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ABSTRACT 

 

ROBABILISTIC-NUMERICAL MODELING OF STABILITY OF 

A ROCK SLOPE IN AMASYA-TURKEY 

 

Gheibie, Sohrab 

M.Sc., Department of Mining Engineering 

Supervisor:  Prof. Dr. H.ķebnem D¿zg¿n 

Co-supervisor:  Assist. Prof. Dr. Aykut Akg¿n 

February 2012, 179 pages 

 

Rock slope stability is considered as one of the most important fields in 

rock engineering. Developments of computation facilities and increase in 

application of sophisticated mathematical concepts in engineering 

problems have also affected the methods of slope stability analysis. In 

recent years, the numerical modeling methods have extensively applied 

instead of limit equilibrium methods. Also, the probabilistic methods are 

considered in rock slope designs to quantify the uncertainties of input 

effecting variables. 

 

In this research, a probabilistic-numerical approach was developed by 

integration of three dimensional Distinct Element Method (DEM) and 

probabilistic approach to analyze the stability of discontinuous rock 

slopes. Barton models have been used to model the behavior of rock 

discontinuities and the shear strain was considered as failure indicator of 

discontinuities. 

 



v 
 

The proposed methodology was applied to a rock slope in Amasya, 

Turkey where the Joint Roughness Coefficient (JRC) was considered as 

the main random variable. The effect of basic friction angle and cohesion 

of joints infilling material and its strength reduction due to weathering were 

included in the analysis. In the slope the shearing behavior of fourteen 

discontinuities and the failure probability of each block were investigated, 

and the corresponding Reliability Index (ɓ) was derived for each of the 

discontinuities. 

 

Keywords: Discontinuity, Joint Shear Stiffness, Probabilistic-Numerical 

Approach,3DEC, Reliability Index (ɓ) 
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¥Z 

 

 

AMASYA-T¦RKĶYEôDEKĶ BĶR KAYA ķEVĶNĶN DURAYLILIĴININ 

OLASILIK-SAYISAL MODELLEMESĶ 

 

Gheibie, Sohrab 

Yuksek Lisans, Maden M¿hendisliĵi Bºl¿m¿ 

        Tez Yºneticisi       :  Prof. Dr. H. ķebnem D¿zg¿n 

Ortak Tez Yºneticisi : Yrd. Do­. Dr. Aykut Akg¿n 

ķubat2012, 179 sayfa 

 

 

Kaya ĸev duraylēlēĵē, kaya m¿hendisliĵindeki en ºnemli alanlardan 

birisidir. M¿hendislik problemlerinde modern matematiksel kavramlarēn 

uygulamasēndaki artēĸ ve hesaplama imkanlarēnēn geliĸimi aynē zamanda 

ĸev duraylēlēk analizi yºntemlerini de etkilemiĸtir. Son yēllarda, limit denge 

yºntemlerinden ­ok sayēsal modelleme yºntemleri geniĸ bi­imde 

uygulanmaktadēr. Ayrēca, deĵiĸkenleri etkileyen girdi parametrelerinin 

belirsizliĵini sayēsal olarak ifade etmek i­in kaya ĸevi tasarēmēnda 

olasēlēksal yºntemler de kullanēlmaktadēr. 

 

Bu ­alēĸmada, s¿reksizlik i­eren bir kaya ĸevinin duraylēlēĵēnē analiz etmek 

i­in ¿­ boyutlu Farklē Elemanlar Yºntemi (DEM) ve olasēlēk yºntemiônin 

birleĸtirilmesi ile bir olasēlēksal-sayēsal yaklaĸēm geliĸtirilmiĸtir. Barton 

modelleri kaya s¿reksizliklerinin davranēĸēnē modellemek i­in kullanēlmēĸ 
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ve kesme dayanēmē s¿reksizliklerin yenilme gºstergeleri olarak dikkate 

alēnmēĸtēr. 

 

¥nerilen yºntem, Amasya (T¿rkiye)ôda bir kaya ĸevine uygulanmēĸ, 

burada S¿reksizlik P¿r¿zl¿l¿k Katsayēsē (JRC) ­alēĸmanēn ana rastgele 

deĵiĸkeni olarak dikkate alēnmēĸ, bununla birlikte s¿reksizlik dolgu 

malzemesinin kohezyon ve temel i­sel s¿rt¿nme a­ēsēnēn etkisi ve 

bozunmadan dolayē bu dolgu malzemesinin dayanēm azalēmē analize dahil 

edilmiĸtir. ķevde, on dºrt s¿reksizliĵin kesme davranēĸē ve her bir bloĵun 

yenilme olasēlēĵē araĸtērēlmēĸ ve buna karĸēlēk gelen G¿venilirlik Ķndeksi (ɓ) 

s¿reksizliklerin her biri i­in elde edilmiĸtir. 

 

Anahtar Kelimeler: S¿reksizlik, S¿reksizlik Kesme stifnesi, Olasēlēksal-

Sayēsal Yaklaĸēm, 3DEC, G¿venilirlik Ķndeksi (ɓ)      
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CHAPTER I 

 

 

INTRODUCTION 

 

 

 

1.1 Problem statement 

 

Rock slope stability is one of the most important concerns in rock 

engineering. Loss of lives of people living on hills near to mountain area, 

falling of blocks to the roads and loss of minerals in open pit mines have 

enhanced the necessity of using and developing much reliable methods to 

analyze the stability of those structures.  

 

Generally, rock slope stability analysis methods can be divided into two: 

Namely deterministic and probabilistic approaches. In deterministic 

approaches the input variables are assumed to have certain values. 

Depending on the judgment of engineer, minimum, maximum, average of 

a parameter is selected and used in the calculations. However, in 

probabilistic approaches the variables are considered to be random with 

associated probability distribution. 

   

Generally, the deterministic approach itself is divided into two as limit 

equilibrium and numerical methods. Commonly, in industrial design the 

limit equilibrium methods are applied for design of rock slopes. Hoek and 

Bray (1981) have formulated the rock slope instability problems in four 

distinct categories as planar, wedge, toppling and circular failures.  

However, limit equilibrium methods have been formulated based on some 
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assumptions. Such assumptions usually include elastic behavior, 

homogeneous, isotropic material, time independent behavior, quasi-static 

loading, etc. Geomaterials such as soils and rock masses display non-

linear behavior, either because this is inherent to the material or because 

it has been externally induced (e.g., past stress history). Rocks and soils 

may not be isotropic or homogeneous, and the loading may not be static, 

or the geometry of the problem may be complex (Bobet 2010). According 

to Krahn (2003) the fundamental shortcoming of limit equilibrium methods 

which only satisfy statics equation is that they do not consider strain and 

displacement compatibility.  

 

To solve the shortcomings of limit equilibrium methods, different 

numerical methods have been developed and applied extensively in rock 

mechanics. In Krahnôs (2003) opinion, this shortcoming can be overcome 

by using Finite Element Method (FEM) computed stresses inside 

conventional limit equilibrium framework. From the finite element stresses 

both the total shear resistance and the total mobilized shear stress on a 

slip surface can be computed and used to determine the factor of safety.  

 

Numerical methods have been extensively used in the past several 

decades due to advances in computing power. Generally, numerical 

methods can be classified into continuum and discontinuum methods 

(Jing and Hudson 2002, Jing 2003). There are quite a large number of 

numerical methods that have been used in the literature to estimate the 

behavior of geomaterials. The most important or at least the most used 

methods are: Continuum, Finite Difference Method (FDM), Finite Element 

Method (FEM) and Boundary Element Method (BEM); Discontinuum, 

Distinct Element Method (DEM), Discontinuous Deformation Analysis 

(DDA), and Bonded Particle Model (BPM). There are two other methods 

which do not follow this classification: Meshless Methods (MM) and 

Artificial Neural Networks (Bobet 2010). Jing and Hudson (2002) and 
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Bobet (2010) have discussed the different numerical methods applied in 

rock mechanics. 

