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ABSTRACT

EQUIVARIANT VECTOR FIELDS ON THREE DIMENSIONAL
REPRESENTATION SPHERES

Guragacg, Hami Sercan
Ph.D., Department of Mathematics
Supervisor : Prof. Dr. Turgudnder

September 2011, 43 pages

Let G be a finite group an® be an orthogonal four-dimensional real representation
space ofs where the action ob is non-free. We give necessary andfgient condi-
tions for the existence of @-equivariant vector field on the representation sphere of
V in the case& is the dihedral group, the generalized quaternion grouglaademi-
dihedral group in terms of decomposition\dinto irreducible representations. In the
caseG is abelian, where the solution is already known, we give aenebementary

solution.

Keywords: Equivariant Vector Field, Strong Euler Charaste, Equivariant Euler
Characteristic, Dihedral Group
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UC BOYUTLU TEMSIL K URELERNDE EKUVARYANT VEKT OR ALANLARI

Guragac, Hami Sercan
Doktora, Matematik Bolum{
Tez Yoneticisi : Prof. Dr. Turgubnder

Eylul 2011, 43 sayfa

G sonlu bir grup,V ise G'nin etkisinin serbest olmadids’nin dort-boyutlu orto-
gonal gercel bir temsil uzay! olsu@'nin dihedral grup, genellestiriimis kuaterni-
yon grup ve semi-dihedral grup olmasi durumlarindajn temsil kiiresinin tstiinde
G-ekuvaryant bir vektor alani var olmasi icin gerekli veteré kosullariV’nin in-
dirgenemez temsillere ayrisimi cinsinden veriyoruz.iégrcozimuin bilindigG'nin

abeliyen olmasi halinde, basit alternatif bir cozim dersaktayiz.

Anahtar Kelimeler: Ekuvaryant Vektor Alani, Kuvvetli Eul Karakteristigi, Eku-

varyant Euler Karakteristigi, Dihedral Grup
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CHAPTER 1

INTRODUCTION

Let G be a topological group. If we have@action on a manifoldv, then we have
an induceds-action on the tangent bundleM of M. Thus, we can consider vector
fields which areG-equivariant as sections #fM. We call themG-equivariant vector
fields or simplyG-fields.

Let G be a compact Lie group and I8(V) be the unit sphere of a real orthogonal
representation spaseof G. Then what can we say about the existence of nonero
fields onS(V)? Clearly, the number of linearly independent nonzeroorefeglds is
always greater than or equal to the number of linearly inddpet nonzer&-fields.
Consequently, if there is no nonzero vector field(V), then there is no nonzero
G-field onS(V).

If G acts trivially onV, then the existence problem f@-fields corresponds to the
existence problem for ordinary vector fields. It was solvgdHe following theorem
due to Hopf [9] in 1926.

Theorem 1.0.1 (Poincare-Hopf, [13])Let M be a smooth compact manifold and v
a smooth vector field on M. If M has a bound#iyl, then we require that v points
outward at all boundary points. Then the sum of the indexdseoteros of v is equal

to the Euler characteristic of M.

Thus, there is a nonzero vector field 8A if and only if n is odd. Hopf [10] and
Eckmann [7] proved that ifi = (2a + 1)2***d and 0< ¢ < 3, then there arp(n) — 1
vector fields orS"™! wherep(n) = 8d + 2°¢ is the Hurwitz-Radon number. In 1962,

Adams [1] showed that this is the maximal number of lineanigependent vector
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fields.

If G is a finite group and acts freely on the unit sph8(¥) of a real orthogonal
representation spadg it was shown by Becker [3] that, under mild hypotheses, the
G-field number ofV depends only o6 and the real dimension &f. Here,G-field
number ofV is the maximal number of linearly independ@&afields onS(V).

Some concrete conditions were given by Namboodiri [14] ieréxistence of equiv-
ariant vector fields under mild fixed point conditions whea #iction ofG is not free.
He also found th&-field number for finite grou under some restrictions on the
dimension of the real representation space. Part of hidtsemaiswers the problem
of existence whefs is finite abelian. However, his results for arbitrary finitegps
only apply if dimV€ is at least 3. Existence é&tmanyG-fields onS(V) clearly im-
plies the existence démany vector fields o&(V") for any subgrougd of G, where
VH = {x e V | hx = x for all h € H} is theH-fixed point set ofV. If dimVC® = 3,
thenS(V®) ~ S? which does not have a nonzero vector field. So, there iGfield.

If dim V¢ > 3 andV is four-dimensional, the@ acts trivially onS® which is not an
interesting case. Therefore, we will consider the exisggoroblem for some finite
non-abelian groups, namely the dihedral group, the gamedadjuaternion group and
the semi-dihedral group. We will give the conditions for thastence ofs-fields on
the unit spheres of real orthogonal representatibakthese groups where divh= 4.
The results are based on the decompositiovi wito irreducible real representations.
In some cases, equivariant analogue of the Euler charstitely Costenoble and
Waner [5] is used.

We must note that Namboodiri actually constructed equavairrector fields explicitly
using Cliford algebras [14]. However, in general, @Bdield number can be larger
than the number db-fields he constructed. In fact, there are cases these twbensm

are not equal.

Our main results are given as Theorem 1.0.2, Theorem 1.6.Blz@orem 1.0.4 which
are about the dihedral group, the generalized quaternmupgand the semi-dihedral

group respectively. We give the statements below.

Let a andb be the generators of the dihedral group Bs given in detail in Chapter



5, D, has the following complete set of irreducible real représigons.

It has the trivial real representatiag or V. For n even, it has one-dimensional
nontrivial representationss, r,, andrz wherery(a) = 1, ri(b) = -1, ry(a) = -1,

ro(b) = 1, andrz(a) = r3(b) = —1. Forn odd,r; with the same definition is the only
one-dimensional nontrivial representation. We also hagedimensional irreducible
real representationg, wherea acts as rotation bykz/n, b acts as reflection with

respect tax axis on the plane and4 k < n/2.

Theorem 1.0.2 Let G beD, and V be a real orthogonal representation space of G
wheredimV = 4. Then there is a G-field on(¥) ~ S® if and only if the decomposi-

tion of V into irreducible real representations of G is ondloé following:

1. 2ri@2rjwhere0<i < j<3fornevenand <i < j < 1fornodd.

2. Vi, ® Vi, whereged(, ki) = ged, k).

The theorems for the generalized quaternion group and thedibedral group are
similar. Leta andb be the generators of the generalized quaternion group &d

the semi-dihedral group SP Both groups have the irreducible one-dimensional real
representationsy, 1, r, andrs with the same definitions. Leh be 2! and 22

for Q1 and SO respectively. Then they have two-dimensional irreduciielal
representationg, wherea acts as rotation bykzr/m, b acts as reflection with respect
to x axis on the plane and4 k < m/2.

A significant diterence from the dihedral group case is that the generalizateg
nion group and the semi-dihedral group have four-dimeradioreducible real repre-

sentationdJ, of quaternionic type and complex type respectively.

Theorem 1.0.3 Let G beQ,:» and V be a real orthogonal representation space of G
wheredimV = 4. Then there is a G-field on(8) ~ S® if and only if the decomposi-
tion of V into irreducible real representations of G is ondlod following:

1. 2ri@2rjwhere0<i< j<3,

2. Vi, ® Vi, Whereged(21, k;) = ged(22, ko),
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3. U.

Theorem 1.0.4 Let G beSDx» and V be a real orthogonal representation space of G
wheredimV = 4. Then there is a G-field on(¥) ~ S* if and only if the decomposi-

tion of V into irreducible real representations of G is ondloé following:

1. 2ri@2rjwhere0<i< j<3,
2. Vi, ® Vi, Whereged(2-2, k;) = ged(272, ko),

3. U.

The outline of the thesis is as follows. In Chapter 2, we ceoene basic definitions
and facts about elementary representation theoryGandmplexes. In Chapter 3, we
give the definition oiG-vector field and existence results of Costenoble and Waner
[5]. In Chapter 4, we give simpler conditions for the existemfG-fields for finite
abelian groups. In Chapter 5, we inspect decompositionswfdimensional real
representation spaces of the dihedral group in order to frslemce results fo6-
fields. In one particular case, we use strong Euler charstiterin Chapter 6 and
Chapter 7, we utilize the techniques that we used in Chaptiefibd similar results

for the generalized quaternion group and the semi-dihggloalp respectively.



