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Prof. Dr. Şakir Erkoç
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ABSTRACT

STRUCTURAL PROPERTIES OF DEFECTED GRAPHENE NANORIBBONS UNDER
TENSION: MOLECULAR-DYNAMICS SIMULATIONS

Tüzün, Burcu

M.S., Department of Micro and Nanotechnology

Supervisor : Prof. Dr. Şakir Erkoç

Co-Supervisor : Assoc. Prof. Dr. Almıla Güvenç Yazıcıoğlu

January 2012, 64 pages

Structural properties of pristine and defected graphene nanoribbons have been investigat-

ed by stretching them under 5 percent and 10 percent uniaxial strain until fragmentation.

The stretching process has been carried out by performing molecular dynamics simulations

(MDS) at 1 K and 300 K to determine the temperature effect on the structure of the graphene

nanoribbons. Results of the simulations indicated that temperature, edge shape of graphene

nanoribbons and stretching speed have a considerable effect on structural properties, however

they have a slight effect on the strain value. The maximum strain at which fracture occurs is

found to be 46.41 percent whereas minimum strain value is calculated as 21.00 percent. On

the other hand, the defect formation energy is strongly affected from temperature and edge

shape of graphene nanoribbons. Stone-Wales formation energy is calculated as -1.60 eV at 1

K whereas -30.13 eV at 300 K for armchair graphene nanoribbon.

Keywords: graphene nanoribbons, defected graphene nanoribbons, molecular dynamics sim-

ulations
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ÖZ

GERİLİM ALTINDAKİ HASARLI KARBON NANOŞERİTLERİN YAPILARININ
İNCELENMESİ : MOLEKÜL-DİNAMİĞİ BENZETİŞİMLERİ

Tüzün, Burcu

Yüksek Lisans, Mikro ve Nanoteknoloji Bölümü

Tez Yöneticisi : Prof. Dr. Şakir Erkoç

Ortak Tez Yöneticisi : Doç. Dr. Almıla Güvenç Yazıcıoğlu

Ocak 2012, 64 sayfa

Hasarlı ve hasarsız grafen nanoşeritlerin yapısal özellikleri, bu yapıların bozulma noktasına

kadar yüzde 5 ve yüzde 10 oranlarında tekeksenli gerdirilmesiyle incelenmiştir. Molekül dina-

miği benzetişimi (MDB) ile 1 K sıcaklığında gerçekleştirilen uzatma işlemi, sıcaklığın grafen

nanoşeridin yapısı üzerindeki etkisini gözlemleyebilmek için 300 K sıcaklığında tekrarlanmış-

tır. Benzetişim sonuçları göstermiştir ki; sıcaklık, uzama hızı ve nanoşeridin köşe yapısı şekil

özellikleri üzerinde önemli ölçüde bir etkiye sahipken; gerinim değerini çok az etkilemiştir.

Kırılmanın gerçekleştiği en yüksek gerinim değeri yüzde 46.41 olarak tespit edilirken, en

düşük gerinim değeri ise yüzde 21.00 olarak hesaplanmıştır. Diğer taraftan hasarların oluşum

enerjisi üzerinde sıcaklığın çok önemli bir etkisi vardır. Koltuk köşe yapılı nanoşeritlerdeki

Stone-Wales hasarlarının oluşum enerjisi 1 K sıcaklıkta -1.6 eV, 300 K sıcaklıkta ise -30.13

eV olarak tespit edilmiştir.

Anahtar Kelimeler: grafen nanoşeritler, hasarlı grafen nanoşeritler, molekül dinamiği benzeti-

şimleri
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CHAPTER 1

INTRODUCTION

In this section, a general information about graphene and graphene nanoribbons is presented.

Firstly, graphene is introduced since it is the building block of graphene nanoribbons. Then,

graphene nanoribbons and their properties are investigated.

1.1 Graphene

Carbon is an important element at nanoscale because of its capability of forming different low

dimensional structures such as graphene (2D), carbon nanotubes (CNT) (1D), and fullerenes

(0D) which have superior physical properties [1].

A graphene layer is composed of sp2 hybridized carbon atoms [2] playing a role in mechanical

stability of graphene layer. P orbitals perpendicular to molecular plane hybridize to form

conduction and valance bands [3]. Electrical properties of graphene monolayer is affected by

this band structure [4]. The bond structure of graphene layer is depicted in Figure 1.1.

Figure 1.1: Atomic, bond and band structures of graphene monolayer.
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Edge shape of graphene layer manipulates its properties [5]. Chiral vector (n,m) describes

both edge shape of graphene [5] and direction of wrapping graphene sheet to form carbon

nanotubes [6]. Chirality of graphene layer depicted by chiral vector (n,m) can be explained by

using Figure 1.2. In this figure, a1 and a2 are the lattice vectors. The chiral vector is presented

as linear combination of these lattice vector such that (na1 + ma2). The coefficients n and m

indicates the number of lattice vectors along graphene sheet. By changing these coefficients,

different graphene types can be obtained named as chiral graphene. Zigzag graphene sheet is

obtained by taking m to be zero. If m equals n, armchair graphene is obtained [6].

Figure 1.2: Chirality of graphene sheet and chiral vector [7].

Until 2004, it was thought that films with thickness at nanometer scale are thermodynamically

unstable. In 2004, Novoselov and coworkers [8] were able to prepare single layer graphene.

Since the isolation of either single or a few atom thickness graphene layers, applications of

graphene arouse interest among scientists because of its novel properties [9]. 2D graphene

layer can be considered as a building block of different carbon structures. For example, by

rolling the graphene layer and in turn, creating carbon nanotubes (CNT) [1], by wrapping

graphene and forming spherical buckyballs and by putting them one after the other, graphite

can be obtained [9]. The popularity of 2D graphene layer emanates from its unique electrical

properties, on which large number of studies have been reported in the literature [10, 11, 12,

13].
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1.1.1 Electrical Properties of Graphene

When the band structure of single layer graphene is investigated, it is observed that conduction

and valance band are touching at one point called Dirac point [11]. Therefore, graphene is

known as zero-gap semiconductor. By application of electric field, electron carrier density

or hole carrier density in graphene can be controlled. Therefore, graphene based transistor

is termed as ambipolar field effect transistor (FET). As illustrated in Figure 1.3 applying

negative voltage introduces positive hole carriers, however applying positive voltage induces

negative electron carriers [14]. In other words, p-type or n-type FET can be obtained just by

changing voltage polarity. The conductance increases with applying non-zero voltage, but it

is minimum at zero voltage. This property makes graphene attractive material for electronic

device application. It is reported in [15] that charge carriers in monolayer graphene behave like

a massless Dirac fermions with 10−6 m/s velocity. The highest value of the carrier mobility

for graphene monolayer is reported as 2×105 cm2V−1s−1 in the literature [16] .

Figure 1.3: Band structure and ambipolar field effect in single layer graphene [14]

1.1.2 Mechanical Properties of Graphene

The research carried on mechanical properties of graphene is less than the research carried on

electrical and optical properties of graphene [3]. Although the popularity of graphene comes

from its unique and strange electrical properties, graphene has also remarkable mechanical

properties [17]. If graphene is used in micro and nano scale machines such as nanogears,
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membranes, accelerometer, cantilevers, actuators; then the mechanical properties of graphene

become important as much as its electrical properties. The breaking strength measured by

atomic force microscope of defect-free monolayer graphene sheet is reported as 42 N/m by

Lee et al. in [18]. The experiment carried by Bunch et al. [19] indicated some important me-

chanical properties of one atom thickness graphene membrane. In this experiment, one side of

the graphene membrane with one atom thickness was exposed to atmospheric pressure while

the pressure on the other side was changed by using helium gas. Since graphene membrane

is impermeable to the helium gas, the pressure can be controlled by changing the amount of

helium. The deflection of the graphene membrane arising from the pressure differences has

been used to calculates the mechanical properties. The elastic constant and stiffness (Young’s

modulus) of graphene membrane have been reported in [19] as nearly 390 N/m and nearly 1

TPa, respectively. Graphene membrane is also appropriate candidate to be used in resonators

due to its high Young’s modulus and low mass. In the resonators, the graphene membrane

vibrates as a result of applied force. The resonant frequency (f0) of 15 nm thick graphene

membrane is detected as 42 MHz with 210 quality factor, whereas the resonant frequency

of one atom thick graphene layer is 70.5 MHz with 78 quality factor [20]. Quality factor is

a dimensionless parameter and mathematically defined as fraction of resonant frequency (f)

and bandwidth (∆ f), namely f
∆ f [21].

1.1.3 Commercial Applications of Graphene

The importance of graphene comes from its large application areas. For example, graphene

is an excellent choice for fabrication of ultrafast transistors because of its ability of outstand-

ing electron transport at room temperature. Graphene is also preferred in the biosensors and

chemical sensors because of its low capacitance resulting in low signal to noise ratio, and

rapid electron transfer resulting in accurate and selective detection of biomolecules [22].