 

However, rock mass parameters are always containing uncertainty, the 

utilization of probabilistic methods in rock engineering, permits a rational 

treatment of various uncertainties that significantly influence the safety of 

a rock slope. Moreover, probabilistic approaches offer a systematic way of 

treating uncertainties and quantifying the reliability of a design (Kirsten, 

1983). D¿zg¿n (1994) and D¿zg¿n et al. (1995) have applied advanced 

First Order Second Moment method (AFOSM) to a non-linear 

performance function with non-normal correlated variables to analyze the 

planer stability of a rock slope based on Mohr-Coulomb criterion. D¿zg¿n 

et al. (2003) have proposed a methodology for reliability based design of 

rock slopes. In this study, a model is developed within the framework first-

order second-moment approach to analyze the uncertainties underlying 

the in situ shear strength properties of rock discontinuities. D¿zg¿n and 

¥zdemir (2006) have applied AFOSM and risk assessment to a planar 

failure of a rock mass in Konya to manage the risk by decision analytical 

procedure. Jimenez-Rodriguez et al. (2006) considered a sliding mass on 

an inclined plane with two blocks separated by a vertical tension crack. 

Two cases were defined, in which the two blocks may have interaction or 

not. The models were formulated by Limit Equilibrium Method for each 

case. It was assumed that when Safety Factor (SF) is lower than one a 

block will fail. D¿zg¿n and Bhasin (2009) used first order reliability method 

(FORM) to model a plane failure of a slope with 734 m-height using the 

Barton-Bandis (1982) shear strength criterion for modeling the limit state 

function. The slope was consisting of three big blocks laying on each. 

They have defined possible failure scenarios and by using conditional 

probability theory the failure probability was calculated.   

 

Low (1997) calculated the safety factor for a wedge slope utilizing 

AFOSM. In addition, utilizing Excel spreadsheet he calculated the 
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reliability index and probability of failure for the slope. Low (1997) used 

Coulomb linear failure criterion and he assumed that all the parameters 

are normally distributed. Park and West (2001) have worked on 

probabilistic modeling of rock wedge failure in their work. First they have 

modeled the probability of kinematic instability in which planes dip and dip 

direction were considered as random variables, then probability of kinetic 

instability was modeled to provide a proper, combined evaluation for 

failure probability by Monte Carlo Simulation. Joint orientation, geometric 

parameters, such as length and spacing, shear strength parameters and 

pore water pressure in the discontinuity were considered to be 

probabilistic parameters.  

 

Also, Jimenez-Rodriguez and Sitar (2007) have modeled the stability of 

the wedge using a disjoint cut-set formulation, in which disjoint parallel 

sub-systems were used to represent the different failure modes of the 

slope, and the used random variables were strength parameters of joint 

planes and the geometry of wedge, they have concluded that the 

reliability results were found to be highly sensitive to variations in the 

geometry of the wedge and to variations in water level conditions, 

whereas variations in the unit weight of the slope were found to have 

almost no influence on the probability of failure.  

 

Fadlelmula (2007) in his study presents the results of probabilistic 

modeling of plane and wedge types of slope failures, based on the 

òAdvance First Order Second Moment (AFOSM)ò reliability method. In 

both of those failure types, two different failure criteria namely, Coulomb 

linear and Barton-Bandis non-linear failure criteria were utilized in the 

development of the probabilistic models.  

 

 Moreover, Li et al. (2009) has developed a probabilistic fault tree to 

model the system reliability of the rock wedges. The N-dimensional 

equivalent method was used to perform the system reliability analysis due 
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to its accuracy and efficiency. The proposed approach has the ability to 

quantify the relative importance of each failure mode which enables the 

designer to establish priorities and decision making for rock slope.  

 

Scavia et al. (1990) have developed a probabilistic model using 2-D limit 

equilibrium analysis of block toppling failure in rock, resting on a stepped 

failure surface was carried out including both Monte Carlo simulation 

procedure and Markov Chains theory.  

 

Tatone and Grasselli (2010) also have developed a new probabilistic 

method for analyzing the stability of rock slopes according to the limit 

equilibrium method developed by Goodman and Bray (1976) and 

introduced a Monte Carlo simulation procedure for the probabilistic 

analysis of block-toppling and described its implementation into a 

spreadsheet-based program (ROCKTOPPLE). The analysis procedure 

considers both kinematic and kinetic probabilities of failure. These 

probabilities are evaluated separately and multiplied to give the total 

probability of block toppling. 

 

All of the above mentioned works have used Limit Equilibrium Method to 

model the performance function, because by that method it is easy to 

formulate the performance of a rock mass.  

 

To consider the effects of uncertainties in numerical modeling the 

Stochastic Finite Element was proposed for continuum media and there 

are some works such as Wong (1985), Griffiths et al. (2005), Tan and 

Wang (2009) for soil slope. Also Hammah et al. (2009) applied stochastic 

finite element in analyzing the stability of a rock slope in which 

uncertainties were related to strength parameters and joint network 

geometry. In their work they used both Monte Carlo and Point Estimate 

Method (PEM) to calculate statistical moments. Furthermore, Wang et al. 

(2000) have used FLAC software which is based on Finite Difference 
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Method to assess the stability of a coal mine slope, in this study the 

stability of a coal mine slope was analyzed using numerical analysis 

considering reliability engineering concepts.  

 

However, none of these methods can be applied in rock slope stabilities 

which are discontinuous. To solve this lack Moarefvand and Verdel (2008) 

tried to contribute the probabilistic methods in Distinct Element Method in 

UDEC software and they named it as PUDEC. It was the first time that 

probabilistic numerical method was used in a discontinuous media in rock 

mechanics. In this method the statistical moments are given to software 

and the software solves the model by considering these uncertainties and 

simulation outputs are in statistical form. However, the performance of this 

method relies on a wrong assumption by which the plastic flow starts 

when E (†)>E († ), where E (†) is the mean of shear stress and E († ) 

is the mean of shear strength. Also, in this research, reliability engineering 

concepts such as reliability index, probability of failure are not taken into 

account.  

 

1.2 Objectives and scope of the research 

 

Considering these features of all the previous studies done in reliability 

engineering related to rock slope stability, this thesis proposes a 

probabilistic numerical approach for stability assessment of rock slopes. 

The proposed approach uses the capabilities of numerical modeling 

method and simultaneously it considers the randomness of the rock slope 

stability parameters. For this purpose the probabilistic modeling approach 

is integrated with 3D distinct element method in 3DEC software by 

developing codes in FISH language of 3DEC.  

 

Generally, the failure mechanism in discontinuous rock slopes is 

controlled by existing rock discontinuities. Therefore, the shear behavior 

of the rock discontinuities plays a vital role in stability or instability of a 
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rock slope. Commonly, the linear Coulomb criterion is used in analyzing 

the stability of rock slopes either in limit equilibrium or numerical methods. 

However, it is clear that the Coulomb parameters do not have the 

sufficient ability to model the shear and normal behavior of the rock 

discontinuities. Therefore, it is much realistic to apply a series of models 

known as Barton models. In contrast to Coulomb, Barton models consider 

the surface conditions such as roughness, strength of joint walls and 

basic friction angle of the rock discontinuities and their dependency on 

stress level in its calculations. Hence nonlinear Barton models are used 

rather than linear Coulomb function. Since the distinct element code used 

in this thesis was 3DEC and it does not include the Barton model in 

contrast to UDEC (2D distinct element code), the approach is applied by 

developing codes in 3DEC.  

 

One of the drawbacks of limit equilibrium methods is not considering the 

strain of in their calculations. Therefore, the probabilistic approaches that 

use the limit equilibrium method do not consider the strain as a possible 

failure criterion. Instead, they work with the safety factor concept. Based 

on this concept, the structure fails when the stress applied is greater than 

the strength. However, in some circumstances, the deformation of a 

structure can be called as failure and the structure uses its applicability 

although the safety factor claiming a safe state. 

