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IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

FEBRUARY 2012



Approval of the thesis:

RECEIVER DESIGN FOR A CLASS OF NEW PULSE SHAPES FOR CPM SIGNALS
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Çağdaş Enis Doyuran (M.Sc.)
Manager, ASELSAN

Date:



I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: BİLAL UĞURLU
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ABSTRACT

RECEIVER DESIGN FOR A CLASS OF NEW PULSE SHAPES FOR CPM SIGNALS

Uğurlu, Bilal

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Yalçın Tanık

February 2012, 69 pages

Recently, a study on obtaining better Euclidean distance for CPM (Continuous Phase Modula-

tion) signals that fit well-known GSM spectral envelope has been carried out, and significant

performance improvements were obtained. Two new pulse shapes, which are represented

using 8th degree polynomials, were optimized to give the best error performance under the

constraint that the PSD stays below GSM spectral standards. However, the approach uses

parameters that cause the number of states to increase considerably, and thus yielding high

complexity for receiver implementation. In this thesis, a study on finding a feasible receiver

design that can provide a performance with acceptable degradation but affordable complexity

is carried out for those new pulse shapes. After a survey about complexity reduction tech-

niques, a decision is made to go on with a receiver structure based on Laurent Decomposition

(LD) of phase modulated signals. Unlike other complexity reduction techniques, usage of

LD based receivers permits reduction in both the number of matched filters and trellis states.

Throughout the study, different numbers of matched filters and trellis states were used in LD

based receivers for the new pulse shapes, and good results are obtained. For the pulse shape

with pulse length L = 3, about a gain of 0.93dB in power is achieved by only 2 matched

filters and 14 trellis states. For the case where L = 7, approximately a gain of 2.25dB is

achieved with only 8 matched filters and 56 states, whereas 896 matched filters and 448 states
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are needed in the optimum case without complexity reduction.

Keywords: Continuous Phase Modulation (CPM), Laurent Decomposition, Maximum Like-

lihood Sequence Estimation (MLSE), Reduced-Complexity CPM Receiver, Global System

for Mobile Communications (GSM)
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ÖZ

SÜREKLİ FAZ MODÜLASYONLU SİNYALLER İÇİN GELİŞTİRİLMİŞ BİR GRUP
YENİ DARBE ŞEKİLLERİ İÇİN ALMAÇ TASARIMI

Uğurlu, Bilal

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Yalçın Tanık

Şubat 2012, 69 sayfa

Geçtiğimiz yıllarda, GSM spektral zarfına iyi uyum sağlayan CPM (Sürekli Faz

Modülasyonu) sinyaller için daha iyi Öklit uzaklığı elde edilmesi üzerine bir çalışma

yapılmış, ve bu konuda kayda değer performans iyileştirmeleri sağlanmıştır. Güç spektral

yoğunlukları GSM spektral standartlarına uymak kaydıyla, 8. dereceden polinomlar kul-

lanılarak oluşturulan iki yeni darbe şekli, en iyi hata performansını verecek şekilde optimize

edilmiştir. Ancak bu yaklaşım, durum sayısında dikkate değer bir artışa neden olabilecek

parametreler kullanmakta, ve böylece almaç yapımında yüksek karmaşıklığa yol açmaktadır.

Bu tezde, bu darbe şekilleri için yeterince indirgenmiş ve uğraşılabilir bir karmaşıklığa sahip,

iyi performans sağlayabilecek, uygulanabilirliği yüksek bir almaç tasarımı bulmaya yönelik

çalışma yapılmıştır. Karmaşıklık azaltma teknikleri incelendikten sonra, faz modülasyonlu

sinyallerin Laurent ayrışımına (LD) dayalı bir almaç yapısı ile yola devam edilmeye karar

verilmiştir. Diğer karmaşıklık azaltma tekniklerinin aksine, LD tabanlı almaçlar hem kul-

lanılan uyumlu süzgeç hem de durum sayısının azaltılabilmesine izin vermektedir. Çalışma

boyunca, yeni darbe şekilleri için geliştirilen LD tabanlı almaçlarda farklı süzgeç ve durum

sayıları kullanılmış ve iyi sonuçlar elde edilmiştir. Darbe uzunluğu L = 3 olan darbe şekli

için, sadece 2 uyumlu süzgeç ve 14 durum kullanılarak, 0.93dB civarında bir güç kazancı
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elde edilmiştir. L = 7 durumu için ise, karmaşıklık azaltma uygulanmadan önce optimum

almaçta 896 süzgeç ve 448 durum sayısı gerekirken, sadece 8 uyumlu süzgeç ve 56 durum

kullanılarak yaklaşık 2.25dB’lik bir kazanç sağlanmıştır.

Anahtar Kelimeler: Sürekli Faz Modülasyonu (CPM), Laurent Ayrışımı, En Büyük Ola-

bilirlik Dizi Kestirimi (MLSE), Azaltılmış Karmaşıklıkta CPM Almacı, Mobil İletişim için

Evrensel Sistem (GSM)
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I would also like to express my thanks to Ç. Enis Doyuran for his suggestions, comments and

invaluable helps.

I would like to forward my appreciation to all my friends and colleagues who contributed to

my thesis with their continuous encouragement.

I am deeply grateful to ASELSAN Inc. for letting me involve in this thesis study. Addition-

ally, I want to express my thanks to TÜBİTAK BİDEB and TURKCELL AKADEMİ for their
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CHAPTER 1

INTRODUCTION

1.1 SCOPE AND OBJECTIVE

In digital communication systems, continuous phase modulation (CPM) is very popular be-

cause of its gorgeous spectral properties and good error probability. Especially in mobile

communications, CPM is employed in several communication standards like GSM, DECT,

Bluetooth etc. Its constant envelope nature makes it very attractive for wireless media, where

nonlinear amplifiers are preferably used for higher efficiency in power. Since it is a nonlinear

modulation scheme, the performance of CPM is not affected by nonlinear operations involved

by transmitters.

In July 2001, an M.Sc. thesis has been carried out [5], about obtaining better Euclidean dis-

tance for CPM signals under the constraint that the power spectral density should stay below

the GSM spectral envelope, by Ç. E. Doyuran. This goal has been realized by finding new

pulse shapes based on polynomial approach, and significant performance improvements were

obtained. However, the signal parameters realizing the objective of this study cause consider-

able increment in the number of states and matched filters at the receiver side, which results

in receiver complexity. In the mentioned study, this situation is not considered. Therefore, a

need for a new study on receiver structures which can provide a performance with acceptable

degradation but affordable complexity has emerged. In this thesis, we are looking for the ways

to reduce the complexity of the receiver needed for these new pulse shapes without sacrificing

the improvements in their error performances.
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In continuous phase modulation schemes, the receiver complexity increases exponentially as

the memory introduced to the system is increased. CPM memory directly depends on the

length of the baseband shaping pulse (or frequency pulse) and the modulation index em-

ployed in the system. As the length of the pulse shape increases, more pulses begin to overlap

which results in more correlative states to be handled by the receiver. And the value of the

modulation index determines the number of phase states. More states means more complex

decoder implementations and more matched filters to be designed.

Receiver complexity problem can be divided into two parts: matched filter complexity and

decoding stage (trellis states) complexity. There have been several studies and important

progress on both areas. In matched filter complexity reduction area, the objective of most

studies was finding a set of orthonormal basis functions to use instead of matched filters,

and implement a limited number of these functions in the receiver to reduce the number

of filters used. In [16], derivation of orthonormal basis functions is accomplished by using

Gram-Schmidt orthogonalization procedure. Sampling functions are used in [18] to obtain

the desired functions. There have been an approach with Walsh functions in [14] for the same

purpose. However, usage of limited basis functions in all of these proposed receivers lead to

a trade-off between the complexity and performance, and no reduction in trellis state numbers

is achieved.

In the area of decoding stage complexity reduction, which means reducing the number of

trellis states, there have been some studies, too. In [19], a decoder using a reduced search

algorithm without any reduction on trellis structure is proposed, whereas in [13], a reduced

state sequence detection method running on a smaller trellis with the usage of decision feed-

back is developed. However, in these last two detectors the number of matched filters remain

unchanged.

There also have been some studies about complexity reduction techniques in both matched

filter and state numbers. In [17] a method that truncates the baseband shaping pulse to a

smaller length for the receiver side is proposed. Since the length of the pulse shape that the

detector is based on is smaller than the one used in the transmitter side, the detector is called

2



a mismatched detector. Mismatch detector usage reduces both trellis state and matched filter

numbers, but degradation in performance is observed.

One of the most attractive works conducted in this area is the paper published by Pierre A.

Laurent, which is found to be very useful in the literature and has a lot of citations. In his

paper, [7], Laurent shows that a binary CPM signal can be exactly constructed by linear su-

perposition of amplitude modulated signals. The nonlinear nature of CPM is reserved by the

nonlinear coefficients applied to the pulses, which are created by the data bits. The energy

is not distributed evenly among these PAM waveforms, so excluding the ones with little en-

ergy from the linear combination does not cause a noticeable degradation; in some cases the

performance is almost the same with the optimal case. In a receiver adopting Laurent de-

composition technique, matched filters are just the time inverse of the PAM waveforms that

construct the transmitted signal. Hence excluding some of these pulses directly reduces the

number of matched filters, and the number of states because of the decrement in the number

of coefficients too. By using Laurent decomposition method, large complexity reductions can

be achieved by almost no degradation in error performance.

In this work, we adopt complexity reduction techniques that uses Laurent decomposition

method since both the number of matched filters and trellis states is large for the pulse shapes

derived in [5].

1.2 OUTLINE OF THE THESIS

In Chapter 2, continuous phase modulation (CPM) is summarized briefly. First the standard

signal definition is given, followed by the signalling types used in CPM. After the standard

definition, the PAM representation of CPM, which is also known as the Laurent Decomposi-

tion is expressed briefly.

In Chapter 3, the coherent receiver structures used for the reception of continuous phase mod-

ulated signals is presented. The chapter starts with the definitions of the optimum maximum

likelihood sequence estimating (MLSE) receiver structure based on phase trellis, and ends

3



with the receiver structure based on Laurent decomposition of CPM signals, which has less

matched filters and encourages state reduction in the Viterbi decoder part.

In Chapter 4, the subject is about some new spectrally efficient pulse shapes having attractive

error performances, which have been studied in an M.Sc. Thesis by Ç. Enis Doyuran in 2001.

First the criteria to search and measure the quality of the new pulse shapes, which are the

power spectral density and minimum Euclidean distance, are discussed briefly. The methods

used for calculating these parameters are explained. The chapter ends with a summary of the

polynomial approach used in the work to form new pulse shapes.

