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ABSTRACT

STUDY OF HEAVY QUARKONIA SPECTRA IN THE QUARK MODEL

Takan, Taylan

M.Sc., Department of Physics

Supervisor : Prof. Dr. Altuğ Özpineci

February 2012, 51 pages

Conventional Heavy Quarkonium systems, Charmonium and Bottomonium, are believed to

be composed of a heavy quark and anti-quark pair. These systems are investigated by different

methods resulting from different approaches to Quantum Chromodynamics (QCD), such as

Lattice QCD, Effective Theories and Sum Rules. In this thesis we study the spectrum of

Charmonium and Bottomonium using a non-relativistic Quark Model. Assuming one gluon

exchange for the short distances and a linear confining potential for long distances we derive

Breit-Fermi interaction Hamiltonian and calculate the spectra arising from this Hamiltonian.

Also we calculate the partial widths of E1 and M1 radiative decays.

Keywords: QCD, Quark Model, Charmonium, Bottomonium, Heavy Quarkonia

iv



ÖZ

AĞIR KUARKONYA TAYFLARININ KUARK MODELİ İLE İNCELENMESİ

Takan, Taylan

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Altuğ Özpineci

Şubat 2012, 51 sayfa

Çarmonyum ve Botomonyum gibi olağan ağır kuarkonyum sistemleri ağır kuark anti-kuark

çiftlerinden oluşurlar. Bu sistemler KRD’ye yapılan farlı yaklaşımlarla (Kafes KRD, Efektif

Alan Teorileri ve Toplam Kuralları gibi) elde edilen çeşitli metodlarla incelenmektedir. Bu

tezde Çarmonyum ve Botomonyum tayfları rölativistik olmayan Kuark Modeli ile incelen-

mektedir. Kısa mesafelerde tek gluon değişimi, uzun mesafelerde doğrusal kafesleyici potan-

siyel varsayılarak, Breit-Fermi etkileşim Hamiltonu çıkarılmıştır ve bu Hamiltonun yarattığı

tayflar hesaplanmıştır. Ayrıca E1 ve M1 ışınımsal bozunumları hesaplanmıştır.

Anahtar Kelimeler: KRD, Kuark Modeli, Çarmonyum, Botomonyum, Ağır Kuarkonyum
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CHAPTER 1

INTRODUCTION

Quarks together with leptons constitute the ordinary matter content of our universe. Physics of

quarks and the force carriers between them, gluons, is governed by Quantum Chromodynam-

ics (QCD). Unlike Quantum Electrodynamics or the unified Electroweak theory, Quantum

Chromodynamics does not readily supply us with physical observables such as the mass of

the bound states of quarks and anti-quarks called hadrons nor the transitions between these

different states.

This challenge presented by QCD can be attributed to the several features that are not present

in other local gauge field theories. One of these characteristic properties is the non-Abelian

nature of theory, resulting from the fact that the force carriers carry color charge themselves.

Therefore in QCD one must consider interactions between the gauge bosons in addition to the

interaction between fermions and the gauge bosons.

Apart from the non-Abelian nature one must also embark upon three important phenomena

that QCD presents, namely, asymptotic freedom, confinement and dynamical breaking of

chiral symmetry.

Asymptotic freedom of QCD dictates that the coupling constant, αs, depends on the momen-

tum transfer in a process. For soft processes, which include low momentum exchange, αs is

large, therefore perturbation theory can not be used. αs becomes small only at large momen-

tum values. These processes are called hard processes. In terms of the momentum exchange,

Q2, the lowest order QCD corrections to αs can be parameterized as,

αS (Q2) =
12π

(33 − 2n f ) ln(Q2/Λ2)
(1.1)

where n f is the number of fermion flavors with mass below Q, and Λ ≈ ΛQCD is the charac-
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teristic scale of QCD measured as ≈ 200MeV [28]. Although it seems at first sight that hard

processes can be calculated perturbatively, it is generally not the case and one needs further

relation between partons and the observed hadrons and these relations, called structure and

fragmentation functions, can not be calculated perturbatively. As an example; the decay of cc̄

into gluons can be calculated perturbatively, however to calculate the annihilation of J/Ψ into

light hadrons one needs the wave function of the cc̄ system at the origin, Ψ(0), which is not

calculable by the perturbation theory [32].

As mentioned above, for the low momentum exchange, or in other words for the long dis-

tances, the perturbation theory fails completely and we face a new phenomenon; confinement.

Flux tube model gives a qualitative explanation of confinement. According to this model as

the distance between quark and an anti-quark, or two quarks, increases the field lines bunch

up to form a flux tube, resulting in a potential energy that depends approximately linearly on

the distance,

∼ σr (1.2)

characterized by the string constant, σ. If the distance, therefore energy is increased fur-

ther a new quark-anti-quark pair forms resulting in total two colorless hadrons. Although as

of now there is no satisfactory explanation of the confinement which is based solely on the

QCD Lagrangian, there are several approaches that hints confinement. The lattice models are

successful in simulating this phenomena and calculating the string tension [7]. On the theo-

retical side there is work in progress, which suggests that QCD potential may be expressed as

Coulomb plus a linear potential [41].

The third important concept of QCD is the dynamical breaking of chiral symmetry. Symmetry

breaking can be explained qualitatively by considering the QCD Lagrangian for N quark

flavors with massless quarks,

L = iΣiq̄
[
∂µ − igsΣa

1
2
λaAa

µ

]
γµqi − 1

4
ΣaFa

µνF
µνa (1.3)

where the mass term, −Σiq̄miqi, is dropped. In such a theory there is an exact chiral S U(N) ×
S U(N) symmetry but this symmetry breaks down to S U(N) because of the non-vanishing

expectation value of the QCD vacuum. The Goldstone bosons corresponding to this symmetry

breaking are the pseudoscalar mesons.

To deal with the mentioned aspects of the QCD, different methods are available such as QCD

sum rules, Effective Theories, Lattice QCD and AdS/QCD correspondence.
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This thesis is concerned with the Quark Model approach. Compared with the other methods

mentioned above Quark Model may seem inadequate as it lacks the rigor present in other

models as Quark Model is based mostly on intuition and include bold assumptions. The an-

swer to these concerns is that Quark Model works in it’s own domain, as proved by numerous

studies [23].

Today with the experiments providing us greater precision on the spectrum and decay widths

[45] more than ever and the discovery of the unconventional Ψ and Υ bound states [2][12],

which can not be explained with the usual qq̄ picture, the intuitive nature of Quark Model

may leverage it’s use as a testing ground for new ideas.

The purpose of this thesis is to investigate the basic assumptions and intuitive picture behind

the Quark Model. To serve this purpose we think that the Charmonium and Bottomonium

spectra provides us an unique opportunity; we believe the study of low lying states that have

been the subject of may fruitful analysis [18][17][19][43][27][36] can enable us to investigate

the basic assumptions and newly found higher mass states and unconventional states [6][42]

which are believed to fall outside the assumptions of the Quark Model may help draw the

boundaries of the quark model or even expand them.
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CHAPTER 2

QUARK MODEL

The physics of hadrons is multi-dimensional. When considering the spectroscopy we face

increasing values of radius at excited state, which is dominated by non-perturbative effects,

but when considering decays we deal with hard processes occurring at short distances which

in part allows perturbative approach. Therefore the challenge before the Quark model is to

describe a system with two different regimes. To accomplish this hard task the Quark Model,

in its simplest form assumes that the interactions of quarks to be a two-body potential and

quarks to be heavy enough that they satisfy the non-relativistic Schrodinger equation. In

doing so it disregards the gluonic degrees of freedom in the QCD Lagrangian [32].

In the perturbative regime, the potential arising from QCD is simply Coulomblike, this follows

from the fact that for small αs we only need to consider one gluon exchange, as it will be the

dominant process. One gluon exchange between a quark and an anti-quark have the same form

as electron-anti-electron scattering which has the form of Coulomb interaction. This similarity

between quarkonia and positronium allows heavy quarkonium physics to be a testing ground

for QCD.

However this similarity holds only for short distances, and we are still left with the delicate

question about of the form and the origin of the confining potential. In the early days of the

Quark Model much debate has been made on the form of the confining potential [37]. Today

we are closer more than ever to a complete description of the confinement and the form of the

confining potential. The quantitative picture is provided mainly by the Lattice QCD calcu-

lations which predict a linear potential with the string tension around 0.15 GeV2[30]. Other

approaches confirm the form, if not the value the potential obtained from lattice simulations.
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Figure 2.1: Feynman Diagram for s-channel

Figure 2.2: Feynman Diagram for t-channel

2.1 One-Gluon Exchange

To motivate the coulomb potential we begin by considering scattering of a quark from anti-

quark. For the s-channel, using Feynman rules, we obtain,

−iM =
[
ū(3)c†3k

] (
−i
αs

2
λαklγ

µ
)

[c4lv(4)]
(
−i

gµνδαβ

q2

) [
v̄(2)c†2 j

] (
−i
αs

2
λ
β
jiγ

ν
)

[c1iu(1)] (2.1)

Therefore the s-channel amplitude is given by,

M =

(
1
4

c†3kc4lc
†
2 jc1iλ

α
klλ

α
ji

) (
−α

2
s

q2

) [
ū(3)γµu(1)

] [
v̄(2)γνv(4)

]
(2.2)

Similarly for t-channel we have,

−iM =
[
ū(3)c†3k

] (
−i
αs

2
λαkiγ

µ
)

[c1iu(1)]
(
−i

gµνδαβ

q2

) [
v̄(2)c†2 j

] (
−i
αs

2
λ
β
jlγ

ν
)

[c4lv(4)] (2.3)
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M =

(
1
4

c†3kc4lc
†
2 jc1iλ

α
klλ

α
ji

) (
−α

2
s

q2

) [
ū(3)γµu(1)

] [
v̄(2)γνv(4)

]
(2π)4δ4(p1 + p2 − p4 − p4) (2.4)