 

For this reason in this thesis strain is considered to be the indicator of 

failure as well as simultaneously taking the randomness of the rock 

mechanical parameters into account. Based on a definite strain value the 

failure or survival of the rock discontinuities is determined and the failure 

probability and the corresponding reliability index are obtained. Because 

of the importance of historical places in Turkey, a rock slope containing a 

historical grave in Amasya, Turkey was selected to implement the 

proposed methodology. Akgun and Kockar (2004) studied the stability of a 

sandy limestone rock slope under a historical castle in Turkey. 
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The present study is divided into six chapters. Chapter I covers a brief 

introduction of the thesis subject and previous works and scope of the 

thesis. In Chapter II the basic mechanics of rock discontinuity is 

discussed. The Distinct Element Method (DEM) and Probabilistic Method 

are reviewed in Chapter III. In Chapter IV the Proposed Numerical-

Probabilistic Approach is explained. Chapter V includes the 

implementation of the proposed approach in Amasya, Turkey and its 

results and discussions. At the end, the conclusions and the 

recommendation are presented at Chapter VI. 
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CHAPER II 

 

 

BASIC MECHANICS OF ROCK DISCONTINUITY 

 

 

 

2.1 Introduction 

 

Generally, rock masses contain discontinuities such as bedding planes, 

joints, shear zones and faults. At shallow depth, where stresses are low, 

the behavior of the rock mass is controlled by the discontinuities rather 

than rock mass itself. In order to analyze the stability of this system of 

individual rock blocks, it is necessary to understand the factors that 

control the shear strength of the discontinuities which separate the blocks 

(Hoek, 2007). In this Chapter, it is intended to overview the basic 

mechanics of discontinuities under normal and shear stresses. 

 

2.2 Shear Strength of Discontinuities 

 

A discontinuity is generally referred to all structural breaks in rocks which 

usually have zero to low tensile strength. Normally, joints, bedding, shear 

zones, contacts, veins, and faults are called as discontinuities. 

 

Shear behavior of rock discontinuities always plays important role in rock 

engineering. There are several discontinuity shear failure criterion 

developed for the past decade. The most common one is the linear 

Coulomb relation in which the peak shear ʐ strength is expressed in 

terms of the effective normal stress (ůn), cohesion (c) and angle of friction 

(ū). The Mohr-Coulomb relation is given as; 
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Űpeak=c+ůntanū        (2.1) 

 

This shear strength equation was developed by assuming that the 

discontinuity surface is planar. If a smooth planar surface is sheared at a 

constant normal stress, the surface will behave elastically, and the shear 

stress acting on the discontinuity surface increases rapidly till the peak 

shear strength is reached. After that the shear strength drops and 

becomes constant at the level which is called as residual shear strength. 

Equation (2.1) can be expressed to give the residual shear strength as; 

 

Űresidual=ůntanūr                (2.2) 

 

Where, the residual friction angle (ūr) is approximately equal to the basic 

friction angle (ūb), which is usually measured with sawn rock surfaces. 

However, a natural rock discontinuity may probably have some asperities 

that directly affect the shear strength of the discontinuity. As the 

discontinuity is under shear loading, the shear displacement will be on 

these asperities that causes the block move upward on the inclined 

surfaces of the asperities (dilation). For this reason the roughness 

component (i) should be added to the basic friction angle (ūb), (ūb+i), 

where óiô is the angle of the inclined surface of the asperities.  

 

Sliding along the wavy faces of discontinuity can occur only under very 

low normal stress. If the normal stress is increased, then the asperities 

may break or wear out and in such cases the discontinuity wall strength 

becomes important.  

 

Barton-Bandis (1982) failure criterion includes discontinuity surface 

properties besides the effective normal stress and friction angle of the 
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discontinuity. Barton (1973) derived an empirical relationship for 

determining the shear strength of discontinuities. It is written as follows:  

 

Ű=ůn tanJRCĬlog10
JCS

ůn
+ūb       (2.3) 

Where; 

ůn = effective normal stress 

JRC = joint roughness coefficient 

JCS = joint wall compressive strength 

ūb = basic friction angle (obtain from residual shear tests on flat 

unweathered rock surfaces) 

 

The joint wall compressive strength (JCS) generally reduces with water 

saturation compared to the dry state (Barton, 2007). This is because of 

the effect of moisture on the uniaxial compressive strength (ůc). The value 

of is obtained from Schmidt hammer tests (ISRM, 1978). 

 

Another major component of the shear strength is the basic friction angle 

(ūb) of unweathered artificial, planar, dry rock surfaces and the residual 

friction angle (ūr) applying to flat, non-dilatant, saturated, well sheared 

surfaces, i.e. ūr Ò ūb. The friction angles obtained from flat unweathered 

rock surfaces, which are most frequently prepared by diamond saw, will 

not be applicable to weathered rock discontinuities unless the effective 

normal stress is high enough for the thin layers of weathered rock to be 

worn away (Richards, 1975, in Barton and Choubey, 1977). Low levels of 

effective normal stress and the thin layers of weathered material, perhaps 

less than 1 mm in thickness, may continue to control the shear strength, 

post peak strength and even for displacements up to residual strength. 

Richardsô (1975) tests on weathered sandstone joints showed strong 

correlation between residual friction angles (ūr) and Schmidt rebound 

value (Figure 2.1).  
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Figure 2. 1 Relation between residual 

friction angle with Schmidt rebound value 

(Richards, 1975, in Barton and Choubey, 

1977) 

 

Richardsô (1975) looked for a simple method of estimating ū from 

Schmidt hammer rebound values. The first empirical relationship tried was 

as follows: 

ūr = 10Á + (r/R) (ūb - 10Á)                                  (2.4) 

Where; 

r = Schmidt rebound on weathered discontinuity surface  

R = Schmidt rebound on unweathered discontinuity surface 

 

Therefore the Eq. 2.3 for the general case of weathered and unweathered 

discontinuities was rewritten as (Barton and Choubey (1977) : 

 

Űpeak=ůn tanJRClog10
JCS

ůn
+ūr      (2.5) 

In the work of Barton and Choubey (1977), eight different rock types with 

total of 136 individual discontinuities were studied. The specimens were 

sawn from larger blocks containing through going discontinuities. 
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Following this study another methodology for determining ūby residual 

tilt test was introduced, which is basically a shear test under very low 

normal stress (Figure 2.2). In this test, pair of flat and sawn surfaces was 

mated, and the pair of blocks tilted until sliding occurred.  

 

An empirical equation was obtained from residual tilt tests that enable to 

relate ū  to ūb; 

 

ūr = (ūb - 20Á) + 20(r/R)        (2.6) 

 

Where; 

ūb = basic friction angle estimated from residual tilt tests on dry 

unweathered sawn surfaces  

r = Schmidt hammer rebound value on the saturated joint wall, 

R = Schmidt hammer rebound value on the dry, artificially cut rock 

surfaces 

 

Figure 2. 2 Mechanism of 

residual tilt test (Bandis et 

al., 1983) 
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Eq. 2.6 is preferred since it allows for a range of ūr values even when the 

discontinuity is highly weathered. Eq. 2.3 tends to discount mineralogical 

differences since ūr tends to a single minimum value of 10Á when r value 

is zero. 

 

The strength measured along individual discontinuities by direct shear 

methods is strongly dependent on the roughness of the discontinuity 

surfaces (Barton, 1973). The roughness parameter represents an index of 

the unevenness and waviness of the adjacent discontinuity rock wall 

(Giani, 1992). Barton (1973) defined the term joint roughness coefficient 

(JRC), which varies from 0 to 20. Unlikely the JCS parameter, the JRC 

parameter is not significantly affected by the dry or wet condition, since it 

essentially represents geometry (Barton, 2007). Figure 2.3 presents the 

laboratory-scale joint roughness profiles with their measured JRC values 

defined by Barton and Choubey (1977). 

