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ABSTRACT 
 
 
 

DESIGN METHODS FOR PLANAR AND SPATIAL DEPLOYABLE 
STRUCTURES 

 
 

Kiper, Gökhan 

 

Ph.D., Mechanical Engineering Department 

Supervisor : Prof. Dr. Eres Söylemez 

 

August 2011, 146 pages 
 
 
 
This thesis study addresses the problem of overconstraint via introduction of 

conformal polyhedral linkages comprising revolute joints only and 

investigation of special geometric properties for the mobility of such 

overconstrained linkages. These linkages are of particular interest as 

deployable structures. First, planar case is issued and conditions for assembling 

irregular conformal polygonal linkages composed of regular and angulated 

scissor elements are derived. These planar assemblies are implemented into 

faces of polyhedral shapes and radially intersecting planes to obtain two 

different kind of polyhedral linkages. Rest of the thesis work relates to spatial 

linkages. Identical isosceles Bennett loops are assembled to obtain regular 

polygonal linkages and many such linkages are assembled to form polyhedral 

linkages. Then, Fulleroid-like linkages are presented. After these seemingly 

independent linkage types, Jitterbug-like linkages are introduced. Based on 

some observations on present linkages in the literature a definition for 

Jitterbug-like linkages is given first, and then a set of critical properties of these 

linkages are revealed. This special type of polyhedral linkages is further 



 v 

classified as being homothetic and non-homothetic, and geometric conditions 

to obtain mobile homothetic Jitterbug-like polyhedral linkages are investigated. 

Homohedral linkages, linkages with polyhedral supports with 3- and 4-valent 

vertices only, tangential polyhedral linkages are detailed as special cases and 

the degenerate case where all faces are coplanar is discussed. Two types of 

modifications on Jitterbug-like linkages are presented by addition of links on 

the faces and radial planes of Jitterbug-like linkages. Finally, a special class of 

Jitterbug-like linkages - modified Wren platforms are introduced as potential 

deployable structures. 

 
 
Keywords: Deployable Structures, Conformal Polyhedral Linkages, Jitterbug-

like Linkages 
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ÖZ 

 
 
 

DÜZLEMSEL VE UZAYSAL KATLANABİLİR YAPILAR İÇİN TASARIM 
YÖNTEMLERİ 

 
 
 

Kiper, Gökhan 

 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Eres Söylemez 

 

Ağustos 2011, 146 sayfa 
 
 
 
Bu tez çalışması yalnızca döner eklemler içeren ve fazla kısıtlı olan konformal 

çokyüzlü mekanizmalarının elde edilebilmesi için gerekli geometrik koşulların 

araştırılarak fazla-kısıtlılık probleminin bu mekanizmalar özelinde çözümünü 

hedeflemektedir. Bu mekanizmalar uygulamada katlanabilir yapılar olarak 

kullanılabilmektedirler. Öncelikle düzlemsel durum incelenmekte, bayağı ve 

açılı makas elemanlarından oluşan düzgün olmayan konformal çokgen 

mekanizmalarını elde etmek için gerekli koşullar çıkarılmıştır. Bu düzlemsel 

kinematik zincirler çokyüzlü şekillerin yüzlerine ya da radyal olarak kesişen 

düzlemlere yerleştirilip montaj yapılarak iki tip çokyüzlü mekanizması elde 

edilmiştir. Tez çalışmasının geri kalanı uzaysal mekanizmalar üzerinedir. İlk 

önce özdeş eşkenar Bennett devreleri birbirlerine monte edilerek düzgün 

çokgen mekanizmaları ve bu şekildeki pek çok kinematik zincir birleştirilerek 

çokyüzlü mekanizmaları elde edilmiştir. Daha sonra Fulleroid-tipi 

mekanizmalar sunulmuştur. Bu özgün mekanizmalardan sonra Jitterbug-tipi 

mekanizmalar işlenmiştir. Literatürde mevcut mekanizmalar üzerine bazı 
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gözlemler temel alınarak Jitterbug-tipi mekanizmalar için bir tanım verildikten 

sonra bu tip mekanizmaların bazı önemli özellikleri çıkarılmıştır. Bu özel tip 

çokyüzlü mekanizmaları homotetik ve homotetik olmayan olarak iki sınıfa 

ayrılmış ve homotetik Jitterbug-tipi çokyüzlü mekanizmaları elde etmek için 

gerekli geometrik koşullar araştırılmıştır. Homohedral mekanizmalar, her 

köşesinde 3 veya her köşesinde 4 yüz birleşen çokyüzlü geometrisine sahip 

mekanizmalar ve teğetsel çokyüzlü mekanizmaları özel durumlar olarak 

ayrıntılı olarak incelenmiş ve dejenere durum olarak tüm yüzlerin bir düzlemde 

olduğu durum tartışılmıştır. Jitterbug-tipi mekanizmalardan yüzlere ve radyal 

düzlemlere uzuv eklenmesi şeklinde iki çeşit modifikasyon ile elde edilen yeni 

mekanizmalar sunulmuştur. Son olarak özel bir Jitterbug-tipi sınıfı olan 

değiştirilmiş Wren platformları potansiyel katlanabilir yapılar olarak 

önerilmiştir. 

 
 
Anahtar kelimeler: Katlanabilir Yapılar, Konformal Çokyüzlü Mekanizmaları, 

Jitterbug-tipi Mekanizmalar 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

The motivation of this thesis study is mostly theoretical: to develop some of 

understanding on the mysterious mobility of the so-called overconstrained 

linkages. Simply, these linkages are assemblies which are only mobile 

provided that some special geometric conditions are satisfied. Although there 

has been vast research on the subject, quite general results on synthesis of these 

linkages are not yet present. This study also does not address the whole 

problem, but merely tries to attack a small portion of it. 

 

Among many other fields, these linkages are commonly utilized as deployable 

structures which, by name, imply a contradiction: mobile structures! A 

deployable structure is a mobile assembly which, as oppose to common 

applications, does not include motion as an aim, but just to attain certain 

different configurations at different service conditions - mostly due to compact 

storage/transfer requirements. So they are designed to serve as structures, but 

mobility is necessary for the configuration change. 

 

As statically indeterminate structures are generally preferred over determinate 

ones for their rigidity, usually overconstrained linkages are preferred over 

simply constrained ones for deployable structure designs. This study aims to 

attack the design of overconstrained linkages problem in terms of deployable 

structures. Although most of the presented material provides broader results 

than just for deployable structures, it should be emphasized that all of the 

problems were constructed keeping the deployable structures in mind. 
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Similarly, although in most sections overconstrainedness is not mentioned at 

all, the subject linkages are always overconstrained. 

 

When design of structures is of concern, the main contributors are civil 

engineers and architects. Naturally there is a lack of profession for these 

disciplines when it is required to mobilize structures. So mechanical engineers 

have been and are still trying to help deployable structure designers regarding 

kinematics aspects. This study is a part of this effort. 

 

Still as a particular portion of the problem, only specific types of deployable 

structures are kept in focus. First of all, only the deployable structures with - 

theoretically - rigid links and joints are considered. For the sake of further 

simplicity, only geometries with linear boundaries are dealt with – 

corresponding planar linkages are called polygonal linkages and spatial 

linkages are called polyhedral linkages. Finally as a further subclass, 

assemblies with pivots only are taken into consideration. Despite these 

specializations such assemblies constitute most of the deployable structures 

present in mankind’s life. 

 

In the remaining sections of this chapter, some related studies on the problem 

are presented: In Section 1.1 is a brief review of overconstrained linkages and 

in Section 1.2 is about polyhedral linkages. Chapters 2 and 3 are built upon the 

studies of Kiper (2006): Chapter 2 introduces a methodology to deploy 

irregular polygonal and polyhedral shapes; Chapter 3 is application of the 

method in (Kiper, 2006) to radial planes in order to obtain polyhedral linkages. 

Chapters 4 and 5 are rather independent from the rest of the thesis: Chapter 4 is 

on how to assemble Bennett linkages to obtain polyhedral linkages; Chapter 5 

is on a heuristic method to obtain new linkages from a specific polyhedral 

linkage. Chapter 6 bears the core material of the thesis – it introduces Jitterbug-
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like linkages, presents some of their properties and finally states a series of 

theorems about Homothetic Jitterbug-like linkages. Chapters 7 and 8 are 

mainly on application of planar methods of (Kiper, 2006) to the Jitterbug-like 

linkages of Chapter 6. Chapter 9 deals with Jitterbug-like linkages that can be 

used as parallel platforms. The last chapter is for conclusions and discussions. 

A glossary is given in Appendix A for definitions of some terms appearing in 

the text that may be unfamiliar to the reader. 

 

 

1.1 Overconstrained Linkages
1
 

 

 

Determining the degrees of freedom (dof) is the very first step in analyzing a 

mechanism. There are several formulations for determination of dof of 

mechanisms. Gogu (2008) lists about 36 different formulations starting with 

Chebychev, Sylvester, Grübler and so on. Today, the most well known and 

thought formula are known as the Chebychev-Grübler-Kutzbach (CGK) 

formula: 

 

M = (ℓ – j – 1) + fi 

 

where  is dof of space, ℓ is the number links, j is the number of joints and fi 

is the connectivity sum for which each fi represents the dof of ith joint. This 

formula does not take metric properties into account and does not work for 

some mechanisms which satisfy special geometric conditions. Accordingly, 

Hervé (1978) classifies mechanisms into three groups: trivial, exceptional and 

paradoxical. Trivial mechanisms satisfy the CGK formula and the other two 
                                                 
1 Although the terms mechanism and linkage can be used interchangeably according to some authors, for example 
Waldron & Kinzel (2004), generally a linkage is a kinematic chain with lower kinematic pairs only (see ex. Hunt 
(1979)). This second definition is adopted in this thesis. 
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types do not due to special metric conditions. In this study, exceptional are 

paradoxical mechanisms are not distinguished, but any mechanism that does 

not satisfy the CGK formula is classified as an overconstrained mechanism. 

 

The first overconstrained linkage in literature is the parallelogram mechanism 

by De Roberval - 1669 as mentioned in Gogu (2008). The parallelogram 

mechanism consists of a fixed and a floating link which are similar and at least 

two identical cranks connecting these two (Fig. 1.1.). When there are more than 

two cranks CGK formula gives non-positive dof, while the actual dof is 1. 

 

 

 

 
 

Figure 1.1 The parallelogram mechanism 

 

 

 

Planar overconstrained linkages do not make much of an interest in the related 

literature. The significant single loop spatial overconstrained linkages are due 

to Sarrus (1853), Bricard (1897), Delassus (1900, 1902, 1922), Bennett (1903), 

Myard (1931), Goldberg (1943), Altmann (1954), Dimerntberg and Yoslovich 

(1966), Waldron (1967, 1968, 1969, 1979), Schatz (1975), Baker (1978), 

Wohlhart (1987, 1991), Dietmaier (1995), Mavroidis and Roth (1995), Fang 

and Tsai (2004), Pfurner (2009). 
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Recently many multi-loop overconstrained linkages were devised, mainly 

regarding two fields – parallel robots and polyhedral linkages. Polyhedral 

linkages are thoroughly investigated in the following section, but references for 

parallel robots related studies are made whenever necessary.  

 

 

1.2 Conformal Polyhedral Linkages
2
 

 

 

Just as a thorough understanding in plane kinematics necessitates a good 

knowledge on polygons and circles, in order to study spatial kinematics, one 

needs to master the geometry of polyhedra and the sphere. The passage from 

spatial rigid structures to mobile ones lies in the question of which polyhedra 

are rigid and which are movable. First results on this matter are due to Bricard 

(1987), Bennett (1911) and Goldberg (1942), who defines a polyhedral linkage 

as a space linkage made entirely of rigid flat plates hinged together. As 

indicated by Bricard (1987), these studies address the answer to the question 

“Do there exist polyhedra with invariant faces that are susceptible to an infinite 

family of transformations that only alter solid angles and dihedrals?”. Recent 

studies show that there are also mobile assemblies resembling polyhedral 

shapes where the dihedral and planar angles are preserved. Altogether, these 

assemblies are called polyhedral linkages. 

 

More precisely, polyhedral linkages are used for spatial deployment, where a 

certain polyhedral shape is to be preserved or a transformation between some 

polyhedral shapes is required. That is, the links and joints of the linkage 

enclose a finite volume with planar boundaries - a supporting polyhedron. The 
                                                 
2 The introductory part of this section is included (Kiper, 2010a). 
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supporting polyhedron continuously changes its size/shape via an n-parameter 

transformation for an n-dof polyhedral linkage. This section is mainly devoted 

to polyhedral linkages for which dihedral and planar angles are preserved 

during the shape transformation of the supporting polyhedron. This kind of 

linkages will be called conformal polyhedral linkages. 

 

A conformal transformation applicable to linkages is first described by 

Buckminster Fuller in 1948 (Fuller, Krausse & Lichtenstein, 1999, p. 32) and 

the discovered mobile assembly is named as the Jitterbug. As described by 

Fuller (1975), the Jitterbug is a model constructed with 24 struts which 

constitute 8 triangles able to move with respect to each other. The connections 

are such that the assembly goes through a single dof transformation. Originally 

introduced as a conceptual system, the motion of the Jitterbug described in Fig. 

460.08 of Synergetics of Fuller (1975) was brought to life as a mobile sculpture 

in a research exhibition in Zürich and became to known as the Heureka 

Octahedron (Stachel, 1994). 

 

The Heureka Octahedron comprises 8 ternary, 12 binary links and 24 revolute 

joints. Although such an assembly generally has 6(20 – 24 – 1 ) + 24 = –6 dofs, 

this assembly is mobile with single dof. The 3 revolute joint axes of a ternary 

link are parallel and equidistant while the 2 joint axes of a binary link are 

intersecting. When the linkage is its most compact form, it resembles a regular 

octahedron and during the motion the centers of the triangular links remain on 

the three-fold symmetry axes of a regular octahedron (Figure 1.2). At any 

configuration, the planes of the triangular faces bound an octahedral region, 

hence as the linkage expands/contracts, a dilation of an octahedron is realized. 

The binary links are used to preserve the dihedral angle along the edges of the 

bounded octahedron. 

 



 7 

Although became famous in the Zürich expo in 1991, using revolute joints for 

the Jitterbug was the idea of Dennis Dreher in 1974 (Edmondson, 2007, p. 

192). Many Jitterbug-like linkages were discovered afterwards and Verheyen 

(1989) classified the so-called dipolygonids which consist of equilateral 

polygonal links sliding along and rotating about fixed axes in space, just like 

the Jitterbug. These axes all intersect at a common point. 

 

 

 

 
 

Figure 1.2 The Heureka octahedron 

 

 

 

Next attempt to generalize these linkages was by Röschel (1995, 1996a, 1996b, 

2001), who coupled Darboux motions - a motion for which all point paths are 

planar - to synthesize not necessarily regular Jitterbug-like assemblies. 
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Röschel’s studies are of special importance because the main material of this 

thesis work is built on top of these works. 

 

Röschel’s (1996a, 1996b, 2001) method to construct Jitterbug-like linkages 

starts by defining a planar equiform motion (see Bottema (1979), p. 455-480) 

and then reflecting this motion to some nonparallel planes. In the second paper 

of the 3-paper series, Röschel (1996a) applies this method to octahedra which 

inscribe a sphere and in the third paper (2001) the method is applied such that 

neighboring equiform motion centers are on a circle. In Chapter 6 theorems are 

presented which generalize these findings of Röschel. 

 

Other Jitterbug-like polyhedral linkages were discovered by Wohlhart (1993, 

1994, 1995). Some other types of conformal polyhedral linkages were 

presented by Agrawal, Kumar and Yim (2002), Kovács, Tarnai, Guest and 

Fowler (2004b), Wohlhart (1999, 2001a, 2001b, 2004a, 2004b, 2005, 2008), 

Gosselin and Gagnon-Lachance (2006) and Kiper, et al. (2007, 2008, 2009b, 

2010b, 2010c, 2011a).
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CHAPTER 2 

 

 

IRREGULAR POLYGONAL AND POLYHEDRAL 

LINKAGES COMPRISING REGULAR AND ANGULATED 

SCISSOR ELEMENTS
1
 

 

 

The first mechanism that comes into mind for deployable structures is a scissor 

mechanism. Scissor mechanisms have been widely used for several 

applications that require uni-dimensional or planar expansion/contraction. A 

general analysis of such mechanisms is given in (Langbecker, 1999). 