Some robust polymer composites (poly-vinyl-alcohol/graphene), high electrical conducting

(polystyrene/graphene), high thermal conducting polymers (epoxy resins/graphene compos-

ites) and more thermally stable polymers can be produced by using graphene as fillers during

fabrication [23]. Moreover, using graphene instead of carbon nanotubes (CNT) decrease pro-

duction costs and difficulties that stem from reliability problems due to chirality of CNT [23,

24]. Graphene is suitable to be used as electrode material in capacitors [25] and lithium-ion

batteries [26] because its wide surface area (2630 m2g−1), high electrical conductivity ( 64 mS
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cm−1), stability over vast range of temperature and high electron mobility ( 2×105 cm2V−1s−1

at electron densities of 2 × 1011 cm−2 for 150 nm graphene nano sheet above Si/SiO2 gate)

make graphene a good choice for energy storage [9]. Apart from these, graphene is preferred

also in energy generation devices due to its electro-catalytic activity, enzymatic binding ca-

pacity, unique electrical properties and low production cost. It can also be possible to detect

the bio-molecules, drugs, heavy metals or catalytic surfaces by the help of the presence of

the defects or dopants. However, having knowledge on defects is crucial to control chemical,

electronic, mechanical and magnetic properties of graphene [1].

1.2 Defects

It is obvious that the strength of graphene depends on the number and types of defects and

also edge termination. There are different types of defects such as doping-induced defects

caused by substitution of non-carbon atoms in graphene sheet, structural defects, grain bound-

aries defect, bond rotation defect and non-sp2 carbon defects resulted by dangling bonds [1].

Apart from mechanical strength, defects also play a crucial role in physicochemical properties,

chemical activity, structure, topology, cavity [1], optical, electronic and thermal properties [2].

Moreover, conductance and ductility of graphene based devices are controlled by defect char-

acteristic of graphene. In other words, structural defects in graphene layer that appear during

processing or growth have a great effect on the performance of the graphene based devices.

Because of these structural defects, graphene based devices may lose their functional quanti-

ty or gain superior or new functionalities depending on type, location or size of the defects.

For example, graphene is generally used to enhance and improve the strength of composites.

However, research carried out by Bartolucci and coworkers [27] showed that the strength of

graphene-aluminum composites is lower than that of pure aluminum and aluminum-carbon

nanotubes composites. Lower mechanical strength is explained by defects which become re-

action sites with aluminum and result in significant amount of aluminum carbide(Al4C3) as

points of weakness [27]. In some cases, defected graphene is favorable such as earth metal

dispersion on graphene layer and hydrogen adsorption. Hydrogen has very limited interaction

with graphene [24] which results in using metals such as lithium or palladium to adsorb or

decompose hydrogen for sensing [24, 28]. Metal atoms such as lithium binding on graphene

vacancies with energy higher than cohesive and cluster forming energy are the active side
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for hydrogen adsorption [28]. The structure is also affected from defect due to different hy-

bridization ability of carbon atoms which cause different stable structures such as carbyne

or graphite. Moreover, the flat structure of graphene layer may be deformed due to non-

hexagonal carbon arrangements when polygons can not satisfy symmetry rules. This local

curvature allow reactivity and adsorption [2].

1.3 Graphene Nanoribbons

There are some limitations in the applications of graphene in (FET), since graphene is a

zero band gap semiconductor. This problem has been solved by using graphene nanoribbon

(GNR) which can be synthesized by finite termination of graphene sheet. A non-zero band

gap originated from quantum confinement varies from 200 meV to 0.4 eV depending on the

width of the nanoribbon [29]. In the present study, two types of GNRs are examined, which

are classified according to their edge shape as zigzag GNR and armchair GNR.

1.3.1 Electrical Properties of GNRs

GNRs show metallic or semiconducting behavior depending on ribbon width and on edge

shape such as zigzag edge shape or armchair edge shape [30]. A sharp peak in the density

of states (DOS) at the Fermi level is obtained for zigzag GNRs because of localized edge

states [30]. This is also the reason of magnetic behavior of zigzag GNRs [31]. Armchair

GNRs possess either metallic or semiconducting behavior depending on ribbon widths. On

the other hand, zigzag GNRs have always metallic properties, whatever the ribbon widths

might be. The research carried out by Son et al. [31] reported that both armchair and zigzag

graphene nanoribbons passivated with hydrogen have non zero and direct band gap. The gen-

esis of band gaps are explained by quantum confinement for armchair GNR. The band gaps

of zigzag GNR are based on staggered sublattice potential because of spin ordered states at

the edges since opposite spin states are localized on opposite edges. The band gaps decrease

with increasing ribbon width for both zigzag and armchair GNRs. Moreover, edge effect has

important effect on band gaps for both zigzag and armchair GNR.

The conductance of GNR decreases by several Fermi energies in the first subband due to
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vacancy. The suppression of conductance arises from the electron localization near vacancy.

This suppression of conductance can be eliminated by introducing a perpendicular magnetic

field with sufficient strength which removes the localization. The defects near the center have

larger influence on the reduction of conductance than that of the defects near the edge [32].

1.3.2 Mechanical Properties of GNRs

The structure and size of the GNR have important influence on the mechanical properties.

Some important and basic mechanical properties such as Young’s modulus have been report-

ed by several researches. However, there is limited information about defect’s evolution and

its effect on the mechanical properties of the GNR in the literature [33]. The Young’s modulus

of the GNR is reported to vary from 0.7 TPa to 7 TPa. The variation in the stiffness originates

from the method used to investigate the mechanical properties of GNR. The Young’s modulus

of GNR is reported nearly 0.7 TPa according to atomistic simulations method [35]. Howev-

er, the experimental method carried by Hod and Scuseria [36] gives 7 TPa Young’s modulus

which is seven times higher than that of monolayer graphene sheet. The slight influence of

the edge shape of the GNR on the mechanical properties can be seen from Table 1.1 [37].

Table 1.1: Fundamental mechanical properties of graphene nanoribbon at 300 K [37]

GNR Young’s Modulus (GPa) Yielding Strength (GPa) Breaking Strain
armchair GNR 720 83 0.16
chiral GNR 714 85 0.175
zigzag GNR 710 98 0.24

Figure 1.4 and Figure 1.5 present the result of the research carried out by Georgantzinos et

al. in [33]. In this work, width and length of the ribbons are taken as parameters, and both

zigzag and armchair graphene nanoribbons have been investigated. As depicted in Figure 1.4,

the Young’s modulus of the pristine armchair graphene nanoribbon is a bit higher than that

of the pristine zigzag graphene nanoribbon. If the length of the ribbons is taken constant,

the Young’s modulus of armchair GNRs decreases with increasing width. On the other hand,

Young’s modulus of the zigzag GNR increases with increasing width. If the width of the

ribbons is taken constant, the Young’s modulus of zigzag GNR changes drastically, while the

Young modulus of the armchair GNR is influenced slightly from the change in the length.
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For both ribbons, the maximum Young’s modulus is obtained at minimum length. The strain

value, at which the ribbons are broken, is shown in Figure 1.5. The strain values of armchair

GNR are higher than that of zigzag GNRs.

Figure 1.4: Young modulus of the GNRs for constant width (a) and for constant length (b)
with respect to aspect ratio(L/W) [33]

Figure 1.5: The strain values of GNRs for constant width (a) and for constant length (b) with
respect to aspect ratio(L/W) [33]
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1.4 Outline of the Thesis

In this work, 2D graphene nanoribbon in two different structures which are zigzag and arm-

chair models are studied and presented in Figure 1.6. The main motivation of this work is

Figure 1.6: Zigzag and armchair graphene nanoribbon models

the limited information on the mechanical properties of defected GNRs. Figure 1.7 presents

the structural defects considered in this work, which are monovacancy, divacancy and Stone-

Wales defects. The other property of defects is mobility. Defects are not stationary, they have

a certain mobility parallel to the graphene ribbons plane. The characteristic of migration de-

pends on types of defects and temperature [2]. In the present study, the migration of defects

are also observed.

Figure 1.7: Types of defects in graphene nanoribbons

The width of the armchair and zigzag GNRs is tried to be kept close to each other by taking
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the models at different layers in order to understand the chirality effect better. For example,

the width of the zigzag model with 8 layers is close to the width of the armchair model with 12

layers as seen from Figure 1.6. In the present thesis, 8 layer zigzag GNR with 24.60 Å initial

length and 12 layer armchair GNR with 42.60 Å initial length are compared to investigate

chirality effect on the strength. There is no particular reason choosing these lengths. Effects

of the difference in the initial length are dismissed by applying periodic boundary condition.

In order to eliminate the differences in the initial length, strain values are compared instead of

final length at which fracture occurs.

Previously, the MD program used in the present study was tested by using same potential

energy function [34]. Before the stretching process, an appropriate working cell has been

generated by defining the initial position of carbon atoms. Periodic boundary conditions are

applied in the direction in which the stretching process is carried out. MD relaxation is carried

out till the total energy of the system is constant with respect to time. 105 MD steps were

enough to reach equilibrium for the models considered in this study. After the system reaches

equilibrium the stretching process is begun by extending the geometry by 5 percent. At each

stretching process, the system was relaxed till the equilibrium was reached. Stretching and

relaxation processes have been continued till some of the bond are broken and the nanoribbon

starts to fragment. The method used in this work is explained in detail in Chapter 2.
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CHAPTER 2

THEORETICAL BACKGROUND

This section is divided into two parts. In the first part, the method followed during the research

is introduced with general view. In the second part, some details of the method are given.

2.1 Method of Calculations

MDS method known from 1960 is a very powerful technique to study the materials at nanoscale

because lots of interactions are taken into account by MDS which can not be ignored at

nanoscale as done at macroscale [38].

In this work, classical MDS was performed in a canonical ensemble system to investigate the

structural properties of graphene nanoribbons. According to canonical ensemble, the temper-

ature is taken as constant via Hoover thermostat. Due to periodic boundary conditions, the

number of particles is also constant. Verlet Algorithm is used for time integration and veloci-

ty calculations. The interaction between particles are calculated according to Tersoff potential

energy functions in which the strength of the bonds between two atoms are not constant and

the parameters are different for each elements [39].

