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ABSTRACT

MUTUAL COUPLING CALIBRATION OF ANTENNA ARRAYS FOR
DIRECTION-OF-ARRIVAL ESTIMATION

Aksoy, Taylan

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. T. Engin Tuncer

February 2012, 82 pages

An antenna array is an indispensable portion of a direction-of-arrival (DOA) estima-

tion operation. A number of error sources in the arrays degrade the DOA estimation

accuracy. Mutual coupling effect is one of the main error sources and should be

corrected for any antenna array.

In this thesis, a system theoretic approach is presented for mutual coupling character-

ization of antenna arrays. In this approach, the idea is to model the mutual coupling

effect through a simple linear transformation between the measured and the ideal

array data. In this context, a measurement reduction method (MRM) is proposed

to decrease the number of calibration measurements. This new method dramatically

reduces the number of calibration measurements for omnidirectional antennas. It is

shown that a single calibration measurement is sufficient for uniform circular arrays

when MRM is used.

The method is extended for the arrays composed of non-omnidirectional (NOD) an-

tennas. It is shown that a single calibration matrix can not properly model the mutual
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coupling effect in an NOD antenna array. Therefore, a sectorized calibration approach

is proposed for NOD antenna arrays where the mutual coupling calibration is done in

angular sectors.

Furthermore, mutual coupling problem is also investigated for antenna arrays over

a perfect electric conductor plate. In this case, reflections from the plate lead to

gain/phase mismatches in the antenna elements. In this context, a composite matrix

approach is proposed where mutual coupling and gain/phase mismatch are jointly

modelled by using a single composite calibration matrix.

The proposed methods are evaluated over DOA estimation accuracies using Multiple

Signal Classification (MUSIC) algorithm. The calibration measurements are obtained

using the numerical electromagnetic simulation tool FEKO. The evaluation results

show that the proposed methods effectively realize the mutual coupling calibration of

antenna arrays.

Keywords: mutual coupling, antenna array calibration, direction-of-arrival estimation
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ÖZ

GELİŞ-AÇISI KESTİRİMİ İÇİN ANTEN DİZİLERİNİN MÜŞTEREK BAĞLAŞIM
KALİBRASYONU

Aksoy, Taylan

Yüksek Lisans, Elektrik Elektronik Mühendisliğ Bölümü

Tez Yöneticisi : Prof. Dr. T. Engin Tuncer

Şubat 2012, 82 sayfa

Anten dizisi, geliş-açısı kestirimi işleminin vazgeçilmez bir parçasıdır. Dizilerde bu-

lunan birçok hata kaynağı, kestirim sonuçlarının doğruluğunu düşürmektedir. Anten

elemanları arasındaki müşterek bağlaşım etkisi, bir anten dizisindeki temel hata kay-

naklarından biridir ve her anten dizisinde düzeltilmesi gereklidir.

Bu tezde, anten dizilerindeki müşterek bağlaşım etkisinin karakterizasyonu için sis-

tematik bir yaklaşım sunulmaktadır. Bu kapmsamda, kalibrasyon ölçüm sayısının

azaltılması için bir ölçüm azaltma yöntemi (ÖAY) önerilmektedir. Bu yeni yöntem,

eşyönlü antenler için kalibrasyon ölçüm sayısını önemli ölçüde azaltmaktadır. ÖAY

kullanılması durumunda, tekdüze dairesel diziler için bir tek kalibrasyon ölçümünün

yeterli olduğu gösterilmiştir.

Yöntem, eşyönlü olmayan antenlerde uygulanmak üzere genişletilmiştir. Tek bir kalib-

rasyon matrisinin, eşyönlü olmayan antenlerden oluşan dizilerdeki müşterek bağlaşım

etkisini modellemek için yeterli olmadığı gösterilmiştir. Bu nedenle, eşyönlü olmayan

antenlerden oluşan diziler için, müşterek bağlaşım kalibrasyonunun açısal sektörler
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kullanılarak yapıldığı bir sektörlü yaklaşım önerilmiştir.

Müşterek bağlaşım problemi, kusursuz elektriksel iletken bir plaka üzerinde duran

anten dizileri için de incelenmiştir. Bu durumda, plakadan gelen yansımalar, anten

elemanlarında kazanç/faz uyuşmazlıklarına yol açmaktadır. Bu kapsamda, müşterek

bağlaşım ve kazanç/faz uyuşmazlığının, bir tek bileşik kalibrasyon matrisi kullanarak

birlikte modellendiği bir bileşik matris yaklaşımı önerilmiştir.

Önerilen yöntemler, Çoklu Sinyal Sınıflandırma (Multiple Signal Classification, MU-

SIC) algoritması ile yapılan geliş-açısı kestirimindeki doğruluk miktarları kullanılarak

değerlendirilmiştir. Kalibrasyon ölçümleri, nümerik elektromanyetik simülasyon aracı

olan FEKO kullanılarak yapılmıştır. Değerlendirme sonuçları, önerilen yöntemlerin

anten dizilerinde müşterek bağlaşım kalibrasyonunu etkin bir biçimde yapabildiğini

göstermektedir.

Anahtar Kelimeler: müşterek bağlaşım, anten dizisi kalibrasyonu, geliş-açısı kestirimi
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ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 4

2 REVIEW OF THE METHODS FOR MUTUAL COUPLING CALI-
BRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 The Open-Circuit Method . . . . . . . . . . . . . . . . . . . . 5

2.2 The Yamada’s Method . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The Sato’s Method . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 The Hui’s Method . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 MUTUAL COUPLING CALIBRATIONOF OMNIDIRECTIONAL AN-
TENNA ARRAYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Transformation Approach . . . . . . . . . . . . . . . . . . . . . 18

3.3 Measurement Reduction Method . . . . . . . . . . . . . . . . . 21

3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 MUTUAL COUPLING CALIBRATIONOF NON-OMNIDIRECTIONAL
ANTENNA ARRAYS . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Sectorized Approach . . . . . . . . . . . . . . . . . . . . . . . . 43

x



4.3 MRM for NOD Antenna Arrays . . . . . . . . . . . . . . . . . 45

4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 MUTUAL COUPLING AND GAIN/PHASE MISMATCH CALIBRA-
TION OF ANTENNA ARRAYS OVER A PEC PLATE . . . . . . . . 58

5.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Composite Matrix Approach . . . . . . . . . . . . . . . . . . . 60

5.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xi



LIST OF TABLES

TABLES

Table 3.1 Number of calibration measurements required for different types of

arrays which are composed of N identical and omnidirectional antennas.

(⌈·⌉ denotes the ceiling function.) . . . . . . . . . . . . . . . . . . . . . . . 28

xii



LIST OF FIGURES

FIGURES

Figure 2.1 The N -element antenna array is treated as an (N + 1)−terminal

network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 3.1 The array elements e1, e2 and the directions (ϕ1, θ1), (ϕ2, θ2) are

symmetrical to each other with respect to the symmetry plane s1. . . . . . 23

Figure 3.2 Two dimensional geometry of a UCA withN elements, e1, e2, . . . , eN ,

and S symmetry planes, s1, s2, . . . , sS ,. There are S symmetric couples,

[gi,gi+1] (i = 1, 3, . . . , 2S − 1), in the array. . . . . . . . . . . . . . . . . . 25

Figure 3.3 The radiation pattern of a single dipole antenna with 5.25 mm di-

ameter and 34.1 cm length at 100 MHz. . . . . . . . . . . . . . . . . . . . 29

Figure 3.4 The radiation pattern of a single dipole antenna with 5.25 mm di-

ameter and 34.1 cm length at 440 MHz. . . . . . . . . . . . . . . . . . . . 29

Figure 3.5 The radiation pattern of a single dipole antenna with 5.25 mm di-

ameter and 34.1 cm length at 800 MHz. . . . . . . . . . . . . . . . . . . . 29

Figure 3.6 The 8-element UCA model used in the performance evaluation ex-

periments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.7 The MUSIC spectrum due to three sources at 100 MHz coming

from (ϕ1 = 50◦, θ1 = 90◦), (ϕ2 = 90◦, θ2 = 90◦) and (ϕ3 = 200◦, θ3 = 90◦)

directions, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.8 The MUSIC spectrum due to three sources at 440 MHz coming

from (ϕ1 = 50◦, θ1 = 90◦), (ϕ2 = 90◦, θ2 = 90◦) and (ϕ3 = 200◦, θ3 = 90◦)

directions, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xiii



Figure 3.9 The MUSIC spectrum due to three sources at 800 MHz coming

from (ϕ1 = 50◦, θ1 = 90◦), (ϕ2 = 90◦, θ2 = 90◦) and (ϕ3 = 200◦, θ3 = 90◦)

directions, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3.10 The azimuth performances of MRM and the Hui’s method at 100

MHz when two sources are fixed at ϕ1 = 50◦ and ϕ2 = 90◦, and the third

source is swept in one degree resolution. . . . . . . . . . . . . . . . . . . . 34

Figure 3.11 The azimuth performances of MRM and the Hui’s method at 440

MHz when two sources are fixed at ϕ1 = 50◦ and ϕ2 = 90◦, and the third

source is swept in one degree resolution. . . . . . . . . . . . . . . . . . . . 35

Figure 3.12 The azimuth performances of MRM and the Hui’s method at 800

MHz when two sources are fixed at ϕ1 = 50◦ and ϕ2 = 90◦, and the third

source is swept in one degree resolution. . . . . . . . . . . . . . . . . . . . 35

Figure 3.13 The performance comparison of MRM and the Hui’s method for the

noisy case. The experiment is done at 440 MHz for 20 dB SNR. There are

two fixed sources from ϕ1 = 50◦ and ϕ2 = 90◦, and the third source is swept

in one degree resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.14 The elevation performance of MRM at 100 MHz for three sources

whose elevation angles θ1 = θ2 = θ3 are varied from 75◦ to 105◦ with 3

degree steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.15 The elevation performance of MRM at 440 MHz for three sources

whose elevation angles θ1 = θ2 = θ3 are varied from 75◦ to 105◦ with 3

degree steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 3.16 The elevation performance of MRM at 800 MHz for three sources

whose elevation angles θ1 = θ2 = θ3 are varied from 75◦ to 105◦ with 3

degree steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 3.17 The frequency performance of MRM for three sources whose fre-

quencies f1 = f2 = f3 are varried between 95 MHz and 105 MHz. . . . . . 39

Figure 3.18 The frequency performance of MRM for three sources whose fre-

quencies f1 = f2 = f3 are varried between 435 MHz and 445 MHz. . . . . . 40

Figure 3.19 The frequency performance of MRM for three sources whose fre-

quencies f1 = f2 = f3 are varried between 795 MHz and 805 MHz. . . . . . 40

xiv



Figure 4.1 The top view of a UCA withN patch antenna elements, e1, e2, . . . , eN .

There are S symmetry planes, s1, s2, . . . , sS , in the array. . . . . . . . . . . 46

Figure 4.2 The three dimensional transmitting array pattern due to e2 from

top, front and isometric view angles. . . . . . . . . . . . . . . . . . . . . . 47

Figure 4.3 The three dimensional transmitting array pattern due to eN from

top, front and isometric view angles. . . . . . . . . . . . . . . . . . . . . . 48

Figure 4.4 The wideband non-symmetric dipole patch antenna [17] used in the

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 4.5 Three dimensional radiation pattern of the semi-omnidirectional an-

tenna at 100 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 4.6 Three dimensional radiation pattern of the semi-omnidirectional an-

tenna at 300 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 4.7 Three dimensional radiation pattern of the semi-omnidirectional an-

tenna at 440 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 4.8 Three dimensional radiation pattern of the semi-omnidirectional an-

tenna at 600 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 4.9 Three dimensional radiation pattern of the semi-omnidirectional an-

tenna at 800 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 4.10 The 8-element UCA model composed of semi-omnidirectional anten-

nas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.11 The azimuth performance of the conventional calibration approach

where a single C matrix is used for the whole azimuth plane. . . . . . . . . 54

Figure 4.12 The azimuth performance of the sectorized calibration approach

combined with MRM where the azimuth plane is divided into 90◦ wide

sectors and a distinct C matrix is used for each sector. . . . . . . . . . . . 55

Figure 4.13 The elevation performance of the sectorized calibration approach

combined with MRM where the C matrices found for θ = 90◦ are used

while the source elevation angle is varied from 75◦ to 105◦ with 3 degrees

steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xv



Figure 4.14 The frequency performance of the sectorized calibration approach

combined with MRM where the C matrices found for 800 MHz are used

while the source frequency is varied from 795 MHz to 805 MHz with 250

kHz steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 5.1 The FEKO model for the 8-element UCA with dipole antennas ele-

vated over a circular PEC plate. . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 5.2 The FEKO model for the 8-element UCA with monopole antennas

attached to a circular PEC plate. . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 5.3 The MUSIC spectrum of the dipole antenna array calibrated using

the composite matrix approach for (ϕ = 70◦, θ = 60◦) direction. The com-

posite matrices are found by using three non-overlapping azimuth sectors

of 120◦ angular width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 5.4 The MUSIC spectrum of the dipole antenna array calibrated using

the composite matrix approach for (ϕ = 70◦, θ = 70◦) direction. The com-

posite matrices are found by using three non-overlapping azimuth sectors

of 120◦ angular width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 5.5 The MUSIC spectrum of the dipole antenna array calibrated using

the composite matrix approach for (ϕ = 70◦, θ = 80◦) direction. The com-

posite matrices are found by using three non-overlapping azimuth sectors

of 120◦ angular width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 5.6 The azimuth performance of the dipole antenna array calibrated

using the composite matrix approach for θ = 60◦. The calibration is done

by using three non-overlapping azimuth sectors of 120◦ angular width. . . 67

Figure 5.7 The azimuth performance of the dipole antenna array calibrated

using the composite matrix approach for θ = 70◦. The calibration is done

by using three non-overlapping azimuth sectors of 120◦ angular width. . . 68

Figure 5.8 The azimuth performance of the dipole antenna array calibrated

using the composite matrix approach for θ = 80◦. The calibration is done

by using three non-overlapping azimuth sectors of 120◦ angular width. . . 68

xvi



Figure 5.9 The MUSIC spectrum of the monopole antenna array calibrated

using the composite matrix approach for (ϕ = 80◦, θ = 60◦) direction. The

composite matrices are found by using four non-overlapping azimuth sectors

of 90◦ angular width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 5.10 The MUSIC spectrum of the monopole antenna array calibrated

using the composite matrix approach for (ϕ = 80◦, θ = 70◦) direction. The

composite matrices are found by using four non-overlapping azimuth sectors

of 90◦ angular width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 5.11 The MUSIC spectrum of the monopole antenna array calibrated

using the composite matrix approach for (ϕ = 80◦, θ = 80◦) direction. The

composite matrices are found by using four non-overlapping azimuth sectors

of 90◦ angular width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 5.12 The azimuth performance of the monopole antenna array calibrated

using the composite matrix approach for θ = 60◦. The calibration is done

by using four non-overlapping azimuth sectors of 90◦ angular width. . . . . 71

Figure 5.13 The azimuth performance of the monopole antenna array calibrated

using the composite matrix approach for θ = 70◦. The calibration is done

by using four non-overlapping azimuth sectors of 90◦ angular width. . . . . 72

Figure 5.14 The azimuth performance of the monopole antenna array calibrated

using the composite matrix approach for θ = 80◦. The calibration is done

by using four non-overlapping azimuth sectors of 90◦ angular width. . . . . 72

Figure 5.15 The elevation performance of the dipole antenna array calibrated

using the composite matrix approach. The composite matrices found for

θ = 70◦ are used while the elevation angle is swept from 68◦ to 72◦ with

0.25 degree steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 5.16 The elevation performance of the monopole antenna array calibrated

using the composite matrix approach. The composite matrices found for

θ = 70◦ are used while the elevation angle is swept from 68◦ to 72◦ with

0.25 degree steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xvii



Figure 5.17 The frequency performance of the dipole antenna array calibrated

using the composite matrix approach. The composite matrices found for f

= 1000 MHz are used while the source frequency is swept from 995 MHz to

1005 MHz with 0.25 MHz steps. . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 5.18 The frequency performance of the monopole antenna array cali-

brated using the composite matrix approach. The composite matrices found

for f = 1000 MHz are used while the source frequency is swept from 995

MHz to 1005 MHz with 0.25 MHz steps. . . . . . . . . . . . . . . . . . . . 76

xviii



CHAPTER 1

INTRODUCTION

Since the advent of wireless communication, direction-of-arrival (DOA) estimation

applications became one of the most appealing topics among the researchers. There are

different kinds of DOA estimation techniques which depend on processing the signals

acquired by an antenna array. There are many factors distorting the received signal

in an antenna array, such as antenna misplacements, mismatches in cable lengths,

mutual coupling between antennas or gain/phase mismatches due to antenna radiation

patterns.

