


ACOUSTIC SURFACE PERCEPTION THROUGH THE GROUND INTERACTION OF
COMPLIANT LEGS OF A HEXAPOD ROBOT

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
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ABSTRACT

ACOUSTIC SURFACE PERCEPTION THROUGH THE GROUND INTERACTION OF
COMPLIANT LEGS OF A HEXAPOD ROBOT

Özkul, Mine Cüneyitoğlu

M.S., Department of Mechanical Engineering

Supervisor : Asst. Prof. Dr. Yiğit Yazıcıoğlu

Co-Supervisor : Asst. Prof. Dr. Afşar Saranlı

January 2012, 83 pages

A dynamically dexterous legged robot platform generates specific acoustic signals during the

interaction with the ground and the environment. These acoustic signals are expected to con-

tain rich information that is related to the interaction surface as a function of the position of

the legs and the overall contact process mixed with the actuator sounds that initiate the move-

ment. As the robot platform walks or runs in any environment,this convolved acoustic signal

created can be processed and analyzed in real time operationand the interaction surface can

be identified. Such a utilization of acoustic data can be possible for various indoor and out-

door surfaces and this can be useful in adjusting gait parameters that play an essential role in

dynamic dexterity. In this work, surface type identification is achieved using several popular

signal processing and pattern classification methods not onthe robot platform but off-line.

The performances of the selected features and algorithms are evaluated for the collected data

sets and these outputs are compared with the expectations. Depending on the off-line training

and experiment results, the applicability of the study to anembedded robot platform as a fu-

ture application is found quite feasible and the surface type as an input to the robot sensing is

expected to improve the mobility of the robot in both indoor and outdoor environment.
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ÖZ

ALTI BACAKLI B İR ROBOTUN ESNEK BACAKALARININ YÜZEY ETKİLEŞİM İNİ
KULLANARAK AKUSTIK Y ÜZEY ALGILAMASI

Özkul, Mine Cüneyitoğlu

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi : Asst. Prof. Dr. Yiğit Yazıcıoğlu

Ortak Tez Yöneticisi : Asst. Prof. Dr. Afşar Saranlı

Ocak 2012, 83 sayfa

Dinamik çevikliğe sahip bacaklı bir robot platformu hareket halindeyken çevresiyle etkileşim

halinde olduğu için akustik sinyaller yayar. Bu akustik sinyallerin içeriğinde, hareketi sağlayan

eyleyicilerin seslerine karışmış olarak, bacakların pozisyonuna ve etkileşim yüzeyi ile olan

etkileşim sürecinin tamamına dair bilgiler bulunması beklenmektedir. Bu karışık sinyali

gerçek zamanlı olarak işlemenin ve sinaylin içerisinden etkileşim yüzeyinin türüne dair bil-

giyi elde etmenin mümkün olduğu düşünülmektedir. Bu tür bir süreçten elde edilecek yüzey

tipi verisi, bacaklı bir robot platformumun yürüyüş parametrelerini belirlemesine katkıda bu-

lunarak çeşitli iç ve dış ortamlardaki çeviklik performansını arttıracağı için önemlidir. Bu

çalışmada, robot üzerinde gerçek zamanlı işleme yerine veriler ayrı bir kaynakta toplanmıştır

ve bu ayrı ortamda çeşitli sinyal işleme ve örüntü tanımlama teknikleri uygulanarak incelenmiş-

tir. Bu inceleme sonucu çeşitli işlem parametrelerininve örüntü tanıma algoritmalarının

karar sürecine olan katkıları ve performansları analiz edilerek deneyler öncesi beklentiler ile

kıyaslanmıştır. Sonuçlar değerlendirildiğinde, bu tür bir analiz ile önemli miktarda başarılı

sonuçlar elde edildiği görülmüştür ve bu tür bir uygulama robot platformu üzerinde gömülü

olarak yapıldığı taktirde robotun yüzey tipini tayin etmesini sağlayabilir. Bu sayede robo-

tun içinde bulunduğu ortamı algılayarak iç ve dış ortamda hareket kabiliyetinin artması söz
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konusu olabilecektir.

Anahtar Kelimeler: Bacaklı Robotlar, Akustik Algılama, Sınıflandırma, Yüzey Tipi, Tanımlama

vii



Dedicated to my beloved one, Alp ErenÖzkul...
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CHAPTER 1

INTRODUCTION

Sensing and perception of the environment is an indispensable ability for all living creatures.

Acoustic sensing of the environment is essential for survival since it has a great role in getting

alert from the surrounding dangers even if the threat is out of line of sight. Even the fish, the

simplest animal, can hear up to several kHz and make use of this ability as a tool for survival

[1]. When this consequential ability is examined more in detail, it will be realized that a

huge amount of data related to the composition of the environment comes from the sensory

organs related to acoustic perception. Another vital outcome of acoustic perception for more

complex living organisms is communication. One of the most well-known example is maybe

the under water communication of whales. Some species of whales can hear and decompose

from very low frequency sounds like 10 Hz, up to several hundred kHz and moreover, they

can actively communicate to other whales even if there is kilometers of distance between them

[2].

Putting the sea world and world of predators and preys in the jungle aside, hearing and acous-

tic perception has been an important part of human history aswell, with music and oral tra-

dition. Undoubtedly, in present day’s modern life, speech plays the utmost important role in

communication. According to survey done with British people, a female person speaks 8805

words per day and a male person speaks 6073 words on average [3]. In addition to commu-

nication, people get emotional stimulus via music which areall gifts of the psychoacoustic

ability.

Moving from the realm of living creatures to the world of robotics, biomimetics, a relatively

new and an interdisciplinary area that studies on the designs in the nature and search the appli-

cability of those designs in engineering problems [4] is becoming more common. In robotics
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world, where biomimetic approaches are appreciated due to their functionality in solving var-

ious challenging problems, sensing can be considered as an essential part of robotics research.

Among the literature survey done through all of this thesis process, there are not many exam-

ples of biomimetic sensing found compared to robotic applications that make use of advanced

sensing. In all of the industries such as automotive, defense, textile, shortly, in any mass pro-

duction line, such high technology sensing applications are plenty since industrial robotics

cannot be thought of without sensors. Robotics world benefita lot from advanced sensing

that make use of some sophisticated signal processing operations and pattern classification

algorithms.

Among sensing types like visual sensing, acoustic sensing with sonars, infrared or other types

of proximity sensing, tactile sensing, inertial sensing and so on, acoustic sensing within the

audible range has not been quite popular except for the caseswith speech processing. Speech

processing is undoubtedly a very important element in humanrobot interaction area. How-

ever, the examples given the previous paragraphs are outstanding examples of acoustic sens-

ing in nature. With making use of a biomimetic approach, robots can sense and adapt the

environment like those living creatures that make use of their acoustic perception ability of

non-speech signals. In the following section, a compilation of various robotic acoustic per-

ception studies that are extracted from the literature are presented.

1.1 ROBOTIC ACOUSTIC PERCEPTION

After a broad literature survey, it is observed that the number and the success of studies on

speech perception is enormous [5]. Among acoustic sensing and perception within audible

range, sound source localization and classification is an important branch of study [6]. Among

the field of environment identification via acoustic perception, current studies are mostly done

in the laboratory settings [7], [8] and are concentrated on human generated sounds.

In the fields other than robotics, there are numerous applications of acoustic sensing like

medical diagnosis in biomedical applications [9] or in machine health monitoring in industry

[10]. In the future, works in robotic acoustic perception can in fact make use of the methods

used in these fields as well. Signal conditioning and processing is another essential part of

sensing problems, that in the end help, the robot extract thefeatures related to the ambient.
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Finally, sophisticated pattern classification algorithmscome in handy while making sense of

the environment data collected and extracted.

1.1.1 ANALYSIS OF NON-SPEECH SIGNALS

From literature to a versatile number of applications in industry, in music, in medicine and

so on, the acoustic data is often examined with some very common features like frequency

components, pitch, intensity, that are of time domain and frequency domain. Power spec-

trum estimate of a sound signal that is to be explained in the following chapters is a powerful

method to determine the frequency composition of it. One of the most common tools in acous-

tic signal processing is the discrete Fourier transform (DFT) [11], [5]. With transformation to

frequency domain with applying the so-called short time Fourier transform, the power spec-

trum estimate of a signal for any time interval can be estimated and frequency content of the

signal can be revealed effectively. In addition to its use in speech processing, powerspectrum

can be used in analyzing non - speech signals effectively as well.

There are transforms other than Fourier Transform that workwell on acoustic signals like

Wavelet transform [12] or advanced filtering methods [11] that a signal can be represented or

further analyses on frequency spectrum called cepstral analysis. However, in the scope of this

study, only zero crossing rate analysis and Fourier transform is applied with its most common

form Fast Fourier Transform algorithm and its performance is found satisfactory and no more

other techniques are applied.

1.1.2 EARLIER STUDIES ON INTERACTION AND IMPACT SOUNDS

In a PhD thesis presented in the field of Cognitive Science [13], acoustic models and theories

that lie behind daily sounds are examined. In this study, contact sounds of objects are stud-

ied in particular and these sounds are classified into three basic categories like material type,

interaction type and configuration. Since that is a thesis oncognitive science, later on, the per-

ceptual and psychological effects of these sounds on humans have been examined. However,

for analyzing these interaction sounds, an experimental session is conducted. with nineteen

undergraduate students that volunteered. These students are expected to guess the length and

the material of wooden and metal struck bars, only listeningthe interaction sounds of them
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with several surfaces, with eyes blindfolded. The guesses have been especially successful for

some definite interaction sounds of wooden blocks. At the same time, these interaction sound

signals are recored and Time x Frequency x Amplitude plots are formed. The statements

in the results section cannot be said to be not quite plenary in terms of acoustics, since this

work is in a completely different field than the field of engineering. However, this work of

Gaver has been an inspiring study to many forthcoming acoustic experiments and this study

is further referenced in many other academic papers and theses.

As the digital computers advanced, more signal processing capabilities have been available on

acoustic signals. In [14] and [15], detailed studies on impact sounds with several surfaces of

concrete, ceramic, zinc bricks, tiles and ingots has been conducted. In these studies, Durst and

Krotkov have successfully segmented out the spikes that areresults of impact, from the power

spectrum of the signal. They have analyzed the spectral leakage of the Fourier Transform

operation as well. The most pronounced side of these studiesof Durst an Krotkov for our

study is that with a minimum distance decision map classifierthey have been able to classify

the impact sounds quite efficiently based on their material type.

Later on, Krotkov have conducted collaborative work with Carnegie Mellon University De-

partment of Psychology. In [16] the shape invariant properties of materials are sought that

are revealed from their spectral contents. In the research of Klatzky et. al. conducted with

human subjects, it is stated that frequency has less contribution compared to the decay rate of

the signal, in identification of material type [17].

In [18], a master’s thesis is presented where a valid mathematical representation for a contact

sound is tried to be formed. In this study, acoustic data is created by interaction of the object

with a robot arm in a test station. Vibrations of the object isrecorded by a special high speed

camera. With such a setup, very pure acoustic data could be recorded; signal to noise ratio

measure is kept as high as possible. A theoretical model for impact sounds is formed with the

Discrete Fourier Transform of the record, frequency modes and damping parameters.

1.1.3 ROBOTIC SURFACE AND MATERIAL IDENTIFICATION

Like any other sensing and classification problem, robotic acoustic perception can be stated to

have three main stages:Signal Preprocessing, Feature ExtractionandPattern Classification
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[19]. As new technologies in computer science have emerged,first feature extraction and then

pattern recognition steps have become very rich in methods and approaches. The work that

include all these steps are examined as a part of literature survey.

Although [18] or other studies mentioned in the previous section can be considered as robotic

perception of material or interaction type, direct applications of non-speech acoustic signal

analysis and complete acoustic perception in robotics fieldcan be considered to start with

[20]. In Fitzpatrick’s study, there is detailed analysis ofrobotic acoustic perception on sev-

eral humanoid or human interacting robot platforms. In [21], there is a robot named Obrero,

which can grasp objects with its force-feedback sensitive hand. Obrero is capable of record-

ing sounds, as well as sensing the forces on its hand. Interactions with several objects like

grasping and tapping is done by the robotic hand and the relation between force sensors and

sound spectrograms have been analyzed.

