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ABSTRACT

ESTIMATION OF DERTERMINISTIC AND IMU (INERTIAL MEASUREMENT
UNIT) ERROR PARAMETERS

Unsal, Derya
M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof Dr. Kerim Demirbas

February 2012, 122 Pages

Inertial Measurement Units, the main component of a navigation system, are used in
several systems today. IMU’s main components, gyroscopes and accelerometers, can
be produced at a lower cost and higher quantity. Together with the decrease in the
production cost of sensors it is observed that the performances of these sensors are
getting worse. In order to improve the performance of an IMU, the error
compensation algorithms came into question and several algorithms have been
designed. Inertial sensors contain two main types of errors which are deterministic
errors like scale factor, bias, misalignment and stochastic errors such as bias
instability and scale factor instability. Deterministic errors are the main part of error
compensation algorithms. This thesis study explains the methodology of how the
deterministic errors are defined by 27 state static and 60 state dynamic rate table
calibration test data and how those errors are used in the error compensation model.
In addition, the stochastic error parameters, gyroscope and bias instability, are also
modeled with Gauss Markov Model and instant sensor bias instability values are
estimated by Kalman Filter algorithm. Therefore, accelerometer and gyroscope bias
instability can be compensated in real time. In conclusion, this thesis study explores
how the IMU performance is improved by compensating the deterministic end

stochastic errors. The simulation results are supported by a real IMU test data.
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0z

AOB (ATALETSEL OLCUM BiRiMI) DETERMINISTIK VE OLASILIKSAL
HATA PARAMETRELERININ KESTIRIMI

Unsal, Derya
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii

Tez Yoneticisi: Prof. Dr. Kerim Demirbas

Subat 2012, 122 Sayfa

Seyriisefer sistemlerinin temel bileseni olan ataletsel 6l¢lim birimleri giiniimiizde bir
cok degisik sistemde kullanilmaktadir. Ataletsel 6l¢iim biriminin ana bilesenleri olan
ivmedlcerler ve doniidlgerler liretimdeki maliyetin diismesi ile birlikte tiretim
sayilarinda artis meydana gelmistir. Ivmedlcer ve doniidlcerlerin diisiik maliyetle
yiiksek sayida {iretilmesi ile birlikte sensor performanslarinda diisiis oldugu
gozlemlenmektdir. Bu nedenle, ataletsel 6l¢iim birimlerinin performansini arrtikmak
amactyla hata telafi algoritmalar1 giindeme gelmis ve ¢ok cesitli algoritmalar
tasarlanmistir. Ataletsel sensorler iki tiirli hata igerirler. Bunlar oranti katsayisi
hatasi, sabit kayma ve eksenel kagiklik gibi deterministik hatalar ve sabit kayma
hatas1 kararsizligi, orant1 katsayisi hatasi kararsizligi gibi olasiliksal hatalardir.
Deterministik hatalar hata telafi algoritmalarinin temel parcalarini olusturmaktadir.
Bununla birlikte uzun siireli seyriisefer sistemi kullanimlarinda olasiliksal hatalar
kritik 6nem tasimaktadir. Bu tez ¢aligsmasi, donii tablasi kullanilarak gergeklestirilen
27 durumlu statik pozisyon testi ve 60 durumlu dinamik kalibrasyon testi
verilerinden deterministik hatlarin nasil hesaplandigin1 ve belirlenen hatalarin hata
telafi modeli igerisinde nasil kullanildigin1 anlatmaktadir. Ayrica, olasiliksal hata

parametrelerinin Gauss-Markov siireci ile modellenerek sensorlerin sabit hata
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kararsizliklarinin anlik olarak kestirimi Kalman siizgeci algoritmasi kullanilarak
gerceklestirilmistir. Ivmedlgerler ve doniidlcerlerin sabit hata kararsizliklarinin anlik
olarak kestirilmesi ile birlikte ataletsel 6l¢iim biriminin olasiliksal hatalar1 gergek
zamanli olarak telafi edilebilecektir. Sonug olarak, bu tez ¢aligmasinda deterministik
ve olasiliksal sensor hatalarinin telafisi yapilarak ataletsel Ol¢lim  birimi

performansinin nasil arttirildig1 arastirilmistir.

Anahtar Kelimeler: Ataletsel 6l¢im birimi, doniidlger, ivmedlger, Kalman siizgeci.
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CHAPTER 1

INTRODUCTION

Navigation is the art of getting from one place to another, safely and efficiently [1].
From past to present, several tools and systems such as compasses, maps, sun, stars
were used for navigation. In today’s world these tools have been replaced by
electronic equipments such as sensors, antennas, etc. These electronic equipments
form the basis of the modern navigation systems. Inertial Navigation Systems and
Global Positioning Systems can be shown as an example for the modern navigation
systems. Nowadays several types of INS, GPS and integrated INS/GPS are used in

different platforms such as aircrafts, ships, guided missiles and UAVs.

GPS acquire and process satellite signals to calculate navigation parameters such as
position, velocity and attitude, according to the received signals. GPS always need
satellite signals and this is the major drawback of GPS. However, INS use IMU
outputs to construct position velocity and attitude by processing the navigation

equations. Therefore IMUs are the major part of inertial navigation systems.

An inertial measurement unit is a device, which is used to measure linear
acceleration and angular rate. Inertial measurement units contain two types of
sensor, accelerometer and gyroscope. An accelerometer measures linear acceleration
about its sensitivity axis and integrated acceleration measurements are used to
calculate velocity and position. Besides a gyroscope measures angular rate about its
sensitivity axis and gyroscope outputs are used to maintain orientation in space. In
addition to these sensors IMU has a processor. IMU calibration algorithm runs on the

processor and also the communication interface in the processor.
1



Inertial measurement units are divided into various classes such as strategic,
navigation, tactical, industrial and automotive grade. These classes are determined
according to performance levels of sensors which are used in IMUs. The navigation
grade IMUs are the highest grade systems and they are used on ships, ballistic

missiles and aircrafts.

The cost of an IMU increases when the sensor performance requirements increase.
The major reasons for the cost increase can be explained in two ways. The first
reason is the highly skilled production line requirement and the second reason is the
decrease in the percentage of utilizable sensor in the batch. Therefore, in order to
improve the performance of inertial sensors, the calibration algorithms and the error
compensation models were researched and developed. Thereby both low-cost and

high-performance IMUs could be produced.

The main objective of this thesis work is to develop methods in order to estimate
deterministic and stochastic error parameters of MEMS based inertial measurement
units. Additionally, improving the performance of IMUs is aimed by using these
estimated parameters. Therefore an error calibration algorithm is implemented and

estimated parameters are used in this algorithm.

In this thesis, an error model which includes both deterministic and stochastic errors
is constituted to simulate the behavior of a MEMS-based IMU. Outputs of the error
model simulation are used as input for deterministic error estimation algorithm. After
the estimation of deterministic error parameters, these parameters are embedded into
the error compensation simulation to compensate the effects of deterministic errors.
Also, the Kalman filter algorithm is developed according to the stochastic error
model and used for estimating stochastic errors. After the determination of
stochastic errors, outputs of the error compensation algorithm are corrected by

subtracting estimated stochastic errors

This thesis study is composed of eight chapters .



Chapter 1 provides introduction and summary about content of the chapters.
The second chapter of this thesis gives a theoretical background about structure of

IMUs, types and production methods of inertial sensors.

In Chapter 3, the Kalman filter algorithm and its properties are presented.
Additionally mathematical model of the Kalman filter is given. The role of the

Kalman filter is also explained.

Chapter 4 gives general information about inertial sensor error types, error models
and provides equations of the sensor outputs. Deterministic and stochastic error types

are explained separately. Besides, the IMU error model is described in detail.

The fifth chapter of this thesis explains deterministic error estimation techniques.
IMU calibration test procedures such as static and dynamic tests are introduced and

the technique which is suggested in the scope of this thesis study is explained.

In Chapter 6 stochastic sensor error estimation techniques are explained. System

model and measurement model are also provided.

Chapter 7 presents simulation results. These results include both deterministic and
stochastic error estimation simulation and algorithm results. In addition, simulation
results are evaluated and different simulation results which are carried under

different conditions are discussed.

In Chapter 8 summary of this thesis study and suggestions for future are given



CHAPTER 2

THEORETICAL BACKGROUND ABOUT IMU

Inertial measurement units typically contain three orthogonal gyroscopes a and three
orthogonal accelerometers, measuring angular velocity and linear acceleration [2].
As mentioned in the previous chapter, inertial measurement units are divided into
various classes and these classes are determined according to error limits of inertial
sensors such as scale factor, bias error and sensor noise. These sensor limits vary

depending on the types of sensors.

This chapter gives theoretical background about IMUs and inertial sensor
technologies. Section 2.1 summarizes the properties of an IMU an Section 2.1.1
gives some information about accelerometers and their features. Similar to the

Section 2.1.1, Section 2.1.2 discusses types of gyroscopes and their features.

2.1 Inertial Measurement Unit

The combination of gyros, accelerometers, and supporting structure assembly and
electronics was referred to as the IMU.. There are two types of inertial measurement
configuration: gimballed or stabilized platform, strapdown or analytical platform.
The primary difference between the gimballed and strapdown system is the
environment in which the accelerometers and gyroscopes must function. Gimballed
IMUs, first version of IMU configurations, consist of a platform isolated from
vehicle rotations by gimbals. Since the platform does not rotate with the vehicle, its

orientation remains fixed. On the other hand, strapdown IMUs are attached rigidly to



the body of the vehicle and IMUs move with the vehicle. Gimballed IMUs provide
very accurate navigation data but mechanical complexities and costs of the gimballed
IMUs are very high. Strapdown IMUs are mechanically simple, lower cost, more
useful due to small size. Therefore, strapdown inertial measurement units are

preferred today [3,4,5].

GIMBALLED

STRAPDOWN

Figure 1 Gimballed and Strapdown Accelerometers

The major disadvantage of the strapdown inertial system is increase in computational
complexity. However, recent advances in computer and sensor technology allow to

overcome this problem [3].

As mentioned Chapter 1, according to their error performances, IMUs can be

classified into different groups. Table-1 presents these groups and their error

limitations.
Table 1 IMU Classification/[8]
Tactical Grade | Navigation Grade | Strategic Grade
Error <20 km/h < 1km/h <30 m/h
Gyro Drift Rate 1-10 deg/h 0.015 deg/h 0.0001 deg/h
Acc Bias 100-1000 pg 50-100 pg 1 pg
Cost of IMU < 10000 $ 10000 — 70000 $ >200000 $




The following sections explain the basic parts of inertial measurement units,

accelerometers and gyroscopes.

2.1.1 Accelerometers

An accelerometer measures the acceleration in an inertial reference frame, which can
be used to estimate the acceleration of moving body [6]. The integrated value of an
accelerometer gives the velocity and second integration gives the distance travelled.

These calculated parameters are required for inertial navigation.[7]

The main components of a typical accelerometer are a proof mass, a suspension to
hold the mass, and a pickoff, which relates an output signal to the induced

acceleration [6]

with respect to
inertial space

Displacemgnt [ m s X = Xy
pick-off

a
I Acceleration

Signal
proportional
to specific

force
"

Figure 2 A simple accelerometer (Figure is taken from [3])

When the accelerometer is subjected to an acceleration along its sensitive axis, the
proof mass tends to resist the change in movement owing to its inertia. As a result,
the mass is displaced with respect to the body. The force acting on the mass will be
balanced by the tension in the spring and the net extension gives a measure of the

applied force[3].

