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ABSTRACT 
 

ESTIMATION OF DERTERMINISTIC AND IMU (INERTIAL MEASUREMENT 

UNIT) ERROR PARAMETERS 

 

 

Ünsal, Derya 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor:  Prof Dr. Kerim Demirbaş 

 

February 2012, 122 Pages 

 

 

Inertial Measurement Units, the main component of a navigation system, are used in 

several systems today. IMU’s main components, gyroscopes and accelerometers, can 

be produced at a lower cost and higher quantity. Together with the decrease in the 

production cost of sensors it is observed that the performances of these sensors are 

getting worse. In order to improve the performance of an IMU, the error 

compensation algorithms came into question and several algorithms have been 

designed. Inertial sensors contain two main types of errors which are deterministic 

errors like scale factor, bias, misalignment and stochastic errors such as bias 

instability and scale factor instability. Deterministic errors are the main part of error 

compensation algorithms. This thesis study explains the methodology of how the 

deterministic errors are defined by 27 state static and 60 state dynamic rate table 

calibration test data and how those errors are used in the error compensation model. 

In addition, the stochastic error parameters, gyroscope and bias instability, are also 

modeled with Gauss Markov Model and instant sensor bias instability values are 

estimated by Kalman Filter algorithm. Therefore, accelerometer and gyroscope bias 

instability can be compensated in real time. In conclusion, this thesis study explores 

how the IMU performance is improved by compensating the deterministic end 

stochastic errors. The simulation results are supported by a real IMU test data.  
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ÖZ 
 

 

 

AÖB (ATALETSEL ÖLÇÜM BİRİMİ) DETERMİNİSTİK VE OLASILIKSAL 

HATA PARAMETRELERİNİN KESTİRİMİ 

 

 

Ünsal, Derya 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Kerim Demirbaş 

 

Şubat 2012, 122 Sayfa 

 

Seyrüsefer sistemlerinin temel bileşeni olan ataletsel ölçüm birimleri günümüzde bir 

çok değişik sistemde kullanılmaktadır. Ataletsel ölçüm biriminin ana bileşenleri olan 

ivmeölçerler ve dönüölçerler üretimdeki maliyetin düşmesi ile birlikte üretim 

sayılarında artış meydana gelmiştir. İvmeölçer ve dönüölçerlerin düşük maliyetle 

yüksek sayıda üretilmesi ile birlikte sensör performanslarında düşüş olduğu 

gözlemlenmektdir. Bu nedenle, ataletsel ölçüm birimlerinin performansını arrtıkmak 

amacıyla hata telafi algoritmaları gündeme gelmiş ve çok çeşitli algoritmalar 

tasarlanmıştır. Ataletsel sensörler iki türlü hata içerirler.  Bunlar orantı katsayısı 

hatası, sabit kayma ve eksenel kaçıklık gibi deterministik hatalar ve sabit kayma 

hatası kararsızlığı, orantı katsayısı hatası kararsızlığı gibi olasılıksal hatalardır. 

Deterministik hatalar hata telafi algoritmalarının temel parçalarını oluşturmaktadır. 

Bununla birlikte uzun süreli seyrüsefer sistemi kullanımlarında olasılıksal hatalar 

kritik önem taşımaktadır. Bu tez çalışması, dönü tablası kullanılarak gerçekleştirilen 

27 durumlu statik pozisyon testi ve 60 durumlu dinamik kalibrasyon testi 

verilerinden deterministik hatların nasıl hesaplandığını ve belirlenen hataların hata 

telafi modeli içerisinde nasıl kullanıldığını anlatmaktadır. Ayrıca, olasılıksal hata 

parametrelerinin Gauss-Markov süreci ile modellenerek sensörlerin sabit hata 
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kararsızlıklarının anlık olarak kestirimi Kalman süzgeci algoritması kullanılarak 

gerçekleştirilmiştir.  İvmeölçerler ve dönüölçerlerin sabit hata kararsızlıklarının anlık 

olarak kestirilmesi ile birlikte ataletsel ölçüm biriminin olasılıksal hataları gerçek 

zamanlı olarak telafi edilebilecektir. Sonuç olarak, bu tez çalışmasında deterministik 

ve olasılıksal sensör hatalarının telafisi yapılarak ataletsel ölçüm birimi 

performansının nasıl arttırıldığı araştırılmıştır.  

  

Anahtar Kelimeler:  Ataletsel ölçüm birimi, dönüölçer, ivmeölçer, Kalman süzgeci. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

 

 

TNavigation is the art of getting from one place to another, safely and efficientlyTT XX[1]XX. 

From past to present, several tools and systems such as compasses, maps, sun, stars 

were used for navigation.  In today’s world these tools have been replaced by 

electronic equipments such as sensors, antennas, etc. These electronic equipments 

TTform the basis of the modern navigation systems. Inertial Navigation Systems and 

Global Positioning Systems can be shown as an example for the modern navigation 

systems. Nowadays TT several types of INS, GPS and integrated INS/GPS are used in 

different platforms such as aircrafts, ships, guided missiles and UAVs. 

 

GPS acquire and process satellite signals to calculate navigation parameters such as 

position, velocity and attitude, according to the received signals.  GPS always need 

satellite signals and this is the major drawback of GPS. However, INS use IMU 

outputs to construct position velocity and attitude by processing the navigation 

equations.  Therefore IMUs are the major part of inertial navigation systems. 

 

An inertial measurement unit is a device, which is used to measure linear 

acceleration and angular rate.  Inertial measurement units contain two types of 

sensor, accelerometer and gyroscope. An accelerometer measures linear acceleration 

about its sensitivity axis and integrated acceleration measurements are used to 

calculate velocity and position. Besides a gyroscope measures angular rate about its 

sensitivity axis and gyroscope outputs are used to maintain orientation in space. In 

addition to these sensors IMU has a processor. IMU calibration algorithm runs on the 

processor and also the communication interface in the processor.  
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Inertial measurement units are divided into various classes such as strategic, 

navigation, tactical, industrial and automotive grade. These classes are determined 

according to performance levels of sensors which are used in IMUs.  The navigation 

grade IMUs are the highest grade systems and they are used on ships, ballistic 

missiles and aircrafts.  

 

The cost of an IMU increases when the sensor performance requirements increase. 

The major reasons for the cost increase can be explained in two ways.  The first 

reason is the highly skilled production line requirement and the second reason is the 

decrease in the percentage of utilizable sensor in the batch. Therefore, in order to 

improve the performance of inertial sensors, the calibration algorithms and the error 

compensation models were researched and developed. Thereby both low-cost and 

high-performance IMUs could be produced. 

 

The main objective of this thesis work is to develop methods in order to estimate 

deterministic and stochastic error parameters of MEMS based inertial measurement 

units. Additionally, improving the performance of IMUs is aimed by using these 

estimated parameters. Therefore an error calibration algorithm is implemented and 

estimated parameters are used in this algorithm.  

 

In this thesis, an error model which includes both deterministic and stochastic errors 

is constituted to simulate the behavior of a MEMS-based IMU. Outputs of the error 

model simulation are used as input for deterministic error estimation algorithm. After 

the estimation of deterministic error parameters, these parameters are embedded into 

the error compensation simulation to compensate the effects of deterministic errors.  

