a diagonal automorphism of G anrdis the graph

automorphism of G, then there is an elemert@({ao) \ G so thatd divides|G : Cg(X)|.

Proof. We observe that is odd as the order of a diagonal automorphis®ui(G) divides
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gcdn,g—1). Let A=

0

0 0 1
0 c 1
10 1

| n-3]

where ¢ € g \ {0, 1}.

As detA = ¢, there is an elemeny € K which induces the inner automorphismy of K

such thatrga = 7a. Leto be the graph automorphism Gfand seB = AcAo. That s,

1 0 0 1 ¢t 1
1 1 0 0 0 ¢l 0 0
B=AA'whereB=|[0 ¢! 1 asAt'=|1 0 0
0 I n-3| 0 | n-3
ail
We will observe next thaCg(B) = Ck(B)/Z(K). To see this, pickC =
an1
K such thatBC = ACB for some 1# 1 € IF;. Now, we have
a1 a2 ais g ain
a1+ az aip + az2 a3+ az3 14+ a4 Ain + aon
BC clayy+ag clapy+ag, claps+ass clags+as clay, + asn
a1 a2 as3 g Qun
an1 an2 an3 anq ann
7/18.11 + dajp Adajpp + C_l/la13 Ada13 Aayg /lalnﬁ
Adap1 + daps  Aago + C_1/18.23 Adosz Aagg Aaon
Aagy + dagy Aagy + C llags Adags Aa Aa
_ |18 32 32 33 33 34 | _ cB
Aas + daay Adap+ ClAauz Adus Aaus Aaun
| A8n1 + A8 A8np +C ' ap3 A8z Aana RERY
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Then ay = Aani and hencea,i = 0 for eachi = 3,...,n. This forces thata, = Aap
implying a2 = 0. Thus a1 = da,; and soap; = 0.

Consequently, we obtaig(B) = Ck(B)/Z(K), as desired.

a1 ... ain
Letnow C =| - - | € K be such thatBC = CB.
anl ... @nn
a1l aio a3 a4 v Ain
app +apy a2 + a2 13+ a3 aiu+ag ... ain + aon
clag+ag clap+asp Clagtasgs clapat+ass ... clag+aan
Then BC =
a1 aq2 a3 auq un
an1 an2 an3 ana ann
a1 +a12 aip+ 0_16113 a3z 14 ... Qun
g1 +ax axp+ C_lazs a3 A4 ... agn
_|a1tae aztcas ass as . am|_ o
au1+tasy A+ Claus auz s ... aun
@ +a @p+C'as s Aw ... a@m

Notice thataj; = ag1 + a12 giving az» = 0. It follows that a;3 = 0. We also have
dj1 +dp1 = aApq + A2 and henceall = dpo.
The equationays + ag = ay + ¢ a3 implies a;» = ¢ tays and henceays = 0.

Moreover, we have the equatiorsg; + ayj = ay fori =3,...,n. It follows that a;; = 0 for

i=3,...,n
We also haveclay; + az; = ag1 + agx which forcesclay; = aso.
The equationctay, + az» = ag» + ¢ *agz holds and soay, = azs.

Moreover we haveclay + ag = ag fori=...,n giving a5 =0 fori=3,...,n.
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Finally, we havea; = a1 + a2 and a» = a» + C a3 fori = 4,...,n implying a» = 0

and a3 =0 fori =4,...,n, respectively.

The above observation provides a more precise descriptiGr @), that is,

as, 0 0 0 ... 0]
A1  ann 0O O ... O
az1 clay; a;1 amm ... a
Ce(B) = 31 b1 a1l azs | oy €y
ay1 0 0 ays ... an
an O 0 au ann

Then

n-3
ICk(B)l = " 1.a"3.(q - 1).ISUN- 3 Fg) = (q— 1.7 ™92 [(d -1) (3.18)
i=2

and hence
n
q”(”‘l)’zl_[(qi -1)
G:Cs(B)l = [K:Ck(B) = =2
(q_l)an—4q(n—3)(n—4)/Zl—[(q' _ ]_) (3.19)
i=2
g2 @-1)@"*-1)@"*-1)
q-1
which is divisible by 4. This completes the proof. [ |

Lemma 3.2.10 Leta be a field automorphism of G and letbe the graph automorphism of

G. Then there is an elementexG({ac) \ G so that 4 divides|G : Cg(X)|.

Proof. Assume first thaje| is odd. As the graph automorphism commutes with every field
automorphismg is a power ofao- and the result follows by Lemma 3.2.7. Thus we may
assume thdt| is even. Ifla| # 2, then @o)? = @ and the result follows by Lemma 3.2.5 and

Lemma 3.2.6. Thuse| = 2.

0 1 ’ (11 |
0 0

-1 1 -1 0

Let A= e K. Then At =

O I n-2| | O I n-2]
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Notice that fao)? = AaoAao = AcaAao = AcAc = AAL. To simplify the notation we

o ]
0

-2 -1

set B= AA!. Then B =

0 | n-2]

Here, we have to note that from now on one can proceed as in the pgraehona 3.2.7

following the same notation and see th&t: Cg(B)| is divisible by 4. [ |

Lemma 3.2.11 Let g be odd. It is a diagonal automorphism andis a field automorphism

of G, then there is an elemenexG{oa) \ G so thatd divides|G : Cs(X)|.

>l X1 O
1 X2
Proof. Set oA = . Let o be the field automorphism &f
O 1 Xy1
-1 ]

of orderr which is induced from the automorphismIgf of orderr with fixed fieldFg,. We
observe that

(caA)? = (cah)(oaA) = coo taAoaA = o?o(aA)A. (3.20)
Assume next that
(caAK = L (aA) ... o(aA)aA (3.21)
for a fixed but arbitrary integec > 2.
Then gaA)X! = caA(caA)K
= ocaAckotL(aA) . .. o(aA)A
= ooko e ATk KL (aA) . .. o(aA)aA
= "ok (@A) HaA) ... o(eA)aA.
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It follows by induction that

(caAK = KL (aA) ... o(aA)aA

for any integek > 1. In particular,

Pick now B =

from K. Then a«AB =

aAE =

(caA) = o' aA)...oc(@A)aA = " HaA) ... oc(aAaA.

1 x1+271

1

Y1
1 v

_1 X1 +VY1

1

Xo + Zp

X2 tY2

1 Xo1+2Zn-1

35

andE =

1

Vl Z

1 V)

and

Xn-1+ Yn-1

-1

. It follows that

(3.22)

(3.23)




1 trpg—F, (%) *

1 g, (X2)

(caA)" =

O 1 tr]quFqO (—%n-1)
(-1)

Since the trace function is surjective, we can fiRg Xo, ..., Xo-1 in Fy so that

11 *
11
treg—Fy, (%) =1 foreach =1,...,n-1. Then aA) =
1 1
0
(-1) |
11 ‘
0
11
If r is even then the Jordan form af¢A)" is J = . Then using
1
0) 11
l B

the same notation and following the same steps as in Lemma 3.2.6, it is easy to shéw tha

divides |G : Cs((cA))| = |G : Co(J)!.

Next consider the case wharés odd. Then the Jordan form af¢A)" is
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11 O
11
J=
1
0 1 0
-1 |
aijp ... dAin
We shall observe next th@s(J) = Ck(J)/Z(K). To see this piclkC = | - leK
anl ... @mn
such thatCJ = 2JC forsome 1# 1 € Fg- Then we obtain
ai ai1 + a2 Ai(n-2) + A1(n-1) —ain
apgy a1 + a2 A2(n-2) T A2(n-1) —azn
Clo azy ag1 + ag2 az(n-2) + a3(n-1) —agzn
an-1)1 Qn-1)1 + dn-1)2 An-1)(n-2) + Yn-1)(n-1) —Yn-1)n
| an1 an1 + an2 An(n-2) + an(n-1) —ann |
'/lall +dap; Adajp+Adagy Aaiz+ Adags Aagn + /laZn—
Adap1 + dagy Aagpo+ dagzgy Aagz+ Aass Adon + &gy
|8zt Ay Adg+Adasz  Adgz+ Adus Adgn + Adun| G
Aan-1)1 Aan-1)2 Aan-1)3 Ad(n-1)n
—Aan1 —Aan2 —A8n3 —A8nn

Now, an = —Adam. If 4 # =1, then ay; = 0. It follows that app, = —1an2, which gives

ap; = 0. Continuing in this manner we ged,; = 0 fori = 1,...,n - 1. We also have

—ann = —Aapy Which gives a,n = 0. Thus detC) = 0, a contradiction. Thereforgd,= —1.