MDS is carried out at 1 and 300 K in order to understand the effect of temperature on the

defect mobility and fragmentation mechanism. Before the stretching process, an appropriate

cell has been generated by defining the initial position of carbon atoms. When total energy

is constant with respect to iteration number, it is assumed that the system reaches equilibri-

um. 105 MD steps were enough to reach equilibrium for the models considered in the present
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study. The flowchart of the MD program is presented in Appendix C.

After the system reaches the equilibrium, the stretching process is begun by extending the ge-

ometry by 5 or 10 percent. At each stretching process, the system was relaxed until reaching

equilibrium. Periodic boundary conditions are applied in the direction which the stretching

process is carried out. When the geometry breaks down, the process reaches the end, and the

change in stretching energy is available.

In this work, graphene naoribbon with two different chiralities (zigzag and armchair) and with

different layer (the width of the nanoribbon) have been studied. The width of the armchair and

zigzag graphene nanoribbons is tried to be kept close to each other by taking the models at

different layers in order to understand the chirality effect better. For example, the width of the

zigzag model with 8 layers is close to the width of the armchair model with 12 layers as seen

from Figure 1.6. In the present work, 8 layer zigzag GNR with 24.60 Å initial length and 12

layer armchair GNR with 42.60 Å initial length were compared to investigate chirality effect

on the strength. The stretching process has been carried only for 12 layer armchair GNR and

8 layer zigzag GNR, because the defects can be set in the midst properly for these models. In

order to eliminate the differences in the initial length, strain values were compared instead of

final length at which fracture occurs.

2.2 Simulations in Detail

2.2.1 Molecular Dynamics Simulations

MD introduced firstly by Alder and Wainright [40] is a method used to determine the physical

quantities over a restricted set of states [41]. In addition, MD can be used to study non-

equilibrium system, dynamic phenomena (transport of heat or charge), kinetic phenomena or

relaxation of system far from equilibrium [41, 42]. This is the great advantage of the MD

method over Monte Carlo method [41].

Molecular dynamics simulation is based on numerical and step by step solution of classical
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equation of motion which is given in Equation 2.1 for simple atomic system.

∂2xi

∂t2 = −
1
mi
∇iϕ; i = 1, 2, ..., 3N (2.1)

To calculate equation of motion, it is needed to be able to calculate the forces (ϕ) acting on

atoms which is performed by potential energy function(PEF) and the initial position of the

atoms must be known. Periodic boundary condition is applied to constrain the volume and

number of atoms.

Usually, classical MDS was performed in a microcanonical ensemble system in which energy,

momentum, particle number and volume are taken as constant [41]. However, in experimental

situation total energy of the system does not taken as control variable. By some modification,

MD can be used for a system in which temperature or pressure is kept constant called as

canonical ensemble. The MD method based on canonical ensemble, which is closest to the

experimental systems, was introduced by Andersen in 1980 [43].

2.2.2 Verlet Algorithm

The differential function indicated in Eq 2.1 has been calculated by Verlet Algorithm [44]. The

positions (r(t)) at time step t, and previous time step are used to calculate new position. The

following equations have been given to summarize the algorithm [45]. Taylor series expansion

for position is given in Eq 2.2.

r(t + δt) = r(t) + δt
∂r
∂t

+
1
2
δt2 ∂

2r
∂t2 +

1
6
δt3 ∂

3r
∂t3 + ... (2.2)

It is obvious that the first derivative of the position with respect to time is velocity (v), and the

second derivative of position with respect to time is acceleration (a)

r(t + δt) = r(t) + δtv(t) +
1
2
δt2a(t) +

1
6
δt3 ∂

3r
∂t3 (2.3)

r(t − δt) = r(t) − δtv(t) +
1
2
δt2a(t) −

1
6
δt3 ∂

3r
∂t3 (2.4)

Adding the Equation 2.3 and the Equation 2.4 gives;

r(t + δt) = 2r(t) − r(t − δt) + δt2a(t) (2.5)
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The velocities which is used for kinetic energy calculation can be calculates as indicated in

Equation 2.6.

v(t) =
r(t + δt) − r(t − δt)

2δt
(2.6)

2.2.3 Tersoff Potential

According to the Tersoff Potential Function approach, the bond strength depends on local

environment; in other words the atoms with many neighbor has weaker bond than that of

atoms with few neighbors. Using quantum-mechanical calculation to determine the energy of

atoms as a function of atomic coordinates is not feasible for large systems due to complexity

of quantum-mechanical calculations. One of the possible solution is an empirical interatomic

potential since it is easy to calculate and also provides accurate results. In the present work,

Tersoff Potential Energy Function has been used which is proposed by Tersoff firstly for sili-

con [46] and then it was calibrated for carbon [39]. The following equations have been given

to summarize the Tersoff PEF to calculate the interaction between particles. The energy of

N-interacting particles can be calculated as indicated in Equation 2.7.

E = ΣiV1(ri) + Σi< jV2(ri, r j) + Σi< j<kV3(ri, r j, rk) + ... (2.7)

Where rn is the position of the nth particle and Vm is m-body potential (V2 is two-body poten-

tial and V3 is three-body potential). V1 is an external potential. The potential energy function

showing the interaction of particle begin by the second term. The interatomic potential was

taken as indicated in Equation 2.8 by Tersoff, in order to implicit the geometry dependency of

bond energy.

E = ΣiEi =
1
2

Σi, jVi j (2.8)

where Vi j is defined by;

Vi j = fc(ri j)[ai j fR(ri j) + bi j fA(ri j)] (2.9)

ri j represents the distance between atom i and atom j. fA (2.11) and fR (2.10) is used to

indicate attractive pair potential function and repulsive pair potential function, respectively. fc

represents smooth cutoff function.

fR = Aexp(−λ1r) (2.10)

fA = −Bexp(−λ2r) (2.11)
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fc =


1 if ri j < R − D

0.5 − 0.5[sin(π(ri j)π−R
2D )] if R − D < ri j < R + D

0 if ri j > R + D

The other parameters are taken in the following form as indicated in Equations 2.12, 2.13,

2.14, 2.15, 2.16.

bi j = [1 + βnζn
i j]
− 1

2n (2.12)

ζi j = Σk,i, j fc(rikg(Θi jk)exp[λ3
3(ri, j − rik)3] (2.13)

g(Θi jk) = 1 +
c2

d2 −
c2

d2 + (h − cosΘi jk)2 (2.14)

where Θi jk is bond angle between bonds ij and ik.

ai j = (1 + αnηn
i j)
− 1

2n (2.15)

ηi j = Σk,i, j fc(ri j)exp[λ3
3(ri j − rik)3] (2.16)

The constants for carbon atoms can be obtained from Reference [39] and are indicated in

Table 2.1.

Table 2.1: Parameters for Tersoff potential for carbon atoms

A 1393.6 eV
B 346.74 eV
λ1 3.4879 Å
λ2 2.2119 Å
β 1.5723× 10−7

n 0.72751
c 38049
d 4.3484
h -0.57058
R 1.95 Å
D 0.15 Å
α 0
λ3 0

2.2.4 Periodic Boundary Condition

In the present study, periodic boundary conditions (PBC) has been applied which is powerful

method to simulate homogeneous systems. According to PBC, the system is constructed by
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Figure 2.1: Two-dimensional representation of periodic boundary conditions [47]

replication of primitive cell to give infinite periodic lattice as indicated in Figure 2.1 [47].

PBCs can be implemented via nearest image convention (NIC) [48]. According to this ap-

proach, if the distance between two particles i and j larger than L
2 , then the interaction between

i and j has been neglected. Instead of j, j′ which is periodic image of j at the coordinates ri j−L

interacts with i, and that interaction potential has been taken [49]. NIC has been carried by

the transformation represent in Equation (2.17)

i f ri jα > L/2 ri jα ←− ri jα − L

i f ri jα < L/2 ri jα ←− ri jα + L (2.17)

where α can be x, y or z. By using periodic boundary conditions (PBC), the number of parti-

cles are kept constant in the system. Therefore, the particle which leaves the boundary during

simulation re-enters on the opposite face [34]. In addition, the surface effect can be elimi-

nated, and the system can be made pseudo-infinite by the application of periodic boundary

condition [42].

2.2.5 Nose-Hoover Algorithm

As a summary in MDS used in the present work canonical ensemble has been used. This

is known also (NVT), since number of particles(N), volume of the system(V) and temper-

ature(T) are kept constant. The number of particles and the volume of the system are kept

constant by periodic boundary implication. The temperature is kept constant by using Nose-

Hoover thermostat which was proposed by Nose [50] and developed by Hoover [51].
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The implementation of Nose-Hoover equations of motion into MD program can not be done

directly. Firstly, the Verlet velocity algorithm for standard micro-canonical system is used to

calculate initial velocity and position as indicated in Equation 2.18. The energy of the system

changes during the simulation. The temperature of the system is affected from this change.

The change in the temperature is calibrated by re-scaling the velocity and position according

to Nose-Hoover approach.

r(t + ∆t) = r(t) + v(t)∆t + f (t)
(∆t)2

2m

v(t + ∆t) = v(t) +
f (t + ∆t) + f (t)

2m
∆t (2.18)

The obtained velocity and position according to Nose-Hoover equation of motion are given

in the Equation 2.19 which can be solved by iteration.

ri(t + ∆t) = ri(t) + vi(t)∆t + [
fi(t)
mi
− ξ(t)vi(t)]

(∆t)2

2

vi(t + ∆t) = vi(t) + [
fi(t + ∆t)

mi
− ξ(t + ∆t)vi(t + ∆t) +

fi(t)
mi
− ξ(t)vi(t)]

∆t
2

(2.19)

2.2.6 Modeling Uniaxial Stretching

Uniaxial stretching is applied on the models by multiplying the length of the model by 1.05

(for slow stretching) or by 1.1 (for fast stretching). As depicted in Figure 2.2, model is

stretched only in x direction by incrementation periodic boundary length and rearranging

x coordinates of atoms. Amount of increase in length is presented as ∆L. ∆L equals to 0.05×

Li for slow stretching and 0.1× Li for fast stretching, where Li is previous length of ribbon.