Also, the Kalman filter algorithm is developed according to the stochastic error 

model and used for estimating stochastic errors.  After the determination of 

stochastic errors, outputs of the error compensation algorithm are corrected by 

subtracting estimated stochastic errors 

 

This thesis study is composed of eight chapters .  
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Chapter 1 provides introduction and summary about content of the chapters. 

The second chapter of this thesis gives a theoretical background about structure of 

IMUs, types and production methods of inertial sensors.   

 

In Chapter 3, the Kalman filter algorithm and its properties are presented. 

Additionally mathematical model of the Kalman filter is given. The role of the 

Kalman filter is also explained.  

 

Chapter 4 gives general information about inertial sensor error types, error models 

and provides equations of the sensor outputs. Deterministic and stochastic error types 

are explained separately. Besides, the IMU error model is described in detail. 

 

The fifth chapter of this thesis explains deterministic error estimation techniques. 

IMU calibration test procedures such as static and dynamic tests are introduced and 

the technique which is suggested in the scope of this thesis study is explained.  

 

In Chapter 6 stochastic sensor error estimation techniques are explained. System 

model and measurement model are also provided.  

 

Chapter 7 presents simulation results. These results include both deterministic and 

stochastic error estimation simulation and algorithm results.  In addition, simulation 

results are evaluated and different simulation results which are carried under 

different conditions are discussed. 

 

In Chapter 8 summary of this thesis study and suggestions for future are given 
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CHAPTER 2  

Equation Chapter (Next) Section 2 

2 THEORETICAL BACKGROUND ABOUT IMU 

 

 

 

Inertial measurement units typically contain three orthogonal gyroscopes a and three 

orthogonal accelerometers, measuring angular velocity and linear acceleration XX[2]XX. 

As mentioned in the previous chapter, inertial measurement units are divided into 

various classes and these classes are determined according to error limits of inertial 

sensors such as scale factor, bias error and sensor noise. These sensor limits vary 

depending on the types of sensors.  

 

This chapter gives theoretical background about IMUs and inertial sensor 

technologies. Section 2.1 summarizes the properties of an IMU an Section 2.1.1 

gives some information about accelerometers and their features. Similar to the 

Section 2.1.1, Section 2.1.2 discusses types of gyroscopes and their features.  

 

2.1 Inertial Measurement Unit 

 

The combination of gyros, accelerometers, and supporting structure assembly and 

electronics was referred to as the IMU..  There are two types of inertial measurement 

configuration: gimballed or stabilized platform, strapdown or analytical platform.  

The primary difference between the gimballed and strapdown system is the 

environment in which the accelerometers and gyroscopes must function. Gimballed 

IMUs, first version of IMU configurations, consist of a platform isolated from 

vehicle rotations by gimbals. Since the platform does not rotate with the vehicle, its 

orientation remains fixed. On the other hand, strapdown IMUs are attached rigidly to 
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the body of the vehicle and IMUs move with the vehicle.  Gimballed IMUs provide 

very accurate navigation data but mechanical complexities and costs of the gimballed 

IMUs are very high. Strapdown IMUs are mechanically simple, lower cost, more 

useful due to small size.  Therefore, strapdown inertial measurement units are 

preferred today [3,4,5]. 

 

 
Figure 1 Gimballed and Strapdown Accelerometers 

 

The major disadvantage of the strapdown inertial system is increase in computational 

complexity. However, recent advances in computer and sensor technology allow to 

overcome this problem XX[3]XX.  

 

As mentioned Chapter 1, according to their error performances, IMUs can be 

classified into different groups. Table-1 presents these groups and their error 

limitations.  

Table 1 IMU ClassificationXX[8] 
 

Error 

Tactical Grade 

< 20 km/h 

Navigation Grade 

< 1km/h 

Strategic Grade 

< 30 m/h 

Gyro Drift Rate 1-10 deg/h 0.015 deg/h 0.0001 deg/h 

Acc Bias 100-1000 µg 50-100 µg 1 µg 

Cost of IMU < 10000 $ 10000 – 70000 $ >200000 $ 
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The following sections explain the basic parts of inertial measurement units, 

accelerometers and gyroscopes. 

2.1.1 Accelerometers  

 

An accelerometer measures the acceleration in an inertial reference frame, which can 

be used to estimate the acceleration of moving body XX[6]XX. The integrated value of an 

accelerometer gives the velocity and second integration gives the distance travelled. 

These calculated parameters are required for inertial navigation.XX[7] 

 

The main components of a typical accelerometer are a proof mass, a suspension to 

hold the mass, and a pickoff, which relates an output signal to the induced 

acceleration XX[6] 

 

   Figure 2 A simple accelerometer (Figure is taken from XX[3] XX) 
 

When the accelerometer is subjected to an acceleration along its sensitive axis, the 

proof mass tends to resist the change in movement owing to its inertia. As a result, 

the mass is displaced with respect to the body.  The force acting on the mass will be 

balanced by the tension in the spring and the net extension gives a measure of the 

applied forceXX[3]XX.  

 

 F ma mf mg= = +  (2.1)
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F  is the total force, m  is the mass, g is the gravitational acceleration and f is the 

specific force. An accelerometer can not measure gravitational force.  Therefore, 

specific force f  gives the acceleration which is exerted on the sensor.   

 

There are different types of accelerometers are used in different platforms and these 

types are classified according to production technology. All accelerometers exhibit 

several errors and these errors depend on the type of accelerometer. Fixed bias, scale 

factor error, misalignment and random bias can be listed as primary accelerometer 

errors. 

 

Accelerometers can be divided into 3 main groups. These groups are mechanical 

accelerometers, quartz accelerometers and MEMS accelerometers. Each group of 

sensors have different error characteristics. Accordingly, each group has different 

application areas such as long-range guidance, tactical weapons and commercial 

applications.  Figure 3 shows current accelerometer technology applications.XX[9] 

 

 

Figure 3 Current Accelerometer Technology Applications (Figure is taken from XX[9] XX) 
 

As the figure shows current applications are dominated by electromechanical sensors 

and quartz resonators XX[9]XX. Figure 4 presents that the tactical performance end of the 

accelerometer application spectrum will be dominated by micromechanical 
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gyroscopes and higher performance applications will continue to use mechanical and 

quartz accelerometers. 

 

 

 

Figure 4 Near-term accelerometer technology applications (Figure is taken from 
XX[9] XX) 

 

MEMS accelerometer was used in this thesis study. In this context, MEMS 

accelerometer error model is given in more detail in Chapter 4. The following section 

includes structure and working principle of MEMS accelerometers. In addition, other 

types of accelerometers are also summarized in the following section.  

 

2.1.1.1 MEMS Accelerometers 

 

Types of MEMS accelerometers can be listed as piezoresistive, capacitive, 

piezoelectric and tunneling accelerometers.   

 

Piezoresistive accelerometers are the first micromachined and commercialized 

inertial sensors XX[10]XX. This type of accelerometers incorporate silicon piezoresistors in 

their suspension beam. When the frame moves, suspension beams elongate or 

shorten, which changes the stress and resistivity of embedded piezoresistors The 

variation in acceleration causes the change in resistance.  This change can be 

evaluated using standard bridge techniques. The simplicity of the structure and 

fabrication process is the main advantage of piezoresistive accelerometers. On the 
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other hand, high temperature sensitivity is the main disadvantage of these sensors.  . 