In Chapter 5, proposed receivers and the simulations conducted to measure the error per-

formance of the proposed receivers are explained. First, information about the transmitter,

channel and the receiver models used in simulations is given. It is followed by the verification

of these models with MSK signaling scheme. Then a section illustrating the error perfor-

mance of the optimum CPM receiver for the GMSK signal used in GSM is presented. Lastly,

the proposed receivers for the new pulse shapes of [5] and their simulation results are given

at the end of the chapter.

Finally, in Chapter 6, conclusions about this work are stated.

4



CHAPTER 2

REVIEW OF CONTINUOUS PHASE MODULATION

2.1 INTRODUCTION

The main purpose of the communications discipline is transmission of data in any medium

as reliably as it can be achieved. But it is not so easy to create a reliable communication

link to achieve the desired error probabilities, especially when we talk about wireless

communications where the channels are strictly bandlimited. Living in a world where the

resources for data transmission are not unlimited pushes communications design engineers

into a survey where bandwidth and power efficiency is a big challenge that must be overcome.

Regarding these constraints, continuous phase modulation signaling schemes has gained a

growing interest in the last decades.

Continuous phase modulation (CPM) owes its widespread use to its two favorable character-

istics. Having no amplitude variations in the transmitted signal, which makes it a constant

envelope signal, is the first one. Usage of constant envelope modulation schemes is a

necessity in applications where power supply constraints forces the use of saturated nonlinear

amplifiers. Simple and low-cost transmitters are also other applications where constant

envelope modulations are useful. The second favorable characteristic of continuous phase

modulation is bandwidth and power efficiency. The CPM signal to be used can be adjusted

to have the desired power and bandwidth properties with three parameters. These are the

size of the data alphabet, the modulation index (or indices, if more than one will be used),

and the length and shape of the frequency pulse. One can control the minimum Euclidean

distance, which affects the power efficiency, and spectrum of the signal by selecting these
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three properties carefully. We can conclude that continuous phase modulation (CPM) is a

constant envelope, nonlinear modulation scheme with attractive spectral properties [5, 9],

which makes it so popular in digital communications.

In this chapter, a review of continuous phase modulation is presented; including the standard

CPM signal definition, signaling schemes that are used, phase trellis concept and signal state

definition, and Laurent decomposition of CPM signals which serves to represent them as a

linear sum of amplitude modulated pulses. A more detailed treatment of continuous phase

modulation can be found in [1, 2, 3, 7]

2.2 CPM SIGNAL MODEL

In continuous phase modulation, the digital information is carried in the phase of the carrier

signal. The data symbols modulate the instantaneous phase of the carrier and phase variation

is continuous in time, hence the name continuous phase modulation is given.

2.2.1 STANDARD SIGNAL NOTATION

In a communications system employing continuous phase modulation, the transmitted signal

is represented as in the following equation [1],

s(t, α) =

√
2Es

T
cos [2π fct + ϕ(t, α) + ϕ0] (2.1)

where Es is the symbol energy, T is the period, fc is the carrier frequency, ϕ(t, α) is the

information-bearing phase which is a continuous function of time, and ϕ0 is an arbitrary

constant phase offset which can be set to zero implying that the system is coherent, without

loss of generality. The information data sequence α = · · · , α−2, α−1, α0, α1, α2, · · · that affects

the phase ϕ(t, α), causing it to change with time, is theoretically an infinitely long sequence

of M−ary data symbols which are independent and identically distributed. Each data symbol

takes one of the values

αk = ±1,±3, · · · ,±(M − 1), where k = · · · ,−2,−1, 0, 1, 2, · · ·
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with equal probability 1/M.

Looking at the equation (2.1), the constant envelope, nonlinear nature of the CPM signal

can easily be seen. Regardless of the data, the amplitude,
√

2Es/T , of the envelope of the

transmitted signal is constant. Since the information is carried within the carrier phase, this

makes the modulation scheme nonlinear.

The data sequence α modulates the information-bearing phase of the transmitted signal ac-

cording to

ϕ(t, α) = 2π
∞∑

k=−∞
αkhk

∫ t

−∞
g(τ − kT )dτ (2.2)

where αk is the data affecting the phase in the kth symbol duration, hk is the kth modulation

index which is a member of the sequence h = · · · , h−2, h−1, h0, h1, h2, · · · of modulation

indices, and g(t) is the baseband shaping pulse. The baseband shaping pulse affects the

instantaneous frequency of the transmitted signal, hence the name frequency pulse is also

used widely for g(t).

In equation (2.2), the subscript of the modulation index is shown with a bar below, which

indicates that it is chosen from a predetermined set of H different modulation indices in a

cyclic fashion. This means that hk appears modulo H, and thus k = k mod H. When H = 1,

which is the most common case, only one modulation index exists that is denoted only h,

with no subscripts. In this work, only the cases employing one modulation index are studied.

The baseband shaping pulse g(t) must be of finite duration occupying [0, LT ], lasting for one

or more symbol periods according to the value of L, and chosen such that it integrates to 1/2

for normalization purposes. Since the baseband shaping pulse does not directly affect the

phase, but its time integral does, a new pulse directly affecting the phase of the transmitted

signal can be defined as,

q(t) =
∫ t

−∞
g(τ)dτ (2.3)
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which is called the phase pulse or the phase smoothing response of the transmitted CPM

signal. The goal of the normalization procedure that forces the frequency pulse g(t) to

integrate to 1/2 is to set q(LT ) = 1/2 and hence allow the maximum absolute phase change

over one symbol interval to be (M − 1)hπ. Now equation (2.2) can be reexpressed as,

ϕ(t, α) = 2πh
∞∑

k=−∞
αkq(τ − kT ) (2.4)

where H = 1 is assumed for the modulation index.

2.2.2 SIGNALING TYPES OF CPM

Two types of signaling schemes exist for systems employing continuous phase modulation.

This classification is made by considering the length of the baseband shaping pulse g(t).

2.2.2.1 FULL RESPONSE SYSTEMS

If the duration of the baseband shaping pulse g(t) is equal to only one symbol period, namely

L = 1, then each data symbol affects the instantaneous frequency of the transmitted signal

in only one symbol interval. Hence, the phase smoothing response q(t) also reaches its final

value 1/2 in one symbol period.

For illustration, a rectangular and a raised cosine baseband shaping pulses are given with the

corresponding phase smoothing responses in figures 2.1 and 2.2. The equation for the full

response rectangular pulse is,

g(t) =


1

2T
0 ≤ t ≤ T

0 otherwise
(2.5)

and the equation for the full response raised cosine pulse is,

g(t) =


1

2T

[
1 − cos

2πt
T

]
0 ≤ t ≤ T

0 otherwise
(2.6)
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Figure 2.1: Full Response Rectangular Pulse (L = 1)
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2.2.2.2 PARTIAL RESPONSE SYSTEMS

If the duration of the baseband shaping pulse g(t) is longer than one symbol period, namely

L > 1, then each data symbol affects the instantaneous frequency of the transmitted signal

for more than one symbol interval. Thus, phase smoothing response q(t) also reaches its final

value 1/2 after L symbol periods. This results in partial effects of each individual data to be

seen both on its own and the next L − 1 symbol intervals, hence the name partial response is

given.

A partial response rectangular and a raised cosine baseband shaping pulses are given with the

corresponding phase smoothing responses, with L = 3, in figures 2.3 and 2.4. The equation

for the partial response rectangular pulse is,

g(t) =


1

2LT
0 ≤ t ≤ LT

0 otherwise
(2.7)

and the equation for the partial response raised cosine pulse is,

g(t) =


1

2LT

[
1 − cos

2πt
LT

]
0 ≤ t ≤ LT

0 otherwise
(2.8)

Why do some systems need to use partial response signaling instead of using full response

signaling which is simpler? The answer to this question lies in the spectral properties of the

system. Using partial response CPM systems improves the spectral properties at almost all

frequency band. As the length of the baseband shaping pulse increases, first sidelobes in the

spectrum get considerably lower, and this improvement does not cause any increment in the

probability of symbol error, [5].

Regardless of being full response or partial response, continuous phase modulation systems

have memory inherently. In equation (2.4), it is obvious that the phase, ϕ(t, α), of the trans-

mitted signal depends on both the present and previous data. Using partial response signaling

introduces additional memory to the system, originating from the previous symbols whose

phase smoothing responses could not reach their final values of 1/2 yet. So it can be con-
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cluded that the cost of spectral improvement gained by using partial response signaling is the

additional memory introduced to the system, which increases the complexity of the receiver

[2], [5].

2.3 LAURENT DECOMPOSITION

In 1986, a paper was published in IEEE Transactions On Communications, by Pierre A.

Laurent, [7], explaining that any constant envelope binary phase modulation can also be

expressed as the superposition of a finite number of time-limited amplitude modulated

pulses(AMP). This work includes only binary case with non-integer modulation index values.

After the paper by Laurent, Mengali and Moore improved his work to the M-ary case in [8].

Before explaining the decomposition of CPM signals into amplitude modulated pulses, a

revision of the signal model would be fine. It was shown in equation (2.1) that the transmitted

CPM signal is represented as

s(t, α) =

√
2Es

T
cos [2π fct + ϕ(t, α) + ϕ0]

which can be written as

s(t, α) =

√
2Es

T
Re

[
sL(t, α) · e j2π fct

]

so the complex envelope, sL(t, α), of a CPM signal with ϕ0 = 0 for binary coherent systems

becomes,

sL(t, α) = e jϕ(t,α) (2.9)

In [7], [8], and [10], it has been shown that the baseband (complex envelope) CPM signal can

be written as,

sL(t, α) =
2L−1−1∑

k=0

N−1∑
n=0

bk,nck(t − nT ) (2.10)
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where the real pulses ck(t) are given as,

ck(t) = u(t) ·
L−1∏
i=1

u(t + iT + βk,iLT ), 0 ≤ k ≤ 2L−1 − 1. (2.11)

The function u(t) in equation (2.11) is defined as,

u(t) =


sin[2πhq(t)]

sin[πh]
, 0 ≤ t ≤ LT,

u(2LT − t), LT < t ≤ 2LT,

0, otherwise

(2.12)

and βk,i in equation (2.11) are parameters taking on values 0 or 1. Actually, βk,i is the ith bit

in the radix-2 representation of the value k, for any integer i in the interval 1 ≤ i ≤ 2L−1 − 1.

This can be modeled as,

k =
L−1∑
i=1

2i−1βk,i, 0 ≤ k ≤ 2L−1 − 1.

βk,i ∈ {0, 1}
(2.13)
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Figure 2.5: Laurent Pulses for Raised Cosine Pulse Shape with L = 3 and h = 0.5
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Finally, the last parameter in equation (2.10) to be defined is the nonlinear coefficients bk,n

which are related to the information data sequence α by the relationship,

bk,n = exp
{

jπh
[ n∑

m=0

αm −
L−1∑
i=1

αn−iβk,i

]}
(2.14)

Usage of Laurent Decomposition encourages complexity reduction in the receiver side.

