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ABSTRACT

ROBABILISTIC-NUMERICAL MODELING OF STABILITY OF
A ROCK SLOPE IN AMASYA-TURKEY

Gheibie, Sohrab
M.Sc., Department of Mining Engineering
Supervisor: Prof. DrH. kebnem D¢zgeén
Co-supervisor: Assist. Prof. Dr.Ayk ut Ak g¢n

February 2012, 179 pages

Rock slope stability is considered as one of the most important fields in
rock engineering. Developments of computation facilities and increase in
application of sophisticated mathematical concepts in engineering
problems have also affected the methods of slope stability analysis. In
recent years, the numerical modeling methods have extensively applied
instead of limit equilibrium methods. Also, the probabilistic methods are
considered in rock slope designs to quantify the uncertainties of input

effecting variables.

In this research, a probabilistic-numerical approach was developed by
integration of three dimensional Distinct Element Method (DEM) and
probabilistic approach to analyze the stability of discontinuous rock
slopes. Barton models have been used to model the behavior of rock
discontinuities and the shear strain was considered as failure indicator of

discontinuities.



The proposed methodology was applied to a rock slope in Amasya,
Turkey where the Joint Roughness Coefficient (JRC) was considered as
the main random variable. The effect of basic friction angle and cohesion
of joints infilling material and its strength reduction due to weathering were
included in the analysis. In the slope the shearing behavior of fourteen
discontinuities and the failure probability of each block were investigated,
and the correspondi ngs derved fa kacH aof the

discontinuities.

Keywords: Discontinuity, Joint Shear Stiffness, Probabilistic-Numerical
Approach,3DEC, Reliability Index ( b )
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CHAPTER |

INTRODUCTION

1.1 Problem statement

Rock slope stability is one of the most important concerns in rock
engineering. Loss of lives of people living on hills near to mountain area,
falling of blocks to the roads and loss of minerals in open pit mines have
enhanced the necessity of using and developing much reliable methods to

analyze the stability of those structures.

Generally, rock slope stability analysis methods can be divided into two:
Namely deterministic and probabilistic approaches. In deterministic
approaches the input variables are assumed to have certain values.
Depending on the judgment of engineer, minimum, maximum, average of
a parameter is selected and used in the calculations. However, in
probabilistic approaches the variables are considered to be random with

associated probability distribution.

Generally, the deterministic approach itself is divided into two as limit
equilibrium and numerical methods. Commonly, in industrial design the
limit equilibrium methods are applied for design of rock slopes. Hoek and
Bray (1981) have formulated the rock slope instability problems in four
distinct categories as planar, wedge, toppling and circular failures.

However, limit equilibrium methods have been formulated based on some



assumptions. Such assumptions usually include elastic behavior,
homogeneous, isotropic material, time independent behavior, quasi-static
loading, etc. Geomaterials such as soils and rock masses display non-
linear behavior, either because this is inherent to the material or because
it has been externally induced (e.g., past stress history). Rocks and soils
may not be isotropic or homogeneous, and the loading may not be static,
or the geometry of the problem may be complex (Bobet 2010). According
to Krahn (2003) the fundamental shortcoming of limit equilibrium methods
which only satisfy statics equation is that they do not consider strain and
displacement compatibility.

To solve the shortcomings of limit equilibrium methods, different
numerical methods have been developed and applied extensively in rock
mechanics. In K r a(2003) gpinion, this shortcoming can be overcome
by using Finite Element Method (FEM) computed stresses inside
conventional limit equilibrium framework. From the finite element stresses
both the total shear resistance and the total mobilized shear stress on a
slip surface can be computed and used to determine the factor of safety.

Numerical methods have been extensively used in the past several
decades due to advances in computing power. Generally, numerical
methods can be classified into continuum and discontinuum methods
(Jing and Hudson 2002, Jing 2003). There are quite a large number of
numerical methods that have been used in the literature to estimate the
behavior of geomaterials. The most important or at least the most used
methods are: Continuum, Finite Difference Method (FDM), Finite Element
Method (FEM) and Boundary Element Method (BEM); Discontinuum,
Distinct Element Method (DEM), Discontinuous Deformation Analysis
(DDA), and Bonded Particle Model (BPM). There are two other methods
which do not follow this classification: Meshless Methods (MM) and
Artificial Neural Networks (Bobet 2010). Jing and Hudson (2002) and



Bobet (2010) have discussed the different numerical methods applied in

rock mechanics.

However, rock mass parameters are always containing uncertainty, the
utilization of probabilistic methods in rock engineering, permits a rational
treatment of various uncertainties that significantly influence the safety of
a rock slope. Moreover, probabilistic approaches offer a systematic way of
treating uncertainties and quantifying the reliability of a design (Kirsten,
1983). D¢zgen and®YI2pgen et ade applieda&idirced h
First Order Second Moment method (AFOSM) to a non-linear

performance function with non-normal correlated variables to analyze the

planer stability of a rock slope based on Mohr-Coul omb <criteri on.

et al. (2003) have proposed a methodology for reliability based design of
rock slopes. In this study, a model is developed within the framework first-
order second-moment approach to analyze the uncertainties underlying
the in situ shear strength properties
¥zdemir ( 200 6) AF@SMvaad riakpapskessneedt to a planar
failure of a rock mass in Konya to manage the risk by decision analytical
procedure. Jimenez-Rodriguez et al. (2006) considered a sliding mass on
an inclined plane with two blocks separated by a vertical tension crack.
Two cases were defined, in which the two blocks may have interaction or
not. The models were formulated by Limit Equilibrium Method for each

case. It was assumed that when Safety Factor (SF) is lower than one a

bl ock will fail. DB)auged fgsh ordarmediabiByhneethadn  ( 2 0 0

(FORM) to model a plane failure of a slope with 734 m-height using the
Barton-Bandis (1982) shear strength criterion for modeling the limit state
function. The slope was consisting of three big blocks laying on each.
They have defined possible failure scenarios and by using conditional

probability theory the failure probability was calculated.

Low (1997) calculated the safety factor for a wedge slope utilizing
AFOSM. In addition, utilizing Excel spreadsheet he calculated the
3
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reliability index and probability of failure for the slope. Low (1997) used
Coulomb linear failure criterion and he assumed that all the parameters
are normally distributed. Park and West (2001) have worked on
probabilistic modeling of rock wedge failure in their work. First they have
modeled the probability of kinematic instability in which planes dip and dip
direction were considered as random variables, then probability of kinetic
instability was modeled to provide a proper, combined evaluation for
failure probability by Monte Carlo Simulation. Joint orientation, geometric
parameters, such as length and spacing, shear strength parameters and
pore water pressure in the discontinuity were considered to be

probabilistic parameters.

Also, Jimenez-Rodriguez and Sitar (2007) have modeled the stability of
the wedge using a disjoint cut-set formulation, in which disjoint parallel
sub-systems were used to represent the different failure modes of the
slope, and the used random variables were strength parameters of joint
planes and the geometry of wedge, they have concluded that the
reliability results were found to be highly sensitive to variations in the
geometry of the wedge and to variations in water level conditions,
whereas variations in the unit weight of the slope were found to have

almost no influence on the probability of failure.