In [22], recordings with a wheeled robot platform from various different ambiance are made

and the robot is trained to find its current placement. This way an acoustic scene analysis

is made. In this study, there are features from sound time signal and spectrum are extracted

and used and classifiers are applied on these features. Moreover a holistic approach towards

ambiance is considered and the records include very naturaldaily life acoustic data, this is why

this study is selected for further examination. The papers [23] and [24], more complicated

techniques in feature extraction called Self Organizing Maps (SOM) are used on recordings

of a robot hand interacting with various different daily life objects. In these experiments, in

signal processing and pattern classification, there is apparently a built in environment used,

rather than manual implementation of feature extraction byMATLAB R© R2008a environment

(by Mathworks Inc. Natick, MA) or other coding scheme. It maybe due to the usage of a built

in environment that the feature extraction part of their study is not quite explanatory. They

state that they reduce spectrograms in 33 dimensional column vectors and feed the SOM with

these segments of spectrogram features. Usage of 33 D feature vectors still seems too much

and consequently much more computational complexity, since the increase in features directly

translates into considerable demand for higher computational power. This study presents very

successful results on recognition of interaction and object type by acoustic means.
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1.2 EXPERIMENTS RELATED TO THE SUBJECT

There are studies related to the transmission of impact noise to lower floors in apartments.

One such research is conducted by National Research Councilof Canada, in 1999 [25]. The

conclusions derived from the results of this study is that; there are different acoustic char-

acteristics of different floor structures. In this research, a device called tapping machine is

used to produce impact sounds with five steel-faced hammers that strike the test floor. In this

experiment, ASTM method E492 is used which is a standard for acoustic testing. The sound

intensity levels in the lower rooms are measured in a very controlled environment [25].

In fact, the field of perceptual acoustic sensing is extensive with a large number of prospective

applications exemplified in living creatures and some of these can also be considered for

autonomous robots within a variety of task domains. Sensingthe presence and direction of

danger, sensing human and animal presence, sensing the occurrence of sudden events as well

as failing mechanical functions of a robotic system can be listed as a few of these potential

applications. Despite the challenges involved, sensing the direction of the these acoustic

events is also a possibility with stereo or multi channel acoustic processing.

1.3 MOTIVATION AND OBJECTIVES

Considering the robotics literature, there is no particular work done found in the field of legged

robots and their acoustic emission that is the result of their interaction with the environment. It

is observed that, dynamically dexterous robots such as the RHex platform [26] make distinct

interaction sounds with the ground. These sounds are in factsignals that are believed to

include important information that is a composition of mechanical properties of the robot and

the ground that is interacted with. This thesis work aims to analyze these signals and propose

an utility of perception of environment to mobile robotics in general and add an effective

environment sensing tool to legged robotics in a particularmanner.

The three main stages in a robotic acoustic perception problem listed in subsection 1.1.3, are

considered to be the three main discussions in this study andin fact form a fundamental outline

of all of this thesis work. In chapter 2, approaches related to preprocessing is mentioned. In

chapter 3, the full definition and explanation of the conceptof feature extraction is presented
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and feature selection problem is examined in detail. In chapter 4, the final stage, pattern

classification is explained. This stage is in fact the actualaim to be achieved and signal

preprocessing and feature extraction can be considered as prerequisites of this final stage. In

other words, with the help of sophisticated pattern classification algorithms, the aim of surface

perception can be achieved.
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CHAPTER 2

EXPERIMENTAL SETUP AND DATA PREPARATION

In this part, the experimental platform that is the source ofinspiration of this study is explained

in detail. Later on, the preliminary analyses on a small dataset is given. The theory behind

frequency and time domain analyses that are used in this workare explained. In the final

parts, the preprocessing and approaches are mentioned.

2.1 ROBOT PLATFORM - SENSORHEX

All of the experimental data of this thesis study is collected from SensoRHex Robot Platform

shown in figures 2.1 and 2.2. SensoRHEX is a variation of the RHex platform with dexterous

six half circular legs and it has high performance on irregular terrain due to its inherent dy-

namic stability [26]. In one of the modes of the motion, the robot walks with alternating tripod

gait (shown in figure 2.3) and can turn around and walk backwards as well. Using DC servo

motors with gearbox connected to its hips, the robot can rotate its half circular compliant legs

in precisely. In the following sections, the details of the robot mechanics are mentioned. In

this study, the experiment surfaces are important because they are intended to be automati-

cally recognized by the robot. For this reason, the experiment surfaces are mentioned in the

following sections and the experimental scheme is explained in detail.

2.1.1 MECHANICS OF THE ROBOT

The interaction of this robot with the ground creates noticeable acoustic signals which are

in fact a mixture of ”footsteps” of the robot and motor soundscoming from the robot’s hip

nodes in each actuation cycle. The ground interaction is notquite distinctive from other
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Figure 2.1: SensoRHex Robot Platform

Figure 2.2: SensoRHex is a robot platform that can walk on irregular terrain which is a useful
property especially for outdoors
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Figure 2.3: Alternating tripod gait

noises coming from the robot body; as a result of the legs being circular, there is no certain

time where the interaction starts and stops. Moreover, moreirregular terrain like outdoor soil

covered with grass, the axial and the lateral planes of the robot frame are inclined. In such a

case, it is not possible to tell the exact time when a selectedleg will start an interaction with

the ground.

2.1.2 RECORDING EQUIPMENT

As an initial trial, an external notebook PC is used in recordings due to the need for a sampling

rate of 44100 Hz of the sound signal. This is a common standardin audio with an assumption

that the average human hearing is maximum 22 kHz and by doubling that frequency as the

Nyquist sampling theoremsuggests the sampling rate should not be less than 44 kHz so that

the signal can be sampled without any aliasing effect [11].

The notebook PC has an audio device which is specified as IntelCorporation 82801H (ICH8

Family) HD Audio Controller. This is only used in the very first set of experiments where

only the feasibility of this work was in question. With PC, for a better control of the stereo

channels, Ubuntu 9.04 operating system is used. A microphone boost level of 7/10 is fixed

during the recordings. However, after checking the data, itis seen that this level is rather high

for such a fluctuating sound level record and some of the impact peaks are clipped. This may

result in problems in spectral analyses since Fourier Transform is based on continuity of the
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Table 2.1: Properties of the Recordings

Sampling Rate: 44100 Hz
Sampling Bits: 16

Sampling Format: .wav
Mean (Right Channel): 0.1658
Std Dev (Left Channel): 0.2738
Std Dev (Right Channel): 0.2790

signals. A peak with clipped top results in a straight line atthe peak and this straight line has

a different sine and cosine components which mean false frequencycomponents that can be

considered as bias errors.

A linear PCM Recorder - Olympus LS-11 is used in recording of the main experiment set

(explained in the following sections). The PCM recorder is fixed on the robot and an extension

cord is plugged to the stereo microphone underneath. The extension cord length is quite small

(200 mm approximately) and the original gold plated cord of the microphone is used for this

purpose. Windscreens of the PCM recorder are fixed and passive damping elements similar to

the ones in the microphone are placed between the recorder and the robot body. The sensitivity

level of the microphone is set tohigh. This setting is preferred for outdoors, conferences

and places where there is ambient noise. Then the level meteris set in the vicinity of 6 as

suggested in the manual of the LS-11 recorder. There is a peakwarning light that lights when

the sensitivity is set too high and the sound levels reach peak. After the recording parameters

are set this light is occasionally observed to warn or not warned at all.

2.1.3 MICROPHONE

A stereo microphone, SONY ECM-DS70P (In Figure 2.4) is used in recordings. This mi-

crophone is mostly preferred because of being a relatively small size and affordable stereo

microphone. It is thought that the saggitally symmetric design of the robot frame and body

requires a stereo microphone with symmetrical sides. The microphone is mounted on the

back of the robot’s aluminum crash frame for the collection of the preliminary data set, on

top with rubber pads for passive vibration isolation. The technical specifications of this mi-

crophone can be found in table 2.2. For additional information, Appendix-A is available. The

placement of the microphone over the robot body surely has different effects. For the main
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Figure 2.4: SONY ECM-DS70P Microphone used in experiments -Adapted From [27]

Table 2.2: Specifications of SONY ECM-DS70P Stereo Microphone - See Appendix - A for
details

Sensitivity 38 dBV/Pascal
Response Bandwidth 100-15000 Hz

Noise Level 34 dB
Max Sound Pressure 110 dB

set of experiments, the microphone is placed in the middle ofthe robot frame, on the side that

is close to the ground.

For the collection of preliminary data set, the notebook is connected to the microphone on

the robot via an extension jack. This jack may also be a sourcefor random errors. The mi-

crophone’s jack is gold plated; however, the extension cordis a standard steel jack. Acoustic

signals are captured over multiple locomotion runs with a spectral range of 100 - 15000 Hz

[27]. The placement of the microphone is observed to have notable effect on the performance

but this has not yet been carefully characterized. Therefore, we present our preliminary results

with a fixed microphone position in the middle of the robot, asillustrated in Fig. 2.5. The

processing of the acoustic signals are currently conductedoff-board in MATLABR© R2008a

environment (by Mathworks Inc. Natick, MA) but the robot platform has the necessary com-

putational capability for further embedded applications.

12



Figure 2.5: The current microphone placement within the body of the robot is illustrated.
However, it should be considered that the microphone is actually under the robot body on its
other side, closer to the ground

Figure 2.6: The Indoor Experiment Surfaces - C,L,R,H,S respectively

Figure 2.7: The Outdoor Experiment Surfaces - A,O,G respectively
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Figure 2.8: C surface is actually on L surface

2.2 EXPERIMENT SURFACES

In the beginning of the study, the data from three different surfaces is examined to check out

the feasibility of acoustic surface perception. When theseinitial experiments have yielded

successful results, new surfaces are added. The first three surfaces were carpet, linoleum

and stone corridor which are denoted as C,L and S. This experiment set is referred to asthe

preliminary experiment set.

Later on, the experiments on stone corridor could not be repeated, because a large fan with

electric motor which operates 24 h. is assembled to that particular corridor. Since this fan is a

loud sound source, the acoustic data recorded at that environment is expected to be biased; it

would certainly include that motor’s operation frequencies. We expect that due to this sound,

classification of that specific class would be much easier andthis is certainly not acceptable

for our case because this ease would not be related to surfacebut some other element.

This is in fact an important concern that such specific noise can accidentally mix with the

useful surface acoustic data in all of the experiments. In order to prevent such a situation, the

experiment ambiances are checked carefully for such sound sources. Moreover, spectrograms

of each record are visually checked for existence of any harmonic data except the motor sound

harmonics that is seen easily on each of these graphs. The detailed analyses are mentioned in

the following sections.
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Table 2.3: The Experiment Surfaces for the Preliminary Analyses

Surface Name Notation Explanation Location
Carpet C Flexible Cover on L RoLAB METU EE,room DB 23

Linoleum L Laboratory Floor RoLAB METU EE,room DB 23
Stone Floor Tiles S Large Tiles METU EE D Block Corridor

Table 2.4: The Experiment Surfaces for the Main Set of Experiments

Surface Name Notation Explanation Location
Carpet C Flexible Cover on L RoLAB METU

Linoleum L Laboratory Floor RoLAB METU
Marble R Large Tiles Control Lab, Bilkent Uni.,

Hardwood H Large Tiles Classroom, Bilkent Uni.
Concrete-1 O Large Concrete Tiles Bilkent Uni. Outdoors
Concrete-2 A Small Concrete Tiles METU Outdoors

Grass G Random Nature METU Outdoors

After the feasibility of acoustic surface perception with our setup is confirmed, a larger set

of experiments is conducted. In this second set of experiments, seven different surfaces are

used in total. Two of these surfaces are carpet and linoleum again and the rest five of them

are marble tile, hardwood, outdoor concrete tile-with autumn leaves, outdoor concrete tile-

straight and grass which are denoted as R, H, A, O, G respectively. The detailed properties

are given in tables 2.3 and 2.4 and the photographs of the surfaces are given in figures 2.6 and

2.7.