The color factors for t− and s− channels are,

ft =

(
1
4

c†3kc4lc
†
2 jc1iλ

α
klλ

α
ji

)
fs =

(
1
4

c†3kc4lc
†
2 jc1iλ

α
klλ

α
ji

)
(2.5)

Since mesons are colorless they are in color singlet state given by,

|Meson〉 =
1√
3

(rr̄ + bb̄ + gḡ) (2.6)

therefore,

c†3kc4lc
†
2 jc1i =

1
3
δi jδkl (2.7)

Now for s−channel this condition results in,

fs =
1

12
Σ3

i, j,k,l=1Σ8
α=1δi jδklλ

α
klλ

α
jli =

1
12

Σ8
α=1Tr[λα]Tr[λα] = 0 (2.8)

which says that gluon, as a color octet, do not couple to a meson in color singlet state, this

leaves us the t−channel for which the color factor is given as,

ft =
1

12
Σ3

i, j,k,l=1Σ8
α=1δi jδklλ

α
kiλ

α
jl =

1
12

Σ8
α=1Tr[λαλα] =

4
3

(2.9)

Therefore we may conclude that one gluon exchange results in interaction with a Coulomb

potential, Vqq̄(r), given as,

Vqq̄(r) = −4
3
αs

r
(2.10)

2.2 Breit Interaction

In the previous section simplification of one gluon exchange to an interaction via Coulomb

potential was enough for showing the attractive nature of the interaction for color singlet

states. However a rightful objection can be made that this is an oversimplification because it

disregards all the relativistic nature of our problem. In this section we discuss how to include

relativistic effects. Naturally when one deals with relativistic bound states, Bethe-Salpeter

equation should be used. But for our problem at hand the high masses of charm and beauty

quarks allow us to assume that our system can be approximated to be non relativistic. As a

6



first step in doing a non relativistic reduction, following Breit [9] we attempt to find a non-

covariant expression for the scattering amplitude in the form,

MNR =

∫ ∫
Ψ†(p3, E3, j3; 1)Ψ†(p4, E4, j4; 2)

(
e2

r12
+ HB(1, 2)

)
(2.11)

×Ψ(p2, E2, j2; 2)Ψ(p1, E1, j1; 1)d3r1d3r2

where

Ψ(pi, Ei, ji; n) = eipi·rn/~−iEit/~u(n) (2.12)

and HB(1, 2) is the term that includes the relativistic correction. Finding HB(1, 2) will benefit

us in two ways, first it will enable us to find the relativistic correction to the first order and

second, by evaluating its expectation value using the wavefunctions that we calculate for cc̄

and bb̄ mesons will give us an estimation of relativistic effects for our model.

Disregarding the color factor we rewrite the amplitude for one gluon exchange as

M =
1

(E1 − E3)2 − (p1 − p3)2

[
ū(3)γµu(1)

] [
v̄(2)γνv(4)

]
(2.13)

×(2π)4δ(E1 + E2 − E4 − E4)δ3(p1 + p2 − p4 − p4)

In terms of α1, β1 and α2, β2 we can rewrite the the product of the fermion currents as

[
ū(3)γµu(1)

] [
v̄(2)γνv(4)

]
=

[
u†(3)γ0γµu(1)

] [
v†(2)γ0γνv(4)

]

=
[
u†(3)γ0γµu(1)

] [
v†(2)γ0γνv(4)

]

= u†(3)v†(2) (1 − α1 · α2) u(1)v(4) (2.14)

where α1 acts on the spinor space of the first particle and α2 to that of the second and they

commute, so that

M =
1

(E1 − E3)2 − (p1 − p3)2

[
u†(3)v†(2) (1 − α1 · α1) u(1)v(4)

]
(2.15)

×(2π)4δ(E1 + E2 − E4 − E4)δ3(p1 + p2 − p4 − p4)

7



Or as an integration over space and time

M =

∫ ∫ ∫
eip3·r1/~u†(3)e−ip2·r2/~v†(2)

(
1

r12
(1 − α1 · α1) e−|E1−E3 |r12/~c

)
(2.16)

×e−ip1·r1/~u(1)eip4·r1/~v(4)ei(E1+E2−E3−E4)t/~d3r1d3r2dt

Now using

e−i/~(Ent1−pn·r1)u(n) = Ψn(pn, En, ji) (2.17)

ei/~(Ent2−pn·r2)v(n) = Ψn(−pn,−En, jn; n) (2.18)

We obtain

MR =

∫ ∫
Ψ†(p3, E3)Ψ†(−p2, E2)

{
1

r12
(1 − α1 · α1) e−|E1−E3 |r12/~c

}
(2.19)

×Ψ(p1, E1)Ψ(−p4,−E4)d3r1d3r2

To obtain the non-relativistic reduction of the amplitudeMR which we assume is of the form

MNR given in Eqn.[2.11], we observe that for one gluon exchange we are at short distances

which are characterized by high momentum exchange |p1 − p3|, quantitatively we may asso-

ciate the distance between qq̄ pair to de Broglie wavelength [13],

r12 ≈ ~/|p1 − p3| (2.20)

Therefore the exponential in Eqn.[2.19] is at the order

e−|E1−E3 |r12/~c = e−|E1−E3 |/|p1−p3 |c (2.21)

For the system we are concerned with the quark masses are at the order of GeV, therefore the

exponent can be approximated as, |E1 −E3|/|p1 −p3|c ≈ (p2
1 −p2

3)/m2c3|p1 −p3|≪ 1.Where

we have used E =
√

p2 + m2 ≈ m + p2/2m, since we assume quark masses to be high. Using

this assumption we expand the term in the curly brackets in Eqn.[2.19],

1
r12

(1 − α1 · α1) e−|E1−E3 |r12/~c =
1

r12
(1 − α1 · α2) (2.22)

×
1 + i

|E3 − E1|r12

c~
− |E3 − E1|2r2

12

(c~)2 + . . .



= 1
r12
−α1 · α2

r12
+ i
|E3 − E1|

c~
− |E3 − E1|2r12

2(c~)2 + . . .(2.23)
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The first term is just the Coulomb potential, the second term

HB,m = −α1 · α2

r12
(2.24)

is called the Breit magnetic term and its physical meaning is explained below. The third term,

i |E3−E1 |
c~ , does not have any dependence on r12 therefore for this term the integrals over r1

and r2 can be carried out separately to give zero, since the incoming and outgoing waves are

considered to be orthogonal.

To find the contribution from the fourth term first we note that, since (E3 − E1) = (E2 − E4),

−|E3 − E1|2r12

2(c~)2 = − (E3 − E1)(E2 − E4)r12

2(c~)2 (2.25)

= −(E3E2 + E1E4 − E1E2 − E3E4)
r12

2(c~)2 (2.26)

Therefore the contribution is

MB,ret = −1
2

∫ ∫ ∫
Ψ†(p3, E3)Ψ†(−p2,−E2) (2.27)

×
{

r12

(c~)2 (E3E2 + E1E4 − E1E2 − E3E4)
}

(2.28)

×Ψ(p1, E1)Ψ(−p4,−E4)d3r1d3r2dt (2.29)

To extract the Hamiltonian we need to replace energies with their operator form. Using

(ic~αi · ∇i + βim)Ψn(pn, En) = EnΨn(pn, En) (2.30)

where i = 1(2) for n = 1, 3, (2, 4), we express the product of energies as

Ψ†(p3, E3)Ψ†(−p2,−E2)
r12

(c~)2 (E3E2) = Ψ†(p3, E3)Ψ†(−p2,−E2)(−ic~α1 · ∇1 + β1m)

= ×(−ic~α2 · ∇2 + β2m)
r12

(c~)2 (2.31)

r12

(c~)2 (E1E4)Ψ(p1, E1)Ψ(−p4,−E4) =
r12

(c~)2 (ic~α1 · ∇1 + β1m)(ic~α2 · ∇2 + β2m)

×Ψ(p1, E1)Ψ(−p4,−E4) (2.32)

−Ψ†(−p2,−E2)Ψ(p1, E1)
r12

(c~)2 (E1E2) = −Ψ†(−p2,−E2)(−ic~α2 · ∇2 + β2m)
r12

(c~)2

×(ic~α1 · ∇1 + β1m)Ψ(p1, E1) (2.33)

−Ψ†(−p3,−E3)Ψ(p4, E4)
r12

(c~)2 (E3E4) = −Ψ†(−p3,−E3)(−ic~α1 · ∇1 + β1m)
r12

(c~)2

×(ic~α2 · ∇2 + β2m)Ψ(p4, E4) (2.34)
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Observing that, since β1,2 commute with r12, the terms with β1β2r12 and βα · ∇ cancel out,

resulting in,

MB,ret = −1
2

∫ ∫ ∫
Ψ†(p3, E3)Ψ†(−p2,−E2)

× {−α1 · ∇1α2 · ∇2r12 − r12α1 · ∇1α2 · ∇2 + α1 · ∇1r12α2 · ∇2 + α2 · ∇2r12α1 · ∇1}

×Ψ(p1, E1)Ψ(−p4,−E4)d3r1d3r2dt (2.35)

The term in the curly brackets can be evaluated using,

−α1 · ∇1α2 · ∇2r12 = −α1 · ∇1 (α2 · r12∇2 + ∇2r12)

= −r12α1 · ∇1α2 · ∇2 − α1 · ∇1(r12)α2 · ∇2

− (α1 · ∇1) (α2 · ∇2) (r12) − α2 · ∇2(r12)α1 · ∇1 (2.36)

α1 · ∇1r12α2 · ∇2 = r12α1 · ∇1α2 · ∇2 + α1 · ∇1(r12)α2 · ∇2 (2.37)

α2 · ∇2r12α1 · ∇1 = r12α2 · ∇2α1 · ∇1 + α2 · ∇2(r12)α1 · ∇1 (2.38)