Because most of the energy of the transmitted signal is conveyed by the first few real Laurent

pulses ck(t). In Figure 2.5, Laurent pulses for raised cosine pulse shape having a pulse length

of L = 3, 3RC, with modulation index h = 0.5 is illustrated.

Hence, instead of using all the Laurent pulses at the receiver side, using the ones with high en-

ergy only, almost the same error performances with only a little degradation can be achieved.

For example, in Figure 2.5, energy of the pulses c2(t) and c3(t) are almost negligible. So at the

receiver side, using only two matched filters instead of four will probably result in the same

error performance for this 3RC scheme. This is achieved by using Q = L − 1 = 2 instead of

L in the equations given above for Laurent Decomposition.
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CHAPTER 3

COHERENT CPM RECEIVER STRUCTURES

3.1 INTRODUCTION

In Chapter 2, it was mentioned that CPM is a constant envelope, nonlinear modulation

scheme with attractive spectral properties that makes it so popular in digital communication

area. These favorable properties of CPM makes it very transmitter friendly. Being constant

envelope, leads to the usage of fully-saturated nonlinear amplifiers which are very much

power efficient on the transmitter side, and also helps engineers to design simpler and cheaper

transmitters. Choosing the right parameters for a CPM system brings the ability to control

the power efficiency and the signal bandwidth to the designer, which makes this modulation

technique very versatile and spectrum friendly.

Power efficiency, spectrum efficiency and being constant envelope are of course advantageous,

but these characteristics are only related to the transmission part of the system. Of course, the

transmitter side is not the only part of a communication system, there is also the receiver

side. However, the receiver part of the communication system is not welcomed as well as

the transmitter part by CPM. The nonlinear nature of CPM makes things more difficult at the

receiver side; it becomes harder to demodulate the received signal and harder to synchronize.

And spectrum efficiency is obtained by having longer and smoother baseband shaping pulses,

which also increases the complexity of the receiver. As might be easily seen, the properties

of continuous phase modulation leading to positive results at the transmitter side, somehow

affects the receiver side negatively. This is a common trade-off that CPM system designers

have to deal with.
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In this chapter, optimum and suboptimum coherent receiver structures for CPM are reviewed.

First the basic optimum maximum-likelihood receiver based on the phase trellis is discussed.

It is followed by another optimum receiver structure based on the PAM signals obtained by

the Laurent decomposition of CPM. The chapter ends with a brief discussion on reducing the

state number to construct a suboptimum receiver from Laurent decomposition based receivers.

3.2 RECEIVERS BASED ON PHASE TRELLIS [2, 3]

Beginning with a brief review of some of the results obtained in the previous chapter

and constructing the ideas about the receiver side on them will make the text more un-

derstandable. So, it is assumed that the baseband shaping pulse g(t) has finite length LT

and g(t) = 0 for t < 0 and t > LT . Since g(t) is time limited, the phase smoothing

response q(t) is 0 for the negative values of t and has a constant value of 1/2 for t ≥ LT .

Under these assumptions, the information carrying phase of a CPM signal can be rewritten as,

ϕ(t, α) = 2πh
n∑

i=−∞
αiq(t − iT )

= 2πh
n∑

i=n−L+1

αiq(t − iT ) + πh
n−L∑

i=−∞
αi,

where nT ≤ t ≤ (n + 1)T.

(3.1)

It is obvious from the equation (3.1) that the phase of the transmitted signal can be divided

into two parts. One of them is the cumulative phase, defined as

θn = πh
n−L∑

i=−∞
αi mod 2π (3.2)

The cumulative phase is constructed by past data symbols whose phase smoothing responses

q(t) have reached their final value of 1/2 which is constant, and has no time-varying effect on

the present symbol interval. Cumulative phase determines the number of phase states at the

receiver side. The second phase component in equation (3.1) is the one related to the present

symbol and the previous correlative symbols whose time-varying extensions caused by the

phase smoothing responses can still be seen on the present symbol interval. This component

is represented by,
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θ(t, αn) = 2πh
n∑

i=n−L+1

αiq(t − iT ) (3.3)

Now we have the argument to define the phase of the transmitted signal by state represen-

tation. For any modulation index h and baseband shaping pulse g(t), and for any symbol

interval n (where nT ≤ t ≤ (n + 1)T ), ϕ(t, α) is defined by the present symbol, αn, the

correlative state vector, (αn−1, αn−2, · · · , αn−L+1), and the phase state, θn. Looking at the

definition of the phase state in equation (3.2), it can be said that for irrational modulation

indices, the state number is infinite. But for rational modulation indices h = m/p (m, p

relatively prime integers), there are p phase states for m even, and 2p phase states for m odd.

The number of correlative phase states is finite and equals to ML−1, which is simply 2L−1 for

binary modulation schemes. Then the total state is defined by the L-tuple

σn = (θn, αn−1, αn−2, · · · , αn−L+1) (3.4)

where the number of such states is,

S = pML−1 for m even in h = m/p,

S = 2pML−1 for m odd in h = m/p.
(3.5)

Now after a brief review with the results obtained, the receiver side can be defined. In this

thesis, we deal only with coherent receiver structures for AWGN channels. So the observed

signal in the receiver is r(t) = s(t, α̃) + n(t) where the noise n(t) is Gaussian and white. The

maximum-likelihood sequence estimation receiver maximizes the log likelihood function,

ln[pr(t)|α̃(r(t) | α̃)] ≈ −
∫ ∞

−∞
[r(t) − s(t, α̃)]2dt (3.6)

with respect to the infinitely long estimated sequence α̃ [2], [3]. Here α̃ is the maximum like-

lihood sequence estimate and pr(t)|α̃ is the probability density function for the received signal

r(t) conditioned on the sequence α̃. Maximizing this function is theoretically equivalent to

maximizing the correlation metric,

J(α̃) =
∫ ∞

−∞
r(t)s(t, α̃)dt (3.7)
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But calculation of this metric is almost impossible because of the infinitely long sequence α̃.

So, it can be defined for the nth symbol interval,

Jn(α̃) =
∫ (n+1)T

−∞
r(t)s(t, α̃)dt (3.8)

which can be written in recursive form,

Jn(α̃) = Jn−1(α̃) + Zn(α̃) (3.9)

where the metric related to only the nth symbol interval is defined as,

Zn(α̃) =
∫ (n+1)T

nT
r(t) cos [ω0t + ϕ(t, α̃])dt (3.10)

As might be expected, the correlation metric J(α̃) is computed by using the recursive

formulas in equations (3.9) and (3.10). The algorithm that maximizes the recursive log

likelihood function up to the symbol interval n is called the Viterbi algorithm. This algorithm

is run at the receiver to compute all the possible metrics for ML possible sequences of

α̃ = (α̃n, α̃n−1, · · · , α̃n−L+1) and p or 2p possible phase states θ̃n. So the receiver computes a

total of pML values of Zn for m even or 2pML values of Zn for m odd, where h = m/p. For

complex baseband domain, Zn in equation (3.10) can be written as,

Zn(α̃n, θ̃n) = Re
{∫ (n+1)T

nT
r(t)e− j[θ(t,α̃n)+θ̃n]dt

}
(3.11)

It can easily be seen that the partial metric Zn(α̃n, θ̃n) is computed by sampling the output

of a complex matched filter at t = (n + 1)T fed by the received signal r(t) and taking the

real part of the output. And for computation of all the possible sequences (α̃n, θ̃n), a bank of

matched filters is needed. Then the optimum receiver can be implemented as in Figure 3.1.

The number of matched filters, K, is equal to the number of all possible transmitted signals,

which is pML or 2pML for m even and odd, respectively, where h = m/p.

To implement a more practical receiver having real matched filters, equation (3.11) can be

written as,

18



Zn(α̃n, θ̃n) = cos(θ̃n)
∫ (n+1)T

nT
Î(t) cos [θ(t, α̃n)]dt

+cos(θ̃n)
∫ (n+1)T

nT
Q̂(t) sin [θ(t, α̃n)]dt

+sin(θ̃n)
∫ (n+1)T

nT
Q̂(t) cos [θ(t, α̃n)]dt

−sin(θ̃n)
∫ (n+1)T

nT
Î(t) sin [θ(t, α̃n)]dt

(3.12)

where Î(t) and Q̂(t) are in-phase and quadrature components of the received signal r(t),

respectively. In this case there are 4ML matched filters in the receiver [2].
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r(t) ãn

r0

r1

r2

rK-1
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t = nT

t = nT

t = nT

Figure 3.1: Optimum MLSE Viterbi receiver with complex matched filters

3.3 RECEIVERS BASED ON LAURENT DECOMPOSITION [10, 11]

The observed signal in the receiver to be processed is

r(t) = s(t,α) + n(t) (3.13)

where s(t,α) is the transmitted complex baseband signal, and n(t) is complex-valued additive
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white Gaussian noise with one-sided power spectral density of N0. The optimum receiver

that minimizes the symbol error probability is the one that maximizes the correlation metric,

Re
{∫ ∞

−∞
r(t)s∗(t,α)dt

}
(3.14)

because all the possible transmitted signals have the same energy and the same a priori

probabilities. Since the transmitted signal s(t,α) has been defined in equation (2.10) as,

s(t,α) =
2L−1−1∑

k=0

N−1∑
n=0

bk,nck(t − nT ) (3.15)

the metric to be calculated at the receiver can be redefined as,

Re
{∫

r(t)s∗(t,α)dt
}
= Re

∑n

2L−1−1∑
k=0

b∗k,n

∫ ∞

−∞
r(t)ck(t − nT )dt

 (3.16)

Now, if the argument of the integral operator in equation (3.16) is defined as,

rk,n =

∫ ∞

−∞
r(t)ck(t − nT )dt = r(t) ⊗ ck(−t)|t=nT (3.17)

then the partial metric that the receiver must calculate is given by,

λn = Re


2L−1−1∑

k=0

rk,nb∗k,n

 (3.18)

Finally, equation (3.16) can be reexpressed as,

Re
{∫

r(t)s∗(t,α)dt
}
=

∑
n

λn (3.19)

The receiver based on Laurent Decomposition can be implemented as in Figure 3.2. In this

case, the number of matched filters, K, is equal to the number of Laurent pulses, ck(t), hence

K = 2L−1. Sampled outputs of the matched filters are preprocessed in Branch Metric Com-

puter block to generate the metrics needed to feed the Viterbi decoder. These metrics, λn,

represent all possibilities for the transmitted signal. So the number of the computed branch
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metrics is S = pML or S = 2pML for m even and odd, respectively, where h = m/p. It is the

same as in the optimum CPM receiver based on phase trellis.
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Figure 3.2: LD Based Receiver with real matched filters

The usage of LD based receivers provides a complexity reduction even in the optimal case,

where all the Laurent pulses are employed in the filter bank. Further reduction in complexity

of the receiver can be achieved by omitting the Laurent pulses having negligible energy, as

described in Section 2.3. That is the key point used in this study to reduce receiver complexity.
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CHAPTER 4

SPECTRALLY EFFICIENT PULSE SHAPES FOR CPM

SIGNALS

4.1 INTRODUCTION

In July 2001, an M.S. thesis, titled ”New Pulse Shapes For CPM Signals” [5], was conducted

to the literature by Ç. Enis Doyuran. The objective of the thesis is to find new pulse

shapes for CPM signals which have better spectral and detection performance than the

spectrally efficient GMSK signal currently used in the GSM modulation scheme. Unlike the

older methods which used the RMS bandwidth or effective bandwidth to represent spectral

occupancy, in this thesis, the GSM spectral standards were used for determining the spectral

criterion, because the RMS bandwidth approach can not control the sidelobes and the

spectrum near carrier frequency.