F =ma=mf+mg (2.1)



F s the total force, m is the mass, gis the gravitational acceleration and f is the
specific force. An accelerometer can not measure gravitational force. Therefore,

specific force f gives the acceleration which is exerted on the sensor.

There are different types of accelerometers are used in different platforms and these
types are classified according to production technology. All accelerometers exhibit
several errors and these errors depend on the type of accelerometer. Fixed bias, scale

factor error, misalignment and random bias can be listed as primary accelerometer

€ITOoT1S.

Accelerometers can be divided into 3 main groups. These groups are mechanical
accelerometers, quartz accelerometers and MEMS accelerometers. Each group of
sensors have different error characteristics. Accordingly, each group has different
application areas such as long-range guidance, tactical weapons and commercial

applications. Figure 3 shows current accelerometer technology applications.[9]
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Figure 3 Current Accelerometer Technology Applications (Figure is taken from [9])

As the figure shows current applications are dominated by electromechanical sensors
and quartz resonators [9]. Figure 4 presents that the tactical performance end of the

accelerometer application spectrum will be dominated by micromechanical



gyroscopes and higher performance applications will continue to use mechanical and

quartz accelerometers.
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Figure 4 Near-term accelerometer technology applications (Figure is taken from
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MEMS accelerometer was used in this thesis study. In this context, MEMS
accelerometer error model is given in more detail in Chapter 4. The following section
includes structure and working principle of MEMS accelerometers. In addition, other

types of accelerometers are also summarized in the following section.

2.1.1.1 MEMS Accelerometers

Types of MEMS accelerometers can be listed as piezoresistive, capacitive,

piezoelectric and tunneling accelerometers.

Piezoresistive accelerometers are the first micromachined and commercialized
inertial sensors [10]. This type of accelerometers incorporate silicon piezoresistors in
their suspension beam. When the frame moves, suspension beams elongate or
shorten, which changes the stress and resistivity of embedded piezoresistors The
variation in acceleration causes the change in resistance. This change can be
evaluated using standard bridge techniques. The simplicity of the structure and

fabrication process is the main advantage of piezoresistive accelerometers. On the
8



other hand, high temperature sensitivity is the main disadvantage of these sensors. .

[6,11]

Reference resistors Suspension beam
iezoresi stors Proof mass

Figure 5 Piezoresistive accelerometer ( Figure is taken from [11])

Capacitive accelerometers use air damped, opposed-plate capacitor as sensing
elements. The support frame of an accelerometer moves from its rest position, when
the acceleration is applied to the sensor. This movement creates the change in the
capacitance between the proof mass and fixed electrodes. In contrast to the
piezoresistive  accelerometers, temperature sensitivity of the capacitive

accelerometers is low [6, 11].

Figure 6 Capacitive accelerometer ( Figure is taken from [11])

Piezorelectric accelerometer use piezoelectric material to sense applied acceleration.
Piezoelectric material converts the measured acceleration to electrical signal.

Therefore, sensor structure does not need any conversion electronics [6].
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Figure 7 Piezoelectric accelerometer ( Figure is taken from [11])

Tunneling accelerometers use a constant tunneling current one tunneling tip and its
counterelectrode to sense displacement. When displacement occurs, a voltage is
adjusted to maintain the current at a constant level. The measured voltage presents
magnitude of the applied acceleration. Resolution of the tunneling accelerometers is

very high. [6,11]

i Mhact s
e (Fineds

Top

Seatonnd Silkoos Anchod

Uinide Husterg

Tiodrom lhﬂl-:lm:u
Eltidnsde Lilmn Sohmrae

Ternebng
Couner-Eledinads

Figure 8 Tunneling accelerometer ( Figure is taken from [11])

2.1.2 Gyroscopes

A gyroscope measures angular rates with respect to an inertial frame to fully describe
the motion of a body in 3D space. The gyroscopes are used in a variety of roles such
as stabilization, autopilot feedback, flight path sensor or platform stabilization and

navigation[3].
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Similar to accelerometers there are different types of gyroscopes. Mechanical gyros,
optical gyros and MEMS gyros can be shown as an example. MEMS gyroscopes are

used in this work and gyroscope error model is explained in more detail in Chapter 4.

RLG = Ring Laser Gyro
DTG = Dry Tuned Gyro
IFOG = Interferomatric Fiber Optic Gyro
1 - - Quariz = Corlolls Senaor
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MEMS = Micro-Eleciro-Mechanical Sensors [allicon)
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Figure 9 Current gyro technology applications (Figure is taken from [9])

MEMS sensors have potentially significant cost, size and weight advantages.
Therefore, MEMS gyroscopes are widely used in tactical grade IMUs, robotics,
smart munitions, etc. Scale factor stability and bias stability performance of optical
gyros are significantly higher than MEMS gyros. Thus, optical gyroscopes, RLG
and FOG, are used in long term navigation applications, such as cruise missiles,
air/land/sea navigation surveying, etc. Some applications, strategic grade IMUs and

self aligning missiles, that require high stability and low error use mechanical gyros.

[9]
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RLG = Ring Laser Gyro
IFOG = Interferometric Fiber Optic Gyro
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Figure 10 Near-term gyro technology applications (Figure is taken from [9])

Figure 10 shows that the MEMS and FOG gyroscope technologies are expected to
replace many current systems. The performance of MEMS gyroscopes is continually

improving, and they are currently being developed for many applications.

A MEMS gyroscope was used in this work. Therefore, MEMS gyroscope error
model is given in more detail in Chapter 4. The following section gives detailed
information about structure and working principle of MEMS gyroscopes. In addition,

other types of gyroscopes are also summarized in the following section.

2.1.2.1 MEMS Gyroscopes

MEMS gyroscopes use Coriolis acceleration effect on a proof mass to detect inertial
angular motion. MEMS gyroscope rely on the detection of the force acting on a mass
that is subject to linear vibratory motion in a frame of reference which is rotating
about an axis perpendicular to the axis of linear motion. The resulting force, acts in a
direction, that is perpendicular to the both axis of vibration and the axis about which

is the rotation applied [3]

MEMS gyroscopes are divided into three groups and almost all of these groups use

Coriolis effect to sense angular rate.

12



Structure of tuning fork gyroscope consists of two tines, which are connected to a
junction bar. The tines are differentially resonated to a fixed amplitude. When the
gyroscope is rotated, Coriolis force causes a differential sinusoidal force to develop

on the individual tines, orthogonal to the main vibration [6,11].
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Figure 11 Tuning fork gyroscope ( Figure is taken from [11])

Vibrating wheel gyroscope includes a wheel that vibrates about of axis symmetry.
Vibrating wheels operate much like the macroscopic spinning wheel gyroscope but
use capacitive sensors to determine changes in attitude. The wheel rotation about the
symmetry axis, results in the wheel tilting and the occurred tilt produce a change in

the angular rate measurement [6,22].

Detection electrode

Figure 12 Vibrating wheel gyroscope ( Figure is taken from [22])

In a wine glass resonator gyroscope, a wine glass resonator makes use of a
hemisphere driven to resonance, the nodal points of which are measured to detect
rotation [6,22]. Fused silica is used in the production process of wine glass resonator

gyroscope.
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Other types of gyroscope technologies can be listed as mechanical gyroscopes, rate
gyroscopes and optical gyroscopes (Ring laser, fiber optic) . Ring laser gyro (RLG)
and fiber optic gyro (FOG) are the most popular and widely used sensors with
MEMS gyroscopes. But the performance and cost of FOG and RLG are higher than
the MEMS gyroscopes. According to inertial navigation system’s performance
requirements FOG, RLG or MEMS sensors are selected to design inertial

measurement unit.

-
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Figure 13 Ring Laser and Fiber Optic Gyroscope

14



CHAPTER 3

THE KALMAN FILTER

One of the most common problems in science and engineering is the estimation of
various quantities based on collecting measurements [12]. There are many ways to
estimate an unknown quantity from available data such as mean square estimation,
maximum-likelihood estimation, recursive estimation, wiener filtering and Kalman
filter [13]. The Kalman filter is the most widely used the most advanced technique
within these estimation techniques. Additionally Kalman filter has extended and
improved types.

This chapter basically covers an introduction to the Kalman filter. Section 3.1
provides the basic features of the Kalman filter and Section 3.2 defines the
mathematical models, filter parameters and tuning. Finally, Section 3.3 gives the role

of the Kalman filter in this thesis work.

3.1 Properties of the Kalman Filter

The Kalman filter is a set of mathematical equations that provides an efficient
computational (recursive) means to estimate the state of a process, in a way that
minimizes the mean of the squared error [14]. In general, the Kalman filter models
the state dynamics as a linear function of the previous state, the control input and
system dynamics zero-mean Gaussian noise. In addition to that the Kalman filter can
be explained as a data processing algorithm by using limited number of variables.
Only the new measurement data need to be processes on each iteration [15].

Therefore the memory requirement was reduced with the use of KF algorithm and

15



this is the one of the most important feature of the KF. Besides, the Kalman filter is
preferred for real-time applications such as navigation systems, radar systems, GPS,

etc....

e The KF includes five major elements. These are system model, measurement
model, state vector, measurement vector and error covariances [15].

e The state vector is a group of parameters which are estimated by Kalman
filter and the state vector cannot be measured directly.

e The system model describes how the KF states and error covariance matrix
vary with time.

e The measurement model specifies the mathematical relationship between the
system state and the measurements.

e The measurement vector contains instantaneous measurement values
according to the measurement model.

e Error covariances represent the uncertainties in the state estimates and the

measurements.

3.1.1 System Model
The system model equation describes a system with noise and this equation called as

discrete stochastic dynamical equation [13].

X = Ax,_ + Buy_ +w_ (3.1

The state transition matrix , 4, defines how the state vector changes with time.
Similarly, the transition matrix for control input , B, determines transition between
the system and control input. The random variable w, represent the process noise

and it is assumed to be white and with normal probability distribution [13, 14].

Detailed information about system model equation parameters are given in Table-2.
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Table 2 System Model Parameters

Parameters Definitions

State transition matrix

B Transition matrix for control input
X, State vector
u, Control input
W Process noise component
p(w)~N(0,0)
(3.2)

Q: Process noise covariance

3.1.2 Measurement Model

The measurement model equation which is given in equation (3.3) describes the

relation between states and observable system output.

z, =Cx, +v, (3.3)

The conversion matrix ,C, maps the state into the measurement. The measurement

noise, v, , is caused by instrumentation errors and it is assumed to be white and with

normal probability distribution. [12,13]

p(v)~ N(O,R)
3.4)
R : Measurement noise covariance

Detailed information about system model equation parameters are given in Table-3.
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Table 3 Measurement Model Parameters

Parameters Definitions
C Conversion matrix between the system
and measurement
z, Measurement
v, Measurement noise
W, Vi
f
Control Input Measurements
u > B N > ! » C Y >z,

Measurement

System Model Model

Figure 14 System and Measurement Model Implementation [13]

3.2  The Mathematical Model of The Kalman Filter

Basically, the equations for the Kalman filter divided into two groups. These groups
are time update equations and measurement update equations. The Kalman filter uses
time update and measurement update equations recursively to estimate the system

state.

3.2.1 Time Update Equations

Prediction of the next state of the system is calculated by processing the time update
equations. Moreover, error covariance which defines the probable error in the
algorithm’s estimate of the state vector is also calculated by using time update
equations[16]. In summary, time update equations compute a priori quantities for the

next time step in absence of measurements.
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R =A%, +Bu, (3.5)

P = AP A" +Q (3.6)

Table 4 Time Update Equations Parameter Definitions

Parameters -
Definitions
X, . .
k A priori state estimate
B A priori error covariance

Equation (3.5) and (3.6) constitute time update equations. Outputs of these equations

are used as input for the measurement update equations.