2.3 EXPERIMENTAL SCHEME

As stated in the 2.2, the preliminary experiment set of threesurfaces is used for the first

analyses and their important statistical properties are given. The general properties of this

data set is given in 2.5. In all of the following experiments,which can be referred asthe main

experiment set, the robot walks in a fixed linear trajectory with constant speed and under

operator control. During the experiments, the robot is turned around by the operator when

needed. However, in the final records that are to be tokenized, there is no turning sound

involved.
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Table 2.5: The Recording Properties for the Preliminary Analyses

Surface Notation Recording Number Speed Record Length
C 1 1 1.12
L 1 1 1.24
S 1 1 1.52

Table 2.6: The Recording Properties for the Main Set of Experiments

Surface Notation Recording Number Speed Record Length
C 3 1 2.57
L 1 1 1.52
L 3 1 4.14
R 2 1 1.37
H 2 1 2.13
A 3 1 3.07
G 3 1 3.22
C 3 5 4.02
L 3 5 2.58
R 2 5 1.45
H 2 5 2.24
O 2 5 3.04
A 3 5 2.14
G 3 5 3.53
C 3 5 3.36
L 3 5 3.09
R 2 5 1.09
H 2 5 2.23
A 3 5 2.20
G 3 5 3.40
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Figure 2.9: The corresponding physical speed for the valuesof parameter P of SensoRHEX
platform is measured in [28].

The experiments are conducted for each surface for three different speeds. For a hexapod

robot platform with compliant legs like SensoRHex, it is notpossible to measure the exact

speed of the body frame since the focus of the gait is on movingon any terrain rather than the

precision of the position. For this reason, a low speed set, amid speed set and a high speed set

of data is recorded. In the robot platform control, there is aparameter in gait control which is

directly related to the robot platform speed. This parameter is denoted asP in this work. The

approximate corresponding physical speed for different values ofP is shown in figure 2.9.

These values are taken from the experimental work on the actual platform [28]. In the figure

2.9, there is a least squares fit is plotted as well. The recordings are taken forP = 1 for low

speed,P = 5 for mid speed andP = 8 for high speed. With the aid of the measured values,

the approximate corresponding physical values of the recorded speedsP = 1 andP = 5 are

marked in figure 2.9 and there is already experimental value measured forP = 8 [28].

For each recording speed, approximately 2 minutes of recording is taken. In such an experi-

ment, 200 steps are recorded for each surface but obviously,this depends on speed. Although
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Figure 2.10: The stereo record from the Carpet Surface as .wav file loaded in Audacity.
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Figure 2.11: Comparison of approximately 1 s records of C andL. In here, the signals start
with motor sound peak and end with ground leg interaction peak and the diminishing wave of
the surface impact.

the record lengths change for different surfaces, shortest length record is considered and the

rest of the data is reduced to this length for other surfaces.The signals are filtered out from

the turning sounds and irrelevant sound data between the forward walking sessions. All of

this work is done in Audacity 1.3.12-beta environment whichis a free sound processing tool

compatible with both Ubuntu 9.04 and Ubuntu 10.10. In Audacity, it is possible to analyze

the signal in 15 digit floating point numbers varying between-1 and 1 [29]. The illustrative

figure of a waveform is given in figure 2.10. In comparative figure 2.11, the two samples from

two different surfaces do not seem to differ very much in time domain and it is quite hard to

analyze and notice the outstanding specific features out of this data.
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2.4 ANALYZING THE SIGNAL

As it is stated in chapter 2, the recorded audio signal is cut out of its sections that contain

turning and backwards walking sounds. The analyzed signalsinclude only the straight walk-

ing sounds at constant speeds. When these recorded signals are examined, there are motor

start and ground impact regions that create peaks with each footstep of the robot 2.10. In

alternating tripod gait, the robot’s three legs are expected to touch the ground at one time and

although in most of the recordings this is observed to be so, there are some footsteps sounds

that one leg touches earlier than the other two. In these cases, the signal has two consecutive

peaks. There is a rolling region where the robot’s half circular legs roll to complete one tour.

As classification units, namelypatterns, to be classified, small portions of the recorded signals

are defined astokens. Each of these tokens are small units that serve the purpose of surface

identification and the robot is expected to decide for the surface category of each token. The

signals recorded for each surface are stated to be cut into the length of the shortest one,

therefore, this way a standard size and number of tokens for each surface could be obtained.

The selection scheme of these tokens are explained in the following section, 2.5.

The examination of the recorded time domain signals could not be detected to show any

difference from surface to surface with naked eye. When these signals are listened by bare

ears, there is also no possibility of differentiating one surface from other. Although analysis

of time domain data includes important features, such asZero Crossing Rate, the distinctive

analysis mostly depends on frequency domain analysis.

There are other very important time domain acoustic identification features widely used in

sound processing applications such as reverberation time which is a property of spaces that is

related to echoes [30]. However, only zero crossing rate is assumed to be relevant to our case

since there is only sounds related to ground surface interaction are considered to be analyzed.

The Zero crossing rate has a non-trivial relationship with frequency content of a signal but

still is computed in the time-domain. It is expressed as

rzc =
1
2

N(M−1)
∑

r=0

|sgn[x(r)] − sgn[x(r − 1)]|w(m− r) (2.1)

wheresgn[.] is the standard sign function,w(n) is a rectangular window andZ(m) is computed
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Table 2.7: Statistical Properties of the Data - The Preliminary Experiment Set

Carpet Linoleum Stone
Data Size (Stereo Record): 3718682 4957716 3204345

Mean (Left Channel): -0.0218 0.1491 0.1702
Mean (Right Channel): 0.1658 0.1658 -0.0211
Std Dev (Left Channel): 0.2738 0.4785 0.3576
Std Dev (Right Channel): 0.2790 0.4836 0.3490

as an average for each tokenm= 1, 2, · · · ,M.

2.4.1 STATISTICAL PROPERTIES OF THE DATA

For a preliminary analysis, the recorded tracks are loaded into MATLAB R© environment. As

a worldwide used powerful tool, MATLABR© offers some utilities that allow users to imple-

ment basic but very important statistical operations. Table 2.7 values are calculated by the

MATLAB R© built in functions:mean(), std() andlength(). The maximum amplitude

for all signals is 1 and the minimum is -1 since the signals arenormalized in time domain.

2.4.2 SPECTRAL EXAMINATION OF THE DATA

Fourier Transform has been an important tool in sound processing area that enables to trans-

form a time domain function to frequency domain so that the frequency components and

harmonics in signals can be analyzed. Fourier transform applied to a finite length discretely

sampled data is calledDiscrete Fourier Transform (DFT)and the frequency content of the data

for a a finite length signal can be revealed very clearly with implementing theFast Fourier

Transform (FFT)algorithm [11] which is a computationally effective implementation of DFT.

The transform for a discrete signal with finite length is given as

X[k] =
N−1
∑

n=0

x[n]w[n]e− j(2π/N)kn; k = 0, 1, ..., (N − 1), (2.2)

.

Here, x[n] stands for discrete time domain signal with N samples andX[k] stands for the

transformed signal, which is complex and is not suitable fordirect use. Since this analysis is
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conducted with finite length signals, there are expected to be preceding and receding frames

for a broad analysis and a single analysis would not represent the overall phenomenon since

there are changes that are time dependent. To analyze such a signal, time-dependent Fourier

transform (also named asshort-time Fourier Transform) is used. Time-dependent Fourier

transform is represented by

X[n, λ) =
∞
∑

m=−∞

x[n+m]w[m]e− jλm, (2.3)

.

whereλ is a frequency variable andw[n] is a windowed sequence [11]. As seen with the

expression, the resultingX[n, λ) is a function of time and frequency. The Hanning window is

expressed as

w[n] =



















0.5− 0.5cos(2πn/D), 0 ≤ n ≤ D,

0, otherwise
(2.4)

.

and this window is preferred because it starts and ends with zero value for the given interval

[0 − D]. For each consecutive sample, the values at the beginning and the end of the signal

are expected to be non-zero and this affects the assumptions of Fourier Transform [11]. To

reduce this effect, Hanning window is preferred. A 1024 sample hanning window (D = 1024)

can be seen in figure 2.12.

For the purpose of analyzing the signals in both time and frequency domains, a larger signal

like a token is divided into regions calledwindowsand their spectrum are estimated separately.

To reduce the effects of truncation of the signal from these surrounding frames, a tapered

multiplier window w[n] is usually introduced while the DFT is computed [11], [5]. The

Hanning window is preferred since For a more smooth estimate, these windows are preferred

to be overlapping up to a given percent.

Expression 2.3, that is referred to asShort Time Fourier Transform (STFT)in literature as

well where with calculation,X[n] becomesN-point DFT of a finite length signal. The power

spectrum of the signal can be estimated from this complex expression. It is given as
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Figure 2.12: Hanning Window - D=1024 Samples

S[k] = |X[k]|2 = X[k]X∗[k]. (2.5)

whereS[k] of the time domain signal which is in the end a real sequence [11]. With com-

bination of the surrounding frames, an average power spectrum estimate for a larger signal

can be estimated. For implementation of FFT algorithm, theN value should be selected from

the powers of two [12]. For estimating the power spectrum forall length of signals, zero

padding up to the next power of two is implemented to the final frame to complete the anal-

ysis properly. The power spectrum estimate is directly related to the intensity of the sound

energy [12], [30]. The ensemble averaged power spectrum estimates with 20 samples for the

preliminary data set is given in figures 2.13. These spectrumplots seem to be very similar to

each other except at the lower frequency values. However, the first samples always seem to be

very different may correspond to frequency value that is below 100 Hz and therefore should

not be considered as a feature since the microphone data is not valid below 100 Hz. Since the

signal is not stationary, the ensemble averaged plots may not contain distinctive properties.

The changes in sound energy with respect to time can be seen more in detail when the smaller

time frames are analyzed.
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Figure 2.13: Ensemble Average Power Spectrum Estimate of the Record on Carpet, Linoleum
and Stone. The ensemble average plots may not be very informative since the signal is non-
stationary.
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Table 2.8: The Spectrogram Properties of the Images

FFT Size: 1024
Resolution: 1024

Window Overlap: 50%
Window: Hanning
dB scale: 0 (Dark Blue) - 150 (Red)

Computer Environment: Matlab Signal Processing Toolbox (Spectrogram() Command)

2.4.3 SPECTROGRAMS OF THE DATA

For a better intuition and understanding of the problem, therecorded signals are first listened

by ear and then their spectrum changes with time are observedwith the aid of spectrogram

tool. This has been a very important preliminary analysis inthe study. Because, the average

power spectrum estimates formed with divided frames of the larger signal is in fact collapsed

in time axis and does not provide any time information anymore. In practice, this results

in mixed spectrum of and footstep sound regions which in factdoes not yield very clear

results. In other words, motor and footstep sounds are desired to be examined as distinct

power spectrum estimates and spectrogram tool visualizes these power spectrum frames very

well. The spectrogram image can be estimated with the formula given in equation 2.3.

In figures, 2.14, 2.15 and 2.16, the spectrogram images of theacoustic signals are presented

and their properties related to representation is given in table 2.8. In these spectrograms,

there are small rectangular regions observed. When the regions are close to red, this indicates

there is more energy in the corresponding frequency band andwhen the color goes to blue,

this indicates there is lower energy. In all of three spectrogram images given, there are two

interaction sounds with the ground, however there are four energy dense regions observed

(see red regions). The first and the third peaks result from the interaction sounds whereas the

second and the third regions are a result of motor sounds. Themotor sound was shown on

the recorded signals to create high peaks in time domain and this is shown once again that

the sound energy density is quite high in the times when the legs rise from the ground. There

are also rolling regions of the three different surfaces of the preliminary experiment set as

shown in these figures. The spectrogram images give important clues about the sound energy

difference due to the impact with the different surfaces. Unlike the ensemble averages, in

spectrograms, the changes with respect to time can be observed.
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Figure 2.14: Spectrogram of Two Interactions with a Carpet (C) Surface.

Figure 2.15: Spectrogram of Two Interactions with a Linoleum (L) Surface.
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Figure 2.16: Spectrogram of Two Interactions with a Stone (S) Surface.

2.5 PATTERN SELECTION FOR CLASSIFICATION

After some general purpose inspective analyses are conducted on the preliminary experiment

set, some time is spent on the utilization of the recorded signals. The units of classification

are often referred to aspatternsin the pattern classification literature [19]. The properties

of patterns depend on user selection. Like all of the other works on pattern classification,

the patterns should be defined first, before passing on to other procedures. Patterns should

include definitive properties and in the end of classification, they are expected to be labeled

with a certain class. In the following subsections, all of the approaches to obtain relevant

patterns from the sound signals are explained.

2.5.1 SEGMENTATION APPROACH

After examining the composition of the spectrograms and theformation of average power

spectrum representations, it is decided to extract the motor sounds from the overall signal.