CHAPTER 2

PRELIMINARIES

2.1 Elementary Representation Theory

In this section, we will cover some definitions and facts @iresentation theory. We

assumeX denotes one of the field® (real numbers) o (complex numbers).

Definition 2.1.1 (Linear Representation, [17]) A representation of G on the finite

dimensional vector space V oVEris a continuous action
p:GxV -V

of G on V such that the left translationy L. v — p(g, V) is aK-linear map for each
g € G. V is called the representation space of G. The dimensiarepresentation

is defined to be the dimensidimy V of the representation space.

We may sometimes call the representation spaas representatiovi. Depending on

K, a representation @ overK is called a real or complex representation respectively.

It is easy to show thaty is an automorphism o¥ with inversel ;- for eachg € G.
Alternatively, a representation is a continuous homomisrph : G — Autk(V),
g Lg[4, 2]. If we choose a basis fof of dimensiom, thenAutk (V) is isomorphic
to GL(n, K).

Definition 2.1.2 A continuous homomorphism-& GL(n, K) is called a matrix rep-
resentation of G.



Thus, a representatidhof G with dimg V = n corresponds to a matrix representation
which assigns eadfpe G a matrix in GL{, K).

Definition 2.1.3 ([2]) Let V and W be two representations of G olerAn isomor-
phism f: V — W is aK-linear map which is equivariant and has an inverse. If V

and W are isomorphic, then we will call them equivalent.

Let A and B be matrix representations. Then they are isonmoilpkhere exists an

invertible matrix T such that

TA(Q) = B(g)T forallge G.
Definition 2.1.4 (Irreducible Representation, [2]) If a subspace U of a representa-
tion space V is G-invariant, then it is called a subrepreaéinh of V. A nonzero

representation V is called irreducible {0} and V itself are the only subrepresenta-
tions of V.

Example 2.1.5 One-dimensional representations are irreducible.

If V andW are representations, then their direct sum W is a representation with

the diagonal actiog(v, w) = (gv, gw).

Proposition 2.1.6 ([2]) Let G be a compact group. If V is a subrepresentation of U,
then there is a complementary subrepresentation W suchlthatV @ W. Each
representation is a direct sum of irreducible subrepreagans.

Proof. See Proposition 3.18 and Theorem 3.20 of [2]. |

Theorem 2.1.7 (Schur's Lemma, [2])Let G be a group and let V and W be irre-

ducible representations of G. Then:

1. AG-map V— W is either zero or an isomorphism.

2. If K = C, then every G-map fV — V has the form §v) = Av for somel € G.
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Proof. See Proposition 3.22 of [2]. [ |

Let Irr(G, K) denote the complete set of irreducible pairwise nonisqmaorrepre-
sentations ofs overK, that is, each irreducible representation@®bver K is iso-
morphic to exactly one element of I&(K). We denote direct product ofcopies of
V e Irr(G, K) by nV. LetV; run through IrrG, K) and letV = U; & --- @ U, be a de-
composition ofV into the direct sum of irreducible representations. Weriedenote
the number of representations{id,, ..., U,} which are isomorphic t&;. ThenV is
isomorphic to mV; andmy’s are unique by the following theorem.
i

Theorem 2.1.8 ([2]) Let V, run throughlrr(G, K) and let m and n be nonnegative
integers. Ifcp mV; is equivalent tap n;V;, then m = n; for all i.
i i

Proof. See Proposition 3.24 of [2]. [ |

Proposition 2.1.9 An irreducible complex representation of an abelian Lieugrd

is one-dimensional.
Proof. See Proposition 1.13 of [4]. [ |

Definition 2.1.10 (Character, [2, 4]) Let V be a representation space of G. The func-
tionyv : G = K, g~ Tr(Ly) is called the character of V. Here, Tl) is the trace

of the linearmap | : V — V, v — gv. If the representation is irreducible, then its
character is called an irreducible character.

Theorem 2.1.11 ([4]) A representation is determined by its character up to isemor

phism.
Proof. See Theorem 4.12 of [4]. [ |
Example 2.1.12 Character of a one-dimensional matrix representation espre-

sentation itself. Thus, if two one-dimensional matrix esggntations are isomorphic,

then they are the same.



If V. andW are representations, then the tensor protf@tV is a representation with

the actiong(v® w) = gve® gw.

Proposition 2.1.13 ([4]) Let V and W be irreducible complex representations of G
and H respectively. Then&'W is an irreducible representation of xGH. Moreover,

any irreducible representation of & H is of this tensor product form.

Proof. See Proposition 4.14 of [4]. [ |

Definition 2.1.14 ([17]) Let V be a representation space of G o¥erwith a G-
invariant inner product, that isigvi, gw) = (v, V») forallg €e G and \, Vv, € V. Then
we can consider orthogonal or unitary representationsio& R or C respectively.
In the case of a matrix representation, an orthogonal or ganyirepresentation is a
homomorphism G- O(n) or G — U(n) respectively.

Definition 2.1.15 (Representation Sphere, [L7]Assume G acts on a representation

space V by orthogonal (or unitary) transformations. Thea it sphere
S(V)={veVI(v,v) =1}

of V is G-invariant. Thus, there is an induced action of G dN')5 The G-spaces of

this type are called representation spheres.

For a representation spag¢V) of G, we haveS(V") = S(V)" for any subgrougH
of G. Here, V! is theH-fixed point se{ve H | hv=v Vh € H}.

Definition 2.1.16 (Structure Map, [4]) Let V be a complex representation space of
G. IfaG-map j: V — V satisfies the following conditions, then itis called a stue
map on V.

1. jis conjugate linear, that is,(zV) = z(jv) for ze C.

2. = +1.

If j = 1, then jis called a real structure map. Otherwise,f5j —1, then j is called

a quaternionic structure map.



A complex representation space is of real (respectivelyegneonic) type if it admits
areal (respectively quaternionic) structure map. If itasself-conjugate, i.e\V 2 V,
then it is of complex type. We can determine the type of arducgble complex

representation with the help of its character.

Proposition 2.1.17 ([4]) Let V be an irreducible complex representation of a com-
pact group G ang, be its character. Then
1 & Visofrealtype,
f)((gz) dg=10 & Vis of complex type,

-1 < Visof quaternionic type.

Here,f f dg is the invariant (Harr-) integral [4]. I& is finite group, then instead of

J x(g®) dg we can write: ¥ x(g?) [16].
Proof. See Proposition 6.8 of [4] and Proposition 39 of [16]. [ |

Given a complex representation, we can find the correspgnaial representation
depending on the type of the given complex representatiendéfine a map; which
we will call the restriction map or realification. Given a cplex representation space
V, rzV is V viewed as a real vector space with the saBaaction. We define; by

e-(V) = Ceg V for a given real representation space V.

