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ABSTRACT

PARTICLE FILTER BASED TRACK BEFORE DETECT ALGORITHM FOR
TRACKING OF DIM MOVING TARGETS

Sabuncu, Murat

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Mübeccel Demirekler

FEBRUARY 2012, 89 pages

In this study Track Before Detect (TBD) approach will be analysed for tracking of dim moving

targets. First, a radar setup is presented in order to introduce the radar range equation and

signal models. Then, preliminary information is given about particle filters. As the main

algorithm of this thesis, a multi-model particle filter method is developed in order to solve

the non-linear non-Gaussian Bayesian estimation problem. Probability of target existence

and RMS estimation accuracy are defined as the performance parameters of the algorithm for

very low SNR targets. Simulation results are provided and performance analysis is presented

as a conclusion.

Keywords: track before detect, particle filter, dim target tracking
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ÖZ

HAREKETLİ SÖNÜK HEDEFLERİN PARÇACIK FİLTRE TABANLI İZLE BUL
ALGORİTMASI İLE TAKİP EDİLMESİ

Sabuncu, Murat

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Mübeccel Demirekler

ŞUBAT 2012, 89 sayfa

Bu çalışmada, hareketli sönük hedeflerin izle bul algoritması ile takip edilmesi incelenecek-

tir. ılk olarak radar menzil denklemi ve sinyal modellerini anlatmak üzere bir radar ortamı

tanıtılmıştır. Daha sonra parçacık filtreler ile ilgili gerekli ön bilgiler verilmiştir. Bu tezin

ana algoritması olarak, Gaussian dağılıma sahip olmayan ve doğrusal olmayan bir Bayesian

kestirim problemini çözmek üzere çoklu model parçacık filtresi geliştirilmiştir. Çok düşük

SNR değerleri için, hedef varlık olasılığı ve RMS kestirim doğruluğu performans parame-

tresi olarak belirlenmiştir. Sonuç olarak simülasyon sonuçlari verilmiş ve performans analizi

gerçekleştirilmiştir.

Anahtar Kelimeler: izle bul, parçacik filtresi, sönük hedef izleme
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CHAPTER 1

INTRODUCTION

1.1 Radar History

The history of radar started with some experiments by Heinrich Hertz in 1887. He has dis-

covered that electromagnetic waves can be transmitted and received through different materi-

als. He was the one who first succeeded to generate and detect what were later called ’radio

waves’. In 1900, Nikola Tesla demonstrated a concept for electromagnetic detection and ve-

locity measurements. Later, in 1904 Christian Huelsmeyer, introduced his device to detect

ships even under non-visible conditions using radio signals. In 1917, in an interview Tesla

stated that, by use of the standing electromagnetic waves along with reflected surface waves,

it is possible to determine the relative position of the target together with its range and speed.

The development of radars accelerated in late 1930s.

In 1934, British scientist Robert A. Watson Watt demonstrated his work investigating possi-

bility of using radars against aircraft attacks. He also demonstrated a working prototype of

the system and patented his device. In 1941, U.S Army first standardized medium-range radar

for air defence applications and used during World War II. Development of radar systems dur-

ing the war has gained a lot of speed and various types of anti-aircraft radars are developed

such us mobile, long-range and etc. U.S. General George C. Marshall stated that, “Radar

equipment developed by the United States and Britain was superior to the electronics devices

of either Germany or Japan. Our radar instruments, for example, which tracked aircraft in

flight and directed the fire of anti-aircraft guns was more accurate than any possessed by the

enemy”. The statement proves the critical role committed by radars with their features such

as mobility, long range and high accuracy.
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Figure 1.1: Illustration of Raw Data together with Constant and Adaptive Thresholds

1.2 Track Before Detect

Ever since the radar has been invented, detection of the targets from the radar data has been an

area of interest. Many methods have been developed to decide if there is a target present in the

surveillance region. Most of the methods are based on thresholding the radar data and making

a hard decision for the target existence. Thresholds are determined considering reflected

target power and receiver noise. Whereas, early methods based on constant thresholds, later

methods included adaptive thresholding techniques such as CFAR (Constant False Alarm

Rate). Figure 1.1 illustrates a received target echo and applied thresholds for constant and

adaptive thresholding techniques. Thresholding methods are out of scope of this thesis but

detailed information can be found in [18, 22].

It is obvious that determining the threshold is a difficult problem especially for low SNR

(Signal-to-Noise Ratio) targets. However, stealth military aircraft’s and other small targets

such as missiles and UAV’s increased the need for detecting low SNR, low observable targets

which are so called “dim targets”. The early process applied to detect those targets is to lower

the thresholds which in contrast result in high false alarm environments.

In the classical approach, there are several methods proposed for dim target tracking in a high

false alarm environment such as Multiple Hypothesis Tracking (MHT) and Joint Probabilistic

2



Figure 1.2: Sequence of a Classical Radar Tracker vs Track Before Detect Method

Data Association Filter (JPDAF) [3, 17, 2]. All of these methods are based on processing

the output of a detector in order to initiate and update tracks, see Figure 1.2. The main

idea of those algorithms is that they account for many possibilities of the target and clutter

associations either in terms of plot or track level.

Track Before Detect (TBD), however is an alternative way of tracking dim targets. TBD

method is in fact a combination of signal processing and tracking so that target state esti-

mation and detection processes occur simultaneously. In the TBD method, one removes the

thresholding process and TBD algorithm uses the raw data as an input, Figure 1.2. In that

way, all the available information is used and more crucially it is integrated over time by the

tracking filter. This typical advantage of TBD method leads to a better detection and tracking

performance especially for dim targets.

There are various algorithms applicable to be used within TBD method. In [25], a Dynamic

Programming (DP) based TBD method is developed as a modified Viterbi algorithm. The DP

algorithm performs an exhaustive search over all possible state sequences in the state space

trying to maximize a merit function. Once the merit function exceeds a given threshold, target

is declared at the state sequence which ‘best’ fits to the past measurements. Both [25] and

[13] includes performance analysis of DP based TBD algorithm in terms of probability of

detection, probability of false alarm and tracking accuracy.

In [26], H-PMHT (Histogram based Probabilistic Multiple Hypothesis Tracking) is intro-

duced as a multi-signal tracking algorithm based on a quantized raw data so called histogram.

Each quantization cell is assumed to be associated with targets or noise in a similar way of

a classical radar tracker associates plots. In [8], H-PMHT is used as a TBD method and is

compared to other algorithms.

3



In [6], Hough Transform is used to extract detections and tracks simultaneously from multiple

scans of data. The aim of Hough Transform is to locate lines in a noisy plane data. It is

allowed and encouraged to use as many scans as much to increase the performance which in

turn increases the amount of data to be stored. Also in [24] a maximum likelihood approach

is defined to detect and track low SNR targets based on raw data.

The above algorithms generally require discretization of the state space, operate on multiple

scans of data and in general require enormous computational resources. However, by Salmond

and Birch [20], it is shown that a recursive Bayesian TBD algorithm can be implemented

using particle filters. The aim of the PF approach is to construct a posteriori density function

of the state and the likelihood ratio needed for detection at the same time. In this content,

Probability of Target Existence is also calculated within the algorithm. Details of the PF

based TBD algorithm structure is developed in [19] for an image based single target tracker.

Boers and Driessen extends the single target assumption to two target case in [5, 4].

The potential advantages of particle filter approaches are:

• Since it is a recursive algorithm, there is no need for any data storage

• PF algorithm is capable of working with structured and/or non-Gaussian background

noise

• Since target motion is modelled by a stochastic dynamic equation it is not restricted to

straight-line trajectories

• Extended target and/or point spread function can be modelled explicitly

• Effects of unknown and/or fluctuating target power (SNR) can be accommodated.

Details of a PF based TBD algorithm will be derived within this thesis. Relevant references

will be noted in more detail in later chapters.

1.3 Thesis Motivation and Objective

Depending on the increase of the stealth technology and small missile and UAV structures,

detection of low observable targets, so called dim targets become an important role of modern

4



radar systems. Track Before Detect is a famous way of dealing with the detection and tracking

of dim targets. Apart from the classical detection techniques, TBD algorithms primarily aim

to use the ’raw data’ provided by the radar receiver. There exist many alternative ways of

implementing TBD method in the literature. In this thesis, a Particle Filter (PF) based Track

Before Detect (TBD) algorithm will be developed in order to obtain a recursive Bayesian

solution to the non-linear, non-Gaussian system at hand. The aim of the filter will be to detect

and track low SNR targets simultaneously and therefore to emphasize the advantages of TBD

method over classical detection and tracking techniques. Finally, simulation results will be

demonstrated.

1.4 Thesis Outline

Chapter 1 initially introduced radar history together with detection and track before detect

concepts. Later, a literature survey was given based on famous TBD algorithms. Chapter 2

will introduce preliminary information including radar equation, radar signal models, particle

filtering and tracking concepts. Chapter 3 will then concentrate on the main problem that

this work aims to overcome and will include the proposed algorithm. Chapter 4 will pro-

pose the simulation results and demonstrate performance parameters. Finally, Chapter 5 will

summarize the work and suggest some future works.
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CHAPTER 2

RADAR AND TRACK BEFORE DETECT CONCEPTS

2.1 Radar Background

2.1.1 Radar Fundamentals

The word RADAR is an acronym for ’Radio Detection and Ranging’. As it can be emphasized

from the acronym, the main purpose of radar is to decide if a target exists at the line of

sight, which is called ’Detection’. Detection is based on transmitting electromagnetic waves

and receiving its reflections from targets and/or undesired objects which are called ’Clutter’.

Another part of the received signal is ’Noise’ which can be induced from the receiver itself

and/or external sources.

Once the target is detected, radar finds the following properties of the target: Range (how far

away is the target from the radar) and Doppler (radial velocity of the target with respect to

radar). Range measurement is based on evaluating the time difference between the transmitted

signal and the received target echo. Doppler is based on measuring the frequency difference

between the transmitted and the received signal (thus Doppler is also called Doppler shift).

Electromagnetic energy in free space travels at the speed of light, which is c = 2.9979 x 108 m/s.

Thus the time that the signal travels to the target at range R and returns back to the radar is

2R/c. Therefore, the range of a target is defined by,

R =
c4t

2
(2.1)

If the radar and the scatterer (target and/or undesired object) are moving with respect to each
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other, Doppler shift will occur, where the frequency of the received echo, Fr will differ from

the transmitted frequency, Ft. The difference between transmitted and received frequency is

called Doppler shift or Doppler frequency (FD) which is calculated as,

FD =
2v
c
.Ft =

2v
λ

(2.2)

where λ is the wavelength of the transmitted signal, v is the radial component of the target

velocity. Note that, for an approaching target received frequency is higher than the transmitted

frequency which causes a positive Doppler shift, and vice versa.

2.1.2 Radar Range Equation

The radar range equation (also called the radar equation) relates the range of a radar to the

characteristics of the transmitter, receiver, antenna, target and the environment. The radar

equation can either be used to determine the maximum range of a radar for a given target or

to calculate the Signal to Noise Ratio (SNR) of a target at a specific range. Derivation of a

simple form of the range equation is given below.

Assume that the transmitted power from an isotropic antenna is represented with Pt. Power

density at a distance R is given by,

Power density at a distance R =
Pt

4πR2 (2.3)

However, radars use directive antennas which concentrate the power at a specific direction.

The gain of a transmitter antenna Gt, is a measure of the increased power density radiated in

some direction compared to an isotropic antenna. So that, power density at a distance R with

a directive antenna is now given by,

Power density at a distance R =
Pt Gt

4πR2 (2.4)

Once the transmitted electromagnetic waves reaches to a target, radar cross section (RCS) σ,

of the target determines the power density reflected back to the radar. Reflected power density

is then given by,
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Re f lected Power Density =
Pt Gt

4πR2

σ

4πR2 (2.5)

Once the reflected signal returns back to the radar, antenna captures a portion of the echo

signal. The amount of the energy being captured by the antenna is called received power Pr

and is related to the antenna effective area Ae.