[6,11] 

 

 
Figure 5 Piezoresistive accelerometer ( Figure is taken from XX[11] XX) 

 

Capacitive accelerometers use air damped, opposed-plate capacitor as sensing 

elements. The support frame of an accelerometer moves from its rest position, when 

the acceleration is applied to the sensor.  This movement creates the change in the 

capacitance between the proof mass and fixed electrodes. In contrast to the 

piezoresistive accelerometers, temperature sensitivity of the capacitive 

accelerometers is low [6, 11]. 

 

 
Figure 6 Capacitive accelerometer ( Figure is taken from XX[11] XX) 

 
 

Piezorelectric accelerometer use piezoelectric material to sense applied acceleration. 

Piezoelectric material converts the measured acceleration to electrical signal. 

Therefore, sensor structure does not need any conversion electronics XX[6]XX. 
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Figure 7 Piezoelectric accelerometer ( Figure is taken from XX[11] XX) 

 

Tunneling accelerometers use a constant tunneling current one tunneling tip and its 

counterelectrode to sense displacement. When displacement occurs, a voltage is 

adjusted to maintain the current at a constant level. The measured voltage presents 

magnitude of the applied acceleration. Resolution of the tunneling accelerometers is 

very high. [6,11] 

 

 

Figure 8 Tunneling accelerometer ( Figure is taken from XX[11] XX) 
 

2.1.2 Gyroscopes 

 

A gyroscope measures angular rates with respect to an inertial frame to fully describe 

the motion of a body in 3D space. The gyroscopes are used in a variety of roles such 

as stabilization, autopilot feedback, flight path sensor or platform stabilization and 

navigation[3].   
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 Similar to accelerometers there are different types of gyroscopes. Mechanical gyros, 

optical gyros and MEMS gyros can be shown as an example.  MEMS gyroscopes are 

used in this work and gyroscope error model is explained in more detail in Chapter 4. 

 

 
Figure 9 Current gyro technology applications (Figure is taken from XX[9] XX) 

 
 

MEMS sensors have potentially significant cost, size and weight advantages. 

Therefore, MEMS gyroscopes are widely used in tactical grade IMUs, robotics, 

smart munitions, etc. Scale factor stability and bias stability performance of optical 

gyros are significantly higher than MEMS gyros.  Thus, optical gyroscopes, RLG 

and FOG, are used in long term navigation applications, such as cruise missiles, 

air/land/sea navigation surveying, etc. Some applications, strategic grade IMUs and 

self aligning missiles, that require high stability and low error use mechanical gyros. 

XX[9] 
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Figure 10 Near-term gyro technology applications (Figure is taken from XX[9] XX) 

 
 

Figure 10 shows that the MEMS and FOG gyroscope technologies are expected to 

replace many current systems. The performance of MEMS gyroscopes is continually 

improving, and they are currently being developed for many applications. 

 

A MEMS gyroscope was used in this work. Therefore, MEMS gyroscope error 

model is given in more detail in Chapter 4. The following section gives detailed 

information about structure and working principle of MEMS gyroscopes. In addition, 

other types of gyroscopes are also summarized in the following section.  

 

2.1.2.1 MEMS Gyroscopes 

 

MEMS gyroscopes use Coriolis acceleration effect on a proof mass to detect inertial 

angular motion. MEMS gyroscope rely on the detection of the force acting on a mass 

that is subject to linear vibratory motion in a frame of reference which is rotating 

about an axis perpendicular to the axis of linear motion. The resulting force, acts in a 

direction, that is perpendicular to the both axis of vibration and the axis about which 

is the rotation applied XX[3] 

 

MEMS gyroscopes are divided into three groups and almost all of these groups use 

Coriolis effect to sense angular rate.  
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Structure of tuning fork gyroscope consists of two tines, which are connected to a 

junction bar. The tines are differentially resonated to a fixed amplitude. When the 

gyroscope is rotated, Coriolis force causes a differential sinusoidal force to develop 

on the individual tines, orthogonal to the main vibration [6,11]. 

 

 
Figure 11 Tuning fork gyroscope ( Figure is taken from XX[11] XX) 

 

Vibrating wheel gyroscope includes a wheel that vibrates about of axis symmetry. 

Vibrating wheels operate much like the macroscopic spinning wheel gyroscope but 

use capacitive sensors to determine changes in attitude. The wheel rotation about the 

symmetry axis, results in the wheel tilting and the occurred tilt produce a change in 

the angular rate measurement [6,22]. 

 

 
Figure 12 Vibrating wheel gyroscope ( Figure is taken from XX[22] XX) 

 
In a wine glass resonator gyroscope, T Ta wine glass resonator makes use of a 

hemisphere driven to resonance, the nodal points of which are measured to detect 

rotation [6,22]. Fused silica is used in the production process of wine glass resonator 

gyroscope. 
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Other types of gyroscope technologies can be listed as mechanical gyroscopes, rate 

gyroscopes and optical gyroscopes (Ring laser, fiber optic) .  Ring laser gyro (RLG) 

and fiber optic gyro (FOG) are the most popular and widely used sensors with 

MEMS gyroscopes. But the performance and cost of FOG and RLG are higher than 

the MEMS gyroscopes.  According to inertial navigation system’s performance 

requirements FOG, RLG or MEMS sensors are selected to design inertial 

measurement unit. 

 

 
Figure 13 Ring Laser and Fiber Optic Gyroscope 
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CHAPTER 3 

Equation Chapter (Next) Section 3 

3 THE KALMAN FILTER 

 

 

 

One of the most common problems in science and engineering is the estimation of 

various quantities based on collecting measurements XX[12]XX. There are many ways to 

estimate an unknown quantity from available data such as mean square estimation, 

maximum-likelihood estimation, recursive estimation, wiener filtering and Kalman 

filter XX[13]XX. The Kalman filter is the most widely used the most advanced technique 

within these estimation techniques. Additionally Kalman filter has extended and 

improved types.  

This chapter basically covers an introduction to the Kalman filter.  Section 3.1 

provides the basic features of the Kalman filter and Section 3.2 defines the 

mathematical models, filter parameters and tuning. Finally, Section 3.3 gives the role 

of the Kalman filter in this thesis work. 

 

3.1  Properties of the Kalman Filter 

 

The Kalman filter is a set of mathematical equations that provides an efficient 

computational (recursive) means to estimate the state of a process, in a way that 

minimizes the mean of the squared error XX[14]XX.  In general, the Kalman filter models 

the state dynamics as a linear function of the previous state, the control input and 

system dynamics zero-mean Gaussian noise.  In addition to that the Kalman filter can 

be explained as a data processing algorithm by using limited number of variables. 

Only the new measurement data need to be processes on each iteration XX[15]XX. 

Therefore the memory requirement was reduced with the use of KF algorithm and 
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this is the one of the most important feature of the KF.  Besides, the Kalman filter is 

preferred for real-time applications such as navigation systems, radar systems, GPS, 

etc….  

 

• The KF includes five major elements. These are system model, measurement 

model, state vector, measurement vector and error covariances  XX[15]XX. 