For comparison of detection performance of the new pulse shapes, the criterion was the error

probability. Minimum Euclidean distance between any two of the signals present in the

signal space was used to calculate the error probability for an optimum detector at large SNR.

Then, to minimize the error probability, a maximization procedure was held for the minimum

Euclidean distance.

As a summary, there are two criteria for comparison of the new pulse shapes with the existing

pulse shapes used currently in the GSM modulation scheme. First one is that the new pulse

shapes have to give higher values for the minimum Euclidean distance than the existing ones;

and the second one is that the power spectra of the new pulse shapes must stay within the
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spectral standards of GSM (see Figure 4.1). As might be expected, to realize the aim, a vast

amount of power spectrum density (PSD) and minimum Euclidean distance computations are

required. Hence, efficient calculation methods derived by T. Aulin and Carl-Erik W. Sundberg

were preferred in the thesis, considering the computational complexity.
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Figure 4.1: GSM Spectral Envelope as defined in [6],[20]

In this chapter, first the methods for PSD and minimum Euclidean distance calculations used

in Ç. Enis Doyuran’s thesis are briefly explained. Then some information about how the pulse

shaping is done by using the exact and polynomials and polynomials with free parameters is

given. Lastly, the new optimum pulse shapes found throughout the study are given.

4.2 POWER SPECTRUM AND MINIMUM EUCLIDEAN DISTANCE

4.2.1 CALCULATION OF POWER SPECTRUM

A quite versatile and straightforward numerical method is used in calculation of the power

spectral density of CPM signals. In the method chosen, any baseband pulse shape (frequency
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pulse) with an arbitrary modulation index can be used. The distribution of the independent

data symbols can also be arbitrary, having any probability density function. As mentioned

previously, the method is straightforward. First the baseband autocorrelation function of the

desired CPM signal is calculated, and then it is followed by the computation of the power

spectrum by numerically Fourier transforming the previously calculated autocorrelation

function.

Using the complex notation, the transmitted signal in equation (2.1) can be written as,

s(t, α) =
√

2PRe
[
e jϕ(t,α)e j2π fct

]
(4.1)

where P is the constant transmitted power that is equal to Es/T . Then the autocorrelation

function can be defined as,

r(τ) = ⟨E{s(t + τ, α)s(t, α)}⟩ (4.2)

where ⟨·⟩ is the time-averaging operator, E{·} is the expectation operator with respect to the

random variable α. If the CPM signal defined in equation (4.1) is inserted into equation (4.2),

r(τ) = PRe{R(τ)e j2π fcτ} (4.3)

where

R(τ) = ⟨E{e jϕ(t+τ,α)e− jϕ(t,α)}⟩ (4.4)

is called the complex baseband autocorrelation function. Now applying the rest of the numer-

ical PSD calculation method is easy. First, calculate the complex baseband autocorrelation

function, and then numerically Fourier transform it to obtain the PSD. Under the light of ref-

erences [5] and [15], the complex baseband autocorrelation function R(τ) can be calculated as,
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R(τ) = R(τ′ + mT )

=
1
T

∫ T

0

m+1∏
i=1−L


M−1∑

k=−(M−1)
k odd

pk exp ( j2πhk[q(t + τ′ − (i − m)T ) − q(t − iT )])

 dt

τ = τ′ + mT, 0 ≤ τ′ ≤ T, m = 0, 1, 2, . . .
(4.5)

over the interval τ ∈ [0, (L + 1)T ]. And the power spectrum is defined as [5], [15],

S ( f ) = 2Re
{∫ LT

0
R(τ)e− j2π f τdτ +

e− j2π f LT

1 −Cαe− j2π f T

∫ T

0
R(τ + LT )e− j2π f τdτ

}
(4.6)

where

Cα =
M−1∑

k=−(M−1)
k odd

pke jπhk (4.7)

In the case of uniform probability density function assumption for the identically distributed

statistically independent data symbols, the a priori probabilities pk in equations (4.5) and (4.7)

can be taken as,

pk = P{αi = k} = 1/M, k = ±1,±3, · · · ,±(M − 1), i = 0,±1,±2, . . .

By using the method and the equations given above, one can calculate the power spectral

density of a desired CPM signal with any baseband shaping pulse g(t), any modulation index

h, and any data symbol probability density function.

4.2.2 CALCULATION OF MINIMUM EUCLIDEAN DISTANCE

Detection of transmitted data symbols as reliably as possible is one of the main purposes

of digital communication systems. The criterion to measure this quality is the symbol error

probability. In AWGN channels, for large signal to noise ratios, the probability of error at the

receiver end is found as,

Pe ≈ Kdmin · Q
((

d2
min

Eb

No

)1/2)
(4.8)
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where Kdmin is the average number of paths that give the minimum distance, d2
min is the

normalized minimum Euclidean distance, Eb is the bit energy, No is the one-sided power

spectral density, and

Q(x) =
1
√

2π

∫ ∞

x
e−

t2
2 dt (4.9)

is the so-called Q-function that provides a compact formulation of the probability of bit error,

[21]. Looking at the equation (4.8), it is obvious that the probability of erroneous detection

is inversely proportional to the normalized minimum Euclidean distance d2
min. So, it can be

said that the survey about reliable communication systems is a simplified problem of finding

better d2
min’s.

In the thesis by Ç. E. Doyuran, the method to calculate the normalized minimum Euclidean

distance starts with the calculation of an upper bound d2
B. The idea is that d2

min is the same as

d2
B as long as the observation time of the signal is long enough. As indicated in the references

[1], [2] and [5], the upper bound on the normalized minimum Euclidean distance as a

function of the modulation index, h, size of the data alphabet, M, and the phase smoothing

response, q(t) is defined as,

d2
B(h) = log2(M) · min

1≤k≤M−1

{
(L + 1) − 1

T

∫ (L+1)T

0
cos

[
2πh · 2k

(
q(t) − q(t − T )

)]
dt

}
(4.10)

Now the upper bound can be calculated for a CPM signal with known parameters. The

problem is to find the minimum Euclidean distance more efficiently with the help of this

bound. The normalized squared Euclidean distance is given by [5],

d2(γN , h) = log2(M)
(
N − 1

T

∫ NT

0
cos

[
ϕ(t, γN)

]
dt

)
(4.11)

where γN is the difference sequence and ϕ(t, γN) is the phase difference trajectories defined

by [2],

ϕ(t, γN) = 2πh
∞∑

i=−∞
γiq(t − iT ), γi = 0,±2,±4, · · · ,±2(M − 1). (4.12)
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Using equations (4.11) and (4.12), the normalized minimum Euclidean distance can be found

by an efficient algorithm searching the minimum of the squared Euclidean distances, namely,

d2
min,N(h) = min

γN

{d2(γN , h)} (4.13)

where γN is defined as,

γi = 0, i < 0

γ0 = 0, 2, 4, 6, · · · , 2(M − 1),

γi = 0,±2,±4, · · · ,±2(M − 1), i = 1, 2, · · · ,N − 1.

(4.14)

Unlike the conventional brute-force algorithms which grow exponentially with N, a fast

algorithm that increases linearly with N was used to calculate d2
min in Doyuran’s work. The

algorithm uses the recursive equation below to find the minimum distance, and the upper

bound d2
B is used to truncate the search trees by eliminating the squared distances which are

greater than d2
B. This recursive equation is

d2(γN+1, h) = d2(γN , h) + log2(M)
(
1 − 1

T

∫ NT+1

NT
cos

[
ϕ(t, γN+1)

]
dt

)
. (4.15)

4.3 POLYNOMIAL APPROACH FOR PULSE SHAPING

Finding optimum pulse shapes for CPM signals better than the ones used in GSM was the

main goal of the thesis conducted by Doyuran. To realize this goal, an optimization problem

for g(t), the baseband shaping pulse, was performed aiming to find the highest minimum

Euclidean distance to have better error probabilities, in conjunction with the constraint that

the power spectrum density of the found pulse shapes must stay below the GSM spectral

envelope existing in the standards. This optimization problem was conducted using the

derivations explained in the previous sections of the chapter.

The first approach Ç. E. Doyuran tried was using sum of raised cosine pulses with duration

of one symbol interval. It was discovered that to provide the PSD to stay within the GSM
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constraints, low values of modulation indices had to be used. But using low values of

modulation index results in low values of the minimum Euclidean distance, in other words

poor error performance. Then another approach, using polynomials to represent pulse shapes,

was used. Because, by using sufficiently high degree polynomials, any smooth pulse shape

can be approximated, having better power spectrum[5].

To obtain pulse shapes by using polynomials, some constraints on the baseband shaping pulse

have to be used. One of these constraints is the normalization constraint that the integral of

g(t) has to be 1/2. Other constraints imposed on g(t) are [5]:

• g(t) = 0 when t = 0 and t = LT ,

• the first derivative g′(t) = 0 when t = 0 and t = LT ,

• the second derivative g′′(t) = 0 when t = 0 and t = LT ,

• the third derivative . . . and so on.

As more constraints are used in finding a suitable polynomial, higher degree polynomials

have to be handled to satisfy them. In Doyuran’s work, two optimum pulse shapes were

found having better error performances under the constraint of staying below the spectral

limits of GSM. These pulse shapes are illustrated in figures 4.2 and 4.3. The first one is a

pulse shape with duration of three symbol intervals (L = 3), and the second one is a pulse

shape with seven symbol interval length (L = 7).

The pulse shape in Figure 4.2 is obtained by using 8th. degree polynomials with 4 free param-

eters, meaning that only 5 constraints are used for 9 parameters required to represent an 8th.

degree polynomial, in optimization. The other pulse shape in Figure 4.3 is obtained by using

8th. degree exact polynomials, which means 9 constraints are used for 9 equations existing in

the optimization problem.