When an antenna array is excited by an external source, each array element is subject

to the scattering and re-radiation effects coming from the other array elements. These

interactions between the array elements is referred as mutual coupling. In this respect,

mutual coupling represents one of the most important distortion sources given an ideal

array model. Super-resolution DOA algorithms, such as Multiple Signal Classification

(MUSIC) algorithm [1], use the ideal array model and orthogonality of subspaces to

determine the DOA angle. In these algorithms, it is assumed that the measurements

are independently taken from the antenna elements which corresponds to neglecting

the mutual coupling effect. Therefore, such algorithms require accurate identification

and calibration of mutual coupling for an acceptable DOA performance.

Several methods have been proposed to characterize the mutual coupling effect [2].

One of the earliest methods is suggested by Gupta and Ksienski [3]. This method

is called as the open-circuit method. It treats the N -element array as an (N + 1)-

terminal, bilateral network and relates the antenna terminal voltages to the open-

circuit voltages through an impedance matrix composed of mutual impedances. The

1



open-circuit method is a widely accepted method for mutual coupling analysis because

of its familiar concepts depending on the circuit theory. However, it can not completely

model the effect of mutual coupling since it does not take into account the scattering

effect due to the presence of other antenna elements [4]. In [5, 6], a new mutual

impedance calculation technique considering the receiving characteristics of arrays is

proposed to overcome the problems of the open-circuit method. This method is further

developed in [7] by taking into account all the array elements simultaneously.

In [8], Yamada et. al improved the circuit equation proposed in [3]. In the Yamada’s

method, two types of mutual impedances are defined, namely, the transmission mu-

tual impedance and the re-radiation mutual impedance. In this context, it is proposed

that the re-radiation mutual impedances should be used for mutual coupling calibra-

tion. In order to find the re-radiation mutual impedances, each antenna is excited

by an external voltage source, and the resulting set of N2 simultaneous equations is

solved. In [9], Sato and Kohno improved the circuit equation further where the case

of a receiving array is distinguished from the case of a transmitting array. In both

cases, impedance matrix due to re-radiating current distribution is separated from the

matrices due to the transmitting or receiving current distributions. Accordingly, two

different calibration matrices are proposed for the cases of receiving and transmitting

arrays.

In addition to the methods based on mutual impedance calculation, there are also

transfer function based methods in the literature such as [10]. In these methods, ideal

array data is related to the measured array data without using any physical concept

such as mutual impedance. In this thesis, a similar transformation approach is pre-

sented for mutual coupling identification where the ideal and the measured array data

are related through a linear transformation. While the transformation approach has

certain similarities with the method in [7], it is easier to comprehend and implement.

Furthermore, a new approach is presented in order to decrease the number of calibra-

tion measurements required for the transformation approach [11]. This new method is

called as the measurement reduction method (MRM) which uses the symmetry planes

in the array geometry and generates multiple array data from a single measured ar-

ray data through simple data permutations. MRM is initially proposed for arrays

with identical and omnidirectional antenna elements, and a significant degradation
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is achieved in the number of calibration measurements. It is shown that a single

measurement is sufficient for the calibration of uniform circular arrays (UCA) when

MRM is used. MRM simplifies the manual labour in the calibration process which

also leads to further degradation in time and cost. It can be applied to any array that

has symmetry planes in its geometry. It is shown that many of the well-known array

forms have more than one symmetry plane making them suitable for MRM.

The case of non-omnidirectional (NOD) antennas is also examined under the scope

of this thesis. It is shown that a single coupling matrix can not properly model

the mutual coupling effect for an NOD antenna array. In this context, a sectorized

approach is proposed for accurate mutual coupling calibration of NOD antenna arrays.

In this approach, calibration is done in angular sectors and a different coupling matrix

is found for each sector using the transformation approach. In addition, it is shown

that MRM is also applicable to NOD antenna arrays with identical elements if the

array has symmetry planes in its geometry.

The perfomance of transformation approach combined with MRM for omnidirectional

antenna arrays, and the performance of sectorized approach combined with MRM

for NOD antenna arrays are evaluated through DOA estimation simulations using

the MUSIC algorithm. The calibration measurements are obtained using the full-

wave numerical electromagnetic simulation tool FEKO [12]. The performances of the

methods are examined for the changes in source frequency, elevation and azimuth

angles.

As a final study, the mutual coupling problem is investigated for the case of antenna

arrays over a perfect electric conductor (PEC) plate. In this case, additional distur-

bance is caused by the reflections from the plate. This distorts the receiving pattern

of the antenna array which results in gain/phase mismatches in the antenna elements.

In this context, a composite matrix approach is proposed where mutual coupling and

gain/phase mismatch are jointly modelled by using a single composite calibration ma-

trix. The composite matrix approach is an extension to the transformation approach

where the composite calibration matrix represents a linear transformation between

the measured and the ideal array data. In the analysis, identical and omnidirectional

antenna elements are considered. Therefore, the mutual coupling effect is direction
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independent. However, the gain/phase mismatch has a direction dependent character-

istics. Hence, the composite calibration matrix, which is formed by mutual coupling

and gain/phase mismatch, is also direction dependent. Therefore, a sectorized ap-

proach is followed in the composite matrix approach. The approach is evaluated using

a dipole antenna array elevated over a circular PEC plate and a monopole antenna

array attached to a circular PEC plate, and the results for the two arrays are com-

pared. The evaluations are carried out to monitor the performance of the approach

for the changes in source frquency, azimuth and elevation angles.

1.1 Thesis Organization

In the first chapter, the scope and the organization of the thesis are provided. In the

second chapter, a review of the methods for mutual coupling calibration is presented

in detail by giving the theories lying behind these methods. In the third chapter,

calibration of omnidirectional antennas is considered presenting the transformation

approach and the measurement reduction method. Then, NOD antenna elements are

considered in the fourth chapter where a sectorized approach is proposed for proper

calibration of NOD antenna arrays. In the fifth chapter, calibration of mutual coupling

and gain/phase mismatch is investigated for the case of antenna arrays over a PEC

plate and a composite matrix approach is proposed. Finally, conclusions are discussed

in the sixth and the last chapter of the thesis.
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CHAPTER 2

REVIEW OF THE METHODS FOR MUTUAL

COUPLING CALIBRATION

Mutual coupling stands for the disturbing effects of scattering and re-radiation from

an array element to the other array elements. It is nearly impossible to discard mutual

coupling effect by making optimizations in physical factors such as antenna type, array

geometry or the operation platform. More or less, any antenna array will be exposed

to this effect. The common approach is to properly identify the mutual coupling effect

in an antenna array and process the array data to compensate for the mutual coupling.

Beacuse of its varying effects, mutual coupling has generated a large volume of research

to study its causes and calibration methods. Mutual coupling effects are investigated in

a variety of fields including multiple-input multiple-output (MIMO) systems, diversity

systems, medical imaging, and sonar and radar systems [13]. Recent developments

in small-size radio transceivers demanding small-size antenna arrays increased the

importance of analysing the mutual coupling. Throughout the years, many different

methods have been proposed to characterize and compansate for mutual coupling. In

this chapter, four of these methods will be explained in detail by giving the underlying

mathematical models.

2.1 The Open-Circuit Method

The open-circuit method is one of the earliest mutual coupling calibration methods

proposed by Gupta and Ksienski [3]. The open-circuit method is a widely accepted

method for mutual coupling analysis because of its familiar concepts depending on
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the circuit theory. In the method, the antenna terminal voltages are related to

the open-circuit voltages through an impedance matrix consisting of antenna mu-

tual impedances. The relation is constituted by treating the N -element antenna array

as an (N +1)-terminal, bilateral network responding to an outside source as shown in

Figure 2.1 [3].

Figure 2.1: The N -element antenna array is treated as an (N + 1)−terminal network

As shown in Figure 2.1, each antenna is terminated with a known load impedance ZL,

the driving source generator has an open-circuit voltage Vg and internal impedance

Zg. The Kirchoff relation for the (N + 1)-terminal network can be written as,

V1 = I1Z11 + · · ·+ IjZ1j + · · ·+ INZ1N + IsZ1s

...
...

...
...

...

Vj = I1Zj1 + · · ·+ IjZjj + · · ·+ INZjN + IsZjs

...
...

...
...

...

VN = I1ZN1 + · · ·+ IjZNj + · · ·+ INZNN + IsZNs

(2.1)

where Zij represents the mutual impedance between the ith and jth ports (array

elements). The relation between terminal current and load impedance is as follows,

Ij = − Vj

ZL
, j = 1, 2, . . . , N (2.2)

If all the elements in the array are in an open-circuit condition, then Ij = 0, j =
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1, 2, . . . , N. Inserting this condition into (2.1), we end up with,

Vj = VOCj = ZjsIs, j = 1, 2, . . . , N (2.3)

Inserting (2.2) and (2.3) into (2.1), we obtain:



1 +
Z11

ZL

Z12

ZL
· · · Z1N

ZL

Z21

ZL
1 +

Z22

ZL
· · · Z2N

ZL

...
...

. . .
...

ZN1

ZL

ZN2

ZL
· · · 1 +

ZNN

ZL





V1

V2

...

VN


=



VOC1

VOC2

...

VOCN


(2.4)

where Zij (i, j = 1, 2, . . . , N) are the mutual impedances between the antenna elements

and Zii are the self-impedances of the antennas. The mutual impedances or the self-

impedances in (2.4), for example for wire antennas, are defined as [15],

Zij =
VOCi

Ij(0)
= − 1

Ii(0)Ij(0)

∫ L

0
Ej(r) · Ii(r)dl (2.5)

where Ii(0) is the value of the current distribution Ii(r) of the ith antenna at the

feedpoint (and similarly for Ij(0)), Ej(r) is the radiation electric field at the surface

of the ith antenna (with its terminals being shorted) which is generated by the current

distribution at the jth antenna, and L is the physical length of the ith antenna. The

definition in (2.5) corresponds to a self-impedance if i = j and to a mutual impedance

if i ̸= j. Note that, the current distribution Ii(r) is obtained by driving the ith antenna

in the transmitting mode while terminals of the jth antenna are shorted (and similarly

for Ij(r)).

2.2 The Yamada’s Method

In [8], Yamada et. al proposed a new circuit equation which is an improved version

of the one used in the open-circuit method. In the Yamada’s method, two types of
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mutual impedances are defined, namely, the transmission mutual impedance (Zij) and

the re-radiation mutual impedance (Zs
ij). Using these two types of mutual impedances,

the relation between voltages and currents of antennas for an N -element array can be

written as [8],


V ′
0

V ′
1

...

V ′
N

 =


Vg0 − ZLI0

−ZLI1
...

−ZLIN

 =



Z00 Zs
01 Zs

02 · · · Zs
0N

Z10 Z11 Zs
12 · · · Zs

1N

Z20 Zs
21 Z22 · · · Zs

2N

...
...

. . .
...

ZN0 Zs
N1 Zs

N2 · · · ZNN




I0

I1
...

IN

 (2.6)

where the subindex 0 denotes transmitting antennas and subindices 1, 2, . . . , N repre-

sent receiving antennas. Since −Zj0Ij (j = 1, 2, . . . , N) is the (uncoupled) open-circuit

voltage of the jth receiving antenna, the relation between the open-circuit voltages

(vopen) and the (coupled) terminal voltages (v) can be derived as,

vopen =



1 +
Z11

ZL

Zs
12

ZL
· · ·

Zs
1N

ZL

Zs
21

ZL
1 +

Z22

ZL
· · ·

Zs
2N

ZL

...
...

. . .
...

Zs
N1

ZL

Zs
N2

ZL
· · · 1 +

ZNN

ZL





V1

V2

...

VN


=

(
IN +

1

ZL
Zs

)
v = C−1v

(2.7)

where IN is the N × N identity matrix. This equation shows that the re-radiation

mutual impedances should be used for mutual coupling calibration. The impedances

can be estimated by using the receiving array alone. When each port is excited by Vg

separately, the following equation can be obtained,
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diag{Vg, Vg, . . . , Vg} =

= (Zm + ZLI
N )


I11 0

. . .

0 INN

+ (Zs + ZLI
N )


0 I12 . . . I1N

I21 0 I2N
...

. . .
...

IN1 IN2 . . . 0

 (2.8)

This is a set of N2 simultaneous equations having N2 unknowns (Zii, Zij , Z
s
ij). This

set has a solution when N is greater than a certain value which is determined by the

array geometry. (For instance, for a uniform linear array, the solution exists for N > 2

[8].) After solving this equation set, calibration is done using (2.7).

2.3 The Sato’s Method

Sato and Kohno modified the circuit equation where the case of a receiving array is

distinguished from the case of a transmitting array [9]. For the case of a transmitting

array, the terminal current of the ith antenna is considered to be the sum of the

transmitting current Iti and the re-radiating (scattering) current Isi , i.e.,

Ii = Iti + Isi (2.9)

The ideal circuit equation which is free from the mutual coupling effect is,


Vg1 − ZLI

t
1

Vg2 − ZLI
t
2

...

VgN − ZLI
t
N

 =


Zin 0

Zin

. . .

0 Zin




It1

It2
...