 

For regular scissor mechanisms, the intermediate links have three collinear 

hinges and two of such elements are joined at the mid joint such that the 

resulting regular (or translational) scissor element is symmetric with respect to 

the horizontal (Figure 2.1a). A series of regular scissor elements (Figure 2.1b) 

form a lazy tong mechanism or Nuremberg scissors (Dijksman, 1976, p. 20). 

 

When the element is symmetric with respect to the vertical instead of the 

horizontal the so-called polar scissor element is obtained (Figure 2.2). See 

(Langbecker, 1999; Kokawa, 1997; Akgün, Gantes, Kalochairetis & Kiper, 

2010) for assemblies of such elements. 

 

The links in translational and polar elements are mentioned to be identical and 

this is the case in general, however, it is also possible to use non-identical links 

as addressed in (Langbecker, 1999) and (Gantes & Konitopoulou, 2004). 

                                                 
1 The main content of this chapter is published by Kiper and Söylemez (2010c). 
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Figure 2.1 a) Translational (regular) scissor element and b) the lazy tong 

mechanism in two configurations 

 

 

 

 
 

Figure 2.2 a) Polar scissor element and b) an assembly in two 

configurations 

 

 

 

b) a) 

b) a) 
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When the hinges are not collinear, one can obtain deployment along 

intersecting lines without changing the angle between the lines provided that 

some special geometric dimensions are imposed. These bended links are called 

angulated elements and were introduced by an American inventor, Charles 

Hoberman (1990) (Figure 2.3). The beauty of the invention is in that the 

angulated elements can be assembled radially to obtain circular or spherical 

deployment. Hoberman’s angulated elements were analyzed and generalized 

by You and Pellegrino (1997) and Patel and Ananthasuresh. Wohlhart (2000) 

and Mao, Luo and You (2009) have shown that Hoberman’s linkages are some 

special cases of generalized Kempe linkages (Kempe, 1878). 

 

 

 

 
 

Figure 2.3 a) Angulated scissor element and b) an assembly in two 

configurations 

 

 

 

b) a) 
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Kiper, Söylemez and Kişisel (2008) have proved that the ring assemblies 

comprising angulated elements can be constructed using Cardan motion (see 

Bottema & Roth, 1979, pp. 346-348). The key point is that all the joints in such 

an assembly move along linear trjectories and the motion of the links turn out 

to be the Cardan motion. 

 

In some applications it is desired to deploy polygonal shapes keeping the 

angles and side length proportions of the polygon invariant. This is a dilative 

transformation (Coxeter & Greitzer, 1967, sec. 4.7). In most cases, the shape is 

radial symmetric. Several designs for non-symmetric cases were employed so 

far, however the transformations are usually not dilative. Kiper, et al. (2008) 

claimed that if one intends to deploy a polygonal shape with cranks attached to 

angulated elements, the polygon has to be a cyclic polygon, i.e. a polygon with 

a circumcircle. Here is a correction to that result: rather than being cyclic, the 

polygon has to be a tangential polygon, i.e. a polygon with an incircle. An 

inscribed circle is necessary if all the cranks are to be joined at a common 

hinge. Howerer, if cranks are omitted and just angulated elements are used, any 

polygonal shape can be deployed dilatively, as shown in Section 2.1. 

 

The basic shape becomes more realizable if both regular and angulated 

elements are used for the dilation of irregular polygons and even any kind of 

connected planar graph, as presented by Liao and Li (2005). However, in (Liao 

& Li) it is not formally proved that the transformation is dilative. In this 

chapter the solution is presented by use of the Cardan motion. 
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2.1 The Cardan Motion and Angulated Elements 

 

 

The use of the so-called elliptical trammel – a double slider mechanism – 

attributed to Archimedes has been used to draw ellipses since ancient times 

(Figure 2.4a). In the 16th century it was the Italian mathematician Gerolamo 

Cardano to notice that elliptic motion can also be obtained using an internal 

planetary gear pair of 2:1 ratio (Figure 2.4b) (Dörrie, 1965, secs. 47-48). 

Today, it is known that the motion of the coupler link of the trammel and the 

planet gear of the latter are identical if |AB| = 2|OC| (Figure 2.4) and this 

motion is called the Cardan motion. 

 

 

 

 
 

Figure 2.4 a) The elliptic trammel of Archimedes with a possible crank 

attached and b) the two gears of Geronimo Cardano 

 

 

 

O  
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 A 

 B 
O  

b) a) 
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Cardan motion is a special hypocycloid motion (Hilbert & Cohn-Vossen, 1990, 

p. 277) in which the moving centrode has half the diameter of the fixed 

centrode. The point trajectories are in general ellipses. As a special case the 

center of the moving centrode follows a circular path and as the degenerate 

case all points on the moving centrode move on straight lines all passing 

through the center of the fixed centrode (Bottema & Roth, 1979, pp. 346-348). 

Hence Cardan motion is one of the exact straight line motion generation 

motions. 

 

The very same motion can also be obtained as the motion of the coupler link of 

an inline isosceles slider crank mechanism (mechanism OCA or OCB in Figure 

2.4a) and this mechanism was used in (Kiper, et al., 2008) to obtain some 

polygonal deployable structures. In this study the idea is generalized for all 

polygonal shapes. 

 

Consider three points on a moving Cardan circle and their straight line paths 

(Figure 2.5a). In (Kiper, et al., 2008), the midpoint is chosen to be equidistant 

to the other two but here its location is arbitrary. Without loss of generality, 

choose the initial configuration such that the path of the midpoint is on the 

diameter of the moving centrode. These three points can be connected to each 

other to obtain a triangle. Next consider the motion of two moving planes, one 

rotated in one sense and the other in the other sense by the same amount 

(Figure 2.5b). As seen in the figure, these two motions have two common 

points: the center of the fixed centrode and analogous midpoints. Joining the 

two homologous triangles at the midpoints an angulated element is obtained. 
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Figure 2.5 a) Three points on a moving Cardan circle and b) two such 

moving planes coupled 

 

 

 

2.2 Assembling Angulated Elements for Polygonal Deployment 

 

 

Consider a polygon of arbitrary dimensions. Bisect the sides. Through each 

triplet of points comprising a vertex and the two neighboring bisection points 

there passes a circle (Figure 2.6a). Considering these triplets as the three points 

of Figure 2.5a, angulated elements can be formed and the polygonal shape can 

be scaled as in Figure 2.5b. 

 

 

 

b) a) 
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Figure 2.6 a) A quadrilateral and b) its contracted version 

 

 

 

For an n sided polygon such an assembly comprises 2n links and 3n joints. 

According to (CGK) mobility criterion this linkage has 3(2n–3n–1)+3n = –3 

dof, however the assembly is mobile and furthermore the motion is such that 

the polygon obtained by connecting the angulated element mid joints is always 

the same polygon with different scale. A constructional proof is presented for 

that the mobility is unity and that the motion is a dilative one: Given a 

polygonal shape construct the angulated elements as explained above. Next 

consider a scaled version of the polygon by a scale k < 1. It is possible to attach 

rhombi to each side with rhombi (as DECF in Figure 2.6b) side lengths being 

half of the corresponding original polygon side length. The sides of the scaled 

polygon bisect two opposite angles of corresponding rhombi. The amount of 

these bisected angles, say , are all the same for all rhombi and are determined 

by the scaling ratio k: k = cos(/2). So the angle between an outer rhombus 

side at a corner (such as side DE at corner D) and an inner side of the 

neighboring rhombus at the same corner (side DH) is equal to the polygonal 

a) b) A B 

C 

D 

A
 

D
 

B
 

C
 



E 

F 

G 
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angle at that corner (EDH = ADC) and hence these two rhombus sides 

constitute a link of the angulated element at this corner. 

 

Notice that there is no restriction on the polygonal geometry in this 

methodology. The linear paths of the midpoints of the sides, in general, do not 

meet at a common point. The condition for the guides to meet is that the 

polygon has an inscribing circle. 

 

When the links are assembled in two layers as in Figure 2.7, the thicknesses of 

the links limit the deployability. Deployability can be increased by using more 

layers of assembly to avoid link collisions. 

 

 

 

 
 

Figure 2.7 A quadrilateral polygonal assembly at its two limiting 

configurations 
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2.3 Addition of Regular Scissor Elements 

 

 

Regular scissor elements can be used along sides to make the assembly look 

more alike its base polygon. Care must be taken in adding regular scissor 

elements for the sides to ensure that the deployment is dilative. To do this, the 

link lengths of the regular elements should be selected such that they comprise 

rhombi, as also mentioned in (Liao & Li, 2005). In Figure 2.8, regular scissor 

elements are added for the quadrilateral of Figures 2.6-7. Four layers of 

assembly are used and the deployability is quite satisfactory. 

 

 

 

 
 

Figure 2.8 Quadrilateral dilation with regular and angulated elements 
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2.4 Polyhedral Linkages 

 

 

Several polygonal linkages synthesized as explained above can be assembled to 

construct polyhedral linkages. For this purpose additional links which are used 

for preserving the vertex figures should be employed (Figure 2.9). Such an 

assembly for a hexahedron is presented in Figure 2.10. 

 

 

 

 
 

Figure 2.9 Additional link for vertex figures 
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Figure 2.10 An irregular hexahedral linkage 



 21 

It is also possible to apply the method to any flat surface and assemble planar 

linkage groups with the additional links for the vertex figures illustrated in 

Figure 2.9. A deployable tent skeleton is presented in Figure 2.11. 

 

 

 

 
 

Figure 2.11 A deployable tent skeleton 

 

 

 

Another method to deploy polyhedral shapes using scissor elements is 

presented by Wohlhart (2004b). In this study of Wohlhart scissor elements are 

employed along edges of polyhedral shapes rather than sides of polygons. 
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CHAPTER 3 

 

 

POLYHEDRAL LINKAGES  SYNTHESIZED USING 

CARDAN MOTION ALONG RADIAL AXES
1
 

 

 

The method of obtaining linkages in this chapter again makes use of the 

Cardan motion. As mentioned in Chapter 2, Cardan motion can be realized by 

means of the angulated elements. Some certain special dimensions are possible 

in order for an angulated element pair to track two intersecting straight lines 

(You & Pellegrino, 1997), however to obtain similarity the elements must be 

isosceles, the bend angle and the angle between the lines being tracked must be 

supplementary angles as noted by Kiper, Söylemez & Kişisel (2008) (Figure 

3.1). 

 

 

 

        
 

Figure 3.1 An angulated element pair to magnify a triangle ABC 

                                                 
1 The main content of this chapter is published by Kiper, Söylemez and Kişisel (2007). 
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In (Kiper, et al., 2008), these mechanisms were used to magnify an isosceles 

triangle. Many such linkages are assembled to form cyclic polygons, which can 

finally assemble to form a polyhedral shape. Here, the triangle-magnifying 

linkages are used to obtain a magnification of polyhedral shapes along radial 

axes. 

 

Consider an inner point in a polyhedral shape. Connecting this point to the 

vertices, one obtains e many triangles, where e is the number of edges. These 

triangles, hence the whole polyhedral shape can be magnified using isosceles 

angulated elements. In order to avoid interference of skew revolute joint axes, 

an offset along the lines connecting the magnification center to the vertices 

must be introduced (Figure 3.2). Depending on the design, the amount of offset 

can take any value. 

 

 

 

 
 

Figure 3.2 A triangular dissection for the radial magnification of a cube 
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Since the triangular dissections must all be isosceles, all the vertices must be 

equidistant to the magnification center. Hence, only spherical polyhedra, i.e. 

the polyhedra with all vertices on a sphere, can be magnified using the linkages 

proposed. Using the most symmetric spherical polyhedra, i.e. the Platonic 

solids, cubic, tetrahedral, octahedral, dodecahedral and icosahedral linkages 

synthesized accordingly are illustrated in Figures 3.3-7. Notice that there are 

Sarrus loops (an overconstrained linkage with 2 sets of 3 parallel revolute joint 

axes) (Sarrus, 1853) at each vertex.  

 

 

 

 

 

Figure 3.3 A cube being magnified 

offset 

a) b) 

c) d) 
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Figure 3.4 A tetrahedral linkage in two limit configurations 

 

 

 

  

 

Figure 3.5 An octahedral linkage in two limit configurations 
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Figure 3.6 A dodecahedral linkage in two limit configurations 

 

 

 

  

 

Figure 3.7 An icosahedral linkage in two limit configurations 
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The total ratio of magnification is very small for single pair of angulated 

elements. One may add ordinary scissor elements in order to increase the ratio 

of magnification, as was done by Hoberman (1990) (Figure 3.8a) with his 

famous toy Hoberman Sphere (1995) and Wohlhart (2004) (Figure 3.8b) and 

also utilized in Chapter 2. 

 

 

 

 
 

Figure 3.8 a) Hoberman’s (1990) truncated icosahedral linkage in 3 phases 

and b) Wohlhart’s (2004) cubic zig-zag linkage in 2 phases 

a) 

b) 



 28 

Alternatively, one may dissect the polyhedral shape of interest such that the 

circumcenter of the polyhedron, a vertex and the circumcenter of a face form a 

triangle (Figure 3.9 – triangles AOB, BOC, etc.). Notice that the triangular 

dissections will be intersecting each other along the line connecting the 

circumcenter of the polyhedron and the circumcenter of a face. Hence a 

constraint along an intersection line makes it possible to reduce the degree-of-

freedom of the triangular linkage. So, binary links can be used instead of 

angulated elements, removing the need to have an isosceles triangle. Indeed, 

then these binary links move as double slides, which are also well known to 

realize the Cardan motion. 

 

 

 

 
 

Figure 3.9 Another triangular dissection for the radial magnification of a 

cube  
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When proper connections are implemented between the binary links, it happens 

to be that the shape the linkage encloses varies between a family of polyhedra 

which belong to the same symmetry group. Because of this fact, there are two 

minimal and two maximal configurations, which are dual (Most simply dual 

polyhedra are obtained by interchanging faces and vertices) of each other. 

Cubic/octahedral, tetrahedral (self dual) and dodecahedral/icosahedral linkages 

are illustrated in Figures 3.10-12. 

 

 

 

 
 

Figure 3.10 a) Cubic skeleton b) Cube c) Octahedron d) Octahedral skeleton 

offset 

O 

a) 

O O 

b) 

c) d) 
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Figure 3.11 5 phases of a tetrahedral linkage 

 

 

 

a) b) 

c) d) 

e) 



 31 

 
 

Figure 3.12 4 phases of a tetrahedral linkage 

 

 

 

This type of linkages was also presented by Wohlhart (1995) and Hoberman 

(2004a). Hoberman’s (2004b) famous toy Switch Pitch


 has the kinematic 

structure of the tetrahedral linkage in Figure 3.11. 

a) b) 

c) d) 
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CHAPTER 4 

 

 

REGULAR POLYGONAL AND REGULAR SPHERICAL 

POLYHEDRAL LINKAGES COMPRISING BENNETT 

LOOPS
1
 

 

 

Kiper, Söylemez, Kişisel (2008) have observed that some linkages in the 

literature are obtained by systematically removing some links from a highly 

overconstrained linkage. That is, for that planar family of linkages, the most 

general case was the most overconstrained one. In this chapter, anticipating the 

same fact in the spatial case, polyhedral linkages comprising single loop spatial 

overconstrained chains is with revolute joints only are sought. As the simplest 

of such loops is given by Bennett (1903), his linkage with 4 revolute joints is 

the basic module. 