In pattern classification procedure, such extraction operations are calledsegmentation, [19].

With segmentation it is aimed to have an easier feature extraction process since the signal

is extracted out of the elements that are thought not to be relevant to classification. The

segmentation is intended to be implemented on pure motor sound regions.
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Figure 2.17: Ensemble Average Power Spectrum Estimate of the 20 Segmented Motor Sounds

Various methods in both time domain and frequency domain data like looking for threshold

peaks, averaged energy values had shown that the ever present motor noise is hard to segment

from the ground interaction noise due to time-domain and spectral similarities. A more pow-

erful and commonly used method calledSpectral Subtraction[31], is tried later on and its

explanation can be found in subsection 2.5.3.

The results of these segmentation approach have not been adequate enough to claim consid-

erable success. Therefore, a more holistic approach is emphasized in the following studies

and pre-filtering or segmentation to evaluate the resultingclassification performance is not

preferred under these conditions. An audio file with pure motor sounds is formed with the

successful automated segments of the signal. 20 samples arecollected in total from three

different surfaces of the preliminary data set. The average spectrum estimate of this merged

motor audio file can be seen in figure 2.17. As clearly seen, there is a considerable peak

around 1900 - 2100 Hz and the rest of the signal is similar to the other spectrum figures of

surface interaction.
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Table 2.9: Signal Lengths and Token Sizes for Each Speed - TheMain Experiment Set -
Holistic Approach

Speed-1: Speed-5: Speed-8:
Overall Signal Length: 4662310 3000000 2000000

Signal Length (Per 25 Tokens): 186492 120000 80000
Record Time (Per 25 Tokens): 4.23 seconds 2.72 seconds 1.81 seconds
Signal Length (Per 50 Tokens): 93246 60000 40000
Record Time (Per 25 Tokens): 2.12 seconds 1.36 seconds 0.91 seconds

2.5.2 HOLISTIC APPROACH

The second approach, namelythe holistic approachhas yielded very successful results that

are presented in chapter 5. In this approach, window frames for each token are selected such

that there is no distinction between motor and interaction sounds. There can be pure motor

regions in the spectrum average or some irrelevant other frames since the experiments are

not conducted in totally silent environment. This approachis found to be a more natural

perception approach, since in daily life, living creatureswith hearing ability are not known

to have any specific sound spectrum cancellation or deletionmechanisms so far to the best of

our knowledge.

2.5.3 MOTOR NOISE EXTRACTION APPROACH

After the studies with holistic approach have reached to some maturity, spectral subtraction

method is applied to some controlled experiment sets and performance improvement is exam-

ined. Spectral subtraction can be performed with

Z[k] = (S[k]γ − αQ[k]γ)1/γ. (2.6)

.

In here, Q[k] stands for the power spectrum estimate of the motor noise signal andZ[k]

stands for the subtracted signal. Withα as a weight toQ[k] andγ as a power and root, two

new parameters are introduced into analyses. As it can be seen in chapter 5, there is not much

of an improvement obtained from various values ofα andγ. This may be due to either there
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is useful data removal caused bu subtraction or among selection of α andγ, better values are

missed.
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CHAPTER 3

FEATURE EXTRACTION

In chapter 1, the role of feature selection and extraction isexplained briefly. In this chapter, it

is aimed to explain all of the relevant details of this essential procedure that is implemented in

this work. To define feature selection, one should start withdefinition offeatures. If the units

of classification are called patterns as defined in 2, features can be stated as the distinctive

properties of those entries that are intended to be classified [19]. For various problems that

require automated decision making in various applicationslike industrial, medical, research

and many others, application specific features are used. Stated as probably the most common

data set used in pattern classification literature [32], Iris data set is one of the many examples

to a set of features. Iris is a kind of plant with dazzling flowers and this data set includes

the length and width of sepals and petals (in centimeters) ofthree differentiris species: Iris

Setosa, Iris Versicolour and Iris Virginica as attributes.The sepal and petal measures are the

sets of features that differ from one Iris species to other. They can be expressed numerically

and play important roles in the iris species classification.

3.1 APPLICATION SPECIFIC SELECTION

In the iris data set mentioned in the previous paragraph, thelength and width of sepals and

petals are the attributes that let the classification procedure to be applied. These four attributes

are selected out of the quantitative or qualitative properties that are related to iris plants. In this

case, four numerical values are found sufficient enough to determine the species. However,

for various kinds of problems, there are not only numerical attributes to be involved. In

addition to numerical attributes in pattern classification, there are also binary attributes called

predicatesand there can be nominal attributes applicable as well, depending on the classifier
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input [19], [33].

By looking at different applications such as visual recognition of processedimages compared

to acoustic perception, the features in each case are expected to be different and quite ap-

plication specific. In visual perception, the source data isa 2D signal whereas in acoustic

perception via sound processing gets its data from 1D sound signal. Even for two different

visual perception applications, the relevant features would be very different.

To illustrate the case explained in the previous paragraph,let one application be to identify

the severity of cracks and irregularities of mass produced products on a conveyor belt and

other to be a medical image of the brain to identify abnormalities. The features to identify

and classify the cracks and irregularities on a product would obviously very different from the

images of the legions or the abnormalities in the brain image.

In the pattern classification literature, this set of relevant attributes are referred to asfeature

vectors. The classification is applied to the data sets that are assumed to be definitive fea-

tures to form feature vectors, however, additionally, there are more complex algorithms such

that they are able to identify the success of the selected features by giving them a weight of

contribution in the final decision [19].

3.2 THE PROBLEM OF HIGH DIMENSIONALITY

Even in the case of iris data set, which yields a rather simpleclassification problem compared

to many other applications, the number of dimensions of attributes is four which is in fact

impossible to visualize in three dimensions without any projection. This is often referred to

asThe Curse Of Dimensionalityin the pattern classification literature. The need for more

features obviously brings more dimensions to add into the feature vector and projection to

one axis is not a preferable way to reduce dimensions since itresults in loss of data. An

example of loss of data with projection is illustrated in figure 3.1. In this example, there are

two features that define two classes (The points with red and blue are separate classes). In

the 2D feature space, there is a line between that separates these two classes almost perfectly,

however when only one of the features is considered (either feature 1 or feature 2), there is

not much of a success in classification.
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Figure 3.1: A two class problem. The projection to neither ofthe feature axes yields a suc-
cessful classification.
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Most of the pattern classifier algorithms that are implemented widely can tackle with high

dimensional data. The feature vector required for a feasible classification may be much more

complex and higher dimensional. A widely used application of pattern recognition in cam-

eras, security systems and various other applications is human face detection. In the earlier

approaches to face recognition problem identification of parts of face were used according

to their geometrical properties however, for a more efficient recognition process, there are

sophisticated statistical learning methods that handles with nonlinearities in face images de-

veloped in the recent years [34].

Many of the sources in the literature support that [19],[33], more number of features tend to

increase the classification performance since they are relevant. However, it is clear that higher

dimensional feature vectors lead to computational complexity. Moreover, increased num-

ber of features do not necessarily mean higher accuracy in classification. Irrelevant features

may increase noise in feature matrix and they may lead to performance drop in classification

by causing confusions. Therefore, there is an optimizationprocess; the number of features

should be selected as high as possible such that the performance will be increased and the

computational complexity will not be increased up to an intolerable value.

3.3 SELECTION OF RELEVANT FEATURES

In most of the classification problems, there is often a huge amount of data like sampled

sound data points or number of millions of pixels. If sound isconsidered, 1 second of sound

record sampled at 441000 Hz contains 44100 points which is a huge number to handle and

manipulate. By feature extraction, this huge number is reduced to a bunch of numbers that

are inserted into a feature vector for further manipulationby classifier. Compared to millions

of data, both in means of computational complexity and storage, the extracted feature vector

is much more advantageous.

Another probable useful outcome of feature extraction is the elimination of noisy data. Fea-

tures can be stated as the fundamental properties of a pattern. The overall data derived from

each pattern is expected to include many imperfections related to measurement and data ac-

quisition errors. The weight of these noisy elements are expected to be reduced since the

selected features are expected to yield the most relevant information.
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3.4 SIGNAL PROCESSING

As it is stated in the chapter 2, Fourier Transform of a sound signal yields very important

results about its spectral contents when handled delicately. The power spectrum is derived

from the energy of the FFT vector and this spectrum has the same number of points as the

FFT transform. This is still too many number of points for a feature vector since a feasible

FFT size is at least 32 and depending on the signal, the selected FFT size should be increased

[12].

After power spectrum is derived, more operations related tofeature extraction is performed

to obtain the relevant features and to reduce the number of entries to the feature vector. An

additional operation of calculation of zero crossing rate is done in time domain and the derived

feature is added to the feature vector if desired. All of these procedures are going to be

explained in the following subsections and the details of the program flow and programming

approach is presented in the final subsection of this chapter.

3.4.1 FREQUENCY DOMAIN

Given in equation 2.2, inFrequency Domain Examination of the Datasubsection, the fre-

quency domain transform is applied to each of the tokens thatare explained in chapter 2. In

application level, there are various parameters that have effect on the power spectrum estimate

like FFT sizeN, signal window size and overlap,smoothing windoww[n] type, Various FFT

parameters are selected 3.1. While selecting those parameters, certain signal properties and

analyses are taken into account. In [12], if the Nyquist frequency is given as 44100 Hz,

1/2∆ = 44100 (3.1)

then the time interval for sample∆ is found to be 0.000011338 s. If effective bandwidth is

expressed withBe, and accuracy is defined asσm/mm wheremm is the mean value of the

signal andσm is the standard deviation; then,

BeT = 1/(σm/mm)2 (3.2)
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Table 3.1: Parameters in Frequnecy Domain Transfrom with FFT

FFT Length Window Samples Window Type Window Overlap Time Per Token
64 50 Hanning 50 % 0.9845 s
128 80 Hanning 50 % 0.8950 s
256 128 Hanning 50 % 0.6554 s
512 250 Hanning 50 % 0.6709 s
1024 800 Hanning 50 % 0.001477 s

expression may be useful in finding the length of the record required for the other given pa-

rameters [12]. Finally the number of sample pointsN should be related to∆ andT expressed

in equations 3.1 and 3.2. Finally, ifN is given as

N = T/∆ (3.3)

then all three equations are related and can be used in setting the analysis parameters [12]. It

should also be noted that, as stated in 2.4.2; for feeding a discrete signal to an FFT algorithm,

there is usually zero padding operation required to the powers of 2. Therefore,Lz zeros should

be added toN length signal. Some reasonable sets of parameters are defined in 3.1. For a win-

dow length of 128 points, by using formula 3.3,T is found as 0.002902494 s approximately.

With using formula 3.2, if an accuracy of 1/3 is desired, the effective bandwidth is found as

approximately 3000 Hz. If an accuracy of 1/2 is desired, then the effective bandwidth is found

as approximately 1000 Hz. These values may seem a bit coarse,however, when the overall

spectrum is considered to be dropped down from around 100-10000 Hz to a bunch of features,

these values seem reasonable and are considered in feature extraction operations.

3.4.2 TRAPEZOIDAL ENERGY BANDS

After estimating the averaged power spectrum, there comes the procedure of extraction of

relevant features. In sound processing literature, there are many filtering methods of the

spectrum. One of the applications that are widely used is thetriangle shapedMel Frequency

Filters applied for recognition of human speech [5],[35]. In the current application, however,

there is not a preliminary data on the informative bands since the robot footstep sound content
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Figure 3.2: Linear scale trapezoidal energy filters that average spectral energy on pre-
determined number of overlapping frequency bands.

for this specific application is examined for the first time. Anyhow, the spectrogram images

that are examined for a preliminary intuition about the sound signal in fact present useful

information about the important energy bands in this signal. As explained in the previous

chapter and seen on the spectrograms, the bands between 100 Hz - 500 Hz are quite dense in

sound energy. The rest of the spectrum also seem to contain relevant data about the signal.

Although there is higher energy observed in lower frequencybands, the contribution of fre-

quencies to classification is still unknown. Therefore, a general purpose frequency filter is

formed to obtain averaged spectrum features. The filters formed have trapezoidal shapes and

they overlap on each other. This amount of overlap is anotherexperiment parameter and

supplied in units of Hz.