 

Besides the joint roughness profiles, simple residual tilt test may help to 

obtain JRC indirectly. In a tilt test on a rough joint, the angle (Ŭ) at which 

sliding occurs may be 40Á or 50Á more than ūb (higher than compared to 

ūr) (Barton and Choubey, 1977). This additional shear strength is a result 

of discontinuity surface roughness. 

 

The maximum dilation angle (do) when sliding occurs is probably given by 

the following simple relationship derived by Barton and Choubey, 1977). 

do = Ŭ - ūr          (2.7) 

The tilt angle (Ŭ) is a function of shear stress and normal stress acting on 

the joint is given as: 

 

ū=arctan
ůn

         (2.8) 
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The effective normal stress generated by the gravitational force acting on 

the upper half of the block is given as: 

 

ůn=ɔ.h.cosŬ           (2.9) 

 

Where; 

h = thickness of the top block (m) 

ɾ = rock density (kN/m3) 

 

Figure 2. 3 Laboratory scaled joint roughness profiles (Barton and 

Choubey, 1977) 
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The JRC value is estimated from tilt tests using Eq. 2.5, by substituting ɻ 

and ůn results in: 

 

JRC=
Ŭ-ūr

log10
JCS

ůn

       (2.10) 

 

Barton and Choubey (1977) recommended ñpushò or ñpullò tests in order 

to determine the JRC values of rougher discontinuities. In ñpushò or ñpullò 

test the top block is pushed or pulled parallel to the discontinuity plane. 

First applying a dry tilt test then a dry push or pull test, it was found to be 

possible to test whole spectrum of joint roughness (0-20). However, they 

mentioned the fact that, discontinuous joints and discontinuities with cross 

jointing cannot be tested by such methods. 

 

Another method for determining JRC was presented by Barton and 

Bandis (1982) by considering the amplitudes of the asperities of the 

discontinuity surface as shown in Figure 2.4.  

 

 

Figure 2. 4 Measurement of asperity amplitude for determining 

joint roughness (Barton and Bandis (1982), in Hoek (2007)) 

 

After determining the asperity amplitude and the sample length the chart 

which is shown in Figure 2.5 can be used to determine JRC. 
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The chart of Barton and Bandis (1982) is a useful tool for determining joint 

roughness coefficient. From the chart the relation between asperity 

height, discontinuity length and joint roughness coefficient can be 

summarized as; 

 

Asperity height = 2 x JRC x Discontinuity length                     (2.11) 

 

 

Figure 2. 5 Chart for determining joint roughness coefficient from 

asperity amplitude and profile length (Barton and Bandis (1982), 

in Hoek (2007)) 
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If the shearing of a non-planar discontinuity occurs, the asperities on 

either side of the discontinuity slide over each other and cause an 

increase in aperture which is called dilation. This process requires a finite 

displacement to get started, and occurs at an increasing rate as peak 

strength is approached (Barton et al., 1985). The peak dilation angle, 

dpeak, is the maximum dilation angle which occurs more or less at the 

same time with peak shear resistance (Barton and Choubey, 1977) and it 

is defined as: 

dpeak=
1
2ĬJRCĬlog10

JCS

ůn
                       (2.12) 

 

The choice of an appropriate discontinuity size during a shear strength 

investigation is generally based on both economic and technical 

considerations (Bandis et al., 1981).  

 

Pratt et al. (1974) (in Bandis et al. (1981)) studied the effect of scale on 

shear strength and concluded that the reduction in peak shear strength 

was due to the decrease in actual contact area. Their prediction was that, 

the scale effect would be negligible if the discontinuities are unweathered, 

perfectly mating under high normal stresses. Barton (1976) also 

interpreted similar results of scale effect on joint wall compressive 

strength (JCS). The study of Barton and Choubey (1977) showed that 

different lengths of discontinuities affect joint roughness coefficient (JRC) 

and thus the shear strength of the discontinuity. 

 

Bandis et al. (1981) studied the scale effect on the shear strength of 

discontinuities with eleven types of discontinuities, of which was divided 

into four groups according to their roughness (Figure 2.6).  
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Figure 2. 6 Groups of discontinuity types according to their roughness (Bandis et 

al., 1981) 

 

Barton and Bandis (1982) suggested some empirical relations for the 

scale effects on the joint wall compressive strength; joint roughness 

coefficient and peak shear displacement. They developed some empirical 

relations for predicting the large scale joint wall compressive strength 

(JCSn), joint roughness coefficient (JRCo) from lab scale values (JCSo, 

JRCo) and the peak shear displacement (ŭpeak) of the discontinuity.  

The effects of scale on the dry or saturated state of the discontinuities are 

expressed below; Large-scale joint wall compressive strength (Barton and 

Bandis (1982), in Barton et al. (1985)) is: 

JCSn=JCSoĬ
Ln

Lo

-0.03JRCo
                 (2.13) 

Large-scale joint roughness (Barton and Bandis (1982), in Barton et al. 

(1985)) is: 
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JRCn=JRCoĬ
Ln

Lo

-0.02JRCo
                 (2.14) 

 

Displacement at the peak strength (Barton and Bandis (1982), in Barton 

et al. (1985)) is: 

ŭpeak=
Ln

500
Ĭ
JRCn

L

1

3
                 (2.15) 

 

2.3 Rock discontinuity deformation 

 

Discontinuity deformation is a principal component of the behavior of the 

discontinuous rock mass (Bandis et al., 1983). The terms of joint normal 

stiffness and joint shear stiffness were defined in order to analyze the 

deformation characteristics of the joints. 

 

Normal stiffness (Kn) is defined as the normal stress increment required 

for a small closure of a joint or fracture, at a given level of effective stress. 

Similarly the shear stiffness (Ks) is taken as the average slope up to the 

shear strength-peak shear displacement curve. The units of joint stiffness 

values are stress/displacement (e.g. MPa/mm, MPa/m etc.). Therefore it 

is usually expected that Kn values are larger than the shear stiffness Ks 

values (Barton, 2007). While the stress level is low the normal 

deformation of the discontinuities are not discussed in this study. 

 

The non-linear stress - shear displacement behaviorof sheared 

discontinuities in the pre-peak range were frequently expressed by 

hyperbolic functions (Bandis et al., 1983). Kulhaway (1975, in Bandis et 

al., 1983) refers to the relation; 

 

Ű=
ŭ

m+nŭ
                   (2.16) 
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Where ŭ is the shear displacement at a given shear stress level and m 

and n are constants of the hyperbola. Constant m is the reciprocal of the 

initial shear stiffness and constant n is the reciprocal of the horizontal 

asymptote Űult to the hyperbolic Ű-ŭ curve. Development of Eq. 2.16 results 

with the following relation for shear stiffness; 

 

Ks=Kjůn
nj1-

ŰRf

Űp

2

                (2.17) 

 

Where; 

Kj = stiffness number, 

nj = stiffness exponent, 

Rf = failure ratio = ŰŰultȟ 

ʐ = peak shear strength. 

 

The indices Rf, nj and Kj describes the non-linearity in discontinuity shear 

behavior. The stiffness exponent nj is the slope of log-log relation 

between initial shear stiffness Ksi and ůn with a unit of (MPa)2/mm. Also 

the experimental studies Bandis et al. (1983) showed that stiffness 

number Kj (intercept of the log-log relation between initial shear stiffness 

Ksi and ůn) can be written empirically as; 

 

Kj=-17.19+3.86 JRC               (2.18) 

With R = 0,835 for JRC > 4, 5. 