These pulse shapes are the ones that this thesis aims to design affordable receivers which are

practically easy to implement. The pulse shape with L = 3 has an error performance 1.08

dB better than the standard GMSK signal used in the GSM modulation scheme (BT = 0.3,
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Figure 4.2: Optimum pulse shape with L = 3
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Figure 4.3: Optimum pulse shape with L = 7

h = 0.5), when used with a modulation index of h = 0.5870. The pulse shape with duration

L = 7 is much better. When used with a modulation index h = 0.8633, it is 2.30 dB better

than the mentioned GMSK signal.
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CHAPTER 5

PROPOSED RECEIVERS AND SIMULATION RESULTS

5.1 INTRODUCTION

In the previous chapters, after giving some basic information about continuous phase modu-

lation, the main receiver structures for that modulation type are given and a class of new pulse

shapes found in a recent study are mentioned. Now in this chapter, proposed receivers will be

introduced for those new pulse shapes. First the simulation models used in MATLAB soft-

ware to realize these receivers are given, with an example of verification of the model by the

use of the well-known MSK signal. Then the optimum receiver for the GMSK signal used in

GSM (BT = 0.3, h = 0.5 & Lt = 7) is considered for comparison with the proposed receivers

to see the performance gained with the new pulse shapes. Lastly, the proposed receivers for

the new pulse shapes will be introduced, both for L = 3 and L = 7 cases as described in the

original work of Mr. Doyuran.

5.2 SIMULATION MODELS

Assuring the accuracy of a design necessitates a test set-up to verify the work done and

also to measure the performance of the built structure. In this case, the test set-up is a

communication system which consists of a transmitter, a channel and the receiver to be

tested. A simple communication system is illustrated in Figure 5.1. Here, the transmitter is a

CPM baseband modulator, the channel is an AWGN channel and the receiver is the structure

to measure the performance of.

The most common method to measure the performance of a digital receiver is to obtain its bit
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âk+
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Figure 5.1: Main blocks of the simulation model: the transmitter, AWGN channel and the
receiver

error rate (BER) characteristics. To reach this goal using the methods of computer simulation,

the first thing to do is generating a pseudo-random bit sequence and saving it with a name

like “transmitted bits”. Then this bit sequence is fed into the transmitter and the transmitted

baseband signal is obtained at the output. After passing the transmitted signal through the

channel, the received signal is obtained that is to be fed into the receiver. The received

signal is disturbed with noise (and distorted by the channel response if it exists). Feeding the

received signal to the receiver gives a “received bits” at the output. And finally, the output bit

sequence of the system, the received bits, is compared with the input bit sequence that was

saved before, the transmitted bits, and the number of bits in error is counted. The number of

bit errors divided by the length of the whole bit sequence gives the so-called simulated bit

error rate. This procedure is carried on with changing the noise power at every step, which is

added within the channel. In the end, a graph of bit error rate with respect to signal to noise

ratio is obtained, and that is the receiver performance obtained by simulation. While dealing

with computer simulation studies, a very important point to keep in mind is statistical valid-

ity. An adequate number of errors must have been generated in each run to be statistically

significant. For example, in a simulation run for an SNR value where approximately 10−5 bit

errors are expected, there will most likely be no errors seen if the simulation is conducted

with 1000 bits. However, this does not mean that the bit error rate for this SNR value is zero,

it means that we did not use an adequate number of bits in our transmitted signal to see an

error. In order to reach statistical confidence, a minimum of 100 errors have been generated

for each SNR value in every simulation conducted in this study. This is mostly realized

by taking the mean of the results of similar simulations in which the sum of errors exceed 100.

In the simulations conducted throughout the study, it is always dealt with baseband signals.

So, the signal generated by the transmitter is a complex-valued signal which is disturbed by a
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complex-valued noise at the channel. Hence the receiver is also designed to receive baseband

signals only; no passband to baseband down conversion or low-pass filtering is included.

Under these circumstances, the main blocks of the simulation model are introduced in detail

in the following sections.

5.2.1 TRANSMITTER

In a digital communication system, transmitter is the block where the signal to be transmitted

is generated from a sequence of information carrying data symbols, which are data bits in

this binary case. Therefore the purpose of our transmitter block is to generate a signal from a

random bit sequence.

ak x Q(f)

cos(•)

sin(•) x

+

j

2πh

s(t)

sI(t)

jsQ(t)

Figure 5.2: Baseband transmitter structure used in BER simulations

As mentioned before, the transmitter block described herein is a baseband continuous phase

modulator, producing a complex-valued signal. In previous chapters it was shown that,

s(t, α) =

√
2E
T

cos [2π fct + ϕ(t, α)] (5.1)

is the transmitted signal representation for CPM. In the case where unit energy (E = 1) and

unit symbol period (T = 1) is assumed, the E and T parameters can be omitted from the

equation, leading into a simpler representation. Hence, throughout the simulation unit energy

transmitted signals having symbol period of 1 (the unit of the period (ns, us, etc.) is not

relevant for the simulation case) is assumed. Regarding this assumption, the signal format
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for the transmitter becomes,

s(t, α) =
√

2Re
{
sL(t, α)e j2π fct

}
sL(t, α) = e jϕ(t,α)

= cos [ϕ(t, α)] + j sin [ϕ(t, α)]

(5.2)

The transmitter block diagram used in simulations is illustrated in Figure 5.2. The input of

the system is the random data bit sequence formed with αk, which are the elements of the set

{−1, 1}. To constitute this data sequence, first a pseudo-random bit sequence dk of {0, 1} is

generated, and then transformed into αk by the following equation,

αk = 2 · dk − 1 (5.3)

After this transformation, every data bit in the sequence is multiplied with 2πh, where h is

the modulation index which is a constant parameter for the transmitter block, because only

single modulation index CPM schemes are governed by this study. This multiplication with

a constant is followed by a pulse-shaping filter block whose overall impulse response is the

same as the phase smoothing response, q(t), of the selected modulation scheme. This filter is

actually formed by two sub-components; first one is the pulse-shaping filter with the impulse

response of the baseband shaping pulse, g(t), whose length equals to LT , and second one is

an integrator to yield in the shape of phase smoothing response, q(t). After this filter block,

the information-carrying phase is obtained as in equation (5.4). The important thing to keep

in mind here is that the data bits are taken into the transmitter successively with the symbol

period T , but the pulse-shaping filter has a length that is equal to LT .

ϕ(t, αk) = 2πh
∞∑

k=0

αkq(τ − kT ) (5.4)

Following the formation of the information-carrying phase there are two branches in Figure

5.2. These branches calculate the real and the imaginary parts of the complex transmitted

signal. At the upper branch, the cosine of the calculated phase signal is computed, which

results in the in-phase component of the transmitted signal. However, at the lower branch,

the sine of the information bearing phase is computed and multiplied by “ j” to yield the

imaginary quadrature component.
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s(t) = sI(t) + jsQ(t)

= cos [ϕ(t, α)] + j sin [ϕ(t, α)]
(5.5)

Finally, these two components, in-phase and quadrature, are added to yield the complex base-

band transmitted signal at the output of the transmitter.

5.2.2 AWGN CHANNEL

The transmitted signal formed by the CPM baseband transmitter block passes through a

channel. The channel is simulated by simply adding a controlled amount of noise to the

transmitted signal. The noise added to the signal is additive white noise having a Gaussian

distribution (AWGN), hence the channel is called AWGN channel. This noisy signal then

becomes the input to the receiver block.

The goal of the simulations conducted throughout this study is to obtain the BER performance

of the receiver. Bit error rate performance is usually plotted on a two-dimensional graph.

The x-axis of this graph is the normalized signal to noise ratio (SNR), which is expressed as

Eb/N0 in decibels (dB) generally, where Eb is the received bit energy and N0 is the one-sided

power spectral density of the noise. The y-axis of the curve is the dimensionless bit error rate,

usually expressed in logarithmic scale, values indicated by powers of ten.

Simulations aiming to yield BER graphs, have to result in a series of calculated points with

different Eb/No values used in each run. Therefore, at every step of the simulations an

additive white Gaussian noise having a different power spectral density has to be computed.

For that controlled amount of noise added at each step, the following procedure is used

Since the purpose of BER graph plot necessitates the establishment of the Eb/N0 values in

decibels (dB), the first job to do is to find the one-sided power spectral density value, N0, that

yields the desired Eb/N0 value with the predefined bit energy value of Eb = 1. Hence, using

the relation,
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N0 = Eb · 10

(−(Eb/N0)(dB)

10

)
(5.6)

gives that N0 value. Since the one-sided power spectral density of the noise determines

how much noise power is present in a 1.0 Hz bandwidth of the signal, the signal bandwidth

must be known to find the total amount of noise power that affects the transmitted signal. In

computer simulations, all the signals are represented as discrete-time signals as they were

sampled with a sampling rate of fs. The sampling rate fs determines how many samples are

to be used to represent one symbol period of the original signal. Regarding the sampling

theorem, the bandwidth of a sampled signal, that has a sampling rate of fs, is at most half the

sampling rate. Thus, the noise power affecting the transmitted signal is,

Pnoise = N0 · Bnoise

=
N0 · fs

2

(5.7)

Since the AWGN has zero mean, the noise power, Pnoise, equals to the noise variance, σn.

Now that all the information regarding to the noise is known already, the only thing to do is to

produce a noise sequence having a variance of σn. For this process to realize, two zero-mean

Gaussian distributed random signals with durations equal to the length of the transmitted

signal with unit variance is generated in MATLAB software, nIσ=1(t) and nQσ=1(t). Then these

unity variance noise signals are transformed into one complex noise with variance σn by the

following equation.

n(t) =
√
σn ·

[
nIσ=1(t) + jnQσ=1(t)

]
(5.8)

The transmitted signal plus the additive white Gaussian noise defined above together form the

received signal that is the input for the receiver.

5.2.3 THE RECEIVER

The last block of the simulation model is the receiver, where the noisy signal corrupted by

additive white Gaussian noise at the channel is demodulated and decoded to give the data
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bits sent by the transmitter. As mentioned before, only coherent receivers that have perfect

synchronization with symbol timing are governed by this thesis study.

In Chapter 3, it was noted that CPM receivers are a type of maximum likelihood sequence

estimating (MLSE) receivers which maximizes the log-likelihood function,

ln[pr(t)|α̃(r(t) | α̃)] ≈ −
∫ ∞

−∞
[r(t) − s(t, α̃)]2dt (5.9)

with respect to the infinitely long estimated sequence α̃; α̃ is the maximum likelihood

sequence estimate and pr(t)|α̃ is the probability density function for the received signal r(t)

conditioned on the sequence α̃. Maximizing this log-likelihood function up to the nth symbol

interval theoretically corresponds to maximizing the correlation metric,

Jn(α̃) =
∫ (n+1)T

−∞
r(t)s(t, α̃)dt (5.10)

which can be defined in the following recursive form leading to Viterbi decoder usage,

Jn(α̃) = Jn−1(α̃) + Zn(α̃) (5.11)

where Zn(α̃) is the branch metric that is only related to the nth symbol interval.