3.2.2 Measurement Update Equations

The measurement equations provide a correction based on measurements. The
purpose of these equations is to correct a priori estimates with measurements and

compute a posteriori state estimate.

K, =P C"(CRC"+R)" (3.7)
% =% +K, (7, -C%)) (3.8)
P, =(I-K,C)F; (3.9)

Detailed information about parameters of measurement update equations are given in

Table-5.
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Table 5 Measurement Update Equations Parameter Definitions

Parameters Definitions
K, Kalman gain
X A posteriori state estimate
P, A posteriori error covariance

Equation (3.7) represents the Kalman gain. The function of the Kalman gain is to
minimize the error caused by the difference between prediction and measurement. In
other words, Kalman gain is the weighting which determines the influence of the
residual in updating the estimate [13]. Equation (3.8) gives the updated version of the
state estimation. The output of the equation (3.5) is corrected by acquired
measurements and corrected a posteriori state estimation is calculated. Similarly,

equation (3.9) shows the correction method of error covariance matrix £, .

3.2.3 Kalman Filter Algorithm

The Kalman filter algorithm consists of merely predicting the errors in the state, and
then once new observations have been taken, correcting these state errors to obtain
an optimal solution. Basically, the Kalman filter algorithm depends on prediction-
correction loop and initial conditions. The time update equations need previous time

step’s state estimation and error covariance to produce a priori estimates for the next

time step. Therefore initial conditions for state and error covariance (x,,F,) must be

determined before starting the algorithm.

The diagonal elements of error covariance matrix are the variances of the each state
estimate error, while their roots are uncertainties in the estimate of the state vector.
The off diagonal elements are the covariances, represents the correlations between

the errors [12, 13, 16].
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If elements of the P matrix are large, the Kalman gain will be large. It means that
the state uncertainties must be reduced by weighting the state estimates toward the

new measurement data.

The Kalman filter estimates will change quickly as they converge with the true
values of the states, so the state uncertainty will drop rapidly. However, measurement
noise covariance causes the the Kalman gain drop, weighting the state estimates
more toward their previous sates. This reduces the rate at which states change, so the
reduction in the state uncertainty slows. Eventually, the Kalman filter will approach
equilibrium. At equilibrium, the state estimates may still vary, but the level of
confidence in those estimates, reflected by the state uncertainty, will be more or less
fixed [14, 15, 16]. The equilibrium behavior of the Kalman gain and the error
covariance matrix can be observed from equation (3.10) and (3.11). Additionally
Figure 15 represents the typical algorithm behavior of the Kalman gain and Figure
16 shows the typical algorithm behavior of the the error covariance matrix. Finally,

Figure 17 summarizes the recursive structure of the Kalman filter.

_E;—CT (3.10)
“ CPC"+R '
Jim K, =0 (3.11)
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Figure 15 Kalman Gain vs Iteration
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Figure 17 Recursive structure of the Kalman filter[14]

The Role of the Kalman Filter In This Thesis Study

As mentioned in the previous chapters, inertial measurement units have two types of

error. Deterministic errors can be determined by performing the calibration test

procedure and processing the test data. Furthermore, stochastic errors of the sensors

should be estimated by using some techniques.
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The Kalman filter method is commonly used in real time applications and the
Kalman filter estimation technique is the most appropriate technique to estimate
gyroscope and accelerometer bias instability due to its properties such as low
memory requirement, optimal estimation and high performance in noisy

measurements. (Assuming the system is linear.)

Gyroscope and accelerometer time constant and data sampling interval were defined
constant in this thesis study. Additionally, gyroscope and accelerometer bias
instabilities were modeled with discrete Gauss-Markov Model. The Gauss Markov
model becomes linear when the time constant and sampling interval are constant.
Therefore the Kalman filter algorithm was used as estimation algorithm in this thesis
study. Furthermore, this thesis study will be adapted to practical applications. Thus,
computational complexity becomes very important design parameter. In addition to
other advantages of the Kalman filter, computational complexity of the algorithm is
not high. For this reason, Kalman filter algorithm is suitable for practical and real

applications.
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CHAPTER 4

SENSOR ERROR PARAMETERS AND IMU ERROR
MODELS

This chapter explains MEMS accelerometer and MEMS gyroscope error parameters.
Section 4.1 covers accelerometer error parameters and MEMS accelerometer error
model. Section 4.2 discusses gyroscope error parameters and MEMS gyroscope error

model. Additionally, IMU error model is also given in this chapter.

4.1 Inertial Sensor Error Types

The inertial sensor errors can be classified into two groups, deterministic
(systematic) and stochastic (random) errors [17]. The deterministic errors are
defined by static and dynamic calibration tests. Besides, stochastic errors can be
estimated by using several estimation techniques. Estimation methodology of the
deterministic errors, calibration tests and least squares fitting method, are discussed
in more detail in Chapter 5. Modeling and estimation of the stochastic errors are also

explained in Chapter 6.

Inertial Sensor Errors
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Figure 18 Major types of inertial sensors (Figure is taken from[6])
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4.1.1 Deterministic Error Parameters of Accelerometers

Accelerometers have three dominant deterministic errors which are scale factor error,

bias and misalignment .

4.1.1.1 Bias

Bias (offset) is the accelerometer output at zero g [18]. It means that when no input
acceleration is applied to the sensor, measured acceleration presents bias. Unit of
accelerometer bias is mili-g. The bias includes fixed terms, temperature induced
variations, turn-on to turn-on variations and in-run variations [19]. Fixed terms of
bias and temperature induced variations in bias can be estimated by laboratory
calibration tests and estimated fixed bias and temperature induced variations are
used as an input of error compensation algorithms. If the accelerometer bias is not

compensated, error in velocity and position grow with time.
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Figure 19 Accelerometer output with bias at zero g
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compensated accelerometer output
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Figure 20 Accelerometer output without bias at zero g

4.1.1.2 Scale Factor Error

Scale factor error is errors in the ratio of a change in the output signal to a change in
the input acceleration which is to be measured [3]. The magnitude of the scale factor
is expressed in parts per million (ppm) or percent. The scale factor error includes
fixed terms, temperature induced variations, asymmetry and nonlinearity error parts.
The major parts of scale factor error are fixed term and temperature induced
variations. Similar to the bias, scale factor errors can be estimated by laboratory
calibration tests and estimated error parameters constitute input of error

compensation or calibration algorithms.

4.1.1.3 Misalignment

Orthogonality error. Accelerometers should be mounted orthogonal to observe true
measurements about its sensitivity axis. But mechanical components cannot be
produced perfectly and these components cannot be mounted perfectly. This will
cause a nonorthogonality between the IMU axes and this nonorthogonality creates a
scale factor effect on measurements. Any movements in any axis causes a change in

the other axes depending on the magnitude of misalignment . The unit of
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misalignment is mili-radian and the misalignment error can be determined by

laboratory calibration tests and used in error compensation algorithms.

4.1.2 Deterministic Error Parameters of Gyroscopes

Gyroscopes have four dominant deterministic errors which are scale factor error,

bias, misalignment and g-dependent bias (acceleration dependent bias).

41.2.1 Bias

The gyroscope bias can be defined as the gyroscope output in the absence of an
applied angular rate. It means that when no input angular rate is applied to the sensor,
measured angular rate presents bias. Unit of gyroscope bias is deg/h. Gyro bias and
accelerometer bias have similar properties. For example, contents of gyroscope and
accelerometer bias are the same. The gyro bias includes fixed terms, temperature
induced variations, turn-on to turn-on variations and in-run variations like
accelerometer bias. In-run bias variations represent stochastic error part of the bias.
Fixed terms of bias and temperature induced variations in bias can be estimated by
dynamic laboratory calibration tests and estimated fixed bias and temperature

induced variations are used as an input of error compensation algorithms.
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Figure 21 Gyro output with bias at zero rotational input
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compensated gyro output
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Figure 22 Gyro output without bias at zero rotational input

4.1.2.2 Scale Factor Error

Scale factor is the ratio between input and output. The scale factor value for the
perfect sensor is 1. But the scale factor which is calculated from real sensor
measurements has a difference between the ideal value 1 and this difference
represents scale factor error. The magnitude of the scale factor is expressed in parts
per million (ppm). The gyroscope scale factor error includes fixed terms, temperature
induced variations, asymmetry and nonlinearity error parts. The major parts of the
gyroscope scale factor error are fixed term and temperature induced variations.
Similar to the bias, scale factor errors can be estimated by laboratory calibration tests
and estimated error parameters constitute input of error compensation or calibration
algorithms. In addition to that effect of the scale factor error becomes observed at

high rates.
It can be observed from Figure 21 total gyroscope error is approximately 1.5 deg/sn.

According to Figure 23 total gyroscope error is 3 deg/sn. The difference between

Figure 21 and Figure 23 comes from the observability of scale factor error.
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Figure 23 Gyro output with bias and scale factor error at 200 deg/sn
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Figure 24 Gyro output without bias and scale factor error at 200 deg/sn

4.1.2.3 Misalignment

The explanation given for the accelerometer is valid for gyros.

4.1.2.4 G-dependent bias

Acceleration sensitive bias. Structure of the MEMS gyroscope is affected by

acceleration.
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Therefore this effect causes an offset in the output signal. This bias component is
proportional to the acceleration magnitude which is applied about the measurement
axis [3]. Therefore there is a relationship between acceleration and gyroscope
measurement and this magnitude of this relationship is determined with g-dependent
bias coefficient. Like other deterministic errors, g-dependent bias coefficients can be
determined by laboratory tests and these coefficients are used in calibration

algorithms. Unit of the g-dependent bias is deg/h/g.

Input o i Input

Figure 25 Representation of Scale Factor and Bias (Figure is taken from[20])

Figure 26 Representation of Misalignment (Figure is taken from[20])
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4.1.3 Stochastic Error Parameters of Accelerometers and Gyroscopes

Stochastic errors are the random errors that occur due to random variations of bias or
scale factor drift over time and random sensor noise [6]. Random variations in bias
and scale factor are the low frequency components of the stochastic errors. The
sensor noise is also high frequency components of the stochastic errors. The most
important feature of stochastic errors is there may not be any direct relationship
between input and output [21]. The source of the stochastic errors are flicker noise
in the electronics and interference effects on signals. Allan variance tests and
autocorrelation analysis are performed to determine the stochastic characterization of
inertial sensors. In addition to that several random processes exist for modelling

stochastic errors.

4.1.3.1 Bias Instability (Bias Drift)

This error occurs due to change in bias during a run [3]. In other words, bias
instability represents the variations in bias which change with time. Bias instability
can be characterized by Allan variance and autocorrelation analysis and modeled by
using results of these tests and analysis. Various methods (random processes) such as
Random Walk Model, Gauss-Markov Model, Random Constant Model and
Autoregressive Model are used to model stochastic errors. First order Gauss-Markov
Model is the most selected and the most appropriate random process for modeling
bias instability [20,21]. Therefore the random process Gauss- Markov Model was
used to model gyro and accelerometer bias instability in this thesis work. Stochastic
model of the bias instability is presented in equation (4.1), (4.2) and (4.3). The bias
instability of sensors is denoted by lo value. It means that this error type has

Gaussian distribution.

x,=e"x_ +w,
dt : sampling period (4.1)
1, : sensor time constant

w, :driven noise
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2
2 Wi

o. =———— , bias instability variance (4.2)

X —2dt
A l1-e /T

-2ds
2 2 T, . . .
o, =0, (1 —e j , driven noise variance (4.3)

Wk

4.1.3.2 Scale Factor Instability (Scale Factor Drift)

Scale factor instability represents the variations in scale factor which change with
time. Scale factor instability characterization test is different from the bias instability
characterization test method. Scale factor instability characterization needs long term
dynamical rate test and the effect of the scale factor instability is not very observable
and quite negligible. Therefore, this error component excluded from the scope of this

thesis study.