 

Using the Denavit- Hartenberg (1955) notation, the Bennett loop is given by 

the following relations (Bennett, 1903) (Figure 4.1): Link lengths and twist 

angles are such that 

 

a12 = a34 = a    and    a23 = a41 = b                                  (4.1) 

 

12 = 34 =     and    23 = 41 =                                 (4.2) 

 

which satisfy 

 

                                                 
1 The main content of this chapter is published by Kiper and Söylemez (2009b). 
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a/sin = b/sin 

 

and the offsets between the common perpendiculars along all the hinge axes 

are zero. Throughout the motion, the linkage is symmetric about a line z which 

perpendicularly bisects the diagonals connecting the nonconsecutive hinges. 

For simplicity, one of the special cases noted by Bennett (1914) is used: Let the 

link lengths be equal, i.e. a = b, and hence by equation 4.3, consecutive twist 

angles add up to . Then, the linkage is said to be equilateral. 

 

 

 

 

 

Figure 4.1 The Bennett loop 
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When two identical equilateral Bennett loops are superposed along congruent 

hinges as in Figure 4.2 this common hinge axis a-a intersects the opposite 

hinges b-b and c-c. If a third Bennett loop is assembled in the same way, the 

connected hinge and the opposite one for this loop will also intersect the other 

hinges at the same intersection point. Notice that the intersection point O of 

these axes can be used as a dilation center of a polygonal region as the diagonal 

lengths are altered. 

 

A remarkable notice about Figure 4.2 is that this linkage can also be seen as the 

assembly of two general plane-symmetric type Bricard (1897) six-link loops 

(ADBGCH and AEBFCI). 

 

 

 

 

 

Figure 4.2 A triangular assembly of Bennett loops 
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If three identical loops are assembled, since three hinge axes are common for 

neighboring loops, the diagonals AB, BC and CA will have the same length. 

Given this diagonal length, the isosceles triangles AOB, BOC and COA can be 

assembled uniquely such that the equal sides and the apex O coincide. Hence 

the assembly is fixed by a single input, i.e. the diagonal length, hence the 

resulting linkage has single dof. When four Bennett loops are assembled as 

explained, for a given diagonal length the isosceles triangles will form a 

spherical four-bar linkage, so the assembly has 2 dofs. In general, a serial 

assembly of n Bennett loops has n – 2 dofs. But when these polygonal loops 

are assembled, the resulting polyhedral linkage may have single dof. 

 

The polygonal loops can be assembled to obtain polyhedral linkages. The loops 

could be connected at A, B, C, … of Figure 4.2 by spherical joints, but 

physically this results in collision of links, so some intermediate links should 

be employed. Although A, B, C, … are coplanar, the orientations of hinge axes 

will rotate as the dilation is realized, so these hinge axes should be connected 

to the intermediate links via revolute joints. An octahedral linkage assembled 

and simulated accordingly is illustrated in Figure 4.3. The links of the Bennett 

loops coincide in Figure 4.3, but these collisions may be avoided as illustrated 

with the tetrahedral linkage in Figure 4.4. If the twist angles are increased up to 

90° the dyads of the Bennett loops merge to get trihedral symmetric Bricard 

(1897) loops and a prettier polyhedral linkage is obtained (Figure 4.5). 

 

The octahedral and tetrahedral linkages each have single dof, but in case of a 

cubic linkage the dof is 3 because of the special condition that there are three 

pairs of parallel faces and so the three pairs of opposite polygonal linkage 

groups are independently movable  (Figure 4.6). The cuboctahedral linkage is 

presented as an example of a non-Platonic regular shape in Figure 4.7. 
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Figure 4.3 An octahedral linkage – in expanded and folded positions 
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Figure 4.4 A tetrahedral linkage – in expanded and folded positions 
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Figure 4.5 A tetrahedral linkage comprising Bricard loops 
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Figure 4.6 Cubic linkage – in expanded position and one of the dofs used 
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Figure 4.7 Cuboctahedral linkage – in expanded and folded positions 



 41 

Expansion ratio of the polyhedral linkages presented here are quite small when 

compared to the other linkages in literature. The expansion ratio is evaluated 

with considering the dilation of the reference polyhedral shape, ignoring the 

link portions outside this polyhedral boundary. If the mechanism is actuated 

from a revolute joint of a Bennett loop that is not connected to the other loops, 

then the length of the diagonal opposite to this joint will be, by cosine 

theorem, 2 22a 2a cos  , where a is link length and  is the angle between the 

links which construct a triangle with the diagonal of interest. Let the angles at 

expanded and folded configuration be e and f. Then the expansion ratio is 

given by    e f1 cos 1 cos    . Note that e and f depend on the selection 

of twist angles and the dimensioning of links. For the specific twist angles 

(70.53 and 109.47) and dimensioning (joint thickness to link length ratio 0.03 

and joint diameter to link length ratio 0.06) used in the examples, the 

expansion ratio evaluated for the tetrahedron is 1.864, for the octahedron is 

1.146, and for the cuboctahedron is 1.036. 

 

A subject of discussion is whether this type of construction can be used with 

non-equilateral Bennett loops to obtain polygonal dilation. This is not possible, 

because the nonconsecutive hinge axes do not meet in this case. Alternatively, 

equilateral, but non-identical Bennett loops may be assembled. In Figure 4.2, 

the Bennett loops are identical. When three arbitrary non-identical equilateral 

Bennett loops are assembled, still a single degree-of-freedom linkage is 

obtained, however, the relative motion of A, B and C of Figure 4.2 does not 

necessarily result in an equiform motion. 



 42 

CHAPTER 5 

 

 

FULLEROID-LIKE LINKAGES
1
 

 

 

This chapter is devoted to a heuristic method in synthesis of polyhedral 

linkages. The method starts with an existing polyhedral linkage exposing some 

symmetry and makes use of the symmetry axes to obtain new linkages. One of 

Wohlhart’s (1995) linkages, the Fulleroid is used for illustration of the method. 

 

 

5.1 The Fulleroid 

 

 

The Fulleroid is a highly overconstrained single dof linkage. The linkage has 

24 ternary and 24 binary links connected by a total number of 60 revolute 

joints (Figure 5.1). There are 6 loops comprising 4 binary and 4 ternary links 

and 6 loops comprising 3 binary, 6 ternary links and 3 revolute joints. In all 

configurations, the linkage is bounded by a rhombic dodecahedral shape of 

varying scale. Although this enclosing polyhedral shape has 12 faces, the 

geometry described will be considered to be a 24-faced polyhedron, 12 pairs of 

faces being coplanar. The reason for this way of thinking will be apparent in 

the following paragraphs. 

 

                                                 
1 The main content of this chapter is published by Kiper (2009a). 
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Figure 5.1 The Fulleroid in motion 

 

 

 

5.2 Icositetrahedral Linkages 

 

 

As a first question, what if binary links are inserted into the revolute joints 

joining the ternary links of the Fulleroid and ternary link dimensions are 

changed accordingly? That is, what if the 24-faced polyhedron, i.e. the 

icositetrahedron, had no coplanar faces while it had the same group of 

symmetries (the octahedral group)? The infinite family of polyhedra described 

by the cumulation series of the cube satisfy these conditions. The cumulation 

series of the cube is illustrated in Figure 5.2. 

 

 
 

 
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 
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Figure 5.2 Some cumulations of a cube with unit edge length: A concave 

icositetrahedron, the cube, the tetrakis hexahedron, the rhombic 

dodecahedron and another concave icositetrahedron; h: 

cumulation depth. 

 

 

 

If the faces of these cumulations are connected by dihedral angle preserving 

links, the resulting linkages are movable with single dof (Figures 5.3-6). The 

mobility checks were performed by running a kinematic simulation in Catia 

V5.R19® DMU Kinematics module. The cubic linkage of Figure 5.4 was 

further issued by Röschel (2010). For a physical model of a concave linkage 

the thickness dimensioning should be done carefully, because overlapping 

occurs when simple prism-shaped links are used. Note that the concave linkage 

in Figure 5.6 is fully closed in both limit configurations. 

 

h = –1/4 h = 1/4 h = 0 

h = 1/2 h = 1/ 2  
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Figure 5.3 A concave icositetrahedral linkage (obtained by cumulating the 

cube inwards by 1/4th of the edge length) 

 
 

 

          

   
 

Figure 5.4 A cubic linkage 
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Figure 5.5 A tetrakis hexahedral linkage (obtained by cumulating the cube 

outwards by 1/4th of the edge length) 

 

 

 

          

         

 

Figure 5.6 A concave icositetrahedral linkage (obtained by cumulating the 

cube outwards by 
th

1 2  of the edge length) 
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5.3 Rhombohedral Linkages 

 

 

Next question is what if the cube is distorted such that a rhombohedron is 

obtained. Another icositetrahedral linkage is obtained if three of the binary 

links (out of twelve) of the cubic linkage are removed (Figure 5.7). Note that 

the expansion is not uniform in this linkage, i.e. not all of the faces perform 

similar expansion. This is probably because of the non-uniformity of the 

vertices: at three of the vertices the plane angles are not all equal. This linkage, 

maybe, should not be considered in the same class with the previous ones, but 

it is a quite notable spatial linkage. Due to the tripod-like appearance of the 

final phase of the linkage it shall be named as the tripodohedral linkage. 

 

 

 

           

         
 

Figure 5.7 A rhombohedral linkage that has faces with 2 :1 diagonal ratio 
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5.4 Dipyramidal and Stellated Linkages 

 

 

In the Fulleroid (Figure 5.1), tetrakis hexahedral linkage (Figure 5.5) and the 

concave icositetrahedral linkages of Figures 5.3 and 5.6, there is an assembly 

of a certain module, a spatial 8R (8 revolute) closed chain with the following 

properties: every joint axis is intersecting one of the neighboring axes and is 

parallel to the other, the four intersection points are separated by the closest 

distance between the four parallel axes, the distances being equal and two 

opposite intersecting joint axis pairs have the same angle in between (Figure 

5.8). If the intersecting joint pair is called as a V joint (a 2 dof joint with two 

revolution axes – a gusset as named by Wohlhart (1995)), the linkage can be 

described as a 4V equilateral closed chain. Note that in the degenerate case,  

and/or  may be zero, in which case a VRVR or a 4R chain is obtained. Indeed, 

the Fulleroid has the VRVR chains and the cubic linkage has the 4R chains. 

 

 

 

 
 

Figure 5.8 A symmetrical spatial 8R closed chain 
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If one of the links of this linkage is fixed, the resulting mechanism has 2 dof. If 

four of these linkages are assembled to construct a loop using some more V 

and/or R joints, special design parameters are necessary to have mobility (See 

Chapter 6). Note that the 4V linkage can only be employed at 4-valent vertices 

(vertices at which four faces meet). 

 

Using these 4V chains as modules, dipyramids can be mobilized. For  =  = 

2tan-1(1/ 2 ) = 70.53, if the six of the 4V linkages are assembled such that 

neighboring three equilateral links form a  triangle, the Jitterbug (Fuller, 1975) 

is obtained. Some other dipolygonids of Verheyen (1989) may also be 

synthesized this way (ex: cuboctahedral linkage 8{3}+6{4}|544408). 

 

 

 

  

        
 

Figure 5.9 An octahedral linkage 
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Another way of mobilizing the octahedron is to dissect each face into two, 

hence obtaining 16-faced linkages (Figure 5.9).  The triangular faces of the 

polyhedral shape need not be equilateral (Figure 5.10). For these linkages, as 

the number of the sides of the base polygon increases, the openings about the 

apexes become larger and a ring-like form is obtained. 

 

 

 

     

    

 

Figure 5.10 An octagonal dipyramidal linkage 

 

 

 

 

Also, the 4V chains can be used to mobilize stellated polyhedra (Figure 5.11 – 

VRVR chains are used in this example). 

 

 
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Figure 5.11 A stella octangula linkage 

 

 

 

The linkages synthesized here, except the tripodohedral linkage, are special 

cases of Röschel’s (2001) so-called “unilaterally closed mechanisms”. Here 

unilateral closure means one-side matching of a rectangular planar graph, just 

like wrapping a plain paper into a cylinder by matching two opposite ends. 

 
 

 
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CHAPTER 6 

 

 

JITTERBUG-LIKE LINKAGES 

 

 

Verheyen (1989) and Röschel’s (1995, 1996a, 1996b, 2001) approach to 

synthesize Jitterbug-like polyhedral linkages is to consider the in-plane motion 

of a polygonal element and transfer this motion spatially by transforming them 

into neighboring planes. Once the motions are interrelated, the whole structure 

is mobile bound to certain criteria. As oppose to this approach, in this chapter, 

the spatial loops that comprise the linkage are examined to reveal some 

properties of Jitterbug-like linkages. 

 

 

6.1 Jitterbug-like Linkages
1
 

 

 

6.1.1  Some Observations and A Formal Definition 

 

 

For the linkages in Verheyen (1989), Röschel (1995, 1996a, 1996b, 2001) and 

Wohlhart (1995), in general, there corresponds single link for each face of the 

polyhedral shape. In some cases though, there are overlapping pairs of links on 

faces (Figure. 6.1). In some of Verheyen’s (1989) and Wohlhart’s (1995) 

linkages there are planar chains on the faces. As illustrated in (Kiper, 2009a), 

these linkages are in general degenerate cases of a more general family of 

                                                 
1 The main content of this section is published by Kiper (2010a). 
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linkages, where some of the faces of the polyhedral shape coincide. In all these 

linkages, a separate face will be considered for each link even if some planes 

coincide. 

 

 

 

a)  b)  

 

Figure 6.1 Two of Verheyen’s (1989) dipolygonids comprising a) 4 double 

faces (also issued by Stachel (1994) as the Heureka Polyhedron 

with tetrahedral motion) and b) 6 double faces with overlapping 

link pairs 

 

 

 

In general each loop is used to obtain expansion/contraction around a vertex. 

However, for some cases, the supporting faces do not intersect all at a point, 

such as the ones demonstrated in Figure 6.2. In this section, such cases are not 

considered; the focus is on linkages for which each vertex is surrounded by a 

spatial loop. 
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a)      

b)    

 

Figure 6.2 a) An octahedral linkage (Röschel, 1996a), b) a cuboctahedral 

linkage (Verheyen, 1989; Röschel, 1995) and their supporting 

polyhedra 

 

 

 

Taking a closer look at these linkages, it is seen that adjacent joint axes are 

either parallel, or intersecting. The small links between the intersecting joint 

pairs are dihedral angle preserving (dap for short) elements. The links between 

the parallel ones are links on the faces, which can be referred to as the 

polygonal links. 
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By constructing the supporting polyhedron for many configurations of the 

octahedral linkage in Figure 6.2a, it is seen that not only the dihedral and 

planar angles are preserved, but also the conformal transformation is a proper 

dilation due to the existence of an inscribing sphere (Röschel, 1996b). 

However, for the cuboctahedral linkage in Figure 6.2b, the square faces and the 

triangular faces dilate in different proportions, hence the total transformation of 

the supporting polyhedron is not a dilation. Furthermore, when all planes are 

intersected, the corners of the triangles are chopped off and hexagons are 

formed. The hexagons have variable side length ratios. So, the supporting 

polyhedral shape transformation is not dilative for all Jitterbug-like linkages. 

 

With these observations, a Jitterbug-like linkage can be defined as follows: 

 

Definition: Let E and F denote the number of edges and faces for a polyhedral 

shape P. A Jitterbug-like linkage associated with P is a mobile assembly with 

the following properties: 

 

1. There are two types of links: polygonal links and binary (dihedral angle 

preserving or dap) links. 

2. All joints are revolute. 

3. No polygonal/dap link is directly connected to another polygonal/dap 

link. 

4. To every face of P there corresponds one and only one polygonal link 

( Number of polygonal links: F) 

5. The joint axes of a polygonal link are all parallel to each other, while 

the axes of a dap link intersect each other. 

6. The plane of axes of a binary link remains perpendicular to a 

corresponding edge of P. 
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7. Joint axis intersections of dap links around a polygonal link are 

coplanar and these planes remain parallel to corresponding faces of P. 

8. In any configuration the planes defined by joint axes intersections 

bound a finite volume, called the supporting polyhedron, and this shape 

can be obtained from P by a conformal transformation. The topological 

shape of the supporting polyhedron is invariant and this topological 

shape will be named as the base polyhedron. 