Fadlelmula (2007) in his study presents the results of probabilistic
modeling of plane and wedge types of slope failures, based on the
OAdvance First Order Second Moment ( AF
both of those failure types, two different failure criteria namely, Coulomb
linear and Barton-Bandis non-linear failure criteria were utilized in the

development of the probabilistic models.

Moreover, Li et al. (2009) has developed a probabilistic fault tree to
model the system reliability of the rock wedges. The N-dimensional

equivalent method was used to perform the system reliability analysis due

4



to its accuracy and efficiency. The proposed approach has the ability to
guantify the relative importance of each failure mode which enables the

designer to establish priorities and decision making for rock slope.

Scavia et al. (1990) have developed a probabilistic model using 2-D limit
equilibrium analysis of block toppling failure in rock, resting on a stepped
failure surface was carried out including both Monte Carlo simulation

procedure and Markov Chains theory.

Tatone and Grasselli (2010) also have developed a new probabilistic
method for analyzing the stability of rock slopes according to the limit
equilibrium method developed by Goodman and Bray (1976) and
introduced a Monte Carlo simulation procedure for the probabilistic
analysis of block-toppling and described its implementation into a
spreadsheet-based program (ROCKTOPPLE). The analysis procedure
considers both kinematic and kinetic probabilities of failure. These
probabilities are evaluated separately and multiplied to give the total
probability of block toppling.

All of the above mentioned works have used Limit Equilibrium Method to
model the performance function, because by that method it is easy to
formulate the performance of a rock mass.

To consider the effects of uncertainties in numerical modeling the
Stochastic Finite Element was proposed for continuum media and there
are some works such as Wong (1985), Griffiths et al. (2005), Tan and
Wang (2009) for soil slope. Also Hammah et al. (2009) applied stochastic
finite element in analyzing the stability of a rock slope in which
uncertainties were related to strength parameters and joint network
geometry. In their work they used both Monte Carlo and Point Estimate
Method (PEM) to calculate statistical moments. Furthermore, Wang et al.

(2000) have used FLAC software which is based on Finite Difference
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Method to assess the stability of a coal mine slope, in this study the
stability of a coal mine slope was analyzed using numerical analysis

considering reliability engineering concepts.

However, none of these methods can be applied in rock slope stabilities
which are discontinuous. To solve this lack Moarefvand and Verdel (2008)
tried to contribute the probabilistic methods in Distinct Element Method in
UDEC software and they named it as PUDEC. It was the first time that
probabilistic numerical method was used in a discontinuous media in rock
mechanics. In this method the statistical moments are given to software
and the software solves the model by considering these uncertainties and
simulation outputs are in statistical form. However, the performance of this
method relies on a wrong assumption by which the plastic flow starts
when E ()>E (), where E (1) is the mean of shear stress and E (t )
is the mean of shear strength. Also, in this research, reliability engineering
concepts such as reliability index, probability of failure are not taken into

account.

1.2 Objectives and scope of the research

Considering these features of all the previous studies done in reliability
engineering related to rock slope stability, this thesis proposes a
probabilistic numerical approach for stability assessment of rock slopes.
The proposed approach uses the capabilities of numerical modeling
method and simultaneously it considers the randomness of the rock slope
stability parameters. For this purpose the probabilistic modeling approach
is integrated with 3D distinct element method in 3DEC software by

developing codes in FISH language of 3DEC.

Generally, the failure mechanism in discontinuous rock slopes is

controlled by existing rock discontinuities. Therefore, the shear behavior

of the rock discontinuities plays a vital role in stability or instability of a
6



rock slope. Commonly, the linear Coulomb criterion is used in analyzing
the stability of rock slopes either in limit equilibrium or numerical methods.
However, it is clear that the Coulomb parameters do not have the
sufficient ability to model the shear and normal behavior of the rock
discontinuities. Therefore, it is much realistic to apply a series of models
known as Barton models. In contrast to Coulomb, Barton models consider
the surface conditions such as roughness, strength of joint walls and
basic friction angle of the rock discontinuities and their dependency on
stress level in its calculations. Hence nonlinear Barton models are used
rather than linear Coulomb function. Since the distinct element code used
in this thesis was 3DEC and it does not include the Barton model in
contrast to UDEC (2D distinct element code), the approach is applied by
developing codes in 3DEC.

One of the drawbacks of limit equilibrium methods is not considering the
strain of in their calculations. Therefore, the probabilistic approaches that
use the limit equilibrium method do not consider the strain as a possible
failure criterion. Instead, they work with the safety factor concept. Based
on this concept, the structure fails when the stress applied is greater than
the strength. However, in some circumstances, the deformation of a
structure can be called as failure and the structure uses its applicability
although the safety factor claiming a safe state.

For this reason in this thesis strain is considered to be the indicator of
failure as well as simultaneously taking the randomness of the rock
mechanical parameters into account. Based on a definite strain value the
failure or survival of the rock discontinuities is determined and the failure
probability and the corresponding reliability index are obtained. Because
of the importance of historical places in Turkey, a rock slope containing a
historical grave in Amasya, Turkey was selected to implement the
proposed methodology. Akgun and Kockar (2004) studied the stability of a

sandy limestone rock slope under a historical castle in Turkey.
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The present study is divided into six chapters. Chapter | covers a brief
introduction of the thesis subject and previous works and scope of the
thesis. In Chapter Il the basic mechanics of rock discontinuity is
discussed. The Distinct Element Method (DEM) and Probabilistic Method
are reviewed in Chapter Ill. In Chapter IV the Proposed Numerical-
Probabilistic Approach is explained. Chapter V includes the
implementation of the proposed approach in Amasya, Turkey and its
results and discussions. At the end, the conclusions and the

recommendation are presented at Chapter VI.



CHAPER Il

BASIC MECHANICS OF ROCK DISCONTINUITY

2.1 Introduction

Generally, rock masses contain discontinuities such as bedding planes,
joints, shear zones and faults. At shallow depth, where stresses are low,
the behavior of the rock mass is controlled by the discontinuities rather
than rock mass itself. In order to analyze the stability of this system of
individual rock blocks, it is necessary to understand the factors that
control the shear strength of the discontinuities which separate the blocks
(Hoek, 2007). In this Chapter, it is intended to overview the basic

mechanics of discontinuities under normal and shear stresses.

2.2 Shear Strength of Discontinuities

A discontinuity is generally referred to all structural breaks in rocks which
usually have zero to low tensile strength. Normally, joints, bedding, shear

zones, contacts, veins, and faults are called as discontinuities.

Shear behavior of rock discontinuities always plays important role in rock
engineering. There are several discontinuity shear failure criterion
developed for the past decade. The most common one is the linear
Coulomb relation in which the peak shear z strength is expressed in
terms of the eff eg),tcohesien (c)and englé of Gidtione s s (U

(@ ). The Mohr-Coulomb relation is given as;
9



U e st ain (2.1)

This shear strength equation was developed by assuming that the
discontinuity surface is planar. If a smooth planar surface is sheared at a
constant normal stress, the surface will behave elastically, and the shear
stress acting on the discontinuity surface increases rapidly till the peak
shear strength is reached. After that the shear strength drops and
becomes constant at the level which is called as residual shear strength.