Figure 2.2: Schematic presentation of the stretching process.

17



CHAPTER 3

RESULTS AND DISCUSSIONS

3.1 Zigzag GNRs with the Set of diverse Defects

In this work, divacancy, monovacancy and Stone-Wales defects have been examined. In order

to clearly understand the effects of these defects on the structure, shape and location of the

defects were also changed. Figure 3.1 presents the set of diverse defects examined in zigzag

GNRs. Defect formation energies, strain values and strain energies are calculated by using

total energies and lengths of the structures. The raw data obtained at each stretching step for

pristine and defected zigzag GNRs is given in Appendix A.

Figure 3.1: A diverse set of defects in zigzag GNRs

The formation energies give information about the tendency of a defect formation on GNRs.

DFT calculation results for defect formation energies for CNTs and graphene sheets are avail-
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able in the literature [52, 53, 54]. However, these quantities are not available for pristine or

defected GNRs.

The calculated formation energies E f e of the monovacancy, divacancy and Stone-Wales de-

fects for zigzag GNR are given in Table 3.1. In this study, defect formation energy E f e is

defined to be the differences between the total energies of the pristine and defected GNR with

the condition that they have the same width, length and edge form, namely, E f e = ET p − ETd.

ET p and ETd are the total energies of pristine and defected GNRs, respectively. As depicted in

Table 3.1, all defect formation energies are negative and different from each other. Although

both divacancy-type1 and divacancy-type2 have the same number of missing atoms resulting

in defects, defect formation energies are different from each other. The same conclusion is

valid for monovacancy defects, as well.

Table 3.1: Defect formation energies (E f e, in eV) of zigzag 8 layer GNRs

Defect type E f e (at 1 K) E f e (at 300 K)
monovacancy-type1 -21.47 -32.58
monovacancy-type2 -26.62 -26.68
monovacancy-type3 -16.25 -25.57

Stone-Wales -26.94 -50.59
divacancy-type1 -31.87 -44.00
divacancy-type2 -23.41 -28.35

Previously, E f e is defined as the difference between total energy of pristine and defected GNR.

It can be drawn out that defected GNR whose energy is close to the energy of pristine GNR,

is more likely to form. As presented in Table 3.1, due to negative E f e values, defected mod-

el with highest defect formation energy is actually the one closest to the pristine model in

terms of total energy. In this case, at 1 K for zigzag GNRs, the defect type can be sorted in

descending order in terms of tendency as follows; monovacancy-type3, monovacancy-type1,

divacancy-type2, monovacancy-type2, Stone-Wales, divacancy-type1.

Defect formation energies decrease with increasing temperature. The amount of decrease is

different for each model. E f e at 300 K for zigzag GNR is different than that of the one at

1 K which also affects the order of tendency among defects. At 300 K for zigzag GNR, the
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defect type can be sorted in descending order in terms of tendency as follows; monovacancy-

type3, monovacancy-type2, divacancy-type2, monovacancy-type1, divacancy-type1, Stone-

Wales. At 300 K, the defect formation energy of monovacancy-type2 does not change, unex-

pectedly.

The defect formation energies of monovacancy-type1 and monovacancy-type3 decrease by

51.75 percent and 57.35 percent, respectively due to raise in temperature. The change in de-

fect formation energies is calculated as (E f e300K
− E f e1K

)/E f e1K
× 100 in percentage, where

E f e300K
and E f e1K

are defect formation energies at 300 K and 1 K, respectively. The defect for-

mation energy of divacancy-type1 decreases by 38.1 percent whereas E f e of divacancy-type2

decreases by 21.1 percent. Hence, the E f e of defects are affected from both temperature and

the shape of the defects. Moreover, it might be different despite the equality of the number

of missing atoms resulting in defects. At 300 K, E f e of Stone-Wales (-50.59 eV) drastically

decreases by 87.79 percent and becomes the defect that most likely to form at room temper-

ature. To conclude, monovacancy-type3 defect is the most likely model to form among the

others at both 1 and 300 K. Defect formation energies are not only affected from temperature

but also from chirality which is discussed in section 3.2.

The strain values calculated at fragmentation point for zigzag GNRs are listed in Table 3.2.

Strain is defined to be the difference in length in percentage, namely, strain= 100 × Li−L0
L0

.

Li is the length of the nanoribbon at the ith stretching step and L0 is the initial length. The

maximum strain value is obtained as 46.41 for pristine, monovacancy-type3 and Stone-Wales

zigzag GNRs at 1 K under fast stretching process. The minimum strain value is obtained as

21.00 for monovacancy-type1, monovacancy-type2 and Stone-Wales defected zigzag GNRs

at 300 K under fast stretching process. As shown in Table 3.2 strain values are affected from

temperature. For example, for zigzag GNRs strain values obtained at 300 K are smaller than

those at 1K. However, the results are not sufficient to compare the strain values of the different

defects. We note that the strain values for different defect models are the same; this shows that

different defected structures can show similar characteristics under similar conditions.

The results of the zigzag GNR stretching simulations are presented in Figures 3.2- 3.8. These
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Table 3.2: Calculated failure strain values for pristine and defected zigzag GNRs

Graphene model and Defect type Temperature (K) Stretching Type Strain
zz8L-pristine 1 slow 40.71
zz8L-pristine 1 fast 46.41
zz8L-pristine 300 slow 27.63
zz8L-pristine 300 fast 33.10

zz8L-monovacancy-type1 1 slow 34.01
zz8L-monovacancy-type1 1 fast 33.10
zz8L-monovacancy-type1 300 slow 21.55
zz8L-monovacancy-type1 300 fast 21.00
zz8L-monovacancy-type2 1 slow 34.01
zz8L-monovacancy-type2 1 fast 33.10
zz8L-monovacancy-type2 300 slow 21.55
zz8L-monovacancy-type2 300 fast 21.00
zz8L-monovacancy-type3 1 slow 27.63
zz8L-monovacancy-type3 1 fast 46.41
zz8L-monovacancy-type3 300 slow 21.55
zz8L-monovacancy-type3 300 fast 33.10

zz8L-divacancy-type1 1 slow 34.01
zz8L-divacancy-type1 1 fast 33.10
zz8L-divacancy-type1 300 slow 27.63
zz8L-divacancy-type1 300 fast 33.10
zz8L-divacancy-type2 1 slow 34.01
zz8L-divacancy-type2 1 fast 33.10
zz8L-divacancy-type2 300 slow 27.63
zz8L-divacancy-type2 300 fast 33.10

zz8L-Stone-Wales 1 slow 40.71
zz8L-Stone-Wales 1 fast 46.41
zz8L-Stone-Wales 300 slow 27.63
zz8L-Stone-Wales 300 fast 21.00
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figures include strain energy vs. strain graphs drawn according to the raw data listed in Ap-

pendix A. Figure 3.2 presents the pristine zigzag GNR which keeps its structure without de-

formation and fragments suddenly, then stretching is stopped at this point. The same situation

holds for the armchair pristine GNR, as well. The graphs shows strain energy with respect

to strain. At 1 K, the strain energy vs strain graph under both fast and slow stretching look

similar whereas at room temperature they show different behavior. The lines in the graphs are

used just to show the connection of data points, hence they do not have any physical mean-

ing. The final length, the number of runs until fragmentation and the failure strain of pristine

zigzag GNR are highest among all the defected zigzag GNRs at the same temperature.

Figure 3.3 shows the structure of monovacancy-type1 defected zigzag GNRs at 1 and 300 K

under fast and slow stretching processes. By comparing Figure 3.2 and Figure 3.3 it is depict-

ed that the failure strain and final length of the monovacancy-type1 defected GNRs are less

than that of pristine GNRs at the same temperature. The pristine model fragments suddenly,

however, zigzag GNR with monovacancy-type1 does not preserve its structure until failure,

and begins deformation before breakdown. The deformation starts from the edge atoms at 1

K for monovacancy-type1 and bond breaking takes place as shown in Figure 3.3. On the other

hand, at 300 K, deformation and bond breaking starts near the defect. The strain vs energy

graphs under fast and slow stretching processes show different behavior at 300 K whereas

they look similar at 1 K.

It is interesting to note that the deformation at 1 K starts on the edge which is parallel to

the side of the triangular type monovacancy. This can be observed clearly by comparing Fig-

ure 3.3 and Figure 3.4 on the zigzag GNRs with monovacancy-type2 defect. Actually, there

is no significant difference between monovacancy-type1 and monovacancy-type2 in terms of

failure strain and strain energy vs strain graph, final length and the number of runs until frag-

mentation. The final lengths of the zigzag GNRs with monovacancy-type1 and monovacancy-

type2 are same at both temperatures and stretching processes. However, the final structure of

the ribbons at failure point are different from each other.