Pr =
Pt Gt

4πR2

σ

4πR2 Ae (2.6)

Here Ae can be related to the receiver antenna gain Gr and the operating wavelength λ of the

antenna according to Ae = λ2Gr/4π. Thus the received power can be rewritten as

Pr =
Pt GtGrλ

2σ

(4π)3 R4
W (2.7)

Equation (2.7) gives the ideal received power if an ideal radar operated in free space conditions

is assumed. In order to account for system and atmospheric losses, two loss terms are added

to Equation (2.7)

Pr =
Pt GtGrλ

2σ

(4π)3 R4LsLa (R)
W (2.8)

Here Ls is the combination of system losses and is assumed to be constant for a given radar

design. La (R) is called atmospheric loss which is a function of range and is related to a

constant α [dB/km] ,called ’atmospheric loss coefficient’. Equation (2.8) is a simple form to

calculate the received power from target reflections. Next item affecting the range equation is

the received noise power, Pn which is defined in Equation (2.9).

Pn = k T0 Bn Fn (2.9)

Here, k = 1.38 x 10−23 J/K is called Boltzmann’s constant, T0 = 290 K is the standard tem-

perature, Bn is the noise–equivalent bandwidth and Fn is the noise figure of the receiver.

Equations (2.8) can be used to calculate maximum range of a radar, Rmax and is obtained by

substituting Pr by minimum detectable signal S min (S min = Pr).
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Table 2.1: Radar Equation Parameters

Source Parameter Name Symbology
Radar Related Parameters Transmitted Power Pt

Transmitter Antenna Gain Gt

Receiver Antenna Gain Gr

Noise Equivalent Bandwidth Bn

Noise Figure Fn

System Losses Ls

Atmospheric Loss La

Wavelength λ

Target Related Parameters Radar Cross Section σ

Range R

Rmax =

[
Pt GtGrλ

2σ

(4π)3 LsLa (R) S min

]1/4

(2.10)

Equations (2.8) and (2.9) are used to calculate the Signal to Noise Ratio (SNR) of the target

as Pr/Pn.

Pr

Pn
= S/N =

Pt GtGrλ
2σ

(4π)3 R4 k T0 Bn Fn Ls La (R)
W (2.11)

Table 2.1 summarizes all the parameters of Equations (2.8) and (2.9).

2.1.3 Signal and Noise Models used in Radar

In any radar system, received signal consist of superposition of many major components such

as; target originated reflections, clutter signals, receiver induced noise and possibly jamming.

Aim of radar signal processing is to extract the useful information out of this composite signal.

In this work, target and noise signals will be used to model the receiver output of a radar

whereas, others will be neglected.

Assume a single pulse transmitted by a radar system is given by

x (t) = a (t) e j [2πFt+θ(t)] (2.12)

where a (t) is the amplitude of the pulse envelope, Ft is the carrier frequency and θ (t) is the

possible phase modulation of the transmitted pulse. a (t) is assumed to be an ideal rectangle
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with amplitude of A and duration of pulse length. A is related to the transmitted power Pt

described in the previous section.

Target echo is assumed to be the same signal as the transmitted pulse which is delayed in time

and shifted in frequency. Time delay corresponds to range of the target whereas frequency

shift is related to the relative radial velocity between the target and the radar. Receiver noise,

which is also called thermal noise is an additive random signal induced by the receiver itself.

So the received echo from the transmitted pulse can be written as the sum of target echo and

receiver noise as fallows,

y (t) = b (t − t0) e j 2πFt(t−to)+φ(t) + η (t) (2.13)

where b (t) is target echo amplitude, φ (t) is echo phase modulation and η (t) is receiver noise.

t0 is the time delay of the transmitted pulse so that, for a target located at R, t0 = 2R/c.

Considering that a (t) is an ideal rectangle, b (t) is also an ideal rectangle with amplitude B.

The value of B is proportional to Pr which is already given in the previous section by Equation

(2.8).

It is assumed that thermal noise is the dominant part of other possible noises such as sun

originated noise or galactic noise. Thermal noise is assumed to be a zero-mean Gaussian

process which also has a white power spectrum. In a radar receiver, after demodulation of

’I’ and ’Q’ channels, it is shown that both channels contain zero-mean Gaussian noises with

equal power [21]. Furthermore, since I and Q channels noise processes are Gaussian and

uncorrelated, they are also independent. As a result η (t) can be written as

η (t) =
√

Pn/2 N (0, 1) + j
√

Pn/2 N (0, 1) (2.14)

Considering that the transmitted and received signals are on a carrier of Ft, received signal

must be first demodulated. After demodulation received signal is given by

y (t) = B e j φ(t) + η (t) (2.15)

y (t) here is called ’Complex Envelope’ of the received signal. It models the received echo of

a single transmitted pulse and will be used by the radar signal processing algorithms defined
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in the following sections.

2.1.4 Radar Receiver

Radar signal processing algorithms introduced in this section are simple and common ex-

amples of a classical radar receiver. Although there are many more complex algorithms in

literature, the following ones are selected to derive the raw video in the output of a radar

receiver.

A Matched filter is first applied to the complex envelope of the received signal. Then, a bank

of received pulses are processed together to obtain the Range-Doppler matrix.

2.1.4.1 The Matched Filter

The aim of the Matched Filter, which is also called the Waveform Matched Filter, is to obtain

the ’similar’ part of the received echo to the transmitted waveform and thus to maximize

Signal-to-Noise Ratio (SNR). The matched filter as given in [18] is defined in time-domain

and frequency domain as follows

H (ω) = X∗ (ω) e− jωt (2.16)

h (t) = x∗ (t − t0) (2.17)

Here X (ω) indicates the spectrum of the waveform, H (ω) is the frequency response of the

receiver. Thus, the output of the matched filter Z (ω) is given by

Z (ω) = H (ω) Y (ω) (2.18)

So that, in time domain the output of the matched filter is given by the convolution

z (t) =

∫
y (s) h (t − s) ds (2.19)

Then using Equations (2.17) and (2.19) together one can obtain
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z (t) =

∫
y (s) x∗ (s + t − t0) ds (2.20)

Therefore, as given in Equation (2.20) the matched filter implements a correlation between

the received signal and the transmitted waveform which in turn maximizes the SNR.

2.1.4.2 Doppler Processing

After matched filtering Doppler processing is applied to a bank of received pulses over a

period of time. Doppler processing is implemented utilizing discrete Fourier transform (DTF).

Let z̃rd
k denote the complex observation made from range bin of r and Doppler bin of d at time

k. The matrix including z̃rd
k for r = 1, ..., rm and d = 1, ..., dm forms the so called ’Range -

Doppler (R-D) Matrix’. Each cell size of R-D matrix is determined by the range and Doppler

resolutions respectively.

Doppler processing is the final basic function of a classical radar receiver. The output of

Doppler processing is the so called ’raw data’ (raw video). From now on classical approaches

may apply detection techniques such as CFAR or track- before-detect algorithms as this work

will concentrate on in later chapters.

2.2 Detection

In a classical radar design, detection is applied to the raw data received. The output of the

detection process is the so called ‘plots’ and they are used for precise angle measurement and

tracking of targets. Detection process aims to ‘decide’ if the signal under test consists of target

reflections or noise only. Those decisions are made by using statistical hypothesis testing so

that for any measurement under test for the presence of a target, one of two hypotheses (H0

or H1) is assumed to be true

1. The measurement is the result of noise only : H0

2. The measurement is a combination of target echo and noise : H1
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Making a hard decision of target existence introduces two concepts: Probability of Detection

(PD) and Probability of False Alarm (PFA). PD is defined as the probability that a target is

declared (i.e. H1 is chosen) when a target is in fact present. PFA is the probability that a target

is declared again (i.e. H1 is chosen) when a target is not present.

For radar applications, a commonly used detection rule is called Neyman-Pearson criterion.

According to this criterion, the goal is to maximize PD where PFA does not exceed a given

threshold. The Neyman-Pearson detection rule is realized by the ‘likelihood ratio test (LRT)’

given below, [18]

pz (z|H1)
pz (z|H0)

H1
>

<
H0

λ (2.21)

where pz(z|H1) is the probability density function (pdf) of measurement z given that a target is

present, pz(z|H0) is the pdf of z given that a target is not present. In likelihood ratio test method

calculation of the likelihood ratio and defining the threshold λ are both crucial problems. In

this thesis a particle filter based method will be proposed in order to calculate the LRT in the

later section’s.

2.3 Particle Filters

Particle Filter (PF) is a Sequential Monte Carlo (SMC) method in order to solve the Bayesian

estimation problem for non-linear, non-Gaussian systems. The Bayesian approach is to con-

struct the pdf of the state at time k using on all available information up to the time k such

that

xk|Zk ∼ p (xk|Zk) (2.22)

where xk|Zk denotes the posterior state vector, Zk denotes the available measurements up to

the time k, Zk =
{
z j : j = 1, ..., k

}
.

For linear-Gaussian systems the required pdf (2.22) remains Gaussian for every time step and

the Kalman filter propagate and update the mean and the covariance of the pdf in an optimal
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way. Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are two most pop-

ular sub-optimal approaches to recursive Gaussian but non-linear estimation problems. EKF

is based on linearization of the system about the predicted state and thus Kalman filter can

be applied [12]. On the other hand UKF depends on the idea of representing a Gaussian dis-

tribution by a set of samples which are called ’Sigma Points’. Sigma points are chosen such

that mean and covariance of the distribution are protected. The non-linear function is then

applied to each sigma point instead of the distribution itself. Finally, Gaussian representation

is reconfigured based on transformed sigma points [14].

The main idea of particle filtering however, is to represent the required probability density

function (pdf) by a set of random samples. As the number of samples becomes very large

they effectively provide an exact, equivalent representation of the required pdf. Thus, PF

algorithm approaches to the optimal Bayesian estimator [10]. The most powerful property of

PF is that, being dependent on random samples, it is able to handle any non-linear function

and/or any system or measurement noise densities of any distribution.

2.3.1 Sequential Importance Sampling

Importance sampling is a general Monte Carlo integration method which is applied to perform

non-linear filtering. Sequential Importance Sampling (SIS) is a Monte Carlo method based on

the idea of importance sampling. Let us assume that the system (state) model is of the form

xk+1 = fk (xk,wk) (2.23)

where xk ∈ Rn is the target state, fk : Rn x Rm → Rn is a known system transition function and

wk ∈ Rm is a zero mean, white noise sequence with known pdf.

The measurement model is given by

yk = hk (xk, vk) (2.24)

where yk ∈ Rp is the measurement vector which becomes available at time k. hk : Rn x Rr →

Rp is the measurement function and vk ∈ Rr is a zero mean white noise sequence with known
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pdf. Note that, both vk and wk are assumed to be independent. In order to develop the SIS

algorithm it is assumed that the initial pdf of the state vector p (x0) = p (x0|Z−1) is known.

Let Xk =
{
x j : j = 1, ..., k

}
denote the sequence of all target states upto the time k. The

joint posterior pdf is then given by p (Xk|Zk) and its marginal density is denoted as p (xk|Zk).

Let
{
Xi

k,w
i
k

}N

i=1
denote a random measure that characterizes the probability density function

p (Xk|Zk) where
{
Xi

k , i = 1, ...,N
}

are the support points and
{
wi

k , i = 1, ...,N
}

are the associ-

ated normalized weights.

Then the joint posterior pdf at time k can be approximated as follows [9]

p (Xk|Zk) ≈
N∑

i=1

wi
k δ

(
Xk − Xi

k

)
(2.25)

where wi
k , i = 1, ...N are the normalized weights of the discrete weighted approximation of

the true posterior such that

N∑
i=1

wi
k = 1 (2.26)

Notice that in Equation (2.25) each random sample (i.e. particle) Xi
k together with wi

k repre-

sents a random sample of the joint posterior density belonging to a time sequence k = 1, .., k.

Ideally, one would like to draw particles from the true posterior density. However, since the

true posterior is not known exactly, particles
{
Xi

k,w
i
k

}N

i=1
cannot be generated directly from

the posterior but instead they can be generated from another density called the ’Importance

(Proposal) Density’, q (x).

It is shown that if we have a set of samples taken from q (x) as
{
Xi

k

}N

i=1
, then the following set

of the importance weights will assure that the particles
{
Xi

k,w
i
k

}N

i=1
is distributed according to

the true posterior p (Xk|Zk).

w̃i
k ∝

p
(
Xi

k|Zk
)

q
(
Xi

k|Zk
) (2.27)

where w̃i
k is called the unnormalized importance weight. Then the ’importance weights’ are

defined as follows
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wi
k =

w̃i
k∑N

i=1 w̃i
k

(2.28)

This principle is called ’Importance Sampling’ in statistics and is applied in the Bayesian

framework in order to obtain random samples distributed as the true posterior [9].