Putting everything together we obtain,

MB,ret = −1
2

∫ ∫ ∫
Ψ†(p3, E3)Ψ†(−p2,−E2) (α1 · ∇1) (α2 · ∇2) (r12) (2.39)

× Ψ(p1, E1)Ψ(−p4,−E4)d3r1d3r2dt (2.40)

Allowing us the to identify the operator responsible for the retardation effect,

HB,ret = −1
2

(α1 · ∇1) (α2 · ∇2) (r12) (2.41)

Which together with 2.24, gives the Breit operator,

HBreit= − α1 · α2

r12
+

1
2

(α1 · ∇1) (α2 · ∇2) (r12) (2.42)

Or,
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HBreit = −1
2


α1 · α2

r12
+

(α1 · r12)(α2 · r12)
r3

12

 (2.43)

Therefore if one considers the lowest order relativistic corrections to one-gluon exchange, the

relativistic Hamiltonian for the quark-anti-quark system may be given as,

H = cα1 · p1 + cα2 · p2 + β1mc2 + β2mc2 − 1
r12

−1
2


α1 · α2

r12
+

(α1 · r12)(α2 · r12)
r3

12

 (2.44)

2.3 Potential Model

2.3.1 The Cornell Potential

As mentioned before Quark Model needs to embrace both the non-perturbative and pertur-

bative regimes of QCD. As shown in the previous section, in perturbative regime, where

coupling is small we only need to consider one gluon exchange which, ignoring the color

factor, is just a Coulomb potential for color singlet states,

V1g(r) = −4
3
αs

r
(2.45)

To account for the non-perturbative regime, different potential models have been proposed

in the early days of the quark model, most notable ones are the logarithmic potential ln(r)

and power-law potential, rν[37]. Today, with the results from Lattice QCD, Wilson Loop

Calculations and Effective Field Theory approach we expect that confining potential should

be linear,

VCon f (r) = σr (2.46)

The resulting phenomenological potential together with constant term V0,

VCornell = −4
3
αs

r
+ σr + V0 (2.47)
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is called the Cornell potential, where V0 is a constant. Although at first sight adding a constant

term may seem illegal, we note that there is no counter argument for such a term, and there is

no harm in including it except increasing parameters.

2.3.2 Breit-Fermi Interactions

Cornell potential on its own is unfortunately unable to explain spin splittings, such as J/Ψ

and ηc, and P wave splittings such as χc0, χc1, χc2, hc. To include these splittings we have to

include spin-dependent terms to the potential.

As it is clear now we face two different energy regimes and we have no clue from the theory

about how the spin dependent dependent forces change with the distance. As shown in [14]

hypothesizing that the spin-dependent forces are attributed to the short distance potential, one

can explain the observed Hadron masses to a high precision. Also from [17], [18] and[44]

Cornell potentials success in building a model for Charmonium can be observed.

In this section we show how to obtain the the spin dependent potentials following the assump-

tion that it results from the 1-gluon exchange. In the previous section we have already found

a non-covariant Dirac Hamiltonian which included retardation effects. As it is a relativistic

Hamiltonian it is spin dependent and it mixes negative and positive energy solutions. To use

this Hamiltonian in our non-relativistic model we can remove such a mixing by making a

non relativistic reduction which in turn will allow us to separate spin and space parts of the

wavefunction, providing us with spin dependent forces occurring at higher orders of 1/m.

Such a non-relativistic reduction is made in Appendix A, by using generalized Foldy-Wouthuysen

transformation for two particles. The result of non-relativistic expansion to order 1/m3 is

given as,

12



HBF = −4
3
αs

r
(2.48)

+2mq +
p2

mq
− p4

4m3
q

(2.49)

−2
3
αs

m2
q

(
p2

r
+

r(r · p) · p
r3

)
(2.50)

+
4
3
αs

m2
q
δ(r)

(
1 +

8π
3

S1 · S2

)
(2.51)

+2
αs

m2
qr3

((S1 + S2) · L) (2.52)

+
4
3
αs

m2
qr3

(
3

(S1 · r)(S2 · r)
r2 − S1 · S2

)
(2.53)

We know put the Breit interaction, term by term in a form suitable for our method of using

the radial solutions of the Harmonic Oscillator and give the explanation of each term.

2.3.2.1 Increase of Relativistic Mass

Eqn [2.49] corresponds the expansion of 2
√

p2 + m2
q.

Vrm = 2m +
p2

m
− p4

4m3 (2.54)

Such a term arises when one considers the relativistic mass, γm0 instead of the rest mass m0.

In our model we are only interested in terms contributing to the the order m2 therefore we

discard the term − p4

4m3 and use

2mq +
p2

mq
(2.55)

instead, which corresponds to the Schrodinger Hamiltonian without a potential.

2.3.2.2 Retardation of Potential

Eqn (2.50), as explained in detail in the previous section arises from the retardation of the po-

tential resulting from the finite speed of propagation of light (gluons in our case). In operator

13



form it is given as

〈Ψnlm(r) | Vret | Ψn′l′m′(r)〉 =

−
2
3
αs

m2
q

∫
r2drRn

(∇2

r
+

1
r
∂2

∂r2

)
Rn′

∫
dΩY∗lmYl′m′

+

∫
r2drRnRn′

∫
dΩY∗lm

∇2

r
Yl′m′

}
(2.56)

= −2
3
αs

m2
q

∫
dr

{
2
r

un′u′′n −
2
r2 un′u′n +

2 − l(l + 1)
r3 unun′

}

×δmm′δll′

Note that we use the radial solutions of the harmonic oscillator but the above term also acts

on the angular part. We separate the angular dependency as follows,

〈Ψnlm(r) | Vret | Ψn′l′m′(r)〉 =

−
2
3
αs

m2
q

∫
r2drRn

(∇2

r
+

1
r
∂2

∂r2

)
Rn′

∫
dΩY∗lmYl′m′

+

∫
r2drRnRn′

∫
dΩY∗lm

∇2

r
Yl′m′

}
(2.57)

= −2
3
αs

m2
q

∫
dr(

2
r

un′u′′n −
2
r2 un′u′n +

2 − l(l + 1)
r3 unun′)δmm′δll′

2.3.2.3 Darwin Term

The first term in Eq.(2.51) ,

VDarwin =
4
3
αs

m2
q
δ(r) (2.58)

is called the Darwin term and may be attributed zitterbewegung [5]. It is a correction that

includes the smearing out of the potential caused by the fluctuation of the particle, quark and

anti-quark in this case, over the distance δr ≈ 1/mq. The smearing may be approximated as,

〈δV〉 = 〈V(r + δr)〉 − 〈V(r)〉 = 〈δr∂V
∂r

+ δriδr j
∂2V
∂ri∂r j

〉 ≈ 1
6
δr2∇2V ≈ 1

6m2∇2V (2.59)

To include this term in our Hamiltonian, we write Dirac Delta function in spherical coordi-

nates,

VDarwin =
4
3
αs

m2
q
δ(r) =

4
3
αs

m2
q

δ(r)
2πr2 (2.60)
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by noting that 1 =
∫

drr2Rnl(r)
∫

dΩYlm(θ, φ) = (4π)
∫

drr2Rnl(r), and that the integration is

from 0+to ∞. Obviously this term only contributes only for l = 0 states for which there is no

centrifugal potential, and radial wavefunction Rnl is non-zero at the origin.

2.3.2.4 Spin-Spin Interaction

The spin-spin interaction term,

4
3
αs

m2
q
δ(r)

(
8π
3

S1 · S2

)
(2.61)

arises when one considers two particles. Together with the regular Spin-Spin interaction its

presence is vital in explaining the S wave splittings. Note that it has no effect for l , 0 states.

In | j, l, s,m j〉 basis it is given as

VS S ,con =
16
9
αs

m2
q

δ(r)
r2

(
S (S + 1) − 3

2

)
(2.62)

where we have used S1 · S2 = 1
2 (S2 − S2

1 − S2
2) = 1

2 (S (S + 1) − 3
2 ).

2.3.2.5 Spin-Orbit Coupling

The spin-orbit coupling term is responsible for P wave splittings and given as,

VS O(r) = 2
αs

m2
qr3

(3(S1 + S2) · L) (2.63)

=
αs

m2
qr3

(J(J + 1) − L(L + 1) − S (S + 1)) (2.64)

where we have used

~L · ~S =
1
2

(
(~L + ~S )2 − ~L2 − ~S 2

)

=
1
2

(
( ~J)2 − ~L2 − ~S 2

)

=
1
2

(J(J + 1) − L(L + 1) − S (S + 1))
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2.3.2.6 Tensor Force

The tensor potential is given as

VTensor =
4
3
αs

m2
qr3

(
3

(S1 · r)(S2 · r)
r2 − S1 · S2

)
(2.65)

It is vital in explaining the non-uniformity of the splittings between L = 1, S = 1 states such

as χc2, χc1 and χc0. In | j, l, s,m j〉 basis its given as (see Appendix B for Derivation),

TTensor = 3
(~S i · r)(~S j · r)

r2 − ~S i · ~S j =



− l
2(2l+3) j = l + 1

1/2 j = l

− (l+1)
2(2l−1) j = l − 1

0 l = 0 or s = 0

(2.66)

where

VTensor(r, j, l, s) =
4
3
αs

m2
qr3

Ttensor( j, l, s) (2.67)
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CHAPTER 3

METHOD

3.1 Schrödinger Equation with Central Potential

The fundamental assumption of the quark model is that the constituent quarks obey the non-

relativistic Schrodinger equation. Under this assumption we find the non-relativistic reduction

of the Breit Hamiltonian using a Foldy Wouthuysen transformation (details are in Appendix

A). This reduction allows us to separate the spin and space parts of the meson wavefunction

where space part of the wavefunction satisfies the Schrodinger equation with spin dependent

potential.