ItN

 (2.10)

where Vgi is the voltage source connected to the ith antenna and Zin is the input

impedance of the identical antennas, and all the antennas are terminated with a load

impedance ZL. Since the impedance matrix is diagonal, it is clear that this equation

is free from the mutual coupling effect. The proposed circuit equation, which has two

terms resulting from the different current distributions, is presented as,
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
Vg1 − ZL(I

t
1 + Is1)

Vg2 − ZL(I
t
2 + Is2)

...

VgN − ZL(I
t
N + IsN )

 =


Zin Zt

12 · · · Zt
1N

Zt
21 Zin

. . . Zt
2N

...
. . .

. . .
...

Zt
N1 Zt

N2 · · · Zin




It1

It2
...

ItN



+


Zin Zs

12 · · · Zs
1N

Zs
21 Zin

. . . Zs
2N

...
. . .

. . .
...

Zs
N1 Zs

N2 · · · Zin




Is1

Is2
...

IsN

 (2.11)

where Zt
ij is defined as the transmitting mutual impedance and Zs

ij as the re-radiating

(scattering) mutual impedance between the ith and the jth antennas. If (2.10) is

subtracted from (2.11), Isi is found as,


Is1

Is2
...

IsN

 =


0 Z̃t

12 · · · Z̃t
1N

Z̃t
21 0

. . . Z̃t
2N

...
. . .

. . .
...

Z̃t
N1 Z̃t

N2 · · · 0




It1

It2
...

ItN



+


0 Z̃s

12 · · · Z̃s
1N

Z̃s
21 0

. . . Z̃s
2N

...
. . .

. . .
...

Z̃s
N1 Z̃s

N2 · · · 0




Is1

Is2
...

IsN

 (2.12)

where

Z̃t
ij = −

Zt
ij

ZL + Zin
, Z̃s

ij = −
Zs
ij

ZL + Zin
. (2.13)

Or, more compactly

Is = Z̃t It + Z̃s Is (2.14)

where Z̃t is defined as the transmitting mutual coupling matrix and Z̃s as the re-

radiating mutual coupling matrix. Also, the equation in (2.14) is called as the current
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coupling equation.

It is desired that the beam pattern is formed in the far-field for the transmitting array.

Therefore, the transmitting calibration matrix should be determined by taking into

account the influence of both the transmitting and the re-radiating currents in the

far-field. In order to fulfill this, the calibration matrix Zt
c should satisfy the following

conditional equation where the effective weights of the current distributions (Xt, Xs)

are considered,

Zt
c

(
XtI

t +XsI
s
)
= XtI

t (2.15)

Combining (2.14) and (2.15), the transmitting calibration matrix is found as,

Zt
c =

(
Xs

Xt

(
IN − Z̃s

)−1
Z̃t + IN

)−1

(2.16)

where IN is the N ×N identitiy matrix.

In the case of a receiving array, the receiving calibration matrix is obtained by a similar

procedure as in the case of a transmitting array. The current coupling equation in the

receiving case is,

Is = Z̃r Ir + Z̃s Is (2.17)

where Ir is the vector composed of receiving currents at the antenna terminals and

Z̃r is the receiving mutual coupling matrix. Note that the receiving mutual coupling

matrix is nearly equal to the re-radiating mutual coupling matrix if the interelement

spacing is larger than quarter wavelength when the half wavelength dipole antenna

array is used. This is due to the reduction of near field effect resulting from the re-

radiating current. Accordingly, the receiving mutual coupling matrix is approximated

by the re-radiating mutual coupling matrix, i.e.,

Z̃r ≈ Z̃s (2.18)
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In contrast to the transmitting case, the receiving calibration is simply a matter of

controlling the current of the antenna terminals directly. The conditional equation is

expressed as,

Zr
c (Ir + Is) = Ir (2.19)

When (2.17) and (2.18) are inserted into (2.19), the receiving calibration matrix is

obtained as,

Zr
c =

((
IN − Z̃s

)−1
Z̃s + IN

)−1

(2.20)

As seen in (2.16) and (2.20), the calibration matrices can be found if the effective

weights, Xt and Xs, and the mutual coupling matrices, Z̃t and Z̃s, are known. The

proposed method does not measure the far-field electrical field. Therefore, the com-

ponent of the current coupling matrix that is calculated above is used as an approxi-

mated value. As the distance between antenna elements gets larger, the approximated

value becomes more accurate. Then, the top right (or bottom left) component of the

impedance matrix can be used as effective weights, i.e.,

Xt = Z̃t
1N = Z̃t

N1

Xs = Z̃s
1N = Z̃s

N1

(2.21)

In order to find the coupling matrices, one antenna is excited by connecting a constant-

voltage source and the terminal currents of all the antennas are measured. The same

procedure is repeated for all the antennas. Then, the measured terminal currents are

substituted into the left-hand side of the following extended current coupling equations

derived from (2.9) and (2.14) as,

(
IN − Z̃s

)
[I1 I2 . . . IN ] =

(
Z̃t − Z̃s + IN

)
diag

(
It1, I

t
2, . . . , I

t
N

)
(2.22)

where Ii is the vector of measured currents when the ith antenna is excited. Note

that, all the amount of radiating current are assumed to be the same, i.e., It1 = It2 =

· · · = ItN .
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As seen in (2.22), the Sato’s Method also ends up with a set of N2 simultaneous

equations having N2 unknowns similar to the Yamada’s Method. This set has a

solution when N is greater than a certain value which is determined by the array

geometry. (For instance, for a uniform linear array, the solution exists for N > 2 [9].)

After solving this equation set, calibration matrices can be found by using (2.16) and

(2.20).

2.4 The Hui’s Method

A new method using the receiving characteristics of the antenna array for finding the

so-called receiving mutual impedances is proposed by Hui in [5, 6]. The receiving

mutual impedances are found by considering the antennas in pairs. This method is

further developed in [7] by taking into account all the array elements simultaneously

to find the receiving mutual impedances. The new version of the method proposed in

[7] is presented below.

Consider an antenna array with N elements where each antenna is terminated with

a load impedance ZL. As shown in [6], the receiving mutual impedance between the

kth and the ith antennas is defined as,

Zki =
V ki
c

Ii
(2.23)

where V ki
c is the coupled voltage across the terminal load of the kth antenna due to

the current on the ith antenna (terminal value, Ii = Vi/ZL).

When the array is excited by a plane wave coming from a direction of ϕ1, the received

voltage V ϕ1

k at the terminal of the kth antenna can be expressed as,

V ϕ1

k = Uϕ1

k + V k1
c + V k2

c + · · ·+ V k(k−1)
c + V k(k+1)

c + · · ·+ V kN
c (2.24)

where Uϕ1

k is the received voltage on the kth antenna due to the plane wave only.

Using the definition of the receiving mutual impedance given in (2.23), the received

voltage in (2.24) can be written as,
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V ϕ1

k = Uϕ1

k +Zk1
t Iϕ1

1 +Zk2
t Iϕ1

2 + · · ·+Z
k(k−1)
t Iϕ1

k−1+Z
k(k+1)
t Iϕ1

k+1+ · · ·+ZkN
t Iϕ1

N (2.25)

Since the terminal value of the current on the ith antenna (Iϕ1
i = V ϕ1

i /ZL) is used,

(2.25) can be rewritten as,

V ϕ1

k − Uϕ1

k = Zk1
t

V ϕ1
1

ZL
+ Zk2

t

V ϕ1
2

ZL
+ · · ·+ Z

k(k−1)
t

V ϕ1

k−1

ZL

+Z
k(k+1)
t

V ϕ1

k+1

ZL
+ · · ·+ ZkN

t

V ϕ1

N

ZL
(2.26)

In general, the receiving mutual impedances Zki
t of an antenna array change with the

source direction. However, the receiving mutual impedances do not change with the

source direction for omnidirectional antennas. On the other hand, V ϕ1

k and Uϕ1

k are

both functions of the source direction. Using this fact, many equations like (2.26) can

be generated for different source directions. Putting these equations into a matrix

form, we have the following system of equations for L plane wave directions,



V ϕ1

k − Uϕ1

k

V ϕ2

k − Uϕ2

k
...

V
ϕL−1

k − U
ϕL−1

k

V ϕL

k − UϕL

k



=



V ϕ1
1

ZL
· · ·

V ϕ1

k−1

ZL

V ϕ1

k+1

ZL
· · ·

V ϕ1

N

ZL

V ϕ2
1

ZL
· · ·

V ϕ2

k−1

ZL

V ϕ2

k+1

ZL
· · ·

V ϕ2

N

ZL
...

. . .
...

...
. . .

...

V
ϕL−1

1

ZL
· · ·

V
ϕL−1

k−1

ZL

V
ϕL−1

k+1

ZL
· · ·

V
ϕL−1

N

ZL

V ϕL
1

ZL
· · ·

V ϕL

k−1

ZL

V ϕL

k+1

ZL
· · ·

V ϕL
N

ZL





Zk1

...

Zk(k−1)

Zk(k+1)

...

ZkN


(2.27)

(2.27) has a solution for L ≥ N−1. When (2.27) is solved, mutual impedances between

the kth antenna and the other antennas, i.e. (Zk1, . . . , Zk(k−1), Zk(k+1), . . . , ZkN ), are

found in a single step. If this procedure is repeated for each antenna element, all the

14



mutual impedances between all the antenna elements are obtained. Then, the N ×N

mutual impedance matrix, Z, can be constructed as [2],

Z =



1 −Z12

ZL
· · · −Z1N

ZL

−Z21

ZL
1 · · · −Z2N

ZL

...
...

. . .
...

−ZN1

ZL
−ZN2

ZL
· · · 1


(2.28)

Then, the relation between the coupled voltages (V1, V2, . . . , VN ) and the uncoupled

voltages (U1, U2, . . . , UN ) is given as [2],



1 −Z12

ZL
· · · −Z1N

ZL

−Z21

ZL
1 · · · −Z2N

ZL

...
...

. . .
...

−ZN1

ZL
−ZN2

ZL
· · · 1





V1

V2

...

VN


=



U1

U2

...

UN


(2.29)

Finally, the mutual coupling matrix, C, can be found as the inverse of the mutual

impedance matrix, Z, i.e.,

C = Z−1 (2.30)

The four methods investigated in this chapter, the open-circuit method, the Hui’s

method, the Yamada’s method and the Sato’s method, are compared in [14]. In this

comparison, a linear dipole antenna array is used and the detection of vertical and

horizontal polarized incoming signals is considered. The methods are evaluated over

the DOA estimation accuracies using the MUSIC algorithm. The results show that

the Hui’s method provides a better mutual coupling calibration for DOA estimation

than the remaining three methods.
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CHAPTER 3

MUTUAL COUPLING CALIBRATION OF

OMNIDIRECTIONAL ANTENNA ARRAYS

In the previous chapter, some of the existing mutual coupling calibration methods are

explained in detail. All of these methods consider arrays composed of omnidirectional

antennas. In this chapter, first, a linear transformation approach similar to [10] is

presented for mutual coupling calibration [11]. In the transformation approach, the

ideal array data is related to the measured array data through a linear transforma-

tion. The linear set of equations used in the approach is similar to the one in [7].

However, the transformation approach is easier to comprehend and implement, and

computationally more efficient.

Next, a new method is presented in order to decrease the number of measurements

required for mutual coupling calibration of omnidirectional antenna arrays using the

transformation approach. The method is called as the measurement reduction method

(MRM) [11]. MRM is based on the symmetry planes in the array geometry. The idea

is to use a single measurement in order to generate multiple measurements through

simple data permutations. Here, a measurement corresponds to an array output

observation for a given calibration angle.

Before presenting these two novel methods, it is convenient to give the signal model

used in the course of this chapter.
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3.1 Signal Model

In this chapter, antenna arrays composed of identical and omnidirectional elements are

considered in a noise-free environment, and narrowband model is used. The output

vector for an N -element antenna array is given as,

y(t) = C A s(t), t = 1, 2, . . . , P (3.1)

where P is the number of snapshots and C is the N × N mutual coupling matrix.

Columns of the steering matrixA are the steering vectors for L excitation sources com-

ing from distinct azimuth, ϕl, and elevation, θl, angles, i.e. A = [a(ϕ1, θ1) a(ϕ2, θ2) . . .

a(ϕL, θL)]. The steering vector for the excitation source coming from (ϕl, θl) direction

is a(ϕl, θl) = [α1(ϕl, θl) α2(ϕl, θl) . . . αN (ϕl, θl)]
T where (·)T denotes transposition.

The vector element corresponding to the nth antenna positioned at (xn, yn, zn) is

αn(ϕl, θl) = ej
2π
λ
(xn cosϕl sin θl+yn sinϕl sin θl+zn cos θl). s(t) = [s1(t) s2(t) . . . sL(t)]

T is the

signal vector that consists of the complex amplitudes of L single excitation sources.

Note that, since the arrays composed of omnidirectional and identical antennas are

considered, the mutual coupling matrix, C, is independent of the azimuth angle [16].

In this case, the MUSIC algorithm estimates the DOA angles as the maxima of the

following spectrum,

PMU (ϕ, θ) =
1

aH(ϕ, θ) CH EN EH
N C a(ϕ, θ)

(3.2)

where (·)H denotes the complex conjugate transposition and EN is the matrix whose

columns are the noise eigenvectors obtained from the singular value decomposition of

the sample correlation matrix, R̂ =
1

P

P∑
t=1

y(t)yH(t). As it is evident from (3.2), C

should be known for accurate DOA estimation.
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3.2 Transformation Approach

The concept of antenna mutual impedances is commonly used to characterize the

mutual coupling effect in antenna arrays [3, 5, 6, 7]. However, it is also possible

to characterize the mutual coupling effect through a linear transformation without

using any physical definitions like mutual impedance. In this part, a transformation

approach for mutual coupling calibration is presented.

In most of the methods analyzing the mutual coupling effect, the main issue is to

set up a relation between the data measured from antenna terminals (voltage and/or

current) and another data that is assumed to be free from mutual coupling. When

voltage is used as the data to be processed, it is a convenient way to refer the former

as the coupled voltage and the latter as the uncoupled voltage.

Consider an arbitraryN -element antenna array with element indices of n = 1, 2, . . . , N .

Then, the coupled and the uncoupled voltages for the nth antenna due to a single exci-

tation source coming from (ϕ1, θ1) direction are denoted as Vn(ϕ1, θ1) and Un(ϕ1, θ1),

respectively. The coupled voltage vector,

v(ϕ1, θ1) = [V1(ϕ1, θ1) V2(ϕ1, θ1) . . . VN (ϕ1, θ1)]
T (3.3)

is obtained with a single measurement when all the antennas are residing in the array.

The uncoupled voltage vector,

u(ϕ1, θ1) = [U1(ϕ1, θ1) U2(ϕ1, θ1) . . . UN (ϕ1, θ1)]
T (3.4)

is obtained with N measurements each of which is taken on a single antenna while all

the remaining antennas are removed. Hence, there is no mutual coupling effect during

the measurements for the uncoupled voltage vector.