Then we have the equality
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ail ail + a2 e A1(n-2) + A1(n-1) —ain
apgy a1 + a2 e A2(n-2) T A2(n-1) —azn
Clo azy ag1 + ag2 e az(n-2) + ag(n-1) —agzn
An-1)1 dn-1)1t+dn-12 ... AYn-1)(-2) T Yn-1)(-1) —Yn-1)n
| an1 an1 + an2 e An(n-2) + an(n-1) —ann |
—ai1—ayx —az—ap —a3— a3 ... —dun—an
—ap1—agr —axz—azg2 —a3—ass ... —dn—am;
_ —ag1— a4 —azg2— 42 —aA3— P43 ... —d3n—aun _ e
—a(n-1)1 —d(n-1)2 —a(n-1)3 e —a(n-1)n
an1 an2 an3 e ann

In the first column, we have

a1 =—a1—ags11 fori=1,...,n—2 and an-11 = —an-1)1. Then we get
g1=0fori=1,...,n-1.

In the second column, we have

a2 = —ai2— 12 fori=1,...,n-2,an-1)2 = —an-12 and an1 + an2 = ap. Then we get

g =0 fori = 1,...,n-1 and eithera,; = 0 ora, = 0. This means that either first
or second column is a zero column and so@gté O, a contradiction. Therefore, we get

Cs(J) = Ck(JI)/Z(K).

a1 ... in
LetnowD = : . | € Ck(J). Then we obtain

81 ... @nn
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a1 anntalz a2tz ... An-2) t An-1) —an
A1 axtagy adptag ... An-2)t+an-1) —an
Dl=lag; asi+azg asp+ass ... a3(n-2) + a3(n-1) —aasn
18n1 @1t @2 a2 +an3 ... Gnn-2) +an(n-1) —ann|
A1 +a 2t ap aiztaxs ... antapn
dyp+azl appt+az; axt+tazs ... dxptasn
B azg1taq1 azxpxtag2 Atz ... Azt aun _ D
An-1)1 A(n-1)2 A(n-1)3 e An-1)n
—an1 —an2 —an3 e —ann

In the first row, we have

a;1 = all+apy, agg-1y+ay = agj +ay fori = 2,...,n—1and-ai, = ain + an. Then we get
ap1=0,a5-=ay fori=2,...,n-1 and agx, = —2ay.

In the second row, we have

0 = ag1, ag2 = ay2 + agy, Ay(i-1) + A2i = Ay + Ag; fori=3,....,n—1 and —ay, = agy + azn.

Then we get
az1=0,a32=0, aA(i-1) = agi fori=2,...,n=1 and azy = —2ay.
In the third row, we have

O = a4, 0 = aup a3 = agz + aug, agg-1) + i = agi +a4 fori = 4,....n-1 and

—ag, = agn + agn. Then we get
a1 =0,a42=0,a43=0,a35-1) = a4 fori =4,...,n and ag, = —2a.

Continuing these calculations along first 1 rows we getj; =0 for1<j<i<n-1 and

ap=0fori=1,...,n-1.
In the last row, we have
anl = —8n1, an(-1)+ ani = —an; fori =2,...,n-1. Then we get
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anj=0 fori=1,...,n-1.

_al a a2 an-1 O |
a a2 O
Consequently, we obtainddl =
a3 a 0
0 a 0
an

It is easy now to observe thd€x ((cA)")| = (q - 1)g"2 and hence

n
ez (- 1)
i=2

(-1)q"-2

n
= qfllq(”z‘sn“‘)/z l—[(qi — 1) is divisible by 4, as desired.
i—2

G : Ce((eA) )l =
_

Lemma 3.2.12 Let char(Fq) = 2. If a is a diagonal automorphism andlis a field automor-

phism of G, then there is an elemenk B(oa) \ G so that 4 divides |G : Cg(X)|.

Proof. Let q = 22" for some integea and

71 X1 O
1 X2
al = o , wherec € F, andct+2+2%+.+2Y 4 1 | eto be
Xn_2 0
0 1 0
C .

the field automorphism oK of orderr which is induced from the automorphism Bf of

orderr with fixed field[Fg,. We observe that

(cah)? = (cah)(oah) = coo taAoreA = oo (aA)aA. (3.24)
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Assume next that
(caAK = " (aA) ... o (eA)aA

for a fixed but arbitrary integec > 2.
Then gaAK! = caA(caA)X
= caAckotL(aA) ... o(aA)A
= ocoko ™ aAckoe KL (aA) . .. o (aA)aA
= ot oK (@A) HaA) ... o (eA)aA
It follows by induction that
(caAK = K L (aA) ... o (eA)aA

for any integek > 1. In particular,

(caA) = o' aA)...oc(@A) A = " HaA) ... oc(aAA.

1w *

1 v
Pick nowB = o from K. Then
Yn-2 O
0 1 0
d .
1 X1+VY1 *
1 X2 + Y2

aAB=

X-1+Yn-1 O

cd_
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1 trpg-rg, (1)

1

It follows that CaA)" =

2 -1
Wheree = cl2* #2420 4

trpg—g, (X2)

trpg—Fg, (Xn-2) O

1 0

e

Since the trace function is surjective, we can fiagxo, . . ., X,-1 iIn[Fqso thaitr]Fq_,]qu (x)=1

11 N
11
foreachi =1,...,n—1}. Then gaA)" =
10
0 10
e .
L ]
o)
11
Then the Jordan form off@A)" is J =
10
0 10
e .
a1 ... Ain
We will observe next thats(J) = Ck(J)/Z(K). To see this piclC = | : . e Kbe
a1 ... @mn
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such thatCJ = AJCfor some 1# 1 € Fa. Then we obtain

ain ail +are A1(n-2) + A1(n-1) €ain
a1 a1+ a2 A(n-2) T (n-1) €n
agy ag1 + az2 ag(n-2) + a3(n-1) €agn
Cl= '
An-1)1 dn-1)1 + An-1)2 An-1)(n-2) + {n-1)(-1) €Gn-1)n
| an1 an1 + an2 An(n-2) + an(n-1) €an |
>/la11 + Adaoy Aago + dapo Aag3 + daps Aan + /laZn—
Adap1 + dagy Aagpo+ dagy Aagz+ Aass Aaon + Adagn
|8zt daqn  Adg+Adasz  Adgz+ Adus Adgn + Adun| e
Aan-1)1 Aan-1)2 Aan-1)3 Adn-1)n
Aean Aeay A€a3 A€an

Thenap = Aeay. If 1 # €1, thena,, = 0. It follows thatay, = Aean,, which givesan, = 0.
Continuing in this manner we get; = O fori = 1,...,n— 1. We also havea,, = 1ean

which givesan, = 0. Thus detC) = 0, a contradiction. Therefora,= 2.

Then we have the equality

al ai1 + ap2 ai(n-2) + A1(n-1) e tay,

a1 g1 +ax a(n-2) + A2(n-1) e tap,
-1

ag1 az1 + a2 € "asn

Clo az(n-2) + az(n-1)

An-1)(n-2) + An-1)(n-1) e_la(n—l)n
an(n-2) + an(n-1) e tann |

an-11 4n-11+ dn-1)2
| an1 an1 + an2
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elaj + e lay
8_18.21 + 8_13.31

elag + etagy

e_la(n—l)l

an1

ela;, + elay,
elay + elas,

elag + e tag

e_la(n—l)z

an2

e lajz+elay
e layps+elag;

e lags + e tags

e tapn-1)3

an3

e lay, + e lay,
e lay, + elag,

e lag, + e tasn

e_13‘(n—1)n

Ann

= A1JC

In the first column, we have

a1 = etay +etagifori=1,...,n- 2 andap-1y1 = € tapn-1)1. Then we get
gp=0fori=1,...,n-1.

In the second column, we have

a2 = € lap + € gy fori = 1,...,n - 2,812 = €'apn-1)2 andam + ap = an. Then

we get

ao =0fori = 1,...,n-1 and eithera,; = 0 ora,, = 0. This means, either first or
second column is a zero column and so @gtE O, a contradiction. Therefore, we get

Ce(J) = Ck(I)/Z(K).

a1 ... Ain
Let nowD = € Ck(J). Then we obtain
ani ... anmn
A1 annt+agz g2+ ais Ain-2) + A1(n-1) €ain
a1 A1 t+az A+ as AQn-2) T Rn-1) €n
DJ=|ag; asi+az as+ass a3n-2) + a3(n-1) ©€3abn
18n1 @n1t+an2 an2 +an3 an(n-2) + n(n-1) €&hn
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apptay aptay azta ... Aintan
dp1+ag1 aAxp+tazgz axatazg ... axptaan
B az1+a41 At a42 A3zt d3 ... At aun _ D
an-1)1 a(n-1)2 a(n-1)3 e A(n-1)n
€1 €2 €ah3 e €ahn

In the first row, we have

ar1 = all+apy, agg- + &y = ayj +ay fori = 2,...,n—1 andeay, = ain + az,. Then we get,
ap1=0,a15-1 =ag fori =2,...,n-1anday, = (e+ 1)ay.

In the second row, we have

0 = agy, @ = ap +az, A1) +ay = & +ag fori = 3,...,n- 1 andea, = ap, + agn.