Equation (2.1) can be expressed to give the residual shear strength as;

Q esi%ﬁm&laar} (2-2)

Where, the residual friction angle (0 ,) is approximately equal to the basic
friction angle (0 ), which is usually measured with sawn rock surfaces.
However, a natural rock discontinuity may probably have some asperities
that directly affect the shear strength of the discontinuity. As the
discontinuity is under shear loading, the shear displacement will be on
these asperities that causes the block move upward on the inclined
surfaces of the asperities (dilation). For this reason the roughness
component (i) should be added to the basic friction angle (0 ), (T p+i),

where 6i 6 i s t hdsudaneplthe aspdrites.he i ncl i ne

Sliding along the wavy faces of discontinuity can occur only under very
low normal stress. If the normal stress is increased, then the asperities
may break or wear out and in such cases the discontinuity wall strength

becomes important.

Barton-Bandis (1982) failure criterion includes discontinuity surface

properties besides the effective normal stress and friction angle of the

10



discontinuity. Barton (1973) derived an empirical relationship for

determining the shear strength of discontinuities. It is written as follows:

O&,t ad RTI qg==+i, (2.3)
Where;

Un = effective normal stress

JRC = joint roughness coefficient

JCS = joint wall compressive strength

U p = basic friction angle (obtain from residual shear tests on flat

unweathered rock surfaces)

The joint wall compressive strength (JCS) generally reduces with water

saturation compared to the dry state (Barton, 2007). This is because of

the effectof moistur e on t he uni axi al ()cToewvplueessi ve
of is obtained from Schmidt hammer tests (ISRM, 1978).

Another major component of the shear strength is the basic friction angle
(0 ) of unweathered artificial, planar, dry rock surfaces and the residual
friction angle (G ) applying to flat, non-dilatant, saturated, well sheared
surfaces, i.e. 0, Odp. The friction angles obtained from flat unweathered
rock surfaces, which are most frequently prepared by diamond saw, will
not be applicable to weathered rock discontinuities unless the effective
normal stress is high enough for the thin layers of weathered rock to be
worn away (Richards, 1975, in Barton and Choubey, 1977). Low levels of
effective normal stress and the thin layers of weathered material, perhaps
less than 1 mm in thickness, may continue to control the shear strength,
post peak strength and even for displacements up to residual strength.
Richardsd (1975) tests on weathered s
correlation between residual friction angles (t,) and Schmidt rebound

value (Figure 2.1).
11



30 - -
|

20

10

|

RESIDUAL FRICTION ANGLE ¢/

|
10 20 30 40 50 60

SCHMIDT HARDNESS (r)

Figure 2. 1 Relation between residual
friction angle with Schmidt rebound value
(Richards, 1975, in Barton and Choubey,

1977)

Richardso (1975) | ooked for (& fromi mpl e
Schmidt hammer rebound values. The first empirical relationship tried was

as follows:
a,= 10A #@,-A@O/AR) ( (2.4)

Where;
r = Schmidt rebound on weathered discontinuity surface

R = Schmidt rebound on unweathered discontinuity surface

Therefore the Eq. 2.3 for the general case of weathered and unweathered

discontinuities was rewritten as (Barton and Choubey (1977) :

-~ o JCS _
LﬁegyntamRngﬁ +0, (2.5)

In the work of Barton and Choubey (1977), eight different rock types with
total of 136 individual discontinuities were studied. The specimens were
sawn from larger blocks containing through going discontinuities.

12



Following this study another methodology for determining G by residual
tilt test was introduced, which is basically a shear test under very low
normal stress (Figure 2.2). In this test, pair of flat and sawn surfaces was

mated, and the pair of blocks tilted until sliding occurred.

An empirical equation was obtained from residual tilt tests that enable to

relate 0 to Gy,

a,=@@p-20A) + 20(r/ R) (2.6)

Where;

0 p = basic friction angle estimated from residual tilt tests on dry
unweathered sawn surfaces

r = Schmidt hammer rebound value on the saturated joint wall,

R = Schmidt hammer rebound value on the dry, artificially cut rock

surfaces

‘

j
Py USUAL RANGE
2 OF (), =26°~35°

Figure 2. 2 Mechanism of

residual tilt test (Bandis et
al., 1983)
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Eq. 2.6 is preferred since it allows for a range of 0 ; values even when the
discontinuity is highly weathered. Eq. 2.3 tends to discount mineralogical
differences sinceti;t ends to a single mini mum

is zero.

The strength measured along individual discontinuities by direct shear
methods is strongly dependent on the roughness of the discontinuity
surfaces (Barton, 1973). The roughness parameter represents an index of
the unevenness and waviness of the adjacent discontinuity rock wall
(Giani, 1992). Barton (1973) defined the term joint roughness coefficient
(JRC), which varies from 0 to 20. Unlikely the JCS parameter, the JRC
parameter is not significantly affected by the dry or wet condition, since it
essentially represents geometry (Barton, 2007). Figure 2.3 presents the
laboratory-scale joint roughness profiles with their measured JRC values
defined by Barton and Choubey (1977).

Besides the joint roughness profiles, simple residual tilt test may help to

val u

obtanJ RC indirectly. Il n a tilt test on a

sliding occurs may bie, (MgBeAthan com@m@dito mor e t

U,) (Barton and Choubey, 1977). This additional shear strength is a result

of discontinuity surface roughness.

The maximum dilation angle (d,) when sliding occurs is probably given by

the following simple relationship derived by Barton and Choubey, 1977).
do= -, (2.7)

The tilt angle (U) is a function of

the joint is given as:

a=ar Ctan (2.8)

14
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The effective normal stress generated by the gravitational force acting on

the upper half of the block is given as:
0p,=oh.c oW (2.9)
Where;

h = thickness of the top block (m)
r = rock density (kN/m®)

— JRC=0-2
— ~ JRC=2-4
— — JRC=4-6
- JRC=6-8

————e——— T T ——— JRC=8-10

m JRC=10-12
w JRC=12-14
w JRC=14-16
wm JRC=16-18

M“\ JRC=18-20

Figure 2. 3 Laboratory scaled joint roughness profiles (Barton and
Choubey, 1977)
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The JRC value is estimated from tilt tests using Eq. 2.5, by substituting |

a n dp re8ults in:

JRCc=Yr

a5 -
Barton and Choubey (1977)
to determine the JRC val

test the top block is pushed or pulled parallel to the discontinuity plane.
First applying a dry tilt test then a dry push or pull test, it was found to be
possible to test whole spectrum of joint roughness (0-20). However, they
mentioned the fact that, discontinuous joints and discontinuities with cross

jointing cannot be tested by such methods.