 

A wholly representative Jitterbug-like linkage is obtained if the following 

properties are also satisfied: 

 

9. Number of dap links: E. 

10. To each vertex of P there corresponds a spatial loop comprising 

revolute joints twice as many as the corresponding vertex valence. 

 

The latter are named as wholly representative, because in addition to every face 

corresponding to a face, every edge and vertex is represented by a dap link and 

a spatial loop, respectively. The Jitterbug is an example of a wholly 

representative linkage. Two examples of non-wholly representative Jitterbug-

like linkages are given in Figure 6.2. The rest of this section issues the wholly 

representative linkages, only. 

 

 

6.1.2  Some Properties of Suitable Spatial Loops 

 

 

In this section, some conditions for suitable polyhedral geometries and some 

properties of suitable loops are investigated. Since a vertex of a polyhedron is 

at least 3-valent, the simplest loop shall involve 3 pairs of intersecting or 
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parallel joint axes. However in most cases odd-valent vertices cannot be used 

around an odd-valent vertex as mentioned by Wohlhart (1998). The motivation 

in claiming this is the fact that instantaneous screw axes are fixed and so 

neighboring polygonal links rotate in opposite senses at all times. The links 

rotating in opposite senses is generally true; at least there is no counterexample 

so far. However, when one just concentrates on a spatial loop around a vertex, 

it is seen that it may be the case where two neighboring polygonal links rotate 

in the same sense. This is due to the Cardan motion of a polygonal link in its 

plane of motion. Again, there is no example of such a linkage so far, hence for 

the time being, it shall be assumed that all vertex valences are even. This issue 

is cleared for homothetic Jitterbug-like linkages in the next section. 

 

There are also some tricks to design a Jitterbug-like linkage for a polyhedral 

shape with odd-valent vertices, such as employing multiple links in a face 

(Figures 6.1 and 6.3), where the 3-valent vertices are converted to 6-valent 

ones. Another trick is embedding offsets between dap links (Figure 6.4). In this 

case, the dap links are doubled in number and the dihedral angles are halved. 

These offset links are nothing but digons and by embedding them the number 

of edges is doubled, and so are the vertex valences. In each case, eventually, 

the supporting polyhedral shape is altered. 

 

The two joints of a dap link are generally considered as a single joint and the 

link is not counted as a link in literature. Wohlhart (1995) uses the terms 

“double rotary joint” or ”gusset”, while Röschel (2001) prefers ”spherical 

double hinges”. Here, for brevity and due to the shape of the links, this 2-dof 

joint will be called a “V joint”. 
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a)      b)  

 

Figure 6.3 a) A tetrahedral (Wohlhart, 2001b) and b) a cubic (Kiper, 

2009b) linkage with multiple links in a face 

 

 

 

a)    b)   

 

Figure 6.4 a) An offset element and b) a dipolygonid of Verheyen (1989) 

re-issued as an expandable virus model by Kovács, Tarnai, 

Fowler and Guest (2004a) 

 

 

Offset 
element 
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For most of the linkages in literature, it is seen that generally they contain at 

least one 4V loop. However, as some counterexamples are already seen 

(Figures 6.1 and 6.4), there are some linkages with no 4V loops. Still, it can be 

showed that for the linkages with polyhedral geometries obeying Euler’s 

formula V - E + F = 2 there should be at least one 4V loop (V, E, F: number of 

vertices, edges and faces, respectively). For the proof, assume that the vertex 

valences are all greater than or equal to six. Then F ≤ 6V/3 (equal when all 

vertices are 6-valent and all faces are triangular) and E ≥ 3V (equal when all 

vertices are 6-valent). So V + F ≤ 3V, while E + 2 ≥ 3V + 2 > 3V, hence 

Euler’s formula is not satisfied and the assumption about the vertex valences is 

not valid. Polyhedral shapes involving concurrent faces and digons do not obey 

Euler’s formula, so all vertex valences may be greater than four. Still, in the 

generic case 4-valent vertices should be expected. 

 

 

6.1.3  The Spherical Indicatrix Associated With the Loops 

 

 

In its most general meaning, the spherical indicatrix of a ruled surface is 

obtained by a cone of lines with its vertex at the center of a sphere, each line 

having a corresponding parallel generator on the surface. The indicatrix is the 

spherical curve of intersection between this cone and the sphere. It is used to 

separate rotations and translations in spatial linkages (Hunt, 1978, p.287). 

 

Consider a spatial loop around a vertex such that adjacent joint axes are either 

parallel, or intersecting. The spherical indicatrix of such a loop does not 

distinguish between parallel axes. If the sphere is unit, the link lengths of this 

spherical linkage are “ – dihedral angle”s and the angles between the links are 

“ – plane angle”s. Since the joint axes are normal to the faces (n1, n2 , n3 in 
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Figure 6.5), the associated link lengths (12 , 23 in Figure 6.5) being “ – 

dihedral angle”s is obvious. For the angles between the links of the spherical 

linkage, consider three adjacent faces meeting at a common vertex as shown in 

Figure 6.5. First move the tails of the face normals to the vertex. The angle 

between 12 and 23 is the angle between the normals b12 and b23 to n2 that are 

in the planes defined by n1 & n2 and n2 & n3, respectively. Then b12 and b23 are 

also normal to the edges e12 and e23, respectively. The angle between b12 and 

b23, say 2, is then supplementary to the plane angle 2. 

 

 

 

 

 

Figure 6.5 Part of the neighborhood of a vertex (three adjacent faces) and 

part of the spherical indicatrix (two spherical links) associated 

with the spatial loop (dashed regions) around this vertex 

n1 
n2 

n3 
2 

2 

e12 e23 
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n2 

n3 
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For a conformal polyhedral linkage, neither the dihedral nor the planar angles 

should change. So the spherical indicatrix is dictated by the corresponding 

vertex figure and should remain unchanged during the motion. The side lengths 

and interior angles of a vertex figure are the planar angles and dihedral angles 

of the associated vertex, respectively and these angles fully define the spherical 

indicatrix that is dealt with here. The converse is also true: if the spherical 

indicatrices of all loops of a polyhedral linkage are fixed during the motion, the 

linkage should be a conformal polyhedral linkage. But, an assembly 

constructed for a specific polyhedral shape, such that the spherical indicatrices 

remain unchanged, may or may not be mobile – mobility is bound to special 

link dimensions. 

 

If a loop has an immobile spherical indicatrix, it means that the dap links are 

constrained to move in pure translation with respect to each other. Now, the 

problem is how to get these constraints. Consider the relative motion of two 

polygonal links connected to each other via a dap link. The dap link ensures 

that the angle between the planes of the polygonal links remain constant during 

the motion. When all links are assembled together to enclose a polyhedral 

region, one can fix a coordinate system in space such that the instantaneous 

screw axes of polygonal links do not change their directions with respect to this 

frame for all times, i.e. the motion is a Schoenflies motion (see Bottema & 

Roth, 1979, sec. 9.5), as noted by Wohlhart (1997) for the Fulleroid. This fixed 

frame can be chosen to be attached to any of the links. Röschel (1996b) 

investigates the case where the motions of the polygonal links are fixed-axis 

Darboux motions (see Bottema & Roth, 1979, sec. 9.3). 

 

To illustrate, take two such normal directions, say n1, n2 in Figure 6.5. As the 

directions of n1 and n2 do not change throughout the motion, the dap link in 

between realizes a translational motion along the perpendicular to n1 and n2, 
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i.e. along edge e12. Of course e12 is not fixed in space and with respect to the 

fixed frame; the translation is curvilinear (see Verheyen, 1989, p. 208). 

 

Several problems may occur in assembling the links. First of all, given a 

polyhedral shape, even if the polygonal and dap links are selected properly, the 

assembly may be immobile. As explained below, the spatial loops cannot be 

constructed arbitrarily, and even if all the loops are mobile individually, the 

assembly of the loops, which is a loop of loops, may be immobile. If the 

assembly is mobile, still it may not be a conformal polyhedral linkage. Also 

there is no guarantee of obtaining a single linkage. Multi-dof assemblies arise, 

for instance if diagonal links are used: If 12 digons are added to a regular 

octahedron and proper dap links are inserted, the resulting linkage has multi-

dof (In Verheyen’s notation 12{2} + 8{3}|35°1552 - Figure 14a in 

(Verheyen, 1989)). 

 

Next, the overconstrainedness of the spatial loops shall be demonstrated. An 

nV loop comprises 2n revolute joints and 2n links (disregarding the degenerate 

case where some axes are coincident). According to CGK formula, in general 

such a loop possesses 6(2n – 1) + 52n = 2n – 6 dofs. If the special condition 

that the joint axes are pairwise parallel is not imposed, the spherical indicatrix 

of such a loop comprises 2n revolute joints and 2n spherical links and has   

3(2n – 1) + 22n = 2n – 3 dofs. Constraining the 2n – 3 dofs of the spherical 

indicatrix, the loop has 2n – 6 – 2n + 3 = –3 dofs; hence it is a structure unless 

some special geometric conditions are imposed. The special conditions on the 

axes are that adjacent joint axes are either parallel, or intersecting. These 

conditions make the indicatrix an n-link spherical linkage, instead of a 2n-link 

one. When the indicatrix has n links, it has n – 3 dof(s), and so the loop has    

2n – 6 – n + 3 = n – 3 dof(s). For the 4V loop, with these conditions on the axes 

only, the loop has single dof, however, still special link dimensions are 
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necessary to for such a single dof loop to be used around a vertex figure of a 

Jitterbug-like linkage. Also not all vertex figures may be suitable for such 

loops around them. 

 

Finally, it will be showed that the spherical indicatrices of the vertices of a 

polyhedral shape constitute a spherical polyhedron. Consider the convex 

octahedron and the six spherical indicatrices of its vertices shown in Figure 

6.6a. Each indicatrix defines a part of a ball with four dap disk fractions. To 

every edge, there corresponds two identical dap disk fractions, like the dark 

ones in Figure 6.6a. In total, there are twelve pairs of these disk fractions. Since 

these identical pairs are parallel to each other, if the ball fractions are 

assembled by mating the parallel disk fractions, a whole ball is obtained 

(Figure 6.6b). The octahedron is just an example, but the facts mentioned are 

generally true for all polyhedral shapes that can be projected to a sphere, 

because the spherical indicatrix for a vertex figure is the spherical projection of 

the dual facial figure. The projection does not tell much about the metric 

properties of the dual face, but just gives combinatorial information (see, ex. 

Galiliunas & Sharp, 2005). 

 

In summary, the following properties and conditions are conceived for wholly 

representative Jitterbug-like linkages 

 

(i) Vertex valences of the base polyhedron are generally (but not 

necessarily) even. 

(ii) Spherical indicatrix of the linkage is immobile and the link 

dimensions of the indicatrix of a loop are uniquely given by the 

associated dihedral and plane angles. 

(iii) If base polyhedron obeys Euler’s formula (specifically if it is convex) 

it contains at least one 4-valent vertex. Furthermore, in this case the 
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assembly of spherical indicatrices associated with the vertex figures 

results in a spherical polyhedron. 

(iv) Polygonal links have Schoenflies motion, dap links are in pure 

translation. 

(v) Due to the conformal transformation, dihedral and plane angles of the 

supporting polyhedron are the same during the motion, however side 

lengths vary. 

 

 

 

a)  b)  

 

Figure 6.6 a) An octahedron with the spherical indicatrices of its vertices, 

b) The spherical assembly of indicatrices 

 

 

 

 

 

 



 65 

6.2 Homothetic Jitterbug-like Linkages 

 

 

If all side lengths of the supporting polyhedron vary proportionally the 

transformation is a homothety and such linkages shall be called as homothetic 

Jitterbug-like linkages. The Heureka octahedron (Figure 1.2) and the linkage in 

Figure 6.2a are examples of homothetic linkages, while the linkage in Figure 

6.2b is non-homothetic (square and triangular links depart from the polyhedron 

center at different rates). These facts will be proved in following subsections.  

 

This section deals with the geometric conditions for a homothetic Jitterbug-like 

linkage. In this section Röschel’s (1996, 2001) results are validated using 

different tools, it is shown in which cases these results are valid and the subject 

is further developed by new material. 

 

 

6.2.1  Planar Considerations 

 

 

For a homothetic Jitterbug-like linkage the supporting polyhedron is always 

similar at any configuration. If the supporting polyhedron goes through a 

homothetic transformation, so do the faces. In homothety of a polygonal face 

there is a polygonal link in motion (EFGH in Figure 6.7) and as the link moves 

the supporting polygon (ABCD in Figure 6.7), boundaries of which are given 

by the intersections with the neighboring planes of motions, dilates. The 

problem to be solved is how to locate a polygonal link inside a given a 

polygonal face so that a dilative motion is achieved. 
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Figure 6.7 A polygonal link and its supporting polygon in dilation 

 

 

 

There is always an invariant point in a homothety unless it is a translation 

(Coxeter, 1967, p.94). This point is called the homothety center, say O. Given 

two similar polygons with parallel corresponding sides the homothety center 

can be located as the common intersection of lines connecting corresponding 

vertices (Coxeter, p.94). Assume two configurations of a polygon ABCD and 

A´B´C´D´ (the example is a quadrilateral but the construction is valid for any 

polygon). Place a polygon EFGH inside ABCD. A rotated version E´F´G´H´ is 

sought to be placed inside A´B´C´D´. Let the amount of rotation be . Then the 

angle between the homologous lines OE-OE´, OF-OF´, OG-OG´ and OH-OH´ 

are all . Note that O is not necessarily the center of rotation for EFGH, but 

assume that it is. 
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Assumption 1: Rotation centers of polygonal links are concurrent with 

associated homothety centers. 

 

The homologous points for O coincide in the two poses. The amount of dilation 

can be measured by the distance of sides to the homothety center O. Drop 

perpendiculars from O to the sides of ABCD and let the angles between these 

perpendiculars and OE, OF, OG, OH be , , , and   (–/2, /2), 

respectively. Then 

 

cos(i)/cos(i + ) = cos(j)/cos(j + )  cos(i)cos(j + ) = cos(j)cos(i + ) 

              i = j 

 

for i, j = 1, 2, 3, 4. So given ABCD and O, the corners E, F, G and H cannot be 

chosen arbitrarily. Once, say E is chosen, F, G and H should be selected such 

that  =  =  =  = . Without loss of generality take  = 0, or consider 

the configuration where  = – as the initial configuration. At this position OE, 

OF, OG and OH are perpendicular to sides AB, BC, CD and DA, respectively 

and also the maximum size of ABCD is achieved. So given ABCD one may 

choose E, F, G and H as the points at the foot of perpendiculars to the sides 

from an arbitrary inner point O. Therefore, given a polygonal face first a point 

is selected inside and the foot of the perpendiculars to the sides from this point 

gives a polygonal link suitable for the purpose. Note that there are ∞2 possible 

choices for this inner point. 
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6.2.2  On the Instantaneous Screw Axes and Polyhedral Vertices 

 

 

While the supporting polyhedron goes through a homothetic transformation 

there is an invariant point, i.e. the homothety center. Each vertex of the 

supporting polyhedron dilates with respect to this center with a dilation factor 

k. Also every corner of a polygonal face departs from each corresponding 

facial homothety centers issued in the former section with the same dilation 

factor k. So the facial homothety centers dilate with respect to the global 

homothety center with a dilation factor of k. If rotation centers of all polygonal 

links are assumed to be concurrent with the homothety centers of 

corresponding faces, then the instantaneous screw axes (ISAs) of the polygonal 

links are too dilated with respect to the global homothety center. The maximal 

volume of the polyhedral shape is achieved when one of the faces reach its 

maximum area. Assume that all the faces are maximal simultaneously. Then at 

this maximal size on every face, the rays from the rotation center to the 

polygonal link corners meet the polyhedron edges perpendicularly. Hence 

 

Assumption 2
2
: At the maximal size of the polyhedral shape, rays from 

rotation centers to link vertices meet polyhedron edges 

perpendicularly. 