Let us recall the calibration equation of the Hui’s method given in (2.29) using our

new notation,
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

1 −Z12

ZL
· · · −Z1N

ZL

−Z21

ZL
1 · · · −Z2N

ZL

...
...

. . .
...

−ZN1

ZL
−ZN2

ZL
· · · 1





V1(ϕ1, θ1)

V2(ϕ1, θ1)

...

VN (ϕ1, θ1)


=



U1(ϕ1, θ1)

U2(ϕ1, θ1)

...

UN (ϕ1, θ1)


(3.5)

Or, more compactly,

Z v(ϕ1, θ1) = u(ϕ1, θ1) (3.6)

The target in array calibration is to find the coupling matrix, C, which is defined as

the inverse of the mutual impedance matrix, Z, i.e. C = Z−1. In [7], each row of

Z except the diagonal element is separately calculated by using a matrix inversion

each time. While the approach in [7] is effective, it is possible to use an alternative

approach. In the new transformation approach, it is proposed that the uncoupled

voltage at the nth antenna can be expressed as a linear combination of the coupled

voltages as,

Un(ϕ1, θ1) = tn1V1(ϕ1, θ1) + tn2V2(ϕ1, θ1) + · · ·+ tnNVN (ϕ1, θ1) (3.7)

where tnm (n,m = 1, 2, . . . , N) are the transformation coefficients. If (3.7) is written

for all antenna elements and put in a matrix form, we obtain,


t11 t12 . . . t1N

t21 t22 . . . t2N
...

...
. . .

...

tN1 tN2 . . . tNN




V1(ϕ1, θ1)

V2(ϕ1, θ1)
...

VN (ϕ1, θ1)

 =


U1(ϕ1, θ1)

U2(ϕ1, θ1)
...

UN (ϕ1, θ1)

 (3.8)

Or, more compactly,

T v(ϕ1, θ1) = u(ϕ1, θ1) (3.9)
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where T is the N × N transformation matrix. As seen in (3.6) and (3.9), both Z

and T appear in the same equation. The main difference between these two matrices

is that Z has a special structure with ones in its diagonal as shown in (3.5) whereas

T does not have a special structure and can be obtained directly as a least-squares

solution. The mutual coupling matrix, C, is independent of the azimuth angle for an

array with omnidirectional and identical antennas [16]. This is verified through the

simulation results. On the other hand, C depends on the operating frequency, and

this dependency is also elaborated through the simulation results.

Additional observations are required to solve for the N×N transformation matrix, T.

LetV = [v(ϕ1, θ1) v(ϕ2, θ2) . . . v(ϕL, θL)] andU = [u(ϕ1, θ1) u(ϕ2, θ2) . . . u(ϕL, θL)]

be N ×L matrices whose columns are the coupled and the uncoupled voltage vectors

due to L single excitation sources coming from distinct directions. Then, (3.9) can be

extended as,

T V = U (3.10)

Assuming L ≥ N , the transformation matrix, T, can be found as,

T = U V† (3.11)

where (·)† denotes the Moore-Penrose pseudo inverse. Note that a single matrix inver-

sion is sufficient to calculate T whereas N matrix inversions are needed to calculate Z

[7]. Therefore, the transformation approach provides a significant reduction in com-

putational complexity. In addition to its efficiency in computation, convenience in

comprehension and implementation are the basic advantages.

The implementation of the transformation approach for an N -element array can be

summarized as follows:

1. Obtain the coupled voltage vector v(ϕ1, θ1) with a single measurement when all

the antennas are residing. Also, obtain the uncoupled voltage vector u(ϕ1, θ1)

with N measurements each time when a single antenna is residing.
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2. Repeat the first step L ≥ N times using a single excitation source coming from a

distinct direction each time, and obtain V = [v(ϕ1, θ1) v(ϕ2, θ2) . . . v(ϕL, θL)]

and U = [u(ϕ1, θ1) u(ϕ2, θ2) . . . u(ϕL, θL)].

3. Use (3.11) to find T, and C is found as the inverse of T.

The diagonal elements of T are not exactly one as in Z, but the simulation results

show that the difference is very small and can easily be ignored. It turns out that

the difference between T and Z is numerically very small and they almost result the

same mutual coupling matrix, C. For an N -element array, at least (N − 1)× (N + 1)

measurements are needed in order to find Z (L = N−1) [7] whereas at leastN×(N+1)

measurements are required in order to find T (L = N). In the following part, MRM

is presented in order to decrease the number of required measurements significantly.

3.3 Measurement Reduction Method

In this part, the measurement reduction method (MRM) is presented for arrays with

omnidirectional and identical elements in order to decrease the number of measure-

ments during the calibration procedure. This method is based on the fact that certain

measurements repeat themselves with permutations in the observed data vector. This

is due to the symmetry in the array geometry. MRM has distinct advantages com-

pared to the conventional calibration approaches. The required manual labour for the

calibration process is decreased as well as the time and the cost.

Consider an array which is composed of N omnidirectional and identical antennas

with the array model given in (3.1). Then, the uncoupled voltage vectors are the

same as the steering vectors up to a complex scaling factor β, i.e.,

u(ϕl, θl) = β a(ϕl, θl), l = 1, 2, . . . , L (3.12)

Therefore, the steering matrix,A, can be used instead of the uncoupled voltage matrix,

U, in order to find T as,
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T = A V† (3.13)

Hence, there is no need to have measurements for U and it is sufficient to obtain only

the measurements for V. In the following part, it is presented how to further decrease

the measurements for V using MRM. This presentation uses the uncoupled voltages

while the same results are validated for the coupled voltages.

Lemma 1: Assume that an arbitrary array with a symmetry plane s1 is given.

The array is composed of omnidirectional and identical elements. Let U1(ϕ1, θ1) be

the uncoupled voltage measured at the array element e1 due to a single excitation

source coming from (ϕ1, θ1) direction. Similarly, let U2(ϕ2, θ2) be the uncoupled volt-

age measured at the array element e2 due to a single excitation source coming from

(ϕ2, θ2) direction. If the array elements e1, e2 and the directions (ϕ1, θ1), (ϕ2, θ2) are

symmetrical to each other with respect to the symmetry plane s1, then U1(ϕ1, θ1) =

U2(ϕ2, θ2).

Proof 1: In Figure 3.1, the geometry of the problem is presented where e1 and e2

are located at (x1, y1, z1) and (x2, y2, z2) respectively. The uncoupled voltages and the

corresponding steering vector elements are equal up to a scaling factor β by (3.12),

U1(ϕ1, θ1) = β α1(ϕ1, θ1)

U2(ϕ2, θ2) = β α2(ϕ2, θ2)
(3.14)

The steering vector elements in (3.14) are,

α1(ϕ1, θ1) = ej
2π
λ
(x1 cosϕ1 sin θ1+y1 sinϕ1 sin θ1+z1 cos θ1)

α2(ϕ2, θ2) = ej
2π
λ
(x2 cosϕ2 sin θ2+y2 sinϕ2 sin θ2+z2 cos θ2)

(3.15)

As seen in Figure 3.1, the work space can be defined such that the xy-plane is the

symmetry plane s1 without loss of generality. This leads to the following equalities,
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Figure 3.1: The array elements e1, e2 and the directions (ϕ1, θ1), (ϕ2, θ2) are symmet-
rical to each other with respect to the symmetry plane s1.

x2 = x1

y2 = y1

z2 = −z1

ϕ2 = ϕ1

θ2 = π − θ1

(3.16)

When (3.16) is inserted into (3.15), the following equations are obtained,

α1(ϕ1, θ1) = ej
2π
λ
(x1 cosϕ1 sin θ1+y1 sinϕ1 sin θ1+z1 cos θ1)

α2(ϕ2, θ2) = ej
2π
λ
[x1 cosϕ1 sin(π−θ1)+y1 sinϕ1 sin(π−θ1)−z1 cos(π−θ1)]

(3.17)

In (3.17), it can be seen that α1(ϕ1, θ1) = α2(ϕ2, θ2). Therefore, U1(ϕ1, θ1) = U2(ϕ2, θ2)

by (3.14).

Fact 1: Lemma 1 is presented for the uncoupled voltages. However, a similar fact

should be true for the coupled voltages in order to have measurement reduction.
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Given an arbitrary array, finding the relation between the coupled voltages through

a simple closed form expression is a hard if not an impossible problem. Usually, this

problem is solved by using numerical electromagnetic simulation tools as in [7, 14].

In our case, the full-wave numerical electromagnetic simulation tool FEKO [12] is

used. Different array types such as uniform circular array (UCA), uniform linear

array (ULA), uniform X-shaped array and uniform V-shaped array, are considered

and tested. It is found that the coupled voltages also show similar relations as the

uncoupled voltages. Therefore, Lemma 1 is valid for the coupled voltages as well, i.e.,

V1(ϕ1, θ1) = V2(ϕ2, θ2) (3.18)

Lemma 2: Assume that there are S symmetry planes, s1, s2, . . . , sS , in the array

geometry. Let g1(ϕ1, θ1) be a unit direction vector which is not lying on a symmetry

plane and g2(ϕ2, θ2) be its symmetric vector with respect to the symmetry plane s1.

Denote the vectors [g1,g2] as a symmetric couple. Then, there exist S symmetric

couples, [gi,gi+1] (i = 1, 3, . . . , 2S − 1), in the array.

Proof 2: In Figure 3.2, the two dimensional geometry of the problem is given for

the UCA. Consider the symmetric couple [g1,g2] whose elements are symmetrical to

each other with respect to s1. There are S − 1 directions, g4(ϕ4, θ4),g6(ϕ6, θ6), . . . ,

g2S(ϕ2S , θ2S), which are symmetrical to g1(ϕ1, θ1) with respect to s2, s3, . . . , sS , re-

spectively. Similarly, there are another S − 1 directions, g3(ϕ3, θ3),g5(ϕ5, θ5), . . . ,

g2S−1(ϕ2S−1, θ2S−1), which are symmetrical to g2(ϕ2, θ2) with respect to s2, s3, . . . , sS ,

respectively. Then, these 2S−2 directions constitute S−1 symmetric couples, [g3,g4],

[g5,g6], . . . , [g2S−1,g2S], respectively. Therefore, including [g1,g2], there exist a total

of S symmetric couples in the array.

Lemma 3: Assume that a volumetric array is composed of N omnidirectional and

identical elements. Also, assume that there are S symmetry planes, s1, s2, . . . , sS , in

the array geometry. Let g1(ϕ1, θ1) be a unit direction vector which is not lying on a

symmetry plane. Let the uncoupled voltage vector u(ϕ1, θ1) be known. Then, 2S − 1

uncoupled voltage vectors, u(ϕ2, θ2),u(ϕ3, θ3), . . . ,u(ϕ2S , θ2S), can be generated from

u(ϕ1, θ1) through data permutations.
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Figure 3.2: Two dimensional geometry of a UCA with N elements, e1, e2, . . . , eN ,
and S symmetry planes, s1, s2, . . . , sS ,. There are S symmetric couples, [gi,gi+1]
(i = 1, 3, . . . , 2S − 1), in the array.

Proof 3: Let g2(ϕ2, θ2) be the direction symmetrical to g1(ϕ1, θ1) with respect to

the symmetry plane s1. By Lemma 1, U1(ϕ1, θ1) = U2(ϕ2, θ2). Since each array

element has a symmetric element with respect to s1, u(ϕ2, θ2) can be generated

from u(ϕ1, θ1) through data permutations. By Lemma 2, there are 2S symmet-

ric directions, g1(ϕ1, θ1),g2(ϕ2, θ2), . . . ,g2S(ϕ2S , θ2S), with respect to the S symme-

try planes in the array. Then, similar to u(ϕ2, θ2), the uncoupled voltage vectors

u(ϕ3, θ3),u(ϕ4, θ4), . . . ,u(ϕ2S , θ2S) can also be generated from u(ϕ1, θ1) through data

permutations. Therefore, 2S − 1 uncoupled voltage vectors, u(ϕ2, θ2),u(ϕ3, θ3), . . . ,

u(ϕ2S , θ2S), can be generated from u(ϕ1, θ1) through data permutations.

Fact 2: Lemma 3 is given for the uncoupled voltage vectors. In order to identify the

characteristics for the coupled voltage vectors, different array types are investigated
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through numerical electromagnetic simulations in FEKO. It is found that Lemma

3 is valid for the coupled voltage vectors as well. Therefore, if the coupled voltage

vector v(ϕ1, θ1) is known, then 2S−1 coupled voltage vectors, v(ϕ2, θ2),v(ϕ3, θ3), . . . ,

v(ϕ2S , θ2S), can be generated from v(ϕ1, θ1) through data permutations.

MRM is based on Fact 2. The implementation of the method for an N -element array

with S symmetry planes can be summarized as follows:

1. Excite the array using a single source coming from (ϕ1, θ1) direction which is not

lying on a symmetry plane. Obtain the coupled voltage vector v(ϕ1, θ1) with a

single measurement when all the antennas are residing.

2. Using Fact 2, generate v(ϕ2, θ2),v(ϕ3, θ3), . . . ,v(ϕ2S , θ2S) from v(ϕ1, θ1) through

data permutations. (The source directions, (ϕl, θl) (l = 2, 3, . . . , 2S), are ob-

tained using (ϕ1, θ1) and the symmetry planes as in Figure 3.2.)

3. Repeat Step-1 and Step-2 L ≥ ⌈ N
2S ⌉ times, each time starting with a single

excitation source coming from a direction that is different from all the previously

used directions, (ϕ2S(l−1)+k, θ2S(l−1)+k), l = 1, 2, . . . , L and k = 1, 2, . . . , 2S. (⌈·⌉

denotes the ceiling function.)

4. Use (3.13) to find T, and C is found as the inverse of T.

Remark 1: When the excitation source direction (ϕ1, θ1) lies on a symmetry plane

s1, its symmetric direction with respect to s1 will be itself. Therefore, there will be no

symmetric couples. Hence, the 2S symmetric directions in Lemma 2 will reduce to S

symmetric directions all of which lie on symmetry planes. Then, it will be possible to

generate S − 1 coupled voltage vectors from v(ϕ1, θ1) through data permutations. In

this case, twice the number of measurements will be required. Therefore, it is better

to choose the excitation source direction (ϕ1, θ1) off the symmetry planes.

The application of the proposed method on a UCA is considered. In Figure 3.2, two

dimensional geometry of the application for an N -element UCA with S symmetry

planes is presented. As seen in Figure 3.2, g1(ϕ1, θ1),g2(ϕ2, θ2), . . . ,g2S(ϕ2S , θ2S) are

the 2S symmetric directions. Assume that the coupled voltage vector v(ϕ1, θ1) is

measured. Then, v(ϕ2, θ2) can be obtained reversing the element order of v(ϕ1, θ1)
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as,

v(ϕ1, θ1) =


V1(ϕ1, θ1)

V2(ϕ1, θ1)
...