Another method for determining JRC was presented by Barton and
Bandis (1982) by considering the amplitudes of the asperities of the

discontinuity surface as shown in Figure 2.4.

ues

recommended

rougher

, Straight edge

Asperity amplitude - mm

et Length of profile - m

W%W@WWIM%

=

Figure 2. 4 Measurement of asperity amplitude for determining
joint roughness (Barton and Bandis (1982), in Hoek (2007))

After determining the asperity amplitude and the sample length the chart

which is shown in Figure 2.5 can be used to determine JRC.
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The chart of Barton and Bandis (1982) is a useful tool for determining joint
roughness coefficient. From the chart the relation between asperity
height, discontinuity length and joint roughness coefficient can be

summarized as;

Asperity height = 2 x JRC x Discontinuity length (2.11)
400 20
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Figure 2. 5 Chart for determining joint roughness coefficient from
asperity amplitude and profile length (Barton and Bandis (1982),
in Hoek (2007))
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If the shearing of a non-planar discontinuity occurs, the asperities on
either side of the discontinuity slide over each other and cause an
increase in aperture which is called dilation. This process requires a finite
displacement to get started, and occurs at an increasing rate as peak
strength is approached (Barton et al., 1985). The peak dilation angle,
dpeak, 1S the maximum dilation angle which occurs more or less at the
same time with peak shear resistance (Barton and Choubey, 1977) and it

is defined as:

v v JCS
dyead ;1 IRCIQ g (2.12)
The choice of an appropriate discontinuity size during a shear strength
investigation is generally based on both economic and technical

considerations (Bandis et al., 1981).

Pratt et al. (1974) (in Bandis et al. (1981)) studied the effect of scale on
shear strength and concluded that the reduction in peak shear strength
was due to the decrease in actual contact area. Their prediction was that,
the scale effect would be negligible if the discontinuities are unweathered,
perfectly mating under high normal stresses. Barton (1976) also
interpreted similar results of scale effect on joint wall compressive
strength (JCS). The study of Barton and Choubey (1977) showed that
different lengths of discontinuities affect joint roughness coefficient (JRC)

and thus the shear strength of the discontinuity.
Bandis et al. (1981) studied the scale effect on the shear strength of

discontinuities with eleven types of discontinuities, of which was divided

into four groups according to their roughness (Figure 2.6).
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No. Surface profiles Description of "prototype” joint types
|
2
3
Vertical tension joints
4 in siltstone
5 Bedding plane in slightly
metamorphosed fine-
grained sandstone
6 Bedding plane in limestone
7 1
Bedding planes in course
grained sondstone
8 o) 1
2 1
Bedding planesin slightly
metamorphosed fine—
10 grained sandstone
e e R . R Shear jointin slightly met-
I RSN S N NN NN OS] amorphosed sandstone
0 10 15 20 25 30 35 '
SCALE Il 1 1 1 L 1 1 % ol
(cm)

Figure 2. 6 Groups of discontinuity types according to their roughness (Bandis et
al., 1981)

Barton and Bandis (1982) suggested some empirical relations for the
scale effects on the joint wall compressive strength; joint roughness
coefficient and peak shear displacement. They developed some empirical
relations for predicting the large scale joint wall compressive strength

(JCSy), joint roughness coefficient (JRC,) from lab scale values (JCS,,

JRC,) and the peak s hyggpofthediscorginuiyc e me nt

The effects of scale on the dry or saturated state of the discontinuities are
expressed below; Large-scale joint wall compressive strength (Barton and
Bandis (1982), in Barton et al. (1985)) is:

N . L, 0 0BE
Jcgicg = (2.13)

Lo

Large-scale joint roughness (Barton and Bandis (1982), in Barton et al.

(1985)) is:
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L, 0. 0RE

JREIJRG =

- (2.14)

Displacement at the peak strength (Barton and Bandis (1982), in Barton
et al. (1985)) is:

< Ly ¥
Up e a:‘ﬁlo - (2.15)

2.3 Rock discontinuity deformation

Discontinuity deformation is a principal component of the behavior of the
discontinuous rock mass (Bandis et al., 1983). The terms of joint normal
stiffness and joint shear stiffness were defined in order to analyze the

deformation characteristics of the joints.

Normal stiffness (Kn) is defined as the normal stress increment required
for a small closure of a joint or fracture, at a given level of effective stress.
Similarly the shear stiffness (Ks) is taken as the average slope up to the
shear strength-peak shear displacement curve. The units of joint stiffness
values are stress/displacement (e.g. MPa/mm, MPa/m etc.). Therefore it
is usually expected that Kn values are larger than the shear stiffness Ks
values (Barton, 2007). While the stress level is low the normal

deformation of the discontinuities are not discussed in this study.

The non-linear stress - shear displacement behaviorof sheared
discontinuities in the pre-peak range were frequently expressed by
hyperbolic functions (Bandis et al., 1983). Kulhaway (1975, in Bandis et
al., 1983) refers to the relation;

U= (2.16)
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Where U is the shear displacement
and n are constants of the hyperbola. Constant m is the reciprocal of the
initial shear stiffness and constant n is the reciprocal of the horizontal
asymptote Uy to the hyperbolic Gii curve. Development of Eq. 2.16 results

with the following relation for shear stiffness;

Ks=K; O " 1-% (2.17)

Where;

K = stiffness number,

n; = stiffness exponent,
s N

Ry = failure ratio = = (3 h,

Z = peak shear strength.

The indices Ry, nj and K; describes the non-linearity in discontinuity shear
behavior. The stiffness exponent nj is the slope of log-log relation
between initial shear stiffness Kg a n d, with a unit of (MPa)’’mm. Also
the experimental studies Bandis et al. (1983) showed that stiffness
number K| (intercept of the log-log relation between initial shear stiffness

Ksia n dp) can be written empirically as;

K=17.19+3.86 JRC (2.18)

With R = 0,835 for JRC > 4, 5.

However, for calculation of the value of joint shear stiffness (Ks)
theEQq.2.17 is dependent on the current shear stress acting on the joint
plane, from other side, in this research, the analysis are done based on
distinct element method, therefore, the unbalanced forces in the model

will cause instability in shear stress then the joint shear stiffness derived
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from the Eq. 2.17 will not be reliable. To overcome this problem, it is
possible to calculated the Ksf r om r el ati on bet ween shea
(peak) and the peak shear strength. According to Barton and Choubey

(1976) the shear displacement U (peak)
strength determines the stiffness of joints in shear. As Barton and

Choubey (1976) admitted that joint shear stiffness is extremely important

input data in finite element analyses of joints, since joints are very

deformable in shear compared to normal direction and compared to intact

rock (Barton 1972).

Since the reliable method of estimating shear strength was developed for

any given values of JCS, JRC,G;and, Uit only remains to ¢
(peak) for an estimate of Ks to be obtained (Barton and Choubey, 1976).