We partition IrrG, C) into three disjoint sets; Ir@, C)g, Irr(G, C)¢c and IrrG, C)y
which denote the sets of real type, complex type and quateimtype representa-
tions in Irr(G, C) respectively. We can also define & (R)x for K = R, C andH,
that is, we patrtition of IrnG, R) into real type, complex type and quaternionic type

representations respectively using complex representati

Definition 2.1.18 ([4]) Let G be a compact group. Let &lrr(G, R). Then:

1. If &(U) = V and Vis of real type, then W Irr(G, R)x.
2. IfU =rg(V) and V is of complex type, then &Irr(G, R)c.

3. If U =r5(V) and V is of quaternionic type, then &Irr(G, R)y.
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Proposition 2.1.19 ([4]) Let G be a compact group. Then:

1. Velrr(G,Cr = rgV=UaU, U elm(G,R).
2. Velr(G,C)c = rfvV=U=rLV, Ucelm(G,R)c.

3. Velrr(G,Cy =>riV=U, Uelr(GR).

Proof. See Proposition 6.6 of [4]. [ |

Proposition 2.1.20 ([16]) Letp : G — GL(V) be an irreducible complex representa-

tion of a finite group G of dimension n with characgerThen there are three cases.

1. All values ofy are real, andpo is realizable by a real representatign, that is,
V = V@ iVy = C®g Vo Wwhere \§ is a G-invariant real subspace of V. The
representatiomy is irreducible with charactey.

2. One of the values gf is not real. By realificationp defines an irreducible

representation of dimensidn with charactery + .

3. Allvalues ofy are real, bufp is not realizable oveR. By realificationp defines

an irreducible representation of dimensi@n and with character.

A complex representatignis of real, complex or quaternionic type if and only if it is

of case 1, 2 or 3 respectively.

Proof. See Proposition 39 of [16]. |

2.2 Equivariant CW-Complexes
Definition 2.2.1 ([17]) Let n be a nonnegative integer. Let A be a G-space. Given a
family (H; | j € J) of closed subgroup Hof G and G-maps

¢j:G/HjxS"™ — A jeJ,

10



we consider pushouts of G-spaces

[[G/H;xS™ —— A

jed [

N I

jed

Such thatp | G/H; x S™* = ¢; and¢ | G/H; x D" = ¢,. If such pushout exist and
i is a closed embedding, we use the following terminologys ¥bitained from A by
(simultaneously) attaching the family of (equivariantyelis (G/H; x D" | j € J)
of type(G/H; | j € J). We call¢(G/H; x D") a closed n-cell of type G1; and
#(G/H; x f)”) an open n-cell of type @H;. Moreover,¢(G/H; x S"™) is called the
boundary ofp(G/H; x D"). The map

(#j.¢)) : (G/H; x D",G/H; x S"™) - (X, A)

is called the characteristic map of the corresponding ri-aab ¢; is called the at-
taching map.

Definition 2.2.2 (Equivariant CW-Decomposition, [17]) SupposegX, A) is a pair
of G-spaces with A being a Hausgbspace. An equivariant CW-decomposition
of (X, A) consists of a filtratior{X, | n € Z) of X such that the following holds:

1. Ac Xg; A= X,forn< 0; X = UX,.

2. For each n> O the space Xis obtained from X ; by attaching n-cells.

3. X carries the colimit topology with respect(f¥,), i.e. Bc X is closed if and

only if BN X, is closed in X for all n.

Definition 2.2.3 (Equivariant CW-Complex, [17]) If (X,) is an equivariant CW-
decomposition ofX, A), then (X, A) is called a relative equivariant CW-complex.
If A =0, then X is called an equivariant CW-complex. The subspadse ¢élled the
n-skeleton ofX, A). The cells ofX,, X,_1) are called the n-cells aiX, A).

Instead ofG-equivarianlCW-complex, we will use the ter@-complex. The follow-

ing Definition 2.2.4 and Proposition 2.2.5 enable us to qoiestaG-complex from

11



a CW-complex that satisfies certain properties. A more gendgitification can be

found in the paper by Matumoto [12].

Definition 2.2.4 (Cellular Action, [17]) Let X be a CW-complex and G be a discrete
group. G acts cellularly (or cell preserving) on X if the fmNing holds:

1. If eis an open cell of X then ge is also an open cell of X fogallG.

2. If ge= e then gx= x for any point x in e.

Proposition 2.2.5 ([17]) Let X be a CW-complex and G act cellularly on X. Then X
is a G-complex with n-skeleton, X

Proof. See Proposition 1.15 in Chapter 2 of [17] |

Example 2.2.6 ([11]) Let G be a finite group and V be an orthogonal G representa-
tion. The representation spherg\H has the following G-complex structure. Let X
be the convex hull of

{+gelgeG,1<i<mj

where{e | 1 < i < m} is an orthonormal basis for V. Then its boundai) is
G-homeomorphic to &) by radial projection. So we have a simplicial complex
structure ondX where g acts simplicially. If we take its first barycentribdivision,
then g induces the identity map on e for any simplex e witk=ge. Thus, it is a
G-complex by Proposition 2.2.5.

12



CHAPTER 3

G-VECTOR FIELDS

3.1 Definitions

In this section, we give some basic definitions and generllt® abouiG-vector
fields.

Definition 3.1.1 (G-Manifold, [17]) Let G be a Lie group and M be a smooth man-
ifold. If the action Gx M — M, (g,m) — gm is a smooth map, then it is called a
smooth action. A manifold along with a smooth action is chlesmooth G-manifold.

Proposition 3.1.2 Let M be a smooth G-manifold. Then the tangent bundle T M of

M has an induced G-action.

Proof. Let M be a smootls-manifold. Since the action @& is smooth onM, left
translationLy : M — M, p — gp, is a smooth map for eaahe G. Ly induces a
smooth magll, : TM — T M such that the following diagram commutes.

dig
™ — TM

an lnM

Lg
M — M

Then we define the action gfe G onu, € T,M c TM by dLg(uy). |

Definition 3.1.3 (G-Vector Field) A vector field v: M — TM on M is a G-vector
field if M gx) = gu(x) for all x e M and ge G.

For simplicity, we will use the terrs-field to refer toG-vector fields.

13



3.2 The Strong Euler Characteristic

In this section, we give the existence results of Costenate\Waner [5].

Definition 3.2.1 ([5]) Let X be a finite G-complex. The strong equivariant Euler
characteristic of X is {X) which is the equivariant transfer associated with the fi-

bration X — «. That is, {X) is the composite
S 5> DX"AX" 5 DXTAXFAX" -5 SAXT,

where DX is the equivariant Spanier-Whitehead dual df ahd the second map is
given by the diagonal on X. We consider this stable G-map 880 X* as an
element ofi5(X*), the equivariant stable Oth homotopy group of X, i.e., treugrof

equivariant stable maps from’$o X*.

Instead of the definition above, we will use Proposition34nce it simplifies the

computation of the strong Euler characteristic f@-aomplex.

Definition 3.2.2 Let H be a subgroup of G. We will denote the normalizer of H in G
by NH or NsH. The Weyl group WH of H is defined by XHH

Definition 3.2.3 (G-Homotopy, [17]) Let f, f; : X — Y be G-maps. Then they are
called G-homotopic if there exists a continuous G-mapXx [0, 1] — Y such that
F(x, 0) = fo(X) and F(x, 1) = f1(X). Here, we define action of G onxq0, 1] with the
diagonal action wher¢0, 1] has the trivial action. Each map fx — F(x,t) is then

a G-map. F is called a G-homotopy fromtb f;.

Proposition 3.2.4 ([5]) If X is a G-space thefS(X*) is the free abelian group gen-
erated by the equivalence classes of G-map¥e3{H — X for those subgroups H
such that WH is finite. A map x is equivalent to a map &/H’ — X if there is a
G-homeomorphisi: G/H — G/H’ such that Xo & ~ Xx.

We will denote by K] the equivalence class af: G/H — X.
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Proposition 3.2.5 ([5]) Let X be a finite G-complex with cells/&; x €' — X. Let
X : G/H; - G/H; x €" — X be the composite with the inclusion of an orbit. Then

() = ) (-1 [x] € A5(X)
i
We have two simple observations.

Proposition 3.2.6 Let X be a finite G-CW complex and G a finite group(X)t= 0

then the ordinary Euler characteristic of X is also 0.

Proof. If t(X) = 0, then we have

) = D (-1'[x] =0.