Then we get,
ag1=0,a32=0,a-1)=ag fori =2,...,n-1andag, = (¢ - 1)apn.
In the third row, we have

0 = a1, 0 = aup, gz = aga+aus, Aj-1)+as = agi+aqi fori = 4,...,n-1andea = agn+aun.

Then we get,

ay1 = 0,42 =0,a43 = 0,a3(-1) = a4 fori = 4,...,nandag, = (e 1)agn.
By means of these calculations we have from the firstl rows that
gj=0forl<j<i<n-landa,=0fori=1,...,n-1.

In the last row, we have

anl = €an1, An(i-1) + anj = € fori =2,...,n—- 1. Then we get
anj=0fori=1,...,n-1.

By means of these calculations we found that
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& a 82 @1 O]
a an2 O
D= (3.28)
a a 0
0 a O
an

It is easy now to observe thi@k ((cA)")| = (g - 1)g"2 and hence

n
o] [ -1
i=2

(g-1)g"-2

n
= qfllq(”z‘sr”“)/z l—l(qi — 1) is divisible by 4, as desired.
i—2

G : Ce((eA) )l =
|

3.2.2 Proof of Theorem 3

We are now ready to prove the last main result of this thesis.

Theorem 3 Let G be a finite group and € Aut(G). Assume thatG : Cg(X)| is squarefree

foreach xe H\ G where H= G{(a). Then G is solvable.

Proof. We proceed by induction on the ordertéfand obtain a contradiction over a series of

steps.

1. We may assume that G has no nontrivial proper normainvariant subgroup. In

particular, G = [G, a].

Let N be a nontriviale—invariant proper normal subgroup &. SetL = N{a) and let
x € L\N. Thenx e H\ G and|N : Cny(X)| = IN: NNCg(X)| = ICa(X)N : Cs(X)| divides
|G : Ca(X)|. It follows that |N : Cn(X)| is squarefree. As|L| < [H|, N is solvable by

induction.

Set G=G/N and H = G(a). Let ye H\ G. Then y = (xN)a* for some x € G and for

some integerk. It is obvious thatxeX € H\ G and |G : C(y)| divides
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|G/N : Ca(xa¥)N/N| = |G : Co(xa*)N|. Since |G : Ca(xa*)N| divides |G : Ca(xa¥)|, we
see that|G : Cx(y)| is also squarefree. Now, by inductioB, is solvable as|H| < |H|. This

forces thatG is solvable, a contradiction.

In particular, we obtain G, «] = G.
2. We may assume thit is a prime dividingG|.

Let o be of orderm for some composite integean and p be a prime divisor ofm such
that m = kp. Then |o¥| = p. Set K = G(aX) and let x € K\ G. It is obvious that
|G : Ca(X)| is squarefree ax € H\ G. By induction applied toK, we see thaiG is solvable.

This contradiction shows that is of prime orderp. Theorem 2 implies thap divides |G|.
3. Gissimple.

Gis characteristically simple by Step 1. That@,= E; x...xEswhere eaclk;,i = 1,...,5,
is a nonabelian simple group isomorphiddg Let{ E;, Ef..... E‘fk } be the orbit containing
E1 under the action of on the subgroups @&. ThenC = E; xE{X...x E‘fk is ana—invariant
normal subgroup o6 and hencé&s = C by Step 1. Now, ifs > 1 then|Cg(a)| = |E1] and
we havelG : Cg(a)| = |E1|5 is squarefree. This is impossible as 4 divifieg by Theorem

2.0.15. Therefores = 1, that is,G is a nonabelian simple group.
4. « is not an inner automorphism.

Assume the contrary. Thea is an inner automorphismg : G — G given by x - g 1xg

for some g € G. Now, X = 75'xrg = g~*xg. Forall x € G,
X0 = 75lgxg g = g lgxg g = x. (3.29)
This yields thatCg(g™rg) = G. Thus, H = G(rg) = G x (g 11g).

Let a€ G. Thenagtrg € H\ G. For be G, b? = b if and only if
b29'7e = (b?)9 7o = b3 7e = b if and only if b € Cg(ag lry). Then Cg(a) = Ce(ag try)
and hencelG : Cg(a)| = |G : CG(ag’lrg)| is squarefree. Then 4 divides no conjugacy class

length in G and we get a contradiction by Theorem 2.0.4.

47



5. G is not an alternating group:

Assume first thaG = A, wheren > 5, andn # 6. It is well known thatAutA, = S, for
n # 6 and every automorphism &, is the restriction of an inner automorphism of Sy
to A, for somep € S,,. Sincea is a non-inner automorphism of prime order, it must be an
automorphism of order 2 which is the restrictionmgfto A, for some involutiorp € Sy \ A,

(see Theorem 2.0.13).

SetH = An<rp> andK = S, <T,,>. Now, ast, is an inner automorphism &, we have
K=Spx (p‘lrp>. For anyx € K \ Sy, X = go~ 11, for someg € S,,. A similar argument as in

Step 4 shows thaCa,(x) = Ca,(go11,) = Ca,(9).

Next let y € H \ A,. Theny = hr, for someh € A,. Alsoy € K \ S, implies thaty = gp_l‘rp
for someg € S,. Henceg = hp € S, \ A,. Then

At Cay)| = |An 2 Can(h7p)| = [Sn : Cs, (@0 7,)| = |Sn : Cs,(9)] - (3.30)

If nis odd, then we may chooge= (1 2) and leth be an i — 2)-cycle fixing 1 and 2. Then
g = hpis a{2,n - 2}-cycle andCs, (g)| = 2(n - 2). It follows that
|An 1 Cal(@)] = [Sn : Cs, ()] = z(nn—iz) is divisible by 4, which is not the case.

If nis even, then we may choope= (1 2) and leth be an  — 3)-cycle fixing 1 and 2. Then
g = hois a{2,n - 2}-cycle andCs, (g)| = 2(n - 3). It follows that
|An 1 Ca,(@)] = [Sn 2 Cs,(0)] = 20 is divisible by 4, which is impossible.

Finally we letG = Ag. Then any non-inner automorphismof G of prime order is of order
2 and it is either an inner automorphism®§ or an outer automorphism sending&/cles
to {3, 3}—cycles and(3, 3}-cycles to 3-cycles (see Theorem2.0.13). Any-édement ofG
is either a 3-cycle or a{3, 3}—cycle. In the latter case, if 3 dividéSs ()|, then there will
be a 3-cyle or 43, 3}-cyle which is fixed bya which contradicts the definition @f. Thus,
|G : Cg(a)| is divisible by 9, which is not the case. In the former fpe hp wherep = (1 2)
andh = (3 4 5), Cg(gor,) = Co(g) has order B = 6. Hence|A, : Ca,(go7,)| =

|Sn : Cs,(go717,)| = & = 120 is divisible by 4, establishing the claim.

6. G is not a sporadic group. In fact, G is either solvable or a simple groupi®ftype

48



which is not isomorphic to PSh, Fg) where q is a prime power and:n 2 with excep-

tionsn=2,g=2andn=2,q=3.

By Theorem A.0.13, every Sporadic group having a honinner autorisongiias a conjugacy
class of noninner automorphisms whose length is divisible by 4. Taus,not a Sporadic

simple group.

Technical lemmas proved in the previous section show@at PSL(n,Fy) whereq is a

prime power anch > 2 with exceptionsr=2,q=2andn=2,q=3.

Therefore,G is either solvable or a simple group of Lie type which is not isomorphic to

PS L(n, Fy) for n, q with the properties given above.
7. |G : Cg(a)| is divisible by p when p is odd.

Assume thapis odd. Ifpdoes not dividéG : Cg ()|, thena centralizes a Syloyw—subgroup
P of G. Aresult due to Gross (Theorem 2.0.6) implies & induced by an element d{P)
which is impossible by Step 4.

8. We may assume that=p2.

Suppose thap is odd. Therp divides|G : Cg()| by Step 7. Ley be ap’-element ofCg(w).
By Theorem 2.0.14 we hav€c,)(y) = Co(a) NCs(y) = Cs(ya) € Cs(a). Then
G : Ca(ya)| = IG : Ce(a)l|Ca(@) : Cce)(y)| is squarefree and hengef |Ca(a) : Cege(Y)-

It follows by Theorem 2.0.5 (1) th&@g(e) has a unique Syloyg-subgroupP which is a direct
factor, that isCg(a) = P x AwhereAis ap’-group. Leta € A. Now,

Ccs(@) = P x Ca(a) and alsaCcy(e)(a) = Cs(a) N Cs(a) = Co(ar) < Ce(a) by Theorem
2.0.14. So|Cq(a) : Ces(@)(@)| = IPx A: Px Ca(a)l = |A: Ca(a)| divides|G : Cg(an)| and

hence squarefree.