 

However, for calculation of the value of joint shear stiffness (Ks) 

theEq.2.17 is dependent on the current shear stress acting on the joint 

plane, from other side, in this research, the analysis are done based on 

distinct element method, therefore, the unbalanced forces in the model 

will cause instability in shear stress then the joint shear stiffness derived 
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from the Eq. 2.17 will not be reliable. To overcome this problem, it is 

possible to calculated the Ks from relation between shear displacement ŭ 

(peak) and the peak shear strength. According to Barton and Choubey 

(1976) the shear displacement ŭ (peak) required to reach the peak shear 

strength determines the stiffness of joints in shear. As Barton and 

Choubey (1976) admitted that joint shear stiffness is extremely important 

input data in finite element analyses of joints, since joints are very 

deformable in shear compared to normal direction and compared to intact 

rock (Barton 1972).  

 

Since the reliable method of estimating shear strength was developed for 

any given values of JCS, JRC, ūr and ůn, it only remains to estimate the ŭ 

(peak) for an estimate of Ks to be obtained (Barton and Choubey, 1976). 

Barton and Choubey (1976) assumed ŭ (peak) as 1% of joint length (L) 

and estimated the Ks based on following relations: 

 

ὑί ‏†                                                                                         (2.19) 

 

ὑί „ὸὥὲὐὙὅὰέὫ 
ὐὅὛ
„ ×                                           (2.20) 

 

In Eq. 2.20 Barton and Choubey (1976) assumed that a joint reaches to 

its peak shear strength after about 1% of its length (L). Ks is strongly 

dependent on scale. A review of laboratory and insitu shear tests (Barton 

1972) indicated that shear stiffness was indeed inversely proportional to 

joint length. However, it seems clear that ŭ (peak) will eventually reduce 

to less than 1% L as the joint length increases to several meters (Barton 

and Choubey 1976). Later, Barton et al. (1985) suggested Eq. 

2.21estimate the ŭ (peak) value as: 

 

ŭpeak=
Ln

500
Ĭ
JRCn

L

1

3
        (2.21) 
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Therefore, it is possible to estimate the ŭ (peak) and then Ks value by 

substitution of Eq. 2.21into Eq. 2.19. 
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CHAPTER III 

 

 

NUMERICAL ANDPROBABILISTIC METHODS IN ROCK 

SLOPE STABILITY ANALYSIS 

 

 

 

3.1 The Distinct Element Method 

 

The Distinct Element Method (DEM) was introduced by Cundall (1971) as 

a model to simulate large movements in blocky rock masses, and then 

used for soils which were modeled as discs (Cundall and Strack 1979). 

Later, the method has been applied to spherical and polyhedral blocks 

(Pande et al.  1990, Cundall 1988 and Potyondy and Cundall 2004) for 

both soils and rocks. 

 

The DEM belongs to the family of Discrete Element Methods, which 

Cundall and Hart (1998) define as those that: (1) allow finite 

displacements and rotations of discrete bodies, including detachment; and 

(2) automatically recognize new contacts between bodies during 

calculations. Discrete Element Methods need to address three key issues: 

(1) representation of contacts; (2) representation of solid material; and (3) 

detection and revision of contacts during execution. An in-depth 

discussion of these issues is provided by Cundall and Hart (1998). 

 

The distinct element technique was originally developed by Cundall 

(1971) and has resulted in formulation and development of three 
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dimensional distinct element code (3DEC) and it progressed over a period 

of 35 years (Anon, 2007). 

 

3DEC is three-dimensional numerical software based on the distinct 

element method for modeling discontinuous medium subjected to static or 

dynamic loading. A discontinuous medium is distinguished from a 

continuous medium by the existence of contacts between the discrete 

bodies that comprise the system (Anon, 2007).  

 

3DEC is based on a dynamic (time-domain) algorithm that solves the 

equations of motion of the block system by an explicit finite difference 

method. At each time step, the law of motion and the constitutive 

equations are applied. For both rigid and deformable blocks, sub-contact 

force-displacement relations are prescribed. The integration of the law of 

motion provides the new block positions, and therefore the contact 

displacement increments (or velocities). The sub-contact force-

displacement law is then used to obtain the new sub-contact forces, which 

are to be applied to the blocks in the next time step. The cycle of 

mechanical calculations is illustrated in Figure 3.1(Anon, 2007). 

 

3DEC also has a built in programming language called FISH which can be 

used for user specific purposes. 

 

3DEC has two constitutive models for analyzing discontinuity behavior. 

The first one is the generalization of Coulomb friction law. This law works 

similarly for sub-contacts between both rigid and deformable blocks. Both 

shear and tensile failure is considered. In elastic range the model 

behavior is governed by discontinuity normal stiffness and discontinuity 

shear stiffness.  
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Figure 3.1 The calculation cycle of 3DEC program (Anon, 2007) 

 

 

The force increments are found by using displacement increment and the 

input discontinuity stiffness. The normal force increment Ў& is found as; 

æF
n
=-KnæV

i
Ac                               (3.1) 

And the shear force increment is found as; 

æF
s
=-KsæŭAc                    (3.2) 

Where; 

æV
i
 = Normal displacement increment 

Sub-Contact 

Force Update 

Block Centroid 

Forces or 

Gridpoint Forces 

Block/Gridpoint 

Motion Update 

Relative Contact 

Velocities 

Equation 

of 

motion 

Nodal velocities 

Strain rates 

Constitutive  

law 

Equation 

of 

motion 
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Ac= Area of contact 

æŭ = Shear displacement increment 

 

The total normal and shear forces, Fn and Fs are then updated for the next 

cycle as; 

F
n
=F
n
+æF

n
                    (3.3) 

And, 

F
s
=F
s
+æF

s
                    (3.4) 

For tensile failure; 

F
n
<Tmax,  then  F

n
=Tresidual                             (3.5) 

Where; 

Tmax=-TAc                    (3.6) 

Tresidual=-TresidualAc                    (3.7) 

Tmax = Peak tensile strength 

Tresidual = Residual tensile strength 

For shear failure; 

F
s
<Fmax
s
,  then  F

s
=F
s Fmax

s

F
s                   (3.8) 

Where; 

Fmax
s
=cAc+F

n
tanɲ                    (3.9) 

Shear displacement leads to a dilation that is; 

æVdil=æŭtan(d)                                      (3.10) 

Where d is the dilation angle specified. 

Then the normal force is corrected to consider the effect of dilation as; 
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F
n
=F
n
+KnAcæŭtan(d)                                               (3.11) 

 

The second constitutive model of 3DEC for discontinuities is the 

continuously yielding joint model. The model attempts to account for some 

nonlinear behavior observed in physical tests. The model generates the 

discontinuity shearing damage, normal stiffness dependence and 

decrease in dilation angle with plastic shear displacement.  

 

The normal stress is found incrementally as; 

æůn=KnæV
i
                          (3.12) 

Where the normal stiffness Kn is given by; 

Kn=anůn
en                  (3.13) 

Where an and en are model input parameters 

For shear loading, the shear stress increments calculated as; 

æŰ=Fksæŭ                  (3.14) 

Where the shear stiffness Ks is given by; 

Ks=asůn
es                  (3.15) 

And where esand as are model input parameters and F is the tangent 

modulus factor which depends on the distance from the actual stress 

curve to the target or bounding strength; 

F = 
(1-ŰŰm

)

1-r
                 (3.16) 

Where;  
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r is the stress ratio at the last reversal and it is limited to 0.75 in order to 

avoid numerical noise. 

Űmis the bounding strength and found as; 

Űm=ůntanɲmæŭ        (3.17) 

mɲ  is the friction angle at which the discontinuity is dilating at the 

maximum dilation angle and it is continuously reduced according to the 

equation; 

æɲ m=-
1

R
(ɲm- )ɲæŭ

p
                  (3.18) 

R is the model input parameter defines the surface roughness, 

The plastic increment æŭ
p
 is found as; 

æŭ
p
=(1-F)ȿæŭȿ                  (3.19) 

 

Studies related to 3DEC were mostly conducted by Coulomb slip model 

rather than continuously yielding joint model (Kulatilake et al. 1993, 

Konietzky et al. 2001, Hutri and Antikainen 2002, Corkum and Martin 

2004). The main reason is the easiness of the parameter determination. 