If [ X]=[X'] then|G/H| = |G/H’| by Proposition 3.2.4. Thus,
D (-1PIG/Hil = 0.
i

SinceG is finite, X is also aCW-complex [12]. Thus, the above sum is its Euler
characteristic. [

Proposition 3.2.7 Let X be a finite G-complex which is composed of even dimen-
sional cells GH; x €" — X, i € I, and odd dimensional cellsB; x € — X, je J.
If t(X) = Othen|l| = |J].

Proof. Assumet(X) = 0 then
t(X) = > [x]- > [x]=0.
il jed
As the equivalence classes are the generators of a frealgetup, an equivalence
class corresponding to an even dimensional cell can onlgetavith an equivalence

class corresponding to an odd dimensional cell. Thus|J|. [ |

Theorem 3.2.8 ([5]) Let M be a smooth compact G-manifold. Then M has a nonzero

tangent vector field that is outward normal 6M if and only if {M) = O.

Proof. See [5, Theorem 3.5]. [ |
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CHAPTER 4

G-FIELDS ON S FOR FINITE ABELIAN GROUPS

G-field number for finite abelian groups are given by Nambaddi]. His results
are general results for all spheres and he uses K-theoryitpats to prove them.
WhenS(V) is three-dimensional, it is possible to prove the existenitG-fields on
S(V) by more elementary arguments. The statement and the wdiztsed on the
decomposition o/ into irreducible real representations @f The main existence
theorem for the finite abelian gro@pis the following.

Theorem 4.0.9 Let G be a finite abelian group. Let V be a four-dimensional rea
orthogonal representation space of G. Then there is a G-bal&(V) ~ S® if and

only if the real representation of G on V is the direct sum af tatations.
Let G be a finite abelian group. Théhis isomorphic to
ZMXZ"\ZX”’XZW .

a1

So, we can write ang € G as @7, 052, . . ., 0i) whereg, is a generator of,,. Since
G is abelian, its irreducible complex representations aeedimensional. Complex

representations ¢, aret; defined by
Qv = €2"9/Myforg = 0,1,...,m — 1 [16].
If we use Proposition 2.1.13, then the irreducible repregems ofG are

S1 L) sk
ety e ot
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defined by

a1

a;
gv= (9795, - GV
— gurisy/my Ro2nisy/My || A2riSKk/ My,

Its character ig2st/m ... ga2ris/Me |t js real valued for alh € G if eache?s/™ is
real valued, i.e.§ = 0 orm is even ands = m/2. Those with real valued character

for all g € G correspond to one-dimensional real representatiategined by
gv= (07 5 -, ORIV = ()M (-1l (~1asdMy,

Thus, for a giverg € G, r is either a reflection or identity and 2an be considered as
a rotation byr or 0 respectively. Otherwise, the complex representatimresponds
to a two-dimensional real irreducible representatutefined by
cosfy; —sing
gv= (gL 0% . ...V =] ’ v
sinfy  CosHy
wherefy = a,218/my + a21S,/mp + ... + a2 /M and its character is 2 c6g.
Thus, R is a rotation by ang#.

Definition 4.0.10 We define,ito be the magp"R? — 5" R? such that
bt (X1, X2) P (=X%2, X1)

on eachR?. That is, i is multiplication by the complex number i @ considered in

D" Rr2,

Lemma 4.0.11Let G be a finite group angV, p) be a real orthogonal representation
of dimension four. Letyrand r, denote one-dimensional (not necessarily distinct)
representations of G. Let the decomposition of V be isomorphthe direct sum
of one-dimensional real representation spaces. Then tiseeenonzero G-field on
S(V) ~ S®if and only if p= 2r; @ 2r.

Proof. Let py denote the trivial representation. If there exist nonkdtivepresenta-
tions, we letp, denote non-trivial one-dimensional representations aiherl, 2, 3, 4.
Then, we inspect each possible decompositiop.oHowever, we should note that

some of the cases does not apply to some groups.

17



10.

The case = 4p, : In this case, we have trivial action & on V. Since the
non-equivariant Euler characteristic 8f is 0, there is a nonzerG-field on
S(V).

. The casep = p; @ 3po : S(V®) is S? which has no nonzero vector field. So

S(V) does not admit a nonzefa-field.

. The cas® = 2p; & 2po : In this case,dis a nonzerds-field onS(V).

The case = p; ® P, ® 2P : Assumer; # r, then there is ah € G such that
r1(h) # ro(h). Without loss of generality, assumgh) = 1 thenS(V<") is S2.
SoS(V) does not admit a nonzefa-field.

. Thecas@ = p1® p.® p3® Po : S(V®) is S° which has no nonzero vector field.

SoS(V) does not admit a nonzefa-field.

. The case@ = p1 @ P, ® Pz ® P4 : Assumepy, P2, P3, P4 are all distinct repre-

sentations. Then, there is &ine G such that p;(h), p2(h)) # (ps(h), ps(h)).
Without loss of generality, cases are the following:

(@) pu(h) = 1 andpy(h) = ps(h) = pa(h) = -1 thenS(V="") is S°,

(b) pu(h) = p2(h) = pa(h) = 1 andpa(h) = ~1 thenS(V=") is S?,

(©) pu(h) = po(h) = 1 andpz(h) = ps(h) = -1 then there is am’ such
that py(h’) # pz(h’). Without loss of generality, assunpg(h’) = 1 then
S(V<"">) is SO,

Thus, in any case&s(V) does not admit a nonzef®-field.

. The case = p;: & p» ® 2ps: Assumep,, p,, Ps are distinct representations.

There is arh € G such thatri(h) # ro(h). Without loss of generality, assume
r.(h) = 1 thenS(V<"") is S? or S°. SoS(V) does not admit a nonze@-field.

. The cas® = 2p; & 2p; : In this case,,iis a nonzerds-field.

. The case = p:®3p, : Sincep; # py, thereis arh € G such thap,(h) # pa(h).

If py(h) = 1 thenS(V<")is S°. Otherwiser,(h) = 1 andS(V<"") is S2. In any

case,S(V) does not admit a nonzef®-field.
The case = 4p; : In this caseiy is a nonzerds-field onS(V).
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Lemma 4.0.12Let G be a group. If V and W are realification of complex represe

tations then j is a nonzero G-field on ¥ & W).

Proof. AssumeA; andBy are corresponding matricesdfandW respectively. Since
V andW are realification of complex representatioAg.andBy correspond to some
complex matrices. Now, consider a complex numbet a + bi as an entry of a

complex matrix, then

a -b
b a

a -b
b a

0 -1

1 0 1 0

0 1]

So,Aq® By commutes with the matrix of which is the complex identity matrix times

complexi considered ofR. [ |

Proof of Theorem 4.0.9.In Lemma 4.0.11, we covered all the possible combinations
of four-dimensional real orthogonal representations Wigien be decomposed into a
direct sum of one-dimensional representations.ri.endr, denote one-dimensional
irreducible real representations aRdandR, two-dimensional irreducible real rep-

resentations of finite abelian gro@ Then the remaining cases are the following.

1. Thecas®, & R, : iy is aG-field which directly follows from Lemma 4.0.12.

2. The case 12 @ R, : 2r; can be considered as the realification of a complex

representation. Thus, is aG-field.

3. The case; @r,®R; : S(VC) is S° which does not admit a nonzero vector field.
Thus, there is n&-field.

Therefore there is &-field if the representation ig2® 2r,, Ry @R, or 2r; &R, which
can be considered as the direct sum of two rotations. [ |
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CHAPTER 5

G-FIELDS ON S? FOR DIHEDRAL GROUP ACTIONS

In this chapter, we will give the proof of Theorem 1.0.2 abibigtexistence db-fields
on the representation sphe®¢V) of a four-dimensional real orthogonal representa-
tion spaceV of G, whereG is the dihedral group P

5.1 Real Representations of the Dihedral Group

The dihedral group of ordemyenerated by elemergsandb has the presentation
Dh=(abla"=b’=1, ab=ba™).