There are two types of receiver structures used in simulations as stated before. These are the

Optimum CPM Receiver and LD (Laurent Decomposition) Based Receiver. Both of these

receiver structures have a matched-filter bank at first step and a Viterbi decoder at the end.

They only differ in the filter bank structure, and the LD based receiver has an additional

branch metric computer block just before the Viterbi decoder section.

5.2.3.1 OPTIMUM CPM RECEIVER

A receiver based on the trellis structure that consists of a bank of filters, which are matched

to each branch in the phase trellis, followed by a maximum likelihood sequence estimating
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(MLSE) decoder is the optimum receiver for continuous phase modulation [2]. Since MLSE

decoder runs on an infinitely long sequence theoretically, this is achieved by a decoder that

uses the well-known Viterbi algorithm, namely Viterbi decoder or Viterbi processor. Viterbi

algorithm runs on a finite sequence recursively, as in equation (5.11), to yield maximum

likelihood sequence estimation on a long time period.

h0(t)

h1(t)

h2(t)

hK-1(t)

Viterbi 
Decoder

r(t) ãn

r0

r1

r2

rK-1

t = nT

t = nT

t = nT

t = nT

Figure 5.3: Optimum Receiver used in BER simulations

Optimum CPM receiver is illustrated in Figure 5.3. As shown in the figure, the receiver

comprises of two main blocks: a matched filter bank, and a Viterbi decoder. The received

signal r(t) is welcomed by a bank of matched filters first. Then the outputs of these matched

filters are sampled at every symbol period to generate branch metrics to feed the Viterbi

decoder block. Since this receiver is based on a detection process that employs CPM trellis

structure, the number of matched filters is equal to the number of all possible branches in the

trellis. Hence, there are a total of K = P · 2L matched filters in the optimum receiver in Figure

5.3, where p is the number of phase states and L is the duration of the frequency pulse g(t) in

terms of symbol period T . In equation (3.11), it was shown that the branch (partial) metric

Zn(α̃nθ̃n) for baseband domain is,

Zn(α̃n, θ̃n) = Re
{∫ (n+1)T

nT
r(t)e− j[θ(t,α̃n)+θ̃n]dt

}
(5.12)
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where (α̃n, θ̃n) represent all the possible sequences in trellis, α̃ = (α̃n, α̃n−1, · · · , α̃n−L+1) and

θ̃n is a possible phase state which can have P different values. Hence, matched filters used in

the optimum CPM receiver can be defined as,

hk(t) = e− j[θ(t,α̃n)+θ̃n]

= cos[θ(t, α̃n) + θ̃n] − j sin [θ(t, α̃n) + θ̃n]
(5.13)

Outputs of the matched filters are then used in Viterbi decoder as branch metrics to calculate

the recursive summation in equation (5.11), and finally select the surviving sequence that

maximizes Jn(α̃). This sequence is given out as the received bits.

5.2.3.2 LD (LAURENT DECOMPOSITION) BASED CPM RECEIVER

In Chapter 2 and [7], it has been shown that CPM signals can be represented as a linear

combination of some amplitude modulated pulses, which is called Laurent Decomposition.

The ability of composing a nonlinear CPM signal by a linear combination of real PAM

signals comes with a different aspect for the receiver side. The receiver structure based on

Laurent Decomposition is discussed in Chapter 3. In Figure 5.4, the structure of an LD Based

CPM Receiver is illustrated. The main differences that are noticed immediately are the filter

bank that differ from the Optimum CPM Receiver based on trellis structure and a new block

called Branch Metric Computer.

In LD Based Receivers, the filters residing in the filter bank are matched to Laurent pulses

ck(t), where ck(t) are the real pulses that constitute the transmitted signal. In Chapter 2

equation (2.10), it has been shown that

s(t,α) =
2L−1−1∑

k=0

N−1∑
n=0

bk,nck(t − nT )

Hence, using ck(−t) as matched filters and filtering the receiver signal and then sampling at

symbol period nT gives rk,n metrics, which have been previously defined in equation (3.17) as,

rk,n =

∫ ∞

−∞
r(t)ck(t − nT )dt = r(t) ⊗ ck(−t)|t=nT
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Figure 5.4: LD Based Receiver used in BER simulations

Then these metrics, rk,n are taken into the Branch Metric Computer block to be processed

according to equation (3.18) which is reexpressed below,

λn = Re


2L−1−1∑

k=0

rk,nb∗k,n


to produce the branch metrics. Finally, these branch metrics are fed into the Viterbi decoder

block and the surviving sequence which maximizes

Re
{∫

r(t)s∗(t,α)dt
}
=

∑
n

λn

is selected and given out as the received bits.

5.2.4 MODEL VERIFICATION WITH MSK

After introducing the simulation models to be used in receiver error performance measure-

ments, first we have to be sure that the models are correctly designed. So, we have used the

well-known Minimum Shift Keying (MSK) modulation scheme to verify the models.
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Figure 5.5: BER Curve for MSK - Optimum Receiver
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Figure 5.6: BER Curve for MSK - LD Based Receiver
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Figure 5.7: BER Curve for Precoded MSK - Optimum Receiver
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Figure 5.8: BER Curve for Precoded MSK - LD Based Receiver
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A rectangular pulse shape with duration L = 1 and modulation index h = 0.5 is modulated

using randomly generated data bits at transmitter side and added noise at the AWGN channel.

Then this noisy MSK signal is fed to both receivers to measure their error performances.

Figures 5.5 and 5.6 show BER versus Eb/N0 graphs for optimum CPM receiver and LD

based receiver employing conventional MSK, respectively.

In figures 5.7 and 5.8, error probability for precoded MSK is given. Precoded MSK is gener-

ated by adding a precoder between the data and the transmitter, and a decoder to the output

of the receiver. Precoding is used in MSK systems that employ phase modulators to achieve

the same error probability with BPSK. Conventional MSK has 3dB poorer error performance

than BPSK modulation. Precoding used here is defined as the inverse operation for differen-

tial encoding, which is the differential decoder, [12]. The precoder block encodes the input

data according to the following equation,

dk = bk ⊕ bk−1 (5.14)

The decoder used in the receiver side is then the well-known differential encoder, [12],

bk = dk ⊕ bk−1 (5.15)

With the use of precoding process defined herein, the implicit differential encoding that re-

sides in the nature of CPM transmitters is eliminated for the MSK case, [12].

5.3 PERFORMANCE OF OPTIMUM GMSK RECEIVER FOR GSM

In Section 5.4, some receivers have been proposed for the new pulse shapes found in [5].

The advantage of these new pulse shapes is their superiority to the GSM modulation scheme

when used with some particular modulation index values. The measure of their superiority

is the gain in the amount of power needed to maintain the same probability of error. Since

GMSK with BT = 0.3 and h = 0.5 , which is the standard modulation scheme used in GSM,

is employed as a reference to these performance measures in [5], it is also used as a reference

for the comparison of the bit error rate performance characteristics of the receivers proposed

in this thesis.
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GMSK, BT=0.3, h=0.5, Optimum Receiver

Figure 5.9: BER Curve for the GMSK Scheme (BT = 0.3, h = 0.5, Lt = 7) Used in GSM -
Optimum Receiver

In Figure 5.9, the error performance of the optimum receiver based on phase trellis structure

for GMSK (BT = 0.3, h = 0.5) is given. In the next section, this graph will be used as a

reference.

5.4 PROPOSED RECEIVERS FOR NEW PULSE SHAPES

In [5], which is summarized in Chapter 4, two pulse shapes are introduced that are optimized

to have better minimum Euclidean distance values with the constraint that the power spectral

density of the pulse shapes should remain under GSM spectral envelope. The optimized

pulse shapes have lengths of L = 3 and L = 7 symbol intervals. Using these pulse shapes in a

digital communication system employing continuous phase modulation brings the advantage

of 1.08dB (L = 3) or 2.3dB (L = 7) better performance with respect to the standard GMSK

modulation scheme (BT = 0.3, h = 0.5, Lt = 7) used in GSM.
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To have the performance gain provided by the new pulse shapes of [5], they must be used

with the optimized h values, which are 0.5870 and 0.8633 for the pulse shapes with L = 3 and

L = 7, respectively. But these modulation index values are impractical to implement a CPM

receiver with practical number of states. To have a finite number of states in the decoding

section of a CPM receiver, the modulation index value should be one that can be written in

the form h =
m
p

where m and p are relatively prime integers. Since the denominator p of this

rational number determines the phase state number, it is of vital importance to choose a small

value of p to be practical. Therefore, a research of practical modulation index values, h, with

small degradations from the aforementioned error rate performance gains should be done for

both new pulse shapes in order to be able to propose practical receivers.

5.4.1 L = 3 CASE

As mentioned before, the first thing to do in this section is to approximate the modulation

index values found in [5] to fit in h =
m
p

form with small p values that will lead us to have

a small number of phase states in the receivers. To realize this search, we have to put some

constraints in order to have practical outputs.

Table 5.1: Practical Modulation Index Values for the Optimum Pulse Shape (L = 3)

h
% Error in h

m p
# of Phase States

(mod. index) (numerator) (denominator)
0.5714 1.14 4 7 7
0.6000 3.81 3 5 10
0.5455 5.63 6 11 11
0.6154 6.47 8 13 13
0.5333 7.73 8 15 15
0.6250 8.13 5 8 16

Hence, two constraints are used in this work. First one is that we limit the span of the

modulation index values to 10% of the original modulation index value, which is 0.5870 for

L = 3 case, to have a small degradation with respect to the optimum case. Second one is that

the number of phase states is limited to 16 to be practical in receiver design. In the light of

these constraints, the modulation index values that are found are given in Table 5.1, sorted

according to the difference in value to the original h value.
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Figure 5.10: PSD of the Optimum Pulse Shape (L = 3) with h = 4/7
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Figure 5.11: PSD of the Optimum Pulse Shape (L = 3) with h = 3/5
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Figure 5.12: PSD of the Optimum Pulse Shape (L = 3) with h = 6/11
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Figure 5.13: PSD of the Optimum Pulse Shape (L = 3) with h = 8/13
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Figure 5.14: PSD of the Optimum Pulse Shape (L = 3) with h = 8/15
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Figure 5.15: PSD of the Optimum Pulse Shape (L = 3) with h = 5/8
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As shown in Table 5.1, we have found six modulation index values that differ from the

original one by 10% max with the phase state number constraint of 16. But can any of

these values violate the constraint that the power spectrum density of the pulse shape should

stay below GSM spectral envelope? In figures 5.10 to 5.15, PSD of the pulse shapes with

the modulation indices given in Table 5.1 are depicted to see whether the constraint is still

maintained or not.