• The state vector is a group of parameters which are estimated by Kalman 

filter and the state vector cannot be measured directly.  

• The system model describes how the KF states and error covariance matrix 

vary with time. 

• The measurement model specifies the mathematical relationship between the 

system state and the measurements.  

• The measurement vector contains instantaneous measurement values 

according to the measurement model.  

• Error covariances represent the uncertainties in the state estimates and the 

measurements.  

 

3.1.1  System Model  

The system model equation describes a system with noise and this equation called as 

discrete stochastic dynamical equation XX[13]XX. 

 

 
1 1 1k k k kx Ax Bu w− − −= + +  (3.1)

 

The state transition matrix , A , defines how the state  vector changes with time.  

Similarly, the transition matrix for control input , B , determines transition between 

the system and control input.  The random variable kw  represent the process noise 

and it is assumed to be white and with normal probability distribution [13, 14]. 

Detailed information about system model equation parameters are given in Table-2.  
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Table  2 System Model Parameters 

Parameters Definitions 

 State transition matrix 

 Transition matrix for control input 

 State vector 

 Control input 

1kw −  Process noise component 

 

 ( ) (0, )p w N Q∼  

:  Q Process noise covariance  
(3.2)

 

3.1.2 Measurement Model 

 

The measurement model equation which is given in equation (3.3) describes the 

relation between states and observable system output. 

 
k k kz Cx v= +  (3.3)

 

The conversion matrix ,C , maps the state into the measurement. The measurement 

noise, kv , is caused by instrumentation errors and it is assumed to be white and with 

normal probability distribution. [12,13]  

 

 ( ) (0, )p v N R∼  

R : Measurement noise covariance  
(3.4)

 

Detailed information about system model equation parameters are given in Table-3.  

 

 

 

A

1ku −

B

kx
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Table  3 Measurement Model Parameters 
 

Parameters 
 

Definitions 

 Conversion matrix between the system 
and measurement 

 Measurement 

kv  Measurement noise 

 

1z−
ku

kw kv

kz

 
Figure 14 System and Measurement Model Implementation XX[13] XX  

 

3.2  The Mathematical Model of The Kalman Filter  

 

Basically, the equations for the Kalman filter divided into two groups.  These groups 

are time update equations and measurement update equations. The Kalman filter uses 

time update and measurement update equations recursively to estimate the system 

state.  

 

3.2.1 Time Update Equations 

 

Prediction of the next state of the system is calculated by processing the time update 

equations. Moreover, error covariance which defines the probable error in the 

algorithm’s estimate of the state vector is also calculated by using time update 

equationsXX[16]XX.  In summary, time update equations compute a priori quantities for the 

next time step in absence of measurements.  

 

C

kz
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1 1ˆ ˆk k kx Ax Bu−
− −= +  (3.5)

 
1

T
k kP AP A Q−

−= +  (3.6)

 

 

Table  4 Time Update Equations Parameter Definitions  
 

Parameters 
 

 
Definitions 

  
A priori state estimate 

  
A priori error covariance 

 

Equation (3.5) and (3.6) constitute time update equations. Outputs of these equations 

are used as input for the measurement update equations.  

 

3.2.2 Measurement Update Equations 

 

The measurement equations provide a correction based on measurements. The 

purpose of these equations is to correct a priori estimates with measurements and 

compute a posteriori state estimate.  

 

 ( ) 1T T
k k kK P C CP C R

−− −= +  (3.7)

 ( )ˆ ˆ ˆk k k k kx x K z Cx− −= + −  (3.8)

 ( )k k kP I K C P−= −  (3.9)

 

Detailed information about parameters of measurement update equations are given in 

Table-5.  

 

−
kx̂

−
kP
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Table 5 Measurement Update Equations Parameter Definitions 
 
                  Parameters 
 

                          Definitions  

 Kalman gain 

ˆkx  A posteriori state estimate 

 A posteriori error covariance 

 

Equation (3.7) represents the Kalman gain. The function of the Kalman gain is to 

minimize the error caused by the difference between prediction and measurement. In 

other words, Kalman gain is the weighting which determines the influence of the 

residual in updating the estimate XX[13]XX. Equation (3.8) gives the updated version of the 

state estimation. The output of the equation (3.5) is corrected by acquired 

measurements and corrected a posteriori state estimation is calculated. Similarly, 

equation (3.9) shows the correction method of error covariance matrix kP . 

 

3.2.3  Kalman Filter Algorithm  

 

The Kalman filter algorithm consists of merely predicting the errors in the state, and 

then once new observations have been taken, correcting these state errors to obtain 

an optimal solution. Basically, the Kalman filter algorithm depends on prediction-

correction loop and initial conditions. The time update equations need previous time 

step’s state estimation and error covariance to produce a priori estimates for the next 

time step. Therefore initial conditions for state and error covariance 0 0( , )x P
∧

 must be 

determined before starting the algorithm.   

 

The diagonal elements of error covariance matrix are the variances of the each state 

estimate error, while their roots are uncertainties in the estimate of the state vector. 

The off diagonal elements are the covariances, represents the correlations between 

the errors [12, 13, 16]. 

 

kK

kP



  21

If elements of the P  matrix are large, the Kalman gain will be large. It means that 

the state uncertainties must be reduced by weighting the state estimates toward the 

new measurement data.  

 

The Kalman filter estimates will change quickly as they converge with the true 

values of the states, so the state uncertainty will drop rapidly. However, measurement 

noise covariance causes the  the Kalman gain drop, weighting the state estimates 

more toward their previous sates. This reduces the rate at which states change, so the 

reduction in the state uncertainty slows.  Eventually, the Kalman filter will approach 

equilibrium. At equilibrium, the state estimates may still vary, but the level of 

confidence in those estimates, reflected by the state uncertainty,  will be more or less 

fixed [14, 15, 16]. The equilibrium behavior of the Kalman gain and the error 

covariance matrix can be observed from equation (3.10) and (3.11). Additionally 

Figure 15 Trepresents the typical algorithm behavior of the Kalman gain  and Figure 

16 shows the typical algorithm behavior of the the error covariance matrix. Finally, 

Figure 17 summarizes the recursive structure of the Kalman filter. 

 

 T
k

k T
k

P CK
CP C R

−

−=
+

 (3.10)  

 
0

lim 0
k

k
P

K
−→

=  (3.11)

 

 

Figure 15 Kalman Gain vs Iteration 
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            Figure 16 Error Covariance vs Iteration 
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Figure 17 TRecursive structure of the Kalman filterXX[14] 
 

 

3.3  The Role of the Kalman Filter In This Thesis Study  

 

As mentioned in the previous chapters, inertial measurement units have two types of 

error. Deterministic errors can be determined by performing the calibration test 

procedure and processing the test data. Furthermore, stochastic errors of the sensors 

should be estimated by using some techniques. 
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The Kalman filter method is commonly used in real time applications and the 

Kalman filter estimation technique is the most appropriate technique to estimate 

gyroscope and accelerometer bias instability due to its properties such as low 

memory requirement, optimal estimation and high performance in noisy 

measurements. (Assuming the system is linear.) 