The energy for each band is estimated by multiplying the averaged power spectrum matrix

with a corresponding filter matrix. This filter matrix has values between 0 and 1. The larger

the frequency overlap becomes, the finer the values get. Thisforms the inclined regions of

the trapezoid. The flat sides of the trapezoids are either 1 or0.

The energy for each bandEb is then defined as

Eb =

N/2
∑

k=0

S[k]Zb[k]; b = 1, 2, · · · , B. (3.4)

for b being the energy band (one trapezoidal area). It is clear that, as B gets higher, the

final feature vector size increases and so is the computational complexity of the process. It

is expected that the classification performance may increase too up to a certain value and

thereforeB is the value to be optimized. With considering the calculations in subsection

3.4.1, the number of trapezoidal energy bands are not selected to be more than 15 in all of the
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Figure 3.3: The final feature vector when all of the mentionedfeatures are included

studies since after this number ((10000− 100)/15 = 660 Hz), the effective bandwidth of the

analysis is not found enough in terms of accuracy for the selected FFT size and window size.

3.4.3 ZERO CROSSING RATE

Zero crossing rate as another important feature is added to the feature vector and its effects

are studied on. With the help of formula 2.1 given in 2,rzc is calculated. Being patented,

zero crossing rate is known as distinguishing whether the content of a sound signal contains

speech or not [36] since, due to the physical shape of the human sound producing organs,

the speech signal has low zero crossing rate values and high spectral energy. Since in this

case the recorded signals are unvoiced, the expected zero crossing rates are high. There may

not be dramatical difference ofrzc for each surface however it is still believed to have a high

contribution to classification and this assumption is verified in the following sections. The

zero crossing rate feature is used with a coefficient of 0.001 for being comparable to other

features in magnitude. This coefficient is determined heuristically with considering various

feature sets.
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3.4.4 DERIVATIVE OF THE SPECTRUM

As it is stated in chapter 2, there is a large number of features that can be derived from a sound

signal. After forming a variable size (B + 1) feature vector with average power spectrum

features and zero crossing rate, there is a final feature added to the feature which is called

derivative spectrum vector. This vector is denoted as∆S F. For a power spectrum estimate

S[k] with N points, letS[k] spectrum differencebe

∆S[k] = |S[k] − S[k+ 1]| (3.5)

wherek is thekth element of the spectrum, there will beN/2−1 points of spectrum differences

since the two consecutive spectrum elements are subtracted. This can be stated as a

asds=

(N/2)−1
∑

k=0

∆S[k]; m= 1, 2. . . . ,M. (3.6)
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CHAPTER 4

CLASSIFIERS USED IN THIS WORK

In the chapter 3, the details of forming a feature vector withimplementing the procedure of

extracting the relevant features are given. In this chapter, it is aimed to explain the final step

in the classification scheme, the pattern classification step. For pattern classification, there

is a large number of algorithms available in literature [33]and in this work, only four of

these algorithms are selected after an exhaustive analysison performance of other classifiers

is done.

A rule of thumb in the literature of pattern classification isNo Free Lunch Theorem. This

theorem states that there is no superiority of one classification over another before each of the

algorithms are implemented. Even compared to random guessing, there is still no superiority

[19]. Therefore, the performances of various classifiers should be tried and a classifier that

performs well on this specific problem should be selected.

4.1 ALGORITHMS IMPLEMENTED

For the preliminary experiment set, a popular and widely known algorithm calledVector

Quantizeris implemented by coding in MATLABR© environment. This algorithm have yielded

very successful results for three classes. By looking at these results, the feasibility and the

applicability of this work is demonstrated once again. However, when the main experiment

set is collected, a performance drop is observed after four classes. To tackle with this prob-

lem, various other algorithms are implemented on the main experiment set with six classes

and some of these algorithms have yielded successful results. The implementation is done

in WEKA environment which is a Machine Learning Library witha neat user interface [33].

This is an open source library developed by University of Waikato, New Zealand.
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In WEKA environment, all of the applicable algorithms are implemented for a selected data

set (B = 10, rzc andasds included). The ones with the highest performance are rankedwhich

are Logistic Model Trees, Simple Logistic, Logistic, Random Forest, Functional Tree, Mul-

tiple Perceptron, LAD Tree, Nearest Neighbor,DTNB, Bayes Net, Random Tree and Simple

CART. At the same time, the times for building the models are recorded. The same proce-

dure is repeated forP = 5 andP = 8 and the algorithms that yield consistently good results

in the shortest time are selected. During the very first trials with WEKA, the speed of the

Naive Bayes algorithm is found outstanding although its performance is lower compared to

the algorithms listed. Among the high performance algorithms, Functional Tree and Simple

Logistic algorithms are selected. Simple Logistic algorithm is not as fast as Functinal Tree

algorithm, however, it yields much better results forP = 8 case, this is why this algorithm is

selected.

4.1.1 VECTOR QUANTIZATION

Vector Quantizer Algorithm (VQ), compared to more recent algorithms, is a relatively simple

method however it is rather easy to implement and to visualize in two or three dimensional

cases. In this work, it is also shown that, for the sound data derived from the footstep sounds

of a dexterous robot body, it is very effective as a classifier, up to four classes.

4.1.1.1 CODEBOOK VECTORS

In VQ algorithm, a larger set of feature vectors in multi dimensional feature space are boiled

down to a fewer set. These new set of features obtained from multiple feature vectors have the

same size as all feature vectors and if the larger feature setis considered as being composed

of clusters, these new feature sets represent the overall cloud for each class. These new sets

of vectors are calledCodebook Vectorsand this approach is in fact originated from the needs

for lossy compression of data in signal processing area [5].This concept is illustrated in three

dimensional feature vectors in figure 4.2.

These clusters are formed according tok-means algorithm, however, they can be formed by

various different algorithms such asExpectation Maximizationor Farthest Firstalgorithms

[33].
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Figure 4.1: A cluster of data expressed with three features and three codebook vectors are
calculated and shown in the figure as C1, C2 and C3 in three dimensions.
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Figure 4.2: The k-means clustering algorithm - Adapted from[19]
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4.1.1.2 VQ AS A SUPERVISED LEARNING METHOD

VQ is a frequently used classifier in machine learning as botha supervised learning method

where the category of each pattern is provided and a model foreach class in constructed so

that the new classes are categorized based on this trainedmodeland anunsupervised learning

methodwhere there is no such assignment and learning is more natural [19]. In the former

case, the codebook vectorsµ j
1, µ

j
2, · · · , µ

j
Pc

formed from theteaching classesare collected

together to form the models for each class, likeΦ j for the jth class. The new data set with no

class assignment (named astesting data setin literature [19]) is then assigned to any of these

modelsΦ j , with respect to a certain measure like smallest Euclidean distance.

4.1.2 NAIVE BAYES ALGORITHM

Naive Bayes algorithm is simply the application ofBayesian Decision Rulewhile deciding

the category of the patterns. This algorithm considers the prior data and for future decisions,

makes use of this prior knowledge in a probabilistic manner.For a binary classification prob-

lem of classesl j where j = 1, 2, prior probability stated asY(l j) for the jth class and the

conditional density expressed asy(v|l j ), theBayes formulais stated as

Y(l j |v) =
y(v|l j )P(l j )

y(v)
, (4.1)

y(v) =
2
∑

j=1

Y(l j |v)Y(l j). (4.2)

In here, the feature value isv and its probability to belong to classj = 1 or j = 2 can be

estimated with this expression with making use of prior knowledge related to the effect ofv

on classification [19]. The Bayesian Decision Rule is then

Decidel1, if Y(l1|v) > Y(l2|v); otherwise decidel2 [19].

In WEKA, Naive Bayes Classifier is selected to be implementedwith a Normal Distribution

estimator.
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4.1.3 DECISION TREE ALGORITHMS IN GENERAL

In pattern classification literature, there is a wide branchof algorithms calleddecision tree

algorithmsthat handle the data in a hierarchical way with forming elementary and leaf nodes

and branches depending on the feature values [19]. This category of classification algorithms

is widely accepted and used and with mathematically enhanced methods (one such method is

explained in the following paragraphs), they are proven to be very powerful. In each decision

tree, there is a root node that is placed on top of every other node. From this root node, there

is a branching made with a certain set of rules. In the end, branches reach the leaf nodes and

with following all of the nodes in a decision tree, an assignment to each of the patterns is

completed. In other words, the output of a tree algorithm is aleaf node which assigns each

pattern to a class [19].

4.1.3.1 MULTIVARIATE TREES

In the introductory part of this subsection, the definition of a decision tree is given and general

properties of a decision tree is explained. In the basic decision tree approach, each decision

node has to follow a unique branch and the other branches are discarded and can no longer

have effects on the decision of the class of that specific pattern. Such trees are calledUnivari-

ate Decision Trees. Although, being simpler to visualize and implement, this distinct choice

in univariate tree decision is found to be problematic in many of the cases since many other

probabilities are discarded so quickly. Especially in cases where the distribution of the infor-

mative and discriminative features inF dimensional feature space can not be exactly parallel

to the measured data that forms patterns to be classified [19]. In such cases, there are trees

calledMultivariate Decision Treesthat are formed with delicate mathematical rules and they

consider the effect of multiple branches on each decision node.

4.1.3.2 THE LOGITBOOST ALGORITHM

In both statistics and pattern classification literature, there is a concept calledMaximum Like-

lihood (ML). For a normal distribution of probability densities for y(v|l j ), it can be safely

assumed that the normal density is with meanµi, even though the exact values related to this

density is not known. The Maximum Likelihood method maximizes the probability of getting
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Figure 4.3: The univariate tree generated by Simple CART algorithm for P=1, Eb = 8. This
simpler type of classification does not yield satisfactory results for out problem.

these samples that are observed in reality [19].

An improved method for classification is suggested with the name calledlinear logistic re-

gression. The fitting procedure in this type of regression is based upon finding the maximum

likelihood estimates for parameterβ j for class j, if a regression problem is given in as

f (v) = βv (4.3)

wherev is an input vector of features. For the linear logistic regression, the posterior prob-

abilities of J classes are estimated. By implementing LogitBoost Algorithm, these posterior

probabilities can be estimated [37].

Logitboost algorithm is given in Figure 4.4. This algorithmfinds the maximum likelihood

linear logistic model by forward stage-wise fitting ofF j =
∑

m
fm j(v) where fm j is stated as

the arbitrary functions of the input variables that are fit byleast squares regression [37]. This

procedure is continued until convergence is obtained at iteration Qi. In here,y∗i j is given as

the observed class membership probability taking value of 1whenvi is of classj and 0 for .
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1.Estimate the weights:
hi j = 1/r, i = 1, 2, . . . , r j = 1, 2, . . . , J, F j(v) = 0
y j = (v) = 1/J,∀J

2.Repeat step (1) forq = 1, 2, . . . ,Qi

a)Repeat forj = 1, 2, . . . , J
i)For the jth class, calculate working responses and weights:

zi j =
y∗i j−yi (vi )

yj (vi )(1−yj (vi ))
hi j = y j(vi)(1− y j(vi))

ii)Using weightshi j, fit a least squares regression ofzi j to vi .

b)Set fm j(v)← J−1
J ( fm j(v) − 1

J

J
∑

c=1
fmc(v)), F j (v)← F j(v) + fm j(v)

c)Updatey j(v) = eF j (v)

J
∑

c=1
eF j (v)

3.Output is arg maxjF j(v)

Figure 4.4: Logitboost Algorithm applied to a J class problem - Adapted from [37]

Table 4.1: Parameters of FT Algorithm in WEKA

Binary Split (Conversion to Binary) No
Error On Probabilities (Minimize RMS error (Selected)

/Misclassification Error (Not Selected) Not Selected
Minimum Number of Instances for Splitting in a Node: 15

Model Type: FT
Number of Boosting Iterations: 15

Weight Trim Beta: No

4.1.3.3 FUNCTIONAL TREES

When a better performance algorithm is sought, various algorithms are applied to the selected

sets of the main experiment set in WEKA environment. Among these algorithms, Functional

Tree Algorithm, is found to be both time saving and more accurate compared to 12 other high

performance algorithms that are implemented.

TheFunctional Tree Algorithm(FT), combines multiple univariate trees with linear functions.

As the decision tree gets larger, there are multivariate nodes are created and this tree is pruned

with keepingfunctional leaves within the tree. This approach is stated as the first one to

implement functional nodes and functional leaves all together [38].