Figure 3.5 presents the stretching results of monovacany-type3 defected zigzag GNRs at two
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Figure 3.2: Structures of pristine zigzag GNRs under stretch at 1 K and 300 K. Pictures show
top and side views. The graphs show strain energy vs. strain for corresponding structures. The
lines in the graphs are used just show the connection of data points, they do not have any
physical meaning. The same explanation is also valid for the other graphs.
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different temperatures. The main difference between monovacancy-type3 and other mono-

vacancy defects is the location of the defect. At monovacancy-type3 the defect is near the

edge. However, at the monovacancy-type1 and monovacancy-typ2, defects are in the mid-

dle of the GNRs. A comparison of Figures 3.5, 3.3 and 3.4 gives an idea about the ef-

fects of the defects’ location and shape. At slow stretching, the final length and the failure

strain of monovacancy-type3 defected ribbon are less than that of the monovacancy-type1

and monovacancy-type2 at 1K. At room temperature, one of the two differences between

the zigzag GNR with monovacancy-type 3 and other monovacancy defected GNRs is the

strain energy vs strain graph. The strain energy vs strain graphs of the monovacancy-type1

and monovacancy-type2 defects look similar. However, the strain energy vs strain graph of

monovacancy-type3 defect is different than that of others. Secondly, the final length, the fail-

ure strain and the number of runs are higher for monovacancy-type3 at room temperature.

Figure 3.6 and Figure 3.7 present the shape of the zigzag GNRs with divacancy-type1 and

divacancy-type2, respectively. There is no significant difference between the two figures. The

number of stretching runs, failure strain and the final length of the ribbons are the same.

The only difference between divacancy-type1 defected GNRs and divacancy-type2 defected

GNRs is observed in the strain energy vs strain graph at 300 K.

When divacancy defects and monovacancy defects are compared, it is observed that final

length and failure strain of divacancy defected zigzag GNRs are a bit higher than that of

monovacancy defected zigzag GNRs at 1 K. On the other hand, they are a bit lower than

that of monovacancy defected zigzag GNRs at 300 K. Moreover, side view of the GNR with

monovacancy at 300 K is different from the side view of the GNR with divacancy at 300 K. In

Figure 3.3 and Figure 3.6, the wavy structure and roughness are localized at the fixed edges

of the GNR for monovacancy, whereas the roughness and/or the wavy character are localized

close to divacancy position.

Figures 3.8 displays the structures and strain energy vs strain graphs of the Stone-Wales de-

fected zigzag GNRs at 1 and 300 K under fast and slow stretching processes. This model is as

strong as pristine model despite of the non-hexoganal bonds, at 1 K. The same conclusion can
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Figure 3.3: Structures of zigzag GNRs with monovacancy-type1 defect under stretch at 1 K
and 300 K. Pictures show top and side views. The graphs show strain energy vs. strain for
corresponding structures.
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Figure 3.4: Structures of zigzag GNRs with monovacancy-type2 defect under stretch of at 1
K and 300 K. Pictures show top and side views. The graphs show strain energy vs. strain for
corresponding structures.
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Figure 3.5: Structures of zigzag GNRs with monovacancy-type3 defect under stretch of at 1
K and 300 K. Pictures show top and side views. The graphs show strain energy vs. strain for
corresponding structures.
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Figure 3.6: Structures of zigzag GNRs with divacancy-type1 defect under stretch at 1 K and
300 K. Pictures show top and side views. The graphs show strain energy vs. strain for corre-
sponding structures.
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Figure 3.7: Structures of zigzag GNRs with divacancy-type2 defect under stretch at 1 K and
300 K. Pictures show top and side views. The graphs show strain energy vs. strain for corre-
sponding structures.
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not be drawn for the model at 300 K. Moreover, the highest strain energy among all zigzag

GNRs is obtained in Stone-Wales defected GNR at 1 K. At 1 K, the strain energy vs strain

graph under both fast and slow stretching look similar. However, they show different charac-

teristic at 300 K; the strain energy vs strain is larger under slow stretching than that of fast

stretching.
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Figure 3.8: Structures of zigzag GNRs with Stone-Wales defect under stretch at 1 K and 300
K. Pictures show top and side views. The graphs show strain energy vs. strain for correspond-
ing structures.
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3.2 Armchair GNRs with the Set of Diverse Defects

The set of diverse defects in armchair GNRs is presented in Figure 3.9 with their labels used

in this thesis. Defect formation energies, strain values and strain energies are calculated by

using total energies and lengths of the structures. The raw data obtained at each stretching

step for pristine and defected armchair GNRs is given in Appendix B.

Figure 3.9: A diverse set of defects in armchair GNRs

The calculated formation energies E f e of the defects presented in Figure 3.9 are given in

Table 3.3. Being different from zigzag GNRs, defects formation energies of monovacan-

cies/divacancies are close to each other. At 1 K for armchair GNR, formation energy of Stone-

Wales defect is calculated as -1.60 eV which is the highest value among all the defect forma-

tion energies and the one closest to pristine armchair GNR in terms of total energy. Defected

GNR having energy close to the energy of pristine GNR, is more likely to form. Hence, Stone-

Wales defect on armchair GNRs is more likely to form at 1 K. At 1 K, Stone-Wales defect

on armchair GNR is followed by monovacancy-type3 (-14.50 eV), monovacancy-type1 and

monovacancy-type2 (-14.58 eV), divacancy-type1 (-23.52 eV) and divacancy-type2 (-25.43

eV) in terms of tendency to form.

As observed in zigzag GNRs, defect formation energies decrease with increasing temperature

for armchair model. Hence, tendency to form defect decreases with increasing temperature for

both zigzag and armchair GNRs. Since the amount of decrease are different for each model,

E f e of defects might be different despite the equality in the number of missing atoms resulting

in defects. At 300 K, the E f e of Stone-Wales defect on armchair GNR decreases drastically
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by 1783.2 percent, but it is still the more likely to form among them. At 300 K for armchair

GNRs, the defect type can be sorted in descending order in terms of tendency as follows;

monovacancy-type2, monovacancy-type1, divacancy-type1, monovacancy-type3, divacancy-

type2, Stone-Wales.

Table 3.3: Defect formation energies (E f e, in eV) of armchair 12 layer GNRs

Defect type E f e (at 1 K) E f e (at 300 K)
monovacancy-type1 -14.58 -62.34
monovacancy-type2 -14.58 -87.61
monovacancy-type3 -14.50 -43.24

Stone-Wales -1.60 -30.13
divacancy-type1 -23.52 -55.44
divacancy-type2 -25.43 -32.50

Strain values calculated at fragmentation point for armchair GNRs are listed in Table 3.4.

The maximum strain value is obtained as 46.41 for monovacancy-type2 and divacancy-type2

armchair GNRs at 1 K under fast stretching process. The minimum strain value is obtained

as 21.00 for monovacancy-type2, monovacancy-type3, divacancy-type1 and Stone-Wales de-

fected armchair GNRs at 300 K under fast stretching process. As demonstrated in Table 3.4

strain values are affected from temperature. Generally, for armchair GNRs strain values ob-

tained at 300 K are smaller than those at 1K.

The figures 3.10–3.17 show the structure of armchair GNRs under stretching and strain energy

vs. strain graphs drawn according to raw data listed in Appendix B. Results of simulations for

pristine armchair GNRs at 1 and 300 K are given in Figure 3.10. The number of runs, namely,

a complete stretching processes are different under slow and fast stretching processes. For

12 layer armchair GNR model at 1 K, the stretching process continues until 6 runs in slow

stretching and 3 runs in fast stretching. It is an expected result since extension is 5 percent for

slow stretching whereas it is 10 percent for fast stretching. At 300 K, the topology of GNRs

also changes during the stretching process due to temperature. At 1 K, the strain energy vs

strain graph under fast and slow stretching processes highly resemble each other. At 300

K, the number of runs, the final length and the failure strain are less than that of pristine

armchair ribbon at 1 K, under slow stretching process. However, they are the same under fast
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Table 3.4: Calculated failure strain values for pristine and defected armchair GNRs

Graphene model and Defect type Temperature (K) Stretching Type Strain
ac12L-pristine 1 slow 34.01
ac12L-pristine 1 fast 33.10
ac12L-pristine 300 slow 27.63
ac12L-pristine 300 fast 33.10
ac12L-monovacancy-type1 1 slow 34.01
ac12L-monovacancy-type1 1 fast 33.10
ac12L-monovacancy-type1 300 slow 21.55
ac12L-monovacancy-type1 300 fast 33.10
ac12L-monovacancy-type2 1 slow 34.01
ac12L-monovacancy-type2 1 fast 33.10
ac12L-monovacancy-type2 300 slow 21.55
ac12L-monovacancy-type2 300 fast 21.00
ac12L-monovacancy-type3 1 slow 34.01
ac12L-monovacancy-type3 1 fast 46.41
ac12L-monovacancy-type3 300 slow 21.55
ac12L-monovacancy-type3 300 fast 21.00
ac12L-divacancy-type1 1 slow 34.01
ac12L-divacancy-type1 1 fast 46.41
ac12L-divacancy-type1 300 slow 21.55
ac12L-divacancy-type1 300 fast 21.00
ac12L-divacancy-type2 1 slow 26.97
ac12L-divacancy-type2 1 fast 46.41
ac12L-divacancy-type2 300 slow 21.55
ac12L-divacancy-type2 300 fast 33.10
ac12L-Stone-Wales 1 slow 21.55
ac12L-Stone-Wales 1 fast 33.10
ac12L-Stone-Wales 300 slow 27.63
ac12L-Stone-Wales 300 fast 21.00
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stretching process at both temperatures. As observed in zigzag models, the topological view

of the ribbons at 300 K is a bit wavy that that of the ribbons at 1 K for armchair model.