VN (ϕ1, θ1)

 , v(ϕ2, θ2) =


VN (ϕ1, θ1)

VN−1(ϕ1, θ1)
...

V1(ϕ1, θ1)

 (3.19)

The coupled voltage vectors v(ϕ2i−1, θ2i−1) (i = 2, 3, . . . , S) can be generated from

v(ϕ1, θ1) through cyclic shifts in data vectors as i is incremented by one each time.

Similarly, v(ϕ2i, θ2i)(i = 2, 3, . . . , S) can be generated from v(ϕ2, θ2) through cyclic

shifts in data vectors. This correseponds to the following data permutation.

Vn(ϕ2i−1, θ2i−1) = Vn′(ϕ1, θ1),

 n′ = N , if n− i+ 1 ≡ 0 (modN)

n′ ≡ n− i+ 1 (modN) , else



Vn(ϕ2i, θ2i) = Vn′(ϕ1, θ1),

 n′ = N , if N − n+ i ≡ 0 (modN)

n′ ≡ N − n+ i (modN) , else


(3.20)

where n, n′ = 1, 2, . . . , N and i = 1, 2, . . . , S.

In Table 3.1, numbers of calibration measurements for MRM are given for a variety

of array types. As seen from Table 3.1, MRM leads to significant savings in the

calibration process. The most advantageous array type for this purpose seems to be

the uniform circular array which has N symmetry planes. It is followed by the uniform

linear and the uniform X-shaped arrays.

Note that, MRM is not related with the used calibration method. MRM is a method-

ology that is proposed for generating coupled voltage vectors for multiple directions

from a measured coupled voltage vector for a symmetric direction. Therefore, the cou-

pled voltage vectors generated through MRM can also be used with the Hui’s method

or any other calibration method. However, no other method is previously proposed to

decrease the calibration measurements. Hence, in Table 3.1, the comparison is done

over the number of calibration measurements proposed in the original Hui’s method

without employing MRM.
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Table 3.1: Number of calibration measurements required for different types of arrays
which are composed of N identical and omnidirectional antennas. (⌈·⌉ denotes the
ceiling function.)

Array Type # of Sym. # of Measurements # of Measurements

Planes (Hui’s Method) (MRM)

Uniform Circular N (N − 1)× (N + 1) 1

Uniform Linear 2 (N − 1)× (N + 1) ⌈N/4⌉

Uniform X-Shaped 2 (N − 1)× (N + 1) ⌈N/4⌉

Uniform V-Shaped 1 (N − 1)× (N + 1) ⌈N/2⌉

3.4 Simulations

In this part of the study, the full-wave electromagnetic simulation tool FEKO [12]

is used to have measurements. FEKO simulations are implemented by using the

method-of-moments (MOM). The performance evaluation is done over DOA estima-

tion accuracy using MUSIC algorithm. The experiments are done using a planar

8-element UCA with identical dipole antennas. The dimensions are selected such that

the dipole antenna array has an operating frequency band of 80-800 MHz. The dipole

diameter is chosen as 5.25 mm and the dipole length is 34.1 cm which is the half

wavelentgh at 440 MHz (the mid frequency). The radiation patterns of a single dipole

for 100 MHz (lower band), 440 MHz (mid band) and 800 MHz (upper band) are given

in Figures 3.3, 3.4 and 3.5, respectively. In order to avoid spatial aliasing, the distance

between two elements in the array is chosen as the half wavelength at 800 MHz, that

is 18.75 cm. Each array element is terminated with a ZL = 50Ω load. In Figure 3.6,

the 8-element UCA model is presented.

As explained at the end of Section 3.2, N × (N + 1) measurements are needed for

an N -element array to find the transformation matrix, T, by using the conventional

approach. However, as shown in Section 3.3, a single measurement is sufficient for a

UCA when MRM is used. In this case, the coupled voltage vector v(ϕ1, θ1) is mea-

sured, and v(ϕ2, θ2),v(ϕ3, θ3), . . . ,v(ϕ2S , θ2S) are generated from v(ϕ1, θ1) through

cyclic data shifts as explained along with (3.19).
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Figure 3.3: The radiation pattern of a single dipole antenna with 5.25 mm diameter
and 34.1 cm length at 100 MHz.

Figure 3.4: The radiation pattern of a single dipole antenna with 5.25 mm diameter
and 34.1 cm length at 440 MHz.

Figure 3.5: The radiation pattern of a single dipole antenna with 5.25 mm diameter
and 34.1 cm length at 800 MHz.
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Before evaluating the DOA estimation performance of MRM, it is reasonable to eval-

uate its numerical accuracy. For this purpose, using the 8-element UCA given in

Figure 3.6, the coupled voltage vector v(10◦, 90◦) is measured at 440 MHz, and seven

coupled voltage vectors v(55◦, 90◦),v(100◦, 90◦), . . . ,v(325◦, 90◦) are generated from

v(10◦, 90◦) by using MRM. Then, T is found by using (3.13) and denoted as T1. The

mutual coupling matrix C1 is obtained as the inverse of T1. It is observed that C1

is a complex symmetric circulant matrix as it is well known in the literature [16]. C1

can be represented by its first row, c1, which is found to be,

c1 = 10−3 ×



0.9151− 0.7849i

0.1720 + 0.5691i

0.1581 + 0.1152i

0.1048 + 0.1041i

0.1154 + 0.0995i

0.1048 + 0.1041i

0.1580 + 0.1152i

0.1721 + 0.5691i



T

(3.21)

Figure 3.6: The 8-element UCA model used in the performance evaluation experi-
ments.
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Now, consider another transformation matrix T2 that is obtained with the conven-

tional measurement approach. 36 coupled voltage vectors are measured due to single

excitation sources separated by 10 degrees in azimuth (ϕ = 10◦, 20◦, . . . , 360◦, θ = 90◦).

Then, T2 is found by using (3.13). The difference between T1 and T2 can be used

to identify the numerical accuracy of MRM. Accordingly,
∥T1 −T2∥

∥T1∥
is calculated

and found to be on the order of 10−4 which means that the transformation matrix ob-

tained with MRM is very close to the one obtained with the conventional measurement

approach. This shows the robustness and numerical accuracy of MRM.

Remark 2: The common approach in calibration measurements is to turn 360 degrees

around the antenna array in equiangular steps. If only a limited angular sector is used,

Vmatrix in (3.11) becomes ill-conditioned. This causes large errors in mutual coupling

matrix estimation. As shown in Figure 3.2, MRM generates the measurement vectors

by turning 360 degrees around the array in uniform intervals. Hence, V matrix in

(3.11) is a well-conditioned matrix for the UCA. A similar case is valid for other types

of arrays as well.

In the first part of the simulations, the performance of MRM against the changes in

source azimuth angle is evaluated. For this purpose, the array is excited by three

sources on the azimuth plane (θ1 = θ2 = θ3 = 90◦). Two sources have fixed azimuth

angles of ϕ1 = 50◦ and ϕ2 = 90◦, and the third source is swept with one degree

intervals, i.e., ϕ3 = 0◦, 1◦, . . . , 359◦. The experiment is repeated for lower, mid and

upper band frequencies, 100 MHz, 440 MHz and 800 MHz, respectively. C matrices

are separately found and used for each frequency. In Figures 3.7, 3.8, 3.9, MUSIC

spectra with and without mutual coupling calibration for ϕ3 = 200◦ are given. As

seen in these three figures, the calibrated array spectra are significantly better than

the uncalibrated array spectra. In each of the figures, there are three sharp peaks at

the correct azimuth angles in the calibrated array spectrum whereas the peaks in the

uncalibrated array spectrum are very smooth, especially for 440 MHz.
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Figure 3.7: The MUSIC spectrum due to three sources at 100 MHz coming from
(ϕ1 = 50◦, θ1 = 90◦), (ϕ2 = 90◦, θ2 = 90◦) and (ϕ3 = 200◦, θ3 = 90◦) directions,
respectively.
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Figure 3.8: The MUSIC spectrum due to three sources at 440 MHz coming from
(ϕ1 = 50◦, θ1 = 90◦), (ϕ2 = 90◦, θ2 = 90◦) and (ϕ3 = 200◦, θ3 = 90◦) directions,
respectively.
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Figure 3.9: The MUSIC spectrum due to three sources at 800 MHz coming from
(ϕ1 = 50◦, θ1 = 90◦), (ϕ2 = 90◦, θ2 = 90◦) and (ϕ3 = 200◦, θ3 = 90◦) directions,
respectively.

The performance evaluation is done using the root-mean-square errors (RMSE) in

DOA estimation. RMSE for the three sources is found as,

RMSE =

√
1

3
(r21 + r22 + r23) (3.22)

where r1, r2 and r3 are the DOA estimation errors in estimating ϕ1, ϕ2 and ϕ3, re-

spectively. RMSE values for ϕ3 = 0◦, 1◦, . . . , 359◦ at 100 MHz, 440 MHz and 800

MHz are given in Figures 3.10, 3.11 and 3.12, respectively. It is observed that in the

literature, it is somehow hard to find figures which show the complete azimuth per-

formance like these three figures. In this context, these figures are important to show

that MRM produces a proper mutual coupling matrix, C, that is independent of the

azimuth angle as expected for an array with omnidirectional and identical antennas

[16]. As seen in Figures 3.10, 3.11 and 3.12, RMSE performance of MRM calibration

is significantly better than the performance of the uncalibrated array. The two peaks

on the calibrated array responses correspond to the directions of the fixed sources at
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ϕ1 = 50◦ and ϕ2 = 90◦, respectively. As an additional information, performance of the

Hui’s method is also given in Figures 3.10, 3.11 and 3.12. When MRM is compared to

the Hui’s method, it is seen that the performances of the two methods are very close

to each other at 440 MHz. However, the Hui’s method performs better at 100 MHz

and MRM performs better at 800 MHz.
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Figure 3.10: The azimuth performances of MRM and the Hui’s method at 100 MHz
when two sources are fixed at ϕ1 = 50◦ and ϕ2 = 90◦, and the third source is swept
in one degree resolution.
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Figure 3.11: The azimuth performances of MRM and the Hui’s method at 440 MHz
when two sources are fixed at ϕ1 = 50◦ and ϕ2 = 90◦, and the third source is swept
in one degree resolution.
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Figure 3.12: The azimuth performances of MRM and the Hui’s method at 800 MHz
when two sources are fixed at ϕ1 = 50◦ and ϕ2 = 90◦, and the third source is swept
in one degree resolution.
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Additionally, performances of MRM and Hui’s method are also compared under noise.

The array is excited with three sources on the azimuth plane (θ1 = θ2 = θ3 = 90◦).

Two sources have fixed azimuth angles of ϕ1 = 50◦ and ϕ2 = 90◦, and the third

source is swept with one degree intervals, i.e., ϕ3 = 0◦, 1◦, . . . , 359◦. The experiment

is done at 440 MHz for 20 dB signal-to-noise ratio (SNR) where independent and

additive white Gaussian noise components are considered. The RMSE performances

of the two methods in this case are given in Figure 3.13. As seen in Figure 3.13, the

performances of the two methods are very similar to each other just as in the noise-free

case.
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Figure 3.13: The performance comparison of MRM and the Hui’s method for the noisy
case. The experiment is done at 440 MHz for 20 dB SNR. There are two fixed sources
from ϕ1 = 50◦ and ϕ2 = 90◦, and the third source is swept in one degree resolution.

In order to evaluate the performance of MRM for the changes in the elevation angles

of the excitation sources, the array is excited by three sources whose azimuth angles

are ϕ1 = 50◦, ϕ2 = 90◦ and ϕ3 = 200◦, respectively. The T matrix found for θ = 90◦

is used while the source elevation angles θ1 = θ2 = θ3 are varied from 75◦ to 105◦ with

3 degrees steps. RMSE performance of MRM versus the source elevation angle at 100

MHz, 440 MHz and 800 MHz are presented in Figure 3.14, 3.15 and 3.16, respectively.

As seen in these three figures, MRM is very robust against changes in the source
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elevation angle. Also, the calibrated array performance is significantly better than

the uncalibrated array performance.
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Figure 3.14: The elevation performance of MRM at 100 MHz for three sources whose
elevation angles θ1 = θ2 = θ3 are varied from 75◦ to 105◦ with 3 degree steps.
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Figure 3.15: The elevation performance of MRM at 440 MHz for three sources whose
elevation angles θ1 = θ2 = θ3 are varied from 75◦ to 105◦ with 3 degree steps.
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Figure 3.16: The elevation performance of MRM at 800 MHz for three sources whose
elevation angles θ1 = θ2 = θ3 are varied from 75◦ to 105◦ with 3 degree steps.
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Performance of MRM for the changes in the source frequency is also examined. The

array is excited by three sources whose elevation angles are θ1 = θ2 = θ3 = 90◦.

The source azimuth angles are selected to be ϕ1 = 50◦, ϕ2 = 90◦ and ϕ3 = 200◦,

respectively. In Figures 3.17, 3.18 and 3.19, RMSE performances of MRM versus

the source frequency are presented for lower, mid and upper band, respectively. In

Figure 3.17, the T matrix found for 100 MHz is used while the source frequencies

f1 = f2 = f3 are varied from 95 MHz to 105 MHz with 125 kHz steps. In Figure 3.18,

the T matrix found for 440 MHz is used while the source frequencies f1 = f2 = f3 are

varied from 435 MHz to 445 MHz with 125 kHz steps. In Figure 3.19, the T matrix

found for 800 MHz is used while the source frequencies f1 = f2 = f3 are varied from

795 MHz to 805 MHz with 125 kHz steps. As seen in these figures, the calibrated array

performance is significantly better than the uncalibrated array performance. Also, the

best performances for the calibrated array are observed at 100 MHz, 440 MHz and 800

MHz as expected. As the source frequency is changed, the mutual coupling between

the antenna elements changes, and the T matrices found for 100 MHz, 440 MHz and

800 MHz may not be satisfactory.
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Figure 3.17: The frequency performance of MRM for three sources whose frequencies
f1 = f2 = f3 are varried between 95 MHz and 105 MHz.
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Figure 3.18: The frequency performance of MRM for three sources whose frequencies
f1 = f2 = f3 are varried between 435 MHz and 445 MHz.

795 796 797 798 799 800 801 802 803 804 805
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Frequency (MHz)

R
M

S
E

 (
D

eg
re

e)

 

 
Without calibration
Calibration with MRM

Figure 3.19: The frequency performance of MRM for three sources whose frequencies
f1 = f2 = f3 are varried between 795 MHz and 805 MHz.
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CHAPTER 4

MUTUAL COUPLING CALIBRATION OF

NON-OMNIDIRECTIONAL ANTENNA ARRAYS

In the previous chapter, mutual coupling calibration of omnidirectional antennas is

considered. The transformation approach is presented to determine the mutual cou-

pling matrix, C, using a linear relationship between the measured and the ideal array

data. Furthermore, MRM is presented in order to reduce the number of measurements

required for calibration.