 

Gyroscope and accelerometer time constant and data sampling interval were defined 

constant in this thesis study. Additionally, gyroscope and accelerometer bias 

instabilities were modeled with discrete Gauss-Markov Model.  The Gauss Markov 

model becomes linear when the time constant and sampling interval are constant. 

Therefore the Kalman filter algorithm was used as estimation algorithm in this thesis 

study. Furthermore, this thesis study will be adapted to practical applications. Thus, 

computational complexity becomes very important design parameter. In addition to 

other advantages of the Kalman filter, computational complexity of the algorithm is 

not high. For this reason, Kalman filter algorithm is suitable for practical and real 

applications.   
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CHAPTER 4 

Equation Chapter (Next) Section 4 

4 SENSOR ERROR PARAMETERS AND IMU ERROR 

MODELS 

 

 

 

This chapter explains MEMS accelerometer and MEMS gyroscope error parameters.  

Section 4.1 covers accelerometer error parameters and MEMS accelerometer error 

model. Section 4.2 discusses gyroscope error parameters and MEMS gyroscope error 

model. Additionally, IMU error model is also given in this chapter. 

4.1 Inertial Sensor Error Types 

 

The inertial sensor errors can be classified into two groups, deterministic 

(systematic) and stochastic (random) errors XX[17]XX.  The deterministic errors are 

defined by static and dynamic calibration tests.  Besides, stochastic errors can be 

estimated by using several estimation techniques. Estimation methodology of the 

deterministic errors, calibration tests and least squares fitting method, are discussed 

in more detail in Chapter 5.  Modeling and estimation of the stochastic errors are also 

explained in Chapter 6. 

 

 
Figure 18 Major types of inertial sensors (Figure is taken fromXX[6] XX) 
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4.1.1  Deterministic Error Parameters  of Accelerometers 

 

Accelerometers have three dominant deterministic errors which are scale factor error, 

bias  and misalignment .   

 

4.1.1.1 Bias 

 

Bias (offset) is the accelerometer output at zero g XX[18]XX.  It means that when no input 

acceleration is applied to the sensor, measured acceleration presents bias.  Unit of 

accelerometer bias is mili-g. The bias includes fixed terms, temperature induced 

variations, turn-on to turn-on variations and in-run variations XX[19]XX.  Fixed terms of 

bias and temperature induced variations in bias can be estimated by laboratory 

calibration tests and estimated fixed bias and temperature induced variations  are 

used as an input of error compensation algorithms.  If the accelerometer bias is not 

compensated, error in velocity and position grow with time.  
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Figure 19 Accelerometer output with bias at zero g 
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Figure 20 Accelerometer output without bias at zero g 
 

4.1.1.2 Scale Factor Error 

 

Scale factor error is errors in the ratio of a change in the output signal to a change in 

the input acceleration which is to be measured XX[3]XX. The magnitude of the scale factor 

is expressed in parts per million (ppm) or percent. The scale factor error includes 

fixed terms, temperature induced variations, asymmetry and nonlinearity error parts.  

The major parts of scale factor error are fixed term and temperature induced 

variations. Similar to the bias, scale factor errors can be estimated by laboratory 

calibration tests and estimated error parameters constitute input of error 

compensation or calibration algorithms.  

 

4.1.1.3 Misalignment  

 

Orthogonality error. Accelerometers should be mounted orthogonal to observe true 

measurements about its sensitivity axis.  But mechanical components cannot be 

produced perfectly and these components cannot be mounted perfectly. This will 

cause a nonorthogonality between the IMU axes and  this nonorthogonality creates a 

scale factor effect on measurements. Any movements in any axis causes a change in 

the other axes depending on the magnitude of misalignment . The unit of 
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misalignment is mili-radian and the misalignment error can be determined by 

laboratory calibration tests and used in error compensation algorithms.  

 

4.1.2 Deterministic Error Parameters of Gyroscopes  

 

Gyroscopes have four dominant deterministic errors which are scale factor error, 

bias, misalignment and g-dependent bias (acceleration dependent bias). 

 

4.1.2.1 Bias 

 

The gyroscope bias can be defined as the gyroscope output in the absence of an 

applied angular rate. It means that when no input angular rate is applied to the sensor, 

measured angular rate presents bias.  Unit of gyroscope bias is deg/h.  Gyro bias and 

accelerometer bias have similar properties. For example, contents of gyroscope and 

accelerometer bias are the same. The gyro bias includes fixed terms, temperature 

induced variations, turn-on to turn-on variations and in-run variations like 

accelerometer bias. In-run bias variations represent stochastic error part of the bias. 

Fixed terms of bias and temperature induced variations in bias can be estimated by 

dynamic laboratory calibration tests and estimated fixed bias and temperature 

induced variations are used as an input of error compensation algorithms.  
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Figure 21 Gyro output with bias at zero  rotational input 
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Figure 22 Gyro output without bias at zero  rotational input 
 

4.1.2.2 Scale Factor Error 

 

Scale factor is the ratio between input and output.  The scale factor value for the 

perfect sensor is 1. But the scale factor which is calculated from real sensor 

measurements has a difference between the ideal value 1 and this difference 

represents scale factor error.  The magnitude of the scale factor is expressed in parts 

per million (ppm). The gyroscope scale factor error includes fixed terms, temperature 

induced variations, asymmetry and nonlinearity error parts.  The major parts of the 

gyroscope scale factor error are fixed term and temperature induced variations. 

Similar to the bias, scale factor errors can be estimated by laboratory calibration tests 

and estimated error parameters constitute input of  error compensation or calibration 

algorithms. In addition to that  effect of  the scale factor error becomes observed at 

high rates.   

 

It can be observed from Figure 21 total gyroscope error is approximately 1.5 deg/sn. 

According to Figure 23 total gyroscope error is 3 deg/sn.  The difference between 

Figure 21 and Figure 23 comes from the observability of  scale factor error.  
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Figure 23 Gyro output with bias and scale factor error at 200 deg/sn 
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Figure 24 Gyro output without bias and scale factor error at 200 deg/sn 
 

4.1.2.3 Misalignment  

 

The explanation given for the accelerometer is valid for gyros.  

 

4.1.2.4 G-dependent bias  

 

Acceleration sensitive bias. Structure of the MEMS gyroscope is affected by 

acceleration.  
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Therefore this effect causes an offset in the output signal. This bias component is 

proportional to the acceleration magnitude which is applied about the measurement 

axis XX[3]XX. Therefore there is a relationship between acceleration and gyroscope 

measurement and this magnitude of this relationship is determined with g-dependent 

bias coefficient. Like other deterministic errors, g-dependent bias coefficients can be 

determined by laboratory tests and these coefficients are used in calibration 

algorithms.   Unit of the g-dependent bias is deg/h/g.  

 

 
 

Figure 25 Representation of Scale Factor and Bias (Figure is taken fromXX[20] XX) 
 

 

 
 

Figure 26 Representation of Misalignment (Figure is taken fromXX[20] XX) 
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4.1.3 Stochastic Error Parameters of Accelerometers and Gyroscopes 

 

Stochastic errors are the random errors that occur due to random variations of bias or 

scale factor drift over time and random sensor noise XX[6]XX. Random variations in bias 

and scale factor are the low frequency components of the stochastic errors. The 

sensor noise is also high frequency components of the stochastic errors. The most 

important feature of stochastic errors is there may not be any direct relationship 

between input and output XX[21]XX. The source of  the stochastic errors are flicker noise 

in the electronics and interference effects on signals. Allan variance tests and 

autocorrelation analysis are performed to determine the stochastic characterization of 

inertial sensors. In addition to that several random processes exist for modelling 

stochastic errors.   