 

Consider two rays from the rotation centers to the meeting corners of adjacent 

polygonal links. Through these two rays there passes a plane. At the maximal 

configuration this plane is perpendicular to the corresponding edge, so is also 

perpendicular to both of the faces meeting at this edge. Then it includes both of 

the ISAs, by which one concludes that ISAs of neighboring faces intersect each 

other. 
                                                 
2 All the results and theorems in the following are valid under Assumptions 1 and 2. 
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If ISAs of adjacent faces intersect each other, it is natural to ask whether all the 

ISAs should meet at a common point. This is indeed the case in several known 

examples, like the Jitterbug and the octahedral linkage in Figure 6.2a, but not 

true in general. This shall be demonstrated with a counterexample: a snub 

disphenoidal linkage given in Figure 6.8 (Some ISAs are not drawn long 

enough but all neighboring axes intersect each other).  

 

 

 

          
 

Figure 6.8 Snub disphenoidal linkage, its supporting polyhedron and ISAs 

of triangular links 

 

 

 

As a special case, if the base polyhedron has an inscribing sphere, all ISAs 

meet at a point, as investigated by Röschel, 1996. In this case the polygonal 

links realize Darboux motions with fixed ISAs. However Darboux motions do 
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not apply for the general case, as again the linkage in Figure 6.8 is a counter-

example. When the ISAs are not fixed in space, they dilate with respect to the 

homothety center, i.e. an ISA stays in a plane. This cannot be a Darboux 

motion because the axodes are cylinders in Darboux motion (Bottema & Roth, 

1979, p. 308). 

 

With Assumption 2 if one link rotates in one sense, it is guaranteed that the 

neighboring ones rotate in opposite sense, at least in the neighborhood of the 

maximal configuration. This implies that the polyhedron vertices should have 

even valence. This fact is mentioned by Röschel (1996, 2001) and Wohlhart 

(1998), but not rigorously established as it is here. Hence 

 

Theorem 1: For a homothetic Jitterbug-like linkage the ISAs of neighboring 

faces intersect each other. Furthermore, all the vertices of the base 

polyhedron should have even valence. 

 

As oppose to the result on even valence, notice that the supporting polyhedron 

in Figure 6.8 has 5-valent vertices. Recall that in the definition for Jitterbug-

like polyhedral linkages it is established there corresponds a single polygonal 

link to each face. There are 24 ternary links for the snub disphenoidal linkage 

and indeed the supporting polyhedron is not a mere snub disphenoid, but a 

double snub disphenoid. In a double polyhedron faces overlap pairwise. This is 

a standard trick to mobilize polyhedra with even valence known since 

Verheyen (1989). 

 

When ISAs of neighboring faces intersect each other one can think of the 

motion of two neighboring rays (from rotation centers to concurrent corners of 

adjacent polygonal links) as the links of a CRRC linkage where the axes of C 

(cylindrical) joints and also R (revolute) joints intersect and adjacent C and R 
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axis are parallel. In Figure 6.9 O12 and O23 are the homothety centers of 

neighboring polygonal faces and E2 is the common corner of the corresponding 

polygonal links. E12 moves along the intersection of two cylinders along ISAs 

n12 and n23 with radii r12 and r23. In general two cylinders intersect along a 4th 

order spatial curve. Consider the projection of the intersection curve on the 

plane of the ISAs (xy plane in Figure 6.9). The components of any point (x, y) 

of this projection curve on n12 and n23 give s12 and s23 – the distances of 

polygonal links/faces to the ISA intersection O. For a dilative motion s12/s23 

should be invariant at all times, which is possible only if (x, y) is on a line and 

this is only valid if the trajectory of E2 is planar. Two cylinders with 

intersecting axis of revolution intersect along a planar curve only if they have 

the same radii (Verheyen, 1989, p. 208). So the perpendicular rays meeting at 

an edge should have the same length. 

 

 

 

 
 

Figure 6.9 Hhypothetical CRRC linkage for two adjacent polygonal links 
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Consider an n-valent (n is even) vertex figure cut along an edge and expanded 

onto a plane as in Figure 6.10. If the perpendicular rays meeting at an edge 

have the same length, the plane angles 12, 23, …, n1 at the vertex can be 

dissected as 

 

12 = 1 + 2, …, n1 = n + 1. 

 

 

 

 
 

Figure 6.10 An n-valent vertex figure cut along an edge 
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In matrix form these equations read 

 

























































n1

23

12

n

2

1

1001

0110
0011























 

 

It can be shown by induction that this coefficient matrix has rank n – 1 when 

the dimension n is even, so the plane angles 12, 23, …, n1 cannot be 

arbitrary, but one of them must be depending on the others. This dependence 

can be expressed as  

 

12 + 34  + … + n-1n = 23 + 45 + … + n1.          (6.1) 

 
This means that not all polyhedral shapes can be used as a supporting 

polyhedron for a Jitterbug-like linkage (with Assumptions 1 and 2).  

 

This constraint is automatically satisfied if the doubling trick for an odd-valent 

vertex is used. Consider an n-valent vertex, n being odd. The plane angles will 

be such that i,i+1 = n+i,n+i+1 for i = 1…n (2n+1  1), so Equation (6.1) is 

automatically satisfied because ith term cancels n + ith term. 

 

Homothety centers of neighboring faces being equidistant to the common edge 

is the same thing Röschel (2001) gets with equiform motions in which he takes 

mirror symmetries of a planar motion. Röschel (2001) gives an example of 

constructing such linkages by choosing all rotation centers neighboring a 

polyhedron vertex on a circle. Is this the only case, or can one get different 

geometries? This question shall be answered in steps and case based. 
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Figure 6.11 Two adjacent polygonal links 

 

 

 

Consider the motion of a corner of a polygonal link, say E2, along its 

corresponding edge, say e2. Assuming the notation in Figure 6.11, starting from 

the maximal configuration, as segment E1E2 rotates by an angle 12, E2E3 

rotates by angle 23 in the opposite sense. The motion along the common edge 

must comply, so a2sin12 = a2sin23, hence 12 and 23 are equal in amount. 

VE2 being common, E2O12 and E2O23 having the same length and being in 

symmetric position, by side-angle-side similarity |VO12| = |VO23| (varying) at 

all times. This if true for all VOij, therefore, the homothety centers on the faces 

around a vertex are equidistant to the vertex, hence are on a sphere centered at 

this vertex. 
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Notice that the motion of a segment E1E2 in its plane is Cardan motion with 

respect to a frame located at V. The meet of perpendiculars from E1 and E2 to 

their corresponding linear paths should be on the moving Cardan circle, so O12 

is on the moving circle. The center of the fixed centrode, V in this case, is 

always on the moving centrode. Since triangles VE2O12 and VE2O23 are 

congruent, they have the same size circumscribing circle. Therefore all the 

Cardan motions associated with the polygonal links are congruent, neighboring 

ones being in opposite senses. At the maximal configuration, i.e. when OijEi 

and OijEj are perpendicular to edges ei and ej, VOij passes through the moving 

centrode center, hence in this position the fixed centrodes are on the above 

mentioned sphere centered at V. As the linkage departs from the maximal 

configuration the sphere contracts. Hence 

 

Theorem 2: A mobile homothetic Jitterbug-like linkage can be obtained if and 

only if two homothety centers of neighboring faces are in 

symmetrical position with respect to the common edge. 

 

Proof: The necessity of the symmetry condition is demonstrated above. To 

prove the sufficiency: Assume that one can locate a point Pi (i = 1…F) to each 

face i of a polyhedron such that all Pi are in symmetrical positions with respect 

to the edges. Choose a maximal size of the base polyhedron and consider the 

polygonal links constructed by dropping perpendiculars from Pi to the edges. 

Since Pi are symmetric with respect to the edges, the perpendiculars from 

symmetric Pi meet at the same point on the corresponding edge. Next consider 

a contracted version of the base polyhedron by a ratio of cos. As 

demonstrated in the previous section, the polygonal links constructed for the 

maximal configuration can be located into the new faces by rotating the links 

by  about Pi. The sense of rotation of adjacent links is opposite to each other 

and the links are kept parallel to their original positions by means of the dap 
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links. Meeting of the polygonal links is guaranteed by the symmetry condition, 

as explained above via Figure 6.9. This relocation of the links is possible for 

any angle , so the assembly is mobile with the motion parameter . ■ 

 

Corollary 2: If the homothety centers of any pair of neighboring faces are in 

symmetrical position with respect to the edge along the faces 

meet, the homothety centers on the faces around a vertex are 

equidistant to the vertex and the plane angles around a vertex can 

be dissected such that Equation (6.1) is satisfied. 

 

Proof: Consider two homothety centers Oij and Ojk on adjacent faces in 

symmetrical position with respect to edge ej. Drop perpendiculars from Oij and 

Ojk to ej and let the foot be Ej. Denote one of the vertices of the edge by V. The 

triangles VEjOij and VEjOjk are congruent due to side-angle-side similarity, so 

the homothety centers are equidistant to V. All VOij segments around a vertex 

dissect the associated plane angles as 12 = 1 + 2, …, n1 = n + 1, so 

Equation (6.1) is satisfied. ■ 

 

Why the linkage in Figure 6.2b is non-homothetic is now clear: The square and 

triangular links have the same side length, so they have different ray lengths 

|OijEj|. Therefore, although Theorem 1 is satisfied for this linkage, Theorem 2 

does not hold. 

 

To assemble such loops around vertices to obtain a polyhedral linkage certain 

conditions are to be satisfied. Consider a base polyhedron with F many faces, E 

many edges and V many 3-valent vertices. The homothety centers on the faces 

meeting at a vertex should be equidistant to the corresponding vertex, so 

consider V many spheres centered at the vertices such that all spheres for a face 

intersect at a point, which is the homothety center of that face. The radii of the 
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spheres are the design parameters. In a face with S many corners/sides, S many 

sphere meeting at a point imposes S – 2 constraints on the radii of the spheres. 

Then totally there are (Si – 2) constraints on the radii, where Si is the number 

of the sides of ith face and i = 1…F. Noting that Si = 2E, number of 

constraints is 2E – 2F. When the V parameters are chosen arbitrarily, there still 

remains 2E – 2F – V = V – 2 constraints to be satisfied, where  is the Euler 

characteristic. Note that  ≤ 2 (See “Euler characteristic” in the Appendix), so 

V – 2  0 which implies the overconstraint of the problem. 

 

 

6.2.3  Conditions on the Supporting Polyhedron 

 

 

As a result of the previous arguments the following theorem is obtained: 

 

Theorem 3: A polyhedron can be used as a base polyhedron for a homothetic 

Jitterbug-like linkage if and only if one can locate spheres 

centered at vertices of the polyhedron such that on all faces, the 

associated spheres meet at a common point. 

 

Proof: It is already illustrated that locating spheres centered at vertices of the 

polyhedron such that on all faces the associated spheres meet at a common 

point is a necessary condition. Now it should be showed that this condition is 

sufficient. Assume that there exist such V spheres for a polyhedron. Then the 

homothety centers should be the point of intersections of the spheres on the 

faces, which dictates that the homothety centers around a vertex are equidistant 

to the vertex. Consider two spheres centered at the two ends of an edge ej. 

These two spheres intersect along a circle, which intersects the faces meeting at 

ej at symmetrical points Oij and Ojk with respect to ej. So the homothety centers 



 78 

are equidistant to ej. Because this symmetry situation is valid for all edges 

meeting at a vertex, the plane angles can be dissected such that (6.1) is 

satisfied. The result follows by Theorem 2. ■ 

 

So the cost of the V – 2 constraints mentioned at the end of previous section 

is to be paid by selecting base polyhedra that satisfy Theorem 3. 

 

 

6.2.4  Special Cases 

 

 

6.2.4.1 Homohedral Linkages 

 

 

A homohedron is a polyhedron with congruent faces. Using the information in 

sections 6.2.1 and 6.2.2 the following theorem can be devised for homohedral 

linkages: 

 

Theorem 4: 2 many homothetic Jitterbug-like linkages can be obtained if the 

supporting polyhedron is a homohedron. 

 

Proof: Two adjacent faces of a homohedron meet along a common edge, hence 

the faces are necessarily in mirror position with respect to the edge they meet 

along. Take one of the faces, say F, and construct a polygonal link by taking an 

arbitrary point, say OF, (2 many possible choices) inside the face and 

dropping perpendiculars to the sides. Since all faces and hence all polygonal 

links are congruent, when assembled the polygonal links and the homothety 

centers OF’s will be in symmetrical position with respect to edges. By Theorem 

2 the assembly is mobile. ■ 
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Of many homohedra found in the literature, the isohedra are of special interest. 

Isohedra are convex polyhedra which look exactly the same no matter which 

face one looks at (Cromwell 1997, p. 367). All the linkages of Chapter 5 are 

isohedra, as well as are the Platonic solids, Catalan solids, dipyramids and 

trapezohedra. A non isohedral homohedron example is the snub disphenoid, the 

associated linkage of which is illustrated in Figure 6.8. 

 

 

6.2.4.2 Polyhedra With 3-Valent Vertices 

 

 

3-valent vertices are considered only for double polyhedra and hence actual 

vertex valence is 6. Considering a 3-valent vertex neighborhood, starting from 

a point on one of the faces, dropping perpendiculars to the sides and taking 

mirrors one can locate 6 links to the faces as in Figure 6.12a. When the two 

ends of the links are bound to their respective linear guides the resulting planar 

linkage is mobile with single dof due to their Cardan motion (Figure 6.12b). 

 

Although the assembly in Figure 6.12 is mobile, homothety centers cannot be 

kept arbitrary if Assumption 1 is to be satisfied. So the rotation centers of two 

links on an overlapping face are forced to be concurrent. Then, in the maximal 

configuration the corners of the coplanar polygonal links on the faces should 

coincide, i.e. identical links should be used on overlaping faces. 
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Figure 6.12 A double 3-valent vertex cut along an edge and expanded to the 

plane and 6 links around it – a) maximal configuration, b) 

arbitrary configuration 

 

 

 

For 3-valent vertices, there always passes a circle through the 3 homothety 

centers Oij around the vertex (Figure 6.13). Since Oij are equidistant to the 

vertex V, the line joining V and the center of the circle, say V´ is orthogonal to 

the plane of the circle. So lines VOij are on a right cone. Consider the ISAs of 

polygonal links passing through Oij. Every ISA should intersect the 

neighboring one. Consider the plane defined by two of the ISAs. The point of 

intersection of these two axes with the third one is on this plane, but the third 

ISA intersects this plane at a single point, so necessarily the three ISAs should 

meet at a single point. If all the vertices of a polyhedron are 3-valent, then all 

ISAs meet at a single point, meaning the position of all ISAs with respect to 

each other are fixed during the motion. In this case, it is guaranteed that the 

motion of the links are Darboux motions with fixed ISAs. 
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Figure 6.13 A 3-valent vertex and a loop around it at maximal configuration 

 

 

 

One case where ISAs are concurrent is already mentioned: when the base 

polyhedron has an insphere. Is this the only case? The answer is positive: 

Denote the point of intersection of the ISAs as O. Since homothety centers Oij 

neighboring a vertex V are on a right cone, OVOij are all equal to the cone 

angle. |VOij| are all equal and VO is common, so the triangles VOijO are 

congruent implying |OOij| are all equal for a vertex V. Proceeding to adjacent 

vertices it is seen that |OOij| are all equal for all faces, so 

 

Theorem 5: If all the vertices of a homothetic Jitterbug-like linkage are 3-

valent, the base polyhedron should have an inscribing sphere. 

 

So if a polyhedron has only 3-valent vertices, one cannot find a homothetic 

linkage satisfying Assumptions 1 and 2 if not all the faces are tangent to an 

insphere. For example a rectangular prism cannot be used as a base polyhedron 

unless it is a cube. 
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For tetrahedra, there is always an insphere, so all tetrahedra is a base 

polyhedron for a homothetic linkage. Here is an example: Consider the 

tetrahedron with vertices (0, 0, 0), (100, 0, 0), (70, 60, 0) and (40, 20, 90). It is 

easy to locate the inscribing sphere by finding the point equidistant to all four 

faces. Projecting the sphere center on the faces, the homothety centers on the 

faces are obtained. Dropping the perpendiculars from the facial homothety 

centers to the edges the polygonal links are obtained. Some configurations of 

the resulting linkage is given in Figure 6.14. 