In this chapter, mutual coupling calibration of arrays composed of non-omnidirectional

(NOD) antennas is considered. It is shown that a single C matrix can not completely

model the mutual coupling effect for an NOD antenna array. In this context, a sector-

ized approach is proposed for accurate mutual coupling calibration of NOD antenna

arrays. In this approach, calibration is done in angular sectors and a different coupling

matrix is found for each sector using the transformation approach. In addition, it is

shown that MRM is also applicable to NOD antenna arrays with identical elements if

the array has symmetry planes in its geometry.

Before presenting the sectorized approach, it is convenient to give the signal model

used in the course of this chapter.

4.1 Signal Model

In this chapter, antenna arrays composed of identical and non-omnidirectional ele-

ments are considered in a noise-free environment, and narrowband model is used.
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The output vector due to an excitation source from (ϕl, θl) direction for an N -element

antenna array is given as,

y(t) = C(ϕl, θl) Γ(ϕl, θl) a(ϕl, θl) s(t), t = 1, 2, . . . , P (4.1)

For notational convenience, C(ϕl, θl) is abbreviated as Cl and Γ(ϕl, θl) is abbreviated

as Γl. Then, (4.1) is written as,

y(t) = Cl Γl a(ϕl, θl) s(t), t = 1, 2, . . . , P (4.2)

where P is the number of snapshots and Cl is the N × N mutual coupling matrix

for (ϕl, θl) direction. Γl = diag{γl1, γl2, . . . , γlN} are the gain/phase mismatches in

antenna elements due to non-omnidirectional antenna patterns for (ϕl, θl) direction

where any gain/phase mismatches due to cabling and instrumentation are neglected.

a(ϕl, θl) = [α1(ϕl, θl) α2(ϕl, θl) . . . αN (ϕl, θl)]
T is the steering vector for (ϕl, θl) direc-

tion. The vector element corresponding to the nth antenna positioned at (xn, yn, zn)

is αn(ϕl, θl) = ej
2π
λ
(xn cosϕl sin θl+yn sinϕl sin θl+zn cos θl). s(t) is the complex amplitude of

the excitation source from (ϕl, θl) direction.

Since identical array elements are considered, gain/phase mismatch terms for all of

the array elements are the same, i.e. γl1 = γl2 = · · · = γlN = γl. Hence, (4.2) reduces

to,

y(t) = γl Cl a(ϕl, θl) s(t), t = 1, 2, . . . , P (4.3)

Note that, for the case of NOD antennas, the mutual coupling matrix,Cl, changes with

the azimuth angle unlike the case of omnidirectional antennas given in the previous

chapter. In this case, the MUSIC algorithm estimates the DOA angles as the maxima

of the following spectrum,

PMU (ϕ, θ) =
1

aH(ϕ, θ) CH
l γ∗l EN EH

N γl Cl a(ϕ, θ)
(4.4)

where (·)∗ denotes the complex conjugate.
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Note that, if the correct Cl matrix is not supplied, the MUSIC algorithm can result

errors in DOA estimation which may be larger than 10 degrees. Therefore, it is an

important task to determine the Cl matrix to be used. Antenna pattern is a smooth

function of azimuth and elevation angles for most of the antenna types. In addition,

the mutual coupling effect in an antenna array does not change rapidly as the azimuth

and elevation angles change. In other words, Cl can be assumed to remain unchanged

for a sufficiently small angular sector. As a result, a sectorized approach seems to

be a natural choice for mutual coupling calibration of NOD antenna arrays. In this

context, a sectorized approach is presented in the next section for proper calibration

of NOD antenna arrays.

4.2 Sectorized Approach

Mutual coupling characteristics do not change with the azimuth angle for omnidirec-

tional antennas [16]. This is a consequence of the perfect angular symmetry present in

their radiation pattern. In the case of NOD antennas, mutual coupling characteristics

change with the azimuth angle since the angular symmetry in their radiation pattern

is not perfect or even does not exist. In this context, a new sectorized calibration

approach for arrays with identical NOD antennas is presented below.

In the sectorized approach, the idea is to divide 360 degrees into certain angular

sectors in azimuth and obtain a distinct C matrix for each sector. While different

types of angular sectors can be used, uniform and non-overlapping angular sectors are

considered in this study. Therefore, the main issue is to properly determine the sector

width, so that the mutual coupling characteristics approximately remain fixed within

each sector.

Choosing the sectors as small as possible may seem to provide a more accurate mutual

coupling characterization for each sector. However, in order to find a C matrix for

a sector, array data for L ≥ N directions from that sector are required. Therefore,

choosing unnecessarily small sectors will increase the total number of measurements

and the manual labour. In addition, choosing smaller sectors makes the measurement

directions get closer, and the V matrix in (3.11) may become ill-conditioned [11]. If

V becomes ill-conditioned, the resulting T matrix (hence, the C matrix) will not cor-
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rectly characterize the mutual coupling effect for the corresponding sector. Therefore,

the sector width should be selected such that it is small enough to obtain a uniform

antenna pattern and it is large enough not to end up with redundant measurements

and ill-conditioned V matrices.

As it can be seen in (3.11), T (hence, C) changes with U and V. If the array elements

are identical, U and V depend on,

• Array geometry

• Radiation pattern of a single antenna

• Number of antennas in the array

Obtaining a closed form expression for the sector width using the items in the above

list is a hard if not an impossible problem. Therefore, the following iterative procedure

is proposed for this purpose:

1. Determine a performance criterion and start with two non-overlapping sectors

of 180◦ angular width.

2. Find a C matrix for each sector.

3. Make a performance test to see whether the C matrices satisfy the performance

criterion or not.

4. If the performance criterion is satisfied, select the current sector width. If it is

not satisfied, select a new sector width less than the current sector width and

return to Step 2.

As stated above, in order to calculate a C matrix for a sector, measurements for

L ≥ N directions from that sector are required. The studies show that it is sufficient

to choose L = N for a proper calibration. Choosing L > N does not bring any further

performance improvement. Instead, it increases the possibility of ending up with an

ill-conditioned V matrix when L is chosen large.

Sectorized calibration approach gives an opportunity for calibrating NOD antennas,

however, it requires extra measurements for the sectors. In the next section, extension
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of MRM for NOD antenna arrays is presented in order to decrease the number of

required measurements significantly.

4.3 MRM for NOD Antenna Arrays

In Section 3.3, MRM is proposed for arrays composed of identical and omnidirectional

antennas. It is shown that measurements from symmetric directions can be generated

from each other through simple permutations in data vectors. In this section, MRM

is shown to be valid for the case of arrays with identical NOD antennas as well.

Consider an N -element array composed of identical NOD antennas with the signal

model given in (4.3). Then, the uncoupled voltage vector due to an excitation source

from (ϕl, θl) is the same as the corresponding steering vector up to a complex scaling

factor γl, i.e.,

u(ϕl, θl) = γl a(ϕl, θl) (4.5)

where γl is the gain/phase mismatch due to the non-omnidirectionality of the antennas.

Note that, the scaling factor, β, in (3.12) for the case of omnidirectional antennas is

independent from source direction. Whereas, the scaling factor, γl, in (4.5) for the

case of NOD antennas changes with source direction (ϕl, θl). However, when a proper

angular partitioning is applied, γl can be assumed to be constant within each sector.

Therefore, in order to find a T matrix for a sector, the steering matrix A can be

used instead of the uncoupled voltage matrix U. Hence, (3.13) is valid within each

sector. Eventually, no measurements are required for U and it is sufficient to have

measurements only for V. Below, the approach to further decrease the measurements

for V is presented. In this presentation, the counterpart of the result given in Fact

1 will be obtained for NOD antennas. Then, the data generation method given in

Lemma 2 and Lemma 3 is directly used.

Lemma 4: Consider a volumetric array withN identical NOD antennas, e1, e2, . . . , eN ,

and S symmetry planes, s1, s2, . . . , sS , in its geometry. Let g1(ϕ1, θ1) be a unit di-

rection vector which is not lying on a symmetry plane, and g2(ϕ2, θ2) be symmetric
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to g1(ϕ1, θ1) with respect to s1. Also, assume that e2 and eN be symmetric array

elements with respect to s1. Then, VN (ϕ1, θ1) = V2(ϕ2, θ2).

Proof 4: In Figure 4.1, top view of a UCA with patch antennas is given as an

example for the two dimensional geometry of the problem. Referring to Figure 4.1,

assume that e2 is excited with a voltage source. The far-field radiation pattern in this

configuration is the transmitting array pattern due to e2 .

Figure 4.1: The top view of a UCA with N patch antenna elements, e1, e2, . . . , eN .
There are S symmetry planes, s1, s2, . . . , sS , in the array.

The transmitting array pattern due to an array element has the following properties:

1. Since the array is composed of identical elements, the transmitting array pat-

terns due to symmetric elements are symmetric. This is verified through FEKO

simulations. As seen in Figures 4.2 and 4.3, the transmitting array pattern due

to e2 is symmetric to the transmitting array pattern due to eN with respect to
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s1.

2. Since receiving and transmitting characteristics of antennas are the same due to

reciprocity, the receiving array pattern due to an array element is the same as

the transmitting array pattern due to that array element.

Figure 4.2: The three dimensional transmitting array pattern due to e2 from top,
front and isometric view angles.

If the first two properties are combined, the receiving array patterns due to symmetric

elements are symmetric. On the other hand, while the coupled voltage at an array

element is being measured, the measured value is determined by the receiving array

pattern due to that array element. Therefore, the coupled voltages due to sources

from symmetric directions measured at symmetric elements are equal. Namely, the

coupled voltage at eN due to a source from g1(ϕ1, θ1) is equal to the coupled voltage

at e2 due to a source from g2(ϕ2, θ2), i.e., VN (ϕ1, θ1) = V2(ϕ2, θ2).
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Figure 4.3: The three dimensional transmitting array pattern due to eN from top,
front and isometric view angles.

Now, we can directly use the results of Lemma 2 and Lemma 3 to conclude that

2S − 1 coupled voltage vectors, v(ϕ2, θ2),v(ϕ3, θ3), . . . ,v(ϕ2S , θ2S), can be generated

from v(ϕ1, θ1) through data permutations.

In order to find a C matrix for a sector, coupled voltage vectors corresponding to

at least L = N directions in that sector are required. Now, let D be the number

of non-overlapping sectors determined by the sectorized approach. Then, in total,

array data from D × N directions are required in order to find C matrices for each

sector. Since 2S array data can be generated from a single measurement by MRM,

it is sufficient to make measurements for L = ⌈D×N
2S ⌉ directions. In order to end up

with array data from uniformly spaced directions at the end of MRM process, the

L measurements should be taken uniformly in 360/(D × N) degrees apart and they
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should not be symmetric with respect to any symmetry plane in the array geometry.

The implementation of MRM combined with the sectorized approach for anN -element

array with NOD antennas and S symmetry planes can be summarized as follows:

1. Determine the number of non-overlapping sectors, D, using the sectorized ap-

proach.

2. Choose L = ⌈D×N
2S ⌉ adjacent directions that are spaced 360

D×N degrees apart such

that they are not symmetric with respect to any symmetry plane in the array

geometry.

3. Obtain the coupled voltage vectors due to single excitation sources from the

chosen L directions, v(ϕl, θl) (l = 1, 2, . . . , L).

4. Use MRM and generate (2S − 1) × L coupled voltage vectors from v(ϕl, θl)

(l = 1, 2, . . . , L) through data permutations. In total, we will end up with 2SL

coupled voltage vectors which should be used as groups of N in order to find a

T matrix for each sector.

5. Take N of the total 2SL coupled voltage vectors from directions lying in the

first sector and use (3.13) to find T1 for this sector. Then, take the inverse of

T1 to find C1, i.e., C1 = T−1
1 .

6. Repeat Step-5 for all of the sectors, and obtain Cd, d = 1, 2, . . . , D.

4.4 Simulations

In this part of the study, the full-wave electromagnetic simulation tool FEKO [12] is

used to have measurements as in the previous chapter. FEKO simulations are imple-

mented by using the method-of-moments (MOM). The performance of the sectorized

approach combined with MRM is evaluated through DOA estimation simulations us-

ing the MUSIC algorithm. In the experiments, a planar 8-element UCA composed of

patch antenna elements given in Figure 4.4 is used. The patch antenna is a wideband

non-symmetric dipole antenna designed by T. Engin Tuncer [17]. This antenna has an

operating band from 80 MHz up to 800 MHz. As seen in Figure 4.5, the antenna has
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a perfect omnidirectional radiation pattern at 100 MHz. However, as seen in Figures

4.5-4.9, the perfect omnidirectional characteristic is gradually lost when the operating

frequency is increased. As seen in Figure 4.9, this antenna can be seen as an NOD

antenna at 800 MHz. Since the antenna is omnidirectional in the lower band and

non-omnidirectional in the upper band, we call it as a semi-omnidirectional antenna.

Figure 4.4: The wideband non-symmetric dipole patch antenna [17] used in the ex-
periments.

Figure 4.5: Three dimensional radiation pattern of the semi-omnidirectional antenna
at 100 MHz.
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Figure 4.6: Three dimensional radiation pattern of the semi-omnidirectional antenna
at 300 MHz.

Figure 4.7: Three dimensional radiation pattern of the semi-omnidirectional antenna
at 440 MHz.
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Figure 4.8: Three dimensional radiation pattern of the semi-omnidirectional antenna
at 600 MHz.

Figure 4.9: Three dimensional radiation pattern of the semi-omnidirectional antenna
at 800 MHz.
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It is also possible to use a directional antenna with a narrow beam as the NOD

antenna in the simulations, however, a semi-omnidirectional antenna is prefered for

better illustration of the idea. When narrow-beam directional antennas are used, the

mutual coupling effect in the array will be negligible since the antennas have narrow

main beams. On the other hand, omnidirectional antennas are prefered in DOA

estimation applications in order to have a better angular coverage, which is another

motivation for using the semi-omnidirectional antenna.

In Figure 4.10, the 8-element UCA model used in the simulations is presented. In

the array, the minimum distance between two array elements is 18.75 cm, and all

the antennas are terminated with a ZL = 50Ω load. The operating frequency is

chosen as 800 MHz in order to use the non-omnidirectional characteristics of the

semi-omnidirectional antenna.

Figure 4.10: The 8-element UCA model composed of semi-omnidirectional antennas.

It is reasonable to start with the conventional calibration approach where a single

C matrix is used. In order to calculate C, eight measurements are obtained due

to single excitation sources from uniformly spaced directions on the azimuth plane.

Then, the array is excited with a single source whose azimuth angle is swept with one

degree resolution, i.e., ϕ = 0◦, 1◦, . . . , 359◦, and elevation angle is θ=90
◦. In Figure

4.11, RMSE performance of the conventional calibration approach in DOA estimation

using the MUSIC algorithm is given. As seen in Figure 4.11, a single C matrix can not
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properly model the mutual coupling effect for an NOD antenna array. Therefore, the

sectorized approach is needed for proper mutual coupling calibration of NOD antenna

arrays.
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Figure 4.11: The azimuth performance of the conventional calibration approach where
a single C matrix is used for the whole azimuth plane.