In the SIS algorithm, the requirement is to construct the pdf of the current state given all the

available information with two stages: Prediction and Update. Therefore, one should start

the derivation by assuming that the posterior density at time k − 1 is known and given by the

distribution p (Xk−1|Zk−1).

Let us apply Bayes’ rule to the posterior density as

p (Xk|Zk) =
p (zk|Xk,Zk−1) p (Xk|Zk−1)

p (zk|Zk−1)
(2.29)

p (Xk|Zk) =
p (zk|Xk,Zk−1) p (xk|Xk−1,Zk−1) p (Xk−1|Zk−1)

p (zk|Zk−1)
(2.30)

p (Xk|Zk) =
p (zk|xk) p (xk|xk−1)

p (zk|Zk−1)
p (Xk−1|Zk−1) (2.31)

and since p (zk|Zk−1) is a normalizing denominator we can write

p (Xk|Zk) ∝ p (zk|xk) p (xk|xk−1) p (Xk−1|Zk−1) (2.32)

In Equation (2.32) we have obtained the posterior pdf at time k is related to the known pdf’s

defined as follows

• p (Xk−1|Zk−1) which is the joint posterior pdf at time k − 1

• p (xk|xk−1) which is the known one step prediction density of the target state defined by

the Equation (2.23)

• p (zk|xk) which is the known measurement pdf defined by the Equation (2.24)
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Next, let us assume that the importance density q (.) is defined as

q (Xk|Zk) = q (xk|Xk−1,Zk) q (Xk−1|Zk−1) (2.33)

In Equation (2.33) we have defined the posterior pdf of the importance density is proportional

to

• q (Xk−1|Zk−1) which is the joint posterior pdf of the importance density at time k − 1,

• q (xk|Xk−1,Zk) which is called the ’importance density function’.

Now in order to obtain the the weight update equation, one can substitute (2.32) and (2.33)

into (2.27) as

w̃i
k =

p
(
Xi

k|Zk
)

q
(
Xi

k|Zk
) ∝ p

(
zk|xi

k

)
p
(
xi

k|x
i
k−1

)
p
(
Xi

k−1|Zk−1
)

q
(
xi

k|X
i
k−1,Zk

)
q
(
Xi

k−1|Zk−1
) (2.34)

In Equation (2.34) the last term p
(
Xi

k−1|Zk−1
)
/q

(
Xi

k−1|Zk−1
)

is nothing but the weights from

the previous step. Furthermore if we assume that q
(
xi

k|x
i
k−1, zk

)
= q

(
xi

k|X
i
k−1,Zk

)
the update

equation can be written as

w̃i
k ∝ wi

k−1.
p
(
zk|xi

k

)
p
(
xi

k|x
i
k−1

)
q
(
xi

k|x
i
k−1, zk

) (2.35)

Note that with the final assumption, only xi
k−1 needs to be stored and the rest of the sequences

Xk−2 and Zk−1 are discarded.

Finally after normalization posterior density can be approximated as

p (xk|Zk) ≈
N∑

i=1

wi
k δ

(
xk − xi

k

)
(2.36)

It can be shown that as N → ∞ the approximation approaches to the true posterior.

Equations (2.35) and (2.36) define a simple SIS filter. A pseudo-code of this filter is given

in Algorithm 1. The algorithm defined here is the base of many other types of particle fil-

ters. Note that the selection of the importance density q
(
xi

k|x
i
k−1, zk

)
plays a crucial role on the
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algorithm’s performance. The best possible choice of the importance density is the true poste-

rior distribution which is not possible for most of the time. Details of selection of importance

density will be noted in the following chapter’s.

Algorithm 1 SIS Filter

function
[{

xi
k,w

i
k

}N

i=1

]
= SIS Filter

({
xi

k−1,w
i
k−1

}N

i=1
, zk

)
• FOR i = 1 : N

– Draw samples from xi
k ∼ q

(
xi

k|x
i
k−1, zk

)
– Evaluate the ’Importance Weights’

w̃i
k ∝ wi

k−1.
p
(
zk|xi

k

)
p
(
xi

k|x
i
k−1

)
q
(
xi

k|x
i
k−1, zk

)
• END

• FOR i = 1 : N

– Normalize

wi
k =

w̃i
k∑N

i=1 w̃i
k

• END

2.3.2 Degeneracy and Resampling

The performance of the PF algorithm is tightly dependent on the effective number of particles

that are ’active’ in approximating the posterior density (2.36). Ideally, one would like to draw

samples from the posterior density of the state directly. However, this is not possible for most

of the time. Therefore one aims that the importance density is ’close’ to the true posterior. In

[9], it is shown that the importance sampling of the form of Equation (2.33) can only increase

the unconditional variance of the importance weights. That means, after a finite number of

steps, depending on how close the importance density to the true posterior is, all particles but

a few will have negligible normalized weights. This phenomena is called ’sample degeneracy’

and it is unavoidable.

The solution of the degeneracy problem is so called resampling. The basic idea of resampling
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is to eliminate the particles that have small weights and to concentrate on the particles with

large weights. A measure of the sample degeneracy is the effective number of particles which

is calculated in [11] and is approximated as,

N̂e f f �
1∑

i

(
wi

k|k

)2 (2.37)

This approximation has a property of 1 ≤ N̂e f f ≤ N. Note that if the particles are distributed

uniformly, i.e all the weights are equal to 1/N, then N̂e f f = N. On the other hand, if only

one of the particles has a weight of 1 and the others are equal to 0, then N̂e f f = 1. Note that,

it is a design criteria to apply resampling technique at every time step or when only number

of effective particles are below a threshold, N̂e f f < Nth.

The resampling algorithm in fact involves a mapping of the random measure
{
xi

k,w
i
k

}
into a

random measure
{
x∗ik , 1/N

}
with uniform weights. The new set of particles are generated by re-

sampling with replacement N times from an approximate discrete representation of p (xk|Zk),

so that P
{
x∗ik = x j

k

}
= w j

k. There are several resampling algorithms in literature, [9, 11]. In

Algorithm 2 the resampling algorithm that we have used for our implementation is given as

defined in [19].

2.3.3 Sequential Importance Resampling

Sequential Importance Resampling (SIR) algorithm which is also known as the Bootstrap

filter [10], is a very famous PF algorithm obtained by assuming that the importance density is

equal to the transitional prior such that

q
(
xi

k|x
i
k−1, zk

)
= p

(
xi

k|x
i
k−1

)
(2.38)

Then the weight update Equation (2.35) takes the form

w̃i
k ∝ wi

k−1 p
(
zk|xi

k

)
(2.39)

Although the selection of the transitional prior as the importance density is not the best way of
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Algorithm 2 Resampling Algorithm

function
[{

x∗ j
k ,w

∗ j
k , i

j
}N

j=1

]
= Resample

({
xi

k,w
i
k

}N

i=1

)
• Initialize Cumulative Sum (CS) of weights: cs1 = w1

k

• FOR i = 2 : N

– Construct CS: csi = csi−1 + wi
k

• END

• Draw a sample to start iteration: u1 ∼ U [0, 1/N]

• FOR j = 1 : N

– Move on CS: u j = u1 + N−1. ( j − 1)

– WHILE u j > csi

∗ i = i + 1

– END

– Assign sample: x∗ j
k = xi

k

– Assign weight: w∗ j
k = wi

k

– Assign parent: i j = i

• END

defining it, SIR provides a simple and easy to implement way of particle filters. Pseudo-code

of the SIR filter is given in Algorithm 3 which applies resampling at every time step. Notice

that since for every time step resampling is applied, normalized weights are equal to 1/N at

the end of each step. Therefore, wi
k−1 part of Equation (2.39) is ommited in the algorithm and

the weights are not propagated.

SIR filter introduced here will be the base of the TBD algorithm to be proposed in the next

chapter’s. Therefore, the following assumptions of the SIR filter are emphasized

1. p (xk|xk−1) is a known one step prediction density obtained from the Equation 2.23 and

one can draw samples from that distribution. However, there is no limit on the type of
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Algorithm 3 SIR Filter

function
[{

xi
k

}N

i=1

]
= SIR

({
xi

k−1

}N

i=1
, zk

)
• FOR i = 1 : N

– Draw samples from: xi
k ∼ p

(
xk|xi

k−1

)
– Evaluate the ’Importance Weights’: w̃i

k = p
(
zk|xi

k

)
• END

• FOR i = 1 : N

– Normalize

wi
k =

w̃i
k∑N

i=1 w̃i
k

• END

• Resample using the Algorithm 2

the function fk or on the noise distribution wk.

2. p (zk|xk) is a known measurement density obtained from the Equation 2.24 and one can

evaluate the likelihood given the state variable xk. However again there is no limit on

the type of the function hk or on the noise distribution vk.

2.3.4 Improving Sample Diversity

Although resampling is suggested in order to overcome the sample degeneracy it introduces

a new problem. This problem is due to the loss of diversity of the particles, i.e. after a

finite number of steps almost all particles will occupy the same point in the state space thus

they provide a poor representation of the true posterior. This problem is found to be severe

especially when the process noise is small and/or a parameter estimation is being made by

using particle filters. There are many methods introduced in literature to improve sample

diversity. In [11] the problem is analysed under the name of sample depletion. Also in

[9] and [1] the loss of diversity problem is investigated in correlation with the choice of

importance density. According to [19, 9, 11, 1], a very famous method in order to improve
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sample diversity is to move the resampled particles to a new place according to Equation

(2.40) based on a kernal density. The move function is given by

x∗ik = xi
k + bDkε

i (2.40)

where b is the kernel bandwidth and Dk is the matrix square root such that DkDT
k = S k and

S k is state covariance matrix. Note that Epanechnikov or Gaussian kernels can be used as the

kernel density as described in [19].

If the move step (2.40) is applied to each particle without any condition then the method

is called ’Regularized Particle Filter (RPF)’. However, theoretical disadvantage of RPF is

that its samples are no longer guaranteed to asymptotically approximate the true posterior

[19]. Therefore another method is proposed such that the move step (2.40) is applied based

on the Metropolis Hastings acceptance rejection algorithm [7]. This method is so called

’MCMC Move Step’ and its samples are now guaranteed to asymptotically approximate the

true posterior.

According to MCMC move method a particle xi
k is moved to a new location x∗ik only if u ≤

α (x, y) where u ∼ U [0, 1] and α (x, y) is the probability of move from x to y. According to

the Metropolis Hastings algorithm, the probability of move is defined as [7]

α
(
xi

k, x
∗i
k

)
= min

q
(
zk|x∗ik

)
p
(
x∗ik |x

i
k−1

)
q
(
zk|xi

k

)
p
(
xi

k|x
i
k−1

) , 1 (2.41)

In practice it is expected that MCMC move step increase the performance of SIR filter es-

pecially when the process noise is small or a parameter estimation is being made. The SIR

algorithm including a MCMC move step is given in the Algorithm 4.

2.4 Tracking with Particle Filters

In this section a tracking application based on PF algorithm will be demonstrated. In order

to analyze the key parameters and features of PF’s such as optimality, effective number of

particles and key role of importance density, a linear-Gaussian system will be simulated. Let

us assume that the system and measurement models are defined as follows
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Figure 2.1: Target Trajectory

xk+1 = A xk + wk (2.42)

zk = C xk + vk (2.43)

where xk =
[
x ẋ y ẏ

]T
is the state vector, A is the state transition function, wk is the process

noise sequence, zk =
[
x y

]T is the measurement vector and C is the measurement transition

function. Assume that, wk and vk are white Gaussian noise sequences with the following

distributions

wk ∼ N (0,Q) (2.44)

vk ∼ N (0,R) (2.45)

Let us assume that x0 is the known initial state and has a Gaussian distribution i.e. x0 ∼

N (x0,Σ0). Furthermore {x0,wk, vk, k = 0, ..., k} is an independent set of random variables.