To analyze the motion we start with the Hamiltonian for two particles interacting through an

isotropic potential and separate the motion of center of mass,

H =
p2

1

2
+

p2
2

2
+ V0(|r1 − r2|) =

P2

2(m1 + m2)
+

p2

2µ
+ V0(|~r|) = HCM + Hrel (3.1)

where

P = p1 + p2, p =
(m2p1 − m1p2)

m1 + m2

r = r1 + r2, µ =
m1m2

m1 + m2

HCM =
P2

2(m1 + m2)
, Hrel =

p2

2µ

Substituting ~p → −i~∇ in the Hamiltonian for the relative motion we find the Schrodinger

equation, [
−∇

2

2µ
+ V0(r)Ψ(r)

]
= EΨ(r) (3.2)

Next we separate the wavefunction into radial and angular parts,

Ψ(~r) = Rkl(r)Ylm(θ, φ) (3.3)
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Radial part satisfies
[
− 1

2µ
∂2

∂2r
+

2
r
∂

∂r
+

l(l + 1)
2µr2 + V0(r)

]
Rkl(r) = EklRkl(r) (3.4)

whereas the angular wavefunctions given in terms of spherical harmonics,

Ylm(θ, φ) = ε

√
(2l + 1)

4π
(l − |m|)!
(l + |m|)!eimφPm

l (cos θ) (3.5)

where ε = (−1)m for m ≥ 0 and ε = 1 for m ≤ 0.

Defining ukl(r) = rRkl(r), the radial equation simplifies to the 1 dimensional case with effec-

tive potential, [
− 1

2µ
∂2

r +
l(l + 1)
2µr2 + V0(r)

]
ukl(r) = Eklukl(r) (3.6)

The normalization conditions are given as,
∫

drr2 [Rkl(r)]2 =

∫
dr [ukl(r)]2 = 1 (3.7)

∫
dΩ|Ylm(θ, φ)|2 = 1 (3.8)

3.1.1 Simple Harmonic Oscillator in Three Dimensions

We will use the radial solutions of isotropic simple harmonic oscillator in three dimensions us

our base space to diagonalize the Hamiltonian. The radial part of the 3D SHO wavefunction

satisfies, (
−1

2
~∇2 +

ν2

µ
r2 − En

)
RS HO;nl = 0 (3.9)

and the radial equation is given as,

RS HO;nl(r, ν) = Nnlrle−νr
2
L

(l+ 1
2 )

n−l
2

(2νr2) (3.10)

where µis the reduced mass and,

Nnl =

√√√√
2ν3

π

2
(

n−l
2

)
!νl

( n+l
2 + 1)!!

(3.11)

ensures normalization. L
(l+ 1

2 )
n−l
2

(2νr2) are generalized Laguerre polynomials.The quantum num-

ber n denotes the energy values.

E3DS HO = ~ω
(
n +

3
2

)
(3.12)
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l denotes the total angular momentum. n−l
2 = k gives the radial quantum number and is an

integer. Therefore n can have the values

n = 0, 1, 2, ...

and l can have,

l =



0, 2, 4, .., n for n even

1, 2, 3, .., n for n odd

ν is the parameter of wave function depending on the angular frequency of the harmonic

oscillator. We will fix this parameter by considering a perturbation,

δV = kx − µω2r2 (3.13)

to the Hamiltonian given in 3.9. The first order correction to the ground state is given as,

〈uS HO;0 | δV | uS HO;0〉 =
4k

√
2
π

3
√
ν
− 5mω2

8ν
(3.14)

Now we demand this perturbation to vanish, obtaining

ν0 =
4k2/3µ2/3

152/3π1/3 (3.15)

At this stage the basis vectors are given by,

uS HO;n ≡ rRS HO;nl(r, ν0) = Nnlrl+1e−νr
2
L

(l+ 1
2 )

n−l
2

(2ν0r2) (3.16)

3.1.2 Method

To summarize we use the 3D SHO reduced radial wavefunctions,

uS HO;nl(r, ν) = Nnlrl+1e−νr
2
L

(l+ 1
2 )

n−l
2

(2νr2) (3.17)
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to diagonalize the Hamiltonian given as

H = − 1
mq

∂2

∂2r
+

l(l + 1)
mqr2

− 4
3
αs

r
+ σr

+2mq +
p2

mq

−2
3
αs

m2
q

(∇2

r
+

1
r
∂

∂r

)

+
4
3
αs

m2
q

δ(r)
2πr2

(
1 +

4π
3
δ(r)
r2

(
S (S + 1) − 3

2

))
(3.18)

+
αs

m2
qr3

(J(J + 1) − L(L + 1) − S (S + 1))

+
4
3
αs

m2
qr3

Ttensor( j, l, s)

Obtaining,

Huqq̄;k, j,l,s(r) = En; j,l,suqq̄;k, j,l,s(r) (3.19)

where uqq̄;k, j,l,s(r) is the reduced radial wavefunction of the meson, i.e.,

uqq̄;k, j,l,s(r) ≡ rRqq̄;k, j,l,s(r) (3.20)

and is given by in terms of 3D SHO reduced wavefunctions as,

uqq̄;k, j,l,s(r) =



∑2D−2
n=l cnuS HO;n,l for l = even

∑l+2D−2
n=l cnuS HO;n,l for l = odd

(3.21)

Where D is the number of the SHO wavefunctions forming the base space, i.e. the dimension

of the Hamiltonian matrix that we diagonalize. And the mass of the meson is found by adding

the two times the mass of quark to the eigenenergy,

Mk, j,l,s = 2mq + Ek; j,l,s (3.22)

To find the fitting parameters, (αs, k, mq) we define,

χ2(αs, k, mq) = Σ

(
Mexp,k, j,l,s − Mk, j,l,s

)2

∆Mexp,k, j,l,s
(3.23)

Where Mexp,n, j,l,s is the experimental observations of the meson masses and ∆Mexp,n, j,l,s is the

error in measurements. Using Mathematica, the parameters (αs, k, mq) are fixed so that χ2 is

20



a minimum. The dimension of the base space is chosen to be 30. Convergence is observed by

considering base spaces with different dimensions.
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CHAPTER 4

SPECTRUM AND RADIATIVE TRANSITIONS

4.1 Charmonium

Using the method described above we fit the parameters as

αs σ mc

0.3864 0.2192GeV2 1.260GeV
(4.1)

The predicted spectrum for Charmonium is given in Table 1. We also plot the ground state

and first excited state wavefunctions. In [28] the mass of the charm quark is given between

1.18 GeV-1.34 GeV, and our mass value lies inside this range. Also the fitted σ is above

the results obtained from lattice simulations which is around σlattice ≈ 0.15 GeV2[30]. The

value we obtained for αS is only half the value of that obtained for Charmonium from lattice

calculations, which is around 0.65.

Comparing the found mass spectrum with the experimental results we see that our model for

describing the 1S splitting is not as much as successful as we would like it to be, considering

we only use 1S and 1P results for the fit.

For excited states we see that our calculations give increasingly higher mass. This might be

attributed to the closeness of this state to D − D̄ threshold.
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Figure 4.1: Charmonium Spectrum Showing Experimental Measurements(Black) vs. Fitted
Mass Values (Blue, dotted).

4.2 Bottomonium

For the Bottomonium we fit the parameters as,

αs σ mb

0.3262 0.2902GeV 4.630
(4.2)

The predicted spectrum is given in Table 2. We also plot the ground state and first excited

state wavefunctions. In [28] the mass of the bottom quark is given between (4.49− 4.61)GeV,

our fitted mass is slightly above this range. σ is found to be above the lattice predictions

σlattice ≈ 0.15 GeV2. One expects the string tension to remain the same for different flavors

but our model fails to predict this property, this may be attributed to the failure of the fit for

Charmonium spectra. Compared to Charmonium a smaller value for αS is obtained. This is

in agreement with the asymptotic freedom, since as we can observe from the graph the radial

wavefunctions are packed closer to the origin, meaning a larger value for the momentum

exchange therefore a smaller value for the αs.
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Figure 4.2: Squared radial wavefunctions for ηc (blue straight) and J/ψ (red dashed)
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Figure 4.3: Squared radial wavefunctions for ηc(2S ) (blue straight) and J/ψ(2S ) (red dashed).
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Table 4.1: Calculated and experimental values, [28], of cc̄ and bb̄ spectra. The dagger shows
which states are used for the fit

Charmonium Bottomonium
Meson Experiment Fit Meson Experiment Fit

State (MeV) (MeV) (MeV) (MeV)
11S 0 ηc† 2980.3 ± 1.2 2972 ηb† 9390.9 ± 2.8 9391
13S 1 J/ψ† 3096.916 ± 0.011 3104 Υ(1S)† 9460.30 ± 0.26 9460
21S 0 ηc(2S) 3637 ± 4 3745 10 069
23S 1 ψ(2S) 3686.09 ± 0.04 3818 Υ(2S) 10 023.26 ± 0.31 10 101
31S 0 4312 10 523
33S 1 ψ(4040) 3772.92 ± 0.35 4361 Υ(3S) 10 355.2 ± 0.5 10 546
41S 0 4808 10 905
43S 1 ψ(4415) 4421 ± 4 4840 Υ(4S) 10 579.4 ± 1.2 10 922
13P2 χc2† 3556.20 ± 0.09 3553 χb2† 9912.21 ± 0.26 9913
13P1 χc1† 3510.66 ± 0.07 3502 χb1† 9892.78 ± 0.26 ± 0.31 9891
13P0 χc0† 3414.75 ± 0.31 3429 χb0† 9859.44 ± 0.42 ± 0.31 9860
11P1 hc† 3525.41 ± 0.16 3524 9900
23P2 χc2(2P) 3927.2 ± 2.6 4125 χb2(2P) 10 268.65 ± 0.22 ± 0.50 10 380
23P1 4088 χb1(2P) 10 255.46 ± 0.22 ± 0.50 10 364
23P0 4043 χb0(2P) 10 232.5 ± 0.4 ± 0.5 10 343
21P1 4104 10 370
33P2 4615 10 766
33P1 4589 10 754
33P0 4561 10 738
31P1 4600 10 759
13D3 3878 10 205
13D2 3851 Υ(1D) 10 163.7 ± 1.4 10 195
13D1 ψ(3770) 3772.92 ± 0.35 3821 10 184
11D2 3858 10 198
23D3 4386 10 607
23D2 4365 10 598
23D1 ψ(4160) 4153 ± 2.6 4344 10 589
21D2 4370 10 600
33D3 4846 10 960
33D2 4831 10 952
33D1 4817 10 945
31D2 4835 10 954

Compared to Charmonium we obtain a better fit for Bottomonium. Our models seems to do

well in explaining both 1P and 2P splittings.