Let nowa € A be an involution. ThelK = A(ta) = Ax(a17,). For anyx e K \ Athere exists
¢ € Asuch thatx = ca 1, and henc€a(c) = Ca(X), that is,|A : Ca(X)| is squarefree. Apis
odd we haveK| < |H]. It follows by induction thatA is solvable. This forces the solvability

of Cg(a) if it contains ap’-element. In cas€g(«) is ap-group, it is already solvable.
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By Theorem B.0.14, Table B.13, Theorem B.0.15 and Theorem B.Cd) has a simple
subgroup. This contradicts to the solvability@f (a).

Therefore, we may assume that 2.
9. Final Contradiction.

By the classification of finite simple groupsis either an inner diagonal or a graph or a field

or a graph-field automorphism. Set rf.

We shall study in three cases:

Case l.a is an inner-diagonal or graph automorphism where q is odd.
We shall eliminate all the families of simple groups of possible Lie type.

First of all we consider the famil&,(q) for m > 2, ¢ = £1. Here are all the possibilities for
0" (Cs(a)):

m(m-+1)
md)

(m-1)m
P1=A ,(0). Then|Py, =q 2 and hencdG : Py, = q(wﬁ =qM.
q

P, :Mﬂfz)l(q)AﬁH(q) and 2< i < 3. Then|Py|, = q(i_—zl)iqw and henceG : Py|, =
-
= ween = A
azaq 2
. ot i) (me 12
P3 = A, (d)> andmis odd. TherPs|, = g?~ 2z~ and henc4G : P3|, = 5wt =q 4
2 q2 2 > 2
ot i) (me 12
Py = A@(qz) andmis odd. TherP4l, = g>~ 2 and hencdG : P4|, = qm;uLﬂ =q 4
2 q2 2 > 2
. m+1y2 ﬂ_)nzwl m2-1
Ps = Cn1(q) andmis odd. TheriPs|, = q"z)” and hencéG : Ps|, = Z(m%l)z =q 7
. my2 imzﬂ;l) m2+2m
Ps = Bp(q) andmis even. ThemPs|, = 2)" and hencdG : Pg|, = - = g7 4 .
q 2
m+1 m-1 ﬂn;—l) m+1)2
P; = Dm+Tl(q) andmis odd. TherP7|, = gz 2" and hencéG : P7|, = qqulnFTl =q 4 .
m+l m— MM m+ 2
Pg =2 DmTl(q) andmis odd. TherjPg|, = quTl and hencédG : Pg|, = qqm;&g = q§—41)‘.

Notice that in all the above casesdivides|G : Cg(a)|, and hence none of them is possible.
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We consider next the famil@m(q) for m> 2. Here are all the possibilities f@"' (Cg(a)):

Q1 = Bn1(q). Then|Qul, = ™1* and hencdG : Qul, = =g

q(m)? -

— 2m-1
q(m—l)2 =0 '

Q2 = Bm_1(). Then|Qzl, = ™" and hencéG : Qyl, =

Qs = Di(@)Bmi(d) and 2< i < m. Then|Qs, = g@Vg™mD* and hencdG : Qs
o
ql(l 1)q(m—|)2 -

2mi+i—2i2
=q

Qs =2 Di(@)Bm.i(q) and 2< i < m. Then|Qu, = qiDg™)* and hencdG : Qal,
" _ 2mi+i-2i?
qi(i—l)q(m—i)2 - '

Qs = Dim(@). Then|Qs|, = ™™ and hencdG : Qs|; = qﬂin =q".

Qs =2 Din(@). ThenlQsl, = ™™ and henceG : Qel = i = o™

Notice that in all the above casesdivides|G : Cg(a)|, and hence none of them is possible.
We consider now the famil€n(q) for m> 2. Here are all the possibilities f@" (Cg(a)):

Ri = Ci(Q)Cmi(q) and 1< i < 2. Then|Ry|, = ¢ g™ and henceG : Ry|, =
q2mi—2i2_

qlzq(m—l)2 =

2 i 2(3)° o
R, = Cp(q)” andmis even. TherR,|, = g™’ and hencdG : Ry|, = —mz =072.
q2

o
= Cn(g?) andmis even. ThenRs|, = 2% and henceG : R, = 2( S =2

o 2sm
Ry = An-1(0). Then|Ryl, = ™% and hencdG : Ry|, = Ay =0 2 .
qT

mz

m2
=2 Aq-1(0). Then|Rel, = g™ and hencdG : R, = —2 =q 2

q
Notice that in all the above casesdivides|G : Cg(a)|, and hence none of them is possible.

We consider next the famil{p5,(q) for m > 4, ¢ = +1. Here are all the possibilities for
0" (Ca(a)):

S1=D?,_,(). Then|Sy|, = g™ ™2 and henceG : Sy, = a%% = g2,

Sz = D7 4(0). Then|Szl, = g™ ™2 and hencdG : Sply = iy = P™2.

S3 = Di(g)DZ, ;(g) and 2< i < T. Then|Sg|, = ¢(~Dg™)M-1) and hencdG : S, =
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q"("F]-)

2mi-2i2
ql(l 1)q(m—|)(m—| 1) — q

Ss4 =2 Di(@)D;?,(q) and 2< i < J. Then|Sy|, = ¢(-DgMNM-1) and hencdG : Sul; =

m(m-1)
m — q2m| 2i2
2 + omm-2 . gnm-1) mz—Zm.LZ
Sg = Dg(q) andG = D3, (). Then|Ss|, = g°2 2" and hencdG : Sg|, = amz = d .
q2 2
Se =? Dp(g)? and
G = D3 (c). Then|Sel, = 72" and hencdG : Sel, = Ly = g™ 4™
q 2
gmm-1) m-m
S? = Am—l(q) andG = D (q) Then|S7|r - and henc&G S7|r - m(n%l) =q 2.
q
Sg =2 An-1(g) andG = D3, (a). Then|Sg|, = qﬂ?—ll and hencéG : Sg|, = m = q
q 2
So =% Dy()D(g) andG = Dy(q). TheniSol, = 2" and hencdG : Sol, = Ty =
2 2
m2—2m+2 q
2 .
S10 =2 Dy(0?) andG = Dy (q). Then|Syg, = ¢?2°7 ® and hencdG : Sigl, = q:;r:; =
2 2
m2—2m+2 q
2
m(m-1)
S11 = A, ,(q) andG = Dj,,,(q). Then|Syi|, = g "3 and hencdG : Sq4, = :ﬂ?_l) =
qe"
m(m-1)
S12 = Bm1(9). Then|S1al, = g™ and hencéG : Sqal, = ;‘m—l)z =qgqm1,

Si3 = Bi-1(@)Bm.i(q) and 2< i < 7. Then|Sig, = qi~Y'q™)* and hencdG : Sia), =

gmm-1) 2mi-i2+2i-m-1.

qDZqmi?

_ 2 e _ 2(T)2 _ g
Sia = Bm—Tl(q) andG = D5, ,(0). Then|Sy4, = g7z and hencdG : Sy4|, = IR =

q
-1
qz.
m m(m-1)

S15 = Bmi(q?) andG = Dg_,(q). Then|Ss|, = ¢**2)° and hencdG : Sugly = T =
m-1
qz.

S16 = B3(q) andG = Dj(q). Then|Siel, = g° and hencéG : Sy, = qg = .
S17 = A(0)B2(g) andG = D; (). Then|Sa7l, = g7 q* = o and hencdG : Sy, = % =q.

Notice that in all the above casesdivides|G : Cg(a)|, and hence none of them is possible.
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We then consider the familigg(q) for & = 1. Here are all the possibilities f@" (Cs(a)):

T1 = Dg(0). Then|Ta), = >4 = g?° and hencdG : Ty, = q—o = q'e.

T2 = A1(Q)AL(a). Then|Tz|, = g7 = ¢'® and hencdG : T, = q—e = ¢%°.

Tz = F4(0). Then[T3|, = g?* and hencdG : T3, = g—zi =g

T4 = Ca(q). Then[Tal, = g7 g% = g6 and hencdT : P4, = g—ii = g°°.

Notice that in all the above casgsdivides|G : Cg(e)|, and hence none of them is possible.
We consider next the familig;(g). Here are all the possibilities f@" (Cg()):

U1 = Aq(q)De(q). ThenlUgl, = g% ®5 = ¢! and hencéG : Uy, = “T =g

U, = A7(g). Then|Ua|, = g7 = g% and hencéG : Uy, = qT = g%,

Us =2 A7(g). Then|Us|, = 47 = ¢?8 and hencéT : Ug|, = qT = g%

Us = Eg(0). Then|U4|, = ¢%® and hencdG : Uy, = 36 = g?’.

Us =2 Eg(0). Then|Us|, = g° and hencéG : Us|, = q—% = g?’.

Notice that in all the above casgsdivides|G : Cg(e)|, and hence none of them is possible.
We consider next the familyffiq). Here is the only possibility fo" (Cg()):

V = Au(@)Ax(e®). ThenlV], = g% ()% = * and hencdG : VI, = &r = ¢

Notice thatr? divides|G : Cg(e)|, and hence it is not possible.