Only the discontinuity cohesion and discontinuity friction angle should be 

determined for the Coulomb slip model. 

 

3.2 Reliability Index Methods 

 

In these methods the safety of a slope is measured by a reliability index, 

rather than the classical safety factor. Engineering reliability problems can 

generally be reduced to comparison of demand and supply in meeting a 

specified performance requirement. For example, the safety of a structure 

depends on the strength of the structure, (supply) and the applied load 

(demand) (D¿zg¿n et al. 2003). The calculation of probability of survival or 
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failure, requires the knowledge of the distribution of supply, denoted by 

fX(x), and demand, denoted by fY(y) or their joint distribution fXY(x,y), if X 

and Y are correlated. In practice, however, it is difficult to assess these 

distributions due to insufficient data. Moreover, even if the required 

distributions are available, the exact evaluation of probabilities is 

impractical due to the numerical integrations involved (D¿zg¿n and 

¥zdemir 2006). 

 

Frequently, the available information and data are sufficient only to 

calculate the first and second moments, in other words the means, the 

variances and the covariances of the respective random variables. In 

such cases, practical measure of safety or reliability is limited to functions 

of these first two moments (D¿zg¿n and ¥zdemir 2006). 

 

Two similar procedures are used for the computation of the reliability 

index. These are the first-order second-moment (FOSM) and advanced 

first-order second-moment (AFOSM) methods. In both methods, random 

variables are described only by their first and second statistical moments 

(i.e. mean, variance and correlation characteristics). 

 

Although these two methods have been proposed long time ago, their 

application to rock slope stability is quite recent. Genske and Walz (1991), 

Kimmance and Howe (1991), Muralha (1991), Trunk (1993) applied 

FOSM method to rock slopes. Slope stability studies using AFOSM 

method in rock engineering are very few. However, the more recent 

probabilistic slope stability studies prefer this method (D¿zg¿n et al., 

1994, D¿zg¿n et al., 1995, Quek and Leung, 1995, Chen at al., 1998) 

since it is free from some of the disadvantages of previously mentioned 

methods (Ang and Tang, 1984). 

 The formulation of a performance function (failure function) or a limit state 

equation is the first step in both methods, and is explained in the following 

section. 
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3.2.1 The Performance Function 

 

The reliability assessment of an engineering structure usually involves the 

consideration of many variables. In particular, the supply and demand 

generally depend on several other variables. In FOSM approach, the 

reliability index, P, is similar to the safety factor used in the deterministic 

analysis. It gives the mean safety margin in multiples of the standard 

deviation of the safety margin. The mean safety margin is the mean 

difference between the mean capacity and the mean demand. The higher 

this difference, the higher is the value indicating a higher safety. It is to be 

noted that this difference is normalized with respect to the standard 

deviation of the safety margin. Accordingly, the uncertainties in demand 

and capacity are also reflected in the reliability index (Duzgun et al. 1995). 

 

For the purpose of generalized formulation, it is necessary to define a 

performance function or a state function as shown below: 

 

g (x) = g(x1,x2, x3, ...,xn)                                                                 (3.20) 

 

Where, 8 8ȟ8ȟ8ȟȣȟ8  is the vector of basic variables which are 

involved in the physical problem such as strength, load and geometrical 

parameters. The function g(x) determines the performance or state of the 

structure. Accordingly, the limiting performance is defined as g(x) = 0 

which is the "limit-state" of the system. As a result it follows that: 

 

g(x)>0      The "safe state" 

 

g(x)<0     The "failure state" 

 

Geometrically, the limit state equation, g(x) = 0, forms an n-dimensional 

surface which is called as the "failure surface ". One side of the failure 

surface is called the safe state, g(x) > 0; while the other side g(x) < 0 is 
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the failure state. Figure 3.2 illustrates the safe and failure states for the 

two-dimensional case. 

 

 

Figure 3.2 Safe and failure states for the variables x1 and x2 

 

If the joint p.d.f. of the basic variables, X1, X2, X3, é , Xn is                                        

f X1, X2, X3, é , Xn (X1, X2, X3, é , Xn) the probability of safe state is 

 

(3.21) 

 

 

The 

above equation is simply the volume integral of fX (x) over the safe region 

g(x) > 0. On the other hand, the failure state probability or p is the 

corresponding volume integral over the failure region g(x) < 0:  

 

0)(

 ...dx)dxX , é ,X ,X ,(X  f..... n1n321Xn , é X3, X2, X1,

<

=ñññ
xg

Pf
(3.22) 

 

0)(

 ...dx)dxX , é ,X ,X ,(X  f..... n1n321Xn , é X3, X2, X1,

>

=ñññ
xg

Ps
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In FOSM modeling, mean and standard deviation of the limit state or 

performance function is found for any continuous mathematical form of 

the limit state equations. If the function is non-linear, the approximate first 

and second moments of the limit state function are obtained by Taylor 

series expansion of the faction around the mean values of the basic 

variables (ÕI). This approximation is called as "mean point expansion 

method" and proposed by Cornell (1969). The linearized failure function is 

given as 

 

( ) ( )
i

i

n

i
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g
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ö
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õ
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(3.23) 

 

Where the vector Õi= (Õ1, Õ2, Õ3, é, Õn) is the linearizing point. The 

reliability analysis is carried out according to the function z. The mean (Õz) 

and standard deviation (ůz) of z is approximated by (D¿zg¿n and ¥zdemir 

2006): 

 

( )nz g mmmm ,...,, 21=
                                                                                                         

(3.24) 
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(3.25) 

 

The accuracy of the approximation depends on the degree of non-

linearity, effect of neglecting higher order terms in failure function z and 

the magnitudes of coefficients of variation of xá's. It is obvious that if the 

function g (X1, X2, X3, é , Xn) is linear then the approximation of the mean 

and the standard deviation of z is exact. In the FOSM method the 

reliability index ɓ as defined by Cornell (1969) is
z

z

s

m
b=  

The FOSM method which is based on the mean point expansion using       

Taylor series approximation has two basic shortcomings. First, the 
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performance (unction is linearized at the mean values of the basic 

variables. When performance junction is non-linear, significant errors may 

arise at increasing distances from the linearizing point by neglecting the 

higher order terms. Second, the Taylor series expansion around the mean 

values fails to be invariant under different but mechanically equivalent 

formulations of the same problem (Hasofer and Lind, 1974). In other 

words, it lacks the desirable property of being failure function invariant. 

Due to these shortcomings of the FOSM formulation, the AFOSM method 

proposed by Hasofer and Lind (1974) became the most widely used 

method of reliability determination. In the following sections the principles 

of AFOSM is explained in detail 

 

3. 2. 2 Linear Performance Functions 

 

The performance function may be a linear function. A linear performance 

function can be represented as 

 

() ä
=

+=
n

i

ii XaaXg
1

0

                                                                               
(3.26) 

 

Where a0 and ai are constants.  

 

Here the variables are assumed to be uncorrelated and hive a normal 

distribution. The reduced (standardized) variables are defined as follows: 

 

0
1

0 =+ä
=

n

i

ii Xaa

                                                                                     
(3.27) 

 

Here the variables are assumed to be uncorrected and have a normal 

distribution. The reduced (standardized) variables are defined as follows 
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X
X
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Then 

iiii XX ms+= '

                                                                                                
(3.29) 
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For instance, for three dimensions the minimum distance of origin of 

reduced variates 
'

iX is: 
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Then, the following generalization can be made. If the random variables       

X1,é, Xn are uncorrelated normal variate, the probability of being in the 

safe state is: 
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Where ū ( ) is the cumulative distribution function (c.d.f.) of the standard 

normal variate. As observed the probability Ps is a function of the distance 

from the failure plane g(x) = 0 to the origin of the reduced variates. Hence, 

in the general case of n uncorrelated normal variates the probability of 

being in the safe state Ps=ū (ɓ) and the probability of failure is Pf= 1 - ū 

(ɓ). 