Figure 3.11 shows the simulations’ results of the defected armchair GNR models. These re-

sults were obtained at 300 K during slow stretching process. Number of runs are the same

for monovacancy and divacancy defected armchair GNR. Moreover, the topology or shape of

the GNRs is also similar for monovacancy and divacancy defected armchair GNR. Indeed,

these are surpising results since missing of two atoms, instead of one atom, should have a

more significant effect on the structure of ribbons. On the other hand, Stone-Wales defected

armchair GNR model is stronger than the other defected models. Moreover, non-hexagonal

ring changes and becomes a hexagonal ring during the slow stretching process at 300 K. As

a result of stretching, a Stone-Wales defected GNR changes to a defect-free GNR namely,

Stone-Wales defect disappears during streching process.

Figure 3.12 shows structure of armchair GNRs with monovacancy-type1 defect under stretch

at 1 and 300 K. Motion of monovacancy defect at 300 K is more remarkable than that of at

1 K. At 300 K before the stretching process, defects can not be seen clearly in the figure be-

cause they move toward the edge. During stretching, movement of defect continues until bond

breaking takes place and the structure fragments. The side view of the GNR at 300 K looks

more wavy than that of GNR at 1 K due to disarrangement of atoms. However, the side view

of the GNR at 1 K is almost smooth. Differently from zigzag model, the number of runs, final

length and failure strain of ribbon are the same for pristine and monovacancy-type1 defect-

ed armchair ribbon at 1 K during both fast and slow stretching process. However, the strain

energy at failure of monovacancy-type1 defected armchair at both stretching are higher than

that of pristine armchair. At 300 K, failure strain of monovacancy-type1 is less than that of

pristine model under slow stretching process. However, there is no difference between pristine

and monovacancy-type1 defected model in terms of runs, failure strain and final length under

fast stretching process.

The monovacancy-type2 is presented in Figure 3.13. The side view of the armchair GNR with

monovacancy-type2 at 300 K looks more wavy than that of armchair GNR with monovacancy-
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Figure 3.10: Structures of pristine armchair GNRs under stretch at 1 K and 300 K. Pictures
show top and side views. The graphs show strain energy vs. strain for corresponding struc-
tures.The lines in the graphs are used just show the connection of data points, they do not have
any physical meaning. The same explanation is also valid for the other graphs.
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Figure 3.11: Three different structures of defected 12 layer armchair GNRs at 300 K.
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type1 and with monovacancy-type3 at 300 K. There is no significant differences between

monovacancy-type1 and type2 but the direction of movement of defect. Since the shape of

the monovacancy-type1 and type2 are different from each other. The most interesting feature

of monovacancy-type2 defect is its strange strain energy-strain graph obtained at room tem-

perature.

The monovacancy-type3 is presented in Figure 3.14. Monovacancy-type3 defected armchair

GNR is different than other monocacancies in terms of the location of the defects. This dif-

ference does not effect failure strain and final length of the ribbon under slow stretching

process. The number of runs and final length of the ribbons of both monovacancy-type1 and

monovacancy-type3 are the same at slow stretching process at 1 K and 300 K. Interesting-

ly, the highest failure strain among the armchair ribbons is obtained for this model under fast

stretching. Moreover, the number of runs at fast stretching process at 1K of the monovacancy-

type3 is higher than that of monovacancy-type1. At 300 K, the strain energy vs. strain graph

of monovacancy-type3 defected armchair GNR is as strange as that monovacancy-type2 de-

fected armchair GNR.

Figure 3.15 shows the results of the simulations for armchair GNR with divacancy-type1 de-

fects under stretch. The interesting and more remarkable point in this figure is the growing

the size of the defect at 1 K is more rapidly. At the end of the stretching process, the final size

of the defect at 1 K is larger than the size of the defect at 300 K.

The divacancy-type2 defect is presented in Figure 3.16. The first difference between divacancy-

type1 and divacancy-type2 are the number of the runs and the final length of the ribbons at

300K fast stretching process. However, there is no difference between divacancy-type1 de-

fected GNR and divacancy-type2 defected GNR in terms of failure strain and final length at 1

K. The second difference between them is the shape of the defects at the end of the stretching

process. Differently from other defected armchair GNRs at room temperature, the strain ener-

gy vs. strain graph of divacancy-type2 defected GNR under fast and slow stretching process

possess similar behavior.

The structures and strain energy vs strain graphs of Stone-Wales defected GNR at 1 and 300
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Figure 3.12: Structures of armchair GNRs with monovacancy-type1 defect under stretch at 1
and 300 K. Pictures show top and side views. The graphs show strain energy vs. strain for
corresponding structures.
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Figure 3.13: Structures of armchair GNRs with monovacancy-type2 defect under stretch at 1
and 300 K. Pictures show top and side views. The graphs show strain energy vs. strain for
corresponding structures.
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Figure 3.14: Structures of armchair GNRs with monovacancy-type3 defect under stretch at 1
and 300 K. Pictures show top and side views. The graphs show strain energy vs. strain for
corresponding structures.
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Figure 3.15: Structures of armchair GNRs with divacancy-type1 defect under stretch at 1
and 300 K. Pictures show top and side views. The graphs show strain energy vs. strain for
corresponding structures.
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Figure 3.16: Structures of armchair GNRs with divacancy-type2 defect under stretch at 1
and 300 K. Pictures show top and side views. The graphs show strain energy vs. strain for
corresponding structures.
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K are presented in Figure 3.17. For slow stretching process, the final length, the number

of runs and the failure strain value of armchair GNR with STone-Wales defect are smallest

among the other armchair GNRs at the same temperature. Stone-Wales defected armchair

GNR at room temperature is strongest model among other defected models. Because, non-

hexagonal ring changes and becomes a hexagonal ring during slow stretching process at 300

K. The difference between strain energy vs strain graphs at two different temperatures is very

interesting, because the characteristics of strain energy vs strain show opposite behaviour at

low (1 K) and room temperature (300 K) cases. Strain energy changes rapidly with respect to

strain for fast stretching case than that of the slow stretching case at 1 K. On the other hand,

the effect is reversed at 300 K, that is, strain energy changes rapidly with respect to strain for

slow stretching case than that of the fast stretching case at 300 K.
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Figure 3.17: Structures of armchair GNRs with Stone-Wales defect under stretch at 1 and 300
K. Pictures show top and side views. The graphs show strain energy vs. strain for correspond-
ing structures.
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CHAPTER 4

CONCLUSIONS

In this thesis, we studied pristine and defected GNRs. Strength and stability of armchair and

zigzag GNRs at two different temperatures have been investigated by MDS. Results of the

simulations were used to calculate strain values, strain energies and defect formation energies.

The following conclusions are listed according to the current study. Defect formation energies

are affected strongly from temperature and chirality. Defect formation energies are smaller at

300 K than those at 1 K. It can be drawn that formation of defects is easier at low tempera-

tures. At room temperature, mobility of defects can be seen clearly. Moreover, topology and

final size of the defects are also affected from temperature. The differences in strength and in

stability of zigzag and armchair GNRs can be seen from the differences in defects formation

energies and the number of runs in the stretching process. Type of the stretching process (slow

or fast) has no significant effect on strain value, whereas it has great effect on strain energy.

However, strain value has been affected from both defect and temperature. Strain energy vs.

strain graphs are affected by temperature. Mostly, strain energy vs. strain graph under slow

and fast stretching show opposite behavior at room temperature. The number of runs, final

lengths and failure strain values obtained at 300 K are less than that of those at 1 K. The

number of runs taken until fragmentation for zigzag GNRs are slightly more than that of the

runs for armchair GNRs. Hence, 8-layer zigzag GNRs are more stable than 12-layer armchair

GNRs under stretch.

There are a number of possible further work related to this study. Firstly, the present work

can be improved and enhanced by changing certain parameters and modifying the MD pro-

gram. By increasing length(width) of the ribbons, effect of length(width) on defects formation
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energies and strain values can be observed. Young’s modulus and Poisson’s ratio can be cal-

culated via a few modifications on the MDS code. In the current research, stretching process

was carried on only in x direction (uniaxial stretching). Same GNR models can be examined

under biaxial tension (stretching both in x and y directions). Strain values and strain ener-

gies obtained under biaxial stretching might be different than those under uniaxial stretching.

Number of carbon atoms in the zigzag and armchair GNRs are different (180 atoms in zigzag

GNR, 280 atoms in armchair GNR). This difference arises from the initial lengths of the

ribbons. Due to periodic boundary conditions this difference has no significant effect on the

stretching results, however, defect formation energies may be affected from that difference.