We consider next the familx(q). Here is the only possibility fo®" (Cg()):

=

W = Ay(6®). Then|W|, = (¢3)% = ¢? and hencdG : W, = L=d.
Notice thatr? divides|G : Cg(a)|, and hence it is not possible.

We consider next the famil§Gz(q) whereq = 321 for n > 1. Here is the only possibility

for 0" (Cg()):

Y = Au(6?). ThenlY, = (¥ % = ¢? and hencdG : Y|, = q—2 =q =321
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Notice that 9 divide4$G : Cs()|, and hence it is not possible.

We consider next the familif4(g). Here are all the possibilities f@" (Cg()):

Z1 = Ai(Q)Ca(0). Thenizil, = 7 ¢¥ = ! and hencdG : Z4, = q—o =gt

Z> = B4(g). Then|Zy|, = g% = g*®and hencdG : Z,|, = q—6 =qf.

Notice that in all the above casgsdivides|G : Cg(e)|, and hence none of them is possible.
Finally, we consider the familfg(q). Here are all the possibilities f@" (Cg(a)):

Hy = Dg(q). Then|Hy|, = 87 = g°® and hencdG : Hy|, = 1260 = g%

H = Au(O)E7(0). ThenlHal, = % ¢ = ¢®*and henceG : Hal, = L = o7,

Notice that in all the above casegsdivides|G : Cg(e)|, and hence none of them is possible.
Case 2:« is a field automorphism or a graph-field automorphism.

By Theorem B.0.15, if| = r2S for some integes andG = L(q), thenCg(a) = L(rS).

If G = An(r?S) for m> 2 thenCg(a) = An(rs) or Co(a) =2 An(r®). It follows that

2s sm(m+1)
IG: Cs(a)l; = %mr =r—z
(r9)—2

o2
If G = B(r2s) for m> 2 thenCg() = B(rS). It follows that|G : Cg(a)|, = & S)) o = s

oy
If G = Cn(g%) for m > 3 thenCg(a) = Cm(rS). It follows that|G : Cg(a)|, = & S))ne = rsnt

If G = Dm(g?S) for m > 4 thenCg(a) = Dm(rS) or Cg(a) =2 Dm(rS) or Cg(a) =3 Dy(r). |

r25 n(wl)

—

If G = Eg(0°%) thenCg(a) = Eg(rS) or Co(a) =2 Eg(rS). It follows that|G : Cg(a)|,

()% _ 365
5% — r

If G = E7(q?°) thenCs(a) = E7(r9). It follows that|G : Cg ()|, = Tk = r63s

(I’ 5)63

If G = Eg(g%°) thenCg(a) = Eg(r®). It follows that|G : Cg(a)|, = (ffj)fff — 1208

If G = F4(0°S) thenCg(a) = F4(rS) or Co(a) =2 Fy4(rS). It follows that|G : Cg(a)l,

2s 2s5\24
((rrs))24 =r2®or IG : Cg(a)l; = ((rrS))m =36
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If G = Go(¢?S) thenCg(e) = Ga(rS) or Cgla) =2 Gy(r9). It follows that|G : Cg(a)l,

2s\6 2s\6
€ =% or(G : Cola)l, = 5 =

S m(m+1)
If G =2 An(r?) for m > 2 thenCg(a) =2 Am(rd). It follows that|G : Cg(a)l, = ©2 2~

= mmid)
(r5) 2

sm(m+1)
r— 2

If G =2 Dm(6®) for m > 4 thenCg(a) =2 Dm(r®). It follows that|G : Cg ()|, = %

rsrr(m—l)

If G =2 Eg(q?°) thenCq(a) =2 Ee(r9). It follows that|G : Cg(a)l, = % — r36s
If G =3 Da(q?°) thenCg(a) =3 Da(r?). It follows that/G : Cg(a)|, = % — rlzs,
Notice thatr? divides|G : Cg(e)| in all the above cases and hence none of them is possible.

Case 3:a is a graph automorphism.

If G = A5, ,(q) form> 1thenCg(a) = Cn(q). It follows that
(2m+1)2m

_9q

G : Cofa)l = L ="

2m(2m-1)

If G = A5 (q) for m> 1 thenCg(a) = Cm(q). It follows that|G : Cg(a)|, = < qr:z = q’“z‘m

If G = D(q) for m> 4 thenCg () = Bm_1(q). It follows that|G : Co(a)l, = % = g™t

If G = EZ(q) thenCg(a) = F4(q). It follows that|G : Cg(a)l; = g—zi =2

Notice thatg? divides|G : Cg(a)| in all the above cases and hence none of them is possible.

This completes the proof of Theorem 3. |
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Appendix A

FIXED POINT SUBGROUPS OF AUTOMORPHISM GROUPS
OF SPORADIC SIMPLE GROUPS

In this part we shall give some arithmetical information about the sporadiclesigrpups
and some information about conjugacy classes of their noninner autoistoptinat contains

only lengths and names of the conjugacy classes and the order of thdipfiig subgroups.

In the tables we give below denotes the name of the corresponding sporadic simple group,

andx denotes a representative of a conjugacy class of noninner autonmogphis
First of all we shall describe these tables column-by-column.

In the first column, we give the name of the information given in the corrmedipg row.
Each of the remaining columns gives the information about the conjugacy afla®ninner

automorphisms containing

Next, we shall describe the tables row-by-row. This is almost the samemi@stas it is in

Atlas of Finite Groups ([9], pages XXv-XXXx).

In the first row, the numbers given are the orders of fixed point sulpy in the base group

G.

For a conjugacy class, the set of #i&power of the elements forms another conjugacy class.
The resultingpower mapsfor a composite numbéy between the classes can be obtained by
repeated use of therime power mapshe particular case wheais prime, for prime divisors

of I.

The second row gives the tag letters of the name of the classes that cesja@ctively the

powersxP, x4, X', ... of x, wherep < q < r < ... are the prime divisors of the order »f For
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example if we have an ent#BC for the power map of an elemenrtof order 84, then we

mean thai? is in class 42, x3in class 28, x’ in class 1Z.

Let x € Aut(G) andr be a subset of(Aut(G)), the set of prime divisors of order #fut(G). A
certain power ok is called ther-part ofx, denoted by(x), if the set of prime divisors of order
of x(r) is contained inr while none of those of order ofr)~*x. x(7)~1x is called ther -part
of x and it is denoted by(n’). For eachx € Aut(G), we can writex = x(m)x(n") = X(")X(r)
uniquely. If 7 consists of a single primp, then we denote them respectively kfp) and
x(p’) and call them thep-part andp’-part of x. Ther-parts for general seiscan be found by

repeated use of theg -parts.

The third row of the table gives the tag letters of the name of the classes thaircrespec-
tively the powersx(p’), x(q), x(r’), ..., wherep < q < r < ... are the prime divisors of the

order ofx.

nA nB,nC,... denote the conjugacy classes that contain elements of ordene alphabet

used here is potentially infinite, and reads
A B,C,D,E,F,G,H,1,JK,L,M,N,O,PQ,R S, T,U VWX Y,Z AL B1,...,A2,B2,...

The class name row contains the following information:

Entries of the forrmX are called ‘Master’ class name entries. It just means that the column

refers to a conjugacy class;

Entries of the formY =« k (or Y = =k, Y = x, Yx) are called ‘Slave’ class name entries. It just
means that the column refers to a conjugacy aeésand one can obtaimY by applying the

algebraic conjugacy operatek (or = * k, =+, ) to the most recent ‘master’ clasX.

An algebraically conjugate family of classes consists of a ‘master’ clasthanchmediately

subsequent ‘slave’ classes.

We define the algebraic conjugacy operators on classes as follows [9]:
(nX)* contains thé&!" powers of elements afX;

(nX)*** contains the{k)™" powers of elements ofX;

(nX)** contains the inverses of elementsof,
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and

(nX)* is the class other thamX containing elements of orderthat are powers of elements
of nX, when this class is unique. It is to be understood kgt prime ton. The values of
characters on these classes are the images of their valneGuder the appropriate algebraic

conjugacies.

The last row gives the prime decomposition of the index of the correspgricied point

subgroup in the base groG

SPORADIC MATHIEU GROUP My ([9], page 18)

The order ofMy1 is 7,920 = 2*.32.5.11. The automorphism group ®11 is isomorphic to

itself and hence there is no noninner automorphisiil of.

SPORADIC MATHIEU GROUP My ([9], pages 31-33)

The order ofM1 is 95 040 = 26.33.5.11. The index of inner automorphism groupf» in

the automorphism group ®fl1 is 2.