  

3.2.3 Non-Linear Performance Functions 

 

Generally, the performance functions are non-linear. Accordingly, the limit 

state equation g (X) = 0 will also be non-linear. Unlike the linear case, 

there is no unique distance from the failure surface to the origin of the 

reduced variates.However, Shinozuka (1983) identified the point 

( )'*'*

1 ,..., nXX on the failure surface with minimum distance to the origin of 

the reduced variates as the most probable failure point. Hence, the 

tangent plane to the failure surface at ( )'*'*

1 ,..., nXX can be used to 

approximate the actual failure surface and to evaluate the reliability index. 

The tangent plane at ( )'*'*

1 ,..., nXX  is   
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(3.35) 
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Thus, the minimum distance from the tangent plane to the origin of the 

reduced variates is taken as the reliability index ɓ. This is illustrated in 

Figure 4.1 for the two-variable case. This minimum distance to tangent 

plane on the failure surface can be determined through the Lagrange 

multiplier method as explained by Tang (1984). The following summarizes 

this numerical procedure, which is an iterative algorithm for calculating the 

reliability index Ç, (Ang and Tang, 1984): 

 

i. Define the appropriate limit-state function.  

ii.  Make an initial guess of the reliability index ɓ. 

iii.  Set the initial checking point values xi* = Õi for all i = 1, .., n. 

iv. Compute the mean and the standard deviation of the equivalent 

normal distributions for those variables that are non-normal  

v. Obtain reduced variates as 

iX

ii
i

X
X

s

m-
=

*

'* . 

vi. Evaluate

*
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g
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vii.  Compute the direction cosines Ŭi as 
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viii.  Calculate new values of *

iX from ''*

iiiiX bsam-=  

ix. ix. Substitute above *

iX in g (
'*

1X ,...,
'*

nX  ) = 0 and solve for ɓ 

x.  Using ɓ obtained in step ix, re-evaluate baiiX -=*  

xi. Repeat step v through x until convergence is reached. 
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3.2.4 Equivalent Normal Distributions 

 

If the probability distributions of the random variables X1,..., Xn are not 

normal, the probability Pf and Ps can also be calculated. The equivalent 

normal distribution for a non-normal variate can be obtained in such a way 

that the cumulative probability as well as the probability density ordinate 

of the equivalent normal distribution are equal to those of the 

corresponding non-normal distribution it the design point 
*

iX  (Ang and 

Tang, 1984). Accordingly the following can be obtained: 
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Where; 

 

 
N

X i
m , 

N

X i
s =The mean value and the standard deviation, respectively, of 

the equivalent normal distribution of Xi. 

 

( )=*

iX XF
i

The original cumulative density function (c.d.f) of Xi, 

evaluated at
*

iX . 

 

()=F The c.d.f. of the standard normal distribution  

 

From Eq. 3.37 it is obtained: 
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On the other hand, equating the corresponding probability density 

functions at 
*

iX  yields to: 
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Where, ()f is the probability density function (p d f.) of the standard 

normal variable. From this it can be obtained 
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For a linear performance function, the appropriate point on the failure 

surface can be given in terms of direction cosines, Ŭi, and safety index, Ç, 

in the following way: 
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(3.42) 

 

Where the superscript N denotes the statistics for the equivalent normal 

distribution. 

 

Accordingly, the design point is: 
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It is obvious that replacing the actual distribution with an equivalent 

normal distribution requires replacing the actual mean and the standard 

deviation with those of the equivalent normal distribution. The safety index 

ɓ and the probabilities Ps and Pf are then calculated in terms of the mean 

and standard deviation of the equivalent normal distribution.  
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CHAPTER IV 

 

 

THE DEVELOPED NUMERICAL-PROBABILISTIC 

APPROACH 

 

 

 

4.1 Methodology 

 

In probabilistic modeling of rock slopes, the performance function is 

constructed based on the ratio of strength to the stress acting over rock 

discontinuity. Therefore, for calculating the Reliability Index (ɓ) and 

consequently the failure probability, the procedure discussed in section 

3.2 of Chapter III is used.  

 

However, the displacement of the structure is an important parameter that 

controls the stability of the structures. Limit equilibrium methods does not 

have the capability to obtain the displacement of rock mass; therefore, the 

numerical methods are required. 

 

For analyzing the stability of rock slopes, different numerical methods are 

applied, however, the commonly acceptable method for discontinuous 

rock slopes is Distinct Element Method. The main output of the DEM is 

the displacement of blocks. Hence, the shear strain or shear displacement 

of rock discontinuities is considered as the failure indicator in this study. 

The flowchart in Figure 4.1 indicates the process for development of the 

proposed probabilistic numerical approach for analyzing of rock slope 

stability. 
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Figure 4.1 The process of development of proposed probabilistic numerical 

approach 

 

As seen in Figure 4.1, there are different stages that should be followed in 

application of the proposed approach for a rock slope. The stages are 

described in detail as below: 
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¶ Model construction (I) 

 

As indicated in Figure 4.1, the first step is to construct the geometry of 

slope in 3DEC. For this purpose, the shape of the slope is surveyed then 

constructed in the software and the rock discontinuities are added. The 

constructed shape must be meshed by using different zoning commands 

available in the software. The other step is to define the boundary 

condition which is dependent on geometry of the rock slope. In 

discontinuous media, the model has two separate components which are 

blocks and the contact face between blocks. Both of these components 

are given material properties based on the obtained data in the laboratory 

and the field. In most of the cases when the stress level is low the failure 

occurs in discontinuities rather than intact rock body. Therefore, the intact 

rock is modeled elastically for the sake of simplicity. However, the rock 

discontinuities are modeled plastically. To calculate and assign the 

material properties of the rock discontinuities the stage II and III are 

followed. 

 

¶ Discontinuity material properties calculations and their 

assignment (II and III) 

 

As indicated in Figure 4.1, in stages II and III FISH functions were written 

to calculate the rock discontinuity material properties and to assign to the 

model. In the proposed methodology, the Barton models discussed in 

Chapter II are used to model the rock discontinuities. The Barton model 

does not include as material model in 3DEC library; therefore, the Barton 

model should be applied indirectly to the model. Barton suggested 

instantaneous cohesion and friction angle concepts by which the 

nonlinear behavior of normal and shear stress (†-ůn) relation can be 

equalized by drawing tangents to the †-ůn curve for defined ůn values. 

Figure 4.2 shows the concept of instantaneous cohesion and friction 
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angle. The instantaneous cohesion and friction angle are obtained from 

Eqs. 4.1 to 4.3:  
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inic fst tan-=                                                                                     (4.3) 

 

By applying Eqs. 4.1, 4.2 and 4.3 the relevant cohesion and friction angle 

for a definite stress level and consequently for any discontinuity are 

calculated. Therefore, the calculated values for cohesion and friction 

angle are applied by using Coulomb slip model. The joint material 

parameters required to apply Coulomb slip are Joint Normal Stiffness 

(kn), Joint Shear Stiffness (ks), Friction Angle (Jfriction), Cohesion 

(Jcohesion), Joint Tensile Strength (Jten) and Dilatancy Angle (dil).  