4.1.3.3 Random Sensor Noise

High frequency component of the stochastic errors. Effect of sensor noise can be
reduced by filtering. Low pass filters are designed according to sensor noise
bandwidth and noise power. Random sensor noise is modeled as a zero mean white

noise in the IMU error models. And these system specific filters are used in error
compensation algorithms. Unit of the random sensor noise density is deg/h/~/Hz or

deg/s// Hz and the random noise density is represented by lo value.

4.1.4  Other Types of Errors

Temperature dependent bias and scale factor variations, scale factor asymmetry,
scale factor linearity error and sensor based misalignment errors are the other types
of inertial sensor types of errors. Temperature dependent variations can be
determined by temperature calibration tests and drift in bias and scale factor, caused

by temperature changes, are modeled with second or higher order equations. These
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equations are added to error compensation algorithms to correct temperature
dependent variations. Scale factor asymmetry represents the difference between the
scale factor measured with positive input and negative input. And scale factor
linearity error represents difference between the scale factor measured with high rate

or acceleration and low rate or acceleration.

It was assumed that, inertial sensor errors, bias and scale factor, did not include

temperature dependent variations, scale factor asymmetry and scale factor linearity.

4.2 IMU Error Model

Inertial navigation systems need acceleration and angular rate measurements in the x,
y and z- directions to calculate attitude, position and velocity. Therefore, inertial
measurement units contain three accelerometer and three gyroscope. For this reason,

IMU error model is determined with equation (4.5) and (4.7).

4.2.1 Accelerometer Error Model

The error model of the single axis accelerometer is given by:

ac=(1+S. +5S)a. +B. +5B. +n. 4

ax :accelerometer output a_ : actual acceleration
S, :scale factor error

B_ :bias

oS, :scale factor instability

OB, : bias instability

n_ : Sensor noise

The error model of three accelerometer which are mounted on x, y and z axis of an
IMU is represented by equation (4.5).
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1

=

1+8 +8S. M M, ||%]| [B.+5B, | [n,

Xy
=l M, 1+§+5S, M, a, |+| B,+0B, |+|n,

M., M,  1+S,+68, B.+6B. | |n
a (4.5)

1

1

Q
N

M M _M

yx? yz? zx 2

M M M _, : Misalignment Errors

xz?2

4.2.2 Gyroscope Error Model

The error model of the single axis gyroscope is given by:

we=(1+S8 +6S )w +B +0B +B;a, +n, (4.6)

wy : gyroscope output w_ : actual angular rate
S_ :scale factor error

B_ :bias

oS, : scale factor instability

O0B_ : bias instability

B, : g-dep bias coeff.

n_ : Sensor noise

The error model of three gyroscope which are mounted on x, y and z axis of an IMU

is represented by:

Wol [1+8,+6S, M, M. Wil [B.+6B. ] |B., 0 0 |%| [a
w,|=| M, 1+§ +6S, M, w, |+|B,+6B,|+| 0 B, 0 a, |+|n,
- M M 1+S +068 B +0B 0 0 B n
w X zy y y Wz z z gz az z
M, M_ M, M_M_,M._:Misalignment Errors

4.7)
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Equation (4.5) and (4.7) give the error characterization of inertial measurement units.
An IMU Error Model was developed and implemented within the scope of this thesis
work. MATLAB Simulink software was used to construct equation (4.5) and (4.7).
Effects of inertial sensor errors were simulated by using constructed equations.
Simulation outputs were processed by least squares estimation algorithm, which is
explained in Chapter 5, to estimate IMU deterministic error parameters. Additionally,
IMU Error Model’s simulation outputs were used as input for Deterministic Error

Compensation algorithm/model.
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CHAPTER 5

ESTIMATION OF DETERMINISTIC ERROR
PARAMETERS

This chapter suggests some test methods about estimation of deterministic error
parameters. Sections 5.1.1 and 5.1.2 summarize basic laboratory calibration test
methods and data processing procedure. Sections 5.1.3, 5.1.4 and 5.1.5 explain the
improved calibration test procedure which is implemented in the scope of this thesis
work. Compensation algorithms aim of compensation algorithms. Finally,

deterministic error compensation algorithm is provided in Section 5.2.

5.1 Laboratory Calibration Tests

Calibration is the process of comparing inertial sensor outputs with known input
motion and determining the deterministic error parameters [3, 6] . The output signals
from the IMU are recorded during the test period. Then the collected data are
processed by various methods and deterministic error parameters are determined.
The six position static method and rate tests are usually described in the literature.
(static acceleration test, static rate tests, multi-position tests). In addition to these test
methods multi-position static and multi-rate tests are developed and explained in this

thesis work.
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5.1.1 Six Position Static Tests

The local gravity and the Earth’s rotational rate are the reference inputs for this test
method. The six position static test data is used to extract accelerometer bias and
scale factor. Also, according to the sensor quality, six position static test can be
sufficient to estimate gyroscope bias and scale factor. For example, tactical grade
IMU’s gyroscopes can sense Earth’s rotational rate, for this reason six position static
test can be used to estimate gyroscope scale factor and bias. However automotive-
grade gyroscope’s bias instability and noise levels mask the reference signal, Earth’s
rotational rate [6]. Therefore this calibration method is not suitable for automotive-

grade and some tactical grade MEMS gyroscopes[21].
The procedure of six position static method is given in the following steps :
First step: The IMU is mounted on a leveled table with each axis pointing

alternately up and down position.

Second step: The gyroscope and accelerometer data is collected and recorded when
the x-axis is pointed upward. (W;”’ ,ar j
Third step: The gyroscope and accelerometer data is collected and recorded when

the x-axis is pointed downward. (wj"w”, a;’"w"j

Fourth step: Repeat the second step for y- axis. [WZ” ,a, j
H . : : dN()wn d:)wn

Fifth step: Repeat the third step for y-axis. [W M a j

Sixth step: Repeat the second step for z- axis. (wj’] ,a.’ ]

>z

Seventh step: Repeat the third step for z-axis. (wj”w” ad"”’”)
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5.1.1.1 Data Processing Methods for Six Position Test

Gyroscope errors can be determined by the following equations in basic processing:

B - Av(W?) + Av(wfuw")
x 2 (5.1)
o AV = A =2 %, 52)

earth

In the similar way accelerometer errors can be determined by the following

equations:

5 o Av@)+ Av(a™)
x 2 (53)
;p _ d;wn EHE ]
Sx:Av(ax) Av(a;™")-2*g (5.4)
2% g

Basic processing is simple but gyroscope and accelerometer misalignment errors
cannot be calculated by basic processing. The Least Squares Fitting Method is used

to overcome this problem and the LSF method is explained in the following part :
Least Squares Fitting Method:
All error parameters are estimated at the same time by using error equations (4.4) and

(4.6). in matrix form. Least squares fitting method implementation for

accelerometers is shown below:
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P =M T "(T.TT")" (5.5)

acc acc acc accacc

+S, M, M_ B,

P =M I+s, M, B, , accelerometer error parameter matrix

Av(a?) Av(af”w" ) Av(a, );” Av(a, )f,”w” Av(a)?  Ava, )f”w”

M = Av(ay) M Av(ay) ff"w" Av(a;” ) Av(aj”””) Av(ay) v Av(ay) Z”””

acc

Av(az) )“CP Av(az) jown AV((JZ ) 3’}1’ Av(az) ;iown Av(a:p) Av(af"w”)

accelerometer measurement matrix

|
oQ

0
0 ) . .
, reference input matrix (local gravity)
-8

= o 0 O

0
-8

0

1

— 0y o O

[S—

Least squares fitting method implementation for gyroscopes is shown below:

ngr = ngrTger (T:grer:ger)71 (56)

1+Sx Mxy sz Bx

P,=|M, 1+s, M, B, , gyroscope error parameter matrix

M, M, 1+S. B,

Av(w'?) Av(wj"“’” ) Av(w, );‘," Av(w, )j’f’w" Av(w ) Av(w, )f"w”

M,, =| Av(w,) " Av(w,) " Av(wW?)  Av(a™™) Av(w,) P Av(w,) ,

g

AV(WZ) ;‘_p Av(wz) jown Av(WZ) ip AV(WZ) Zown AV(WZP) Av(wjown)

gyroscope measurement matrix
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Wearth - Wearth 0 0 0 O
0 O Wearth - Wearth 0 0 . . :
T = , reference input matrix (Earth's rotational rate)
¢ 0 O 0 O Wearth - Wearth
1 1 1 1 1 1

5.1.2 Rate Tests

Rate tests are performed to extract the scale factor error, misalignment error and bias
of lower grade gyroscopes. Performing rate tests require special test equipments such

as rate table and flight motion simulator.

The procedure of rate tests is given in the following steps :

First step : The IMU is mounted on a rate table with mounting fixture.

Second step: The gyroscope data is collected and recorded when the rate table is
rotated according to reference inputs in the sensitive axes x, y and z.

The collected rate test data can be processed by least squares fitting method and

gyroscope error parameters can be extracted.

5.1.3 Multi-Position Static Test

This test method was developed and implemented within the scope of this thesis
work. Multi-position test is an improved version of six-position static test and this
test is performed to extract accelerometer scale factor error, misalignment and bias.
In addition to that gyroscope bias and g-dependent bias coefficients can be extracted

by using multi-position static tests.

IMU is placed on the rate table or flight motion simulator with a fixture. The
accelerometer and gyroscope data is collected about 3 axis at 27 different position for
3 seconds. Local gravity is the reference input in this tests and the magnitude of

acceleration which is sensed by the accelerometer is changed in each position by
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changing the axis position relative to local gravity. The angle between the
measurement axis and the gravity vector is changed with 22.5 degree. Therefore the
components of gravity vector can be observed on the other axes. This test method
supplies to scan 1g to -1g acceleration range with more input. In this way estimated
error parameters which are close to actual error parameters can be obtained.

Furthermore g-dependent bias coefficients of gyroscopes can be determined more

accurately.

IMU is turned about z axis when x axis multi position static test is performed.
Similarly, IMU is turned around x axis when y axis multi position static test is
performed and, IMU is turned about/around y axis when z axis multi position static

test is performed.

Y-Axis

v

X-Axis

Figure 27 Simulated IMU measurement axis configuration

»n

Y-Axis

4

Z-Axis

X-Axis

Gravity vector
Magnitude = 9.81 m/sn”2

n
>

Z-Axis

v

X-Axis

Y-Axis

Gravity vector
Magnitude = 9.81 m/sn”2

B

X-Axis

Y-Axis

Z-Axis

Gravity vector
Magnitude = 9.81 m/sn*2

Figure 28 Multi-Position Test Configurations
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Figure 29 visualizes the axial motions by showing the test procedure. Figure 29

represents the test which is performed around z axis. This test is performed around

all three axis to scan all accelerometers and gyroscopes at all positions.

157.5
Step 1 @ Step 6
P 2 90 Z-Axis
<
>
X-Axis
Step 7
Step 2
Step 3
Step 8
Step 4
Step 9
Y-Axis
Y-Axis
Step 5
x
z 90
1%}

Figure 29 Multi Position Test Procedure
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Multi-Position Static Test x-Accelerometer Output

(6) uoiresajpaoe

x 10

time (ms)

Figure 30 Multi-position static test x acc output

Position Static Test y-Accelerometer Output

Multi-

(6) uonesajpooe

X 10

time (ms)

Figure 31 Multi-position static test y acc output
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Multi-Position Static Test z-Accelerometer Output

acceleration (g)

time (ms) 4

Figure 32 Multi-position static test z acc output

Figures 30 to 32 show the accelerometer measurements which are observed during

the test period.