We note that our model predicts only slightly higher value for Υ(3S ) and Υ(4S ) states.
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Figure 4.4: Squared radial wavefunctions for χ0 (blue straight), χ1 (red dashed), hc (green
dot-dashed) and χ2 (black-thick)

The success of our model for Bottomonium may be attributed to b quarks high mass, which

suits our non-relativistic approximation. Also we note that comparing the plots given for 1P

Charmonium (Fig.3) and Bottomonium (Fig.6) states, Charmonium 1P states are split heavily

by the spin-orbit coupling and the tensor force, while Bottomonium states show same regular-

ity. This can be attributed to the fact that spin-orbit and tensor forces are proportional to the

square of the inverse mass,
(

1
m2

q

)
. Therefore it may be concluded that to model Charmonium

better we need to consider a relativistic model or include higher order relativistic corrections.

4.3 E1 and M1 Radiative Transitions

To calculate the partial widths of the E1 radiative transitions we use[19],

ΓE1
(
n2S +1LJ → n′2S ′+1L′J′ + γ

)
=

4
3

C f iδS S ′e2
qα | 〈R f | r | Ri〉 |2 E3

γ (4.3)

where, eq is the quark charge, α is the fine-structure constant and Eγ is the final photon energy,

given as Eγ = (M f − Mi)2/2Mi in terms of the masses of the initial and final mesons. The

matrix element C f i is given as,

C f i = max(L, L′)(2J′ + 1)


L′ J′ S

J L 1

 (4.4)
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Figure 4.5: Bottomonium Spectrum Showing Experimental Measurements(Black) vs. Fitted
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Figure 4.6: Squared reduced radial wavefunctions for ηb (blue straight) and Υ(1S ) (red
dashed)
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Figure 4.7: Squared radial wavefunctions for ηb(2S ) (blue straight) and Υ(2S ) (red dashed)
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Figure 4.8: Squared radial wavefunctions for χb0 (blue straight), χb1 (red dashed), hb (green
dot-dashed) and χb2 (black-thick)
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Figure 4.9: Squared radial wavefunctions for Y(1D)

To calculate the matrix elements, | 〈R f | r | Ri〉 |, where R represents the radial wavefunction

of the meson, we use the reduced radial wave functions calculated previously, therefore,

| 〈R f | r | Ri〉 |=
∫ ∞

0
rdruqq̄;k f , j f ,l f ,s f uqq̄;ki, jİ ,li,si (4.5)

For M1 transitions we use[19],

ΓM1
(
n2S +1LJ → n′2S ′+1L′J′ + γ

)
=

4
3

2J′ + 1
2L + 1

δS ,S ′±1δLL′
e2

q

m2
q
α | 〈R f | Ri〉 |2 E3

γ (4.6)

The results of the calculations are given in the Tables [4.2-4.9]. For the masses of the initial

and final states we use the experimental values only if experimental value is available for

both the initial and the final state, otherwise we use the calculated mass values given in the

preceding section.

Comparing with the experimental data we conclude that our calculations are at the same order

with the experimental results, therefore verifying that M1 rates to be highly suppressed. As

mentioned in the preceding section, a relativistic model may give better results. Also we note

that we observed a high dependence of the matrix elements on the parameters, further study

is required to refine the method.
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Table 4.2: Partial widths of, cc̄ E1 radiative transitions from S states.

Initial state Final state Eγ(MeV) | 〈 f | r | i〉 | Γth.(keV) Γexp(keV)

2S→1P ψ′(23S 1) χ2(13P2) 127.6 2.6899 36.59 26.6 ± 1.9
χ1(13P1) 171.3 2.374 40.80 27.9 ± 2.0
χ0(13P0) 197.8 1.831 28.77 29.4 ± 1.8

η′c(21S 0) hc(11P1) 109.9 2.991 51.34

3S→2P ψ(33S 1) χ2(23P2) 110.3 4.052 52.89
χ1(23P1) 264.0 3.540 332.5
χ0(23P0) 335.0 2.768 138.5

ηc(31S 0) hc(21P1) 154.5 2.557 104.4

3S→1P ψ′(33S 1) χ2(13P2) 453.9 0.1337 4.020 <0.015
χ1(13P1) 493.7 0.2345 9.548 <0.0095
χ0(13P0) 576.0 0.3264 9.786

η′c(31S 0) hc(11P1) 480.9 0.09167 4.043

4S→3P ψ(43S 1) χ2(33P2) 198.3 5.155 497.7
χ1(33P1) 241.3 4.486 407.6
χ0(33P0) 300.5 3.558 165.1

ηc(41S 0) hc(31P1) 222.7 5.630 409.4

4S→2P ψ(43S 1) χ2(23P2) 219.7 0.2059 1.080
χ1(23P1) 669.4 0.3569 55.10
χ0(23P0) 733.7 0.4725 42.38

ηc(41S 0) hc(21P1) 579.5 0.09584 7.733

4S→1P ψ(43S 1) χ2(13P2) 775.3 0.05045 2.850
χ1(13P1) 811.7 0.09822 7.439
χ0(13P0) 886.9 0.1541 7.959

ηc(41S 0) hc(11P1) 1034 0.03386 5.484
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Table 4.3: Partial widths of, bb̄ E1 radiative transitions from S states.

Initial state Final state Eγ(MeV) 〈 f | r | i〉 Γth.(keV) Γexp(keV)

2S→1P Υ(23S 1) χb2(13P2) 110.4 -1.536 1.908 2.72±0.32
χb1(13P1) 171.3 -1.460 3.860 2.62±0.33
χb0(13P0) 162.7 -1.359 0.1650 1.44±0.252

ηb(21S 0) hb(11P1) 167.6 0.1899 0.1835

3S→2P Υ(33S 1) χb2(23P2) 85.64 -1.231 0.5715 2.66±0.57
χb1(23P1) 99.06 -1.221 0.5228 2.56±0.48
χb0(23P0) 121.8 1.210 0.3178 1.20±0.23

ηb(31S 0) hb(21P1) 151.9 -0.927 3.253

3S→1P Υ(33S 1) χb2(13P2) 432.8 -0.04149 0.0838 <0.37
χb1(13P1) 451.9 0.06956 0.1610 <0.35
χb0(13P0) 483.9 0.1050 0.1500 0.061±0.028

ηb(31S 0) hb(11P1) 480.9 0.01269 0.03845

4S→3P Υ(43S 1) χb2(33P2) 154.9 3.011 20.23
χb1(33P1) 166.7 2.895 14.00
χb0(33P0) 182.5 2.754 5.533

ηb(41S 0) hb(31P1) 145.0 3.098 31.68

4S→2P Υ(43S 1) χb2(23P2) 306.186 0.08973 0.1389
χb1(23P1) 319.0 0.1345 0.2117
χb0(23P0) 341.2 -0.1832 0.1603

ηb(41S 0) hb(21P1) 521.9 1.489 340.8

4S→1P Υ(43S 1) χb2(13P2) 646.2 0.01987 0.06403
χb1(13P1) 664.3 0.03492 0.1289
χb0(13P0) 695.5 0.05386 0.1173

ηb(41S 0) hb(11P1) 958.7 -0.8378 668.8
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Table 4.4: Partial widths of, cc̄ E1 radiative transitions from P states.

Initial state Final state Eγ(MeV) | 〈 f | r | i〉 | Γth.(keV) Γexp(keV)

1P→1S χ2(13P2) J/ψ(13S 1) 429.6 2.514 722.8 384±37
χ1(13P1) 389.4 2.536 547.3 296±30
χ0(13P0) 303.0 2.519 254.7 122±15
hc(11P1) ηc(11S 0) 503.0 0.8986 148.2 387±281±200

2P→2S χ2(23P2) ψ′(23S 1) 115 3.843 32.52
χ1(33P1) 248 4.076 363.1
χ0(33P0) 175 4.326 144.7
hc(31P1) η′c(21S 0) 373 1.271 120.8

2P→1S χ2(23P2) ψ′(13S 1) 739.6 0.3132 57.24
χ1(23P1) 850.7 0.1166 12.07
χ0(23P0) 789.8 0.2350 39.24
hc(21P1) η′c(11S 0) 1012 0.4567 311.36

2P→1D χ2(23P2) ψ3(13D3) 53.49 2.725 2.753
ψ2(13D2) 83.02 2.506 1.554
ψ(13D1) 117.38 2.250 0.236

χ1(23P1) ψ2(13D2) 216.5 2.568 48.21
ψ(13D1) 249.7 2.815 266.7

χ0(23P0) ψ(13D1) 114.3 3.021 39.33
hc(21P1) η2c(11D2) 528.4 0.5996 12.54

3P→3S χ2(33P2) ψ′(13S 1) 242.3 4.991 510.9
χ1(33P1) 199.3 5.380 330.5
χ0(33P0) 138.9 5.785 129.2
hc(31P1) η′c(11S 0) 305.7 4.090 689.0

3P→2S χ2(33P2) ψ′(13S 1) 711.3 0.3606 67.49
χ1(33P1) 673.0 0.09766 4.192
χ0(33P0) 619.2 0.3628 45.06
hc(31P1) η′c(11S 0) 783.6 0.5514 210.9

3P→1S χ2(33P2) ψ′(13S 1) 1246 0.1244 43.18
χ1(33P1) 1213 0.01131 0.3290
χ0(33P0) 1167 0.1469 49.39
hc(31P1) η′c(11S 0) 1356 0.2321 193.6
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Table 4.5: Partial widths of, cc̄ E1 radiative transitions from P states (continued).