When the sectorized approach is applied to the array given in Figure 4.10 with a

performance measure of maximum RMSE of 0.1◦ in DOA estimation, the sector width

is determined as 90◦ following the 4-step procedure given in Section 4.2. Then, a

different C matrix is found for each sector following the 6-step procedure given in

Section 4.3. In order to evaluate the azimuth performance of the sectorized approach

combined with MRM, the array is excited with a single source whose azimuth angle

is swept with one degree resolution, i.e., ϕ = 0◦, 1◦, . . . , 359◦, and elevation angle

is θ = 90◦. In Figure 4.12, RMSE performance of the sectorized approach combined

with MRM in DOA estimation using the MUSIC algorithm is given. As seen in Figure

4.12, a proper mutual coupling calibration is achieved using the sectorized calibration

approach.
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Figure 4.12: The azimuth performance of the sectorized calibration approach com-
bined with MRM where the azimuth plane is divided into 90◦ wide sectors and a
distinct C matrix is used for each sector.

In order to evaluate the performance of the sectorized calibration for the changes in

source elevation angle, the array is excited by a single source. The C matrices found

for θ = 90◦ are used while the source elevation angle is varied from 75◦ to 105◦ with

3 degrees steps. The source azimuth angle is swept as ϕ = 0◦, 1◦, . . . , 359◦ and the

average of the RMSE values for these azimuth angles is used for each elevation angle,

that is:

E(θ) =
1

360

359◦∑
ϕ=0◦

e(ϕ, θ), θ = 75◦, 78◦, . . . , 105◦ (4.6)

where e(ϕ, θ) is the RMSE value found for (ϕ, θ) direction and E(θ) is the average

error for the corresponding elevation angle. In Figure 4.13, the elevation performance

of the sectorized approach combined with MRM is presented. As seen in Figure 4.13,

the best performance of the calibrated array is at 90◦ as expected. The calibrated

array performance is better than the uncalibrated array performance in an elevation

sector of 81◦ − 96◦. However, the C matrix found for θ = 90◦ does not properly work
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for the elevation angles outside 87◦ − 93◦ region. The reason for this result is the

physical structure of the patch antenna which is non-symmetric with respect to the

xy-plane. It is possible to overcome this situation by following a sectorized approach

for the elevation angles along with the sectorized approach for the azimuth angles.
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Figure 4.13: The elevation performance of the sectorized calibration approach com-
bined with MRM where the C matrices found for θ = 90◦ are used while the source
elevation angle is varied from 75◦ to 105◦ with 3 degrees steps.

The performance of the sectorized approach for changes in the source frequency is

also examined. The array is excited with a single source with a fixed elevation angle,

θ = 90◦. The C matrices found for 800 MHz are used while the source frequency is

varied from 795 MHz to 805 MHz with 250 kHz steps. The source azimuth angle is

swept as ϕ = 0◦, 1◦, . . . , 359◦ and the average of the RMSE values for these azimuth

angles is used for each frequency value, that is:

E(f) =
1

360

359◦∑
ϕ=0◦

e(ϕ, f), f = 795MHz, 795.25MHz, . . . , 805MHz (4.7)

where e(ϕ, f) is the RMSE value found for (ϕ, θ = 90◦) direction at f frequency

and E(f) is the average error for the corresponding frequency. In Figure 4.14, the
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frequency performance of the sectorized approach combined with MRM is presented.

As seen in Figure 4.14, the calibrated array performance is significantly better than

the uncalibrated array performance. Also, the best performance for the calibrated

array is observed at 800 MHz as expected. As the source frequency is changed, the

mutual coupling between the antenna elements changes, and the C matrix found for

800 MHz may not be satisfactory.
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Figure 4.14: The frequency performance of the sectorized calibration approach com-
bined with MRM where the C matrices found for 800 MHz are used while the source
frequency is varied from 795 MHz to 805 MHz with 250 kHz steps.
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CHAPTER 5

MUTUAL COUPLING AND GAIN/PHASE

MISMATCH CALIBRATION OF ANTENNA ARRAYS

OVER A PEC PLATE

In the previous chapters, mutual coupling effect is analyzed for antenna arrays in free

space without any objects around. However, in practice, there will most probably be

some objects and/or reflecting surfaces around the antenna array in DOA estimation

applications. Anything around the antenna array will bring an additional distortion

because of the reflections from their surfaces. In this case, the receiving pattern of

the array will be distorted because of these reflections from the external objects. This

will result in gain/phase mismatches in the antenna elements. Similar to mutual

coupling, these gain/phase mismatches also need to be calibrated for an acceptable

DOA estimation accuracy. Therefore, they should also be taken into account during

the calibration of an antenna array with some objects and/or reflecting surfaces around

it.

In this chapter, the case of an antenna array over a perfect electric conductor (PEC)

plate is analyzed. The arrays composed of identical and omnidirectional antennas

are considered. The analysis is done for two different antenna arrays, one composed

of monopole antennas and another composed of dipole antennas. In order to model

the mutual coupling effect together with the gain/phase mismatch caused by the

PEC plate, it is proposed to use a single composite calibration matrix. The composite

matrix approach is an extension to the transformation method presented in Section 3.2.

In the composite matrix approach, a linear transformation is utilized to jointly model

the mutual coupling and the gain/phase mismatch. Before presenting the composite
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matrix approach, it is reasonable to give the signal model used under the scope of this

chapter.

5.1 Signal Model

In this chapter, an antenna array composed of identical and omnidirectional antennas

over a PEC plate is considered in a noise-free environment, and narrowband model is

used. In this case, the output vector due to an excitation source from (ϕl, θl) direction

for an N -element antenna array is represented as,

y(t) = C Γl a(ϕl, θl) s(t), t = 1, 2, . . . , P (5.1)

where P is the number of snapshots and C is the N ×N mutual coupling matrix for

(ϕl, θl) direction. Γl is an N×N matrix which stands for the gain/phase mismatch due

to an excitation from (ϕl, θl) direction. a(ϕl, θl) = [α1(ϕl, θl) α2(ϕl, θl) . . . αN (ϕl, θl)]
T

is the steering vector for (ϕl, θl) direction. The vector element corresponding to the nth

antenna positioned at (xn, yn, zn) is αn(ϕl, θl) = ej
2π
λ
(xn cosϕl sin θl+yn sinϕl sin θl+zn cos θl).

s(t) is the complex amplitude of the excitation source from (ϕl, θl) direction.

Note that, the mutual coupling matrix C denotes only the mutual coupling effect.

Since we consider identical and omnidirectional antenna elements, the C matrix in

(5.1) is the same as the C matrix explained in Chapter 3 which is direction indepen-

dent. However, since the Γl matrix models the gain/phase mismatch caused by the

disturbance in the receiving pattern of the array due to the PEC plate, it changes

with direction. In this case, the MUSIC algorithm estimates the DOA angles as the

maxima of the following spectrum,

PMU (ϕ, θ) =
1

aH(ϕ, θ) ΓH
l CH EN EH

N C Γl a(ϕ, θ)
(5.2)

Note that, if the correct C matrix and Γl matrices are not supplied, the MUSIC

algorithm can result errors in DOA estimation larger than 10 degrees. Therefore, it is

an important task to determine the C matrix and Γl matrices to be used. However, it

is also possible to model both mutual coupling and gain/phase mismatch in a single

59



step using a single composite calibration matrix. In this context, a composite matrix

approach for calibration of antenna arrays over a PEC plate is presented in the next

section.

5.2 Composite Matrix Approach

Since identical and omnidirectional antenna elements are considered, the C matrix is

direction independent, and it can be as the inverse of the T matrix which is found

using (3.11). Hence, the equation to find C can be obtained by taking the inverse of

both sides of (3.11) which results as,

C = V U† (5.3)

Note that, since all the errors resulting from antenna misplacements, mismatches in

cable lengths etc. are neglected, the only distortion included in the uncoupled voltages

is the gain/phase mismatch due to the PEC plate. Hence, the linear relationship

between the uncoupled voltage vector and the ideal steering vector for (ϕl, θl) direction

is represented through Γl as follows,

u(ϕl, θl) = Γl a(ϕl, θl) (5.4)

As seen above, we end up with a direction independent C matrix and a direction

dependent Γl matrix where the DOA estimation can be done using (5.2). Since Γl is

direction dependent, we need to follow a sectorized approach to model the gain/phase

mismatches for different directions.

Mutual coupling and gain/phase mismatch can be modelled separately as explained

above. In this case, we need to make measurements for both coupled and uncou-

pled voltages. However, it is also possible to jointly model mutual coupling and the

gain/phase mismatch in a single step using a composite calibration matrix. In this

case, the composite calibration matrix, Ml, is formed by two factors, C and Γl, as,
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Ml = C Γl (5.5)

In the composite matrix approach, the transformation method is extended to model

the gain/phase mismatch along with the mutual coupling. Hence, the composite

calibration matrix, Ml, represents the linear relationship between the ideal steering

vector and the coupled voltage vector for (ϕl, θl) direction as follows,

v(ϕl, θl) = Ml a(ϕl, θl) (5.6)

In this case, the MUSIC algorithm estimates the DOA angles as the maxima of the

following spectrum,

PMU (ϕ, θ) =
1

aH(ϕ, θ) MH
l EN EH

N Ml a(ϕ, θ)
(5.7)

Note that, we do not need to make measurements to obtain uncoupled voltages whereas

we need to make measurements to obtain uncoupled voltages when the C matrix and

Γl matrices are found separately. On the other hand, since Ml is formed by a direction

independent factor, C, and a direction dependent factor, Γl, it is direction dependent.

Therefore, we need to follow a sectorized approach to find Ml matrices, and here

comes the problem of proper sectorization. In a proper sectorization, sectors should

be determined as the regions where Ml does not change significantly, so it can be

taken as a direction independent matrix M within each sector.

Additional observations are required to find the N ×N M matrix for a sector. Let V

be an N × L matrix whose columns are the coupled voltage vectors due to L single

excitation sources within the same sector. Then, (5.6) can be generalized as,

V = M A (5.8)

Assuming L ≥ N , the M matrix for the corresponding sector can be found as,

M = V A† (5.9)
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The implementation of the composite matrix approach for an N -element array com-

posed of identical and omnidirectional antennas over a PEC plate can be summarized

as follows:

1. In order to find the proper sector width, determine a performance criterion and

start with two non-overlapping sectors of 180◦ angular width.

2. Find M matrices for all sectors using (5.9).

3. Using (5.7), make a performance test to see whether the M matrices satisfy the

performance criterion or not.

4. If the performance criterion is satisfied, select the current sector width. If it is

not satisfied, select a new sector width less than the current sector width and

return to Step 2.

5. After the sector width is determined, the array calibration can be done using

the set of M matrices found in the last execution of Step 2.

Consider the minimum number of measurements required in the above procedure for

an N -element array. For each sector, we need at least N measurements to construct

V in order to use in (5.9). If the number of sectors is denoted as D, we need a total

of DN measurements.

In the previous chapters, measurement reduction procedures are provided for the

corresponding cases. In this chapter, the case with a PEC plate under the antenna

array is considered where the plate can be of any shape. If a plate without any

symmetry axis in its geometry is used, the electrical symmetry will be disrupted.

Hence, it will not be able to find a procedure for reducing the number of calibration

measurements. However, it would be still possible to find a measurement reduction

procedure if the plate has certain symmetries in its geometry. On the other hand,

note that, an independent analysis should be done in order to find a measurement

reduction procedure, each time the plate shape is changed. Therefore, measurement

reduction concept is left out of scope for the case of an antenna array over a PEC

plate.
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5.3 Simulations

As in the previous chapters, the full-wave electromagnetic simulation tool FEKO [12]

is used to have measurements in this part of the study. FEKO simulations are im-

plemented by using the method-of-moments (MOM). Performance of the composite

matrix approach is evaluated through DOA estimation simulations using MUSIC al-

gorithm. In the experiments, two different planar 8-element UCA’s are used, one

composed of dipole antenna elements and the other composed of monopole antenna

elements. The antenna arrays are located over a circular PEC plate.

The dimensions are selected such that the antenna arrays have an operating frequency

band of 800-1200 MHz. The dipole diameter is chosen as 10 mm and the dipole

length as 15 cm, that is the half wavelentgh at 1000 MHz. In order to avoid spatial

aliasing, the distance between two array elements is chosen as 12.5 cm, that is the half

wavelength at 1200 MHz. Each array element is terminated with a ZL = 50Ω load

and the simulations are carried out at 1000 MHz. The diameter of the PEC plate

is chosen as 100 cm, that is greater than three times the wavelength at 1000 MHz.

The dipole array is elevated 30 cm above the PEC plate. The FEKO model for the

8-element UCA with dipole antennas elevated over the circular PEC plate is presented

in Figure 5.1.

Figure 5.1: The FEKO model for the 8-element UCA with dipole antennas elevated
over a circular PEC plate.
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For the monopole array, there are two differences compared to the dipole array. The

first difference is that the monopole length is 7.5 cm, that is half of the dipole length.

The second difference is that the antenna elements are attached to the PEC plate since

monopole antennas need a ground plane for proper operation. Therefore, the array

is not elevated. The FEKO model for the 8-element UCA with monopole antennas

attached to the circular PEC plate is presented in Figure 5.2.

Figure 5.2: The FEKO model for the 8-element UCA with monopole antennas at-
tached to a circular PEC plate.

In order to evaluate the performance of the composite matrix approach, the array is

excited with a single source whose elevation angle is fixed and azimuth angle is swept

with one degree steps, i.e., ϕ = 0◦, 1◦, . . . , 359◦. The experiments are repeated for three

elevation angles of θ = 60◦, 70◦, 80◦. The 5-step procedure of the composite matrix

approach is followed for both the dipole and the monopole antenna arrays. In the

procedure, the performance criterion is chosen as a maximum RMSE of 0.05 degree.