5.1.4 Multi-Rate Dynamic Test

This test method was developed and implemented within the scope of this thesis
work. This rest method is performed to extract gyroscope scale factor error and

misalignment.

Like multi-position static test, special test equipments like rate table, FMS are
required to perform multi-rate dynamic test. IMU is placed on the rate table or flight
motion simulator with a fixture. 3 axis gyroscope data is collected during the test
period. Each axis test procedure has 20 different states. All states represent different
angular rate. These states include 10 positive and 10 negative angular rate and vary
between 0 and 200 deg/s. Figure 33 , 34 and 35 present multi-rate dynamic test

gyroscope measurements.
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Multi-Rate Dynamic Test x-Gyroscope Output
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Figure 33 Multi-rate dynamic test x gyro output

Multi-Rate Dynamic Test y-Gyroscope Output
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Figure 34 Multi-rate dynamic test y gyro output

45



Multi-Rate Dynamic Test z-Gyroscope Output
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Figure 35 Multi-rate dynamic test z gyro output

5.1.5 Data Processing Algorithm for Multi-Position Static and Multi-Rate
Dynamic Tests

IMU complete calibration test which is used in this thesis work consists of multi-
position static test and multi-rate dynamic test. The complete calibration test

procedure is summarized in the following paragraph:

An IMU is mounted on 3 axis flight motion simulator with a fixture. Multi-position
static test and multi-rate dynamic test are performed. Data is collected at each
position and each rate for 3 seconds. (Sampling rate is 1 kHz and approximately
3000 data points are collected in each step).

The collected data is processed by using deterministic error estimation codes.

Processing steps are explained below:

Firststep  : Decomposing position states and angular rates from test data
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Second step : Taking the average value of each position and rate.
Third step : Creating the true and measurement matrices for least square fitting.

(Each measurement has equal weight to calculate calibration parameters)

Fourth step : Implementing least square fitting and calculating error (calibration)

parameters.

Deterministic error estimation codes were developed by using MATLAB software.

Deterministic error codes depend on least squares fitting method implementation.
Multi position test data is used to determine accelerometer bias, scale factor error and
misalignment parameters. Additionally, gyroscope bias and g-dependent bias

parameters are also extracted from multi-position static test data.

Least squares fitting formulation for accelerometer is similar with equation (5.5).
Contents of the matrices are updated according to multi-position static test states.

Matrices, which are updated according to the states are given below.

P =M_T "(T. T ")" (foracc bias, misalignment and scale factor)

acc accacc acc  acc

1+Sx Mxy sz Bx
P. =M 1+S, M, B, |, matrix of estimated accelerometer error

M, M, 145, B

z

parameters (this matrix is taken from equation (5.5))

Reference input matrix and measured data matrices are also updated according to

multi-position static test states. These matrices are given in the following equations.
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[ @ *cos(270) g *cos(180) 0 1
g *cos(292.5) g *c0s(202.5) 0 1
g*cos(315) g *cos(225) 0 1
g *cos(337.5) g *cos(247.5) 0 1
g *cos(0) g *cos(270) 0 1
g*cos(112.5) g *cos(22.5) 0 1
g *cos(135) g *cos(45) 0 1
g *cos(157.5) g *cos(67.5) 0 1
g *cos(180) g *cos(270) 0 1

0 g*cos(270) g *cos(0) 1

0 g*cos(247.5) g *cos(22.5) 1

0 g*cos(225) g *cos(45) 1

0 g *c0s(202.5) g *cos(67.5) 1

T, 0 g *cos(180) 2 *cos(90) 1 (5.7)

0 g*cos(157.5) g*cos(112.5) 1

0 g*cos(135) g *cos(135) 1

0 g*cos(112.5) g *cos(157.5) 1

0 g *cos(90) g *cos(180) 1

g *cos(270) 0 g *cos(0) 1
g *cos(292.5) 0 g *cos(22.5) 1
g*cos(315) 0 g *cos(45) 1
g *cos(337.5) 0 g *cos(67.5) 1
g *cos(360) 0 g *cos(90) 1
g *cos(22.5) 0 g*cos(112.5) 1
g *cos(45) 0 g *cos(135) 1
g *cos(67.5) 0 g *cos(157.5) 1
| g *cos(90) 0 g *cos(180) 1

Equation (5.7) represents the accelerometer reference inputs and the following

equation, (5.8) gives the average value of accelerometer outputs.

48



_ Stepl

Av(a: )

_ Step2

Av(ax )

_ Step3

Av(ax )

_ Step4

Av(a: )

_ Step5

Av(a: )

_ Step6

Av(a: )

_ Step7

Av(ax )

_ Step8

Av(ax )

_ Step9

Av(ax )

_ Step10
Av(a

_ Stepl1
Av(a

_ Step12
Av(as

_ Step13
Av(ax

_ Stepl4
Av(ax

_ Stepl5
Av(asx

_ Step16
Av(asx

_ Step17
Av(as

_ Step18
Av(as

_ Step19
Av(as

_ Step20
Av(ax

_ Step21
Av(asx

_ Step22
Av(a

_Step23
Av(ax

_ Step24
Av(ax

_ Step25
Av(ax

_ Step26
Av(ax

_ Step27

AV(ax

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

_ Stepl
Av(ay )
_ Step2
Av(ay )
_ Step3
Av(a, )
_ Step4
Av(ay )
_ Step5
Av(ay )
_ Step6
Av(a, )
_ Step7
Av(ay )
_ Step8
Av(a, )
_ Step9
Av(a, )
_ Stepl0
Av(a,
_ Stepll
Av(a,
_ Stepl2
Av(a,
_ Step13
Av(a,
_ Stepl4
Av(a,
_ Step15
Av(a,
_ Stepl6
Av(a,
_ Stepl7
Av(a,
_ Step18
Av(a,
_ Step19
Av(a,
_ Step20
Av(a,
_ Step21
Av(a,
_ Step22
Av(ay
_ Step23
Av(ay
_ Step24
Av(ay
_ Step25
Av(a,
_ Step26
Av(a,
_ Step27

Av(a,

49

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

_ Stepl
Av(a: )
_ Step2
Av(a: )
_ Step3
Av(a: )
_ Step4
Av(a: )
_ Step5S
Av(a: )
_ Step6
Av(a: )
_ Step7
Av(a: )
_ Step$
Av(a: )
_ Step9
Av(a: )
_Stepl0
Av(a:

_ Stepll

)

Av(a: )

_ Step12
Av(a:

_ Step13

)

Av(a: )

_ Stepl4
Av(a:

_ Stepl5

)

Av(a: )

_ Stepl6
Av(a:

_ Step17
Av(a:

_ Stepl8

)
)

Av(a: )

_ Step19

Av(a: )

_ Step20
Av(a:

_ Step21
Av(a:

_ Step22
Av(a:

_ Step23
Av(a:

_ Step24
Av(a.

_ Step25
Av(a:

_ Step26
Av(a:

_ Step27

Av(a:

)
)
)
)
)
)
)
)

(5.8)



Equation (5.6) was arranged to adapt least square fitting method to multi position test
states. Gyroscope data, which is collected during the multi-position static test is used

to determine gyroscope bias and g-dependent bias.

It 1s assumed that there is not any angular rate input at any static position. Therefore,
gyroscope outputs contain only bias and g-dependent bias effects and bias and g-
dependent bias coefficients can be acquired from multi-position test gyroscope

outputs.

Reference input matrix is identical with the accelerometer reference input matrix.

B, 0 0 B,
T TN\-1
p,=M,T, (T, T, )" ., P,={0 B, 0 B | , T, =T,
0 0 B, B

Updated measurement matrix is given in equation (5.9).
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Multi rate dynamic test data is used to determine gyroscope scale factor error and
misalignment parameters. In order to extract gyroscope scale factor and

misalignment equation (5.6) is arranged according to multi-rate dynamic test states.

1+Sx Mxy sz Bx
T TN\-1
ngr = ngrTgyr (Tgergyr ) s ngr = Myx 1+Sy Myz By (5 10)

M_ 1+S. B

zx zy

[ 001 0 07 0 001 o7
005 0 0 0 005 0
010 0 0 0 010 0
015 0 0 0 015 0
020 0 0 0 020 0
050 0 0 0 050 0
075 0 0 0 075 0
100 0 0 0 100 0
150 0 0 0 150 0
qo_| 2000 0 so_| 0 200 0
%1001 0 o’ @ | 0 -o001 0| ° (5.11)
-005 0 0 0 —005 0 ab
010 0 0 0 -010 0
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5.2 Deterministic Error Compensation Model

The aim of deterministic error compensation algorithm is compensating the effect of
deterministic error parameters of an IMU. A deterministic error compensation
algorithm was developed and implemented within the scope of this thesis work.
Output of the compensation model was used as input of the stochastic error

estimation algorithm.

The error model of the single axis accelerometer and gyroscope were given in
equation (4.1) and (4.2). IMU deterministic error compensation algorithms are based

on inverse of error models.

a:=(1+S) " (a:—B.)

- A (5.15)
ax—a. = residual accelerometer error = accelerometer stochastic error

we=(1+5,)"(a:~ B, - B,a,)

(5.16)
wx—Wwx = residual gyroscope error = gyroscope stochastic error
o] 1 C;x_ Bx
x 1+s, M, M.
ay = »x 1+Sy Myz ay - By (5 . 1 7)
: M, M 1+S i
a zx zy z
L7 a.—B.
[~ ] I w-B, (]
< (1S, M, M, B, 0 0 x
v = Mo 1HS, M, =B, -1 0 B, 0 y (5.18)
A + - A
o | LML M 1S, wop | L0 O B
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Deterministic error compensation simulation model was developed by using
MATLAB Simulink software. = Equation (5.17) and (5.18) were generated in
Simulink model. The error compensation model was used to process collected
calibration data to observe true measurement values. Sensor error parameters were
extracted by the deterministic error estimation codes and the extracted parameters

were embedded to the deterministic error compensation model.
In real applications, error compensation algorithms are designed according to the

types of sensors and converted to embedded software. Then this software is installed

on the IMU processor.
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CHAPTER 6

ESTIMATION OF STOCHASTIC ERROR
PARAMETERS

This chapter suggests a method for estimation of stochastic sensor error parameters.
The Kalman Filter algorithm which is explained in Chapter 3, was used as
estimation technique. This technique needs a system model and a measurement
model. Therefore, Section 6.1 explains the system model and Section 6.2 gives the

measurement model properties.