Under these conditions the state vector at time k becomes conditionally Gaussian.

xk|z0:k = xk|k ∼ N
(
xk|k,Σk|k

)
(2.46)
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Figure 2.2: RMS Tracking Error

Kalman filter (KF) is the optimal Bayesian estimator for the linear Gaussian system defined

by the Equation’s (2.42) to (2.46). Our purpose here is to compare the performances of the

PF algorithm KF. For this reason we have applied the two algorithms to track a target moving

in X-Y plane with constant velocity as shown in Figure 2.1.

As it is noted before the transitional prior is a simple selection of importance density. How-

ever, the optimal importance density for linear Gaussian systems is also obtained as Gaussian

[19] as follows

q
(
xi

k|x
i
k−1, zk

)
∼ N (ak, Ik) (2.47)

where

ak = Axk−1 + IkCT R−1
k (zk − bk)

Ik = Qk−1 − Qk−1CT S −1
k CQk−1

S k = CQk−1CT + Rk

bk = CAxk−1 (2.48)

Note that the optimal importance density is actually the posterior density p (xk|Zk)obtained by

the KF equations.

Therefore, let us compare the performance of two possible choices of importance density:
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1. Transitional prior : q
(
xi

k|x
i
k−1, zk

)
= p

(
xi

k|x
i
k−1

)
2. Optimal Gaussian : q

(
xi

k|x
i
k−1, zk

)
∼ N (ak, Ik)

Figure 2.2 shows the RMS tracking error versus number of particles for the two different

types of importance density function. For the simulations, it is assumed that we have a sensor

which is able to locate the target position at every 1 sec with a Gaussian error distribution of

N (0, 100) meters in both x and y axises. The results are obtained through 100 Monte Carlo

simulations.

Algorithm 4 SIR with MCMC Move Step

function
[{

xi
k

}N

i=1

]
= SIR with MCMC Move

({
xi

k−1

}N

i=1
, zk

)
• FOR i = 1 : N

– Draw samples from: xi
k ∼ p

(
xk|xi

k−1

)
– Evaluate the ’Importance Weights’: w̃i

k = p
(
zk|xi

k

)
• END

• FOR i = 1 : N

– Normalize

wi
k =

w̃i
k∑N

i=1 w̃i
k

• END

• Calculate state covariance matrix

xk =

N∑
i=1

xi
kwi

k

S k =

N∑
i=1

wi
k

(
xi

k − xk
) (

xi
k − xk

)T

• Calculate Dk such that DkDT
k = S k

• Resample using the Algorithm 2

• See Algorithm 5
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Figure 2.2 shows that, as the number of particles increases, PF algorithm approaches to the

optimal Bayesian estimator, in this case KF. Moreover, if the optimal importance density can

be used, even with less number of particles we can achieve the optimality. It also indicates

that as the importance density become ’closer’ to the true posterior one can obtain better

performance in terms of RMS tracking error.

Algorithm 5 SIR with MCMC Move Step (ctd.)

function
[{

xi
k

}N

i=1

]
= SIR with MCMC Move

({
xi

k−1

}N

i=1
, zk

)
• FOR i = 1 : N

– Draw εi from Epanechnikov / Gaussian kernel

– Calculate

x∗ik = xi
k + bDkε

i

– Evaluate probability of move α
(
xi

k, x
∗i
k

)
according to Equation (2.41)

– Draw a candidate u such that u ∼ U [0, 1]

∗ IF u ≤ α
(
xi

k, x
∗i
k

)
· Move to the new location such that: xi

k = x∗ik

∗ ELS E

· Reject move such that: xi
k = xi

k

∗ END

• END
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CHAPTER 3

DETECTION AND TRACKING OF DIM TARGETS USING

TBD APPROACH

3.1 Problem Statement

The aim of this thesis is to develop an efficient algorithm for detection and tracking of dim tar-

gets. For this purpose, a TBD based detection and tracking algorithm is derived in this chapter.

Particle Filter (PF) approach will be used to implement the algorithm and the likelihood ratio

test (LRT) will be used to obtain the detector.

TBD approach has been an area of interest in recent years, [20, 19, 5, 4]. However, the

literature is mostly about constant SNR targets, i.e. target echo amplitude does not change

over time as in [19], and also generally it is assumed that the target SNR is known as in [20, 4].

The algorithm derived here include the effects of target amplitude fluctuations according to

Swerling models [23] and estimate the target amplitude as well as it’s kinematics.

3.2 Target and Sensor Model

In order to derive the algorithm let us first define the target and sensor models. Consider a

target motion is modeled in Cartesian coordinate system according to the following discrete

time dynamic model

xk+1 = fk (xk,wk) (3.1)

where k is the discrete time index, xk ∈ Rn is the target state, fk : Rn x Rm → Rn is a known
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state transition function and wk ∈ Rm is a white noise sequence with known pdf. Although

Equation (3.1) defines a general dynamic system, many systems in practice can be modeled

by two or more modes. For tracking applications for example, one mode can model nonma-

neuvering targets whereas the other mode may account for the maneuvering targets. These

kind of systems are called jump Markov (or Hybrid) systems which have a continuous valued

state and a discrete valued mode. For these systems it is assumed that the system behaves

according to one of the several modes.

A discrete time jump Markov system is described by the following dynamic and measurement

equations respectively

xk+1 = fk (xk,mk,wk) (3.2)

zk = hk (xk,mk, vk) (3.3)

where mk is the discrete system mode, zk ∈ Rp is the measurement vector which becomes

available at time k. hk ∈ Rn x Rr → Rp is the measurement function and vk ∈ Rr is a white

noise sequence with known pdf. Note that, both wk and vk are assumed to be independent of

each other and also independent of the initial state. In order to define a complete stochastic

system the initial condition p (x0) = p (x0|Z−1) is also assumed to be known. Note that,

Equation (3.2) is equivalent to the one step prediction density p (xk+1|xk) and Equation (3.3)

is equivalent to the measurement density p (zk|xk) such that

xk+1 ∼ p (xk+1|xk,mk) (3.4)

zk ∼ p (zk|xk,mk) (3.5)

Thus, Equations (3.2) and (3.3) or equivalently (3.4)and (3.5) define the target and sensor

models to be used in this thesis.
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3.2.1 The Mode Variable

The mode variable is modeled by a first order Markov chain which has a transition probability

matrix Π, with the following probabilities

Π =
[
πi j

]
(3.6)

πi j
4
= P {mk = j |mk−1 = i} (3.7)

Transition probability matrix Π also satisfies the following properties

πi j ≥ 0 (3.8)

∑
i

πi j = 1 (3.9)

In the TBD approach considered in this work, the modes denote the ’target existence’ in the

surveillance region such as

mk =


1 ; Target Exists

0 ; Target Does Not Exist
(3.10)

The transition {mk−1 = 0 → mk = 1} is called the ’birth process’ with probability Pb and the

transition {mk−1 = 1 → mk = 0} is called the ’death process’ with probability Pd defined as

Pb = P {mk = 1|mk−1 = 0} (3.11)

Pd = P {mk = 0|mk−1 = 1} (3.12)

The Markov Chain related to the target existence is illustrated in Figure 3.1 and the transition

probability matrix is given in Equation (3.13).

Π =

 1 − Pb Pb

Pd 1 − Pd

 (3.13)

Thus in order to use within a TBD algorithm, a multi-model jump Markov system is defined

such that the mode variable indicates the target existence.
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Figure 3.1: Illustration of Transition Probability Matrix

3.2.2 Target State Model

The state of the target is defined according to the appropriate motion model of the targets of

interest which clarifies the state transition function fk defined in Equation 3.2. For tracking

applications, the motion model of a target can be best approximated in an absolute Cartesian

coordinate system [16]. Therefore the state vector xk is usually of the form

xk =
[
xk ẋk yk ẏk zk żk

]T
(3.14)

where[xk yk zk]T and [ẋk ẏk żk]T denote the 3-D positions and velocities of the target respec-

tively. In this work, in order to estimate the target amplitude the state vector is augmented

such that

xk =
[
xk ẋk yk ẏk zk żk Ik

]T
(3.15)

where Ik is the target amplitude (intensity) variable.

Now, state Equation (3.2) can be rewritten depending on the mode variable such that

xk+1 =


fk (xk,wk) ; Target Exists (mk = 1)

unde f ined ; Target Does Not Exist (mk = 0)
(3.16)

Equivalently transition density p (xk+1|xk) depending on the mode can be rewritten as

xk+1 ∼


p (xk+1|xk) ; Target Exists (mk = 1)

unde f ined ; Target Does Not Exist (mk = 0)
(3.17)

Note that the state transition density p (xk+1|xk) is assumed to be known although it is not

restricted to any distributions or dynamics like linear-Gaussian case.
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Thus, Equation (3.16) (or equivalently Equation (3.17)) defines the state model of the system

at hand.

3.2.3 Measurement Model

In a TBD setup using a radar, it is assumed that the measurements are the so called Range

Doppler (R-D) matrices described earlier in Chapter (2.1.4). For a fixed bearing and elevation

angle the R-D matrix is calculated from the received echo of the transmitted signal. For

completeness, let us define again the complex Range Doppler matrix for a fixed bearing and

elevation angle at time k as
{
z̃rd

k

}
where r = 1, ..., rm and d = 1, ..., dm.

The R-D matrix z̃rd
k is a complex valued matrix including both phase and amplitude informa-

tion. However, use of that complex matrix in the detection scheme is usually of the form of

magnitude or power measurements [18, 19, 4]. In this thesis, we choose to use the power of

the measurement matrix such that

zrd
k = | z̃rd

k |
2 (3.18)

Figure 3.2 shows a sample R-D matrix which includes both target and noise originated re-

flections. The measurement equation is defined earlier in Equation (3.3). It is expected that

if there is a target present in the radar line of sight, the received signal includes both target

originated reflections and receiver induced noise. On the other hand, if the target is absent, it

is expected that the received signal consists of the receiver noise only. So, the measurement

function for each range and Doppler cell is written as

zrd
k =


hk (xk, vk) ; Target Exists

vk ; Target Does Not Exist
(3.19)

Equivalently the measurement function can be defiend by the following probability distribu-

tions
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Figure 3.2: Sample Range Doppler Matrix

zrd
k ∼


pS +N (zk|xk) ; Target Exists

pN (zk) ; Target Does Not Exist
(3.20)

where pN (zk) denotes the pdf of the measurement noise and pS +N (zk|xk) denotes the prob-

ability distribution of the target plus noise signal given that the target location is defined by

state vector xk.

The probability distribution of the measurement noise which is the magnitude squared of a

complex Gaussian random variable ηk such that

vk = | ηk |
2 (3.21)

ηk =
√

Pn/2 N (0, 1) + j
√

Pn/2 N (0, 1) (3.22)

where Pn is the noise power as defined earlier in Chapter 2.1.3.

vk is an ’exponentially’ distributed random variable according to
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pN (zk) =


1

Pn
e−x/Pn ; x ≥ 0

0 ; x ≤ 0
(3.23)

Let us now consider the target plus noise signal distribution. According to the Swerling-I

model, target plus noise signal power fluctuations from scan to scan is modeled as an ’expo-

nential’ distribution [18, 23].

pS +N (zk|xk) ∼


1
Pr

e−x/Pr ; x ≥ 0

0 ; x ≤ 0
(3.24)

Then, Equation (3.20) can be rewritten with the following likelihoods

p (zk|xk,mk) ∼


∏

r,d pS +N
(
zrd

k |xk
)

f or mk = 1∏
r,d pN

(
zrd

k

)
f or mk = 0

(3.25)

Here, pN
(
zrd

k

)
is the pdf of the received noise at range bin of r and Doppler bin of d. pS +N

(
zrd

k |xk
)

is the pdf of target plus noise signal in the (r, d) bin of the measurement matrix given that the

target is at the location defined by xk. Note that the target and/or noise distributions for each

resolution cell is assumed to be independent of each other hence the product of the pdf’s in

the above likelihood, see Equation (3.25).

Consider a target present in the surveillance region and its centroid is at the position (rt, dt).

The target may contribute to the resolution cells in its vicinity. This phenomena is called

the ’Blurring’, [20]. Let us define the contribution of the target to the cell (r, d) is denoted

as b (r, d, rt, dt) where the target is located at (rt, dt). If the target is a point object blurring

function is used to model the ’Point Spread function’ of the sensor itself. On the other hand,

if the target is an extended object with respect to the resolution cells, blurring function is used

to model this effect also.