 

4.1.3.1 Bias Instability (Bias Drift) 

 

This error occurs due to change in bias during a run XX[3]XX.  In other words, bias 

instability represents the variations in bias which change with time.  Bias instability 

can be characterized by Allan variance and autocorrelation analysis and modeled by 

using results of these tests and analysis. Various methods (random processes) such as 

Random Walk Model, Gauss-Markov Model, Random Constant Model and 

Autoregressive Model are used to model stochastic errors. First order Gauss-Markov 

Model is the most selected and the most appropriate random process for  modeling 

bias instability [20,21]. Therefore the random process Gauss- Markov Model was 

used to model gyro and accelerometer bias instability in this thesis work. Stochastic 

model of the bias instability is presented in equation (4.1), (4.2) and (4.3). The bias 

instability of sensors is denoted by 1σ  value. It means that this error type has 

Gaussian distribution.  

 /
1

cdt T
k k kx e x w−

−= +  

:  
:   
:  

c

k

dt sampling period
T sensor time constant
w driven noise

 
(4.1)  
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 2
2

2      ,   
1

k

k
c

w
x dt

T
bias instability variance

e

σ
σ −=

−
 (4.2)

 2
2 2 1        ,   c

k k

dt
T

w x e driven noise varianceσ σ
−⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (4.3)

 

4.1.3.2 Scale Factor Instability (Scale Factor Drift) 

 

Scale factor instability represents the variations in scale factor which change with 

time. Scale factor instability characterization test is different from the bias instability 

characterization test method. Scale factor instability characterization needs long term 

dynamical rate test and the effect of the scale factor instability is not very observable 

and quite negligible. Therefore, this error component excluded from the scope of this 

thesis study. 

 

4.1.3.3 Random Sensor Noise 

 

High frequency component of the stochastic errors. Effect of sensor noise can be 

reduced by filtering.  Low pass filters are designed according to sensor noise 

bandwidth and noise power. Random sensor noise is modeled as a zero mean white 

noise in  the IMU error models. And  these system specific  filters are used in error 

compensation algorithms. Unit of the random sensor noise density is deg/h/ Hz  or 

deg/s/ Hz and the random noise density is represented by 1σ value. 

 

4.1.4  Other Types of Errors 

 

Temperature dependent bias and scale factor variations, scale factor asymmetry, 

scale factor linearity error and sensor based misalignment errors are the other types 

of inertial sensor types of errors. Temperature dependent variations can be 

determined by temperature calibration tests and drift in bias and scale factor, caused 

by temperature changes, are modeled with second or higher order equations. These 
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equations are added to error compensation algorithms to correct temperature 

dependent variations.   Scale factor asymmetry represents the difference between the 

scale factor measured with positive input and negative input. And scale factor 

linearity error represents difference between the scale factor measured with high rate 

or acceleration and low rate or acceleration.   

 

 It was assumed that, inertial sensor errors, bias and scale factor, did not include 

temperature dependent variations, scale factor asymmetry and scale factor linearity.   

 

4.2 IMU Error Model 

 

Inertial navigation systems need acceleration and angular rate measurements in the x, 

y and z- directions to calculate attitude, position and velocity. Therefore, inertial 

measurement units contain three accelerometer and three gyroscope. For this reason, 

IMU error model is determined with equation (4.5) and (4.7). 

 

4.2.1 Accelerometer Error Model 

 

The error model of the single axis accelerometer is given by:  

 

 (1 )x x x x x x xa S S a B B nδ δ= + + + + +
∼

 

 
(4.4)  

  : accelerometer output     : actual acceleration 
   : scale factor error           
  : bias                              

 : scale factor instability    
 : bias instability

  : sensor 

x x

x

x

x

x

x

a a
S
B
S
B

n

δ
δ

∼

noise

  

 

The error model of three accelerometer which are mounted on x, y and z axis of an 

IMU is represented by equation (4.5). 
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1                  

        1+              

                     1+  

x x
x x xy xz x x x

y yx y y yz y y y y

zx zy y y z z z
z z

a aS S M M B B n
a M S S M a B B n

M M S S B B na a

δ δ
δ δ

δ δ

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥+ + ⎡ ⎤ ⎡ ⎤+
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢= + + + +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢+ +⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

∼

∼

∼

             , , , , , :  xy xz yx yz zx zyM M M M M M Misalignment Errors

⎥
⎥
⎥

 

 

(4.5)  

 

4.2.2 Gyroscope Error Model  

 

The error model of the single axis gyroscope is given by:  

 

 (1 )x x x x x x Gx x xw S S w B B B a nδ δ= + + + + + +
∼

 

 
(4.6)  

  : gyroscope output      : actual angular rate       
   : scale factor error             

 : bias                                      
 : scale factor instability   
 : bias instability  

x x

x

x

x

x

w w
S
B

S
B

δ
δ

∼

    
 : g-dep bias coeff.          

   : sensor noise 
Gx

x

B
n

  

 

The error model of  three gyroscope which are mounted on x, y and z axis of an IMU 

is represented by: 

 

1                       0    

         1+              

                     1+  

x x
x x xy xz gxx x

y yx y y yz y y y

zx zy y y z z
z z

w wS S M M BB B
w M S S M w B B

M M S S B Bw w

δ δ
δ δ

δ δ

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥+ + ⎡ ⎤+
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + + +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +⎣ ⎦⎣ ⎦⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

∼

∼

∼

  0 

 0          0

 0       0       

                                 , , , , , :  

x
x

gy y y

gz z
z

xy xz yx yz zx zy

a n
B a n

B na

M M M M M M Misalignment Errors

⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥

⎣ ⎦

(4.7) 
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Equation (4.5) and (4.7) give the error characterization of inertial measurement units.  

An IMU Error Model was developed and implemented within the scope of this thesis 

work. MATLAB Simulink software was used to construct equation (4.5) and (4.7). 

Effects of inertial sensor errors were simulated by using constructed equations. 

Simulation outputs were processed by least squares estimation algorithm, which is 

explained in Chapter 5, to estimate IMU deterministic error parameters. Additionally, 

IMU Error Model’s simulation outputs were used as input for Deterministic Error 

Compensation algorithm/model. 
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CHAPTER 5 

Equation Chapter (Next) Section 5 

5 TESTIMATION OF DETERMINISTIC ERROR 

PARAMETERS 

 

 

 

This chapter suggests some test methods about estimation of deterministic error 

parameters. Sections 5.1.1 and 5.1.2 summarize basic laboratory calibration test 

methods and data processing procedure. Sections 5.1.3, 5.1.4 and 5.1.5 explain the 

improved calibration test procedure which is implemented in the scope of this thesis 

work. Compensation algorithms aim of compensation algorithms. Finally, 

deterministic error compensation algorithm is provided in Section 5.2. 