6.1 System Model

As mentioned in Chapter 4 gyroscope and accelerometer bias instabilities are
modeled with first order Gauss-Markov process. An IMU has three accelerometers
and three gyroscopes for measuring linear acceleration and angular rate about x, y
and z axis. Therefore six sensors’ bias instabilities were estimated by using Kalman
filter. For this reason, the state vector contains six states and these states represent
the bias instability of x gyroscope, y gyroscope, z gyroscope, X accelerometer, y
accelerometer and z accelerometer respectively. The bias instability model of an
inertial sensor was given with equation (4.1). That equation was developed for six
sensor (3 gyroscope and 3 accelerometer) implementation and developed system

model is presented in equation (6.1).
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0B,
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ayk

0B

&1
EVk-1
8Zk-1
Xy
k-1

azyg

:x gyroinstability at timek -1,

:x accinstability at timek -1 ,

(6.1)

:x gyroinstability at time k ,
;v gyroinstability at time k ,
.z gyroinstability at time k ,
;X acc instability at time k
. x accinstability at time k

;X acc instability at time k

:y gyroinstability at time k -1 ,
:z gyroinstability at time k-1 ,
:x acc instability at timek -1

;X accinstability at timek -1

6.2 Measurement Model

0 0B, acex _bias _w,
OB, accy _bias _w,
k-1
0 .
SB | accz _bias _w, |
~dt L %
/Twc Wi-1
e B Xk-1
7;%, . X gyro time constant
T . :y gyrotime constant

T,.. -z gyro time constant
T, . :xacctime constant
1, ..y acctime constant

T, . :z acctime constant

gyrx_bias_w, : x gyro driven noise

gyry_bias w, :y gyro driven noise
gyrz_bias_w, : z gyro driven noise
acex_bias_w, : x acc driven noise

accy_bias_w, : y acc driven noise

accz_bias w, : z acc driven noise

The measurement model was constituted according to equation (3.3). Sensor

measurements represent and random sensor noises represent the measurement noise

vector. After the compensation of deterministic errors, gyroscope and accelerometer

bias instabilities can be observed from sensor measurements directly. Therefore,

measurement conversion matrix C tuned as an identity matrix.
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The error compensation model’s outputs were used as measurements in Kalman filter

algorithm. Therefore measurement matrix was selected as an identity matrix.

gyr x _output, ] [1 0 0 0 0 0] 9B, [gyr _x_noise, |
gy _output,| [0 1 0 0 0 0| 9Be,| |gr_y_noise,
gyr_z_output, | |10 0 1 0 0 0 6B, N gyr _z _noise,
acc _x _output, 0 00 1 0 0}0sB, acc_x _noise, (6.2)
acc _y _output, 0 0 0 01 O0fys Bm acc _y _noise,
lacc_z_output, | |0 0 0 0 0 1] SB,, |acc_z_noise, |

Z c S M

6.3 Tuning of Kalman Filter Parameters

All inertial sensors have some characteristic parameters such as time constant,
random noise density and bias instability. In this thesis study these parameters are
very useful inputs for Kalman filter parameter tuning and algorithm initialization.
For example, gyroscope and accelerometer random noise densities were used to
determine measurement noise covariance, R . Similarly, 3 o value of gyroscope and
accelerometer bias instabilities were used to constitute initial value of error

covariance matrix, P .

6.3.1 Error Covariance Matrix Initialization

It was assumed that 6B, =0B, =6B, =0B, =6B, =0B, =0 fork=0.

&k &k Xy
As mentioned in Chapter 3, error covariance represents the uncertainty in the state
estimate. The estimate error, uncertainty in the states estimate, and the simplest

representation of error covariance is given in equation (6.3) and (6.4).

€ =X TN
i (6.3)
X, [true state, X, :estimated state

61



B, =Elee/] (6.4)

The maximum value of the true state is 3o value of bias instability. Therefore, if the
initial states are equal to zero, on the basis of equation (6.4), the maximum value of

error can be 30 value of bias instability. For this reason initial value of the error
covariance P,’s  diagonal elements become (30)*value of gyroscope and
accelerometer bias instabilities. There is no correlation between the states and errors.

Therefore, the off diagonal elements of F, are equal to zero.

'(30%_)2 0 0 0 0 0 |
0 (o) 0 0 0 0
0 0 (Boy ) 0 0 0 (6.5)
h= 0 0 0 (o) 0 0
0 0 0 0 (oy) 0
0 0 0 0 0 (o)

6.3.2 Tuning of Measurement and Process Noise Covariance Matrix

Like sensor bias instability, random sensor noise density is represented by lo value.
In simulations and calculations, the noise density is multiplied by square root of
sampling frequency to convert the noise density to angular rate noise and
acceleration noise. Similar to the error covariance initialization, (30)° value of
angular rate noise and acceleration noise were used to tuning of measurement noise
covariance matrix diagonal elements. The 3o value of angular rate noise and
acceleration noise denote the maximum values of the noise components. There is no
correlation between measurements. Therefore, the off diagonal elements of R are

equal to zero.
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GBo, ¥ 0 0 0 0 0
0 (o, ) 0 0 0 0
0 0 (Bo,) 0 0 0 (6.6)
i 0 0 @Go, ) 0 0
0 0 0 0 @Go, )
|0 0 0 0 0 (o, )|

The 1o value of the driven noise was calculated by using equation (4.3). After that,

process noise covariance matrix was tuned by using (3c)> value of the driven noise.

(30, ) 0 0 0 0 0 ]
0 (o, ) 0 0 0 0
0 0 (o, ) 0 0 0 (6.7)
°7l 0 0 (o, ) 0 0
0 0 0 0 Go, )
0 0 0 0 0 (o, )|
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CHAPTER 7

SIMULATION RESULTS

The main motivation of this chapter is explaining the simulation models and

algorithms which were designed and developed within the scope of this thesis study.

7.1 IMU Error Model Simulation

IMU error model was built by using Simulink software. Sensor error parameters,
gyroscope and accelerometer bias, scale factor, misalignment, random noise error,
bias instability and gyroscope g-sensitive bias coefficients were fed into the
simulation. These parameters were chosen from actual accelerometer and gyroscope
parameters. Deterministic and stochastic sensor error parameters which were used in

IMU error model simulation are presented in Table 6 and Table 7.

Purpose of simulation: Observing sensor error effects and generating inputs for

deterministic and stochastic error estimation algorithm.

Simulation input: Reference (true) angular rate and acceleration which were used to

simulate multi-rate dynamic test and multi-position static test.
Simulation output: Simulated IMU outputs were generated according to the

gyroscope and accelerometer error model. The raw IMU measurements were formed

by adding errors according to equation (4.5) and (4.7).
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Three different IMU error model simulations were performed within the scope of this
thesis study. First of all, the reference state values of multi-position static test and
multi-position dynamic test were generated. (States of multi-position static test and
multi-rate dynamic test are explained in Chapter 5) After that, multi-position test was

simulated in order to create input for deterministic error estimation algorithm.

These simulation outputs were used to determine accelerometer bias, scale factor and
misalignment error. Additionally gyroscope bias and g-dependent bias coefficient
were estimated from multi-position test simulation output. Similarly, multi-rate
dynamic test was simulated. Gyroscope scale factor and misalignment errors were

obtained by processing this simulation’s outputs.

Finally, IMU error model simulation was used to create a measurement data for
Kalman filter algorithm. Outputs of this simulation were corrected by performing
IMU error compensation simulation and then corrected outputs fed to the Kalman

filter algorithm as measurement.

Table 6 Simulated IMU Deterministic Evror Parameters

Gyroscope Error

Parameters Value of the parameter

x axis scale factor error 10817 ppm

y axis scale factor error 9124 ppm

z axis scale factor error 15529 ppm

X axis bias 1.1464 deg/s

y axis bias 1.1241 deg/s

z axis bias 1.6820 deg/s

X axis acceleration sensitivity 0.05 deg/s/g

y axis acceleration sensitivity 0.05 deg/s/g
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Table 6 continued

z axis acceleration sensitivity

0.05 deg/s/g

X axis to y axis misalignment 7.5879 mrad
X axis to z axis misalignment 3.3769 mrad
y axis to x axis misalignment 5.6617 mrad
y axis to z axis misalignment 6.3705 mrad
z axis to X axis misalignment 7.5009 mrad
z axis to y axis misalignment 3.8084 mrad
Accelerometer Error
Parameters
x axis scale factor error 3916 ppm
y axis scale factor error 3284 ppm
z axis scale factor error 4733 ppm
X axis bias 349.66 mg
y axis bias 346.36 mg
z axis bias 250.18 mg
X axis to y axis misalignment 3.9824 mrad
X axis to z axis misalignment 0.6601 mrad
y axis to x axis misalignment 1.6875 mrad
y axis to z axis misalignment 0.8487 mrad
Z axis to X axis misalignment 2.5776 mrad
Z axis to y axis misalignment 2.7814 mrad
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Table 7 Simulated IMU Stochastic Error Parameters

Gyroscope Error

Paramaters
X axis time constant 15 seconds
y axis time constant 15 seconds
z axis time constant 15 seconds
X axis bias instability (1o ) 0.005 deg/s
y axis bias instability (1o) 0.005 deg/s
z axis bias instability (1o) 0.005 deg/s

X axis noise density (1o)

0.0015 deg/s/\ Hz

y axis noise density (1o)

0.0015 deg/s/ Hz

z axis noise density (1o )

0.0015 deg/s/~ Hz

Accelerometer Error

Parameters
X axis time constant 1 second
y axis time constant 1 second
Z axis time constant 1 second
X axis bias instability (1o) 0.5 mg
y axis bias instability (1o) 0.5 mg
z axis bias instability (1o) 0.5 mg
X axis noise density (1o) 0.00027 g/~/Hz
y axis noise density (1o) 0.00027 g/~/Hz
z axis noise density (1o ) 0.00027 g//Hz

Multi-rate dynamic test and multi-position static test reference inputs are represented

with IMU error model simulation outputs in the following figures.
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Figure 36 x acc reference input and simulation output
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Figure 37 y acc reference input and simulation output

68



z acc reference input and simulation output
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Figure 38 z acc reference input and simulation output
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Figure 39 x gyro reference input and simulation output
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Figure 40 y gyro reference input and simulation output
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Figure 41 z gyro reference input and simulation output
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7.2 Deterministic Error Estimation Algorithm

Deterministic error estimation algorithm was developed by using MATLAB

software. Detailed information about data processing steps and algorithm are given

in Chapter 5.

Purpose of algorithm: Determination of deterministic IMU error parameters.

Algorithm input: Raw calibration test data. IMU error model simulation outputs

(multi-position and multi-rate test simulation) were used as an input for deterministic

error estimation algorithm. Furthermore, collected real IMU calibration data can be

used as input for the algorithm.

Algorithm output: Estimated accelerometer and gyroscope deterministic error

parameters. Comparative table of real and estimated error parameters are presented

in Table 8 and Table 9 .

Table 8 Deterministic Error Estimation Algorithm Outputs (Gyroscope)

Gyro X X y y z z
real |estimated | real | estimated | real | estimated
Bias 1.1464 1.1457 1.1241 1.1210 1.6820 1.6756
deg/s deg/s deg/s deg/s deg/s deg/s
G-dep bias 0.05 0.0522 0.05 0.0488 0.05 0.0526
Coefficient deg/s/g | deg/s/g | deg/s/g | deg/s/g | deg/s/g | deg/s/g
Scale Factor 10817 10802 9124 9079 15529 15584
=rror ppm ppm ppm ppm ppm ppm
Misalignment Xy Xy yX yX 7X 7X
7.5879 7.5812 5.6617 5.6634 7.5009 7.5156
mrad mrad mrad mrad mrad mrad
XZ XZ yz yz zy zy
3.3769 3.3749 6.3705 6.3827 3.8084 3.7935
mrad mrad mrad mrad mrad mrad
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Table 9 Deterministic Error Estimation Algorithm QOutputs (Accelerometer)

Acc x real X y real y z real z
estimated estimated estimated
Bias 349.66 | 349.6557 | 346.36 | 346.2070 | 250.18 | 249.9346
mg mg mg mg mg mg

Scale Factor 3916 4003 3284 3106 4733 4964

Error
ppm ppm ppm ppm ppm ppm

Misalignment Xy xy 3.8995 yX yX zX 7x 2.5641
3.9824 mrad 1.6875 1.4454 2.5776 mrad
mrad | xz0.5115 | mrad mrad mrad | zy2.7139

XZ mrad yz yz zy mrad
0.6601 0.8487 0.9496 2.7814
mrad mrad mrad mrad

The difference between the actual error parameters and the estimated parameters
comes from the effect of the sensor noise and the stochastic errors such as bias

instability.