The elements of Pare 1a,a%...,a" % b,ab,ab,...,a"b. It has the following

complete set of pairwise nonisomorphic irreducible compépresentations [16].

One-dimensional irreducible complex representationswiis even:

® o(@) = 1,qo(b) = 1,
e i@ = 1,qu(b) = -1,
* 0x(a) = -1,02(b) = 1,

e 03(a) = —1,03(b) = -1.

One-dimensional irreducible complex representationswiis odd:

e go(a) = 1,qo(b) = 1,
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e 0i(@) = 1,qu(b) = -1.

Two-dimensional irreducible complex representation:

W 0 0 1
a2 2) ot
0 w 10

wherek is an integer such thatg k < n/2 andw = €/",

Now, we will use Proposition 2.1.17 to determine the typethefcomplex represen-
tations given above. We note thaf"p)? = a™ba™ = ba™a™b = b? = 1.

For evemn, sinceq;((a™)?) = 1 andg;((a™0)?) = g;(1) = 1 for j = 0, 1,2, 3, we have

1

Z 1

geG

For oddn, the above sum has the same valuejfer0, 1. Hence, the one-dimensional

complex representations are of real type for even and odeksaifn.

If we let v, denote the character pf, then

2k(@m)r S4kmrr

2co

x(@?) = y(@™) = 2 cos

and
(@)% = xi(1) = 2.

Considerz = €’ such thaiz # 1 andz" = 1. ThenY 572" = (' - 1)/(z- 1) = 0.

As a result, ifng = 27zl for 0 < ¢ < 27 and some integdr theny" "t cosmg = 0.

Consequently,
1 1 n-1 n-1
= D) = o [Zxk((amf) + Zxk((amb)z)]
| | 0eG n m=0 m=0

mr 1
1)|==—(0+2n)=1.
+ My ( )J o (0+2n)
So, the two-dimensional irreducible complex represematare also of real type.

Thus, all irreducible real representations gf&e of real type and of degree at most

two. Then it has the following complete set of irreduciblalnepresentations.
One-dimensional irreducible real representations whisreven:
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ro(@) = 1,ro(b) = 1,

ri(a = 1,ry(b) = -1,

ra(a) = -1,rz(b) = 1,

rs(a) = —1,r3(b) = -1.

These correspond to the irreducible complex representadinq;, g, andgs respec-
tively. If nis odd,ro andr, defined above are the only one-dimensional representa-
tions. We will also denote their respective representagaces withig, ry, r, andrs.

We may sometimes udg instead ot to denote the trivial real representation space.

Two-dimensional irreducible real representations:

cost —Sinfy 1 0
a— , b~
sinf, CcoSHi 0 -1
wheredy = 27k/n and k is an integer such thatd k < n/2. We will denote these

irreducible real representation spaces with They correspond to the irreducible

complex representation spacesf

5.2 G-Complex Structure of Join

Although, we can use Example 2.2.6 to get a gen@rmomplex. It will be tedious
to compute the strong Euler characteristic using the stradiven in that example.

Instead, we will use the fact that representation is giveas V.

Definition 5.2.1 (Join, [8]) Let X and Y be spaces, then the joir X of X and Y is
the quotient space X Y x [0, 1] under the identification$x, y;, 0) ~ (X, Y»,0) and
(X1, Y, 1) ~ (X, y,1). If X and Y are CW-complexes, then:X has a CW-complex
structure. It contains the subspaces X and Y as subcompaxdste remaining cells
are the product cells of X Y x [0, 1].

Example 5.2.2([8])

1. S+ SPis St
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2. Join ofn copies ofS% is S"1.

3. S« Stis S, In general, join oS" andS™ is S™™L,

Lemmab5.2.3 Let X and Y be G-spaces and CW-complexes. If G acts celludarly
X and Y, then G acts cellularly on XY .

Proof. SinceX andY areCW-complexes, we have@W-complex structure oX Y.
This CW-complex structure contairdé andY as subcomplexes and the product cells
of XxYx(0,1). SinceG already acts cellularly on subcomplex€andY, we should
check the product cells of x Y x (0, 1). We define the action @ on X x Y x (0,1)

with the diagonal action where (D) has the trivialG-action.

1. Letebe an open cell itX, f be an open cell ity, andg € G. Then
glex f x(0,1))=gexgfx(0,1).

SinceG acts cellularly orX andY, geandgf are open cells itX andY respec-
tively. Sog(ex f x (0,1)) is an open cell ilX x Y x (0, 1). Hence, itis an open
cellin X Y.

2. Ifglex fx(0,1))=ex f x(0,1), then
gexgfx(0,1)=ex fx(0,1)= ge=e gf =f.

Because of the cellular action & on X andY, the maps induced bg on
the cellse and f are identity maps. Thus, the map induceddogn the cell

ex f x(0,1) is identity.

ThereforeG acts cellularly onX « Y. [ |

Proposition 5.2.4 Let X and Y be G-spaces and CW-complexes. If G acts cellularly

on X and Y, then XY is a G-complex.

Proof. Lemma 5.2.3 implies th& acts cellularly onX =Y. SoX = Y is aG-complex
by Proposition 2.2.5. [ |

23



5.3 Existence ofG-Fields onS(V)

Let V be a real orthogonal representation space pbfdimension four. In order to
determine the existence Gtfields onS(V) ~ S3, we want to inspect all the possible
decompositions o¥ into irreducible real representations gf.DWVe already inspected
the representations which can be decomposed into a direcbfone-dimensional
representations in a more general setting in Lemma 4.0.ti&.r@maining cases are

the following:

1. eV,

2. Vo®rm® Vi wherem = 1, 2, 3 for evenn or m = 1 for oddn,
3. 2 ® Vi wherem = 1, 2, 3 for evenn or m = 1 for oddn,

4. ri@r;®Vewhere 1<i < j < 3 for evenn,

5. 2V,

6. Vi, @ Vi, wherek; # k.

We shall give the proof of Theorem 1.0.2 as a series of prtipasiand lemmas.

Proposition 5.3.1 Let V be a real orthogonal representation spaceédgfof dimen-
sion four. There is no nonzero G-field oi\g ~ S? if the decomposition of V into

irreducible real representations @, is one of the following:

1. 2Vo®V,,
2. Vo®rm® Vi where m= 1, 2, 3for even n or m= 1 for odd n,
3. 2rn® Vi where m= 1, 2, 3for even n or n= 1 for odd n,

4. rior;®Viwherel <i < j<3forevenn.

Proof.
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1. Vo Vi

Sinceb - (X, X2, X3, Xa) = (X1, X2, X3, —Xa), S(V<P>) is S?. Since S? has no

nonzero vector field$(V) does not admit a nonzef®-field.

2. Vo® e Vi

S(V®) is S° which has no nonzero vector field. S{V) does not admit a

nonzeroG-field.

3. 2, Vi

Form = 1 or 3 we haved - (X, Xo, X3, X4) = (—X1, = X2, X3, —X4) and form = 2,
b+ (Xq, X2, X3, Xa) = (X1, X2, X3, =Xa). S(V<">) is S° or S? respectively. Since

neither has nonzero vector field(V) does not admit a nonzefa-field.
4. 1 @ r o Vi

a.rernaV.:
This case is valid only ifi is even. Since generataracts as a rotation for
Viyn, either it fixes the wholese, plane or it does not fix any point on the
€364 plane. Alsoa - (X1, Xo) = (X1, —X2) on thee,e, plane. SAaS(V<®) is S°
or S?. Thus,S(V) does not admit a nonze@-field.

b. rierso Vi

It is similar to the above case.

C.I,®r3d Vy:
In this casep - (X1, Xo, X3, Xa) = (X1, —X2, X3, —=Xa), a° - (X1, X2) = (X1, X2) ON
thee,e, plane and? acts as a rotation on thege, plane. Since the generator
a rotates with 2k/n € (0, r) , @ does not fix any point on these, plane

thenS(V<L2>) is S°. As a resultS(V) does not admit a nonzefa-field.