In WEKA implementation, a logistic regression model is combined with a decision tree for
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1.If Stop-Criterion(DataS et)
-A Leaf Node is returned with a constant value.

2.Build a model with ConstructorΦ
3.For all elements of~v ∈ DataS et

-Find v̂n = Φ(~v)
-Update~v with new attributes ˆvn.

4.Pick from the original~v and the new attributes ˆvn in order to maximize a selected merit-
function.
5.For alli of DataS et

-Treei = GrowTree(DataS eti ,Constructor)
6.Based on the selected attribute,Tree is returned as a decision node that contains modelΦ

and descendantsTreei .

Figure 4.5: Pseudo Code of the GrowTree Function of the Functional Tree Algorithm for
inputsDataS et,Constructor- Adapted from [38]

finding maximum likelihood estimates with using LogitBoostalgorithm [37]. Logistic re-

gression as explained above is a linear statistical model that includes fitting the data set to a

probabilistic function which usually yields a dichotomousoutput [39]. In case of LogitBoost

algorithm, a linear logistic regression function is used tomodel the posterior class probabili-

ties. In table 4.1, all of the WEKA parameters are given for classifications.

4.1.4 SIMPLE LOGISTIC

In simple logistic classifier, there is no decision tree formed but LogitBoost algorithm is com-

bined with simple regression functions which are used as base learners. A base learner or a

weak learner is like a classifier which is better than chance and includes only one node of

decision [19]. The logistic model is to be fit using linear regression functions as base learn-

ers. Some parameters for this algorithm like maximum numberof boosting operations are

common with functional tree classifier, since they both makeuse of LogitBoost algorithm.

In functional tree algorithm, stopping criteria is to reachthe leaf node whereas in the case of

simple logistic algorithm, heuristic stop is used which in fact fastens the procedure.
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4.2 CROSS VALIDATION

Regardless of the choice of classification algorithm, thereis a certain base rule in selection

of patterns that is the testing data should not be used in model training. Otherwise the result

would clearly be biased in favor of the correct decision. Thetoken for testing is put into the al-

gorithm database for the first time and decision is made only for newly introduced tokens. For

a larger and statistically more reliable data set with larger number of patterns used in model

training,cross-validationtechnique is preferred. In cross validation, the tokens excluding the

test token are can be fed into classifier to form the model and when all of these tokens are fed,

the technique is calledleave one out cross-validation[19]. For cross validation, the number

of excluding tokens are calledfoldsand the selection becomes leave one out cross validation

when the number of folds are selected asM, the number of tokens for each class. In this case,

the model of the class that the selected token belong to will haveM−1 tokens obviously since

the test data cannot be fed into classifier model.

In cross validation, the class models are trained once againfor each token. This makes this

method to be more computationally complex. However, in thisstudy, this approach is used in

all classifiers, compared to separate training and test setssince this methods always providers

more statistically reliable data with more number of tokensput into models. However, the

results may be rather optimistic since, the training set andthe testing set is obtained from the

same data set.

4.3 THE EXECUTION PROCEDURE

So far, the patterns, the features and the methodology to be used in experimentation are all

explained in a detailed manner. At this point, the implementation of all of these concepts is to

be given. Since there is a lot of parameters that may affect the classification results, a planned

and organized way of experimentation is followed and implemented to collected data.

4.3.1 THE PROGRAM FLOW

The MATLAB R© code structure is formed with a function calledmean() with experiment

parameters such as experiment number. With the given experiment number, the program
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Figure 4.6: The flow of the overall procedure

browses into Experiments folder and loads the given experiment parameters. Later on, the

main program opens the Surface Records folder and the time series signals are loaded one by

one and saved as .mat files for the further manipulations. Depending on selection of feature

extraction flag, the averaged power spectrum estimates of the signals are estimated and saved

in folders. If this flag is not set, the program searches for any saved spectrum data and if there

is no data found, the program throws an exception. In either of the feature extraction flag

inputs, the program loads previously saved data and forms feature matrices with the given

properties and records these matrices in a format that WEKA can load. For implementation

of the VQ classifier, there is another parameter. When this parameter is selected, k-means

algorithm is used with leave one out cross validation explained in 4.2.

The overall procedure is explained with a chart given in 4.6. In this chart, all the procedure

starting from the signal preprocessing to the end of classification where an ID is assigned for

each surface is shown. The procedure is the same for any selected classifier algorithm since

this is supervised type of learning.

48



Table 4.2: Experiment Sets Table - In both of these experiment sets, Hanning window is
preferred

Experiment Set -Es FFT Length Window Size Window Overlap Token Size
1 1024 884 50% 20
2 1024 884 50% 25
3 256 128 50% 25
4 256 128 50% 50

Table 4.3: Experiment Numbers Table- In all of these experiments, the main data set for
recordings is used. The classes forC = 6 cases are (C, L, R, H, A, G) and in other cases, the
classes added or removed are denoted with+ and - signs.

Experiment # -En Eb rzc ∆Eb Es Classes P
1 5-15 Yes Yes 1 C,L,S 1
2 5-15 No No 1 C,L,S 1
3 5-15 Yes Yes 2 C,L,S 1
4 5-15 No No 2 C,L,S 1
5 5-15 Yes Yes 3 C,L,R,A 1,5,8
6 5-15 Yes No 3 C,L,R,A 1,5,8
7 5-15 No No 3 C,L,R,A 1,5,8
8 1-15 Yes Yes 3 C,L,R,H,A,G 1,5,8
9 1-15 Yes Yes 4 C,L,R,H,A,G 1,5,8
10 1-15 No No 3 C,L,R,H,A,G 1,5,8
11 1-15 Yes No 3 C,L,R,H,A,G 1,5,8
12 1-15 Yes Yes 3 C,R,H,A,G 5
13 1-15 Yes Yes 3 C,L,R,H,O,A,G 5

4.3.2 THE EXPERIMENT PLANNING

There can be a large number of parameters that would surely affect the results, no matter what

minor or major the changes are. These parameters are mainly the selection of patterns, the

features and FFT parameters and the classifier selection andclassifier settings. Considering

all these, the token size is taken as the first identifier and two type of experiments are formed

with fixed FFT parameters and upon these selection, a controlled set of experiments are im-

plemented. This list of experiment setsEs are given in 4.2. In these sets, the main variables

are the features to be added to the feature matrix and every experiment numberEn has an

experiment set. The sets of experiments are given in 4.2.
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Table 4.4: A Sample Confusion Matrix forEn = 3, B = 8 andPc = 3

C L S
C 24 0 1
L 0 22 3
S 0 1 24

4.4 ANALYSIS OF CLASSIFICATION PERFORMANCE

In order to select and implement the best set of parameters, features and classification algo-

rithms in further applications, there should be a performance criteria defined. In this study, the

two main considerations in this selection have been the accuracy of classification with respect

to certain metrics and computational complexity of the procedure implemented. There should

be a metric such that it should yield the overall performanceas well as the performances of

classification per class. In the following subsections, theperformance metric is explained in

detail.

4.4.1 CONFUSION MATRICES

Confusion matricesare used quite frequently in expressing the performance of classifiers. A

confusion matrix hasC rows and columns whereC is the number of classes in a classification

problem. For a confusion matrixA, the rows (or columns) stand for the true classes and

columns (or rows) stand for the predicted classes. In this assignment, leti = 1, 2, . . . ,C

denote the row index andj = 1, 2, . . . ,C denote the column index; the diagonal elementsa j j

correspond to the correct guesses whereas the off-diagonal elements wherei , j correspond

to incorrect guesses [40]. WEKA machine learning software uses this representation for

performance measure as well.

A couple of sample confusion matrices are given in 4.4 and 4.5. Table 4.4 is for the prelimi-

nary experiment set and the table 4.5 is for the main experiment set.
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Table 4.5: A Sample Confusion Matrix for Experiment,En = 8, B = 8 andP = 1

C L R H A G
C 17 2 1 0 1 4
L 6 42 0 0 1 1
R 0 0 25 0 0 0
H 0 0 4 21 0 0
A 1 1 0 0 23 0
G 3 2 1 0 2 18

4.4.2 OVERALL SUCCESS RATE

When all of the diagonal elementsa j j are summed, a measure on overall performance of a

classifier can be defined. In

SA =

∑

a j j
∑

ai j +
∑

a j j
.100(%) (4.4)

where thesuccess rateof confusion matrixA is represented asSA in percents. Since this

measure is scalar, it can be an input to various discussions and plots of performance evalua-

tion. For the confusion matrices given in 4.4 and 4.5 the success rates are 93.33 and 83.43

respectively.

4.4.3 SUCCESS RATE PER CLASS

Hence the confusion matrix yields detailed information formisclassification per each class,

performance per class can also be expressed. Derived from the confusion matrixA, success

rate per class is given as

S j =
a j j

ai j + a j j
.100(%) (4.5)

where j is the class whose performance is questioned. To illustrate, in 4.5, the success rate

for G is 72 %, L is 84 % and R is 100 %.
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4.5 CONSIDERATION OF COMPUTATION TIME

This work is intended to be used in a real life robotic application. As explained in 2 in detail,

in order to be a useful information, the decision on the surface type should be as fast as

possible, to contribute in the gait parameters in the dynamic environment described. For this

reason, computational complexity of the overall process isvery important in applicability of

this property of the robot.

It is mostly theoretical to calculate the overall time spenton a computation since the computers

used do not operate in real time and they are not totally deterministic. There is, however,

a general estimate to be formed by averaging the time ofQ runs for the performance. In

this study, the computational complexity evaluations are based on such averaged benchmark

values and unless otherwise stated, the number of runs is selected asQ = 10 and the time is

averaged for 10 runs.
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CHAPTER 5

EXPERIMENTAL RESULTS AND DISCUSSION

In this chapter, the experimental results of this work are presented. Although there are hints

inserted in the overall text on these results, they are not supported by numerical values up to

this point. In the following sections, following the experimental schemes that are determined

carefully, the demonstration of success of classificationsfor the different experiment sets are

done in a very detailed manner. There are more scans among thegiven experiment sets how-

ever, the number of all of these analyses is too much, therefore, a relatively reduced number

of experiment results are presented in this thesis. In the graphic or table presentations, the

general trend is preferred to be shown with the best representative cases and the rest of the

similar results are mentioned in the text. However, the unexpected situations that have been

observed are necessarily presented and discussed.

5.1 EARLIER VECTOR QUANTIZER WORK ON PRELIMINARY DATA

SET

The preliminary data set is explained in section 2.2. The very first analyses are conducted in

this data set with different parameters of VQ classifier like number of codebook vector and

the number of base features and the addition of featuresrzc or asds. Between experiment sets

1-2 and 3-4, the only difference is the addition of these features to base features. Between

these two sets, the token size varies. The tables 5.1 and 5.2 show that the addition of these

features improve the performance significantly from 75-85%to above 90%. It is expected

that with a shorter token size (With larger token sizeM) the success rate should drop since

the information available is a bit less. However, for the longer duration tokens, the success

rate has been slightly lower. With the longer duration records, more noise is present which is
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Table 5.1: Some outstanding results of varying number of average spectrum features - B, for
fixed Pc = 2

Experiment Number -En Variable= B Performance
2 12 75.00 %
2 10 76.67 %
1 12 93.33 %
1 10 93.33%
4 12 85.00 %
4 10 74.67 %
3 12 98.33 %
3 10 94.67 %

Table 5.2: Some outstanding results of varying number of average spectrum features - B, for
fixed Pc = 3

Experiment Number -En Variable= B Performance
2 12 78.33 %
2 10 84.00 %
1 12 98.33 %
1 10 93.33%
4 12 77.33 %
4 10 84.00 %
3 12 93.33 %
3 10 98.33 %

believed to shadow better decisions a little more than the experiment set with shorter token

size. In other words, is more likely to be a coincidence, the general trend is expected to be the

otherwise and this point is demonstrated in the experimentswith the main experiment set.

As stated in 4, VQ algorithm applied in MATLABR© environment is used while doing the

preliminary analyses. Instead of the built inkmeans() command, an implementation of the

algorithm with the help of web sources [41], is preferred forlearning and implementing a

specific classifier. In this application, the experiment parameters that are specific for the clas-

sifier are listed as the number of k-means iterations to find the vector centroidsµ j
1, µ

j
2, · · · , µ

j
Pc

,

the initial number to start iteration and the number of codebook vectors for each class repre-

sentation. Among these, the number of iterations is in fact in an endless loop therefore, the

algorithm stops when there is no smaller distance that can becalculated. The initial number

to start iterations is always selected as the first element ofthe feature vector.
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As shown in table 5.1 and 5.2, the results of this particular set have been found quite successful

therefore the applicability of this study is proven and a more broad set of records including

different speeds are made.