In practice, b (r, d, rt, dt) is a non zero function only in some of the neighbourhood of (rt, dt).

We denote this neighbourhood area by B (xk) and restrict the likelihood computation of Equa-

tion (3.25) to this area for target returns.
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Let us define the B (xk) indicates the affected (r, d) bins by the target with state vector xk. In

order to account for the blurring effect, pdf of the target plus noise density can be rewritten as

follows

p (zk|xk,mk = 1) =
∏
r,d

pS +N
(
zrd

k |xk
)

�
∏

r,d∈B(xk)

pS +N
(
zrd

k |xk
) ∏

r,d<B(xk)

pN
(
zrd

k

)
(3.26)

Therefore the probability density function of the measurement matrix depending on the target

existence is obtained as the product of the following likelihoods

p (zk|xk,mk) =


∏

r,d∈B(xk) pS +N
(
zrd

k |xk
) ∏

r,d<B(xk) pN
(
zrd

k

)
f or mk = 1∏

r,d pN
(
zrd

k

)
f or mk = 0

(3.27)

Note that, particle filters can accommodate structured and/or non-Gaussian background noise

provided that its distribution is known. That means, pN
(
zrd

k

)
can be used to model undesired

background effects such as clutter. For example, it would be possible to learn the probability

density of pN
(
zrd

k

)
from a stationary background given that a target is not present during the

learning process.

3.3 Bayesian Solution of the TBD Problem

The aim of the TBD algorithm developed in this thesis is to construct the joint posterior

density of the target state xk and it’s existence mk given all the available information as

p(xk,mk|Zk). Bayesian approach for the computation of the posterior pdf is solved recur-

sively in two stages: Prediction and Update [19]. Considering that the joint posterior pdf at

time k − 1, p (xk−1,mk−1|Zk−1) is known, one can obtain the prior pdf of the state with the

following equations
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p (xk,mk = 1|Zk−1) =

∫
p (xk,mk = 1|xk−1,mk−1 = 1,Zk−1) .

p (xk−1,mk−1 = 1|Zk−1) dxk−1

+

∫
p (xk,mk = 1|xk−1,mk−1 = 0,Zk−1) .

p (xk−1,mk−1 = 0|Zk−1) dxk−1 (3.28)

First consider the first term of the integral sum

∫
p (xk,mk = 1|xk−1,mk−1 = 1,Zk−1) =p (xk|xk−1,mk = 1,mk−1 = 1) .

P {mk = 1|mk−1 = 1} (3.29)

Here p (xk|xk−1,mk = 1,mk−1 = 1) is the conditional pdf of the target motion defined by Equa-

tion (3.2) and P {mk = 1|mk−1 = 1} is the survival probability from the Markov Chain (3.13).

Then it can be written as

∫
p (xk,mk = 1|xk−1,mk−1 = 1,Zk−1) = p (xk|xk−1) . (1 − Pd) (3.30)

Now, consider the second term

p (xk,mk = 1|xk−1,mk−1 = 0,Zk−1) =p (xk|xk−1,mk = 1,mk−1 = 0) .

P {mk = 1|mk−1 = 0} (3.31)

Here p (xk|xk−1,mk = 1,mk−1 = 0) is the probability density of the state during which is de-

noted as pb (xk) and P {mk = 1|mk−1 = 0} is the birth probability of the Markov Chain (3.13).

Then

p (xk,mk = 1|xk−1,mk−1 = 0,Zk−1) = pb (xk) .Pb (3.32)

As it can be seen from the derivation prediction equations consist of two terms. The first term,

Equation (3.29) accounts for the target being exist at time k − 1, stays existing at time k. It
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declares that the target did not suffer from ’death’ process and stays alive with probability

1 − Pd. Second term, Equation (3.31) accounts for the ’birth’ process where target did not

exist at time k − 1, but it exists at time k with probability Pb. Also note that for the target

not existing case (mk = 0), target state xk is undefined and did not taken into account for the

prediction step. Therefore the prediction step can be summarized as

p (xk|xk−1,mk = 1,mk−1) =


p (xk|xk−1) f or mk−1 = 1

pb (xk) f or mk−1 = 0
(3.33)

Now we can get into the measurement update equation as follows

p (xk,mk|Zk) =
p (zk|xk,mk) p (xk,mk|Zk−1)

p (zk|Zk−1)
(3.34)

Here, the term p (zk|xk,mk) is the probability density of the measurement and it is assumed to

be known. p (xk,mk|Zk−1) is the prior density calculated in the prediction step. p (zk|Zk−1) is a

normalizing denominator. Thus the measurement update equation is obtained.

Finally, the posterior probability of target existence at time k is the marginal density given

below

PEk

4
= p (mk = 1|Zk) =

∫
p (xk,mk|Zk) dxk (3.35)

Thus here we have defined a recursive Bayesian solution of the TBD problem. The imple-

mentation of the solution is derived in the next section’s using particle filters.

3.4 Particle Filtering

The main idea of particle filtering is to represent the required pdf as a set of random sam-

ples. As the number of samples become very large, PF algorithm approaches to the optimal

Bayesian estimator. Therefore the aim of this section is to use particle filters to realize the

iterative Bayesian solution (i.e. prediction and update) of the TBD problem defined in the

previous section.
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The PF algorithm proposed here is a modified version of the SIR filter. Note that the algorithm

is developed on the system and measurement models developed earlier in this chapter.

3.4.1 Initialization

Let us assume that the initial distributions of the state and mode variable are known and are

denoted as px0

(
xi

0

)
and pm0

(
mi

0

)
respectively. Assume that we have a set of random samples{

xi
0,m

i
0

}N

i=1
taken from the initial distributions such that

xi
0 ∼ px0

(
xi

0

)
(3.36)

mi
0 ∼ pm0

(
mi

0

)
(3.37)

Considering that there will be no information about the target existence at the initial step,

mi
0 can be selected as a binary random variable with uniform distribution. Then, for those

particles who claim a target existence i.e. mi
0 = 1, one can generate initial state variables ac-

cording to any importance density function. In this thesis the initial state distribution px0

(
xi

0

)
is assumed to be uniform over the surveillance region of the state space.

3.4.2 Time Update

Let us assume that at time k − 1, the joint state posterior pdf p (xk−1,mk−1|Zk−1) is known and

we have a set of random samples
{
xi

k−1,w
i
k−1

}N

i=1
associated with this pdf. The first step for

each particle is to calculate the mode prior p
(
mi

k|m
i
k−1

)
using mi

k−1 and transition probability

matrix, Π. This is done by implementing a two state Markov chain with transition probability

πi j as described earlier.

The next step for each particle is to calculate the target state prior, p
(
xi

k|x
i
k−1

)
. However, this

will be done only for the particles that indicate a target is present, i.e. mi
k = 1. As noted

before, for others target state is undefined. Two possible cases occur for the prediction step

which are introduced earlier in Section 3.3.
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3.4.2.1 Existing Particles

The first case of time update is so called ’Existing Particles’ where the ith particle stays alive

between the times k − 1 and k, i.e. mk−1 = 1 and mk = 1.

It has been shown that the selection of the importance density plays a crucial role in the

performance of the PF algorithm. One ideally desire to use the true posterior density as the

importance density. However in TBD problem this is not possible. Thus for existing particles

we have selected the transitional prior as the importance density such that

q
(
xi

k|x
i
k−1, zk

)
= p

(
xi

k|x
i
k−1

)
(3.38)

Considering that the target dynamic model is known, one can obtain transitional prior density

of the state given the previous value. In the particle representation it is obtained by drawing

samples from the transitional prior density as

xi
k ∼ p

(
xk|xi

k−1

)
(3.39)

Note that obtaining state distribution xi
k from the transitional prior p

(
xk|xi

k−1

)
defines a simple

but inefficient representation of the true prior.

3.4.2.2 Newborn Particles

The second case of the time update is the birth of new particles which are so called ’Newborn

Particles’ where the ith particle borns between the times k − 1 and k. This phenomena is

characterized by mi
k−1 = 0 and mi

k = 1.

The birth probability density function pb (xk) is assumed to be known. Depending on the

application there are several methods to get the birth function for newborn particles

• It may be uniform over the surveillance region

• It may be based on the measurement

• Any a-priori information about target position, velocity or SNR may be used
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In this work in order to use the maximum information, newborn particles are drawn using the

measurement itself. For this reason, the R-D matrix is considered as a pdf and samples will

be drawn from higher return amplitudes.

This technique is sometimes called as the ’likelihood’ particle filter, see [1], where the mea-

surement pdf is also used for existing particles. However, it is obvious that for low SNR

applications prior density is likely to have more information than the measurement itself.

Thus, in this TBD application we offer the measurement likelihood pdf is used only for the

newborn particles.

An Acceptance-Rejection (A-R) algorithm is proposed in order to draw more particles from

’high’ value (i.e. high SNR) parts of the measurement matrix. Let S k denote the ’Surveillance

Region’, zk is the R-D matrix and k is the discrete time index. The algorithm’s pseudo-code is

given in Algorithm 6.

Figure 3.3 illustrates the measurement data (on the left) and histogram of drawn particles

based on that data (on the right) with A-R technique proposed here.

Algorithm 6 Acceptence Rejection Algorithm Structure

function
[
xi

k

]
= A-R(zk, S k)

• FOR i = 1 : max iteration

– Draw a sample from S k such that: xi
k ∼ U

[
S kmin , S kmax

]
– Draw a value u such that: u ∼ U [0, 1]

– IF u ≤ h
(
xi

k

)
/max (zk)

∗ Return: xi
k

– ELS E

∗ Continue

– END

• END
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(a) Measurement (b) Particles

Figure 3.3: Histogram of Newborn Particles

3.4.3 Measurement Update

Measurement update of the TBD algorithm is actually a weight update of the PF. The update

equation is to calculate ’unnormalized importance weights’ defined as

w̃i
k ∝ wi

k−1.
p
(
zk|xi

k,m
i
k

)
p
(
xi

k|x
i
k−1,m

i
k

)
q
(
xi

k|x
i
k−1, zk

) (3.40)

where the importance density q
(
xi

k|x
i
k−1, zk

)
is selected as the transitional prior density p

(
xi

k|x
i
k−1

)
.

Therefore the update equation takes the form

w̃i
k ∝ wi

k−1 p
(
zk|xi

k

)
(3.41)

Note that since we apply resampling at each time step normalized weights are equal to 1/N

at the end of each time instance and thus unnormalized weights are not dependent on wi
k−1.

Therefore, it is only required to calculate the likelihoods p
(
zk|xi

k

)
at each time instance. The

likelihood function is derived earlier in Equation (3.27) however for the sake of completeness

let us give the equation once more as follows

p (zk|xk,mk) =


∏

r,d∈B(xk) pS +N
(
zrd

k |xk
) ∏

r,d<B(xk) pN
(
zrd

k

)
f or mk = 1∏

r,d pN
(
zrd

k

)
f or mk = 0

(3.42)

Considering that the weights are only required upto proportionality we can divide Equation
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(3.42) by
∏

r,d pN
(
zrd

k

)
, [20]. So the measurement likelihood becomes

w̃i
k ∝ p

(
zk|xi

k,m
i
k

)
∝


∏

r,d∈B(xk) L
(
zrd

k |x
i
k

)
f or mi

k = 1

1 f or mi
k = 0

(3.43)

where L
(
zrd

k |x
i
k

)
is the ’likelihood ratio’ defined as,

L
(
zrd

k |x
i
k

)
=

pS +N
(
zrd

k |x
i
k

)
pN

(
zrd

k

) (3.44)

Therefore the unnormalized weight of each particle is equal to the product of the likelihood

ratios in the vicinity of the particle. Notice that unnormalized weights defined by the equa-

tion (3.43) has a very similar expression with the Neyman-Pearson detection rule defined in

Section 2.2.