Defect formation energies can be calculated for zigzag and armchair GNRs by keeping the

number of atoms close each other. Hence, the effect of chirality on defect formation energies

can be investigated clearly.
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APPENDIX A

STRAIN VALUES AND ENERGIES FOR ZIGZAG GNRs

UNDER VARYING STRETCHING TYPES AND

TEMPERATURES

Table A.1: Strain values and energies (∆E) for pristine zigzag GNR under slow and fast
stretching at 1 K. At each stretching step, corresponding lengths (Li) and total energies (Etotal)
are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 24.60 0.00 -1173.77 0.00

Slow

1 25.83 5.00 -1221.14 -47.38
2 27.12 10.25 -1218.94 -45.18
3 28.48 15.76 -1172.44 1.33
4 29.90 21.55 -1103.69 70.08
5 31.40 27.63 -1022.10 151.67
6 32.97 34.01 -932.29 241.48

7 (Final) 34.62 40.71 -893.99 276.78

Fast

1 27.06 10.00 -1220.31 -46.54
2 29.766 21.00 -1110.72 63.05
3 32.74 33.10 -945.22 228.55

4 (Final) 36.02 46.41 -669.16 504.61
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Table A.2: Strain values and energies (∆E) for pristine zigzag GNR under slow and fast
stretching at 300 K. At each stretching step, corresponding lengths (Li) and total energies
(Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 24.60 0.00 -1170.14 0.00

Slow

1 25.83 5.00 -1133.45 36.69
2 27.12 10.25 -1130.56 39.58
3 28.48 15.76 -1112.88 57.27
4 29.90 21.55 -1062.84 107.30

5 (Final) 31.40 27.63 -1032.12 138.02

Fast
1 27.06 10.00 -1203.71 -33.57
2 29.77 21.00 -1101.71 68.43

3 (Final) 32.74 33.10 -943.32 226.82

Table A.3: Strain values and energies (∆E) for zigzag GNR with Stone-Wales defect under
slow and fast stretching at 1 K. At each stretching step, corresponding lengths (Li) and total
energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 24.60 0.00 -1146.82 0.00

Slow

1 25.83 5.00 -1191.95 -45.13
2 27.12 10.25 -1199.41 -52.59
3 28.48 15.76 -1162.07 -15.25
4 29.90 21.55 -1100.83 45.99
5 31.40 27.63 -1025.42 121.40
6 32.97 34.01 -941.71 205.12

7 (Final) 34.62 40.71 -861.62 285.20

Fast

1 27.06 10.00 -1200.21 -53.39
2 29.77 21.00 -1107.27 39.56
3 32.74 33.10 -953.70 193.12

4 (Final) 36.02 46.41 -784.92 361.91

53



Table A.4: Strain values and energies (∆E) for zigzag GNR with Stone-Wales defect under
slow and fast stretching at 300 K. At each stretching step, corresponding lengths (Li) and total
energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 24.60 0.00 -1119.56 0.00

Slow

1 25.83 5.00 -1171.29 -51.74
2 27.12 10.25 -1142.43 -22.87
3 28.48 15.76 -1118.56 1.00
4 29.90 21.55 -1074.44 45.12

5 (Final) 31.40 27.63 -1011.46 108.10

Fast
1 27.06 10.00 -1127.77 -8.22

2 (Final) 29.77 21.00 -1099.99 19.57

Table A.5: Strain values and energies (∆E) for zigzag GNR with monovacancy-type1 defect
under slow and fast stretching at 1 K. At each stretching step, corresponding lengths (Li) and
total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 24.60 0.00 -1152.30 0.00

Slow

1 25.83 5.00 -1197.78 -45.48
2 27.12 10.25 -1194.56 -42.26
3 28.48 15.76 -1144.58 7.72
4 29.90 21.55 -1090.68 61.62
5 31.40 27.63 -1029.63 122.67

6 (Final) 32.97 34.01 -942.21 210.09

Fast
1 27.06 10.00 -1195.87 -43.57
2 29.77 21.00 -1078.24 74.06

3 (Final) 32.74 33.10 -946.80 205.50

Table A.6: Strain values and energies (∆E) for zigzag GNR with monovacancy-type1 defect
under slow and fast stretching at 300 K. At each stretching step, corresponding lengths (Li)
and total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 24.60 0.00 -1137.56 0.00

Slow

1 25.83 5.00 -1109.13 28.43
2 27.12 10.25 -1118.60 18.96
3 28.48 15.76 -1121.34 16.22

4 (Final) 29.90 21.55 -1064.89 72.67

Fast
1 27.06 10.00 -1121.99 15.57

2 (Final) 29.77 21.00 -1068.10 69.46
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Table A.7: Strain values and energies (∆E) for zigzag GNR with monovacancy-type2 defect
under slow and fast stretching at 1 K. At each stretching step, corresponding lengths (Li) and
total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 24.60 0.00 -1147.15 0.00

Slow

1 25.83 5.00 -1198.30 -51.15
2 27.12 10.25 -1195.34 -48.20
3 28.48 15.76 -1145.33 1.81
4 29.90 21.55 -1087.50 59.65
5 31.40 27.63 -1005.22 141.93

6 (Final) 32.97 34.01 -947.38 199.76

Fast
1 27.06 10.00 -1196.97 -49.82
2 29.77 21.00 -1078.78 68.37
3 32.74 33.10 -945.96 201.19

Table A.8: Strain values and energies (∆E) for zigzag GNR with monovacancy-type2 defect
under slow and fast stretching at 300 K. At each stretching step, corresponding lengths (Li)
and total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 24.60 0.00 -1143.46 0.00

Slow

1 25.83 5.00 -1108.49 34.97
2 27.12 10.25 -1117.74 25.72
3 28.48 15.76 -1131.24 12.22

4 (Final) 29.90 21.55 -1043.40 100.06

Fast
1 27.06 10.00 -1147.14 -3.68

2 (Final) 29.77 21.00 -1067.60 75.86

Table A.9: Strain values and energies (∆E) for zigzag GNR with monovacancy-type3 defect
under slow and fast stretching at 1 K. At each stretching step, corresponding lengths (Li) and
total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 24.60 0.00 -1157.52 0.00

Slow

1 25.83 5.00 -1200.94 -43.42
2 27.12 10.25 -1198.19 -40.67
3 28.48 15.76 -1151.00 6.53
4 29.90 21.55 -1079.36 78.17

5 (Final) 31.40 27.63 -1019.95 137.57

Fast

1 27.06 10.00 -1199.42 -41.90
2 29.77 21.00 -1086.03 71.49
3 32.74 33.10 -918.06 239.47

4 (Final) 36.02 46.41 -796.57 360.96
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Table A.10: Strain values and energies (∆E) for zigzag GNR with monovacancy-type3 defect
under slow and fast stretching at 300 K. At each stretching step, corresponding lengths (Li)
and total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 24.60 0.00 -1144.57 0.00

Slow

1 25.83 5.00 -1113.69 30.89
2 27.12 10.25 -1129.31 15.26
3 28.48 15.76 -1120.29 24.28

4 (Final) 29.90 21.55 -1042.14 102.43

Fast
1 27.06 10.00 -1195.04 -50.47
2 29.77 21.00 -1091.12 53.45

3 (Final) 32.74 33.10 -925.67 218.90

Table A.11: Strain values and energies (∆E) for zigzag GNR with divacancy-type1 defect
under slow and fast stretching at 1 K. At each stretching step, corresponding lengths (Li) and
total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 24.60 0.00 -1141.90 0.00

Slow

1 25.83 5.00 -1187.13 -45.23
2 27.12 10.25 -1186.09 -44.19
3 28.48 15.76 -1148.79 -6.89
4 29.90 21.55 -1086.64 55.26
5 31.40 27.63 -1010.83 131.07

6 (Final) 32.97 34.01 -949.18 192.72

Fast
1 27.06 10.00 -1186.89 -44.99
2 29.77 21.00 -1093.16 48.74

3 (Final) 32.74 33.10 -954.18 187.72

Table A.12: Strain values and energies (∆E) for zigzag GNR with divacancy-type1 defect
under slow and fast stretching at 300 K. At each stretching step, corresponding lengths (Li)
and total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 24.60 0.00 -1126.14 0.00

Slow

1 25.83 5.00 -1180.44 -54.30
2 27.12 10.25 -1136.36 -10.22
3 28.48 15.76 -1107.48 18.66
4 29.90 21.55 -1055.07 71.07

5 (Final) 31.40 27.63 -1014.04 112.10

Fast
1 27.06 10.00 -1165.83 -39.69
2 29.77 21.00 -1081.94 44.20

3 (Final) 32.74 33.10 -942.26 183.88
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Table A.13: Strain values and energies (∆E) for zigzag GNR with divacancy-type2 defect
under slow and fast stretching at 1 K. At each stretching step, corresponding lengths (Li) and
total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 24.60 0.00 -1150.36 0.00

Slow

1 25.83 5.00 -1196.33 -45.97
2 27.12 10.25 -1195.14 -44.78
3 28.48 15.76 -1150.57 -0.21
4 29.90 21.55 -1084.29 66.07
5 31.40 27.63 -1004.16 146.20

6 (Final) 32.97 34.01 -929.85 220.51

Fast
1 27.06 10.00 -1196.34 -45.98
2 29.77 21.00 -1091.15 59.21

3 (Final) 32.74 33.10 -953.80 196.56

Table A.14: Strain values and energies (∆E) for zigzag GNR with divacancy-type2 defect
under slow and fast stretching at 300 K. At each stretching step, corresponding lengths (Li)
and total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 24.60 0.00 -1141.80 0.00

Slow

1 25.83 5.00 -1103.69 38.11
2 27.12 10.25 -1118.73 23.06
3 28.48 15.76 -1114.95 26.84
4 29.90 21.55 -1073.45 68.34

5 (Final) 31.40 27.63 -1022.69 119.11

Fast
1 27.06 10.00 -1134.83 6.97
2 29.77 21.00 -1051.51 90.28

3 (Final) 32.74 33.10 -925.23 216.56
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APPENDIX B

STRAIN VALUES AND ENERGIES FOR ARMCHAIR GNRs

UNDER VARYING STRETCHING TYPES AND

TEMPERATURES

Table B.1: Strain values and energies (∆E) for pristine armchair GNR under slow and fast
stretching at 1 K. At each stretching step, corresponding lengths (Li) and total energies (Etotal)
are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 42.60 0.00 -1830.36 0.00