Barton and Choubey (1976) assumed U (peak) agL) 1% of
and estimated the Ks based on following relations:

oi T (2.19)

bi —, omd e QY0 Y« (2.20)

In Eg. 2.20 Barton and Choubey (1976) assumed that a joint reaches to

its peak shear strength after about 1% of its length (L). Ks is strongly

dependent on scale. A review of laboratory and insitu shear tests (Barton

1972) indicated that shear stiffness was indeed inversely proportional to

joint length. However, it seems clear that 0O (
to less than 1% L as the joint length increases to several meters (Barton

and Choubey 1976). Later, Barton et al. (1985) suggested Eq.
2.2lestimatethel ( peakads: val ue

< Ly ¥
Up e a:Kj_OIO L_ (221)
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Therefore, It I' s possible to estimate t
substitution of Eq. 2.21into Eq. 2.19.
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CHAPTER IlI

NUMERICAL ANDPROBABILISTIC METHODS IN ROCK
SLOPE STABILITY ANALYSIS

3.1 The Distinct Element Method

The Distinct Element Method (DEM) was introduced by Cundall (1971) as
a model to simulate large movements in blocky rock masses, and then
used for soils which were modeled as discs (Cundall and Strack 1979).
Later, the method has been applied to spherical and polyhedral blocks
(Pande et al. 1990, Cundall 1988 and Potyondy and Cundall 2004) for

both soils and rocks.

The DEM belongs to the family of Discrete Element Methods, which
Cundall and Hart (1998) define as those that: (1) allow finite
displacements and rotations of discrete bodies, including detachment; and
(2) automatically recognize new contacts between bodies during
calculations. Discrete Element Methods need to address three key issues:
(1) representation of contacts; (2) representation of solid material; and (3)
detection and revision of contacts during execution. An in-depth

discussion of these issues is provided by Cundall and Hart (1998).

The distinct element technique was originally developed by Cundall

(1971) and has resulted in formulation and development of three
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dimensional distinct element code (3DEC) and it progressed over a period
of 35 years (Anon, 2007).

3DEC is three-dimensional numerical software based on the distinct
element method for modeling discontinuous medium subjected to static or
dynamic loading. A discontinuous medium is distinguished from a
continuous medium by the existence of contacts between the discrete

bodies that comprise the system (Anon, 2007).

3DEC is based on a dynamic (time-domain) algorithm that solves the
equations of motion of the block system by an explicit finite difference
method. At each time step, the law of motion and the constitutive
equations are applied. For both rigid and deformable blocks, sub-contact
force-displacement relations are prescribed. The integration of the law of
motion provides the new block positions, and therefore the contact
displacement increments (or velocities). The sub-contact force-
displacement law is then used to obtain the new sub-contact forces, which
are to be applied to the blocks in the next time step. The cycle of

mechanical calculations is illustrated in Figure 3.1(Anon, 2007).

3DEC also has a built in programming language called FISH which can be

used for user specific purposes.

3DEC has two constitutive models for analyzing discontinuity behavior.
The first one is the generalization of Coulomb friction law. This law works
similarly for sub-contacts between both rigid and deformable blocks. Both
shear and tensile failure is considered. In elastic range the model
behavior is governed by discontinuity normal stiffness and discontinuity

shear stiffness.
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Figure 3.1 The calculation cycle of 3DEC program (Anon, 2007)

The force increments are found by using displacement increment and the

input discontinuity stiffness. The normal force increment ¥& is found as;

o "=-K,, /A, (3.1)
And the shear force increment is found as;

aF°=-K adlA, (3.2)

Where;

a/' = Normal displacement increment
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A:= Area of contact

a&l = Shear displacement increment

The total normal and shear forces, F" and F° are then updated for the next

cycle as;

F'=F"+ &" (3.3)
And,

F=F°+ &° (3.4)

For tensile failure;

F'<Tmax tFF&nsi qual (3.5)
Where;

Thmax TAG (3.6)
TresiTlnesifcwual (3.7)

Tmax = Peak tensile strength

Tresidual = Residual tensile strength

For shear failure;

FP<Fhax  tFFEEnTZ2 (3.8)
Where;
Frhag BcHF't amn (3.9)

Shear displacement leads to a dilation that is;
&/ di=lat a(nd) (3.10)
Where d is the dilation angle specified.

Then the normal force is corrected to consider the effect of dilation as;
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F'=F"+K,A.adit a(nd ) (3.11)

The second constitutive model of 3DEC for discontinuities is the
continuously yielding joint model. The model attempts to account for some
nonlinear behavior observed in physical tests. The model generates the
discontinuity shearing damage, normal stiffness dependence and

decrease in dilation angle with plastic shear displacement.

The normal stress is found incrementally as;

ol =K 3/ (3.12)
Where the normal stiffness K, is given by;

Kn=anlp" (3.13)
Where a, and e, are model input parameters

For shear loading, the shear stress increments calculated as;

ad) Ek aal (3.14)
Where the shear stiffness Ks is given by;

Ke=agl:® (3.15)

And where esand as are model input parameters and F is the tangent
modulus factor which depends on the distance from the actual stress

curve to the target or bounding strength;

(Pg)
F= > (3.16)
Where;
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r is the stress ratio at the last reversal and it is limited to 0.75 in order to

avoid numerical noise.
Uis the bounding strength and found as;
U,=0,t anp,ael (3.17)

N, is the friction angle at which the discontinuity is dilating at the
maximum dilation angle and it is continuously reduced according to the

equation;

ae‘m=-§(ﬁm-ﬂ) &8 (3.18)
R is the model input parameter defines the surface roughness,

The plastic increment ai® is found as;

ai’= (-A s (3.19)

Studies related to 3DEC were mostly conducted by Coulomb slip model
rather than continuously yielding joint model (Kulatilake et al. 1993,
Konietzky et al. 2001, Hutri and Antikainen 2002, Corkum and Martin
2004). The main reason is the easiness of the parameter determination.
Only the discontinuity cohesion and discontinuity friction angle should be
determined for the Coulomb slip model.

3.2 Reliability Index Methods

In these methods the safety of a slope is measured by a reliability index,
rather than the classical safety factor. Engineering reliability problems can
generally be reduced to comparison of demand and supply in meeting a
specified performance requirement. For example, the safety of a structure
depends on the strength of the structure, (supply) and the applied load
(demand) ( D¢ z g ¢ n e t Thadalculatr®d Bobability of survival or
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failure, requires the knowledge of the distribution of supply, denoted by

fx(x), and demand, denoted by fy(y) or their joint distribution fxy(x,y), if X

and Y are correlated. In practice, however, it is difficult to assess these
distributions due to insufficient data. Moreover, even if the required
distributions are available, the exact evaluation of probabilities is
impractical due to the numerical integrations involved ( D¢ z g ¢ n and
¥zdemir. 2006)

Frequently, the available information and data are sufficient only to
calculate the first and second moments, in other words the means, the
variances and the covariances of the respective random variables. In
such cases, practical measure of safety or reliability is limited to functions

of these firsttwomoments ( D¢ zg¢n and ¥zdemir 2006)

Two similar procedures are used for the computation of the reliability
index. These are the first-order second-moment (FOSM) and advanced
first-order second-moment (AFOSM) methods. In both methods, random
variables are described only by their first and second statistical moments

(i.e. mean, variance and correlation characteristics).