3.4.4 Normalize

In order to approximate the true posterior the weights are normalized as

wi
k =

w̃i
k∑N

i=1 w̃i
k

(3.45)

Thus after normalization the discrete approximation of the true posterior is obtained as

p (xk|Zk) ≈
N∑

i=1

wi
k δ

(
xk − xi

k

)
(3.46)

3.4.5 Output

Since the accuracy of any estimate of a distribution can only decrease with resampling, [14],

the output of the running PF is calculated prior to resampling. Let us define the output of the

algorithm at time k as, the Probability of Target Existence,PEk and the Minimum Mean-Square

Error (MMSE) Estimate of the state vector, x̂MMS E
k|k .
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The probability of target existence is calculated by its definition

PEk

4
= p (mk = 1|Zk) (3.47)

which is equal to

PEk =

N∑
i=1

mi
k wi

k (3.48)

The MMSE estimator is defined by the conditional expectation of xk given the measurement

sequence Zk

x̂MMS E
k|k

4
= E [xk|Zk] =

∫
xk p (xk|Zk) dxk (3.49)

Consequently, the MMSE estimate of the state can be calculated as follows

x̂k|k =

∑N
i=1 xi

k mi
k wi

k∑N
i=1 mi

k wi
k

(3.50)

3.4.6 Resample

Sample degeneracy is defined as after a finite number of steps, depending on how close the

importance density to the true posterior is, all particles but a few will have negligible nor-

malized weights. This is an unavoidable problem for particle filters and resampling tries to

overcome this problem. The aim of resampling is to increase the effective number of particles

calculated below

N̂e f f =
1∑

i

(
wi

k|k

)2 (3.51)

Detailed discussion about degeneracy has been made in Section 2.3.2. For those reasons

resampling is included in the TBD algorithm as defined in Algorithm 2.
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3.4.7 MCMC Move Step

In Chapter 2.3.4 it has been shown that the loss of diversity is a severe problem of particles

filters especially when the process noise is small or a parameter estimation is being made.

Notice that in this algorithm target mean power is estimated as a parameter using the model

Ik = Ik−1 (3.52)

Therefore MCMC move step is applied only for the target power such that

I∗ik = Ii
k + bDkε

i (3.53)

where b is the Gaussian kernel bandwidth and Dk is the standart deviation obtained for the

target power at time k. In [19] it is given that the optimum bandwidth for a Gaussian kernel is

given by

b =

[
4

n + 2

] 1
n+4

N−
1

n+4 (3.54)

where N is the number of particles and n is the number of state dimensions. See Algorithm 7

for the implementation of the MCMC move step in the TBD algorithm. This is the final step

of the particle filtering part of the TBD algorithm defined in this chapter. Pseudo-code of the

algorithm is given in Algorithm 7.

3.5 Detection

In this section, it will be determined how to perform detection from the output of the particle

filtering algorithm defined above. As explained in Chapter 2.2 two hypotheses are defined as

1. Noise Present Only : H0

2. Signal plus Noise Present : H1

where the detection is based on the likelihood ratio test defined as
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L (zk) =
p (zk|H1)
p (zk|H0)

(3.55)

It is given in Equation (3.20) that, the probability density of the measurement given that a

target is present, i.e. p (zk|H1) is defined by pS +N (zk|xk) and the probability density of the

measurement given that a target is absent, i.e. p (zk|H0) is defined by pN (zk). Thus the

likelihood ratio test can be written as

L (zk) =
p (zk|H1)
p (zk|H0)

=
pS +N (zk|xk)

pN (zk)

H1
>

<
H0

λ (3.56)

Now for the sake of completeness let us repeat the update equation of the PF algorithm defined

in Equation (3.43) as

w̃i
k ∝ p

(
zk|xi

k,m
i
k

)
∝


∏

r,d∈B(xk) L
(
zrd

k |x
i
k

)
f or mi

k = 1

1 f or mi
k = 0

(3.57)

where

L
(
zrd

k |x
i
k

)
=

pS +N
(
zrd

k |x
i
k

)
pN

(
zrd

k

) (3.58)

Notice that in the PF algorithm the likelihood ratio is inherently calculated in the weight

update equation. Thus for those particles where mi
k = 1, the sum of the importance weights

can be used as the likelihood ratio.

L (zk) �
N∑

i=1

mi
k wi

k (3.59)

Remember that the probability of target existence is defined in Equation (3.47) as the weighted

sum of the importance weights where the weights are the mode variable.

PEk =

N∑
i=1

mi
k wi

k (3.60)
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So that the likelihood ratio test can be realized based on the probability of target existence

such that

PEk

H1
>

<
H0

λd (3.61)

It is shown that the required likelihood ratio test is inherently implemented in particle filtering

algorithm and by its definition PEk can be used in order to declare the target existence in the

measurement matrix under test.

Algorithm 7 TBD Algorithm
function

[
x̂k|k, PEk

]
= TBD (zk, S k)

• Initialize particles using pxo

(
xi

0

)
and pmo

(
mi

0

)
• FOR i = 1 : N

– Evaluate Markov Chain from: p
(
mi

k|m
i
k−1

)
∗ I f F existing particle

· Draw sample from: p
(
mi

k|m
i
k−1

)
∗ IF newborn particle

· Draw sample from: qb
(
xi

k|zk
)

using Algorithm 6

– Evaluate ’Importance Weights’

w̃i
k ∝ p

(
zk|xi

k,m
i
k

)
∝


∏

r,d∈B(xk) L
(
zrd

k |x
i
k

)
f or mi

k = 1

1 f or mi
k = 0

L
(
zrd

k |xk
)

=
pS +N

(
zrd

k |x
i
k

)
pN

(
zrd

k

)
• END

• Continue from Algorithm 8
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Algorithm 8 TBD Algorithm (ctd.)
function

[
x̂k|k, PEk

]
= TBD (zk, S k)

• FOR i = 1 : N

– Normalize

wi
k =

w̃i
k∑N

i=1 w̃i
k

• END

• Calculate Output

PEk =

N∑
i=1

mi
k wi

k

x̂k|k =

∑N
i=1 xi

k mi
k wi

k∑N
i=1 mi

k wi
k

• Calculate Dk such that DkDT
k = S k where S k is the variance of target power

• Resample using Algorithm 2

• FOR i = 1 : N

– Draw εi from Gaussian kernel and calculate I∗ik = Ii
k + bDkε

i

– Evaluate probability of move according to Equation (2.41)

– Draw a candidate u such that u ∼ U [0, 1]

∗ IF u ≤ α
(
xi

k, x
∗i
k

)
· Move to the new location such that: xi

k = x∗ik

∗ ELS E

· Reject move such that: xi
k = xi

k

∗ END

• END

• Declare target existence based on

PEk

H1
>

<
H0

λd
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CHAPTER 4

RESULTS AND SIMULATIONS

4.1 Simulation Environment

To evaluate the performance of the proposed TBD algorithm, a radar simulator is used as the

raw data generator [15]. Radar simulator is a MATLAB based simulator which is capable of

generating echo signals based on radar, target and environmental parameters. Radar param-

eters are tuned to obtain different SNR’s for different target scenario’s. Radar simulator is

capable of simulating target reflections for different Swerling models. As it will be discussed

in the later sections Swerling-0 and Swerling-1 type of targets are considered within this the-

sis. Radar simulator is also capable of simulating various environmental effects although we

have assumed a free space for the simulations.

At the output, the radar simulator generates Range Doppler (R-D) matrices for each run. A

slight modification has been made to the simulator in order to generate the R-D matrices for

a given target trajectory. A sample output of the simulator is shown in Figure 3.2. Note that

for all of the scenarios R-D matrices have 160 range cells versus 14 Doppler cells.

4.2 Scenario and Parameters

To analyze the performance of the TBD algorithm developed in Chapter 3, the following

scenarios are used

1. Incoming Target with Constant Amplitude

2. Incoming Target with Fluctuating Amplitude
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Figure 4.1: Incoming Target Trajectory

3. ManeuveringTarget with Fluctuating Amplitude

4. Noise Only Detection

The simulations aim to analyze the performance of the algorithm for different aspects. Con-

stant target amplitude i.e. Swerling-0 case is of course not realistic for most of the time

however it provides a base performance for the other cases. Incoming target scenario with

fluctuating target amplitude i.e. Swerling-1 aims to analyze the proposed algorithm’s perfor-

mance under straight line trajectories. This is a commonly used scenario to evaluate the track

initiation and tracking algorithm performances in practice. Maneuvering target with fluctuat-

ing amplitude case is used to analyze the performance degradation due to the target motion

uncertainties. Finally, noise only scenario specifies the false track declaration performance of

the algorithm.

4.2.1 Target Scenario

Let us define two different target scenarios to be used within the simulations.

In the first scenario an incoming target is assumed to appear at time t = 6 sec with a radial

velocity of 100 m/sec. It is assumed that the target stays in the surveillance region for 20
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Figure 4.2: ManeuveringTarget Scenario

seconds and then disappears. Figure 4.1 shows the trajectory of the target in X − Y plane. It

is assumed that the target altitude stays constant throughout the scenario.

In the second scenario a Maneuvering target is assumed to appear again at time step of t =

6 sec with a radial veloctiy of 100 m/s. However, the target maneuvers with 1g for 12 seconds

and then settles in a straight line trajectory. Figure 4.2 shows the trajectory of the target in

X − Y plane. It is again assumed that the target altitude stays constant during the maneuver.

Let us assume that the radar is located at position (0, 0) and has an antenna rotation period of

1 second.

4.2.2 Surveillance Region

Surveillance region indicates the expected position, velocity and amplitude of targets. Table

4.1 shows the surveillance region parameters of 7 dimensional state variable xk. Note that the

mode variable mk is binary.

As it is noted before, initial state distribution is assumed to be uniform over the surveillance

region for the state variable xi
0 and the mode variable mi

0. Figure 4.3 illustrates the initially

drawn particles in X − Y plane using the surveillance region parameters.

49



Table 4.1: Surveillance Region Parameters

Parameter Min Value Max Value Unit
X Position 7000 10000 meters
X Velocity -150 -50 meters/sec
Y Position -250 250 meters
Y Velocity -10 10 meters/sec
Z Position -100 100 meters
Z Velocity -10 10 meters/sec

Target SNR 6 26 dB

Figure 4.3: Initial Position of Particles

Note that for those particles who do not claim a target existence at time 0, i.e. mi
0 = 0, target

state is undefined.

4.2.3 The Mode Variable

The mode transition probability matrix is defined as

Π =

 1 − Pb Pb

Pd 1 − Pd

 (4.1)
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where the ’birth’ and ’death’ probabilities are taken as follows

Pb = 0.05 (4.2)

Pd = 0.01 (4.3)

4.2.4 Target State Model

Let the state defined by the Equation (3.16), is modeled with a discrete time linear stochastic

system with the following equations

xk+1 =


Fxk + Gwk i f mk = 1

unde f ined i f mk = 0
(4.4)

In this expression the state vector xk is defined as xk =
[
xk ẋk yk ẏk zk żk Ik

]T
, F is the state

transition matrix, wk is the process noise sequence and G is noise gain. State transition matrix

is taken as

Fk =



F̃ 0 0 0

0 F̃ 0 0

0 0 F̃ 0

0 0 0 A (x)


(4.5)

where

F̃ =

 1 T

0 1

 (4.6)

and

A (x) = (rk−1/rk) (4.7)

where r denotes the range of the target such that rk =

√
x2

k + y2
k + z2

k .
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The noise gain is defined as

G =



G̃ 0 0 0

0 G̃ 0 0

0 0 G̃ 0

0 0 0 0


(4.8)

where

G̃ =

 T 2/2

T

 (4.9)

Finally, the discrete process noise sequence is assumed to be white Gaussian according to

wk ∼ N (wk ; 0,Qk) (4.10)

where

Qk =



q̃k 0 0 0

0 q̃k 0 0

0 0 q̃k 0

0 0 0 0


(4.11)

Note that, q̃k in the above equation is used to model the unknown acceleration of the target

motion for x − y − z axes. This model is known as the ’Constant Velocity, CV’ or ’Nearly

Constant Velocity’ motion model [16]. The covariance matrix Qk determines the expected

amount of acceleration, i.e maneuver of the target. As noted before in this work state vector

is augmented in order to include the target power, Ik and thus the CV motion model is also

augmented. Target echo power is assumed to be range dependent.

Equations (4.4) to (4.11) defines a discrete time non-linear stochastic system to be used within

the simulations.
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4.2.5 Target Measurement Model

The measurement model of the target is assumed to be

p (zk|xk,mk) =


∏

r,d pS +N
(
zrd

k |xk
)

f or mk = 1∏
r,d pN

(
zrd

k

)
f or mk = 0

(4.12)

where both pS +N
(
zrd

k |xk
)

and pN
(
zrd

k

)
are assumed to be exponential densities as defined in

Chapter 3.2.3. Also note that no blurring effect is taken into account in the measurement

model such that B (x) = δ
(
xi

k

)
.