 

 

 

Figure 4.2 Barton model and the instantaneous cohesion and friction concepts 
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According to Eqs. 4.2 and 4.3, both the cohesion and friction angle are 

function of normal stress applied on discontinuity surface. Therefore, a 

FISH function was written to calculate the average normal stress on each 

plane. It is to be noted that the FISH is a programming language 

embedded within 3DEC that enables the user to define new variables and 

functions. These functions may be used to extend 3DECôs usefulness or 

add user defined features. An example of the FISH function written is as 

below for one discontinuity:                                                      

 

Def av_str1 

      whilestepping 

       nstav1 = 0 

      Are1=0 

      ic1 = c_near(x1, y1, z1)  

      icsub1 = c_cx(ic1)  

          Loop while icsub1 # 0 

              ncono1 = ncono1 + 1 

              Are1=Are1 + cx_area(icsub1) 

              nstav1 = nstav1 +cx_nforce (icsub1) 

              icsub1 = cx_next(icsub1) 

         Endloop 

         If ncono1 # 0 

              nstav1 = nstav1 / Are1 

          Endif 

end 

 

In this function, for any discontinuity, the normal force and the area (Are1) 

of contact and the average normal stress (nstav1) are calculated and 

saved to be used in calculation of cohesion and friction angle. The ic1, 

icsub1 and (x1, y1, z1) are related to the ID and the coordinate of location 

of discontinuity in 3DEC.  
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The failure criterion in this methodology is shear displacement; and the 

Joint Shear Stiffness (ks) is one of the most important factors that directly 

controls the shear displacement. According to the Eq. 2.17 the Ks is 

dependent on normal stress, length, JRC, JCS and basic friction angle of 

any discontinuity. As discussed in Chapter II, the Eq. 2.17 is not a suitable 

formula to calculate the Ks for analysis being done by 3DEC. For this 

purpose, Eq. 2.19 is used which is the ratio of Eq. 2.3, the Bartonôs 

empirical shear strength formula, to Eq. 2.21, the estimated peak shear 

displacement value.  

 

In 3DEC the joint parameters must be assigned to relevant location or 

discontinuity. Commonly, the models are complex and the material 

properties should be assigned by FISH coding. One sample of written 

FISH for calculating and assigning the joint parameters is as below: 

 

Def prop1 

 

  Fi (basic friction angle) 

 

  L1 (discontinuity length) 

  JCS (Joint Compressive Strength) 

  JRC (Joint Roughness Coefficient) 

  

fric_1=abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/nstav1))+Fi)))degrad*

JRC*(1/ln(10))*  ((tan(degrad*(JRC*log(abs(jcs/ nstav1))+Fi)))^2+1))) 

 

  

coh_1=nstav1*abs(tan(degrad*(JRC*log(abs(jcs/nstav1))+Fi)))nstav1*abs(tan(deg

rad*fric_1))) 

 

  d_peak1=(L1*(JRC/L1)^0.33)/500 

 

  J_ks_1=((coh_14)+abs(NS11*tan(degrad*fric_14)))/(L1*(JRC/L1)^0.33) 
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  ic1=c_near(34.43,57.22,80.4) 

End 

 

Hide dip 87 dd 180 org 0 61 20 below 

Hide dip 75 dd 288 org 14.8 46.9 40 above  

Hide range z 0 65   

Change jmat=1 

 

¶ Recording the shear displacement (IV)  

 

As indicated in Figure 4.1, the fourth stage in this methodology is to 

record the history of displacement of discontinuities during shearing which 

is the failure indicator in the proposed methodology. For this purpose, 

another FISH function was written to obtain the shear displacement of the 

discontinuity as below: 

 

      whilestepping 

           ncono1= 0 

           xsd1=0 

           ysd1=0 

           zsd1=0 

       ic1= c_near(x1,y1, z1) 

       icsub1 = c_cx(ic1)  

       Loop while icsub1 # 0 

               ncono1= ncono1 + 1 

               ssdisp1 = cx_sdis(icsub1) 

xsd1= xsd2+ xcomp(ssdisp1) 

               ysd1= ysd2+ ycomp(ssdisp1) 

               zsd1= zsd2+ zcomp(ssdisp1)  

              icsub1 = cx_next(icsub1) 

       Endloop 

             If ncono1 # 0 

Sheardisp1 = sqrt((xsd1)^2+(ysd1)^2+(zsd1)^2) / ncono1 
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            Endif 

 

In this function, the ssdisp1 is the shear displacement vector and the 

xsd1, ysd1 and zsd1 are its components and the Sheardisp1 is the final 

shear displacement scalar. From the beginning up to the end of the 

solution, the shear displacement of a discontinuity with ID of ic1 is 

recorded and can be plotted if necessary. After, the model is executed 

and the equilibrium state is reached the final shear displacement of the 

discontinuity is obtained.  

 

¶ Stages V, VI, VII, VIII and IX  

 

As indicated in Figure 4.1, the processes of stages from I to IV should be 

followed to prepare the model to be executed. In stage V, the realization 

of random variables are selected from their distribution and input to the 

model. These variables are transformed to rock discontinuity properties 

using FISH function discussed in stage II and III of the methodology in           

Figure 4.1, such as instantaneous cohesion and friction angle, Ks and etc. 

Then the model is executed and the shear displacement (ŭ) of each 

discontinuity is recorded as described in stage IV. According to            

Figure 4.1, in stage VI, the shear displacement obtained in stage IV is 

compared to the peak shear displacement estimated by Eq. 2.21. In the 

proposed methodology, it is assumed that if the shear displacement is 

greater than the estimated peak shear displacement (ŭpeak) it is called as 

failure. The boundary of the failure and survival is called the limit state 

condition in the proposed approach. For example, if for certain realization 

of cohesion, JCS and friction angle for JRC=10 the shear displacement 

(ŭ) is greater than the estimated peak shear displacement (ŭpeak) and for 

JRC=11 the ŭ is lower than ŭpeak, the 10<JRC<11 is considered as limit 

state condition depending on the opinion of the user.  
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This methodology was developed for one or more random variables. For 

one random variable like JRC, suppose that the limit sate is JRC=10, and 

the discontinuity fails for JRC<10. Therefore, the probability of failure 

equals to the area of region less than 10 in density function of distribution 

of JRC.  

 

However, when the number of random variables is more than one, for 

different realization of random variables the model is run and the shear 

displacement of each discontinuity is recorded and according to stage VI 

the failure state is obtained. Then an appropriate distribution function is 

fitted to the shear displacement. Then, area for which ŭ> ŭpeak is the 

failure probability and the corresponding Reliability Index is obtained from 

Pf=1-ū (ɓ), Where ū () is the cumulative distribution function of the 

standard normal variate. (Stages VIII and IX).  
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CHAPTER V 

 

 

IMPLEMENTATION OF PROPOSED PROBABILISTIC-

NUMERICAL METHODOLOGY 

 

 

 

5.1 General information about the study region 

 

The case study is selected as the Kings Rock Grave in Amasya, Turkey, 

which was carved on a rock mass containing bedding planes and joints 

and generally discontinuities. The host rock is limestone and 

discontinuities cut the Grave, and simply the rock grave can be 

considered as a rock slope. Figure 5.1 is shows the location of Amasya in 

map of Turkey.  

 

Amasya is located between 41Á 04ô 54ò -40Á 16ô 16ò North Latitude and       

34Á 57ô 06ò-36Á 31ô 53ò East Longitude in the Yesilirmak Valley of the 

Central Black Sea Region . The surface area of Amasya is 5,701 km2 and 

the population is 133,000, of which 74,000 live in the city and in 

surrounding towns and villages. The average altitude is 592 m. Amasya 

was a fortified city high on the cliffs above the river. It has a long history 

as provincial capital, a wealthy city producing kings and princes, artists, 

scientists, poets and thinkers, from the kings of Pontus, through Strabo 

the geographer, to many generations of the Ottoman imperial dynasty, 

and up to being the location of an important moment in the life of Ataturk. 

With its Ottoman period wooden houses and the tombs of the Pontus 

kings carved into the cliffs overhead, Amasya is attractive to visitors.  

 

http://en.wikipedia.org/wiki/Pontus
http://en.wikipedia.org/wiki/Strabo
http://en.wikipedia.org/wiki/Ataturk
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Figure 5.1 Location of Amasya 

 

5.2 Field and laboratory studies 

 

The Harsena Mountain was surveyed to understand the problem in the 

region. There are sliding, and rock fall problems in Harsena region.    

Figure 5.2 indicates the potential locations suffering from rock slope 

problem.  
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Figure 5.2 studied field ad failed structures and failure potential 
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