For the case Y, we need the following lemma.

Lemma 5.3.2 Let G be a finite group and V a real (matrix) representationt ILee
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the nx n identity matrix. Then the vector field w — Jx where

0 -l
J=
L 0

is a G-vector field on 8/ @ V).

Proof. Let Ay be the corresponding matrix ¥ffor g € G. Then

el S S

A, O
and
0|[{0 - 0 -
oo 2
0 Agf{|l O A, O
Then we have(gX) = gu(X). Thusvis a nonzerds-field onS(V & V). [ |

Proposition 5.3.3 If the representation has the decomposit®y, then the vector

field x— Jx where

0 0 -1 0]
00 0 -1
J=
10 0 O
0 1 0 O]
is a nonzero G-field on ).
Proof. This is a direct consequence of Lemma 5.3.2. [ |

Next, we examine the cad&g, & V..

Proposition 5.3.4 Let G beD,, and V be a real orthogonal representation space of
G of dimension four. Lety® V,, be the decomposition of V into irreducible rep-
resentations. Then there is a nonzero G-field )S~ S® if and only if we have
gedn, ky) = ged(n, ko).

Now, we will give the proof of Proposition 5.3.4. There is anmeroG-field onS(V)
if k; = ko by Proposition 5.3.3. So, we assume tkat# k,. Unlike thek; = k;
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case, we cannot find a linear equivariant vector field. We Havex, X0, X3, X4) =
(X1, —Xa, X3, —X4). Assume tha&! - (X;, %) = (X1, X2) on thee,e; plane and' - (X3, X1) #

(X3, X4) ONn theese, plane. Sinced acts as a rotation, it means that it fixes all points
on thee;e, plane and only the origin on thee, plane. TherS(V<b’a'>) is S° which
implies that,S(V) does not admit a nonzefa-field. So, we should restrict ourselves
to the casen/ gcd(n, k) = n/gecd, k). Lets = n/gcdp, k) = n/gedn, k). We
will compute the strong Euler characteristic to determimedxistence of a nonzero
G-field onS(V) ~ S3.

Since our representation is the sum of two two-dimensiog@lasentations, we can
use the fact thag® = S! « S! together with Lemma 5.2.3 to defineGxcomplex.
We will denoteS* in the eje; plane byS! and St in the ese, plane byS}. First,
we will define CW-complexes forS} and S; on whichG acts cellularly. So, first
considerS} and take the pointge;. Then, in order to satisfy the second condition
of the Proposition 2.2.5, we take the midpoints of those toosed byge, on St
So, we have the poinige, andge; wheree; denotes the vertex following, in the
counter clockwise direction. OS}, we have the (distinct) vertexege, anda'ey,
wherel = 0,1,...,s— 1. We note that, ik is even—a''e, is a2e, for somel,. If sis
odd-a*e; is a”2€; for somel,. We apply the same argument3é. Similarly, we have
the vertexes!e; anda'es, wherel = 0,1, ..., s—1 and&; denotes the vertex following
ez in the counter clockwise direction. SinGeacts cellularly on botl€W-complexes,
we defined foiS1 andS}, G also acts cellularly o] = S; = S*. Thus, we have &-
complex structure fo82. However, for simplicity, we will use a simplicial complex
based on the above definition. That is, we take the join of talpgons formed by the
vertexes, given above, @{ andS; respectively. Similarly, it has the cellular action
of G. Since the representation is orthogonal, iGisiomeomorphic t&2 via radial

projection.

In the casen/ gcd(, k) = s = n/ gcdn, k), we have gcdt, k;) = gedn, ky). If we
write gcdf, k) = cn + dk;, then 1= ¢ s+ di(ki/ gcd(n, k). So, we can uniquely
determined; as the multiplicative inverse d€/gcd, k) modulo s in the interval
(0,9) fori = 1,2. Thus, the edge followinfg;, & ] is [E, adlel] on S} and the edge
following [e;&] is [@, adZeg] on Sl. Furthermorea®be = & , a%bg; = &, and

a%ba'e; = a'gg where tis ¢, — dy)/2 if d; — ds is even (ifsis evend, — d, is always
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even) or ¢, —d, + 5)/2 if d; — d, is odd.

Thus, ourG-complex structure has the followirggtcells.

e 0-cells(0.i) We have four O-cells. These are formed by the vertexes,;en

plane andse; plane.

a. G/(b, a%) x ey,

b. G/(b, a%) x €3,

c. G/(a%b, as) x &g,
d. G/(a%b, a% x a'&s.

e 1-cells(1.i) We have two 1-cells. These are formed by the edges @plane

andese, plane respectively.

a. G/(@%) x [ey, &],
b. G/(a% x [es, &].
e 1-cells(1.ii} We have four 1-cells formed by joining two vertexes, onefiihe

e:& plane and the other from thege, plane with the isotropy group generated

by a reflection and a rotation.

a. G/(b,a% x [e., &],
b. G/(b,a% x [er, —ey],
c. G/(a"b, a% x [&r, algy],
d. G/(a%b,a% x [&y, -a'5).
e 1-cells(1.iiix We have (8- 2)-many 1-cells formed by joining two 0-cells one

from thee,e plane and the other from thege, plane with the isotropy group

generated by a rotation.
a. G/(a% x [er, a®ej],
b. G/(a% x [e1, a/gg],
c. G/(a% x [er, a®a'gy],

d. G/(a%) x [er, a%*Daley],
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where

-i=12...,(s-1)/2andj=0,1,...,(s-3)/2if sis odd.
-i=12...,(s-2)/2andj=0,1,...,(s-2)/2if sis even.

e 2-cells(2.i) We have 4-many 2-cells formed by either joining a 1-cell from

thee;e, plane and a 0-cell from theze, plane or vice-versa.

a. G/(a% x [ey, &, des),
b. G/(a% x [ey, &, d&s),
c. G/(a% x [ey, de;, AT,

d. G/(a% x [y, d'es, d&g],
wherel =0,1,...,s—1.

e 3-cells(3.i) We have 2-many 3-cells formed by joining two 1-cells one from

thee,e, plane and the other from thege, plane.

a. G/(a% x [ey, &y, des, d6g),
b. G/(a% x [e, &, dbes, abeg],

wherel =0,1,...,s-1.

Assume we have a simplicial complex with the cellular actodiis. Let H be the
isotropy group of the simplex and x be an point ino~. If x is an interior point,
then necessarilyx have the same isotropy grotih Otherwise, we require it to have
the same isotropy groud. Now, lety be a point on the boundary of with the
same isotropy groupl. Sincegx andgy are ingo, t(gy) + (1 — t)(gX) is in go for

t € [0,1]. We define mapdy, f; : G/H — G/H x o such thatfy(gH) = gx and
fi(gH) = gy. We define a homotopl : G/H x [0, 1] — G/H X o from f, to f; by
(gH, 1) - t(gy) + (1 - 1)(9X). Thus,F(gH,0) = gx F(gh 1) = gyand

F(g'(gH.1)) = F(g'gH. 1) = t(g'gy) + (1 - 1)(9'9X)
=g (t(gy) + g'((1 - )(g¥) = g'(t(gy) + (1 - 1)(gx)
= g'F(gH.1).
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Hence F is aG-homotopy. Therefore, in order to show the equivalence ®ktuiv-
alence classes of two maps, itfisces to show that their respecti@cells have the
same isotropy groupl and one of the following holds.

1. One of the cells is on the boundary of the other.

2. Both cells are on the boundary of another cell with the sawteopy groupH.

By cancellation of cells, we mean the cancellation of theiresponding equivalence

classes in the sum given for strong Euler characteristic.