4.2.6 Detection

Finally the target is declared once the probability of target existence is above the predefined

threshold, PEk ≥ 0.6.

4.3 Simulation Results

4.3.1 Incoming Target with Constant Amplitude

In the constant target amplitude analysis, an incoming target scenario is used as shown Fig-

ure 4.1. It is assumed that the target return power does not fluctuate from mean SNR. This

scenario matches to the Swerling-0 model as defined in [23]. Note that one would expect

an increase on the target SNR as it gets closer to the radar. This effect does not depend on

Swerling models and is taken into account within the simulations.

Simulation results are given below for different initial target SNR’s and different number of

particles. Note that all of the results are obtained by 100 Monte Carlo simulations.

10dB Initial Target SNR

In the first experiment a relatively high SNR value is chosen to obtain a base performance of

the TBD algorithm. Figure 4.4 shows the behaviour of the particles for t = 2, 6, 8, 10, 16 and 33
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(a) t = 2sec (b) t = 6sec

(c) t = 8sec (d) t = 10sec

(e) t = 16sec (f) t = 33sec

Figure 4.4: Distributions of Particles in R-D Plane
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seconds. Blue dots indicate particle positions and black ’o’ denotes the actual target position

when it is in the surveillance region. It is shown in the figure that when the target does not

exist particles remain uniform over the surveillance region. On the other hand, when the target

appears at time t = 6sec particles tend to accumulate around it. Those particles who accumu-

late around the target defines the probability of target existence. Finally, it is also shown that

the particles become uniformly distributed after the target disappears at t = 26sec.

Figure 4.5 shows the probability of target existence calculated by the TBD algorithm together

with target SNR. Left axis shows the probability of target existence for different number of

particles while right axis shows the target SNR in the same figure.

Figure 4.5: Probability of Target Existence and Target SNR (Swerling-0, 10dB Initial SNR)

Figure 4.5 shows that for a 10dB initial target SNR, proposed TBD algorithm performs target

declaration in 3 seconds. It is also shown that increasing the number of particles slightly

increase the confidence of TBD algorithm in the transient region about the target existence

although it does not affect the overall detection performance.

The output of the PF algorithm also gives the MMSE estimate of range and Doppler as de-

scribed in Section 3.4.5. Figure 4.6 shows the range versus Doppler estimates together with

the target’s actual positions.
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Figure 4.6: Range and Doppler Estimate (Swerling-0, 10dB Initial SNR)

Figure 4.6 shows that the particle filter is able estimate the range and the Doppler of the target

more accurately after a few more steps then the detection is actually declared. Figure 4.7

shows the RMS range and Doppler tracking errors respectively.

(a) RMS Range Tracking Error (b) RMS Doppler Tracking Error

Figure 4.7: RMS Tracking Error (Swerling-0, 10dB Initial SNR)

Effective number of particles as explained in Section 2.3.2 gives an idea about the performance

of the PF algorithm. It is expected that the larget effective number of particles yields better

performance in terms of detection and estimation accuracies. Figure 4.8 shows the effective

number of particles in percentage. It is shown in the figure that the effective number of
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particles increases after the target appears in the surveillance region until they reach to a

steady state value.

Figure 4.8: Effective Number of Particles (Swerling-0, 10dB Initial SNR)

Figure 4.9 shows the SNR estimate of the PF algorithm and the actual SNR of the target. It

is shown that the algorithm is able to estimate the target SNR as soon as the target appears in

the surveillance region.

Figure 4.9: SNR Estimate (Swerling-0, 10dB Initial SNR)
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Figure 4.10: Probability of Target Existence and Target SNR (Swerling-0, 8dB Initial SNR)

8dB Initial Target SNR

The second experiment is performed for a constant amplitude target with the initial SNR of

8dB. Figure 4.10 shows the probability of target existence together with target SNR. It is

shown in Figure 4.10 that the algorithm has declared the target existences between 4 to 5

seconds after the target is appeared in the surveillance region. For this case, as the number of

particles are increased less detection times are required.
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Figure 4.11: Range and Doppler Estimate (Swerling-0, 8dB Initial SNR)

The range and Doppler estimate of the algorithm is shown in Figure 4.11 and the correspond-

ing RMS error plots are given in Figure 4.12

(a) RMS Range Tracking Error (b) RMS Doppler Tracking Error

Figure 4.12: RMS Tracking Error (Swerling-0, 8dB Initial SNR)
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The SNR estimate of the target is given in Figure 4.13.

Figure 4.13: SNR Estimate (Swerling-0, 8dB Initial SNR)

Figures 4.12 and 4.13 show that the range, Doppler and SNR estimation accuracies are de-

graded comparing to the 10dB SNR case.

Finally number of effective particles are given in Figure 4.14

Figure 4.14: Effective Number of Particles (Swerling-0, 8dB Initial SNR)
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6dB Initial Target SNR

The initial target SNR is then reduced to 6dB. Previous cases show that the performance

degrades as the SNR decreases. This analysis also shows that the trend continues for 6dB

case however the target declaration is made eventually. Figure 4.15 shows the probability of

target existence together with the target SNR. It is shown in the figure that for 6dB initial

target SNR, TBD algorithm performs target declaration between 9 to 11 time steps depending

on the number of particles. In this case, for low number of particles i.e. 10k, the SNR of

the target has increased to 7.5dB until the target is declared. However for higher number of

particles i.e. 40k target is declared at the SNR values as low as 6.7dB.

Figure 4.15: Probability of Target Existence and Target SNR (Swerling-0, 6dB Initial SNR)

The range Doppler estimate of the algorithm is shown in Figure 4.16 and the corresponding

RMS error plots are given in Figure 4.17. Figure 4.17 shows that the tracking accuracy of the

TBD algorithm is degraded with initial target SNR of 6dB as expected.
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Figure 4.16: Range and Doppler Estimate (Swerling-0, 6dB Initial SNR)

(a) RMS Range Tracking Error (b) RMS Doppler Tracking Error

Figure 4.17: RMS Tracking Error (Swerling-0, 6dB Initial SNR)
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The SNR estimate performance of the algorithm is also degraded with the reduced SNR as

shown in Figure 4.18.

Figure 4.18: SNR Estimate (Swerling-0, 6dB Initial SNR)

Finally effective number of particles are given in Figure 4.19. It can be seen in the figure that

the number of effective particles remains in the transient state longer than the higher SNR

values. This is a corollary of the reduced SNR.

Figure 4.19: Effective Number of Particles (Swerling-0, 6dB Initial SNR)
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Table 4.2: Declaration Times for Different SNR’s (Swerling-0)

Number of Particles / Initial SNR 15dB 10dB 8dB 6dB
10k Particles 2 (15.2dB) 3 (9.5dB) 5 (8.7dB) 11 (7.6dB)
20k Particles 2 (15.2dB) 3 (9.4dB) 4 (8.5dB) 10 (7.1dB)
40k Particles 2 (15.2dB) 3 (9.4dB) 4 (8.5dB) 9 (6.7dB)

4dB Initial Target SNR

As the final experiment related with this scenario the initial target SNR is reduced to 4dB.

This particular case is out of the surveillance region in terms of signal power, see Table 4.1.

However, analysis is done in order to test the TBD algorithm performance.

From Figure 4.20, it can be seen that the TBD algorithm fails to detect the target at 4dB SNR.

Figure 4.20: Probability of Target Existence and Target SNR (Swerling-0, 4dB Initial SNR)

Summary

In the first set of experiments, an incoming constant velocity target with a radial velocity of

100m/sec is simulated under constant amplitude (Swerling-0) assumption. Table 4.2 shows

the target declaration times for different target initial SNR’s and number of particles.

It is observed that the proposed TBD algorithm is successfull in terms of target declaration for
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SNR’s as low as 6 dB altough it takes more time to achieve the objective as the SNR decreases.

It is also shown that the declaration times are reduced by increasing the number of particles

especially for very low SNR values, see Table 4.2. In most of the radar detection problems

10dB to 6dB SNR values are considered as very low. See [18] for detection performance vs

target SNR for a non-fluctuating target.

Another conclusion is that as the target SNR decreases both detection and estimation perfor-

mances of the TBD algorithm reduces as expected. Notice that for all of the results the target

SNR increases with the reduced range according to the radar range equation. Table 4.3 shows

the target SNR’s when it is declared by the TBD algorithm. It is shown that around 7dB SNR

is sufficient to detect a Swerling-0 target.

Note that the proposed algorithm has a Swerling-1 measurement model. This analysis also

shows that this model handles the Swerling-0 target case successfully.

4.3.2 Incoming Target with Fluctuating Amplitude

In order to evaluate the performance of the TBD algortihm under fluctuating target amplitude

assumption an incoming target scenario is used agin as shown Figure 4.1. It is assumed

that the target return power fluctuates according to Swerling-1 model. Simulation results are

given below for different initial target mean SNR’s and different number of particles. Note

that during the scenario as the target becomes closer to the radar, the mean SNR increases

according to the radar range equation defined in Section 2.1.2. Also note that all of the

results are obtained by 100 Monte Carlo simulations. During the analysis the target appears

at t = 6sec and dissappears at t = 26sec.

10dB Initial Target SNR

Since the target return signal fluctuates, first the histogram of the power of the return signal

is given in Figure 4.21 at time t = 6 for 100 Monte Carlo trials. Figure 4.21 shows that

the exponential distribution obtained from the measurements fit well into the observed data.

The mean value is also shown with a black line which is equal to 9.92dB. Thus, Figure 4.21

justifies the measurement model defined earlier as
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Figure 4.21: Demonstration of Target Plus Noise Signal

pS +N (zk|xk) ∼


1
Pr

e−x/Pr ; x ≥ 0

0 ; x ≤ 0
(4.13)

Figure 4.22 shows the probability of target existence and target SNR with respect to time. On

the left axis probability of target existence is shown for different number of particles. On the

right axis target mean SNR is shown for 100 Monte Carlo trials.

Note that the SNR is shown only between the times where the target presents in the surveil-

lance region. Also note that the displayed SNR values are the mean SNR taken through 100

Monte Carlo trials.
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Figure 4.22: Probability of Target Existence and Target SNR (Swerling-1, 10dB Initial SNR)

From Figure 4.22, it is seen that the target existence is declared within 3−5 seconds depending

on the number of particles.

The range Doppler estimate of PF algorithm is shown in Figure 4.23 and the corresponding

RMS error plots are given in Figure 4.24.

Figure 4.23: Range and Doppler Estimate (Swerling-1, 10dB Initial SNR)
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(a) RMS Range Tracking Error (b) RMS Doppler Tracking Error

Figure 4.24: RMS Tracking Error (Swerling-1, 10dB Initial SNR)

The SNR estimate of the target is given in Figure 4.25.

Figure 4.25: SNR Estimate (Swerling-1, 10dB Initial SNR)

Figures 4.23, 4.24 and 4.25 show that the TBD algorithm estimates the range, Doppler and

SNR of the target successfully even with 10k particles although the accuracies slightly in-

crease with increased number of particles.

Finally effective number of particles are given in percentage in Figure 4.26.

68



Figure 4.26: Effective Number of Particles (Swerling-1, 10dB Initial SNR)

8dB Initial Target SNR

In the second experiment the initial target SNR is reduced to 8dB. The probability of target

existence is shown in Figure 4.27. For this case the target existence is declared between 6− 7

seconds Again, it is observed that the increased number of particles improves the performance

of the algorithm in terms of declaration times.
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Figure 4.27: Probability of Target Existence and Target SNR (Swerling-1, 8dB Initial SNR)

The range Doppler estimate and the corresponding RMS error plots are given in Figures 4.28

and 4.29 respectively.

Figure 4.28: Range and Doppler Estimate (Swerling-1, 8dB Initial SNR)
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(a) RMS Range Tracking Error (b) RMS Doppler Tracking Error

Figure 4.29: RMS Tracking Error (Swerling-1, 8dB Initial SNR)

The SNR estimate of target is given in Figure 4.30.

Figure 4.30: SNR Estimate (Swerling-1, 8dB Initial SNR)
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Finally Figure 4.31 shows the effective number of particles.