Table A.1: Some of the Conjugacy Classes of Noninner Automorphisrivg of

ICa(X)| 120 24 12 6 10 10
p power A B A BC AC AC
p’ part A A A BC AC AC
Class Name 2C 4C 4D 6C 10B c*

IG:Cg(X)| | 28.32.11 | 28.325.11 | 24.325.11 | 2532511 | 2°.33.11 | 25.33.11
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SPORADIC MATHIEU GROUP M, ([9], pages 39-41)

The order ofMx, is 443520 = 27.32.5.7.11. The index of inner automorphism groupM$»

in the automorphism group &l is 2.

Table A.2: Some of the Conjugacy Classes of Noninner Automorphisivk pf

ICa(X)| 1344 320 48 32 6

p power A A A A AB
p’ part A A A A AB
Class Name 2B 2C 4C 4D 6B
IG:Cs(X)| | 23511 | 232711 | 28.357.11 | 22.3257.11 | 26.35.7.11

SPORADIC MATHIEU GROUP M3 ([9], page 71)

The order ofMa3 is 10,200,960 = 27.32.5.7.11.23. The automorphism group ®fl,3 is

isomorphic to itself and hence there is no noninner automorphisvipgf

SPORADIC MATHIEU GROUP Mo, ([9], pages 94-96)

The order ofMy4 is 244 823 040 = 210.335.7.11.23. The automorphism group ®,4 is

isomorphic to itself and hence there is no noninner automorphidvipaf

SPORADIC JANKO GROUP J; ([9], page 36)

The order of); is 175560 = 22.3.5.7.11.19. The automorphism group 6f is isomorphic to

itself and hence there is no noninner automorphisiy of
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SPORADIC JANKO GROUP J; ([9], pages 42-43)

The order of); is 604 800= 27.3%.52.7. The index of inner automorphism groupXfin the
automorphism group ol is 2.

Table A.3: Some of the Conjugacy Classes of Noninner Automorphisriis of

ICa(X)| 336 48 12 6 48 16
p power A A B BC A A
p’ part A A A BC A A

Class Name 2C 4B 4C 6C 8B 8C
IG:Cg(X)| | 28.32.5% | 2832527 | 2532527 | 2632527 | 2832527 | 2833527

SPORADIC JANKO GROUP J; ([9], pages 82-83)

The order ofJ; is 50 232 960 = 27.3°.5.17.19. The index of inner automorphism group of
Js in the automorphism group @ is 2.

Table A.4: Some of the Conjugacy Classes of Noninner Automorphisris of

ICa(X)] 2,448 48 9 48 16

p power A A BB A A

p’ part A A BB A A
Class Name 2B 4B 6B 8B 8C
IG:Cs(X)| | 28.3%519 | 28351719 | 27.335.17.19 | 23.3*5.17.19 | 28.3°517.19
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SPORADIC JANKO GROUP J, ([9], pages 188-190)

The order ofl, is 86 775 571,046 077,562 880 = 221.33.5.7.11%.2329.31.37.43. The au-
tomorphism group 03, is isomorphic to itself and hence there is no noninner automorphism

of Ja.

SPORADIC CONWAY GROUP Co ([9], pages 180-187)

The order ofCo; is 4,157,776 806 543 360,000 = 221.3°5%72.111323. The automor-

phism group ofCo; is isomorphic to itself and hence there is no noninner automorphism of

Co.

SPORADIC CONWAY GROUP Co; ([9], pages 154-155)

The order ofCo, is 42 305 421,312 000 = 2'8.355%.7.11.23. The automorphism group of

Co, is isomorphic to itself and hence there is no noninner automorphisDoof

SPORADIC CONWAY GROUP Co; ([9], pages 134-135)

The order ofCos is 495 766 656 000 = 210.37.5%.7.11.23. The automorphism group 6fos

is isomorphic to itself and hence there is no noninner automorphisbopf

SPORADIC FISCHER GROUP Fiy; ([9], pages 156-163)

The order ofFiy; is 64 561 751 654 400 = 217.3°.52.7.11.13. The index of inner automor-

phism group of-i,, in the automorphism group &fi» is 2.
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Table A.5: Some of the Conjugacy Classes of Noninner Automorphisifgef

ICa(X)|

p power

p’ part
Class Name

IG : Ca(X)|

1,045,094,400 3,317,760
A A
A A
2D 2E
24331113 | 24.3°57.1113

663,552
B
A
4F

24355271113

122,880
B
A
4G

2438571113

SPORADIC FISCHER GROUP Fiy3 ([9], pages 177-179)

The order ofFiys is 4,089 470 473 293 004 800 = 218313 52.7.11.13.17.23. The automor-

phism group ofFiz3 is isomorphic to itself and hence there is no noninner automorphism of

Fios.

SPORADIC FISCHER GROUP Fiy, ([9], pages 200-207)

The order ofFiy4 is 1,255 205 709 190,661, 721, 292 800 = 221.3'6,52.7311.13.17.23.29.

The index of inner automorphism group Bi,4 in the automorphism group &fio4 is 2.

Table A.6: Some of the Conjugacy Classes of Noninner Automorphisiaggf

ICa(X)l

p power

p’ part
Class Name

IG : Ca(x)l

220,723,937,280

A

A

2D

23.39572.1317.2329

2,090,188,800

A

A

4D

27.31072111317.23.29
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SPORADIC HIGMAN-SIMS GROUP HS ([9], pages 80-81)

The order ofHS is 44,352 000 = 2°.3%.5%.7.11. The index of inner automorphism group of
HS in the automorphism group ¢S is 2.

Table A.7: Some of the Conjugacy Classes of Noninner Automorphismisof

ICa(X)| 40,320 1,920 320 96 40

p power A A A A B

p’ part A A A A A
Class Nameg 2C 2D 4D 4E 4F
IG:Cs(X)| | 225211 | 22.352.7.11 | 22.3252.7.11 | 24.35%.7.11 | 26.32.52.7.11

SPORADIC McLAUGHLIN GROUP ML ([9], pages 100-101)

The order ofMCL is 898 128 000 = 27.3%.5%.7.11. The index of inner automorphism group
of MCL in the automorphism group ®fi°L is 2.

Table A.8: Some of the Conjugacy Classes of Noninner Automorphisi bf

ICa(X)| 7,920 720 18 48

p power A A BB A

p’ part A A BB A
Class Name 2B 4B 6C 8B
IG:Cs(X)| | 28.3*527 | 28.3*527.11 | 26.3*5%.7.11 | 28.3553.7.11
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SPORADIC HELD GROUP He ([9], pages 104-105)

The order oHeis 4,030,387, 200 = 210.33.52.7%.17. The index of inner automorphism group
of Hein the automorphism group éfeis 2.

Table A.9: Some of the Conjugacy Classes of Noninner Automorphisrig of

ICa(X)| 15,120 240 7,560 72 18
p power A A AC AC BC
p’ part A A AC AC BC
Class Name 2C 4C 6C 6D 6E
IG: Cg(X)| | 26.5.72.17 | 26.32573.17 | 2/.5.72.17 | 27.352.73.17 | 22.352.73.17

SPORADIC RUDVALIS GROUP Ru([9], pages 126-127)

The order ofRuis 145 926 144 000 = 214,32 52.7.13.29. The automorphism group Buis

isomorphic to itself and hence there is no noninner automorphigRuof

SPORADIC SUZUKI GROUP S uz([9], pages 128-131)

The order ofS uzis 448 345 497,600 = 2'2.37.52.7.11.13. The index of inner automorphism
group ofS uzin the automorphism group &uzs 2.

Table A.10: Some of the Conjugacy Classes of Noninner Automorphisiasiof

index 1,209,600 | 190,080 2,304 672

p power A A A B

p’ part A A A A
Class Name 2C 2D 4E 4F

IG: Cg(X)| | 2°.3*.1113 | 26.3*5.7.13 | 25.35.52.7.11.13 | 28.365.7.1113
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SPORADIC O'NAN GROUP O'N ([9], pages 132-133)

The order ofO’N is 46Q 815 505 920 = 2°.3%5.73.11.19.31. The index of inner automor-

phism group ofO’N in the automorphism group @' N is 2.

Table A.11: Some of the Conjugacy Classes of Noninner Automorphis@&hof

ICa(X)| 175,560 30 672

p power A AB A

p’ part A AB A
Class Name 2B 6B 8C
IG:Ca(X)| | 23.33.72.31 | 28.33.73.1119.31 | 24.335.72.11.19.31

SPORADIC HARADA-NORTON GROUP HN ([9], pages 164-166)

The order ofHN is 273 030 912 000, 000= 214.35.56.7.11.19. The index of inner automor-

phism group oHN in the automorphism group &N is 2.