Slow

1 44.73 5.00 -1854.53 -24.17
2 46.97 10.25 -1855.06 -24.70
3 49.32 15.76 -1836.87 -6.52
4 51.78 21.55 -1779.64 50.72
5 54.37 27.63 -1654.91 175.45

6 (Final) 57.09 34.01 -1549.52 280.84

Fast
1 46.86 10.00 -1853.97 -23.61
2 51.55 21.00 -1788.55 41.81

3 (Final) 56.70 33.10 -1548.79 281.57
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Table B.2: Strain values and energies (∆E) for pristine armchair GNR under slow and fast
stretching at 300 K. At each stretching step, corresponding lengths (Li) and total energies
(Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 42.60 0.00 -1839.86 0.00

Slow

1 44.73 5.00 -1795.72 44.13
2 46.97 10.25 -1847.03 -7.17
3 49.32 15.76 -1813.44 26.42
4 51.78 21.55 -1704.44 135.42

5 (Final) 54.37 27.63 -1634.07 205.79

Fast
1 46.86 10.00 -1860.12 -20.26
2 51.55 21.00 -1752.98 86.88

3 (Final) 56.70 33.10 -1513.69 326.17

Table B.3: Strain values and energies (∆E) for armchair GNR with Stone-Wales defect under
slow and fast stretching at 1 K. At each stretching step, corresponding lengths (Li) and total
energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 42.60 0.00 -1828.76 0.00

Slow

1 44.73 5.00 -1845.61 -16.84
2 46.97 10.25 -1802.82 25.94
3 49.32 15.76 -1791.72 37.04

4 (Final) 51.78 21.55 -1719.27 109.49

Fast
1 46.86 10.00 -1803.72 25.04
2 51.55 21.00 -1772.45 56.31

3 (Final) 56.70 33.10 -1544.88 283.89

Table B.4: Strain values and energies (∆E) for armchair GNR with Stone-Wales defect under
slow and fast stretching at 300 K. At each stretching step, corresponding lengths (Li) and total
energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 42.60 0.00 -1809.73 0.00

Slow

1 44.73 5.00 -1813.20 -3.47
2 46.97 10.25 -1847.49 -37.76
3 49.32 15.76 -1804.16 5.57
4 51.78 21.55 -1731.73 78.00

5 (Final) 54.37 27.63 -1637.67 172.06

Fast
1 46.86 10.00 -1821.59 -11.86

2 (Final) 51.55 21.00 -1748.51 61.22
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Table B.5: Strain values and energies (∆E) for armchair GNR with monovacancy-type1 de-
fect under slow and fast stretching at 1 K. At each stretching step, corresponding lengths (Li)
and total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 42.60 0.00 -1815.78 0.00

Slow

1 44.73 5.00 -1838.82 -23.05
2 46.97 10.25 -1836.47 -20.70
3 49.32 15.76 -1821.72 -5.95
4 51.78 21.55 -1767.89 47.88
5 54.37 27.63 -1639.44 176.34

6 (Final) 57.09 34.01 -1490.96 324.81

Fast
1 46.86 10.00 -1838.61 -22.84
2 51.55 21.00 -1775.89 39.88

3 (Final) 56.70 33.10 -1527.53 288.25

Table B.6: Strain values and energies (∆E) for armchair GNR with monovacancy-type1 de-
fect under slow and fast stretching at 300 K. At each stretching step, corresponding lengths
(Li) and total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 42.60 0.00 -1777.52 0.00

Slow

1 44.73 5.00 -1738.67 38.85
2 46.97 10.25 -1841.62 -64.10
3 49.32 15.76 -1795.55 -18.03

4 (Final) 51.78 21.55 -1728.50 49.02

Fast
1 46.86 10.00 -1843.66 -66.14
2 51.55 21.00 -1748.81 28.71

3 (Final) 56.70 33.10 -1483.91 293.61

Table B.7: Strain values and energies (∆E) for armchair GNR with monovacancy-type2 de-
fect under slow and fast stretching at 1 K. At each stretching step, corresponding lengths (Li)
and total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 42.60 0.00 -1815.78 0.00

Slow

1 44.73 5.00 -1838.91 -23.13
2 46.97 10.25 -1837.72 -21.95
3 49.32 15.76 -1821.76 -5.98
4 51.78 21.55 -1767.85 47.93
5 54.37 27.63 -1643.25 172.52

6 (Final) 57.09 34.01 -1507.24 308.54

Fast
1 46.86 10.00 -1838.58 -22.80
2 51.55 21.00 -1776.33 39.45

3 (Final) 56.70 33.10 -1538.76 277.02
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Table B.8: Strain values and energies (∆E) for armchair GNR with monovacancy-type2 de-
fect under slow and fast stretching at 300 K. At each stretching step, corresponding lengths
(Li) and total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 42.60 0.00 -1752.25 0.00

Slow

1 44.73 5.00 -1741.89 10.36
2 46.97 10.25 -1844.34 -92.09
3 49.32 15.76 -1801.93 -49.68

4 (Final) 51.78 21.55 -1725.98 26.28

Fast
1 46.86 10.00 -1841.52 -89.27

2 (Final) 51.55 21.00 -1741.22 11.03

Table B.9: Strain values and energies (∆E) for armchair GNR with monovacancy-type3 de-
fect under slow and fast stretching at 1 K. At each stretching step, corresponding lengths (Li)
and total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 42.60 0.00 -1815.86 0.00

Fast

1 44.73 5.00 -1839.36 -23.51
2 46.97 10.25 -1837.50 -21.64
3 49.32 15.76 -1821.18 -5.32
4 51.78 21.55 -1767.67 48.19
5 54.37 27.63 -1624.97 190.89

6 (Final) 57.09 34.01 -1506.26 309.60

Fast

1 46.86 10.00 -1837.33 -21.48
2 51.55 21.00 -1775.99 39.87
3 56.70 33.10 -1530.44 285.42
4 62.37 46.41 -1072.61 743.25

Table B.10: Strain values and energies (∆E) for armchair GNR with monovacancy-type3
defect under slow and fast stretching at 300 K. At each stretching step, corresponding lengths
(Li) and total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 42.60 0.00 -1796.62 0.00

Slow

1 44.73 5.00 -1741.91 54.71
2 46.97 10.25 -1842.25 -45.63
3 49.32 15.76 -1812.43 -15.82

4 (Final) 51.78 21.55 -1733.86 62.76

Fast
1 46.86 10.00 -1846.09 -49.47

2 (Final) 51.55 21.00 -1748.63 47.98
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Table B.11: Strain values and energies (∆E) for armchair GNR with divacancy-type1 defect
under slow and fast stretching at 1 K. At each stretching step, corresponding lengths (Li) and
total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 42.60 0.00 -1806.84 0.00

Slow

1 44.73 5.00 -1830.15 -23.31
2 46.97 10.25 -1830.04 -23.20
3 49.32 15.76 -1812.29 -5.45
4 51.78 21.55 -1759.09 47.75
5 54.37 27.63 -1637.61 169.23

6 (Final) 57.09 34.01 -1491.11 315.73

Fast

1 46.86 10.00 -1831.51 -24.67
2 51.55 21.00 -1758.05 48.79
3 56.70 33.10 -1545.20 216.64

4 (Final) 62.37 46.41 -1161.73 645.11

Table B.12: Strain values and energies (∆E) for armchair GNR with divacancy-type1 defect
under slow and fast stretching at 300 K. At each stretching step, corresponding lengths (Li)
and total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 42.60 0.00 -1784.42 0.00

Slow

1 44.73 5.00 -1774.39 10.03
2 46.97 10.25 -1833.21 -48.79
3 49.32 15.76 -1785.21 -0.79

4 (Final) 51.78 21.55 -1715.59 68.83

Fast
1 46.86 10.00 -1836.35 -51.93

2 (Final) 51.55 21.00 -1723.42 61.00
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Table B.13: Strain values and energies (∆E) for armchair GNR with divacancy-type2 defect
under slow and fast stretching at 1 K. At each stretching step, corresponding lengths (Li) and
total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 42.60 0.00 -1804.93 0.00

Slow

1 44.73 5.00 -1827.22 -22.29
2 46.97 10.25 -1827.85 -22.92
3 49.32 15.76 -1812.49 -7.56
4 51.78 21.55 -1761.08 43.85
5 54.37 27.63 -1649.01 155.92

6 (Final) 57.09 34.01 -1542.39 262.54

Fast

1 46.86 10.00 -1828.49 -23.56
2 51.55 21.00 -1768.84 36.09
3 56.70 33.10 -1549.41 255.52

4 (Final) 62.37 46.41 -1213.19 591.74

Table B.14: Strain values and energies (∆E) for armchair GNR with divacancy-type2 defect
under slow and fast stretching at 300 K. At each stretching step, corresponding lengths (Li)
and total energies (Etotal) are also presented.

Stretching Stretching Li Strain Etotal ∆E=(Ei - E0)
Types Steps (Å) ( Li−L0

L0
× 100 ) (eV) (eV)

Initial 42.60 0.00 -1807.36 0.00

Slow

1 44.73 5.00 -1835.99 -28.64
2 46.97 10.25 -1831.76 -24.41
3 49.32 15.76 -1791.32 16.04

4 (Final) 51.78 21.55 -1751.31 56.04

Fast
1 46.86 10.00 -1836.29 -28.94
2 51.55 21.00 -1753.20 54.16

3 (Final) 56.70 33.10 -1502.61 304.74

63



APPENDIX C

FLOW CHART OF THE MDS PROGRAM

Figure C.1: Flow Chart of the molecular dynamics simulation (MDS) program used in the
current study.
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