In addition to the multi-position static and multi-rate dynamic test method, six
position direct method was performed to estimate deterministic error parameters.
Results of the six-position direct method were compared with the multi-position and
multi-rate method. IMU error model simulation was run with six-position direct
method reference input (Reference angular rate is equal to 10 deg/s and reference
acceleration is equal to gravity.). Simulation outputs are given in the following
figures. Deterministic errors of simulated IMU were estimated by using equations
(5.1), (5.2), (5.3) and (5.4). IMU error model simulation outputs of six-position direct
method are presented with reference inputs of six-position direct method in Figure 42

to Figure 47.
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73



z gyro reference input and simulation output

reference input
simulation output

15

(s/Bap) ares rejnbue

18

16

time(s)

Figure 44 z gyro reference input and simulation output (six position test)
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Figure 45 x acc reference input and simulation output (six position test)
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Figure 46 y acc reference input and simulation output (six position test)
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Figure 47 z acc reference input and simulation output (six position test)
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Table 10 Six position direct method results (gyroscopes)

Gyro x real X y real y z real z
estimated estimated estimated
Bias 1.1464 1.1449 1.1241 1.1248 1.6820 1.6832
deg/s deg/s deg/s deg/s deg/s deg/s
Scale 10817 | 10980 ppm | 9124 9288 15529 15690
Factor ppm ppm ppm ppm ppm
Error

Table 11 Six position direct method results (accelerometers)

Acc X real X y real y z real z
estimated estimated estimated
Bias 349.66 349.401 346.36 | 346.496 250.18 | 250.445
mg mg mg mg mg mg
Scale 3916 3581 ppm | 3284 2950 4733 4399
Factor ppm ppm ppm ppm ppm
Error

It can be observed from Table 10 and Table 11, performance of six-position direct
method is lower than multi-position and multi-rate test methods. The estimated
parameters which are determined by using multi-position and multi-rate test data are
closer to actual error parameters. Also, misalignment error could not be estimated by
six-position direct method. As a result, multi-position and multi-rate test method are

more useful than six-position direct method.

7.3 IMU Error Compensation (Calibration) Model Simulation

IMU error compensation model was built by using Simulink software. Equation
(5.17) and (5.18) were implemented to simulate the error compensation algorithm.
Estimated deterministic error parameters was inserted into simulation blocks as

calibration parameters.
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Simulation input: Raw IMU measurements. IMU error model simulation results or

collected IMU data can be used as an input for IMU error compensation simulation.

Simulation output: Error compensated angular rate and linear acceleration
measurements.  Deterministic error effects were eliminated from raw IMU

measurements but stochastic error effects could not be compensated.

Purpose of simulation: Compensation of deterministic error parameters of an IMU.

The optimum bias, scale factor and misalignment were estimated according to
calibration test states. As shown in Table-8 and Table-9 estimated error parameters
are not equal to actual error parameters. The difference between estimated and actual
error parameters is caused by the effect of sensor bias instability and random sensor

noise.

The raw data was calibrated with IMU error compensation model by using the
estimated deterministic error parameters. After the calibration process, the
difference between the calibrated data and the reference data (IMU error model input
data) was calculated to evaluate the performance of the error compensation
algorithm. This difference represents the IMU’s total residual error. The magnitude
of the residual errors vary depending on the difference between the actual and the
estimated error parameters. Furthermore, the magnitude of bias instability and

random sensor noise also affect the magnitude of residual errors.

The following figures show the changes in IMU’s total residual errors according to
the reference inputs. It was observed that the magnitude of total residual error
increases when the magnitude of the input rate and acceleration increases. This
situation can be explained with the observability of the scale factor error and
misalignment error. The effect of residual scale factor error and misalignment error
becomes observable at high rates and accelerations. Besides, the effect of residual
bias can be observable at all rates and accelerations. As a result total residual errors

include the effects of residual scale factor, bias and misalignment errors.
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Figure 48 x gyro residual error distribution
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Residual z Gyro Error vs Input
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The RMS value and the repeatability of the total residual error determine the
performance limitations of an IMU. The simulated IMU’s residual error RMS value

and repeatability are given in Table-12

Table 12 Simulated IMU'’’s residual error

Gyro 5;{32 RMS | 100,8451 deg/h | 107,1827 deg/h | 98,1508 deg/h
Acc Error RMS 0.8190 mg 0.6837 mg 10323 mg
value
e 95.6266 deg/h | 95.8356 deg/h | 96.3739 deg/h
Repeatability : : .
Acc Error
Repeatability 0,6080 mg 0,7057 mg 1,1307 mg

The standard deviation,lo , of the residual errors is called as the error repeatability.
The error distribution is assumed to be Gaussian. Therefore, the 3o value of the error

repeatability indicates the maximum error limit of an IMU. [25,26]

7.4 Stochastic Error Estimation Algorithm

Stochastic error estimation algorithm was built by using MATLAB software.
Equations (3.5), (3.6), (3.7), (3.8) and (3.9) were implemented to process the Kalman
filter algorithm. Bias instabilities of gyroscopes and accelerometers estimations were
observed from the outputs of this algorithm. In order to observe the effects of
parameter tuning and sensor properties, the algorithm was processed under different

conditions.

Algorithm input: The difference between the calibrated IMU data and the reference
input.
Algorithm output: Instantancous values of accelerometer and gyroscope bias

instabilities.

81



Purpose of algorithm: Estimation of stochastic error parameters of an IMU.
Stochastic properties of the simulated IMU are given in Table 13. These parameters
were generated accordance with real MEMS gyroscope and MEMS accelerometer

specifications. Furthermore, properties of the algorithm are also given in Table 14.

Table 13 Stochastic Properties of the IMU Sensors

Correlation Time
(Time Constant)

Bias Instability
(o)

Sensor Noise
Density (10)

Gyroscopes 15 seconds 0.005 deg/s 0.0015
deg/s/\ Hz

Accelerometers 1 second 0.5 mg 0.00027

g/~ Hz

Table 14 Properties of the simulation
Simulation Properties

Sampling interval (dt) 0.001 second

Processing duration 100000 iteration = 100 seconds

State transition matrix, A, was calculated according to the stochastic properties of the
simulated IMU and stochastic model of sensor bias instability. (Detailed information

about A is given in Chapter 6. )

09999 0 0 0 0 0
0 09999 0 0 0 0
PR 0 09999 0 0 0 (7.1)
0 0 0 099 0 0
0 0 0 0 09999 0
0 0 0 0 0 0.9999

Initial value of error covariance matrix, P,, was calculated accordance with equation

sLoo

(6.5).
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0

S O o O

[(0.0150)°

0 0 0 0 0
(0.0150)° 0 0 0 0

0  (0.0150)> 0 0 0

0 0  (0.0015% 0 0

0 0 0 (0.0015° 0

0 0 0 0 (0.0015) |

(7.2)

Similarly, the measurement noise covariance matrix, R ,was calculated by using

equation (6.6). The calculated numerical value of related matrix is given below.

[(0.1422)> 0 0
0 (0.1422> 0
ao| 0 0  (0.1422)
0 0 0
0 0 0
0 0 0

0

(0.0255)

0
0

0
0

(0.0255)

0
0
0
0

0

0
0
0
0

0

(0.0255)* |

(7.3)

Finally, the process noise covariance matrix,(, was calculated by using equation

(6.7). The calculated numerical value of related matrix is given below.

0

0
0
0
0

[(2.999%1075)?

0

0
0
0

0

(2.999%107°)°
(2.999%107°)°
(6.705%107)?

0
0
0

0

0

0
0

0
0
0

0
0
0

0

(6.705*107°)?

0

(6.705%107)? |

0
0
0
0

0

(7.4)

Results of the algorithm (X,y,z channel gyroscope and accelerometer bias instability

estimation) are given in Figure 58 to 63. Additionally, changes in the Kalman gain

and the error covariance values are presented in Figures 54 ,55, 56 and 57.
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X gyro bias inst. estimation Kalman Gain vs Iteration
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Figure 54 Gyroscope bias instability estimation Kalman gain variation

The Kalman gain variations for the X,y,z gyro bias instability estimations are

identical. Therefore, only x gyro’s Kalman gain variation is presented.

At the end of 10 seconds, Kalman gain, which was used in gyro bias instability
estimation, approached the equilibrium. This situation shows that the estimated gyro
bias instability states converged to actual bias instability. On the other hand,
convergence of the accelerometer bias instability estimation happened earlier than
the gyro bias instability estimation convergence. On the basis of this point, it can be
said that convergence accelerometer bias instability estimation occurred before the

convergence of gyroscope bias instability estimation.

84



X acc bias inst. estimation Kalman Gain s Iteration
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Figure 55 Accelerometer bias instability estimation Kalman gain variation
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Figure 56 Gyroscope bias instability estimation error covariance variation
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The error covariance variations for the X,y,z gyro bias instability estimations are

identical. Therefore, only x gyro’s error covariance variation is presented.

x 10° X acc bias inst. estimation Error Covariance vs Iteration
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Figure 57 Accelerometer bias instability estimation error covariance variation

The error covariance variations for the X,y,z accelerometer bias instability

estimations are identical. Therefore, only x accelerometer’s variation is presented.
timat dentical. Therefore, only 1 ter’ t ted

Similar to the Kalman gain convergence, accelerometer bias instability estimation
error covariance approached equilibrium before the bias instability estimation error
covariance. It can be also explained by more rapid convergence of accelerometer bias

instability estimation.
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x gyro real and estimated bias instability vs time
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Figure 58 x gyro estimated bias instability
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Figure 59 y gyro estimated bias instability
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z gyro real and estimated bias instability vs time
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Figure 60 z gyro estimated bias instability
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Figure 61 x acc estimated bias instability
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y acc real and estimated bias instability vs time
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Figure 62 y acc estimated bias instability
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Figure 63 z acc estimated bias instability
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At the end of 4 seconds, all accelerometer bias instability estimations converged to
real accelerometer bias instability values. On the other hand, convergence of
gyroscope instability took 60 seconds. Gyroscope’s sensor noise density and
correlation time are greater than the accelerometer’s noise level and correlation time.
It can be observed that, the performance of estimation is directly affected by noise

density and correlation time.

As mentioned earlier, random sensor noise represents the uncertainty in sensor
outputs. Therefore, an increase in sensor noise level causes an increase in
convergence duration. Additionally, correlation time gives information about the
relationship between successive values of sensor bias instability and the relationship
between consecutive values of bias instability reduces when the sensor correlation
time increases. This means that, an increase in correlation time leads an increase in

convergence duration.