Figure 4.31: Effective Number of Particles (Swerling-1, 8dB Initial SNR)

6dB Initial Target SNR

The initial target SNR is then reduced to 6dB for the same trajectory. The probability of target

existence obtained in this case is shown in Figure 4.32

Figure 4.32: Probability of Target Existence and Target SNR (Swerling-1, 6dB Initial SNR)
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In Figure 4.32, it is shown that the proposed TBD algorithm is able to detect Swerling-1 target

even under 6dB initial target SNR. The target declaration times are obtained between 10 to

14 seconds depending on the number of particles although the SNR of the target increases to

about 7.5dB to 8dB at that time.

The range and Doppler estimate of PF algorithm is shown in Figure 4.33 and the correspond-

ing RMS error plots are given in Figure 4.34.

Figure 4.33: Range and Doppler Estimate (Swerling-1, 6dB Initial SNR)

(a) RMS Range Tracking Error (b) RMS Doppler Tracking Error

Figure 4.34: RMS Tracking Error (Swerling-1, 6dB Initial SNR)
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The SNR estimate of target is given in Figure 4.35.

Figure 4.35: SNR Estimate (Swerling-1, 6dB Initial SNR)

Note that although the target declaration is performed eventually the estimation accuracy is

not very satisfactory when the target SNR is 6dB.

The effective number of particles are given in Figure 4.36.

Figure 4.36: Effective Number of Particles (Swerling-1, 6dB Initial SNR)
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Figure 4.37: Probability of Target Existence and Target SNR (Swerling-1, 4dB Initial SNR)

4dB Initial Target SNR

The target SNR is then reduced to 4dB when the target is appeared in the surveillance region.

From Figure 4.37, it can be seen that the TBD algorithm fails to detect the target at 4dB SNR

for 10k and 20k particle cases. Although it manages to detect the target with 40k particles at

the end of 20 seconds, target SNR becomes 8dB at that time.

Summary

In the second part of the experiments the same scenario is used as an incoming constant

velocity target with a radial velocity of 100m/sec. However, this time it is assumed that

the target power fluctuates according to Swerling-1 mode. It is observed that for relatively

high SNR values number of particles does not play a crucial role on the performance of the

algorithm. However, for low SNR values like 6dB and 8dB, effects of the number of particles

are seen directly. Table 4.3 shows the target declaration times for different number of particles

and target SNR’s. For most of the radar detection and track initiation problems 10dB to 6dB

SNR values are considered as very low for a Swerling-1 target, [18]
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Table 4.3: Declaration Times Observed for Different SNR’s (Swerling-1)

Number of Particles / Initial SNR 15dB 10dB 8dB 6dB
10k Particles 2 (15.5dB) 5 (10.5dB) 7 (9.3dB) 13 (8.2dB)
20k Particles 2 (15.5dB) 3 (10.8dB) 6 (8.8dB) 11 (7.7dB)
40k Particles 2 (15.5dB) 3 (10.8dB) 6 (8.8dB) 10 (7.4dB)

It is observed that both the detection and the estimation performance of the algorithm degrades

with low SNR values as expected. Although it takes more time to achieve the target detection,

TBD algorithm manages to work until 6dB SNR of target appearance at the beginning of the

trajectory. Since the target is approaching to the radar it’s SNR is increasing so that the SNR

value at the time of declaration is different from the initial value. Table 4.3 shows the target

SNR’s when it is declared by the TBD algorithm and from the table mean SNR around 8dB

is necessary to detect a target with the proposed algorithm.

4.3.3 Maneuvering Target with Fluctuating Amplitude

To get more insight about the performance of the proposed TBD algorithm we conducted

similar experiments on a maneuvering target. Target trajectory is given in Figure 4.2. Detailed

informantion about the trajectory is given in Section 4.2.1. For this scenario target exists in

the surveillance region in the time interval of [6 − 25] seconds. In between 6 − 11 seconds it

makes a maneuver of +1g and in between 11 − 17 seconds it makes the second maneuver of

−1g. From 17sec to the end of the trajectory target has a constant velocity motion.

Simulation results are given below for different initial target SNR’s and different number of

particles. Note that all of the results are obtained by 100 Monte Carlo simulations.

10dB Initial Target SNR

Figure 4.39 shows the probability of target existence for different number of particles together

with the target SNR. Note that, the target still appears at time t = 6sec and disappears at time

t = 20sec. Also note that the displayed SNR values are the mean SNR obtained by 100 Monte

Carlo trials.
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Figure 4.38: Probability of Target Existence and Target SNR (Swerling-1, 10dB Initial SNR)

Figure 4.39 shows that the proposed TBD algorithm detects a 10dB SNR of Swerling-1 target

at 4 to 6 time steps during maneuver depending on the number of particles.

The range Doppler estimate and the corresponding RMS error plots are given in Figures 4.39

4.40 respectively.

Figure 4.39: Range and Doppler Estimate (Swerling-1, 10dB Initial SNR)
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(a) RMS Range Tracking Error (b) RMS Doppler Tracking Error

Figure 4.40: RMS Tracking Error (Swerling-1, 10dB Initial SNR)

The SNR estimate of target is given in Figure 4.41.

Figure 4.41: SNR Estimate (Swerling-1, 10dB Initial SNR)
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Finally effective number of particles are given in Figure 4.42.

Figure 4.42: Effective Number of Particles (Swerling-1, 10dB Initial SNR)

8dB Initial Target SNR

The experiments are repeated for 8dB initial target SNR. The results are given in Figures 4.43

to 4.47.

Figure 4.43: Probability of Target Existence and Target SNR (Swerling-1, 8dB Initial SNR)
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Figure 4.43 shows that the proposed TBD algorithm detects an 8dB SNR of Swerling-1 target

at 8 to 12 seconds during maneuver depending on the number of particles.

The range Doppler estimate of PF algorithm is shown in Figure 4.44 and the corresponding

RMS error plots are given in Figure 4.45.

Figure 4.44: Range and Doppler Estimate (Swerling-1, 8dB Initial SNR)

(a) RMS Range Tracking Error (b) RMS Doppler Tracking Error

Figure 4.45: RMS Tracking Error (Swerling-1, 8dB Initial SNR)
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The SNR estimate of target is given in Figure 4.46.

Figure 4.46: SNR Estimate (Swerling-1, 8dB Initial SNR)

Finally effective number of particles are given in Figure 4.47.

Figure 4.47: Effective Number of Particles (Swerling-1, 8dB Initial SNR)
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6dB Initial Target SNR

The initial target SNR is then reduced to 6 dB. The probability of target existence for a 6dB

mean SNR target is shown in Figure 4.48.

Figure 4.48: Probability of Target Existence and Target SNR (Swerling-1, 6dB Initial SNR)

From Figure 4.48, it can be seen that the TBD algorithm detects the target in between 13 to

15 seconds after its appearance. Although TBD algorithm manages to detect the target, at the

time of detection its SNR is 8dB.

4dB Initial Target SNR

The probability of target existence for a 4dB mean SNR target is shown in Figure 4.49. It is

shown in the figure that the TBD algorithm fails to detect the target appearing at 4dB SNR.
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Figure 4.49: Probability of Target Existence and Target SNR (Swerling-1, 4dB Initial SNR)

Summary

In this case a maneuvering target with an initial radial velocity of 100m/sec is used under

fluctuating amplitude (Swerling-1) assumption. It is observed that the number of particles

play a crucial role on the performance of the algorithm. Table 4.4 shows the target declaration

times obtained in this analysis.

Table 4.4: Declaration Times Observed for Different SNR’s (Swerling-1)

Number of Particles / Initial SNR 15dB 10dB 8dB 6dB
10k Particles 3 (15.2dB) 6 (11.2dB) 12 (10.1dB) 15 (8.8dB)
20k Particles 2 (15.2dB) 5 (10.0dB) 8 (9.4dB) 13 (8.4dB)
40k Particles 2 (15.2dB) 4 (10.6dB) 8 (9.4dB) 13 (8.4dB)

As it would be expected both detection and estimation performance of the algorithm degrades

as the SNR decreases. Altough it takes more time to achieve the target detection, TBD algo-

rithm manages to work until 6dB initial target SNR’s. Table 4.4 also shows the target SNR’s

when it is declared by the TBD algorithm.
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4.3.4 Noise Only Detection

The final experiment performed in this section is the simulation of a noise only scenario to

analyze the false track initiation performance of the proposed algorithm. For this reason

500 steps of noise data is simulated and used within the algorithm. The target existence

probability, PEk versus time is shown in Figure 4.50.

Figure 4.50: Target Existence Probability vs Time

Assuming that the target is declared once the PEk exceeds the given thresold λd = 0.6, it

is shown that only 1 false track is initiated during the scenario. Note that the false track

generated at frame 13, is immediately deleted by the algorithm. Let us define the ’Probability

of False Track Initation’ as

PFT =
Total Number o f False Tracks

Resolution Cells Tested
(4.14)

By using Equation (4.14) and the simulation parameters, PFT can be calculated as

PFT =
1

500 ∗ 160 ∗ 14
= 8.92 10−7 (4.15)

By this analysis, it is shown that the proposed TBD algorithm has an excellent false track
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initiation probability.

4.3.5 Summary of the Results

In this chapter the proposed PF based TBD algorithm is tested in four different scenarios. It

is observed that the algorithm performs outstanding performance under target SNR’s as low

as 6dB. Table 4.5 shows a summary of the results obtained by the algorithm for 40k particles.

Table 4.5: Declaration Times Observed

Scenario / Initial SNR 15dB 10dB 8dB 6dB
Swerling-0, Incoming Target 2 3 4 9
Swerling-1, Incoming Target 2 3 6 10

Swerling-1, Maneuvering Target 2 4 8 13

It is also shown that the false track probability of the algorithm is 8.92 10−7. As denoted

before for most of the radar detection problems 10dB to 6dB SNR values are considered as

very low. However, track before detect approach performs detection with those SNR’s by

means of integrating particles for a number of time steps. This integration is based on the

target state model which is used by the particle filter. Table 4.5 shows that using TBD method

defined in this thesis, 6dB initial target SNR is obtained as the performance limit in terms

of target declaration for the defined false track probability. However in terms of the target

SNR when it is actually declared by the algorithm, the performance limit is just above 8dB

for Swerling-1 cases and below 7dB for Swerling-0 cases.

Another important result is that for each case increased number of particles causes better

detection and estimation performances for very low SNR values as 6dB to 8dB. However for

SNR values as 10dB or higher, the number of particles does not play a cruical role on the

performance of the algorithm if it is on the order of 10k. This is an important result in order to

use the algorithm in practical situations and can be used to determine the number of particles

to be used for a specific scenario.
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CHAPTER 5

CONCLUSION

5.1 Thesis Summary

A Particle Filter (PF) based Track Before Detect (TBD) algorithm is derived within this thesis.

It has been shown that using the TBD approach the detection and the tracking performance of

low SNR targets have been improved.

In this work, track before detect algorithm is developed in order to account for target ampli-

tude fluctuations according to Swerling models. Furthermore, in contrast to many other works

in literature, target mean SNR is not assumed to be known and it is estimated within the algo-

rithm. The state model is selected as an augmented state that includes the target kinematics as

well as it’s amplitude. The kinematic model is adjusted to cover the maneuvering target cases

also.

The developed algorithm is tested under four different scenarios

1. Incoming Target with Constant Amplitude

2. Incoming Target with Fluctuating Amplitude

3. Maneuvering Target with Fluctuating Amplitude

4. Noise Only Detection

It is observed that the proposed PF based TBD algorithm has superior performance under

very low SNR targets upto 6dB even with number of particles as low as 10k. Also it has been

shown that after a few number of steps, PF algorithm detects the target. Moreover, it has been
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shown that the proposed algorithm has an excellent false track probability demonstrated by

the noise only scenario.

5.2 Future Work

There may be several topics to be investigated using the concepts introduced in this thesis.

These topics can be as follows

1. Multiple target cases can be embedded to the system model

2. Structured background can be embedded to the system model in order to account for

undesired objects and/or clutter

3. A new measurement model can be developed in order to use the complex data instead

of power measurements

4. Rao Blackwellised particle filters can be investigated in order to reduce computational

demands and particle filter state dimensions
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