Although these two methods have been proposed long time ago, their
application to rock slope stability is quite recent. Genske and Walz (1991),
Kimmance and Howe (1991), Muralha (1991), Trunk (1993) applied
FOSM method to rock slopes. Slope stability studies using AFOSM
method in rock engineering are very few. However, the more recent
probabilistic slope stability studies |
1994, Dé¢zgen et al ., 19 9CGhen attal,el®98)and L e
since it is free from some of the disadvantages of previously mentioned
methods (Ang and Tang, 1984).
The formulation of a performance function (failure function) or a limit state
equation is the first step in both methods, and is explained in the following
section.
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3.2.1 The Performance Function

The reliability assessment of an engineering structure usually involves the
consideration of many variables. In particular, the supply and demand
generally depend on several other variables. In FOSM approach, the
reliability index, P, is similar to the safety factor used in the deterministic
analysis. It gives the mean safety margin in multiples of the standard
deviation of the safety margin. The mean safety margin is the mean
difference between the mean capacity and the mean demand. The higher
this difference, the higher is the value indicating a higher safety. It is to be
noted that this difference is normalized with respect to the standard
deviation of the safety margin. Accordingly, the uncertainties in demand

and capacity are also reflected in the reliability index (Duzgun et al. 1995).

For the purpose of generalized formulation, it is necessary to define a

performance function or a state function as shown below:

g (X) = g(X1,X2, X3, ..., Xn) (3.20)

Where, 8 8 IB IB B B is the vector of basic variables which are
involved in the physical problem such as strength, load and geometrical
parameters. The function g(x) determines the performance or state of the
structure. Accordingly, the limiting performance is defined as g(x) = 0

which is the "limit-state" of the system. As a result it follows that:

g(x)>0  The "safe state"

g(X)<O0  The "failure state"

Geometrically, the limit state equation, g(x) = 0, forms an n-dimensional
surface which is called as the "failure surface ". One side of the failure

surface is called the safe state, g(x) > O; while the other side g(x) < 0 is
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the failure state. Figure 3.2 illustrates the safe and failure states for the

two-dimensional case.

b,
failure domain
Ar
-—__-_-_-_‘_-_‘-‘_‘_"‘—\—
safe domain x
As S*=p
X1
0 Gs (x)=0
=0
Gy(x) =0 G (x)

Figure 3.2 Safe and failure states for the variables x; and x,

If the joint p.d.f. of the basic variables, X;, X Xs, € ., is X
fx1, x2. x6X1 %2, X3,xn € n)the pfobability of safe state is

(3.21)
P = A xaxeses xn (X1s X2, X5,€ L X )dx;...dx,
g(x) >0
The
above equation is simply the volume integral of fx (x) over the safe region
g(x) > 0. On the other hand, the failure state probability or p is the

corresponding volume integral over the failure region g(x) < O:

P = A--AT xaxe.xze . xn K1y X5, X35,€ , X )dx,...d
g(x) <O

" (3.22)
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In FOSM modeling, mean and standard deviation of the limit state or
performance function is found for any continuous mathematical form of
the limit state equations. If the function is non-linear, the approximate first
and second moments of the limit state function are obtained by Taylor
series expansion of the faction around the mean values of the basic
variables (01). This approximation i s
method" and proposed by Cornell (1969). The linearized failure function is

given as

B )
z° g(m, m,...m)+& (X, - m)%%

) .

(3.23)

[Heslel

i=1
Where the vecdsd@®srO &, isé hearizing point. The
reliability analysis is carried out according to the functionz . The Jnean (O

andst andar d d)eokziiseapproximated by ( D¢ zgeé¢n and ¥zder
2006):

m=g(m, m,...m) (3.24)

(3.25)

The accuracy of the approximation depends on the degree of non-

linearity, effect of neglecting higher order terms in failure function z and

the magnitudes of coeffici ent s of variation of xa's.
function g (X1, X2, X3, € p) js lin¥ar then the approximation of the mean
and the standard deviation of z is exact. In the FOSM method the
reliability index b asb=defined by Cornel

S

z

The FOSM method which is based on the mean point expansion using

Taylor series approximation has two basic shortcomings. First, the
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performance (unction is linearized at the mean values of the basic
variables. When performance junction is non-linear, significant errors may
arise at increasing distances from the linearizing point by neglecting the
higher order terms. Second, the Taylor series expansion around the mean
values fails to be invariant under different but mechanically equivalent
formulations of the same problem (Hasofer and Lind, 1974). In other
words, it lacks the desirable property of being failure function invariant.
Due to these shortcomings of the FOSM formulation, the AFOSM method
proposed by Hasofer and Lind (1974) became the most widely used
method of reliability determination. In the following sections the principles
of AFOSM is explained in detalil

3. 2. 2 Linear Performance Functions

The performance function may be a linear function. A linear performance

function can be represented as

g(X)=a,+8 aX, (3.26)

i=1
Where agand a; are constants.

Here the variables are assumed to be uncorrelated and hive a normal
distribution. The reduced (standardized) variables are defined as follows:

a,+8 aX, =0 (3.27)

i=1

Here the variables are assumed to be uncorrected and have a normal

distribution. The reduced (standardized) variables are defined as follows
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X; = X‘S' o (3.28)
Then

X, = Xis; +m (3.29)
ao"'é &(X{Sxi +mx‘)=0 (3.30)

i=1

For instance, for three dimensions the minimum distance of origin of

reduced variates X; is:

a, +a am
—_ i=1

b= (3.31)

n

a (ais X, )2

i=1

Then, the following generalization can be made. If the random variables
X1, €, nar¥ uncorrelated normal variate, the probability of being in the

safe state is:

a  .n . 3
P = Pgao +raalxs, + m, )= 00 (3:32)
i=1 -
a4 68
® &, +a am, 09
P =1 Fp© — th? (3.33)
2 (b ) g
(;, i=1 -
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a " g
+ .
_ Zeraam g
=F g = o (3.34)
=4 (aisxi)zg
(; i=1 -
Where 00 ( ) is the cumulative distribut

normal variate. As observed the probability Ps is a function of the distance
from the failure plane g(x) = O to the origin of the reduced variates. Hence,
in the general case of n uncorrelated normal variates the probability of

being in the safe state Ps=t b() dahe probability of failure is Pi=1 - 0
(b) .

3.2.3 Non-Linear Performance Functions

Generally, the performance functions are non-linear. Accordingly, the limit
state equation g (X) = 0 will also be non-linear. Unlike the linear case,
there is no unigue distance from the failure surface to the origin of the
reduced variates.However, Shinozuka (1983) identified the point

(Xl'*,...,x,'f)on the failure surface with minimum distance to the origin of

the reduced variates as the most probable failure point. Hence, the

tangent plane to the failure surface at (x,,...,x:)can be used to

approximate the actual failure surface and to evaluate the reliability index.

The tangent plane at (xlxn) is

4 (x - x;*)%%g =0 (3.35)

{e]

|-OO0,

«Q

In which the partial derivativesgg—§ .