Table A.12: Some of the Conjugacy Classes of Noninner Automorphistd$of

ICa(X)| 3,628,800 | 88,704,000 15,360 1,280
p power A A A B

p’ part A A A A
Class Name 2C 4D 4E 4F

IG: Cs(X)| | 26.32.5%1119 | 2¢.3*58.19 | 24.3°5°.7.1119 | 26.3%5°.7.1119
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SPORADIC LYONS GROUP Ly ([9], pages 174-175)

The order ofLy is 51, 765 179 004 000,000 = 28.37.56.7.11.31.37.67. The automorphism

group ofLy is isomorphic to itself and hence there is no noninner automorphigm. of

SPORADIC THOMPSON GROUP Th ([9], pages 176-177)

The order ofThis 9Q 745 943 887,872 000 = 21°.3105372.1319.31. The automorphism

group of T his isomorphic to itself and hence there is no noninner automorphisnm.of

SPORADIC “BABY MONSTER” GROUP B ([9], pages 208-218)

The order ofB is 2*1.3135%.72.11.13.17.19.23.31.47. The automorphism group & is iso-

morphic to itself and hence there is no noninner automorphisB of

SPORADIC FISCHER-GRIESS “MONSTER” OR
“FRIENDLY GIANT” GROUP M ([9], pages 220-234)

The order of M is 2*6.3%205°.76.112.13%.17.19.2329.31.41.47.59.71. The automorphism

group ofM is isomorphic to itself and hence there is no noninner automorphigvh of

Theorem A.0.13 Let G be a sporadic simple group. If G has a noninner automorphism, the

(@) G is one of the following groups

M12, Mzz, Jz, Jg, Fizz, Fi24, HS, MCL, He, SUZ O/N, HN.

(b) G has a noninner automorphism x such ti@at Cg(x)| is divisible by4.
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Proof. From the tables given above it is obvious thakihas a noninner automorphism then

G is one of the following groups
Mi2, Mo, Jo, Ja, Fizo, Fios, HS, ML, He, Suz O'N, HN.

If Ais M14, then any noninner automorphism in the conjugacy cl&hkas index 2.32.11 in

G which is divisible by 4.

If Ais My, then any noninner automorphism in the conjugacy cléshas index 3.3.5.7.11

in G which is divisible by 4.

If Ais Jp, then any noninner automorphism in the conjugacy cl&@bas index 2.32.5% in G

which is divisible by 4.

If Ais J3, then any noninner automorphism in the conjugacy cl&sBa index 2.3%.5.19 in

G which is divisible by 4.

If Ais Fixp, then any noninner automorphism in the conjugacy cléskas index 2.3%.11.13

in G which is divisible by 4.

If Ais Fia4, then any noninner automorphism in the conjugacy cl&has index

23.395.72.1317.23.29 in G which is divisible by 4.

If Ais HS, then any noninner automorphism in the conjugacy cl&shas index 2.52.11 in

G which is divisible by 4.

If Ais MCL, then any noninner automorphism in the conjugacy cl&hkas index 3.3*.52.7

in G which is divisible by 4.

If Ais He, then any noninner automorphism in the conjugacy cl&8a&s index 9.5.72.17

in G which is divisible by 4.

If Ais Suzthen any noninner automorphism in the conjugacy cl@shas index 2.3*.11.13

in G which is divisible by 4.

If Ais O’N, then any noninner automorphism in the conjugacy cl&isa index 2.3%.72.31

in G which is divisible by 4.

If Ais HN, then any noninner automorphism in the conjugacy cl&shas index

26.32.5%.11.19 inG which is divisible by 4. [ |
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Appendix B

FIXED POINT SUBGROUP OF AUTOMORPHISMS OF
SIMPLE GROUPS

In this part, we shall give some information about the fixed point subgsbaptomorphisms

of finite simple groups of Lie type.

Let K be a simple group of Lie type constructed on a fieldf characteristic and K, o) be
a standardr-setup defined in [17] with subgrouf@s B, T, H, U, U, etc and root systen}, as
in [17]. Let x5(.) andh;(.) be Chevalley generators &fas in [17].

Theorem B.0.14 ( [17], Tables 2.5.1 and 2.5.Ztvery automorphism of K is a productid fg

such that

(@) i€ Inn(K)

(b) d is a “diagonal” automorphism of K. d is induced by conjugation by dement
h € N+(K), so that %)% = X (a(h)t) forall @ € 3.

(c) fis a“field” automorphism of K, that is, it arises from an automorphigrof F, and

carries the generatorsaXt), x;(t, u), etc. and R(t) to x; (t%), x;(t%, u?), etc. and B(t?).

(d) g is a “graph” automorphism of K. g= 1 unless K is untwisted, and one of the

following holds:

(1) > has one root length, and for some isomeiryf > carrying [] to [],
Xo (1)9=Xqp(g,t) foOr all @ € Y, t € Fy, where thes, are signs andt = 1if o € []

or—a € [];or
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(2) > = By, Fy4, 0r Gy, withr = 2,2, or 3, respectively and g carries

Xep(t) if aislong
Xep(t") if ais short

M@H{

Herep is the unique angle-preserving and length-changing bijection f¥ota Y,

carrying [ to [].

We shall consider automorphismskfof prime order. lfe is an automorphism df of prime

orderp, we shall consider such possible automorphisms in four cases:

() p=2,risoddandris an inner-diagonal or graph automorphism;
(i) r # p, pis odd andx is an inner-diagonal or graph automorphism;
(i) « is afield automorphism or a graph-field automorphism;

(iv) r = panda is a graph automorphism.

Case 1:p =2, ris odd ande is an inner-diagonal or graph automorphism

As the first case we shall consider inner-diagonal involutions anchgraplutions of finite

simple groups of Lie type.

The tables given below for each family of finite simple groups of Lie type gif@mation

about the structure @@k ().
Each table has four columns each of which has a speciality.
The first column of each table gives information about the family.

The second column of each table gives special conditions for whichauelutomorphism

exists.
The third column tells the name of the automorphism.

The last column gives the structure®f (C) whereC = Ck(«).
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We start with the familie\n(g) for m > 1 and 2Ay(q) for m > 1. In the table A%,(q) denotes
Am(q) for & = 1, and 2An(q) otherwise.

An(@] = rtend 2 TR (A "~ 1) andPAn(0)] = grend 2 1@ - (<)),

We have the following table ([17], Table 4.5.2).

Table B.1: Inner-diagonal and graph involutionsfgf(q) and?Am(q)

| K [ Conditions |t | 07(C) |
f 1
Al(Q) ’
t 1
t Aﬁkl(q)
2<i< D ti A (@A)
modd tma Ao (@)
A 2
modd t AL (@)
m> 2 z z
o_41 | modd 7 Cma (0)
meven Y1 Bu(q)
m odd Y2 Dm1(q)
m odd Yy ?Din1 (0)
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We consider next the familBm(q) for m > 1. We haveBm(q)| = Wl_l)qmz ", (e? - 1)

We have the following table ([17], Table 4.5.2).

Table B.2: Inner-diagonal and graph involutionsBaf(q)

K Conditions [t e |
ty Brm-1(a))
t Bm-1(0)
Bn@ | ocicm t Di(a)Bm-i(0)
m>=2 | 5 .o t ?Di(0)Bm-i(q)
tm Dm(q)
t ZDim(0)

Then we consider the famil@m(q) for m> 2. We havedCp(q)| = Wl_l)qmz ", (e - 1)

We have the following table ([17], Table 4.5.2).

Table B.3: Inner-diagonal and graph involutionsGf(q)

K Conditions |t | 0"(©) |
1<i<3 t; Ci(9)Cm-i(a)
meven to Ca(q)?
Cm(0)
meven th Co(cf)
m> 2 ’
tm Am—l(q)
tfn 2Am—1(Q)
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We continue with the familie®m(q) for m > 3 and 2Dyy(q) for m > 3. In the table DZ,(q)
denoteDn(q) for £ = 1, and 2Dpy(q) otherwise.

IDm(@)| = =g d™™ (@™ - 1) [T (0” - 1) and
PDm(@)] = g d™™ (@™ + D IT P - 1)

We have the following table ([17], Table 4.5.2 and 4.5.3).

Table B.4: Inner-diagonal and graph involutiondgf(q) and?Dpm(q)

K Conditions \ t | 07(C) |
ty Dy ,(@

t] (D (¢))
2<i< t Di(a)Dr, ()
2<i< 9 tf 2Dj(g)D2, ;(a)
K = D3(0) to Dy(a)?

K = D3 (q) ty Dy (o)
R D% (q) ty Dy(aP)
m>4

K = D3 (0) ty Dz(a?)
e==1

K = D}, (q) tm-1 Am-1(0)

K = D, (0) t o ?An-1(0)

K = D4 (0) tm Am-1(9)

K = D, (0) th ?An-1(0)

K = Dy (q) tm ?Dy(q)Dy(q)

K = D5 (q) ty ?Dy(af)
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Table B.5: Inner-diagonal and graph involutionsDpf(q) and?Dpm(g) continued

\ K | Conditions \ t | 0"(C) |
K = Dg,,(a) tm A1 (@
Y1 Bm-1(0)

2<i< Vi Bi-1(0)Bm-i(a)
D@ | Kk =D5,,@ Y B (0)?
mz4 1 K=Dg,( Vs Br1(0P)
e=1=1

K = D} (a) 71 Bs(a)

K =Dj(q) " Bs(a)

K = D} (q) b2 A1(0)B2(9)

K = D (q) 2y A1(0)B2(9)
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We consider next the familidSg(q) and 2Eg(q). In the table EZ(q) denotessg(q) for & = 1,

and 2Eg(q) otherwise.