When the PSDs in figures 5.11, 5.13 and 5.15 are examined carefully, it can be seen that there

is a violation of GSM spectral envelope between the normalized frequency ( f · Tb) values of

0.5 and 1, near the second bending point of the envelope. So, the modulation index values

causing the optimum pulse shape to deteriorate the GSM spectral envelope constraint are not

appropriate to be used indeed. Then the number of modulation indices decreases to three that

satisfy all constraints.

The differences between the appropriate modulation indices found and the optimum one

are 1.14%, 5.63% and 7.73%. These differences in values will lead to a degradation in the

performance gain of the optimum case, which is calculated as 1.08dB in [5] with respect

to the GMSK modulation scheme used in GSM. In the optimum case with h = 0.5870, the

minimum squared Euclidean distance is 2.2287 where it is 1.7363 for the GSM modulation

scheme. When the minimum squared Euclidean distance values are calculated according to

the flowchart given in [5], [2], the results in Table 5.2 are obtained.

Table 5.2: Appropriate Modulation Indices for the Optimum Pulse Shape (L = 3)

h
% Error in h

m p # of Phase
d2

min
Power Gain

(mod. index) (num.) (denom.) States (dB)
0.5714 1.14 4 7 7 2.1485 0.93
0.5455 5.63 6 11 11 2.0120 0.64
0.5333 7.73 8 15 15 1.9473 0.50

In the condition where the channel is an AWGN channel and for large SNR values, the

probability of an erroneous detection of a transmitted bit is approximated by,
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Pe ≈ Kdmin · Q
(d2

min
Eb

N0

)1/2 (5.16)

So, an increase in the value of minimum squared Euclidean distance, d2
min, will cause

less power to be used to have the same probability of error, because they are inversely

proportional. Then the gain (in dB) in the amount of power needed can be calculated with

GAIN = 10log
 d2

min

1.7363

 (5.17)

where 1.7363 is the minimum squared Euclidean distance for GSM. After substitution of

the minimum squared Euclidean distance values in Table 5.2 into equation (5.17), a gain of

0.93dB, 0.64dB and 0.50dB is obtained by using the modulation indices h = 4/7, h = 6/11

and h = 8/15, respectively. It is not so surprising that the power gain decreases as the

distance in h values to the optimum case increases. Looking at the power gains in Table 5.2,

it is obvious that the best receiver performance will occur with modulation index h = 4/7.

However, it will be better to see the performance with all three modulation indices, because

the best case with h = 4/7 may be worse than the others in some situations when complexity

reduction is applied.

The bit error rate performance of the optimum receiver designed for the optimum pulse shape

(L = 3) with modulation index of h = 4/7 is depicted in Figure 5.16. This receiver, which

is based on phase trellis structure as shown in Figure 5.3, has P · 2L = 56 matched filters in

the filter bank, where P = 7 is the phase state number and L = 3 is the pulse shape duration

in symbol intervals. The filters accept the received noisy baseband CPM signal as inputs and

produce the branch metrics to be used in Viterbi decoder section. There are P · 2L−1 = 28

states to be processed in the Viterbi algorithm processor. In Figure 5.16, the gain in amount

of power with respect to GSM modulation scheme can be seen. For probability of error

Pe = 10−4, the gain is a little bit smaller than 1dB in this simulation result. That confirms the

calculated power gain of 0.93dB for that modulation index.

After verification of the amount of power gain for h = 4/7 with optimum MLSE receiver

based on phase trellis, now it is turn to propose some simpler receivers. In Figure 5.17, the
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simulated performance of the LD (Laurent Decomposition) based receiver is given. This

receiver contains only 2L−1 = 4 matched filters in the filter, with no state reduction process,

where Q = L = 3 is taken. The metrics computed by these filters are preprocessed by the

partial metric computer to produce P2L = 56 branch metrics for the VA processor which

have P · 2L−1 = 28 states. As it might be guessed, even using LD based receiver with no

state reduction leads to a decrease in the number of matched filters with no degradation. The

power gain is again close to 1dB as in the optimum receiver case.

In Figure 5.18, simulated error performances of reduced-state LD based receivers are given

in addition to the optimal case of Q = L = 3. When examined carefully, it is obvious that

there is almost no change in performance when Q = L − 1 = 2 is taken. The same gain in

amount of power (≈1dB) is achieved with only 2Q−1 = 2 matched filters in the filter bank and

P · 2Q−1 = 14 states in the Viterbi decoder section. For the case where Q = L − 2 = 1, there

is a degradation in error performance, but it is still better than the GSM scheme (GMSK,

BT=0.3, h=0.5). So, using only one matched filter and only 7 states in Viterbi decoding

process with the optimum pulse shape (L = 3) and h = 4/7 gives better results (≈0.6dB) than
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GMSK, BT=0.3, h=0.5 - GSM
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Figure 5.16: BER Curve for the Optimum Pulse Shape (L = 3) with h = 4/7 - Optimum
Receiver
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GMSK, BT=0.3, h=0.5 - GSM

OP (L=3, Q=3), h=4/7 - LD Rcvr.

Figure 5.17: BER Curve for the Optimum Pulse Shape (L = 3) with h = 4/7 - LD Based
Receiver with Q = L = 3
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Figure 5.18: BER Curve for the Optimum Pulse Shape (L = 3) with h = 4/7 - LD Based
Receiver with Q = 3, Q = 2 and Q = 1
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the standard GSM modulation scheme.

Bit error rate performance graphs for the receivers designed for the optimum pulse shape

with modulation index of h = 6/11 are given in figures 5.19 to 5.21. Figure 5.19 illustrates

the optimum MLSE receiver case that is based on phase trellis structure. This receiver

consists of 88 matched filters, where the phase state count is 11 this time. The branch

metrics computed by the matched filters are used to feed a 44-state Viterbi processor that

decodes received data bits. At Pe = 10−3 and Pe = 10−4, the gain with respect to the GMSK

signal is about 0.6-0.7dB. The theoretical value is calculated as 0.64dB. In Figure 5.20, the

performance of LD based receiver with no state reduction (Q = L) is depicted. The gain is

again about 0.6-0.7dB, but this time 4 matched filters are used instead of 88 as in the optimum

phase trellis based receiver. The number of states used in Viterbi algorithm processor is not

changed; there are 44 states again.
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GMSK, BT=0.3, h=0.5 - GSM
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Figure 5.19: BER Curve for the Optimum Pulse Shape (L = 3) with h = 6/11 - Optimum
Receiver

52



0 1 2 3 4 5 6 7 8 9 10

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0

P
ro

ba
bi

lit
y 

of
 B

it 
E

rr
or

 (
B

E
R

)

 

 

GMSK, BT=0.3, h=0.5 - GSM

OP (L=3, Q=3), h=6/11 - LD Rcvr.

Figure 5.20: BER Curve for the Optimum Pulse Shape (L = 3) with h = 6/11 - LD Based
Receiver with Q = L = 3
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OP (L=3, Q=2), h=6/11 - LD Rcvr.
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Figure 5.21: BER Curve for the Optimum Pulse Shape (L = 3) with h = 6/11 - LD Based
Receiver with Q = 3, Q = 2 and Q = 1
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In Figure 5.21, reduced-state LD based receivers in addition to the LD based receiver with

no state reduction is illustrated for modulation index of h = 6/11. When Q = L − 1 = 2,

only 2 matched filters are used in the receiver, resulting in 22 states in Viterbi decoding

process. Performance of this receiver is almost the same with the optimum case. But when

Q = L − 2 = 1 is taken for state reduction, a degradation of about 0.3dB is introduced to the

system. But the performance is still better than the modulation scheme used in GSM and the

matched filter count is only one, leading to only 11 states in Viterbi decoder.

The performance of the optimum receiver designed for the optimum pulse shape with duration

L = 3 and modulation index h = 8/15 is given in Figure 5.22. The filter bank of this receiver

consists of P · 2L = 120 matched filters and it has a Viterbi decoding processor running on

P · 2L−1 = 60 states. Power gain achieved by the usage of optimum pulse shape with this

modulation index is about 0.4-0.5dB at the probability of error Pe = 10−3 as the figure shows.

The theoretical result is 0.5dB.
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Figure 5.22: BER Curve for the Optimum Pulse Shape (L = 3) with h = 8/15 - Optimum
Receiver
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GMSK, BT=0.3, h=0.5 - GSM

OP (L=3, Q=3), h=8/15 - LD Rcvr.

Figure 5.23: BER Curve for the Optimum Pulse Shape (L = 3) with h = 8/15 - LD Based
Receiver with Q = L = 3

0 1 2 3 4 5 6 7 8 9 10

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0

P
ro

ba
bi

lit
y 

of
 B

it 
E

rr
or

 (
B

E
R

)

 

 

GMSK, BT=0.3, h=0.5 - GSM

OP (L=3, Q=3), h=8/15 - LD Rcvr.

OP (L=3, Q=2), h=8/15 - LD Rcvr.

OP (L=3, Q=1), h=8/15 - LD Rcvr.

Figure 5.24: BER Curve for the Optimum Pulse Shape (L = 3) with h = 8/15 - LD Based
Receiver with Q = 3, Q = 2 and Q = 1
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In figures 5.23 and 5.24, LD based receiver performances for h = 8/15 are shown. Figure 5.23

shows the receiver with no state reduction (Q = L = 3), and Figure 5.24 gives the receiver

error performances before and after state reduction applied. Without applying state reduction,

the number of matched filters is equal to 4, where the number of states is 60 as in the optimum

case. The gain with respect to GSM scheme is about 0.5dB. After applying state reduction

techniques, matched filter number for Q = L − 1 = 2 is 2 resulting in 30 states in Viterbi

decoder; and for Q = L − 2 = 1 case, only one matched filter is used with 15 states in Viterbi

decoder. The gain in amount of power needed to have the same probability of error for high

SNR values is almost the same for Q = 2; but when Q = 1 is used, the performance of the

receiver is not better than the standard GSM modulation scheme.

5.4.2 L = 7 CASE

This section begins with approximating the modulation index values for the optimum pulse

shape with pulse duration L = 7 symbol intervals as in the previous section it is done for

L = 3 case. The constraints are the same, too; the span of the modulation index values is

limited to 10% of the original modulation index value, which is 0.8633 this time for L = 7

case, and the number of phase states is limited to 16. Conforming this limitations, the

modulation index values found for the optimum pulse shape with duration L = 7 are given in

Table 5.3, sorted according to the difference in value to the optimum h value.