 

 

 

 
 

Figure 6.14 A tetrahedral linkage with ISA guides 

 

 

 

Other examples of polyhedra with 3-valent vertices only are prisms, hexahedra, 

dodecahedra with pentagonal faces and all truncated polyhedra. Of course they 

can be used provided that there is an inscribed sphere. These example 

geometries just represent the topology and they can be deformed provided that 

the faces remain tangent to a sphere; for example the base faces of a prism can 
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be made non-parallel, or the side faces may be deformed such that the vertices 

are not on a cylinder. 

 

Also one can include in this class many polyhedra with 3-valent vertices which 

also have vertices with higher valence. For example (excluding the tetrahedral) 

all vertices, but one of an n-gonal pyramid are 3-valent. The ISA of the 3-

valent vertices meet at a point hence the remaining vertex with higher valence 

is irrelevant. All pyramids have an insphere, so they can be used as base 

polyhedra. Similarly cupolas with inspheres can be used as base polyhedra. 

 

 

6.2.4.3 Tangential Polyhedral Linkages 

 

 

The following special case is a generalization of the previous section: 

 

Theorem 6: If a polyhedron has an inscribing sphere, it can be used as a base 

polyhedron for a homothetic Jitterbug-like linkage. In this case if 

the homothety centers on the faces are chosen as the points of 

tangencies with the insphere, the ISAs of the polygonal links meet 

at the sphere center. Conversely if all ISAs of a homothetic 

Jitterbug-like linkage meet at a point, there is necessarily an 

inscribing sphere for the supporting polyhedron centered at the 

meet of the ISAs. 

 

Proof: Let a polyhedron have an insphere with center O. Consider two 

adjacent faces with points of tangencies Oij and Ojk, intersecting along edge ej, 

and one of the vertices V along this edge (Figure 6.15). ej meets the plane 

defined by O, Oij and Ojk perpendicularly. Drop perpendiculars from Oij and 
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Ojk which both meet ej at Ej. |OOij| = |OOjk| and OOij and OOjk are 

perpendicular to OijEj and OjkEj, respectively, so OOijEjOjk is a kite and     

|OijEj| = |OjkEj|. OijEj and OjkEj being perpendicular to ej and VEj being 

common side, OijEjV and OjkEjV are congruent, hence |VOij| = |VOjk| and 

EjVOij = EjVOjk. Similar analysis is valid for all edges and adjacent 

homothety centers Oij, so Theorem 2 holds and the polyhedron can be used as a 

base polyhedron for homothetic Jitterbug-like linkages. 

 

 

 

 
 

Figure 6.15 An insphere and two planes of faces tangent to it 

 

 

 

Next assume that all ISAs of a homothetic Jitterbug-like linkage meet at a point 

O. Choose the homothety center of the supporting polyhedron as the meet of 

the ISAs and hence fix the ISAs. Consider an edge ej, one of the vertices V on 

this edge and the two neighboring homothety centers Oij and Ojk on the faces. 
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Corollary 2 demands |VOij| = |VOjk|. VOij and VOjk are perpendicular to OOij 

and OOjk, respectively, and VO is common, so VOOij and VOOjk are 

congruent, hence |OOij| = |OOjk|. This is valid for all edges, so the homothety 

centers on the faces are equidistant to the polyhedron homothety center O and 

are on a sphere. Also the faces are perpendicular to the ISAs, hence are tangent 

to the sphere. ■ 

 

Homothetic linkages with base polyhedra that have inscribed spheres are also 

issued by Röschel (1996). It is here shown that the construction method given 

by Röschel (1996) is the only way to obtain homothetic Jitterbug-like linkages 

with fixed ISAs. 

 

As the most symmetric cases, Platonic solids and the Archimedean duals, i.e. 

the Catalan solids have insphere. As an example, a tetrakis hexahedral linkage 

with the ISAs shown as guides is given in Figure 6.16. In this linkage, the 

homothety centers on the faces are chosen as the points of tangencies with the 

insphere. Note that since tetrakis hexahedron is an isohedron any point on a 

face can be used as the homothety center by Theorem 3. An example is 

presented in Figure 5.5 for which the very same supporting polyhedron, the 

tetrakis hexahedron is used and the ISAs are not fixed throughout the motion. 

 

It is still possible to obtain homothetic linkages if there is no inscribed sphere, 

as the fruitful example of Figure 6.8 demonstrates. 
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Figure 6.16 A tetrakis hexahedral linkage with ISA guides 
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6.2.4.4 Polyhedra With 4-Valent Vertices 

 

 

 

 
 

Figure 6.17 A 4-valent vertex and associated parts of the polygonal links 

around the vertex 

 

 

 

Consider a 4-valent vertex, summation of opposite plane angles of which are 

equal (12 + 34 = 23 + 41) (Figure 6.17). Choose a point O12 on face 12 and 

locate its mirror images O41 and O23 along edges e1 and e2, respectively. The 

mirror images of O23 and O41 along e3 and e4, necessarily coincide due to the 

condition 12 + 34 = 1 + 2 + 3 + 4 = 23 + 41. Let |VO12| = |VO23| = 
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|VO34| = |VO41| = r. Consider the sphere centered at V and passing through O12, 

O23, O34 and O41. The intersection of this sphere with the faces is a spherical 

quadrilateral ABCD the side lengths of which are �AB  = rρ12, 
�BC  = rρ23,    

�CD  = rρ34, and �DA  = rρ41. This implies � � � �AB CD AD BC+ = + . 

 

At this point the following theorem can be deduced: 

 

Theorem 7: a) If the summations of the opposite sides are equal in a spherical 

quadrilateral, then there exists an inscribing circle for this 

quadrilateral. 

 b) For such a spherical quadrilateral if four points O12, O23, O34 

and O41 are chosen on sides such that they dissect the sides as   

ρ12 = α1 + α2, ρ23 = α2 + α3, ρ34 = α3 + α4, ρ41 = α4 + α1 as in 

Figure 6.15, these four points are coplanar, hence are on a circle. 

 

Proof: a) To author’s knowledge this side of the theorem is novel and hence is 

the proof. According to (Rosenfeld, 1988, pp. 33-34) the converse of the 

proposition is proved by I. A. Lexell in 1786. 

 

Consider a spherical quadrilateral ABCD with sphere center V, sides of which 

satisfy� � � �AB CD AD BC+ = +  (Figure 6.17).  There exist 4 circles tangent to arcs 

AB, BC and CD (M’cLelland & Preston, 1886, p. 1-2). Construct the tangent 

circle to these three arcs as follows: Locate point N by intersecting angle 

bisectors at B and C such that the bisectors are towards arc AD. Draw line NV 

and construct a right cone with this axis touching arcs AB, BC and CD. Let the 

circle center be V´ and points of tangencies to arcs AB, BC and CD be E, F and 

G, respectively. Arcs NE, NF and NG are orthogonal to arcs AB, BC and CD 

and N is equidistant to the three sides, so NEBF and NFCG are spherical kites 
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with � �EB BF b= =  and � �FC CG c= = . Also let �AE a=  and �GD d= . By 

hypothesis � � � �AD AB CD BC a d= + − = + . Dissect arc AD at H, such that 

�HA a=  and �DH d= . Let ∠DAB = α, ∠ABC = β, ∠BCD = γ, ∠CDA = δ and 

assume spherical excesses of α´, β´, γ´ and δ´ for the spherical triangles HAE, 

EBF, FCG and GDH, respectively. Note that these four triangles are isosceles, 

hence ∠AHE = ∠AEH = (π + α´ – α)/2, ∠BEF = ∠BFE = (π + β´ – β)/2, 

∠CFG = ∠CGF = (π + γ´ – γ)/2 and ∠DGH = ∠DHG = (π + δ´ – δ)/2. So, 

∠HEF = π – (π + α´ – α)/2 – (π + β´ – β)/2 = (α + β – α´ – β´)/2. Similarly 

∠EFG = (β + γ – β´ – γ´)/2, ∠FGH = (γ + δ – γ´ – δ´)/2 and ∠GHE = (δ + α – 

δ´ – α´)/2. Then ∠HEF + ∠FGH = (α + β + γ + δ – α´ – β´ – γ´ – δ´)/2 = 

∠EFG + ∠GHE, in which case the spherical quadrilateral EFGH is necessarily 

cyclic (M’cLelland & Preston, 1893, p. 32-33). Hence H is on the incircle with 

center V´. By side-side-side congruency of spherical triangles AEN and AHN, 

arcs NE and NH meet arcs AB and AD orthogonally, respectively, so the circle 

is tangent to arc AD. ■ 

 

b) Let points O12, O23, O34 and O41 be on arcs AB, BC, CD and DA, 

respectively, such that they dissect the sides as ρ12 = α1 + α2, ρ23 = α2 + α3, ρ34 

= α3 + α4, ρ41 = α4 + α1. Consider the tangency points E, F, G and H in part (a) 

and compare VE, VF, VG and VH with VO12, VO23, VO34 and VO41. Because 

of the mirror symmetries, if the angle between VE & VO12 is η, the angles 

between VF & VO23, VG & VO34 and VH & VO41 should be η, too. Then the 

distance of O12, O23, O34 and O41 to the plane defined by E, F, G and H are    

r(1 – cos η). If O12, O23, O34 and O41 are equidistant to this plane, they should 

be coplanar. Since O12, O23, O34 and O41 are on a sphere, they are on a circle. ■ 

 



 90 

So, Röschel’s (2001) way of construction using circles is indeed the only way 

to obtain homothetic Jitterbug-like linkages when all the vertices are 4-valent, 

such as for an octahedron. 

 

When vertex valence is greater than 4, the facial homothety centers Oij around 

this vertex are not necessarily on a circle. Indeed the homothety centers around 

the 5-valent vertices of the snub disphenoidal linkage in Figure 6.8 are not on a 

circle. 

 

 

6.2.4.5 Degenerate Case: Coplanar Faces Around a Vertex 

 

 

Consider the special case where the faces around a vertex V are coplanar 

(polygon scaling problem). The problem breaks down into placing angulated 

elements EiOijEj along radial guides VEi and VEj. In this case, the ISAs are all 

parallel, hence they meet at the infinity. Then the reasoning in Section 6.2.2 I 

no longer valid and Oij are not necessarily on a sphere (hence a circle in the 

plane). Therefore Theorems 2 and 3 do not hold in this degenerate case. 

 

This planar case has already been worked out in (Kiper, Söylemez & Kişisel 

2008) and Chapter 2. In these works, it is shown that if the fixed Cardan circles 

of all the angulated elements are to meet at a point, the supporting polygon 

needs to have an inscribing circle. Loosing this meet condition one can scale 

any kind of polygon (Chapter 2). 
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6.2.5 Open Problems 

 

 

This chapter addressed the following questions: what are the conditions on the 

suitable polyhedra that can be used for homothetic linkages and how can one 

construct such linkages? The following questions remain in debate: 

 

- Can one obtain homothetic linkages not satisfying Assumptions 1 and/or 2? 

 

- Are these two assumptions unrelated or do they imply each other? 
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CHAPTER 7 

 

 

MODIFICATIONS ON JITTERBUG-LIKE LINKAGES 

 

 

Having defined Jitterbug-like linkages in Chapter 6, modifications on these 

linkages are issued in this chapter. New overconstrained linkages are obtained 

as a result of the modifications. Two different classes of modified linkages are 

presented in two sections. 

 

 

7.1 Addition of Links on the Faces of Jitterbug-Like Linkages
1
 

 

 

It is already mentioned in Chapter 6 that the polygonal links of a Homothetic 

Jitterbug-like linkage go through Cardan motion with respect to a frame 

located at any of the corners of the associated supporting polygon. In this 

section, cranks are attached between centers of the fixed and moving centrodes 

to further constrain the already overconstrained linkages. 

 

In this section, homothetic Jitterbug-like linkages are modified by adding n-ary 

links at the n-valent vertices and binary links in between these n-ary links and 

polygonal links. The additions are made such that the motion of the original 

links does not change. Then some link and joint groups are removed to obtain 

some new linkages. 

 

                                                 
1 The main content of this section is published by Kiper and Söylemez (2010b). 
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7.1.1  The Cardan Motion Associated With the Polygonal Links 

 

 

Consider a spatial 2nR loop around an n-valent vertex V according to the 

definition in Chapter 6, like the one in Figure 7.1. The corners of a side AB of 

a polygonal link will be constrained to move on two adjacent edges of the 

corresponding supporting polygonal face. Since VAB remains constant 

during the motion of a Jitterbug-like linkage, the motion of the segment AB on 

the associated face is equivalent to the coupler link of a double slider 

mechanism (Figure 7.2), coupler link of which has the Cardan motion as 

mentioned in Chapter 2. 

 

 

 

 
 

Figure 7.1 An 8R loop around a 4-valent vertex 

V 

A 

B 
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Figure 7.2 A double slider mechanism 

 

 

 

On the moving plane associated with the coupler link of the double slider 

mechanism there is a special point C, the center of the moving centrode, the 

trajectory of which is a circle. Given the plane angle  and length c = |AB|, this 

point is located easily: Since points A and B have straight line trajectories, they 

are on the moving centrode. Also the center of the fixed centrode (point V in 

Figures 7.1 and 7.2) is on the moving centrode at all times, so the moving 

centrode is uniquely given by points V, A and B. Then by inscribed angle 

theorem BCA = 2 and hence |CA| = |CB| = c/2sin. This uniquely locates 

point C. 

 

If for every side AB of the polygonal links of a homothetic Jitterbug-like 

linkage, a link VC is attached at the proper point C, then all such attached links 

A 

B 

C 

V 

c 





fixed 
centrode 

moving 
centrode 
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around a vertex can be connected to a common link without disturbing the 

original motion. In the next section, examples of such linkages are presented. 

 

 

7.1.2  Attaching Links to Jitterbug-Like Linkages – Examples 

 

 

The first example shall be the Heureka Octahedron. By addition of the extra 

joints to the triangular links, the polygonal links of the Heureka Octahedron 

become regular hexagons. Some snapshots of the obtained mechanism is given 

in Figure 7.3. 

 

Recall that the supporting polyhedron of the jitterbug is a regular octahedron. 

For the next two examples, the supporting polyhedra are the regular 

tetrahedron (Figure 7.4) and the cube (Figure 7.5). Note that for the tetrahedron 

and the cube the vertex valences are 3, so double polyhedra are used for them 

as was illustrated in Figure 6.1. 

 

The examples given in Figures 7.3-7.5 turn out to be some special cases of 

linkages presented in (Kiper, Söylemez & Kişisel, 2008), where some 

polygonal linkages are introduced and used in the faces of polyhedral linkages. 

The cubic linkage in Figure 7.5 is also the subject of (Wei, Yao, Tian & Fang, 

2006). What is not in (Kiper, Söylemez & Kişisel, 2008) are issued in the next 

section. 
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Figure 7.3 The Heureka Octahedron with extra links 
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Figure 7.4 Tetrahedral dipolygonid with extra links 
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Figure 7.5 Cubic dipolygonid with extra links 
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Figure 7.6 Linkage obtained from a tetrakis hexahedron 
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Similarly, links can be added to the remaining two Platonic solids, i.e. the 

dodecahedron and the icosahedron. Among polyhedra with regular faces, the 

non-Platonic convex deltahedra (triangular dipyramid, pentagonal dipyramid, 

snub disphenoid, triaugmented triangular prism and gyroelongated square 

dipyramid) can also be used as supporting polyhedra. However, Archimedean 

solids are not suitable for the purpose because they cannot be used for 

homothetic linkages (See the paragraph after Corollary 2 in Section 6.2.2). 

 

The Archimedean duals, i.e. the Catalan solids have insphere, so they can be 

used here. As an example, the linkage obtained from a tetrakis hexahedron is 

given in Figure 7.6. The tetrakis hexahedron is chosen due to its even-valent its 

vertices. Most Catalan solids have odd-valent vertices, so double polyhedra of 

them should be used to obtain a linkage (just like the tetrahedron and the cube). 