5.2 VQ IMPLEMENTATION TO FOUR CLASSES OF MAIN DATA SET

The main set is recorded and first examined with VQ. When all ofthe six or seven classes (for

P = 5 only) are examined, the success rate have dropped significantly (Discussed and shown

in the following sections more in detail). For this reason, the number of classes is increased

gradually and a set of experiments is done first with four classes. These experiments are

covered in experiment setsEn = 5, 6, 7. The results for these experiment sets for different

speeds are all examined in detail for a better approach for classification with more number of

classes.

As seen in figure 5.1, forPc = 10 case, the performance of different speeds differs. Especially

for P = 8 case, the success rate drops significantly and forP = 5, there is considerable amount

of drop (around 8% in average) compared to theP = 1 case. Moreover, the success rate does

not seem to be variating for different number of base features.

When the effect of the featuresrzc and asds are examined in figure 5.2, it is seen that the

improvement that is brought by these features is very significant around 20 % forP = 1. On

the other hand. the improvement forP = 5 is very low and there is slight drop of performance

for P = 8 case.

The effect ofPc is examined for different speeds. ForP = 1 andP = 5 cases, the best results

are taken aroundPc = 10−15 and there is not much of an improvement in any of these cases.

The success rate forP = 1 is in fact found applicable (around 80%) but forP = 5 case (around

70%), a performance improvement is sought. In figure 5.3, thesearch results for selectedPc

values are given. Unfortunately, with tuning the number of vector centers, there is not much

change observed.

The success rate forP = 8 case is not found satisfactory and there are ways for improvement is

sought. In the previous paragraphs, an unexpected performance drop with additional features

was mentioned. With the implementation ofEn = 6, the effect of this could be examined.
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Figure 5.1: The performance of VQ for different speeds with featuresrzc andasds included

56



4 6 8 10 12 14 16
30

40

50

60

70

80

90

100

Classifier − VQ, E
n
=7, P

c
=12

Number of Base Features

S
uc

ce
ss

 R
at

e 
(%

)

 

 

Speed−1
Speed−5
Speed−8

Figure 5.2: The performance of VQ for different speeds without featuresrzc andasds
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Figure 5.3: Observing the performance change with different values ofPc for P = 5
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Figure 5.4: Seeking the best performance with tuning the values ofPc for P = 8

From the figure 5.4, it can be said that for VQ classifier for many diversifying values of

Pc, the addition of featureasds makes a deteriorating effect on classification performance.

Moreover, there is the expected increasing trend of successrate with increasing number of

base features is finally observed withEn = 6 for P = 8. Although there is an improvement

found for P = 8 case which in general has very inadequate success rate around 50 %, the

amount of it (approximately 15%) is not found satisfactory.This can also be stated as a

reason for searching for a a different classifier, in addition to the problem with larger number

of classes.

5.3 WEKA IMPLEMENTATION ON THE MAIN DATA SET

As stated in the previous section, the number of classes haveincreased, VQ in supervised

mode did not perform quite well. Therefore, as explained in chapter 4, WEKA environment

is preferred since there is a large number of classifiers available and easier to implement.
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Once a classifier is selected among others after evaluating with respect to performance and

time criteria stated in 4, then it can be embedded into the robot’s controller PC.

After the VQ performance is seen to be dropping with five classes, before moving on to

other classifiers, VQ algorithm implemented in MATLABR© environment is confirmed with

WEKA’s VQ. In WEKA, the supervised VQ is named asLearning Vector Quantization Al-

gorithm - 1 (LVQ1) and comes with WEKA 1.8 Classification Algorithms plug-in. All of

the experiments conducted in MATLABR© environment are confirmed in WEKA environment

and they have yielded the same results as expected.

As it is stated in previous chapter in 4, there are various algorithms implemented in WEKA

environment. A sample performance of these algorithms onEn = 8, B = 10 and their per-

formance forP = 1 is given in figure 5.5. In this figure, there are algorithms observed with

a better performance than FT and SL, however, the time passedfor estimation is very high

compared to FT or SL. For instance, it takes 7.5 s in average totrain a model and assign a

class to a model. Moreover, not every algorithm yields a results, i.e. Random Tree classifier

has diverged forP = 5 case. For other speeds and other number of base features, this perfor-

mance varies as expected, however, when the time and convergence is considered, FT and SL

is seen to be much better after many number of trials.

5.3.1 TIME COMPLEXITY VS PERFORMANCE

Since there are a large number of experiments including all experiment sets, all of the experi-

ments are not repeated for all classifiers and all feature sets. There are sample cases selected

for each speed and each experiment set and sample classifications are done. In figure 5.6

the results forEb = 10, rzc and∆Eb is given for different speeds,P = 1,P = 5,P = 8. In

these graphs, SL classifier and FT classifiers are both observed to have higher performance

compared to VQ and NB. In especiallyP = 8 case, SL shows higher performance, in other

experiments sets withEb = 1, 2, . . . , 15 however, it should be noted that the time scale of

the graphic is logarithmic. The time consumed by SL algorithm is relatively high compared

to other algorithms. Yielding results around 2.5 s for each model training and classification

procedure, computation by SL is not found feasible.

In WEKA environment, all of the applicable algorithms are implemented for a selected data
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Figure 5.5: The performances of the applied algorithms in WEKA
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Figure 5.6: The Performances of Classification for Different Speeds,B = 10, En = 8 (Time
axis is in log scale)
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Figure 5.7: The Performances of Naive Bayes and Functional Tree Classifiers forP = 1,P =
5,P = 8 (En = 8)

set (B = 10, rzc andasds included). The ones with the highest performance are rankedwhich

are Logistic Model Trees, Simple Logistic, Logistic, Random Forest, Functional Tree, Mul-

tiple Perceptron, LAD Tree, Nearest Neighbor, DTNB, Bayes Net, Random Tree and Simple

CART. At the same time, the times for building the models are recorded. The same proce-

dure is repeated forP = 5 andP = 8 and the algorithms that yield consistently good results

in the shortest time are selected. During the very first trials with WEKA, the speed of the

Naive Bayes algorithm is found outstanding although its performance is lower compared to

the algorithms listed. Among the high performance algorithms, Functional Tree and Simple

Logistic algorithms are selected. Simple Logistic algorithm is not as fast as Functional Tree

algorithm, however, it yields much better results forP = 8 case, this is why this algorithm is

selected.

NB algorithm is seen to be quite fast compared to other algorithms. It is selected for this

reason and its performance is compared with FT in the following graphics.
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5.3.2 NAIVE BAYES VS FUNCTIONAL TREE ALGORITHM

For any confusion matrixA derived from any classifier, with the help of the success rateSA

stated in chapter 4 gives the most relevant information regarding the classifier performance.

However, this does not necessarily mean that for a high success rate, success rate per class

S j is balanced per class. In other words, there can be some classes that are misclassified

quite often and there may be classes that are classified perfectly. The results for classes are

examined more in detail in this chapter, the success rate perclass statements are embedded

into discussions on classifiers.

The comparative evaluation between FT and NB performances is done in figure 5.7. In gen-

eral, FT is seen to yield more successful results that has a clear increasing trend as the number

of features increase compared to NB. In NB results, there is not a clear increasing trend. In

both of these graphs, a peak is observed forEb = 3 andP = 5. It can be commented that it

is a coincidental case where very definitive features come together. Rather than focusing on

local maximums in the graphs, general trend is observed and evaluated. However, it is found

quite normal to find such outlying performance while scanning the parameter surfaces. For FT

classifier,P = 5 case seems to be the most successful one and there is a varying performance

of P = 1 andP = 5 for NB. For both of the classifiers,P = 8 case is the worst one. As stated

above, SL classifier have performed on this speed higher compared to other classifiers, even

to FT, however, it is not preferred since this classifier has been found slow for this application.

In terms of classes, NB performs quite well with classes R andH that can be safely stated as

88% or higher. However, there is no diagonal dominance obtained for class G atP = 1 case

with this classifier in any of the experiment sets. This changes to class C forP = 5 and A for

P = 8. This drops the overall performance with a considerable amount. G is confused with

various other surfaces and this reminds of the performance drop trend of VQ. In VQ classifier,

as the number of classes increased, the performance droppedconsiderably and especially the

classification results of grass has been wrong in most of the time.

For FT classifier, success per class is rather homogeneous around 80% whenEb > 5, although

the highest number of confusions are originated from A and G surfaces. ForEb < 5 the

homogeneity is still kept within 10-15 % range and per class success rate is minimum 50%

and diagonal dominance is not disturbed at all. The classes that are confused often do not seem
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to change dramatically for different speeds for this classifier compared to NB. It is useful to

note that the mostly problematic class forP = 8 is A for both classifiers. In speedsP = 1 and

P = 5. the classification rates for R and H are higher than 90%.

5.4 ANALYZING THE EFFECT OF THE SELECTED FEATURES

The number of base features is a critical concern for selection. In the beginning of the study

it is assumed that up to a certain limit, the increase of the average spectrum sums named

as base featuresEb explained in 3 with its mathematical expression, is expected to result in

the increase in classification performance. After some point however, there is a drop or a

saturation expected. All these phenomena are observed in the graphs that sweepEb values on

x-axis and show the success rate in y-axis.

In the previous section, it is assumed that with the additionof zero crossing raterzc and sum

of spectrum derivative∆Eb to the feature vector as new features should improve the classi-

fication performance in terms of success rate although they bring additional computational

complexity. Various experiment sets are formed based upon this assumption and the most

suitable algorithms are decided this way. Therefore, this assumption is to be checked and

verified once again with solid evidence on some common experiment sets. In the following

paragraphs, the detailed analysis of the effect of addition of each new feature on performance

is made. The number of base features,B is selected to be 15 at maximum due to the reasons

explained in 3.4.1 in detail.

5.4.1 THE EFFECT OF NUMBER OF AVERAGE SPECTRUM FEATURES

In this work, all of the figures presented indicate the saturation or drop in success rate as the

number of base features passes a certain limit. To illustrate this phenomenon, it can be stated

that on figure 5.7, for the FT classifier, up toEb = 6 the success rate seems to increase with a

higher rate of change, excluding theEb = 4 case forP = 5 which can be stated as an outlying

performance for a relatively low number of features. The success rate is then observed to be

saturating to values slightly higher than 80 % with some fluctuations for each speed. For NB

classifier however, 70 % success seems to be a saturation value afterEb = 2 for P = 8 and

the rest of the speeds seems not to be effected at all except the outlying case withEb = 4 and
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P = 5 again. In figure 5.8 for FT, the increase and saturation trend is more clear since there

are no additional features likerzc or ∆Eb to boost the performance for the number of base

features.

As stated in chapter 3, the base features are in fact some sortof filters and their success

mostly depend on how well that they can emphasize the differentiating features of the signals

for different surfaces and for FT classifier, a fine performance can bederived with optimizing

the number of features so that there is performance improvement and the complexity is not

increased that much which can beEb = 7 or Eb = 8 case. In the case of reduced number of

base features, it is observed that C, L, A and G classes are more confused forNB, where the

performance of L is improved with the increasing number ofEb.

5.4.2 THE EFFECT OF ZERO CROSSING RATE FEATURE

Figure 5.8 clearly shows thatrzc improves the performance forP = 1 andP = 5, Eb < 5 cases.

After this point, there is relatively not much increase observed in performance; depending on

speed, it is around 2-7 %. The performance boost is mostly seen with P = 5 case.

5.4.3 THE EFFECT OF DERIVATIVE SPECTRUM FEATURE

Similar to zero crossing rate, the addition of this feature shows its best effect on lower number

of base features. After a certain point likeEb = 5 the performance improvement is not that

high and there are even drops of 1-2% for someEb values. In experimentsEn = 5, 6, 7 with

VO classifier, it was seen than forP = 8 case, there was a significant drop. However with

a more sophisticated probabilistic classification procedure, the possible detrimental effect of

this feature is reduced and the cases only when this feature could be utilized contribute in

overall classification. This cannot be directly proved but depending on the data and the results

available, it is the best comment that could be suggested.