Initial state Final state Eγ(MeV) | 〈 f | r | i〉 | Γth.(keV) Γexp(keV)

3P→2D χ2(33P2) ψ3(23D3) 213.0 4.014 377.1
ψ2(23D2) 239.1 2.474 36.20
ψ(23D1) 268.9 3.299 6.101

χ1(33P1) ψ2(23D2) 196.1 2.474 19.97
ψ(23D1) 226.2 3.299 3.632

χ0(33P0) ψ(23D1) 166.1 3.299 1.438
hc(31P1) η2c(21D2) 207.8 4.755 585.0

3P→1D χ2(33P2) ψ3(23D3) 658.5 1.426 1406
ψ2(23D2) 683.8 0.2001 5.567
ψ(23D1) 713.2 0.2456 0.6309

χ1(33P1) ψ2(23D2) 645.2 0.1718 5.714
ψ(23D1) 674.9 -2.815 5270

χ0(33P0) ψ(23D1) 565.1 1.603×10−3 1.338×10−3

hc(31P1) η2c(21D2) 655.2 1.322 1418
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Table 4.6: Partial widths of, bb̄ E1 radiative transitions from P states.

Initial state Final state Eγ(MeV) 〈 f | r | i〉 Γth.(keV) Γexp(keV)

1P→1S χ2(13P2) J/ψ(13S 1) 441.6 1.223 46.43
χ1(13P1) 423.0 1.233 41.45
χ0(13P0) 391.1 1.242 33.25
hc(11P1) ηc(11S 0) 430.2 0.03314 0.03153

2P→2S χ2(23P2) ψ′(23S 1) 242.5 1.260 8.153
χ1(33P1) 229.6 1.241 6.782
χ0(33P0) 207.1 -1.219 4.755
hc(31P1) η′c(21S 0) 296.6 -0.3909 1.438

2P→1S χ2(23P2) ψ′(13S 1) 776.5 0.2132 7.670
χ1(23P1) 764.3 0.1755 19.84
χ0(23P0) 743.1 -0.1236 4.960
hc(21P1) η′c(11S 0) 932.8 0.06485 1.231

2P→1D χ2(23P2) ψ3(13D3) 173.5 0.3933 0.4895
ψ2(13D2) 66.28 0.38 0.003480
ψ(13D1) 194.2 -0.1294 0.8835×10−3

χ1(23P1) ψ2(13D2) 157.8 -0.1246 0.01099
ψ(13D1) 91.35 -1.6216 1.084

χ0(23P0) ψ(13D1) 157.8 0.1187 0.03993
hc(21P1) η2c(11D2) 170.6 0.4167 0.6213

3P→3S χ2(33P2) ψ′(13S 1) 217.8 -1.161 20.07
χ1(33P1) 206.0 1.304 21.44
χ0(33P0) 190.3 1.313 17.13
hc(31P1) η′c(11S 0) 233.4 1.364 34.13

3P→2S χ2(33P2) ψ′(23S 1) 644.5 0.2518 5.018
χ1(33P1) 633.2 0.6832 42.70
χ0(33P0) 618.1 0.1455 1.801
hc(31P1) η′c(21S 0) 667.9 0.2922 9.165

3P→1S χ2(33P2) ψ′(13S 1) 1227 0.09697 6.258
χ1(33P1) 1216 0.07465 3.613
χ0(33P0) 1202 0.04686 1.375
hc(31P1) η′c(11S 0) 1281 -0.1242 11.68
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Table 4.7: Partial widths of, bb̄ E1 radiative transitions from P states (continued).

Initial state Final state Eγ(MeV) 〈 f | r | i〉 Γth.(keV) Γexp(keV)

3P→2D χ2(33P2) ψ3(23D3) 157.83 -0.7177 4.905
ψ2(23D2) 166.7 0.7097 1.009
ψ(23D1) 175.6 0.7014 0.07674

χ1(33P1) ψ2(23D2) 154.9 0.7097 0.8092
ψ(23D1) 163.7 0.7014 0.06228

χ0(33P0) ψ(23D1) 148.0 0.7014 0.04596
hc(31P1) η2c(21D2) 157.8 0.9487 10.20

3P→1D χ2(33P2) ψ3(23D3) 546.4 0.05374 1.141
ψ2(23D2) 555.9 -0.07087 0.3731
ψ(23D1) 566.3 0.3126 0.5116

χ1(33P1) ψ2(23D2) 645.2 -0.1718 5.714
ψ(23D1) 554.9 -0.1611 9.589

χ0(33P0) ψ(23D1) 539.7 0.02063 0.1930
hc(31P1) η2c(21D2) 546.4 -0.05250 1.297
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Table 4.8: Partial widths of, cc̄ M1 radiative transitions.

Multiplet Initial state Final state Eγ(MeV) | 〈 f | i〉 | Γth.(keV) Γexp(keV)
1S J/Ψ(13S 1) ηc(11S 0) 114.4 0.9677 3.736 1.6±0.4

2S ψ′(23S 1) η′c(21S 0) 48.76 0.9523 0.2801 <0.2
ηc(11S 0) 638.2 0.1116 8.623 1.0±0.2

η′c(21S 0) J/Ψ(13S 1) 500.0 0.1289 16.60

3S ψ(33S 1) ηc(31S 0) 92.15 0.2507 0.1310
η′c(21S 0) 382.0 0.1613 3.862
ηc(11S 0) 920.0 0.1071 23.79

ηc(31S 0) ψ′(23S 1) 337.5 0.2135 14.00
J/Ψ(13S 1) 832.2 0.09521 41.75

1P hc(11P1) χc1(13P1) 14.72 0.9991 8.477×10−3

χc0(13P0) 108.9 0.9804 1.103
χc2(13P2) hc(11P1) 30.66 0.9985 0.0765

2P hc(21P1) χc1(23P1) 21.90 0.2875 2.309×10−3

χc0(23P0) 97.24 0.2756 0.06200
χc2(13P2) 500.7 0.04576 1.167
χc1(13P1) 550.9 0.04534 0.9156
χc0(13P0) 636.9 0.07005 1.125

χc2(23P2) hc(21P1) 27.50 0.2957 4.844×10−3

hc(11P1) 552.4 0.04389 0.8648
χc1(23P1) hc(11P1) 509.3 0.03689 0.4785
χc0(23P0) hc(11P1) 441.8 0.04493 0.4635

1P ψ(11D2) ψ(13D2) 6.994 0.9999 0.9109×10−3

ψ(13D1) 36.82 0.9493 0.1198
ψ(13D3) ψ(11D2) 19.95 0.9993 0.02111

2D ψ(21D2) ψ(23D2) 4.997 0.9998 0.3322×10−3

ψ(23D1) 25.92 0.9944 0.02752
ψ(13D3) 464.3 0.03212 0.3850
ψ(13D2) 488.2 0.009423 0.02752
ψ(13D1) 514.5 0.05644 0.6932

ψ(23D3) ψ(21D2) 27.50 0.9981 0.05520
ψ(11D2) 552.4 0.04389 0.8648

ψ(23D2) ψ(11D2) 509.3 0.03688 0.4785
ψ(23D1) ψ(11D2) 441.8 0.04493 0.4635
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Table 4.9: Partial widths of, bb̄ M1 radiative transitions.

Multiplet Initial state Final state Eγ(MeV) | 〈 f | i〉 | Γth.(keV) Γexp(keV)

1S Υ(13S 1) ηb(11S 0) 69.14 0.07639 0.09733×10−3

2S Υ(23S 1) ηb(21S 0) 31.95 0.9978 1.638×10−3

ηb(11S 0) 612.2 0.07053 0.05755 0.013±0.006
ηb(21S 0) Υ(13S 1) 655.2 0.07383 0.2320

3S Υ(33S 1) ηb(31S 0) 92.15 0.2507 0.03275
ηb(21S 0) 22.98 0.3173 0.06160×10−3 <0.013
ηb(11S 0) 466.21 0.03698 0.006988 0.010±0.002

ηb(31S 0) Υ(23S 1) 413.5 0.3164 1.071
Υ(13S 1) 1009 0.03443 0.1844

1P hb(11P1) χb1(13P1) 8.996 0.03677 0.0497×10−6

χb0(13P0) 39.92 0.03449 1.272×10−6

χb2(13P2) hb(11P1) 21.98 0.03856 0.7960×10−6

2P hb(21P1) χb1(23P1) 5.998 0.1528 0.2540×10−6

χb0(23P0) 26.97 0.1627 0.008725×10−3

χb2(13P2) 446.9 0.08379 0.0527
χb1(13P1) 467.9 0.08008 0.03315
χb0(13P0) 497.5 0.07529 0.01173

χb2(23P2) hb(21P1) 5.998 0.1684 0.3085×10−6

hb(11P1) 26.97 0.08251 0.006732×10−3

χb1(23P1) hb(11P1) 453.6 0.08103 0.0309
χb0(23P0) hb(11P1) 433.5 0.07926 0.02583

1D Υ(11D2) Υ(13D2) 3.000 1.000 1.361×10−6

Υ(13D1) 36.82 0.9493 0.02995
Υ(13D3) Υ(11D2) 6.998 1.000 0.01728×10−6

2D Υ(21D2) Υ(23D2) 2.000 0.09863 0.03925×10−9

Υ(23D1) 25.92 0.9944 0.006880
Υ(13D3) 387.6 0.01357 0.7575×10−3

Υ(13D2) 397.3 0.004793 0.7265×10−3

Υ(13D1) 407.8 0.04187 0.003598
Υ(23D3) Υ(21D2) 7.000 0.1684 0.490×10−6

Υ(11D2) 401.1 0.08251 0.02216
Υ(23D2) Υ(11D2) 392.5 0.08104 0.02000
Υ(23D1) Υ(11D2) 383.8 0.07926 0.01791
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CHAPTER 5

CONCLUSION

In this work we investigate the Charmonium and Bottomonium spectra and radiative decays

using the basic assumptions of the quark model.