For the dipole array, the maximum sector width satisfying this performance criterion

is found to be 120 degrees. Hence, the dipole array is calibrated using three distinct

composite matrices. For the monopole array, the maximum sector width satisfying

this performance criterion is found to be 90 degrees. Hence, the monopole array is

calibrated using four distinct composite matrices.
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The source azimuth angle is fixed to be ϕ = 70◦ and the MUSIC spectra are examined

for the dipole array. In Figures 5.3, 5.4 and 5.5, the MUSIC spectra are given for

θ = 60◦, 70◦, 80◦, respectively. As seen in Figures 5.3, 5.4 and 5.5, there is a sharp peak

at the correct azimuth angle which points that the MUSIC algorithm can properly find

the DOA angle when calibration with composite matrix approach is applied. Whereas,

the uncalibrated array spectrum has a smooth rise around the correct azimuth angle,

but there is no explicit peak. This may cause large errors in estimating the DOA

angle.
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Figure 5.3: The MUSIC spectrum of the dipole antenna array calibrated using the
composite matrix approach for (ϕ = 70◦, θ = 60◦) direction. The composite matrices
are found by using three non-overlapping azimuth sectors of 120◦ angular width.
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Figure 5.4: The MUSIC spectrum of the dipole antenna array calibrated using the
composite matrix approach for (ϕ = 70◦, θ = 70◦) direction. The composite matrices
are found by using three non-overlapping azimuth sectors of 120◦ angular width.
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Figure 5.5: The MUSIC spectrum of the dipole antenna array calibrated using the
composite matrix approach for (ϕ = 70◦, θ = 80◦) direction. The composite matrices
are found by using three non-overlapping azimuth sectors of 120◦ angular width.
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The azimuth performances of the composite matrix approach for the dipole array are

presented in Figures 5.6, 5.7 and 5.8 for θ = 60◦, 70◦, 80◦, respectively. As seen in

Figures 5.6, 5.7 and 5.8, the calibrated array response is significantly better than the

uncalibrated array response. Also, the determined performance criterion of maximum

RMSE of 0.05 degree is satisfied in all of the three cases.
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Figure 5.6: The azimuth performance of the dipole antenna array calibrated using
the composite matrix approach for θ = 60◦. The calibration is done by using three
non-overlapping azimuth sectors of 120◦ angular width.
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Figure 5.7: The azimuth performance of the dipole antenna array calibrated using
the composite matrix approach for θ = 70◦. The calibration is done by using three
non-overlapping azimuth sectors of 120◦ angular width.
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Figure 5.8: The azimuth performance of the dipole antenna array calibrated using
the composite matrix approach for θ = 80◦. The calibration is done by using three
non-overlapping azimuth sectors of 120◦ angular width.
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When the 5-step procedure of the composite matrix approach is applied for the

monopole antenna array using the same perfomance criterion of maximum RMSE

of 0.05 degree, the sector width satisfying this criterion is found to be 90 degrees.

The source azimuth angle is fixed to be ϕ = 80◦ and the MUSIC spectra in this case

are given in Figures 5.9, 5.10 and 5.11, for θ = 60◦, 70◦, 80◦, respectively. As seen in

Figures 5.9, 5.10 and 5.11, similar to the case with the dipole array, there is a sharp

peak at the correct azimuth in the calibrated array spectrum, whereas, it is hard to

find a distinct peak in the uncalibrated array spectrum.

When the calibrated array spectra of dipole and monopole arrays are compared for

the same elevation angle, it is seen that levels of the sharp peaks in the monopole

array spectra are lower than their counterparts in the dipole array spectra. On the

other hand, when the same performance criterion of maximum RMSE of 0.05 degree is

used for both dipole and monopole arrays, it is sufficient to use three non-overlapping

angular sectors for the dipole array, whereas, the monopole array requires four non-

overlapping angular sectors. Since the monopole array is closer to the plate when

compared to the dipole array, the pattern disturbance in the monopole array should
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Figure 5.9: The MUSIC spectrum of the monopole antenna array calibrated using the
composite matrix approach for (ϕ = 80◦, θ = 60◦) direction. The composite matrices
are found by using four non-overlapping azimuth sectors of 90◦ angular width.
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Figure 5.10: The MUSIC spectrum of the monopole antenna array calibrated using the
composite matrix approach for (ϕ = 80◦, θ = 70◦) direction. The composite matrices
are found by using four non-overlapping azimuth sectors of 90◦ angular width.
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Figure 5.11: The MUSIC spectrum of the monopole antenna array calibrated using the
composite matrix approach for (ϕ = 80◦, θ = 80◦) direction. The composite matrices
are found by using four non-overlapping azimuth sectors of 90◦ angular width.
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be greater than the pattern disturbance in the dipole array. Therefore, we need more

sectors for calibrating the monopole array.

The azimuth performances of the composite matrix approach for the monopole array

are presented in Figures 5.12, 5.13 and 5.14 for θ = 60◦, 70◦, 80◦, respectively. As seen

in Figures 5.12, 5.13 and 5.14, the calibrated array response is significantly better

than the uncalibrated array response. Also, the determined performance criterion of

maximum RMSE of 0.05 degree is satisfied in all of the three cases.
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Figure 5.12: The azimuth performance of the monopole antenna array calibrated using
the composite matrix approach for θ = 60◦. The calibration is done by using four
non-overlapping azimuth sectors of 90◦ angular width.
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Figure 5.13: The azimuth performance of the monopole antenna array calibrated using
the composite matrix approach for θ = 70◦. The calibration is done by using four
non-overlapping azimuth sectors of 90◦ angular width.
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Figure 5.14: The azimuth performance of the monopole antenna array calibrated using
the composite matrix approach for θ = 80◦. The calibration is done by using four
non-overlapping azimuth sectors of 90◦ angular width.
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In order to evaluate the performance of the composite matrix approach for the changes

in source elevation angle, the dipole array is excited with a single source. The compos-

ite matrices found for θ = 70◦ are used while the experiment is repeated for elevation

angles varying from 68◦ to 72◦ with 0.25 degree steps. The source azimuth angle is

swept as ϕ = 0◦, 1◦, . . . , 359◦ and the average of the RMSE values for these azimuth

angles is used for each elevation angle, that is:

E(θ) =
1

360

359◦∑
ϕ=0◦

e(ϕ, θ), θ = 68◦, 68.25◦, . . . , 72◦ (5.10)

where e(ϕ, θ) is the RMSE value found for (ϕ, θ) direction and E(θ) is the average error

for the corresponding elevation angle. The elevation performance of the composite

matrix approach for the dipole array is presented in Figure 5.15. As seen in Figure

5.15, the best performance for the calibrated array is obtained for θ = 70◦ since the

composite matrices found for θ = 70◦ are used. The calibrated array response is better

than the uncalibrated array response for a sector of 2 degrees between θ = 69◦ − 71◦.
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Figure 5.15: The elevation performance of the dipole antenna array calibrated using
the composite matrix approach. The composite matrices found for θ = 70◦ are used
while the elevation angle is swept from 68◦ to 72◦ with 0.25 degree steps.
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The experiment is repeated for the monopole array. The elevation performance of

the monopole array is presented in Figure 5.16. As seen in Figure 5.16, the best

performance for the calibrated array is obtained for θ = 70◦ since the composite

matrices found for θ = 70◦ are used. The calibrated array response is better than the

uncalibrated array response for a sector of 3 degrees between θ = 68.5◦−71.5◦. When

Figures 5.15 and 5.16 are compared, the performance of the dipole array is better than

the monopole array for θ = 70◦. However, the composite matrices found for θ = 70◦

work for a larger elevation sector for the monopole array.
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Figure 5.16: The elevation performance of the monopole antenna array calibrated
using the composite matrix approach. The composite matrices found for θ = 70◦ are
used while the elevation angle is swept from 68◦ to 72◦ with 0.25 degree steps.

In order to evaluate the performance of the composite matrix approach for the changes

in source frquency, the dipole array is excited with a single source. The source elevation

angle is fixed to be θ = 70◦. The composite matrices found for f = 1000 MHz

are used, whereas the experiment is repeated for source frequencies varying from

995 MHz to 1005 MHz with 0.25 MHz steps. The source azimuth angle is swept as

ϕ = 0◦, 1◦, . . . , 359◦ and the average of the RMSE values for these azimuth angles is

used for each frequency value, that is:
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E(f) =
1

360

359◦∑
ϕ=0◦

e(ϕ, f), f = 995MHz, 995.25MHz, . . . , 1005MHz (5.11)

where e(ϕ, f) is the RMSE value found for (ϕ, θ = 70◦) direction at f frequency and

E(f) is the average error for the corresponding frequency. The frequency performance

of the composite matrix approach for the dipole array is presented in Figure 5.17. As

seen in Figure 5.17, the best performance for the calibrated array is obtained for f

= 1000 MHz since the composite matrices found for f = 1000 MHz are used. The

calibrated array response is better than the uncalibrated array response for all the

analyzed frequency band.

995 997.5 1000 1002.5 1005
10

−3

10
−2

10
−1

10
0

Frequency (MHz)

R
M

S
E

 (
D

eg
re

e)

 

 
Without calibration
Calibration with composite matrix

Figure 5.17: The frequency performance of the dipole antenna array calibrated using
the composite matrix approach. The composite matrices found for f = 1000 MHz are
used while the source frequency is swept from 995 MHz to 1005 MHz with 0.25 MHz
steps.

The experiment is repeated for the monopole array. The frequency performance of

the monopole array is presented in Figure 5.18. As seen in Figure 5.18, the best

performance for the calibrated array is obtained for f = 1000 MHz since the composite

matrices found for f = 1000 MHz are used. The calibrated array response is better

than the uncalibrated array response for all the analyzed frequency band. When
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Figures 5.17 and 5.18 are compared, the performance of the dipole array is better

than the performance of the monopole array at f = 1000 MHz. However, as the

frequency is deviated from 1000 MHz, there is a less amount of increase in the error

for the monopole array.
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Figure 5.18: The frequency performance of the monopole antenna array calibrated
using the composite matrix approach. The composite matrices found for f = 1000
MHz are used while the source frequency is swept from 995 MHz to 1005 MHz with
0.25 MHz steps.
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CHAPTER 6

CONCLUSIONS

There are different techniques for DOA estimation where the main issue is processing

the data acquired by a sensor array. In wireless communications, the arrays are

constituted by antennas. There are many distortion sources in an antenna array

reducing DOA estimation accuracy, such as antenna misplacements, mismatches in

cable lengths, mutual coupling between antennas or gain/phase mismatches due to

antenna radiation patterns. Mutual coupling is defined as the interactions between

array elements caused by the scattering and re-radiation of the impinging signal from

the array elements. Mutual coupling may cause large errors in DOA estimation results

and should be corrected for any antenna array.

In this thesis, mutual coupling effect is analyzed for different cases and appropriate

calibration methods are proposed for each case. The case of arrays with identical and

omnidirectional antennas in a noise free environment is analyzed. This is the most

common case treated in the literature. Hence, the initial effort is devoted to this case

in this study as well. In most of the previous studies, it is seen that the proposed

calibration techniques are based on antenna mutual impedances. However, there exist

methods using a transfer function to model the mutual coupling effect. In this context,

a similar transformation approach is presented for determining the mutual coupling

matrix which is known to be direction independent for omnidirectional antennas in the

literature. Transformation approach is a simple method where the relation between

the measured and the ideal array data is represented through a linear transformation.

Furthermore, it is computationally efficient compared to the conventional methods.

A measurement reduction method (MRM) is proposed in order to reduce the number
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of measurements required in the transformation approach. MRM is based on the sym-

metry planes in an array geometry where multiple measurement vectors are generated

from a single measured vector through data permutations. MRM leads to a signifi-

cant reduction in the number of required measurements where it is shown that a single

measurement is sufficient for the calibration of a UCA using MRM. While MRM uses

the symmetry planes in the array, it generates the data vectors by turning 360 degrees

around the antenna array. By this means, MRM has a high numerical accuracy and

robustness. Moreover, it is shown that many well known array geometries, such as

UCA, ULA, etc., include symmetry planes which make them suitable for the use of

MRM.

In this thesis, the proposed methods are evaluated over DOA estimation accuracies

using the MUSIC algorithm. The required measurements are obtained through nu-

merical electromagnetic simulations in FEKO. In order to evalute the transformation

approach combined with MRM, an 8-element UCA composed of identical dipole anten-

nas is used. The results show that the proposed calibration technique can effectively

identify and compansate for the mutual coupling effect in the antenna array. Differ-

ent experiments are carried out in order to examine the effects of changes in source

frequency, azimuth and elevation angles. The results show that the transformation

method combined with MRM still provides an effective mutual coupling calibration

under these conditions.

Secondly, the arrays composed of non-omnidirectional (NOD) antennas is considered

where the mutual coupling matrix changes with direction. In this context, a single

coupling matrix is shown to be insufficient for modelling the mutual coupling effect

in an NOD antenna array. However, antenna pattern is a smooth function of azimuth

and elevation angles for most of the antenna types. In addition, the mutual coupling

effect in an antenna array does not change rapidly as the azimuth and elevation angles

change. Therefore, the coupling matrix can be assumed to remain unchanged for a

sufficiently small angular sector. As a result, a sectorized approach seems to be a

natural choice for mutual coupling calibration of NOD antenna arrays. In this context,

a sectorized calibration approach is proposed for proper calibration of NOD antenna

arrays where the mutual coupling calibration is done in angular sectors. Furthermore,

MRM is extended for NOD antenna arrays with identical elements. In this case,
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the symmetry of the array pattern due to symmetric array elements is used, and

multiple array data are generated from a single measured array data through data

permutations.

A non-symmetric dipole patch antenna is used in the performance evaluations. This

novel antenna is a wideband semi-omnidirectional antenna which has an omnidirec-

tional characteristics for the lower frequency band while it exhibits a non-omnidirec-

tional characteristics for the upper frequency band. The semi-omnidirectional an-

tenna is used in its upper frequency band so that it can be taken as an NOD antenna.

Different experiments are done in order to evaluate the performance of the sectorized

calibration approach combined with MRM for the changes in source frequency, az-

imuth and elevation angles. The results show that the proposed approach provides a

robust mutual coupling calibration for NOD antenna arrays even if the source param-

eters are varied as explained.

As a final study, the case of an antenna array over a perfect electric conductor (PEC)

plate is analyzed. In this case, the PEC plate brings additional distortion because

of the reflections from its surface. These reflections distort the receiving pattern of

the antenna array which results in gain/phase mismatches in the antenna elements.

Similar to mutual coupling, these gain/phase mismatches also need to be calibrated

for an acceptable DOA estimation accuracy. In this context, a composite matrix

approach is proposed in order to jointly model the mutual coupling and the gain/phase

mismatch. In the composite matrix approach, the idea is to model both mutual

coupling and gain/phase mismatch effects using a single composite calibration matrix

rather than using two distinct matrices as one matrix for each effect. The composite

matrix approach is an extension to the transformation method presented in Section

3.2 where a linear transformation is utilized to jointly model the mutual coupling and

the gain/phase mismatch. Since gain/phase mismatch is a direction dependent effect,

the composite calibration matrix is also direction dependent. Therefore, we need to

follow a sectorized approach while using the composite matrix approach.

In the analysis, the arrays composed of identical and omnidirectional antennas are

considered. The composite matrix approach is evaluated using a dipole antenna array

elevated over a circular PEC plate and a monopole antenna array attached to a circular
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PEC plate, and the results for the two arrays are compared. The evaluations are done

in order to examine the performance of the approach against the changes in source

frquency, azimuth and elevation angles. The results show that the composite matrix

approach provides an efficient calibration for both mutual coupling and gain/phase

mismatch effects. Also, the approach is robust against the changes in source frquency,

azimuth and elevation angles. When the dipole and monopole arrays are compared,

it is seen that the dipole array can be calibrated by using less number of sectors when

compared with the monopole array. In addition to this, the composite matrices found

for a particular source frequency or elevation angle can be used in a larger frequency

or elevation angle interval for the monopole array when compared with the dipole

array.
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