 

An immediate advantage of these linkages over the original linkages is that the 

new linkages better represent their supporting polyhedra visually, because not 

only the faces and edges are represented by the polygonal and dap links, 

respectively, but also the vertices are represented by the new links. 

 

 

7.1.3  Obtaining New Linkages by Removing Some Links and Joints 

 

 

Having obtained some further constrained overconstrained linkages in the 

previous section it is possible to obtain new linkages out of these linkages by 

properly removing some link groups. 

 

Again the first example comes out of the Heureka Octahedron. Moving out two 

hexagonal links and the twelve binary links connected to these two polygonal 
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links of the linkage in Figure 7.3, the linkage in Figure 7.7 is obtained. The 

supporting polyhedron of this linkage is the rhombohedron. 

 

 

 

 
 

Figure 7.7 A rhombohedral linkage 

 

 

 

 
 

Figure 7.8 A square pyramidal cap linkage 
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Another linkage can be obtained by keeping 4 adjacent hexagonal links 

meeting at a vertex and deleting the remaining four (Figure 7.8). In this case, a 

square pyramidal cap like geometry is obtained: the planes of the polygonal 

links do not bound a finite volume. 

 

Next, consider the tetrahedral linkage of Figure 7.4. Deleting one of the 

polygonal links on each face one obtains the linkage in Figure 7.9. Note that 

there is no dap link in this linkage. This type of linkages was synthesized by 

Wohlhart (2001a). 

 

 

 

 
 

Figure 7.9 A tetrahedral linkage 

 

 

 

Alternatively one can remove a pair of polygonal links of a face. Furthermore, 

the binary links opposite to the removed polygonal links may be removed. The 

resulting linkage has still single dof (Figure 7.10). Also, three vertices of the 

tetrahedron may be chopped off to get the linkage in Figure 7.11. 
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Figure 7.10 A tetrahedral cap linkage 

 

 

 

 
 

Figure 7.11 Another tetrahedral cap linkage 

 

 

 

Many other single dof linkages can be obtained using polyhedral shapes with 

inscribing spheres. 
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7.2 Addition of Links on Radial Planes of Jitterbug-Like Linkages
2
 

 

 

Making use of the Cardan motion of the polygonal links of homothetic 

Jitterbug-like linkages, it is also possible to insert new links along radial planes 

passing through the global homothety center and edges of the supporting 

polyhedron. 

 

 

7.2.1 An Observation 

 

 

For a homothetic Jitterbug-like linkage consider the vicinity of two polygonal 

links around the common edge e the links meet on (Figure 7.12). Denote the 

meeting point by A and the ISA intersections on the faces by P and R. Let the 

global homothety center of the supporting polyhedron be O. By Assumption 2 

of Chapter 6, initially PA and RA are perpendicular to e. As PA, and so RA, 

rotates by an angle  the distance of the ISAs to the edge shortens by a ratio of 

cos, which is nothing but the dilation ratio. Initially let |P1A1| = |R1A1| = a, 

|OA1| = d. Consider a frame (O, x, y) in the plane defined by O and e such that 

positive x is in OA1 direction. Then for a rotation of the links by  the 

coordinates of A is (dcos, rsin), so A tracks the ellipse X2/d2 + Y2/a2 = 1. 

Therefore for homothetic Jitterbug-like linkages ISAs of which meet at the 

homothety center, the joint intersections trace ellipses on planes defined by the 

homothety center and corresponding supporting polyhedron edge. 

 

                                                 
2 The main content of this section is published by Kiper and Söylemez (2011a). 
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Figure 7.12 The motion of relevant parts of two adjacent polygonal links 

 

 

 

Another way to see the elliptical path of the joint intersections is as follows: 

The intersection point A moves in the intersection of two congruent cylinders 

with axes OP and OR and radius r. Cylinders with intersecting axes and equal 

radii intersect along ellipses (Verheyen, 1989, p. 208). 

 

This observation is used in Section 7.2.2 for further constraining Jitterbug-like 

linkages by adding more links/joints while preserving the motion of the 

original links. The key point is the elliptical path of the joint intersections and 

the additional links will realize Cardan motion. 
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7.2.2 Relating the Cardan Motion With Elliptic Paths of Polygonal Links 

 

 

For a moving frame located at the midpoint of the coupler link of a crank-

attached double slider mechanism as in Figure 7.13, the transformation is  

 

X = x cos + y sin + r cos      and      Y = –x sin + y cos + r sin

 

from which  can be eliminated to get 

 

[(x – r)2 + y2]X2 + [(x + r)2 + y2]Y2 – 4ryXY = (x2 + y2 – r2)2        (7.1) 

 

 

 

 
 

Figure 7.13 A double slider mechanism with a crank attached 

 

 

X 

Y 


O 

x 

y 

r 

r 

r 

B 

A 

C 



moving 
centrode 

fixed 
centrode 



 107 

Note that this ellipse equation degenerates into a double straight line equation 

for a point (x = rcos, y = rsin) on the moving centrode. 

 

Back to the polyhedral linkage problem, suppose that the following are given 

for an edge: (at maximal size), the distance of the homothety center to the edge, 

d and the distance of the neighboring ISAs to the edge, r. Observe from Figure 

7.12 that |OA1| = d for  = 0 and |OA5| = a for  = /2 are the semimajor and 

semiminor axes of the ellipse, respectively, hence to obtain this ellipse via a 

linkage as in Figure 7.13 the fixed frames (O, X, Y) in Figures 7.12 and 7.13 

should coincide. Substituting A1 (d – r, 0) for (x, y) into (7.1) the moving 

Cardan circle radius to attain the ellipse X2/d2 + Y2/a2 = 1 is determined as: 

 

(d – 2r)2X2 + d2Y2 = d2(d – 2r)2  r = (d – a)/2            (7.2) 

 

The aim is to obtain linkages such that extra links can be joined at dap links, 

which slide along guides from the homothety center to the polyhedron vertices. 

It is necessary to find the conditions for which such neighboring links can 

share a common slider along their guides. The guides can then be removed. 

 

Note that the faces of a tangential polyhedron are equidistant to the center of its 

insphere. Let the radius of the insphere of the tangential polyhedron be c. 

Referring to Figure 7.12, a2 + c2 = d2 for an edge. Then c2 = (d + a)(d – a). To 

couple the elliptical motions of the joint intersections, the same moving Cardan 

circle radius, r, should be used for all edges. Given a tangential polyhedron it is 

possible to choose r = (d – a)/2 and d + a = c2/2r, so d and r should be same for 

all edges. This means that the edges of the supporting polyhedron should be 

equidistant to the insphere center, i.e. there should be a midsphere (see 

Coxeter, 1948, p. 16) touching all of the edges of the supporting polyhedron. A 

polyhedron may have both a midsphere and an insphere, but these two spheres 
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may not be concentric (ex: a right pyramid with equilateral base that is not a 

regular tetrahedron), however, in the present case the supporting polyhedron 

has concentric midsphere and insphere. Such polyhedra have the following 

properties: 

 

- If there is a midsphere, then the faces intersect the midsphere along a circle, 

i.e. the polygonal faces necessarily have incircles. 

 

- |OA1| of Figure 7.12 would be the radius of the midsphere at the maximal 

configuration. Consider one of the faces, say F, of Figure 7.12 and let B1, C1, 

… be the closest points on the other sides to the global homothety center O. 

These points are all on the midsphere and hence are on the incircle of F. When 

a plane (on which F resides) cuts a sphere (the insphere) along a circle (the 

incircle), the sphere center and the circle of intercection define a right cone. 

The axis of the cone, which meets F perpendicularly is necessarily the ISA of 

the corresponding polygonal link on F due to the fixed-axis Darboux motion of 

the polygonal links, hence the center of the incircle is the homothety center on 

F (P1 in Figure 7.12). Hence the sides of a face F are equidistant to the facial 

homothety center. The requirement for homothetic Jitterbug-like linkages that 

the homothety centers of adjacent faces are equidistant to the edge at the meet 

of these faces (Theorem 2 of Chapter 6) demands that the incircles of adjacent 

polygonal faces, hence of all faces, are equivalent in size. 

 

- Consider a vertex V, two homothety centers P and R on the two adjacent 

faces including V and the edge e common these faces. By Theorem 2 of 

Chapter 6, angles PVe and RVe are equal. Note that any homothety center 

on a face, i.e. the incenter of the tangential polygon is on the bisectors of the 

polygon angles. So the plane angles meeting at a vertex are all equal, i.e. all 

vertices are regular. 
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7.2.3 Polyhedral Linkages 

 

 

The polyhedra of interest have concentric in sphere and midsphere, and also 

regular vertex figures. The polyhedra satisfying these conditions include the 

Platonic solids and the Catalan solids. 

 

The Heureka Octahedron with extra coupler links and cranks is illustrated in 

Figure 7.14. Note that the Jitterbug motion is quite limited due to link 

collisions. The cranks can be removed to obtain a less limited motion (Figure 

7.15). 

 

Cardan circle radii can be calculated using (7.2) for all Platonic solids. The 

other four supporting polyhedra have odd-valent vertices, hence double 

polyhedra of them should be used. For the tetrahedron, the original linkage is 

the Heureka Octahedron H described by Stachel (1994) instead of a mere 

tetrahedron (Figure 7.16). Also the cubic linkage is presented in Figure 7.17. 

The link overlaps in the figures can be practically overcome by using very thin 

links. The dodecahedral and icosahedral linkages are not presented for 

conciseness. Note that the extra links remain inside the boundaries of the 

supporting polyhedron except for the octahedral case. 

 

As an example of a Catalan solid, the modified linkage for the tetrakis 

icositetrahedron is presented in Figure 7.18. The 36 additional links of this 

linkage can be grouped into three which operate independently. If only the 12 

additional links corresponding to the larger edges of the supporting polyhedron 

are used, the linkage in Figure 7.19 is obtained. This linkage can be compared 

with the “breathing ball” of Wohlhart (1995). The breathing ball and the 

linkage in Figure 7.19 have the same octahedral symmetry axes. 
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Figure 7.14 The Heureka Octahedron with extra coupler links and cranks 
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Figure 7.15 The Heureka Octahedron with extra coupler links 
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Figure 7.16 Modified tetrahedral linkage 
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Figure 7.17 Modified cubic linkage 
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Figure 7.18 Modified tetrakis icositetrahedral linkage 
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Figure 7.19 Modified tetrakis icositetrahedral linkage with 24 links removed 



 116 

CHAPTER 8 

 

 

MODIFIED WREN PLATFORMS1 

 

 

This chapter is unique in establishing a link between self-motions of parallel 

manipulators and Jitterbug-like polyhedral linkages. The resulting linkages 

have apparent applications. 

 

 

8.1 Self Motions of Parallel Manipulators and Wren Platforms 

 

 

Husty et al. have published a series of papers regarding architecturally singular 

parallel manipulators which have the Borel-Bricard motion as a self-motion 

(Husty & Zsombor-Murray, 1994; Karger & Husty, 1998, Husty, 2000; Husty 

& Karger, 2000, 2002; Karger, 2001, 2008). A Borel–Bricard motion is a 

spatial motion, which has at least six spherical point trajectories (Karger, 

2008). One specific mechanism, platform of which has this motion has a rather 

older history: the Wren platform as issued by Husty and Zsombor-Murray 

(1994) and Wohlhart (1996). Such a platform comprises at least five bars of 

equal length which connect to the base and the platform via spherical joints and 

the joint centers are on congruent circles (Wohlhart, 1996). For less than five 

limbs the mechanism has multi dof. This type of linkages has been used in 

design of pressure measuring devices (Brady, 1951), nozzles (Coleman, 1967), 

                                                 
1 The main content of this section is published by Kiper and Söylemez (2011b). 
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rotary-to-linear/linear-to-rotary motion converters (Jacobsen, 1975; Mennito & 

Buehler, 1996) and deployable masts (Douglas, 1993). 

 

Wohlhart (1996) has shown that the Wren platform has two modes where it 

possesses single or two dofs. Husty’s studies and the applications mentioned 

above all relate to the single dof mode where the platform experiences the 

Borel-Bricard motion, more specifically in this case a line symmetric 

Schönflies motion (see Bottema & Roth, 1979, sec. 9.5) with respect to the 

base (Figure 8.1a). In this motion, the line of symmetry is the line joining the 

centers of the circles, on which the joint centers reside and the platform screws 

along this line during the motion. When the limbs become parallel (Figure 

8.1b), this is the transition configuration of mobility and one can switch to the 

two-dof mode in which the platform has a pure translational freedom along 

spherical paths such that the platform remains parallel to the base (Figure 8.1c). 

The two-dof mode of the linkage can be seen as the spatial version of the 

planar parallelogram mechanism (see Figure 1.1). 

 

 

 

 
 

Figure 8.1 a) Single dof mode b) Singular configuration c) Two-dof mode 

of a 5-leg Wren platform 

b) a) c) 
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Husty (2000) writes that when the joint centers of a Wren platform are chosen 

homologously on conic sections in the base and the platform, one can place the 

two systems in arbitrary positions relative to each other, link the corresponding 

points with rigid rods and the mechanism will be movable even when one adds 

infinitely many more rods. This fact is used in modification of the platforms. 

 

 

8.2 3-UPU Parallel Manipulators 

 

 

As indicated by Tsai (1996), spherical joints are difficult to manufacture 

precisely at low cost, so it is not practical to design rigid link assemblies of the 

platform in Figure 8.1. Noticing that the rotations of the limbs along their axes 

are passive dof, it is natural to seek lower dof joint replacements without 

disturbing the platform motion. An immediate advantage of use of universal 

joints instead of spherical joints is that the motion of the platform can be 

obtained with three or four legs too. Indeed Tsai (1996) has applied this logic 

to devise a 3-UPU 3-dof manipulator. Many similar designs were proposed 

afterwards (Di Gregorio & Parenti Castelli, 1998; Karouia & Hervé, 2000, 

Wolf, Shoham & Park, 2002; Walter, Husty & Pfurner, 2009). These designs 

mainly differ by the arrangement of the revolute joints on the links. 3UU 

platforms are also used by Gao, Li, Jin and Zhao (2002) as a 2-dof composite 

kinematic pair. In this study a different leg configuration is presented in which 

the axes of the revolute joints on the base and the platform lie on a cylinder or 

a cone and the axes on the legs are parallel to each other. When the base 

surface is a cylinder, the substitute joints are universal joints, but in the case of 

a cone, the substitute joints are expected to be 2R joints with an acute angle 

between the intersecting revolute joint axes. 
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8.3 Jitterbug-Like Linkages 

 

 

Jitterbug-like linkages are introduced in Chapter 6. Of these linkages, in this 

section the attention is on the class with two n-gonal links (base and platform) 

and n many digonal (binary) links (legs) which are connected to each other by 

the dihedral angle preserving (dap) joints. Verheyen (1989) investigates the 

case with equilateral polygonal links, identical digonal links and orthogonal 

dap joints, i.e. universal joints. The 3UU platform in Figure 8.2 is an example, 

but the number of limbs can be increased indefinitely. 

 

 

 

 
 

Figure 8.2 One of Verheyen’s (1989) dihedral dipolygonids 

 

 

 

One immediately notices that this type of linkage is quite similar to a Wren 

platform. Indeed, the redundant rotations of the limbs about their axes are 

eliminated and the motion of the platform with respect to the base is the same 
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as a Wren platform. The algebraic characteristics of the single dof motion of 

this type of linkages are investigated by Röschel (1996b). Verheyen (1989) 

considers the single dof motion, but does not mention about the two-dof mode. 

 

In the following sections such and similar platforms are investigated. 

 

 

8.4 Modifications on the Verheyen Platform 

 

 

The modified platforms are classified according to joint axes arrangements. 