 

5.1 TLaboratory Calibration Tests 

 

Calibration is the process of comparing inertial sensor outputs with known input 

motion and determining the deterministic error parameters [3, 6] . The output signals 

from the IMU are recorded during the test period. Then the collected data are 

processed by various methods and deterministic error parameters are determined.  

The six position static method and rate tests are usually described in the literature.  

(static acceleration test, static rate tests, multi-position tests).  In addition to these test 

methods multi-position static and multi-rate tests are developed and explained in this 

thesis work.  
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5.1.1  Six Position Static Tests 

 

The local gravity and the Earth’s rotational rate are the reference inputs for this test 

method. The six position static test data is used to extract accelerometer bias and 

scale factor. Also, according to the sensor quality, six position static test can be 

sufficient to estimate gyroscope bias and scale factor.  For example, tactical grade 

IMU’s  gyroscopes can sense Earth’s rotational rate, for this reason six position static 

test can be used to estimate gyroscope scale factor and bias. However automotive-

grade gyroscope’s bias instability and noise levels mask the reference signal, Earth’s 

rotational rate [6]. Therefore this calibration method is not suitable for automotive-

grade and some tactical grade MEMS gyroscopesXX[21]XX.   

 

The procedure of six position static method is given in the following steps : 

 

First step: The IMU is mounted on a leveled table with each axis pointing 

alternately up and down position. 

Second step: The gyroscope and accelerometer data is collected and recorded when 

the x-axis is pointed upward. ,up up
x xw a⎛ ⎞

⎜ ⎟
⎝ ⎠

∼ ∼

 

Third step:  The gyroscope and accelerometer data is collected and recorded when 

the x-axis is pointed downward. ,down down
x xw a⎛ ⎞

⎜ ⎟
⎝ ⎠

∼ ∼

 

Fourth step: Repeat the second step for y- axis. ,up up
y yw a⎛ ⎞

⎜ ⎟
⎝ ⎠

∼ ∼

 

Fifth step: Repeat the third step for y-axis. ,down down
y yw a⎛ ⎞

⎜ ⎟
⎝ ⎠

∼ ∼

 

Sixth step: Repeat the second step for z- axis. ,up up
z zw a⎛ ⎞

⎜ ⎟
⎝ ⎠

∼ ∼

 

Seventh step: Repeat the third step for z-axis. ,down down
z zw a⎛ ⎞

⎜ ⎟
⎝ ⎠

∼ ∼
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5.1.1.1 Data Processing Methods for Six Position Test 

 

Gyroscope errors can be determined by the following equations in basic processing: 

 

 
( ) ( )

2

up down
x x

x
Av w Av wB +

=

∼ ∼

 

 

(5.1)  

 
( ) ( ) 2*

2*

up down
x x earth

x
earth

Av w Av w wS
w

− −
=

∼ ∼

 (5.2)

 

 

In the similar way accelerometer errors can be determined by the following 

equations: 

 

 
( ) ( )

2

up down
x x

x
Av a Av aB +

=

∼ ∼

 

 

(5.3)  

 
( ) ( ) 2*

2*

up down
x x

x
Av a Av a gS

g
− −

=

∼ ∼

 (5.4)

 

Basic processing is simple but gyroscope and accelerometer misalignment errors 

cannot be calculated by basic processing. The Least Squares Fitting Method is used 

to overcome this problem and the LSF method is explained in the following part : 

 

Least Squares Fitting Method: 

 

All error parameters are estimated at the same time by using error equations (4.4) and 

(4.6). in matrix form. Least squares fitting method implementation for 

accelerometers is shown below: 
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1( )T T

acc acc acc acc accP M T T T −=  

 

(5.5)  

 

 1+                

      1+                  , accelerometer error parameter matrix

          1+      

( )     ( )           ( )      

x xy xz x

acc yx y yz y

zx zy z z

up down up
x x x y

acc

S M M B

P M S M B

M M S B

Av a Av a Av a A

M

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

=

∼ ∼ ∼

( )          ( )      ( )  

( )   ( )         ( )   ( )              ( )   ( )     

 ( )   ( )        ( )   (

down up down
x y x z x z

up down up down up down
y x y x y y y z y z

up down up
z x z x z y

v a Av a Av a

Av a Av a Av a Av a Av a Av a

Av a Av a Av a Av a

∼ ∼ ∼

∼ ∼ ∼ ∼ ∼ ∼

∼ ∼ ∼

      , 

)         ( )   ( )

accelerometer  measurement matrix

         0       0      0       0 
0       0               0       0
0       0       0      0

down up down
z y z z

acc

Av a Av a

g g
g g

T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−
−

=

∼ ∼ ∼

      ,  reference input matrix (local gravity)
         

1       1       1       1       1       1
g g

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 

Least squares fitting method implementation for gyroscopes is shown below: 

 

 1( )T T
gyr gyr gyr gyr gyrP M T T T −=  (5.6)  

 

 1+                

      1+                  , gyroscope error parameter matrix

         1+      

x xy xz x

gyr yx y yz y

zx zy z z

S M M B

P M S M B

M M S B

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 

( )     ( )           ( )   ( )          ( )      ( )  

( )   ( )         ( )   ( )              ( )   ( )  

up down up down up down
x x x y x y x z x z

up down up down up down
gyr y x y x y y y z y z

Av w Av w Av w Av w Av w Av w

M Av w Av w Av w Av a Av w Av w=

∼ ∼ ∼ ∼ ∼ ∼

∼ ∼ ∼ ∼ ∼ ∼

          ,        

 ( )   ( )        ( )   ( )         ( )   ( )

gyroscope measurement matrix

up down up down up down
z x z x z y z y z zAv w Av w Av w Av w Av w Av w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∼ ∼ ∼ ∼ ∼ ∼
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        0             0         0       0 
0               0               0       0
0               0       0              0          
1                1     

earth earth

earth earth
gyr

earth earth

w w
w w

T
w w

−
−

=
−

      ,  reference input matrix (Earth's rotational rate)

  1              1        1         1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

5.1.2 Rate Tests  

 

Rate tests are performed to extract the scale factor error, misalignment error and bias 

of lower grade gyroscopes. Performing rate tests require special test equipments such 

as rate table and flight motion simulator.   

 

The procedure of rate tests is given in the following steps : 

 

First step : The IMU is mounted on a rate table with mounting fixture.  

Second step: The gyroscope data is collected and recorded when the rate table is 

rotated according to reference inputs in the sensitive axes x, y and z.  

The collected rate test data can be processed by least squares fitting method and 

gyroscope error parameters can be extracted.  

 

5.1.3 Multi-Position Static Test 

 

This test method was developed and implemented within the scope of this thesis 

work. Multi-position test is an improved version of six-position static test and this 

test is  performed to extract accelerometer scale factor error, misalignment and bias. 

In addition to that gyroscope bias and g-dependent bias coefficients can be extracted 

by using multi-position static tests.  

 

IMU is placed on the rate table or flight motion simulator with a fixture. The 

accelerometer and gyroscope data is collected about 3 axis at 27 different position for 

3 seconds.  Local gravity is the reference input in this tests and the magnitude of 

acceleration which is sensed by the accelerometer is changed in each position by 
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changing the axis position relative to local gravity.  The angle between the 

measurement axis and the gravity vector is changed with 22.5 degree. Therefore the 

components of gravity vector can be observed on the other axes. This test method 

supplies to scan 1g to -1g acceleration range with more input. In this way estimated 

error parameters which are close to actual error parameters can be obtained. 