We adopted the hypothesis that spin dependent potentials are attributable to the short distance

part of the potential. For the short distance part, assuming that the perturbative approach

works, we have derived the Coulomb interaction and a relativistic correction to the first order,

the Breit Interaction. By making a non-relativistic reduction via Foldy-Wouthuysen trans-

formation we extracted spin-dependent potential from one gluon exchange and explained the

physical meaning of the various parts of the potential.

Furthermore we present our method of using 3D harmonic oscillator solutions to diagonal-

ize the derived Hamiltonian therefore obtaining the masses and wavefunctions of cc̄ and bb̄

mesons. Using these wavefunctions we also calculate the partial widths of the radiative E1

and M1 decays.

Finally we present the results of our analysis for the spectrum of Charmonium and Bottomo-

nium and the fitted values of the parameters, mc, mb, σ, αs. We also give plots of the radial

wavefunctions for some Bottomonium and Charmonium states. For the bb̄ the predicted mass

values agree well with the experiments whereas for cc̄, our model fails to predict the spec-

trum precisely. By comparing with the experimental and lattice results we comment on the

shortcomings of our method.

All in all we believe that, this study was beneficial in investigating the fundamental assump-

tions of the Quark Model and setting up a crude model for the Charmonium and Bottomonium

systems that can explain the fundamental properties of the spectrum. For a more detailed
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analysis, a relativized approach together with a procedure to take BB̄ and DD̄ thresholds into

account must be followed.In such a scheme consideration of light quarks would be possible.
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for baryons with two and three heavy quarks, Physical Review D 72 (2005), no. 3, 1–17.

[9] G. Breit, The effect of retardation on the interaction of two electrons, Physical Review
34 (1929), no. 4, 553.

[10] V. Zeno Chraplyvy, Reduction of Relativistic Two-Particle Wave Equations to Approxi-
mate Forms. I, Physical Review 91 (1953), no. 2, 388–391.

[11] Z.V. Chraplyvy, Reduction of relativistic two-particle wave equations to approximate
forms. ii, Physical Review 92 (1953), no. 5, 1310.

[12] ATLAS Collaboration, Observation of a New b State in Radiative Transitions to (1S)
and (2S) at ATLAS, Physical Review Letters (2011), 1–17.

[13] TP Das, Relativistic quantum mechanics of electrons, Harper & Row, 1973.

40



[14] A. De Rujula, H. Georgi, and SL Glashow, Hadron masses in a gauge theory, Physical
Review D 12 (1975), no. 1, 147.

[15] M. De Sanctis, A generalization of the Fermi-Breit equation to non-Coulombic spatial
interactions, The European Physical Journal A 41 (2009), no. 2, 169–178.

[16] M. De Sanctis and P. Quintero, Charmonium spectrum with a generalized Fermi-Breit
equation, The European Physical Journal A 46 (2010), no. 2, 213–221.

[17] E. Eichten, K. Gottfried, T. Kinoshita, J Kogut, KD Lane, and T.M. Yan, Spectrum of
charmed quark-antiquark bound states, Physical Review Letters 34 (1975), no. 6, 369–
372.

[18] E. Eichten, K. Gottfried, T. Kinoshita, KD Lane, and T.M. Yan, Charmonium: the
model, Physical Review D 17 (1978), no. 11, 3090.

[19] E. Eichten, K. Gottfried, T. Kinoshita, KD Lane, and TM Yan, Charmonium: Compari-
son with experiment, Physical Review D 21 (1980), no. 1, 203.

[20] L.L. Foldy and S.A. Wouthuysen, On the Dirac theory of spin 1/2 particles and its non-
relativistic limit, Physical Review 78 (1950), no. 1, 29.

[21] S. Gasiorowicz and J.L. Rosner, Hadron spectra and quarks, American Journal of
Physics 49 (1981), 954.

[22] S. Godfrey and N. Isgur, Mesons in a relativized quark model with chromodynamics,
Physical Review D 32 (1985), no. 1, 189.

[23] OW Greenberg, Resource Letter Q-1: Quarks, American Journal of Physics (1982).

[24] D Griffiths, Introduction to Elementary Particles, Wiley-VCH, 2004.

[25] S.N. Gupta and S.F. Radford, Quark-quark and quark-antiquark potentials, Physical
Review D 24 (1981), 2309–2323.

[26] S.N. Gupta and SF Radford, Remarks on quark-quark and quark-antiquark potentials,
Phys. Rev. D;(United States) 25 (1982), no. 12, 1829–1841.

[27] S.N. Gupta, S.F. Radford, and W.W. Repko, Quarkonium spectra and quantum chromo-
dynamics, Physical Review D 26 (1982), no. 11, 3305.

[28] K. Hagiwara, K. Hikasa, K. Nakamura, M. Tanabashi, M. Aguilar-Benitez, C. Amsler,
R.M. Barnett, PR Burchat, CD Carone, C. Caso, and Others, Review of particle physics,
Physical Review D (2002).

[29] JD Jackson, Classical Electrodynamics, third edit ed., John Wiley&Sons, Inc.

[30] Taichi Kawanai and Shoichi Sasaki, Charmonium potential from full lattice QCD, 156
(2011), no. 7, 1–5.

[31] Michael Klasen, Benno List, Stephanie Hansmann-Menzemer, and Rainer Mankel, Sum-
mary of the Heavy Flavor Working Group, Proceedings of the XV International Work-
shop on Deep-Inelastic Scattering and Related Subjectes, DIS 2007, July 2007, p. 17.
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APPENDIX A

FOLDY-WOUTHUYSEN TRANSFORMATION

We start with a Dirac Hamiltonian for two particles with an arbitrary potential, V ,

H = αI · pI + αII · pII + βImI + βIImII + V (A.1)

The Dirac matrices are 16 × 16 matrices, αI and βI operate on the spinor space of the first

particle andαII and βII operate on those of the second particle, with elements given as,

(αI) jk,JK = (αI) jk(δ)JK , (βI) jk,JK = (βI) jk(δ)JK (A.2)

(αII) jk,JK = (δ) jk(αII)JK , (βII) jk,JK = (δ) jk(βI)JK (A.3)

Therefore the commutation relations are of the form,

(αI(II)
n )2 = (βI(II)

n )2 = I16×16 (A.4)

[(αI) jk,JK , (αI) j′k′,J′K′]+ = 2(δ)kk′(δ)JJ′(δ) j j′(δ)KK′ (A.5)

Note that the operator αI(II) · pI(II) mixes states with negative and positive energy of the

1st(2nd), which is the result of the relativistic nature of the Dirac equation. In order to obtain

a non-relativistic equation we need to remove this mixing. We identify such operators by

considering their commutation with βI and βII . We label the operators as EE (even-even) if

they commute with βI and βII , OO if they anti-commute with both βI and βII , and EO(OE) if

they commute with βI(βII) and anti-commute with βII(βI), i.e,

[OO, βI]+ = [OO, βI]+ = 0 (A.6)

[EE, βI] = [EE, βI] = 0 (A.7)

[EO, βII]+ = [OE, βI]+ = 0 (A.8)
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[EO, βI] = [OE, βII] = 0 (A.9)

Note that EE operators do not mix negative and positive energy solutions of the neither 1st

and 2nd particle whereas OOmix both and OE(EO) mix only the negative and positive energy

solutions of the 1st(2nd) particles.

The idea behind the Foldy-Wouthuysen transformation is to make a unitary transformation,

Ψ′ = eiS Ψ (A.10)

so that in the transformed Hamiltonian,

∂

∂t
Ψ′ =

∂

∂t
(eiS Ψ) = eiS ∂

∂t
Ψ = eiS HΨ = eiS He−iS eiS Ψ = H′Ψ′ (A.11)

H′ = eiS He−iS (A.12)

the operators that result in mixing only contributes to the in the order 1/m4. Determination

of the operator S in the case of one particle is very easy: First one expresses the transformed

Hamiltonian as series expansion

H′ = H + i [S ,H] − 1
2!

[S , [S ,H]] + −− (A.13)

then requires the transformed Hamiltonian not to include the operators that mix negative and

positive energy solutions at the first order. Therefore for a general case of Hamiltonian for

one particle,

H = E + O + βm (A.14)

one chooses S = −iβO/m so that the transformed Hamiltonian includes the odd operator only

at second order (1/m2). For the case of two particles

H = EE + OE + EO + OO + βImI + βIImII (A.15)

the transformation is given as[11],

H = βImI + βIImII + (EE) +
βI

2mI
(OE)2 +

βII

2mII
(EO)2 − βI

8m3
I

(OE)2 − βII

8m3
II

(EO)2(A.16)

+
1

8m2
I

[[OE,EE] ,OE] +
1

8m2
I

[[EO,EE] ,OE] +
βIβII

4mI − mII
[[OE,OO]+ ,OE]+
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for particles with different mass, mI , mII . But for the case of equal masses obtaining S is

a formidable task and the resulting tedious formula can be found at [11]. At first sight one

might think that the formula given above can not be used for our case where the Hamiltonian

is given by,

HB = HI + HII + UB(r) (A.17)

where, in CM coordinates,

HI = αI · pI + βImq = αI · p + βImq (A.18)

HII = αII · pII + βIImq = −αII · p + βIImq (A.19)

UB(r) = −(
4
3
αs)

1
r

[
1 − α

I · αII

2
+

(αI · r12)(αII · r12)
2r3

]
(A.20)

But a clever observation by [1] makes the above formula usable. The reasoning follows as,

since we are interested in separating negative and positive energy solutions, we might as well

do the separation in the beginning using the projection operators

ΛI
± ≡

EI ± HI

2EI
ΛII
± ≡

EII ± HII

2EII
(A.21)

where

EI ≡
√

m2
I + p2 EII ≡

√
m2

II + p2 (A.22)