Thus, the minimum distance from the tangent plane to the origin of the

reduced variates is taken as the reliat
Figure 4.1 for the two-variable case. This minimum distance to tangent
plane on the failure surface can be determined through the Lagrange
multiplier method as explained by Tang (1984). The following summarizes
this numerical procedure, which is an iterative algorithm for calculating the
reliability index C€, (Ang and Tang, 198/

i. Define the appropriate limit-state function.

i.h. Make an initial guess of the reliabil

iii. Set the initial checking point wval ues

iv. Compute the mean and the standard deviation of the equivalent

normal distributions for those variables that are non-normal
v. Obtain reduced variates as X, = X m
Sx,
. Augd .
Vi. Evaluate%;ugﬁ atX; .
GHN

vii. Compute the directioncos i n eas U
a, (3.36)

viii. Calculate new values of X, from X, =m- a,b s

ix. ix. Substitute above X;in g ( X, ,.oX”)y = 0 and solve f

x. Using b obt ai negatbate X =sabep i x,

xi. Repeat step v through x until convergence is reached.
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3.2.4 Equivalent Normal Distributions

If the probability distributions of the random variables Xy,..., X, are not
normal, the probability P and Ps can also be calculated. The equivalent
normal distribution for a non-normal variate can be obtained in such a way
that the cumulative probability as well as the probability density ordinate

of the equivalent normal distribution are equal to those of the
corresponding non-normal distribution it the design point Xi* (Ang and

Tang, 1984). Accordingly the following can be obtained:

F%—éxs ”ﬁf F (X)) (3.37)

vO

Where;

ni:'i , S Q'i =The mean value and the standard deviation, respectively, of

the equivalent normal distribution of X;.

Fx (Xi*)z The original cumulative density function (c.d.f) of X

evaluated at X, .

F( )=The c.d.f. of the standard normal distribution

From Eq. 3.37 it is obtained:

*

7%,

=X, - sXFF, (%) (3.38)
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On the other hand, equating the corresponding probability density

functions at X, vyields to:

18X/ -0 .
f% 8=fxb() (3.39)

Where, 7 ( )is the probability density function (p d f.) of the standard

normal variable. From this it can be obtained

e b ) e

For a linear performance function, the appropriate point on the failure
surface can be given in;taearnds saff ediyr @ mtdi

in the following way:

a =% (3.41)
ghf
8+ an
b=——— (3.42)
4 lasf

Where the superscript N denotes the statistics for the equivalent normal

distribution.
Accordingly, the design point is:

39



It is obvious that replacing the actual distribution with an equivalent
normal distribution requires replacing the actual mean and the standard
deviation with those of the equivalent normal distribution. The safety index
b and t he pr ob adrdthen dalcuated irPtermsaohtite m@an

and standard deviation of the equivalent normal distribution.
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CHAPTER IV

THE DEVELOPED NUMERICAL-PROBABILISTIC
APPROACH

4.1 Methodology

In probabilistic modeling of rock slopes, the performance function is

constructed based on the ratio of strength to the stress acting over rock

di scontinuity. Therefore, for cal cul at |

consequently the failure probability, the procedure discussed in section
3.2 of Chapter Ill is used.

However, the displacement of the structure is an important parameter that
controls the stability of the structures. Limit equilibrium methods does not
have the capability to obtain the displacement of rock mass; therefore, the

numerical methods are required.

For analyzing the stability of rock slopes, different numerical methods are
applied, however, the commonly acceptable method for discontinuous
rock slopes is Distinct Element Method. The main output of the DEM is
the displacement of blocks. Hence, the shear strain or shear displacement
of rock discontinuities is considered as the failure indicator in this study.
The flowchart in Figure 4.1 indicates the process for development of the
proposed probabilistic numerical approach for analyzing of rock slope

stability.
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Figure 4.1 The process of development of proposed probabilistic numerical

approach

As seen in Figure 4.1, there are different stages that should be followed in
application of the proposed approach for a rock slope. The stages are

described in detail as below:
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1 Model construction (I)

As indicated in Figure 4.1, the first step is to construct the geometry of
slope in 3DEC. For this purpose, the shape of the slope is surveyed then
constructed in the software and the rock discontinuities are added. The
constructed shape must be meshed by using different zoning commands
available in the software. The other step is to define the boundary
condition which is dependent on geometry of the rock slope. In
discontinuous media, the model has two separate components which are
blocks and the contact face between blocks. Both of these components
are given material properties based on the obtained data in the laboratory
and the field. In most of the cases when the stress level is low the failure
occurs in discontinuities rather than intact rock body. Therefore, the intact
rock is modeled elastically for the sake of simplicity. However, the rock
discontinuities are modeled plastically. To calculate and assign the
material properties of the rock discontinuities the stage Il and Ill are

followed.

1 Discontinuity material properties calculations and their

assignment (Il and II)

As indicated in Figure 4.1, in stages Il and Ill FISH functions were written
to calculate the rock discontinuity material properties and to assign to the
model. In the proposed methodology, the Barton models discussed in
Chapter Il are used to model the rock discontinuities. The Barton model
does not include as material model in 3DEC library; therefore, the Barton
model should be applied indirectly to the model. Barton suggested
instantaneous cohesion and friction angle concepts by which the
nonlinear behavior of normal and shear stress (f-U0,) relation can be
equalized by drawing tangents to the t-G, cur ve f or, vaues.

Figure 4.2 shows the concept of instantaneous cohesion and friction
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angle. The instantaneous cohesion and friction angle are obtained from
Eqgs. 4.1t04.3:

~

s JC d @RC €
= targgRClo +f an2 RClo 10—+f +13(4.1
s r@ %05 o8 Tg0mi08 @ gL 8 1u( )
aur o
f, =arctar%8 (4.2)
GFon~
cC =t - s, tanf, (4.3)

By applying Egs. 4.1, 4.2 and 4.3 the relevant cohesion and friction angle
for a definite stress level and consequently for any discontinuity are
calculated. Therefore, the calculated values for cohesion and friction
angle are applied by using Coulomb slip model. The joint material
parameters required to apply Coulomb slip are Joint Normal Stiffness
(kn), Joint Shear Stiffness (ks), Friction Angle (Jfriction), Cohesion
(Jcohesion), Joint Tensile Strength (Jten) and Dilatancy Angle (dil).