Es(Q)] = gy a>2(@™ - 1)(@® - 1)(@® - 1)(@° - 1)(@® - 1)(@* - 1) and

PEs(O)] = @y d(@? - 1)@ + 1)@ - 1)(@® - 1)@ + 1)@ - 1).

We have the following table ([17], Table 4.5.2).

Table B.6: Inner-diagonal and graph involutiongz{q) and?Eg(q)

K Conditions |t | 07(C) |
ty Di(a)
Es(a) t2 A(@)AZ(9)
=1 71 Fa(a)
71 Cs(a)

We consider next the famili;(q). We have

E7(9)] = zgya®(@'® - 1)@ - 1)@ - 1)(@"° - 1)(@® - 1)(@° - 1) - 1)

We have the following table ([17], Table 4.5.2).
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Table B.7: Inner-diagonal and graph involutiongn{q)

K | Conditions |t | 07(C) |
t1 A1(q)Ds(a)
ta Az(0)
E7(q) t, 2Aq(a)
t7 Ee(a)
t 2Eq(q)

We consider next the familD4(g). We have

1*Da(@)l = q*4(g® + o* + 1)(@° - 1)(0? - 1).

We have the following table ([17], Table 4.5.1).

Table B.8: Inner-diagonal and graph involutions’Bi(q)

| K | Conditions \ t | 0"(C) |

3D4(0q) to A1(Q)A(oP)

We consider next the familg,(q). We have

IG2(a)| = 9f(q® — 1)(@? - 1).

We have the following table ([17], Table 4.5.1).
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Table B.9: Inner-diagonal and graph involutions33{q)

| K | Conditions \ t | 0"(C)

G2(0) ty A(9?)

We consider next the famifG,(q). We have

2G2(a)l = a*(a® + 1)(q - 1).

We have the following table ([17], Table 4.5.1).

Table B.10: Inner-diagonal and graph involutiongGb(q)

| K | Conditions \ t | 0"(C)

2G,(q) q =332 161 Ad(9?)

We consider next the famillf4(q). We have

IFa(@)] = 9?42 — 1)(0f — 1)(oP — 1)(c? - 1).

We have the following table ([17], Table 4.5.1).

Table B.11: Inner-diagonal and graph involutiong=a{q)

| K | Conditions \ t | 07(C)
ty Ax(a)Ca(q)
Fa(q)
ta Ba(q)
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We consider next the familgg(q). We have

IEs(a)l = q*2%a*® - 1)(@®* - 1)(@*° - 1)(0*® - 1)(@** - 1)(@*? - 1)(@® - (@2 - 1).

We have the following table ([17], Table 4.5.1).

Table B.12: Inner-diagonal and graph involutions=g{q)

| K [ Conditions \ t | 07(C) |
ty Ds(0)
Es(d)
tg Ax(a)E7(a)

Case 2:r # p, pis odd andv is an inner-diagonal or graph automorphism

In this case( is eitherAn(q) or 2Am(q) or Eg(q).

We have the following theorem fa&%n(q) and?An(q):

Theorem B.0.15 ([17], Theorem 4.8.4 ) et K be a classical group with underlying classi-
cal space V. Let p be an odd prime and let x be an inner-diagonal aar@msm of K of
order p which is not inducced by an element of | §djrof order p. Then IsoV) = GL5(q)
for some sigre such that p divides both m 1 and q— ¢. Letw be a generator of a Sylow
p-subgroup of the cyclic subgroup%? of order g—¢. For a suitable choice ab, x is induced

by an elementof Isom(V) such that g is scalar multiplication byw.

Let C = Cgre(v)(Xo) and let C be the preimage in GI(V) of Cpg2(v)(X). Then C= GLﬁ/p(qp)

and C' = C(¢), wheregP = 1 and¢ induces a field automorphism on C.

We next give a table about the structureCef (t) whereK* denotes the extension gropby

its diagonal automorphisms whekeis eitherEg(q) or 2Eg(q).

The second column of the table gives the name of automorphism and thellashogives

the structure 00" (C) whereC = Ck-(t).
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We have the following table ([17], Table 4.7.3A).

Table B.13.C = Ck-«(t), t € Inndiag(K)I'k of orderp = 3, q = ¢ (mod3)

LK [t [ 0°©) |
! Dg(a)
5 A(9)A;(a)
t3 As(q)®

Eg(@) 5 AS()
t Az()
tie Da(a)
tig “Da(a)
t3 AS(9)AA(T?)

Es*(a) ty As*(a)
tie ?Da(a)

Case 3.« is a field automorphism or a graph-field automorphism

Next, we consider the case of field or graph-field automorphisms with nioctes onr.

Then, we have an important theorem in the classification of finite simple groups

Theorem B.0.16 ( [17], Proposition 4.9.1 Let K =% Y(q) be a simple group of Lie type
over a base field of characteristic r, let x be a field or graph-field autquiniem of K of prime

order p, and set K= O" (Ck(x)). Then

If x is a field automorphism, then? 3 (g¥P), while if x is a graph-field automorphism,

thend= 1, p=2or 3, and K, =P 3 (q'/P).
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Case 4:r = p anda is a graph automorphism

Theorem B.0.17 ([17], Proposition 4.9.2 Jf K € Lie(p) has a graph automorphism of or-

der p then the following conditions hold:

(a) Either K is untwisted and there 45 € I'k of order p, or K is a Steinberg group and

there isy € ®k of order p.

(b) Fory asin (a), Gc(y) € Lie(p) and one of the following holds:

(1) p=2, K=Ay(q), modd, m>1, and G(y) = Cma(q);

(2) p=2,K=Ax(q), meven, and ((y) = Cy(a);

(3) p=2, K= Dr(g)(= 5,(q), m> 3), K(y) = 03,(q) and Gc(y) = Bm-1(a);
(4) p=2, K= Eg(q) and C(y) = Fa(a); or

(5) =3, K= Da(q) or °D4(q), and C(y) = Go(q).
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Appendix C

OUTER AUTOMORPHISMS OF PS I(n, [Fy)

In this chapter, we shall give some information on the outer automorphismgaiu
PS L(n, Fq) whereq = rf for some prime numberand integerf. These information can also

be found in [30], Section 3.3.4 in more detail.

From Appendix B we know that the outer automorphism groups of all thesicksgroups

have a uniform description in terms of diagonal, field, and graph autorsongh

As being induced by conjugation by diagonal matrices with respect to a kuitasis, we call
the first type as diagonal automorphisms. 3Hn, Fq) is a normal subgroup dsL(n, Fg),
GL(n,IFg) acts by conjugation o8 L(n, [Fy) as a group of automorphism. This action induces
the action ofPGL(n,Fg) on PS L(n,Fq) as a group of automorphisms BfS L(n, [Fg). This
group is called the group of diagonal outer automorphisms and corr@sporthe quotient

groupPGL(n,[Fq)/PS L(n, IFq) which is a cyclic group of ordeat = (n,q - 1).

The automorphism group of the underlying fiéfg, a cyclic group of ordeff, is the group
generated by the Frobenius automorphism; Fq — Fq given byo(x) = X". The field
automorphisms oGL(n,Fq) are induced by automorphisms of the underlying field. The
automorphism ofGL(n,Fg) induced byo is given by A” = (Airj) for each elemenf =
(Ayj) of GL(n,IFq. The groupG({c) which is the semidirect product @& L(n, Fy) with the
group of field automorphisms is denotedby(n, Fy), and correspondingly the extension of
SLn,Fg), PGL(n,Fy) or PS (n, Fq) by the induced group of field automorphisms is denoted
by > L(n,Fg), PT'L(n,[Fg) or P L(n, Fy).

The graph automorphisms are induced by an automorphism of the DynkiradgiagThe
classical concept of duality is the best explanation of the graph autoieor the case of

the linear groups. For a vector spa¢eand a basisey, . .., e} of V, the baside], ..., €} of
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V* given bye'(g) = 1 ande’(e) = 0if i # j is a well-defined dual basis.
If the action ofg € GL(V) onV andV* are given respectively by
n
g Z Gij€j
i=1
and
n
q* = Z hijeT
i=1
then asa’(a;) = 6ij wheregj; is the kronecker delta, we have
n n n n n
ij = Z hikeg [Z gjla] = Z hik [Z gjle*k(a)] = Z hikQijk
k=1 =1 k=1 =1 k=1

Thus, ifh = (hjj) andg = (gjj), thenhg" = I, and hencér = (g1)" = (g")~%. The duality
automorphism (with respect to these bases}bfV) is the map which replaces each matrix

by the transpose of its inverse. This is the so called graph automorphiGin(\@j.
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