 

 

8.4.1 Cylindrical Platforms 

 

 

Inspired from Husty (2000) one may expect that Verheyen’s linkages may be 

modified for irregular cyclic polygonal platforms. Indeed to show that this is 

possible is quite simple. As Verheyen showed that n-UU platforms such as the 

one in Figure 8.2 are mobile for any equilateral n-gon and n can be increased 

indefinitely, suppose infinitely many legs for congruent circular base and 

platform. In this case the joint axes on the base/platform would define a full 

cylinder. The assembly is infinitely overconstrained and the platform motion 

does not alter if all the legs but m (m  3) of them are removed. The mobility 

of the resulting linkage is guaranteed, hence this way one can obtain any 

platform linkage with m legs arbitrarily located on a circle on congruent base 

and platform. 
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Figure 8.3 Construction of a cylindrical platform with joint intersections on 

congruent circles 

 

 

 

In (Verheyen, 1989) and (Röschel, 1996a) the main focus is in linkages for 

which there exists a fixed frame (centered at the midpoint of the centers of the 

circles of joint intersections) with respect to which ISAs of all links remain 

fixed. This is also the case for the ISAs of the cylindrical platforms in the 

single dof mode. Here is a constructional proof: It is known that an RCCR 

linkage is mobile with single dof if adjacent R (revolute) and C (cylindrical) 

joints have parallel axes (see Figure 6.9 and ex. [30]). Consider an RCCR loop 

for which nonparallel axes intersect orthogonally (Figure 8.3a). One can attach 

an identical loop to the first one such that one of the C axes and one of the links 

(triangular link in Figure 8.3b) is shared. One of these loops can drive the other 

one and the resulting 2-loop linkage is mobile. One can repeat these additions 

indefinitely about the same cylindrical joint axis (Figure 8.3c). Finally it is 

c) d) 

a) b) 
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possible to combine this multi-loop assembly with an anti-symmetric identical 

one to obtain a platform linkage (Figure 8.3d). In this assembly, the two 

polygonal links and all legs have fixed rotation axes and the axes can be 

removed to obtain the modified Verheyen platform described above. 

 

When the universal joints are considered as links with two revolute joint 

connections these links have purely translatory motion with respect to each 

other and the spherical indicatrix of the assembly is immobile (Kiper, 2010a). 

 

 

8.4.2 General Parallel Leg Configuration 

 

 

Consider a more general case where all the joint axes on the base/platform are 

chosen parallel to each other. Axis offsets are arbitrary. The base and the 

platform joint axis locations should be congruent and the two are connected 

with equal size legs. In this case only the translational two-dof mode of the 

platform with respect to the base is obtained. A set of two independent rotation 

axes are illustrated in Figure 8.4a. 

 

It is possible to add as many legs as desired as long as the platform/base joint 

axes are parallel. With this fact a spatial analog of the planar parallelogram 

mechanism is obtained. 
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Figure 8.4 The translatory motion of a spatial parallelogram mechanism 

(the joint axes on the platform/base are parallel to the view) 

 

 

8.4.3 Conical Platforms 

 

 

Again following Husty (2000) and also Karger (2001) platforms are sought for 

which the joint axes of the base/platform lie on a cone. The joint axes on the 

legs are again parallel to each other and perpendicular to the cone of platform 

axes. Joint axis intersections on the base/platform should be coplanar, hence 

are on circles of different size. This time, dap joints should be used instead of 

universal joints. When such an assembly is constructed one generically ends up 

with an immobile one, so further special geometrical conditions are needed. 

The results for homothetic Jitterbug-like linkages in Chapter 6 can be used. By 

Theorem 6 a sufficient condition to obtain such a mobile assembly realizing a 

a) b) 
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homothetic transformation is that the faces are all tangent to a sphere. When 

this condition is satisfied all the polygonal links have fixed ISAs, all meeting at 

the center of the above-mentioned sphere. In the present case the base, the 

platform and the diagonal legs should be equidistant to a central point. This 

point is necessarily on the symmetry axis of the cone (Figure 8.5). 

 

 

 

 
 

Figure 8.5 A conical platform 
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8.4.4 Other joint configurations 

 

 

A full classification of all possible platforms with UU or in general DD (D for 

dap) legs is not given here. Other possible joint configurations are subject to 

further studies. 

 

 

 

8.5 Use of Modified Wren Platforms as Deployable Structures 

 

 

It is already mentioned that Wren platforms or alike are used in various 

applications (Brady, 1951; Coleman, 1967; Jacobsen, 1975; Mennito & 

Buehler, 1996; Douglas, 1993). In this section the focus is on an obvious 

application – use of n-UU cylindrical platforms as uni-dimensional deployment 

applications. n-UU platforms are quite suitable for such a task especially if the 

leg lengths are chosen properly for more compact stowed position. When leg 

lengths are slightly bigger than the distance between joint axes on the 

polygonal links, serially connected platforms can be obtained for compact 

deployment. In Figure 8.6 an example with square platforms is illustrated. The 

problem in such a structure is actuation. n serial platforms totally have n dofs. 

However experiments on prototypes show that smooth deployment can be 

obtained if symmetric rotary inputs are applied on the platforms at the two 

ends. 
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Figure 8.6 A deployable mast with square polygonal links 
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CHAPTER 9 

 

 

CONCLUSIONS 

 

 

The following question is addressed in this thesis: What are the special 

geometric conditions to obtain homothetic deployable structures which 

comprise rigid links and revolute joints. Specifically polygonal and polyhedral 

geometries kept in focus. 

 

In Chapter 2 angulated and regular scissor elements are used to deploy any 

kind of polygonal shape. The geometric conditions described in the chapter are 

not novel (see Liao & Li, 2005), yet the reasoning for these conditions were 

firmly established for the first time. 

 

In Chapter 3 the planar linkages for regular polygonal shapes are assembled 

along intersecting planes to obtain star-like polyhedral linkages. Some existing 

linkages (Wohlhart, 1995; Hoberman, 2004a) were generalized. 

 

In Chapters 4 Bennett loops are assembled to obtain polyhedral linkages. This 

chapter stands as an independent part in the thesis. 

 

In Chapter 5 the polyhedral geometries of certain polyhedral linkages are 

deformed to obtain new ones. Though the method is applied to the Fulleroid 

(see Wohlhart, 1995) only, it is applicable for any kind of polyhedral linkage 

possessing symmetry. 
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Chapter 6 is the main contribution in this thesis. In this chapter Jitterbug-like 

linkages are introduced and some geometric conditions for these linkages are 

presented. First of all this chapter confirms the results of the previous studies 

and establishes a firm base for these results. As previous results (see Röschel, 

1996a, 2001) mainly present necessary conditions, the theorems of Chapter 6 

also contain sufficiency conditions. Furthermore this chapter involves new 

results such as 2 many Jitterbug-like linkages can be obtained for any 

homohedron. The analyses also relate to the linkages in Chapters 2 and 5 (see 

Sections 6.2.4.1, 6.2.4.5). 

 

Chapter 7 is on modifications on the linkages introduced in Chapter 6. First 

type of modifications involves adding of links on the faces, while the second 

type involves adding links inside the supporting polyhedra. 

 

Chapter 8 inherits its core material from Chapter 6, but relates to self motions 

of parallel manipulators. The content of this chapter is merely an introduction 

to design of a new class of kinematotropic parallel manipulators. 

 

The author believes this thesis study enhances the state of the art regarding 

polygonal and polyhedral deployable structures, present some new methods to 

synthesize certain type of overconstrained linkages and finally emphasizes the 

relation of the subject with design of parallel manipulators - most popular area 

of research in machine theory science in the time this thesis is written. 
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APPENDIX A 

 

 

Glossary 

 

 

 

Meanings of some terms which are thought to be unfamiliar to the reader are 

listed below. 

 

Apex: (geometry) A descriptive label for a visual singular highest or most 

distant point or vertex in an isosceles triangle, pyramid or cone, usually 

contrasting with the opposite side called the base (Wikipedia, n.d.) 

Antiprism: A polyhedron composed of two parallel copies of some particular 

polygon, connected by an alternating band of triangles (Wikipedia, n.d.) 

Archimedean (semiregular) solids: Convex polyhedra that have a similar 

arrangement of nonintersecting regular convex polygons of two or more 

different types arranged in the same way about each vertex with all sides the 

same length – There are 13 such solids (Weisstein, n.d.). The duals of the 

Archimedean solids are called as the Catalan solids. 

Catalan solids: Dual polyhedra of the Archimedean solids (Wikipedia, n.d.) 

Concave: Curving in or hollowed inward, as opposed to convex (Wikipedia, 

n.d.) 

Conformal transformation: A transformation which preserves angles 

(Wikipedia, n.d.) 
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Convex: Curving out or bulging outward, as opposed to concave (Wikipedia, 

n.d.) 

Cuboctahedron: A polyhedron with eight triangular faces and six square faces 

– It has 12 identical vertices, with two triangles and two squares meeting at 

each, and 24 identical edges, each separating a triangle from a square. It is an 

Archimedean solid (Wikipedia, n.d.). 

Cumulation: The operation which replaces the faces of a polyhedron with 

pyramids of height h (where h may be positive, zero, or negative) having the 

face as the base (Weisstein, n.d.) 

Cupola: A solid formed by joining two polygons, one (the base) with twice as 

many edges as the other, by an alternating band of triangles and rectangles 

(Wikipedia, n.d.) 

Deltahedron: A polyhedron whose faces are congruent equilateral triangles – 

There are 8 convex deltahedra, 3 of which are Platonic (tetrahedron, 

octahedron and icosahedron) and the remaning 5 of which are Johnson solids 

(triangular dipyramid, pentagonal dipyramid, snub disphenoid, triaugmented 

triangular prism and gyroelongated square dipyramid) (Weisstein, n.d.). 

Dihedral angle: The angle between two adjacent faces of a polyhedron 

(Cromwell, 1997, p. 13) 

Dilation: See “homothety” 

Dipolygon: A pair of regular polygons with a common vertex, the axes of 

symmetries of which intersect each other (Verheyen, 1989) 
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Dipolygonid: A polyhedral linkage generated by a dipolygon under the two 

group actions given by the cyclic symmetry groups of the two regular polygons 

of the dipolygon (Verheyen, 1989) 

Dipyramid (bipyramid): A polyhedron formed by joining a pyramid and its 

mirror image base-to-base (Wikipedia, n.d.) 

Dodecahedron: A polyhedron with twelve flat faces (Wikipedia, n.d.). Unless 

otherwise indicated, “dodecahedron” is used for the regular dodecahedron, 

which is convex and has equilateral pentagonal faces. 

Edge: A line segment along which two faces come together (Cromwell, 1997, 

p. 13) – To avoid confusion the term “side” is used for polygons and “edge” is 

used for polyhedra 

Equiform transformation (or similarity): A transformation that preserves 

angles and changes all distances in the same ratio, called the ratio of 

magnification - can also be defined as a transformation that preserves ratios of 

distances (Weisstein, n.d.) 

Euler characteristic: a topological invariant , a number that describes a 

topological space's shape or structure regardless of the way it is bent – for 

polyhedra  = V – E + F = 2 – 2g, where g is the genus of the polyhedral 

surface, so   2 (Wikipedia, n.d.) 

Face: Each polygon of a polyhedron (Cromwell, 1997, p. 13) 

Genus: A topologically invariant property of a surface defined as the largest 

number of nonintersecting simple closed curves that can be drawn on the 

surface without separating it - roughly speaking, the number of holes in a 

surface (Weisstein, n.d.) 
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Gyroelongated square dipyramid: One of the eight convex deltahedra built 

up from 16 equilateral triangles - It consists of two oppositely faced square 

pyramids rotated 45° to each other and separated by a 4-antiprism. It is 

Johnson solid J17 (Weisstein, n.d.). 

Hexahedron: A polyhedron with six faces (Wikipedia, n.d.) 

Homohedron: A polyhedron all of whose faces are congruent (Olshevsky, 

2006) 

Homothety (homothecy, dilation): A similarity transformation which 

preserves orientation, also called a homothety (Weisstein, n.d.) 

Icosahedron: A 20-faced polyhedron (Weisstein, n.d.) - Unless otherwise 

indicated, “icosahedron” is used for the regular icosahedron, which is convex 

and has equilateral triangular faces. 

Icositetrahedron: A 24-faced polyhedron (Weisstein, n.d.) 

Isohedron (face-transitive polyhedron): A polyhedron for which any pair of 

faces there is a symmetry of the polyhedron which carries the first face onto the 

second – Physically this means that the polyhedron looks the same when 

viewed face on, no matter which face is presented to the eye (Cromwell, 1997, 

p. 367) 

Johnson solids: Convex polyhedra having regular faces and equal edge lengths 

(with the exception of the completely regular Platonic solids, the "semiregular" 

Archimedean solids, and the two infinite families of prisms and antiprisms) – 

There are 92 Johnson solids in all (Weisstein, n.d.) 

Kite (deltoid or trapezoid): A planar convex quadrilateral consisting of two 

adjacent sides of length a and the other two sides of length b (Weisstein, n.d.) 
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Octahedron: A polyhedron with eight faces (Wikipedia, n.d.) - Unless 

otherwise indicated, “octahedron” is used for the regular octahedron, which is 

convex and has equilateral triangular faces. 

Plane angle: The angle in the corner of a polygonal face of a polyhedron 

(Cromwell, 1997, p. 13) 

Platonic (regular) solids: Convex polyhedra with equivalent faces composed 

of congruent convex regular polygons - There are exactly five such solids: the 

cube, dodecahedron, icosahedron, octahedron and tetrahedron (Weisstein, n.d.) 

Rhombic Dodecahedron: A convex polyhedron with 12 rhombic faces 

(Wikipedia, n.d.) 

Rhombohedron: Three-dimensional figure like a cube, except that its faces 

are not squares but rhombi (Wikipedia, n.d.) 

Ruled surface: A surface formed by a singly infinite system of straight lines 

(Edge, 1931, p. 7) – If a line moves continuously, it generates a ruled surface 

(Bottema & Roth, 1979, p. 55). 

Similarity: See “equiform transformation” 

Solid angle: The region of a solid polyhedron near a vertex (Cromwell, 1997, 

p. 13) - It used to be used instead of “vertex”. 

Snub disphenoid (Siamese dodecahedron): The 12-faced convex deltahedron 

which is also Johnson solid J84 (Weisstein, n.d.) 

Spherical excess: The amount by which the sum of the angles of a spherical n-

gon exceeds the sum of the angles of a planar n-gon (Wikipedia, n.d.) 

Stella octangula: The only stellation of the octahedron (Weisstein, n.d.) 
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Stellation: the process of constructing polyhedra by extending the facial planes 

past the polyhedron edges of a given polyhedron until they intersect 

(Weisstein, n.d.) 

Tetrahedron: A polyhedron composed of four triangular faces, three of which 

meet at each vertex (Wikipedia, n.d.) - Unless there is an indication of 

irregularity, “tetrahedron” is used for the regular tetrahedron, which has 

equilateral triangular faces. 

Tetrakis hexahedron (disdyakis cube): A non-regular icositetrahedron that 

can be constructed as a positive cumulation of regular cube (Weisstein, n.d.) 

Trapezohedron (antipyramid or deltohedron): The dual polyhedron of an n-

gonal antiprism - Its 2n faces are congruent kites (Weisstein, n.d.). 

Triaugmented triangular prism: One of the the convex deltahedra - It is 

composed of 14 equilateral triangles, and is Johnson solid J51 (Weisstein, n.d.). 

Truncation (of a polyhedron vertex): The process of  cutting all the vertices 

in a symmetric fashion (Cromwell, 1997, p. 80) – Truncation of an n-valent 

vertex results in a new n-gonal face, n new edges and n-1 new 3-valent 

vertices. 

Valency (of a vertex): A vertex is said to have valence n, or to be n-valent, if 

it is the meeting point of n edges and, therefore is surrounded by n faces 

(Cromwell, 1997, p. 192) 

Vertex: A point where several edges and faces of a polyhedron come together 

(Cromwell, 1997, p. 77) – To avoid confusion the term “corner” is used for 

polygons and “vertex” is used for polyhedra. 
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Vertex Figure: 1. The spherical polygon formed by the intersection of the 

faces surrounding a vertex with a small sphere centered on that vertex 

(Cromwell, 1997, p. 77), 2. The polygon you see after slicing off a pyramid 

about a vertex of a polyhedron in a way that removes the same amount of each 

edge (Cromwell, 1997, p. 77). 3. Can be used interchangeably with solid angle 
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