Shear
Stress

[;ni_‘-:l':l

ivd

} 2

Normd Sty ess 0
Figure 4.2 Barton model and the instantaneous cohesion and friction concepts
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According to Egs. 4.2 and 4.3, both the cohesion and friction angle are
function of normal stress applied on discontinuity surface. Therefore, a
FISH function was written to calculate the average normal stress on each
plane. It is to be noted that the FISH is a programming language
embedded within 3DEC that enables the user to define new variables and
functions. These functions may be
add user defined features. An example of the FISH function written is as

below for one discontinuity:

Def av_str;
whilestepping
nstav, =0
Are;=0
ic, = c_near(Xy, Y1, Z1)
icsub; = ¢_cx(ic,)
Loop while icsub, # 0
ncono; = ncono; + 1
Are;=Are; + cx_area(icsub,)
nstav, = nstav; +cx_nforce (icsub,)
icsub; = cx_next(icsub;)
Endloop
If ncono; #0
nstav,; = nstav, / Are;
Endif

end

In this function, for any discontinuity, the normal force and the area (Are;)
of contact and the average normal stress (nstav;) are calculated and
saved to be used in calculation of cohesion and friction angle. The ic;,
icsubl and (X1, y1, Z1) are related to the ID and the coordinate of location

of discontinuity in 3DEC.
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The failure criterion in this methodology is shear displacement; and the
Joint Shear Stiffness (ks) is one of the most important factors that directly
controls the shear displacement. According to the Eq. 2.17 the Ks is
dependent on normal stress, length, JRC, JCS and basic friction angle of
any discontinuity. As discussed in Chapter II, the Eq. 2.17 is not a suitable
formula to calculate the Ks for analysis being done by 3DEC. For this
purpose, Eq. 2.19 is used which is the ratio of E q . 2. 3, t
empirical shear strength formula, to Eq. 2.21, the estimated peak shear

displacement value.

In 3DEC the joint parameters must be assigned to relevant location or
discontinuity. Commonly, the models are complex and the material
properties should be assigned by FISH coding. One sample of written
FISH for calculating and assigning the joint parameters is as below:

Def prop;

Fi (basic friction angle)

L, (discontinuity length)

JCS (Joint Compressive Strength)

JRC (Joint Roughness Coefficient)
fric_1=abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/nstav,))+Fi)))degrad*
JRC*(1/In(10))* ((tan(degrad*(JRC*log(abs(jcs/ nstav,))+Fi)))"2+1)))
coh_1=nstav,*abs(tan(degrad*(JRC*log(abs(jcs/nstav,))+Fi)))nstav,*abs(tan(deg
rad*fric_1)))

d_peak1=(L1*(JRC/L1)"0.33)/500

J_ks_1=((coh_14)+abs(NS11*tan(degrad*fric_14)))/(L1*(JRC/L1)"0.33)
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ic;=c_near(34.43,57.22,80.4)
End

Hide dip 87 dd 180 org 0 61 20 below
Hide dip 75 dd 288 org 14.8 46.9 40 above
Hide range z 0 65

Change jmat=1

1 Recording the shear displacement (IV)

As indicated in Figure 4.1, the fourth stage in this methodology is to
record the history of displacement of discontinuities during shearing which
is the failure indicator in the proposed methodology. For this purpose,
another FISH function was written to obtain the shear displacement of the

discontinuity as below:

whilestepping
ncono,= 0
xsd;=0
ysd;=0
zsd;=0
ic,= c_near(Xy,Y1, Z1)
icsub; = c_cx(ic,)
Loop while icsub, # 0
ncono;= ncono; + 1
ssdisp; = cx_sdis(icsub,)
xsd;= xsd2+ xcomp(ssdisp;)
ysd,;= ysd2+ ycomp(ssdisp,)
zsd;= zsd2+ zcomp(ssdispy)
icsub; = cx_next(icsub;)
Endloop
If ncono, #0
Sheardisp; = sqrt((xsd;)*2+(ysd;)"2+(zsd;)"2) / ncono,
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Endif

In this function, the ssdispl is the shear displacement vector and the
xsdl, ysdl and zsdl are its components and the Sheardispl is the final
shear displacement scalar. From the beginning up to the end of the
solution, the shear displacement of a discontinuity with ID of icl is
recorded and can be plotted if necessary. After, the model is executed
and the equilibrium state is reached the final shear displacement of the

discontinuity is obtained.

1 Stages V, VI, VI, Vil and IX

As indicated in Figure 4.1, the processes of stages from | to IV should be
followed to prepare the model to be executed. In stage V, the realization
of random variables are selected from their distribution and input to the
model. These variables are transformed to rock discontinuity properties
using FISH function discussed in stage Il and Ill of the methodology in
Figure 4.1, such as instantaneous cohesion and friction angle, Ks and etc.
Then the model is executed and t
discontinuity is recorded as described in stage IV. According to
Figure 4.1, in stage VI, the shear displacement obtained in stage IV is
compared to the peak shear displacement estimated by Eq. 2.21. In the
proposed methodology, it is assumed that if the shear displacement is
greater than the esti mat epg) ipisecalled as
failure. The boundary of the failure and survival is called the limit state
condition in the proposed approach. For example, if for certain realization
of cohesion, JCS and friction angle for JRC=10 the shear displacement
(a) i's greater than the est bd)anddod
JRC=11 the U Upes, the @OWHRE<1L i$ comsidered as limit
state condition depending on the opinion of the user.
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This methodology was developed for one or more random variables. For
one random variable like JRC, suppose that the limit sate is JRC=10, and
the discontinuity fails for JRC<10. Therefore, the probability of failure
equals to the area of region less than 10 in density function of distribution
of JRC.

However, when the number of random variables is more than one, for
different realization of random variables the model is run and the shear
displacement of each discontinuity is recorded and according to stage VI
the failure state is obtained. Then an appropriate distribution function is

fitted to the shear di spl ac gcmeésnthe.

failure probability and the corresponding Reliability Index is obtained from
P=1-u (b)), Wh e rhe cuinulaffvg distrilsutiort function of the
standard normal variate. (Stages VIII and 1X).
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CHAPTER V

IMPLEMENTATION OF PROPOSED PROBABILISTIC-
NUMERICAL METHODOLOGY

5.1 General information about the study region

The case study is selected as the Kings Rock Grave in Amasya, Turkey,
which was carved on a rock mass containing bedding planes and joints
and generally discontinuities. The host rock is limestone and
discontinuities cut the Grave, and simply the rock grave can be
considered as a rock slope. Figure 5.1 is shows the location of Amasya in
map of Turkey.

Amasya is | ocated bleOtAveletnd 411640 OMNOodr t5h4 oL a
34A 5736 A0 630l 0st oBRgiudeBrathe Yesilirmak Valley of the
Central Black Sea Region . The surface area of Amasya is 5,701 km? and
the population is 133,000, of which 74,000 live in the city and in
surrounding towns and villages. The average altitude is 592 m. Amasya
was a fortified city high on the cliffs above the river. It has a long history
as provincial capital, a wealthy city producing kings and princes, artists,
scientists, poets and thinkers, from the kings of Pontus, through Strabo
the geographer, to many generations of the Ottoman imperial dynasty,
and up to being the location of an important moment in the life of Ataturk.
With its Ottoman period wooden houses and the tombs of the Pontus

kings carved into the cliffs overhead, Amasya is attractive to visitors.
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Figure 5.1 Location of Amasya

5.2Field and laboratory studies

The Harsena Mountain was surveyed to understand the problem in the
region. There are sliding, and rock fall problems in Harsena region.
Figure 5.2 indicates the potential locations suffering from rock slope
problem.
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Figure 5.2 studied field ad failed structures and failure potential
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