Table 5.3: Practical Modulation Index Values for the Optimum Pulse Shape (L = 7)

h
% Error in h

m p
# of Phase States

(mod. index) (numerator) (denominator)
0.8571 0.71 6 7 7
0.8750 1.36 7 8 16
0.8889 2.96 8 9 9
0.8333 3.47 5 6 12
0.9091 5.30 10 11 11
0.9231 6.92 12 13 13
0.8000 7.33 4 5 5
0.9333 8.11 14 15 15

As shown in Table 5.3, we have found eight modulation index values for the optimum

pulse shape with duration L = 7. In figures 5.25 to 5.32, PSD of the pulse shapes with the
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modulation indices given in Table 5.3 are depicted to see whether the constraints are still

maintained or not.
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Figure 5.25: PSD of the Optimum Pulse Shape (L = 7) with h = 6/7
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Figure 5.26: PSD of the Optimum Pulse Shape (L = 7) with h = 7/8
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Figure 5.27: PSD of the Optimum Pulse Shape (L = 7) with h = 8/9
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Figure 5.28: PSD of the Optimum Pulse Shape (L = 7) with h = 5/6
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Figure 5.29: PSD of the Optimum Pulse Shape (L = 7) with h = 10/11
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Figure 5.30: PSD of the Optimum Pulse Shape (L = 7) with h = 12/13

59



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-140

-120

-100

-80

-60

-40

-20

0

20

f * Tb

P
S

D
 (

dB
)

Figure 5.31: PSD of the Optimum Pulse Shape (L = 7) with h = 4/5
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Figure 5.32: PSD of the Optimum Pulse Shape (L = 7) with h = 14/15
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Figures 5.26, 5.27, 5.29, 5.30 and 5.32 show the optimum pulse shape (L = 7) power spec-

trum densities with modulation indices that cause violation of the GSM spectral envelope.

Around the normalized frequency value f · Tb = 0.5, these pulse shapes with modulation

index values of 7/8, 8/9, 10/11, 12/13 and 14/15 deteriorate the constraint. Hence those

modulation indices are not suitable to be used with the optimum pulse shape of length L = 7

symbol intervals. So the number of the possible modulation indices is three again.

The differences between the appropriate modulation indices found and the optimum one are

0.71%, 1.36% and 2.96%. These differences in values will lead to a degradation in the power

gain of the optimum case, which is calculated as 2.3dB in [5] with respect to the GMSK mod-

ulation scheme used in GSM. In the optimum case with h = 0.8633, the minimum squared

Euclidean distance is 2.9450. When the minimum squared Euclidean distance values are cal-

culated according to the flowchart given in [5], [2], the results in Table 5.4 are obtained.

Table 5.4: Appropriate Modulation Indices for the Optimum Pulse Shape (L = 7)

h
% Error in h

m p # of Phase
d2

min
Power Gain

(mod. index) (num.) (denom.) States (dB)
0.8571 0.71 6 7 7 2.9113 2.25
0.8333 3.47 5 6 12 2.7810 2.05
0.8000 7.33 4 5 5 2.5995 1.75

After substitution of the minimum squared Euclidean distance values in Table 5.2 into equa-

tion (5.17), a gain of 2.25dB, 2.05dB and 1.75dB is obtained by using the modulation indices

h = 6/7, h = 5/6 and h = 4/5, respectively. Table 5.2 shows that the phase state count

of the modulation scheme with h = 5/6 is 12, which is about two-fold of the others. Using

modulation index h = 6/7 has lower phase state count and larger minimum squared Euclidean

distance which makes it better in terms of error performance. There is a noticeable difference

(about 0.5dB) in power gain between h = 6/7 and h = 4/5 cases, but phase state numbers

are quite close to each other, which are 7 and 5 respectively. Since the length of the optimum

pulse shape is quite long (L = 7) this time, bit error rate simulations also consume longer

times. So, only the best case which is the closest one to the optimum value of h is exam-

ined in terms of error performance of receivers in this section, which uses modulation index

h = 6/7.
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As we have seen in the previous section, optimum receiver based on phase trellis structure and

LD based receiver with no state reduction give the same results in terms of error performance,

and LD based receiver comprises of less matched filters which is better in practice. So, in

Figure 5.33, LD based receiver for the optimum pulse shape (L = 7) employing modulation

index h = 6/7 is given. In this receiver Q is taken to be equal to L = 7, which means no state

reduction exists. There are 2L−1 = 64 matched filters in the filter bank and P · 2L−1 = 448

states used in Viterbi decoder section. According to the BER curve in the figure, the gain in

amount of power at Pe = 10−3 or Pe = 10−4 is measured to be ≈2.25dB, which conforms to

the mathematical calculations.

In Figure 5.34, error performances of reduced-state LD based receivers for Q = 6 and Q = 5

are given. It is obvious that 2-fold or 4-fold reduction at matched filter and state numbers of

the optimal LD based receiver does not cause any degradation in error performance. If we go

on state reduction by two more steps, i.e. take Q = 3, the degradation in error performance

becomes very large.
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Figure 5.33: BER Curve for the Optimum Pulse Shape (L = 7) with h = 6/7 - LD Based
Receiver with Q = L = 7

62



0 1 2 3 4 5 6 7 8 9 10

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0

P
ro

ba
bi

lit
y 

of
 B

it 
E

rr
or

 (
B

E
R

)

 

 

GMSK, BT=0.3, h=0.5 - GSM

OP (L=7, Q=7), h=6/7 - LD Rcvr.

OP (L=7, Q=6), h=6/7 - LD Rcvr.

OP (L=7, Q=5), h=6/7 - LD Rcvr.

Figure 5.34: BER Curve for the Optimum Pulse Shape (L = 7) with h = 6/7 - LD Based
Receiver with Q = 7, Q = 6 and Q = 5
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In Figure 5.35, BER versus Eb/N0 curves for Q = 4 and Q = 3 are depicted. For the case

where Q is taken to be 4, the error performance is the same with the optimal case where

Q = L = 7. But one step more state reduction makes the error performance even worse than

the GMSK scheme used in GSM. Taking Q = 3 is not a right decision.
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Figure 5.36: Laurent Pulses for the Optimum Pulse Shape with L = 7 and h = 6/7

First sixteen Laurent pulses are shown in Figure 5.36 for the optimum pulse shape with

duration L = 7. It is clear that the energy is concentrated in the first eight pulses, from c0(t)

to c7(t). The rest of the Laurent pulses are very small so that they are negligible in receiver

implementation. Hence, using only 8 filters matched to first 8 Laurent pulses gives almost

the same error performance with the optimal case.

Using less Laurent pulses instead of all actually causes the minimum Euclidean distance

to decrease. Omitting pulses with negligible energy leads to an unnoticeable degradation.

However, if a number of pulses having significant energy is omitted, then the degradation in

minimum Euclidean distance becomes considerable. As the modulation index, h, gets larger

and approaches to 1, the difference between the optimum case and the reduced-complexity
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case gets larger, and the minimum Euclidean distance tends to zero at a point called

breakdown point, [11], [22]. Hence, the reason of the abrupt change in BER curve transition

from Q = 4 to Q = 3 case for the optimum pulse shape with L = 7 is the large modulation

index (h = 6/7) used (see Figure 5.35). However, we have not seen such a situation for the

optimum pulse shape with duration L = 3, even in the one matched filter case, because the

modulation indices for L = 3 are close to 0.5. In [22], it is indicated that the performance of

the reduced-complexity receiver is very close to the optimum case when h ≤ 0.5.

Figures 5.34 and 5.35 show that the LD based receivers for Q = 7, Q = 6, Q = 5 and Q = 4

have the same error performances. Taking Q = 4 in this case, leads to the least matched

filters and least number of states. By taking Q = 4, the receiver comprises of only 2Q−1 = 8

matched filters and P ·2L−1 = 56 states in Viterbi decoder, where P = 7 is the number of phase

states determined by the modulation index’s denominator. Since the receiver which Q = 4 is

employed is the most simplified version of that scheme without causing any degradation, its

usage seems to be the best for L = 7 and h = 6/7.
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CHAPTER 6

CONCLUSION

In this thesis, the main goal has been to find a feasible receiver structure that provides a good

error performance with acceptable degradation but affordable complexity, for the new pulse

shapes expressed in [5], which is summarized in Chapter 4. These pulse shapes are optimized

to give the best minimum squared Euclidean distance values under the constraint that their

PSD should stay below GSM spectral envelope defined in [20]. However, the approach in [5]

uses parameters that cause the number of states and matched filters to increase considerably,

and thus yielding high complexity for receiver implementation.

Reducing the complexity of a CPM receiver governing MLSE and Viterbi algorithms can

be divided into two classes. The first one is reducing the number of required matched

filters in the filter bank. The second one is reducing the states used in the Viterbi decoder.

For this purpose, after a survey about complexity reduction techniques employed in CPM

area, receiver structures based on Laurent Decomposition that uses PAM representation

of CPM signals is decided to go on within the study. This receiver structure permits both

reducing the size of the matched filter bank and the state number in the Viterbi decoder at

the same time, without causing a noticeable degradation. MATLAB software tool is used

for implementation of receivers and performance simulations conducted throughout the study.

All the simulations have been conducted on baseband signals. To realize the objective of the

study, three simulation blocks were implemented; a transmitter to create the CPM signal,

an AWGN channel that adds noise to the transmitted signal and a receiver to decode the

data bits. The performance of the receivers is measured using simulations that output figures
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of probability of bit error (or BER) versus Eb/N0. First the modulation index to be used

with the new optimum pulse shapes were approximated to some practical rational numbers

that ease to reduce the receiver complexity by decreasing the number of phase states. Then

an optimum CPM receiver based on phase trellis structure was used to see their optimal

performances with these modulation indices. It has been shown that for the pulse shape with

L = 3 choosing h = 4/7, and for the one with L = 7 choosing h = 6/7 result in very good

error performances close to the optimum case. Then LD based receiver were used instead

of optimum CPM receivers to see how the performance changes with complexity reduction

applied. For L = 3 case, usage of only 2 matched filters instead of 56, and 14 states instead

of 28 needed in the optimum case give the same performance. Even using 1 matched filter

with 7 states has better performance than the modulation scheme used in GSM. For L = 7

case the results are more interesting. Using only 8 matched filters and 56 trellis states in an

LD based receiver leads to a gain in power of 2.25dB, where it is computed to be 2.3dB for

the optimum case in [5]. As a result, we can say that using LD based receivers which are

based on the PAM representation of CPM signals give good results in error performance for

the mentioned pulse shapes even after an acceptable complexity reduction is applied.

In this thesis, reduced-complexity Laurent Decomposition (LD) based receiver structures

were considered for some particular optimum pulse shapes found in a previous work. Per-

formance of the receivers were investigated only under AWGN channel. As a future work,

performance in ISI channel, which is a more realistic case, may be investigated. Pulse op-

timization for practical modulation indices, like 4/7, 5/6 etc., may be considered to improve

error performance for these cases. Further complexity reduction may be achieved by apply-

ing reduced state sequence detection (RSSD) method, [13], for phase states in addition to the

method used in this work.
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