Using theG-homotopy above, we can say that

G/(b,a% x e;,G/(b,a% x e,
G/(a%b, a% x &7, G/(a%h, a% x a'es

cancel with

G/(b,a% x [e1, —€3], G/(b, a% x [e1, &j],
G/(a™b, &% x [€r, —a'&], G/(a™b, &% x [, a'&]

respectively.

That is,G-cells in 0.i cancel witlG-cells in 1.ii.

Consider the set of cell§/(a’) x [e,, d'e;, a&] wherel = 0,1,...,s— 1 from 2.i.c
which is the same set of cells &§(a°) x [e;, a%'e;, a%'g] wherel = 0,1,...,s- 1.

We partition this set o6s-cells into three. We have:

2.i.cl. G/(a%) x [ey, €3, 6],

2..c2. G/(a% x [e1, a%e3, a%'gg], i = 1,2,...,m,

2.i.c3. G/(a% x [e1, a%e3, a%'g], i=s-1,s-2,...,m+ 1.

[er, €3,63] and [e,, €] are on the boundary ofe[, €;, e;, €] and all have the same

isotropy group. Thus, first on@/(a%) x [ey, es, €] cancels withG/(a%) x [e, &].

If we rewrite the third set o6-cells (2.i.c3) above in a fierent way using the fol-

lowing operation:
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a®h - G/(@% x [er, a% &3, a5
= G/(a° x [a®°be;, a%°a *'bey, a®°a b
= G/(a%) x [y, 8% ey, 2% g g ]

= G/(a% x [&y, a% ey, a®(s-Dgg]

Settingj = s—i -1, we have

G/(a% x [e, a%"Ve; a®igg], j=0,1,...,5—m- 2.

If sis odd, we choosento be - 1)/2sos—-m-2 = (s—3)/2. If sis even, we
choosemto be - 2)/2 thens—m-2=(s- 2)/2.

Thus, the second (2.i.c2) and the third (2.i.c3) sets of #rétjpn of 2.i.c cancel with
G/(a% x[e1, a%'e3] andG/(a®) x [e;, a%/g5] respectively, where= 1,2, ..., (s—1)/2
andj =0,1,...,(s-3)/2if sisodd,onn =1,2,...,(s-2)/2andj =0,1,...,(s-2)/2

if sis even.
That is,G-cells of 2.i.c cancel witlis-cells in 1.i.a, 1.iii.a, 1.iii.b.

Now, consider the set of cel3/(a%) x [€r, a'e;, a&] wherel = 0,1,...,s- 1 from
2.i.d which are the same set of cellSgga’)x[e, a%'ale;, a®'a'g], | = 0,1, ..., s-1.
We partition this set o6-cells into three. We have:

2.i.d1. G/(a% x [€, a'es, d'&g),
2.i.d2. G/(a% x [&r, a%lVale;, a®i*Va'gg], j=0,1,...,m,

2.i.d3. G/(a% x [e, a®*Dale;, a®*Valg], j=s-2,5-3,...,m+ 1.

We can writeG/(a%) x [e3, &] asG/(a%) x [a'es, a'&3]. S0, it cancels with the first one
G/(a% x [ey, d'e3, a'Eg].

If we rewrite the third set o6-cells (2.i.d3) in a dierent way using the following

operation.
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a®5alh . G/(a® x [&, a2 Valey, ai*Daleg]
= G/(a°%) x [a®%a™bey, a®%aba®™(Dale;, a®%a" ba®+Valeg)
= G/(a°) x [er, a%a%a®- Vg hey, a®%a®(-1-Datbde]
= G/(a°) x [ey, aa®s 1 Vgte;, a®1-Dalg]

Settingi = s— j — 1, we have

d

G/(a% x [e1, aa®a'e;, a®a'gg], i = 1,2,...,s—m—2.

If sis odd, we choosento be - 3)/2 sos—-m-2=(s-1)/2. If sis even, we
choosemto be - 2)/2 thens—m-2=(s- 2)/2.

Thus, the second (2.i.d2) and the third (2.i.d3) sets of #rétn of 2.i.d cancel with
G/(a% x [er, a®*Dale;] and G/(a%) x [&r, a*alg;] respectively where ifs is odd,
j=0,1,...,(s-3)/2andi=1,2,...,(s-1)/2orif siseven,) =0,1,...,(s—2)/2

andi=12,...,(s-2)/2.

That is,G-cells of 2.i.d cancel witl-cells in 1.i.b, 1.iii.d, 1.iii.c.

Since we havelbe; = a'e;, theG-cells from 2.i (2.i.a and 2.i.b)

G/(a% x [ey, &, des], G/(a% x [ey, &, &'

cancel with the cells
G/(a% x [e1, &, dbey, dbes], G/(a° x [er, &, des, A

from 3.i respectively where= 0, 1,...,s- 1.
That is,G-cells in 2.i.a and 2.i.b cancel with-cells in 3.i.b and 3.i.a.

Hence,G-cells in 2.i cancel withG-cells in 1.i, 1.iii and 3.i and>-cells in 0.i cancel
with G-cells in 1.ii. As a result, the equivariant Euler charaster is 0. Thus there

is a nonzerds-field onS(V) ~ S2.
This completes the proof of Proposition 5.3.4.

Proof of Theorem 1.0.2. The proof follows from Lemma 4.0.11, Proposition 5.3.1
and Proposition 5.3.4 [ |
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CHAPTER 6

G-FIELDS ON S® FOR QUATERNION GROUP ACTIONS

In this chapter, we will give the proof of Theorem 1.0.3 abibietexistence db-fields
on the representation sphe®¢V) of a four-dimensional real orthogonal representa-

tion spaceV of G, whereG is the generalized quaternion group.Q

6.1 Real Representations of the Quaternion Group

The dicyclic group of orderdgenerated by elemengsandb has the presentation
Dic, = (a.b|a® = 1,a" = b%,ab=ha™*).

The elements of Dicare 1a,...,a°" %, b, ab,...,a* 'b. The generalized quaternion

group of order 21 is
Qi = (a, bla? =1,a® =b?%ab= ba‘1>.

So, it can be considered as the dicyclic group with paran2&tér The dicyclic group,
Dic,, has the following complete set of pairwise nonisomorpireducible complex

representations [6].

One-dimensional irreducible complex representationswiis odd:

® Qo(@) = 1,qo(b) = 1,
e i@ = 1,qu(b) = -1,
e p(a) = -1, 02(b) =1,
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e 03(a) = —1,q3(b) = —i.

One-dimensional irreducible complex representationswiis even:

do(@) = 1,qo(b) = 1,

(@) = 1, au(b) = -1,

() = -1,0x(b) = 1,

ds(a) = -1,qs(b) = -1.

Two-dimensional irreducible complex representations:

W0 0 (1)
pe(@) = A D)=
0 w 1 O

where 1< k < nandw = €7/,

Now, we can proceed to determine the types of these irreuapresentations. We
note that §"b)? = a™ba™ = ba™Ma™b = b?. We can find the types of these complex
representations with the help of Proposition 2.1.17. Weshav

1 , 1 2n-1 - 2n-1 - 1 2n-1 o ,
61 XK@ = g0 | 2@ + D (@) = 4| D (@) + 2me(B) |
m=0 m=0 m=0

geG

Type of one-dimensional complex representations whisrodd:
g@m =1fori=0,1,2,3andm=0,1,2,...,2n-1
e Forqy anda; we haveqi(b?) = 1, the sum is (14n)(2n + 2n) = 1. Then these
representations are of real type.
e Forq, andgs we haveg;(b?) = —1, the sum is (14n)(2n — 2n) = 0. Then these
representations are of complex type.
Type of one-dimensional complex representations whisreven:
gi(@®™ = 1 andq;(b?) = 1 fori=0,1,2,3andn=0,1,2,...,2n-1
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e Fordo, 0i, g2 andgs, the sumis (14n)(2n+2n) = 1. Then these representations
are of real type.