5.5 ANALYZING THE EFFECT OF TOKEN SIZE

For a shorter token size, the computation time is expected todrop. For this reason, the token

size is reduced by half by setting parameterM = 50. In this set of experiments, the size of
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Figure 5.9: The Performances of Naive Bayes and Functional Tree Classifiers for a shorter
token size, forP = 1,P = 5,P = 8 (En = 9)
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Figure 5.10: The Performance Comparison for Different Token SizesM, for Average of Per-
formances ofP = 1, P = 5, P = 8
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the overall sound data is the same, however, the data is divided into 50 tokens. As shown is

figure 5.9, there is considerable amount of performance droparound 11-15 % especially for

P = 5 case these values are likely to be close to 15 %. A more clear graph for comparison

means is given in figure 5.10. These graphs for NB and FT are formed with averaged values

for all three speed values. It is also useful to note that the aforementioned drop pattern for

increased number ofEb is observed in FT graph forM = 50 case as well. There is only one

case of improvement observed for caseEb = 1 andP = 8, however, this case is not applicable

at all becauseEb = 1 does not yield high success rates that are expect and in average there is

no increase observed in any of the cases, this is found more considerable.

In terms of timing, where a benefit is sought by decreasing thetoken length, the estimation

time is 0.62 s in average forM = 25 case and 0.61 s in average forM = 50 case. Depending

on the application, this may seem to be a less improvement however there may cases where a

real time decision making procedure is of concern. Therefore such an improvement could be

found worth to apply in exchange of performance drop. There may be cases where accuracy

around 70 % would be enough and the emphasis is put on fast decision making and there may

be cases where the accuracy is important and time complexitycan be a compromise. In this

particular application higher accuracy is preferable, even though the off-line training time is

increased considerably for multiple experiments.

5.6 ANALYSIS ON CLASSES

A new class is introduced to the system forM = 25. This new class O (Shown in 2.7 is a

bare surface unlike the surfaces that are covered or partially covered like carpet, linoleum,

grass and concrete tile with autumn leaves. Surface stiffness is expected to be higher for class

H, since H surface is made of wood and not from concrete. As seen in the photographs, this

surface is similar to marble tile in terms of geometrical shape and dimensions. The surface

stiffness is estimated to be close to marble tile as well compared to other surfaces. Surface A

is also a type of concrete tile however, there are areas covered with random soil and grass as

well as the autumn leaves.

This new class is expected to lower the performance since it is quite similar to surface R and

A. The results (an illustrative sample given in 5.3 in confusion matrix form) reveal that the
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Table 5.3: A Sample Confusion Matrix for ExperimentEn = 13, B = 10

C L R H O A G
C 18 1 0 0 2 3 1
L 1 22 0 0 0 1 1
R 0 0 18 3 4 0 0
H 0 0 0 24 1 0 0
O 0 0 6 3 16 0 0
A 1 1 0 1 0 22 0
G 0 2 0 0 0 2 21

surface is often confused with marble tile. There is a performance drop observed to be around

10% for R and slightly less for other classes and close to 10 % in general. There is a case

where the success rate is the same for six class and seven class line, however, the confusion

matrices of these two cases are not exactly the same. If the FTclassifier is observed, it

seems to yield considerably successful results around 80 % for valuesEb > 7. For both

classifiers, the success rate is increased with a considerable amount with five classes where

linoleum surface is removed. As previously stated, this surface is often confused with carpet.

In 2.8, the carpet surface is shown on linoleum surface. All of the carpet surfaces recorded

are actually on linoleum surface. The overall performance of the classification with different

number of classes is shown in figure 5.11. The success rate is observed to be very high in 5

class (En = 12) around 90 %.

5.7 THE EFFECTS OF SPECTRAL SUBTRACTION

Spectral subtraction of the motor noise is considered as an element for performance increase

since the data includes a high amount of motor sound that is believed to mask the interaction

sound. For this purpose, a motor model formed with 20 s of motor noise for each surface is

extracted from the audio data manually and this data is controlled carefully by human ear for

not containing any interaction sound. The motor model is subject to the same power spectrum

derivation procedure explained in section 2. First introduced in 1979 [42], spectral subtraction

concept is known for a long time in signal processing literature and it has impressive success

on various applications like canceling engine noise.

Exhausting variousα andγ values in 2.6, 0.5 forα and 2 forγ is observed to increase iden-
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Figure 5.11: The Performance Change With 7 Classes for Classifiers NB and FT (En =

12,En = 8 andEn = 13)
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Figure 5.12: The effects of spectral subtraction forP = 1

tification performance for some of the cases. These cases aregiven in figures 5.12, 5.13 and

5.14. However, the difference is not as much as expected (around 3% at maximum). This

may be due to continuation of the acoustic impact data in the signal although magnitude of

the impact is to decay while the legs turn for the next impact and subtraction results in loss

of this data. In other words, some useful data for classification may have been erased from

the spectrum when some portion of the signal is emphasized. The best performance increase

is observed for speed 8, M=25 seen in 5.14. This part of the study is not quite focused on,

therefore, the methods that are applied may be insufficient and there is not many experiments

conducted to reach a conclusion.
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Figure 5.13: The effects of spectral subtraction forP = 5
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Figure 5.14: The effects of spectral subtraction forP = 8. The most successful results of this
operation is observed for this speed.
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CHAPTER 6

CONCLUSION

In this work, acoustic surface sensing and perception for a mobile robot is examined. With

a legged mobile robot, there can be various sensory ways of determining the surface type

and acoustic sensing is claimed to be a considerable alternative among other ways of sensing.

The experimental setup, namely the SensoRHEX robot, that inspired the idea of applicability

is able to travel in both indoor and outdoor surfaces and the data collected from available

surfaces are examined for this purpose. With the aid of delicate feature extraction schemes

and sophisticated pattern recognition algorithms, the results have yielded high success rates.

At this point it should be emphasized that when the same data was listened by miscellaneous

people, the difference between most of the surfaces could not be told at all. There are various

approaches tried on the recorded signals but in all of the experiments a more natural sound

data is preferred. This means the ambient sound was not particularly reduced. However, the

ambient data is checked for any misleading features that mayeffect the result of classification

in a positive but wrong way since it is not related to the surface interaction sound. In other

words, the data is collected carefully for not leading to anymisconceptions but at the same

time the random noise coming from the ambient is rather high and similar to daily hearing data

of living creatures. The collected data is in fact a combination that is closely related to surface

stiffness and damping values since there is an impact type interaction in the touch of each

leg. Moreover, the data should also be related to surface roughness since there is ground-leg

interaction during the rolling motion of the C shaped legs. There are also elements expected

from the sound wave reflections that are related to the acoustic properties of the environment.

In this study, the overall effect of these elements are included in tokens. The underlying

physical mechanism is complicated and the separate effects of each factor is not focused on,
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since the signal is not preferred to be recorded in a strictlycontrolled environment. On the

other hand, the focus has been on seeking ways to utilize the footstep sounds that naturally

occur in SensoRHEX platform.

The power spectrum estimate derived with discrete time Fourier transform (DTFT) is expected

and found to be very informative of the surface type since there should be unique distribution

of sound energy on different frequency bands for different types of ground interaction as well

as the different types of surfaces. Multiplication with the trapezoidal filter bands have simpli-

fied the estimate to a selected number of features which is in fact a controlled parameter in

experiments. These filters cover a reasonable spectrum of 100-10000 Hz and as the number

of bands increase each band gets thinner. For the finer bands,functional tree algorithm per-

formed much better compared to various other algorithms whereas the performance of Naive

Bayes algorithm did not change very much and even decreased in some of the cases. Various

algorithms are evaluated in terms of timing concerns and theone closer ones to the high suc-

cess rate values and low time values in the computational complexity vs success rate graph are

preferred. The zero crossing rate derived from the time domain data and the sum of derivative

spectrum feature is put into classifier as features and theireffect on success is examined in

detail. In the end, the spectral subtraction of the motor sound from the spectrum is explained

and applied. Contrary to the expectations, the results are not improved as expected. This may

either be due to the suppression of informative features in the tokes with spectral subtraction

or any inadequacy in application of the method. As an improvement, feature weighting should

be reconsidered and instead of using weigths that are determined heuristically, the methods

that consider variance of features like Mahalanobis distance can be used.

6.1 APPLICABILITY OF THE WORK

Although the similar surfaces can be confused more comparedto different surfaces, the ratio

of this confusion is not high to detriment the applicabilityof the approach. For a particular

set of features derived with a controlled set of parameters and for some selected pattern clas-

sification algorithms success rates are high. However, there should be more data collected

and analyzed for more statistical reliability. These successful sets for the selected data set can

be stated as functional tree algorithm implemented to a signal obtained with a more holistic

approach. In this work, the holistic approach can be explained as not cutting out the motor
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noise that is embedded into signal and taking three-four footsteps of the robot into consid-

eration before making a decision. Being the first classifier implementation, vector quantizer

algorithm performed quite well up to four classes. However,when the number of classes ex-

ceeded five, the drop in performance has been very dramatic. For six classes, the succes rates

have been maximum around 50 %. This rate is still higher than random selection of classes,

which is 1/6 for a six class problem by simple probability equation. Theclassification results

for Functional Tree algorithm and Simple Logistic algorithm are considerably high and Naive

Bayes algorithm performs approximately 10 % better than VQ.As the length of the selected

signal for each patter decreases, the success rate drops however, the rate is still considerably

high around 70 %. Even for a newly added class that is quite similar to one of the classes, the

confusion increased as expected but did not lead to worse results. This is due to the acous-

tical difference between the two interactions with the two similar surfaces. The results are

examined in terms of speeds and increase of speed has resulted in lower success rates. For

the slow and mid speed, the success rate was quite high around80 % for many feature sets

and some very definitive feature sets are discovered. LogitBoost logistic linear regression al-

gorithm performs very good results on highest speed however, it is relatively slow compared

to Functional Tree and Naive Bayes algorithms for this application.

With a fast analysis embedded to its software, a legged robotcan have models for surfaces

that are formed from surface type in an empirical manner. This information can be useful in

adjusting the gait parameters of the robot and can be even used as additional information in

mapping of the traveled environment. In this study, the focus has been on finding the record

duration, the spectral and time domain features and the classification algorithms that result in

determining the type of the surface effectively. This data could then be directly used in adjust-

ment of gait parameters, these gait parameters is expected to vary in a considerable amount

for dissimilar surfaces. The data obtained from the surfacetype could also be combined with

the outputs of other sensors like accelerometers for more complex decisions related to robot

body dynamics. Another interesting analysis could be to analyze the current data measured

from each hip motor and there can be correlation sought between the current sensor records

with the acoustic data.
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6.2 FUTURE DIRECTIONS

There are both theoretical and practical directions that may be followed after this work to

continue. As a former direction, there can be a theoretical relation sought between the surface

hardness, stiffness, damping and the acoustic emissions. In this model, theC shaped legs

of the robot and the ground can be modeled as springs with a certain stiffness values. A

mechanical model with damping and stiffness would model the contact of the robot body

to the surface. In addition to this pure mechanical and vibrational view, there can be some

work to do on motor noise with a more theoretical signal processing approach rather than

directly focusing on the outcome of the discrete time Fourier transform as done in this study.

A more detailed motor model can be constructed with estimating the important harmonics and

validating them with the empirical data. Another study on the relation of the rolling sound of

the legs to the surface roughness.

As a further direction, more work can be done in identification of surfaces while turning or

going backward as well. A more interesting research can be conducted is to detect abnormal-

ities in motor and gearbox sounds and such a work could be considered as an application of

machine health monitoring. State correction could be done based on surface type determina-

tion. A hearing library of the robot could be created with newrecords from the same and the

different surfaces and this can be fed with various off-line training.

It is believed that, as mentioned above if the both directions, the theoretical and the empirical

work are handled separately or are combined, there can be various interesting outcomes. A

fully autonomous robot behavior with gait parameter control that makes use of these surface

information derived by acoustic means would surely includeseveral important concepts of

robotics and be an important step in the field of mobile robotics. A fault detection mechanism

that does sub-system diagnostics can be applied to the robot’s embedded software. Although

this seems to be a fully empirical work, such a study can include important theoretical parts

in signal processing and pattern classification fields. If the robotics in general and mobile

robotics in particular are considered, acoustic sensing and perception of surface type is be-

lieved to be very useful in these areas and there can be rich amount of academic work done

on these fields as well as various applications of research and development with considerable

success.
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