Stochastic error estimation algorithm was processed in three different ways to
observe the effects of the sensor parameters and Kalman filter components. The
method which is described above, is the most basic implementation and intended to
be used in practical applications. Other implementations were carried out to evaluate
the effect of each parameter alone. The generated conditions for testing the effects of

the parameters are listed below:

e The effect of measurement noise covariance matrix, R .

e The effect of sensor correlation time (time constant),

Initially, effect of measurement noise covariance matrix tuning was observed. Thus,
the diagonal elements of R matrix were increased and all other parameters which are
listed in Table 13 and Table 14 remained the same. The revised R matrix and

algorithm outputs are given below:
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(1422 0 0 0 0 0 |
0 (1.422° 0 0 0 0
0 0 (1422° 0 0 0
R= . (7.5)
0 0 0 (0255 0 0
0 0 0 0 (0255° 0
0 0 0 0 0 (02557

The diagonal elements of R matrix were multiplied by 10 and the algorithm was

processed in this way. Results of the algorithm are given in the following figures.
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Figure 64 Gyroscpe bias instability estimation Kalman gain variation (R effect)

The Kalman gain variations for the X,y,z gyro bias instability estimations are

identical. Therefore, only x gyro’s Kalman gain variation is presented.
The measurement uncertainties became large with the increased measurement noise

matrix. Therefore the initial value of the Kalman gain decreased, weighting the state

estimates toward to their previous values[15].
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X acc bias inst. estimation Kalman Gain s Iteration
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Figure 65 Accelerometer bias instability estimation Kalman gain variation (R effect)

The Kalman gain variations for the x,y,z accelerometer bias instability estimations

are identical. Therefore, only x acceleromreter’s Kalman gain variation is presented.
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X gyro bias inst.Error Covariance vs Iteration
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Figure 66 Gyroscope bias instability estimation error covariance variation (R effect)
The error covariance variations for the x,y,z gyro bias instability estimations are

identical. Therefore, only x gyro’s error covariance variation is presented.
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Figure 67 Accelerometer bias instability estimation error covariance variation (R

effect)

The error covariance variations for the Xx,y,z accelerometer bias instability

estimations are identical. Therefore, only x accelerometer’s variation is presented.
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Figure 68 x gyro estimated bias instability (R effect)
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Figure 69 y gyro estimated bias instability (R effect)

95



z gyro real and estimated bias instability vs time
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Figure 70 z gyro estimated bias instability (R effect)
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Figure 71 x acc estimated bias instability (R effect)
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y acc real and estimated bias instability vs time
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Figure 72 y acc estimated bias instability (R effect)
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Figure 73 z acc estimated bias instability (R effect)
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At the end of 1 second, all accelerometer bias instability estimations converged to
real accelerometer bias instability values. On the other hand, convergence of

gyroscope instability took 40 seconds.

The uncertainties in measurements become large with the increase in measurement
noise covariance. As a result of this, the Kalman gain decrease to maintain the

performance of the estimation.

As obtained from the algorithm results rate of convergence increases when the
measurement noise covariance increases. It means that the estimations of
accelerometer and gyroscope bias instabilities can reach the true values of
accelerometer and gyroscope bias instabilities more quickly. Because, increase in
measurement noise covariance causes the Kalman gain to drop, weighting the state

estimates more toward their previous states [15].

Secondly, the effect of sensor correlation time on the algorithm performance was
investigated. In order to investigate the effect of sensor correlation time, stochastic
properties of accelerometers and gyroscopes were changed. Correlation time of the
accelerometers was increased from 1 second to 10 seconds and correlation time of
the gyroscopes was also increased from 15 seconds to 30 seconds. Additionally,
simulation duration was raised to 200 seconds. Other parameters which are listed in

Table 13, Table 14 and equation (7.3) remained the same.

When the algorithm was processed for the first time, duration was set to 100 seconds.
However, estimated accelerometer and gyroscope bias instabilities could not
converge to real instabilities. Therefore duration of simulation was increased to 200

seconds.

The following figures show that the sensor correlation time is one of the major
components for algorithm design. Because the length of correlation time directly
affects the convergence time. With the increase of correlation time, occurrence of

bias instability takes more time. Besides, high correlation time represents that the
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successive values of sensor outputs are weakly correlated. Therefore, the
performance of the estimation algorithm decreased and convergence happened later.
Consequently, it can be said that if the sensor has a high correlation time, stability
performance of the sensor is good and the sensor does not need any instability
estimation and correction algorithm. For example, correlation time of ring laser
gyroscopes is approximately 1000 seconds and the IMUs which contain ring laser
gyroscopes do not use bias instability estimation algorithm. Outputs of the algorithm

are given in the following figures.

All estimated stochastic error parameters oscillates between —30 and +3c values of

the bias instabilities. This result indicates that the estimation algorithm works

properly.
X gyro bias inst. estimation Kalman Gain vs Iteration
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Figure 74 Gyroscope bias instability estimation Kalman gain variation (correlation

time effect)

The Kalman gain variations for the x,y,z gyro bias instability estimations are

identical. Therefore, only x gyro’s Kalman gain variation is presented.
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Figure 75 Accelerometer bias instability estimation Kalman gain variation

(correlation time effect)

The Kalman gain variations for the x,y,z accelerometer bias instability estimations
100

are identical. Therefore, only x accelerometer’s Kalman gain variation is presented.



X gyro bias inst.Error Covariance vs Iteration
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Figure 76 Gyroscope bias instability estimation error covariance variation

(correlation time effect)

The error covariance variations for the Xx,y,z gyro bias instability estimations are

identical. Therefore, only x gyro’s error covariance variation is presented.
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Figure 77 Accelerometer bias instability estimation error covariance variation

(correlation time effect)

The error covariance variations for the X,y,z accelerometer bias instability

estimations are identical. Therefore, only x accelerometer’s variation is presented.
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Figure 78 x gyro estimated bias instability (correlation time effect )
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Figure 79 y gyro estimated bias instability (correlation time effect )



z gyro real and estimated bias instability vs time
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Figure 80 z gyro estimated bias instability (correlation time effect)
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Figure 81 x acc estimated bias instability (correlation time effect )
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Figure 82 y acc estimated bias instability (correlation time effect )

107



z acc real and estimated bias instability vs time
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Figure 83 z acc estimated bias instability (correlation time effect )
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7.5 Experimental Test Results

A tactical grade IMU was used to perform real experiments. The commercial IMU
which was used in the experiments contains three MEMS Colibrys MS9000.D series
accelerometer and three identical ADIS16100 MEMS gyroscope. Additionally, the

IMU has a processing unit for running deterministic error compensation algorithm.

Figure 84 Representation of MEMS IMU

Multi-position static test and multi-rate dynamic test were performed respectively.
The IMU data which was collected during the multi-position static test and multi-rate

dynamic test were used to estimate deterministic errors of the IMU.
Acutronic 3-axis rate table was used to simulate reference position and angular rate.

In addition, test computer and power supply were used in the experimental tests. Test

setup is presented in Figure 85.

IMU

3-AXIS RATE
TABLE

Figure 85 Experimental test setup
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Deterministic error parameters of the IMU were estimated by processing the
collected test data accordingly deterministic error estimation algorithm. Estimated
error parameters are given in Table-15. Error compensation (calibration) simulation
was run by using estimated deterministic error parameters and calibrated IMU

outputs were acquired.

Table 15Deterministic Error Estimation Results (Real data

Gyro X y z
estimated | estimated | estimated
Bias 1,7507 0,1589 1,5544
deg/s deg/s deg/s
G-dep bias 0.0365 | 0.0389 0.0101
Coefficient deg/s/g deg/s/g deg/s/g
Scale Factor 6900 5112 10685
Error ppm ppm ppm
Misalignment | xy 9.7416 | yx 6.5824 | zx 2.9288
mrad mrad mrad
xz 9.1504 | yz6.4949 | zy 1.3613
mrad mrad mrad
Accelerometer
Bias 262.6618 | 203.9583 394.0867
mg mg mg
Scale Factor 7771 5734 13.3880
Error ppm ppm ppm
Misalignment | xy 1.4531 | yx4.9527 | zx 1.4983
mrad mrad mrad
xz2.2908 | yz7.9273 | zy 0.3184
mrad mrad mrad

Collected raw IMU data and calibrated IMU data is given in the following figures. It
can be observed that the error compensation (calibration) model outputs oscillate

around the reference values.
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Figure 86 uncalibrated and calibrated x acc output (real data)
15

(B) uoielsjeI2e

500

450

time (s)

111

Figure 87 uncalibrated and calibrated y acc output (real data)
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Table 16 and Table 17 summarize the total errors in the IMU sensors before and after
calibration. The difference between the error levels demonstrates the importance and
functionality of the error compensation model. Deterministic error estimation and
compensation provided %99 improvement in accelerometer performance. Similarly,

%95 improvement was ensured in gyroscope performance.

Table 16 IMU total error before calibration

Gyro 5;{32 RMS | 5719.8076 deg/h | 686.9059 deg/h | 1931.243deg/h
Ace EVESGRMS 264.359 mg 204.188 mg 393.844 mg

Table 17 IMU total error after calibration

Gyro 5532 RMS 11314674 deg/h | 31.8297 deg/ | 106.5706 deg/h
Acc Error RMS 0.7912 mg 0.8465 mg 12005 mg
value
e 122.2887 deg/h | 30.9998 deg/h | 80.0051 deg/h
Repeatability : : .
Acc Error
Repeatability 0.8046 mg 0.8612 mg 1.2219 mg

After the deterministic error estimation and compensation, stochastic properties of
the IMU were tested. These tests include gyroscope and accelerometer bias
instability estimation. Results of these tests are given below. Stochastic properties of
the real IMU sensors are the same as the simulated IMU. Stochastic properties of the
simulated IMU are given in Table 13 The IMU data was collected in a fixed position

for 120 seconds to perform stochastic error estimation test.
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Figure 99 x acc estimated bias instability (real data)
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Figure 101 z acc estimated bias instability (real data)

119



Stochastic error estimation algorithm was applied to experimental test data.
Experimental test results are similar to simulated test results. Instantaneous values of
the bias instabilities oscillates between —30 and +3c. (1o value of the gyroscope
or accelerometer bias instability is the specification of the sensor.) This results shows
that performance of the estimation algorithm is consistent. Behavior of the

simulation results and real experiment results are the same.

As observed from Figures 92, 93, 94 and 95 real accelerometer bias instability
estimation’s Kalman gain and error covariance approached before real gyroscope
bias instability estimation’s Kalman gain and error covariance. Correlation time and

sensor noise effects can be explained as the main reason for these situations.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

This thesis study suggests some methods for estimation of deterministic and
stochastic IMU error parameters. Estimation of deterministic error parameters and
stochastic error parameters were investigated separately. Firstly deterministic error
estimation methods were researched. In order to determine the optimum calibration
method, six position direct method and multi rate & position method were
implemented and test results were compared. According to the results, multi rate &
position method determined as the optimum method for estimation of deterministic
IMU errors. After estimation of deterministic error parameters, error compensation
model was designed to fix deterministic error effects. After the correction of
deterministic errors, the remaining errors, difference between reference inputs and
error compensation model outputs, were defined as stochastic errors and these errors
were divided into two groups. First group was defined as random noise and the
second group was determined as gyroscope/accelerometer bias instability. The
second group errors, gyroscope and bias instabilities, were estimated by using
Kalman filter algorithm. Thereby effect of bias sensor instabilities of could be
corrected. The purpose of all these studies is improving the performance of MEMS

IMU.

Deterministic errors are the major part of IMU errors. Therefore, deterministic error
estimation and compensation algorithm design is more critical than stochastic error

estimation and compensation algorithm. However, bias instability error
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compensation becomes very crucial in long-term navigation. Because of this,

deterministic and stochastic error compensation should be considered together.

8.2 Future Work

Although, the deterministic and stochastic error compensation algorithms were
developed, these algorithms are not ready to run on the processor. These algorithms
must be converted to embedded code. Moreover, temperature effects on the MEMS

sensors were not modeled.

As a future work, the existing algorithm can be converted to embedded code.
Thereby, performance limit of the MEMS based tactical grade IMUs can be
increased. Furthermore, temperature effects can be modeled and temperature effect
compensation algorithm can be added to present algorithms. Besides, scale factor
instability effect can be modeled and estimated by using nonlinear estimation

techniques.
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APPENDIX

FLOWCHART OF THE SIMULATION AND
EXPERIMENTAL STUDIEs
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