Type of two-dimensional complex representations:

Let v denote the character pf. Theny(a?™) = 2 cos(2nkr/n) andy(b?) = 2(-1)~.

Since @™b)? = b?, we have

2n-1 2n-1

2 (@)% = ) x(B) = 20 (0) = 2n(2(-1)) = 4n(-1)"
m=0 m=0

Also,

2n-1 2n-1

Z){(&Zm) — ZX(aZm) + ZX(aZm) — ZZX(azm) _ ZZ ) COSkan

Then using Proposition 2.1.17 we determine their types:

2n-1 2n-1

G Zx(gz)— y Zx(azmz)((am) (0+4n( 1)) = (-1

So,px is of real type if k is even and of quaternionic type if k is odd.

Using the fact that Q.: is the dicyclic group with parametef2, we have the fol-

lowing complete set of irreducible real representation®of:.
One-dimensional irreducible real representations:

They correspond tqo, g1, ¢ andgs (for evenn in dicyclic group case) respectively.

ro(@ =1, rob) =1

ri(a) = 1,ry(b) = -1,

ra(a) = -1rp(b) =1

rs(@ = -1rs(b) = -1.

We also denote their corresponding representation spatiesw, r, andrz respec-
tively.

Two-dimensional irreducible real representation spages
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They correspond to the complex representation spageg ahd defined by:

CcosH, —Sinéy 1 0
a— , b—
sinf, CcoSHy 0 -1

where 1< k < (2" - 2)/2 andg, = 27k/2"! provided than > 3.
Four-dimensional irreducible real representations spidge

They correspond to the two-dimensional complex repretientaof quaternionic
type. Thus, they are realifications of the complex repregemt spaces opy for
oddk where 1< k < 21,

6.2 Existence oiG-Fields onS(V)

Let V be a four-dimensional real representation spaceof Qe want to inspect
all the possible decompositions \¢fand their actions o8(V) ~ S3. We inspected
the representations which can be decomposed into a direcbfone-dimensional
representations in a more general case. We have the irtdeluenl representation
spaces with the similar actiongy = ro, ry, r,, r3 andVy as in the dihedral group case
for evenn. Also, these irreducible real representations gf.Chave the following

properties for any elememntof the representation space.

1. b%x = X,
2. 2% 'x = x,

3. abx= bax.
Thus, we have no equivariant vector field in the followingesas

o 2Vo® V,
e Vo®r,®Vy, 2rn® Vi,

e M@®r®dVi, 1 ®r3®V, rhdrz® V.
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Similar to the 2/ case for the dihedral group, we have the same equivariant vec
tor field in same case for the quaternion group. Sibgds the realification of a
two-dimensional complex representation of quaternioyppe} the vector fieldy is

equivariant.

Since the action oW has the above properties, the remaining 4se V, is similar
to the dihedral group case. When gctf2k;) # gcd(2-1,k,), there is no nonzero
G-field. When ged(21, k;) = gcd(2-1, k), we see that there exists a nonz€rfield
using the strong Euler characteristic.

As a result, the proof of Theorem 1.0.3 is similar to the pm@iorheorem 1.0.2.
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CHAPTER 7

G-FIELDS ON S3 FOR SEMI-DIHEDRAL GROUP ACTIONS

In this chapter, we will give the proof of Theorem 1.0.4 abibietexistence db-fields
on the representation sphe®¢V) of a four-dimensional real orthogonal representa-
tion spaceV of G, whereG is the semi-dihedral group SD

7.1 Real Representations of the Semi-Dihedral Group

The semi-dihedral group of ordef,Zor n > 4, is given by
SDy = (a,b|a®" =b?=1bab=a""1).

These 2 elements are B, ...,a> %, b,ab,...,a? ~!b. It has the following com-

plete set of irreducible complex representations [15].

One-dimensional irreducible complex representations:

do(@) = 1, qo(b) = 1,

(@) = 1, qu(b) = -1,

(@) = -1, 02(b) = 1,

gs(a) = —1,qs(b) = -1.

Two-dimensional irreducible complex representations:
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Consider the set

C= {1, 2.3,... 2" o3 20034 . 22
2724 1,272 43,.., 22 (270 - 1)),

Fork € C — {2"?}, we have two-dimensional irreducible complex representat

W€ 0 01
p(@) = [ ] pr(b) = [ ]
0 1

w(2”*2—1)k 0
wherew = €72, The character gfy is

- - 2cosk™  if kmis even,
xk(@"™) =0, y(@") =

K if kmis odd.

2i sin;

We can write the irreducible real representations sinceneswithe irreducible com-
plex representations. Firstly, all of the one-dimensiamahplex representations are
clearly of real type. Thus, we have one-dimensional realesgntations:

e 1o(@) = 1,r9(b) =1,

e ri(@ =1,ryb) = -1,

e (@) =-1,ry(b) =1,

e r3(@ =-1,r3(b) = -1.

Note that, since the order of the generatds 22,

(@™b)? = (a™b)(a™b) = a™(ba™b) = aM(bab)™

_ amam(Z"’z—l) — am(2”’2)

~ 1 if mis even,
a2 i mis odd.
Then the character aa'th)? is
xk(l)=2 if m is even,

x(@™)%) = (@) =2  ifmisodd and k is even,

@)= -2 ifmisoddand k is odd.
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If kis even, then

2n g
D xl(@mby?) =212 = 2",
m=0
If kis odd, then
211
> x(@@)?) =0,
m=0

sincey((@™b)?) is -2 for oddm, 2 for evenm and we have even number of summands.

2n—l_1 2n—2_1 2n—1_1 on- 2 -1

DxE = Y @M+ Y (@) =2 Z (@)
m=0 m=0 m=2n-2
25t 2krm 2t 2kmr
= =0.
m=0 2
Thus,
2 = 2m = M)\ 2 1 = 2
G Zx(g)—ﬁ(z x@)+ ), (@) )] [0+ 2, (@) )]

1 ifkiseven,

0 ifkisodd.

If kis evenp is of real type. Indeed, whehis even, we have:

W 0 0 1
o2 ) ot
0 w 10

which has the corresponding irreducible real represemaipaceV/, defined by

CcosH, —Sinéy 1 0
a— , b~
sinf, CcoSHi 0 -1
wheregy = kr/2"2, k e C — {2"2} andk is even. Moreover, if we substitukg?2 for

k, thenk runs through 12, ..., 2"3 — 1 andd, becomes Rr/2"2.

Otherwise, ifk is odd we have four-dimensional irreducible real represt@msUy
of complex type which are realifications of the represeatasipaces gy for k € C—
{22} andk is odd.
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7.2 Existence ofG-Fields onS(V)

Let V be a real orthogonal representation space of S/e want to inspect all the
possible decompositions &, so that, we can determine the existenceésdields
on S(V) ~ S We inspected the representations that can be decomposed in
direct sum of one-dimensional representations in a morergéoase. We have the
similar irreducible real representatioNg = rq,r1,rp, rz3 and Vi as in the dihedral
group case for even. Furthermore, these irreducible real representationsDef S

have the following properties for any elemetdf the representation space.
1. b?x = x,

2. a2 'x = X,

3. abx= balx.

Hence, we have no equivariant vector field in the followingesa

o 2V @V,

e \Vo®rn,® Vi, 2 ® Vi,

e DBV, IedrsdV,hdrsd V.
Similar to the 2/ case for the dihedral group, we have the same equivariatarvec
field J in the same case for the semi-dihedral group. Sidges the realification

of a two-dimensional complex representation of complexfytpe vector field is

equivariant.

Since the action ol has the above properties, the remaining 4se V, is similar
to the dihedral group case. When gctt2k;) # gcd(2-2,k,), there is no nonzero
G-field. When gcd(22, k,) = gcd(22, k), we see that there exists a nonz€xdield
using the strong Euler characteristic.

Therefore, the proof of Theorem 1.0.4 is similar to the prafofheorem 1.0.2.
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