In [11] this observation is made rigorous by considering, instead of our starting Hamiltonian,

the Hermitian part of the three-dimensional Bethe-Salpeter equation written in coordinate

space given as,

HΨ(r) =

(
HI + HII +

1
2

[{
ΛI

+ΛII
+ − ΛI

−Λ
II
−
}
,HB(r)

]
+

)
Ψ(r) = EΨ(r) (A.23)

We now evaluate the anti-commutator of UB(r) with the projection operators. Noting that

ΛI
+ΛII

+ − ΛI
−Λ

II
− =

(EI + HI)(EII + HII)
EIEII

− (EI − HI)(EII − HII)
EIEII

(A.24)

=
EII HI

EIEII
+

EIHII

EIEII
(A.25)

=
HI

EI
+

HII

EII
(A.26)
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therefore,

1
2

[{
ΛI

+ΛII
+ − ΛI

−Λ
II
−
}
,HB(r)

]
+

= 1
2

[
HI

EI
+

HII

EII
,HI

]

+

(A.27)

+
1
2

[
HI

EI
+

HII

EII
,HI

]

+

(A.28)

+
1
2

[
HI

EI
+

HII

EII
,UB

]

+

(A.29)

Now observe that, for example,

[
HI

EI
,HI(r)

]

+

=


HI√

m2
I + p2

,HI(r)


+

(A.30)

= 1
mI

[
HI

( p
m

)
− 1

2

( p
m

)2
+ . . . ,HI(r)

]

+

(A.31)

where we have expanded in the powers of p
m . But we are only interested in the terms up to

order ( 1
m )2, therefore discarding the higher order we arrive at.

[
HI

EI
,HI(r)

]

+

≈ 1
m2

[
HI p,HI(r)

]
+ (A.32)

Carrying out a similar analysis in all terms, we compute the commutation of HB and positive

and negative energy projectors, up to order 1/m2, which is given as,

HI + HII +
1
2

[{
ΛI

+ΛII
+ − ΛI

−Λ
II
−
}
,HB(r)

]
+

= EE + OE + OO (A.33)

where,

EE =
ε

2r
(βI + βII) − ε

8m2

(
βI + βII

) [
p2,

1
r

]

+

(A.34)

OE = αI · p +
3ε
8m

[
αI · p, 1

r

]

+

+
iε
8m

αI × σII ·
[
p,

1
r

]

+
ε

8m

[
p·, r(αI · r)

r3

]

+

(A.35)

+
iε
8m

σII ,

[
p×, r(αI · r)

r3

]

+

(A.36)

EO = −αII · p − ε 3ε
8m

[
αII · p, 1

r

]

+

− iε
8m

αI × σII ·
[
p,

1
r

]

− ε

8m

[
p·, r(αI · r)

r3

]

+

(A.37)

− iε
8m

σII ,

[
p×, r(αI · r)

r3

]

+

(A.38)
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Now Substituting above terms in Eqn[A.16] gives the desired Breit-Fermi interaction terms.

HBF = −4
3
αs

r
(A.39)

2m +
p2

m
− p4

4m3 (A.40)

−2
3
αs

m2
q

(
p2

r
+

r(r · p) · p
r3

)
(A.41)

+
4
3
αs

m2
q
δ(r)

(
1 +

8π
3

S1 · S2

)
(A.42)

+2
αs

m2
qr3

((S1 + S2) · L) (A.43)

+
4
3
αs

m2
qr3

(
3

(S1 · r)(S2 · r)
r2 − S1 · S2

)
(A.44)
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APPENDIX B

TENSOR INTERACTION COEFFICIENTS

In this part given the tensor interaction

VTensor =
4
3
αs

m2
qr3

(
3

(S1 · r)(S2 · r)
r2 − S1 · S2

)
(B.1)

we are interested in evaluating matrix elements of the tensor interaction coefficients,

〈3(S1 · r)(S2 · r)
r2 − S1 · S2〉 = 〈T12〉 (B.2)

Noting that,

(S · r)2 = (S1 · r)2 + (S2 · r)2 + 2(S2 · r)(S1 · r) (B.3)

=
1
4

(σ1 · r)2 +
1
4

(σ2 · r)2 + 2(S2 · r)(S1 · r) (B.4)

=
1
2

r2 + 2(S2 · r)(S1 · r) (B.5)

and

S1 · S2 =
1
2

(S2 − S2
1 − S2

2) (B.6)

=
1
2

(S2 − 3
2

) (B.7)

We obtain the coefficient in terms of the total spin operator.

1
2

(
3

(S · r)2

r2 − S2
)

(B.8)

In spherical coordinates the total spin matrix is given as,

S = S x x̂ + S yŷ + S zẑ r = r(sin θ cos φx̂ + sin θ sin φŷ + cos θẑ) (B.9)
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Therefore the scalar product is,

(S · r)2

r2 = S 2
x sin2 θ cos2 φ + S 2

y sin2 θ sin2 φ + S 2
z cos2 θ (B.10)

+(S xS y + S yS x) sin2 θ cos φ sin φ (B.11)

+(S xS z + S zS x) sin θ cos θ cos φ (B.12)

+(S yS z + S zS y) sin θ cos θ sin φ (B.13)

We are interested in finding the matrix elements in the 〈 j, l, s,m j |basis, which can be ex-

pressed as,

Σ〈 ˜j, l, s,m j | l′,m′l , s′,m′s〉
{
〈l′,m′l , s′,m′s | T12 | l′′,m′′l , s′′,m′′s 〉

}
〈l′′,m′′l , s′′,m′′s | j, l, s,m j〉

(B.14)

where the summation is over primed and double primed states. Evaluating the matrix elements

in the curly brackets and expressing the various combinations of sine and cosine terms in terms

spherical harmonics, we find,

〈l′,m′l , s′,m′s | T12 | l′′,m′′l , s′′,m′′s 〉 = (B.15)

c++

(
2π
3

)
〈l′,m′l , s′,m′s | Y−1

1 | l′′,m′′l , s′′,m′′s + 2〉 (B.16)

+c−−

(
2π
3

)
〈l′,m′l , s′,m′s | Y1

1 | l′′,m′′l , s′′,m′′s − 2〉 (B.17)

+

(
2π
3

)
〈l′,m′l , s′,m′s |

(
−c0Y−1

1 Y1
1 + 2m′′s (Y0

1 )2
)
| l′′,m′′l , s′′,m′′s 〉 (B.18)

+c+

2
√

2π
3

(2m′′s + 1)〈l′,m′l , s′,m′s | Y−1
1 Y0

1 | l′′,m′′l , s′′,m′′s + 1〉 (B.19)

+c−
2
√

2π
3

(2m′′s − 1)〈l′,m′l , s′,m′s | Y1
1 Y0

1 | l′′,m′′l , s′′,m′′s − 1〉 (B.20)

where coefficients arising from the action of raising and lowering operators are,

c++ =
√

( j′′ − m′′)( j′′ + m′′ + 1)
√

( j′′ − m′′ − 1)( j′′ + m′′ + 2) (B.21)

c−− =
√

( j′′ + m′′ − 1)( j′′ − m′′ + 2)
√

( j′′ + m′′)( j′′ − m′′ + 1) (B.22)

c+ =
√

( j′′ − m′′)( j′′ − m′′ + 1) c− =
√

( j′′ + m′′)( j′′ − m′′ + 1) (B.23)

c0 = 2( j′′( j′′ + 1) − m′′) (B.24)
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To evaluate the spherical harmonics together with the inner product of | lml〉 states we use the

3jm symbols to evaluate the integral between the products of three spherical harmonics

∫
Ym1

l1
Ym2

l2
Ym3

l3
sin θdθdφ =

N2(l1, l2, l3)


l1 l2 l3

0 0 0




l1 l2 l3

m1 m2 m3

 (B.25)

where, 
l1 l2 l3

m1 m2 m3

 =
(−1) j1− j2−m3

√
2 j3 + 1

〈 j1m1 j2m2 | j3 − m3〉 (B.26)

and

N3(l1, l2, l3) =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π
(B.27)

Therefore for example the first term gives

c++

(
2π
3

)
〈l′,m′l , s′,m′s | Y−1

1 | l′′,m′′l , s′′,m′′s + 2〉 (B.28)

= c++

(
2π
3

)
〈l′,m′l | Y−1

1 | l′′,m′′l 〉δs′,s′′δm′s,m′′s +2 (B.29)

= c++

(
2π
3

) {∫
Y
∗m′l
l′ Y−1

1 Y
m′′l
l′′ sin θdθdφ

}
δs′,s′′δm′s,m′′s +2 (B.30)

= c++

(
2π
3

)
N2(l1, l2, l3)


l′ 1 l′′

0 0 0




l′ 1 l′′

−m′l −1 m′′l

 δs′,s′′δm′s,m′′s +2 (B.31)

Next the remaining Clebsch Gordon coefficients are expressed in terms of 3 jm symbols, using

Eqn[B.26], which we will show only for the first term,

=
∑

′,′′


l′ 1 j̃

m′l 1 −m̃ j




l′ 1 l′′

0 0 0




l′ 1 l′′

−m′l −1 m′′l




l′ 1 j

m′′l −1 m j

 (B.32)

Where we have used the orthogonality relation to deduce, m′′j = −m′j = −1. Using the

selection rules we obtain m̃ j = 1 − m j, and using the orthogonality relations by carrying

out the summations, and carrying out a similar analysis in all terms one finds that the tensor

operator has non-vanishing diagonal matrix elements only between L > 0 spin-triplet states
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and its value is given by

TTensor = 3
(~S i · r)(~S j · r)

r2 − ~S i · ~S j =



− l
2(2l+3) J = L + 1

1/2 J = L

− (l+1)
3(2l−1) J = L − 1

0 L = 0 or S = 0

(B.33)
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