Furthermore g-dependent bias coefficients of gyroscopes can be determined more 

accurately.  

 

IMU is turned about z axis when x axis multi position static test is performed. 

Similarly, IMU is turned around x axis when y axis multi position static test is 

performed and, IMU is turned about/around y axis when z axis multi position static 

test is performed. 

 

Figure 27 Simulated IMU measurement axis configuration 
 

 

 

Figure 28 Multi-Position Test Configurations 
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Figure 29 visualizes the axial motions by showing the test procedure. Figure 29 

represents the test which is performed around z axis. This test is performed around 

all three axis to scan all accelerometers and gyroscopes at all positions.  
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Figure 29 Multi Position Test Procedure 



  43

0 1 2 3 4 5 6 7 8 9 10

x 10
4

-1

-0.5

0

0.5

1

1.5

time (ms)

ac
ce

le
ra

tio
n 

(g
)

Multi-Position Static Test x-Accelerometer Output

 

Figure 30 Multi-position static test x acc output  
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Figure 31 Multi-position static test y acc output  
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Figure 32 Multi-position static test z acc output  

 

Figures 30 to 32 show the accelerometer measurements which are observed during 

the test period.  

 

5.1.4 Multi-Rate Dynamic Test  

 

This test method was developed and implemented within the scope of this thesis 

work. This rest method is performed to extract gyroscope scale factor error and 

misalignment.   

 

Like multi-position static test, special test equipments like rate table, FMS are 

required to perform multi-rate dynamic test. IMU is placed on the rate table or flight 

motion simulator with a fixture. 3 axis gyroscope data is collected during the test 

period. Each axis test procedure has 20 different states. All states represent different 

angular rate. These states include 10 positive and 10 negative angular rate and vary 

between 0 and 200 deg/s. Figure  33 , 34 and 35 present multi-rate dynamic test 

gyroscope measurements.  
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Figure 33 Multi-rate dynamic test x gyro output 
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Figure 34 Multi-rate dynamic test y gyro output 
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Figure 35 Multi-rate dynamic test z gyro output 

 

5.1.5 Data Processing Algorithm for Multi-Position Static and Multi-Rate 

Dynamic Tests  

 

IMU complete calibration test which is used in this thesis work consists of multi-

position static test and multi-rate dynamic test. The complete calibration test 

procedure is summarized in the following paragraph:  

 

An IMU is mounted on 3 axis flight motion simulator with a fixture.  Multi-position 

static test and multi-rate dynamic test are performed. Data is collected at each 

position and each rate for 3 seconds. (Sampling rate is 1 kHz and approximately 

3000 data points are collected in each step).  

 

 The collected data is processed by using deterministic error estimation codes.   

 

Processing steps are explained below: 

 

First step      : Decomposing position states and angular rates from test data 
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Second step   : Taking the average value of each position and rate. 

Third step   : Creating the true and measurement matrices for least square fitting. 

(Each measurement   has equal weight to calculate calibration parameters) 

 

Fourth step :  Implementing least square fitting and calculating error (calibration) 

parameters. 

 

Deterministic error estimation codes were developed by using MATLAB software.  

 

Deterministic error codes depend on least squares fitting method implementation. 

Multi position test data is used to determine accelerometer bias, scale factor error and 

misalignment parameters. Additionally, gyroscope bias and g-dependent bias 

parameters are also extracted from multi-position static test data. 

 

Least squares fitting formulation for accelerometer is similar with equation (5.5). 

Contents of the matrices are updated according to multi-position static test states.  

Matrices, which are updated according to the states are given below.  

 
1( )T T

acc acc acc acc accP M T T T −=     (for acc bias, misalignment and scale factor) 

 

 1+                

      1+            

          1+      

x xy xz x

acc yx y yz y

zx zy z z

S M M B

P M S M B

M M S B

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

, matrix of estimated accelerometer error 

parameters (this matrix is taken from equation (5.5)) 

 

Reference input matrix and measured data matrices are also updated according to 

multi-position static test states. These matrices are given in the following equations. 
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*cos(270)            *cos(180)                   0                             1  
*cos(292.5)         *cos(202.5)                0                             1
*cos(315)            *cos

acc

g g
g g
g g

T =

(225)                   0                             1
*cos(337.5)         *cos(247.5)                0                             1
*cos(0)                *cos(270)                   0           

g g
g g                   1

*cos(112.5)         *cos(22.5)                   0                            1
*cos(135)            *cos(45)                      0                            1
*cos(157.5)     

g g
g g
g     *cos(67.5)                   0                            1

*cos(180)            *cos(270)                    0                            1
       0                      *cos(270)              

g
g g

g *cos(0)                     1
       0                      *cos(247.5)           *cos(22.5)                1
       0                      *cos(225)              *cos(45)                   1
      

g
g g
g g

 0                      *cos(202.5)           *cos(67.5)                1
       0                      *cos(180)              *cos(90)                   1
       0                      *cos(157.5)

g g
g g
g            *cos(112.5)               1

       0                      *cos(135)              *cos(135)                  1
       0                      *cos(112.5)           *cos(157.5)             

g
g g
g g   1

       0                      *cos(90)                *cos(180)                 1
*cos(270)                   0                        *cos(0)                     1  
*cos(292.5)                

g g
g g
g 0                        *cos(22.5)                1

*cos(315)                   0                        *cos(45)                   1
*cos(337.5)                0                        *cos(67.5)

g
g g
g g                1 

*cos(360)                   0                        *cos(90)                   1
*cos(22.5)                  0                       *cos(112.5)               1 
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g g
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g               0                        *cos(135)                  1

*cos(67.5)                  0                       *cos(157.5)               1
*cos(90)                     0                   

g
g g
g     *cos(180)                  1 

T

g

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎢ ⎥
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⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎣ ⎦

 

 

 

(5.7) 

 

 

Equation (5.7) represents the accelerometer reference inputs and the following 

equation, (5.8) gives the average value of accelerometer outputs. 



  49

 1 1 1

2 2 2

3 3 3

4

( )           ( )           ( )

( )           ( )           ( )

( )           ( )           ( )

( )         

Step Step Step

x y z

Step Step Step

x y z

Step Step Step

x y z

Step

x

acc

Av a Av a Av a

Av a Av a Av a

Av a Av a Av a

Av a

M =

∼ ∼ ∼

∼ ∼ ∼

∼ ∼ ∼

∼ 4 4

5 5 5

6 6 6

7 7

  ( )           ( )

( )           ( )           ( )

( )           ( )           ( )

( )           ( )           

Step Step

y z

Step Step Step

x y z

Step Step Step

x y z

Step Step

x y

Av a Av a

Av a Av a Av a

Av a Av a Av a

Av a Av a A

∼ ∼

∼ ∼ ∼

∼ ∼ ∼

∼ ∼ 7

8 8 8

9 9 9

10 10 10

11

( )

( )           ( )           ( )

( )           ( )           ( )

( )           ( )           ( )

(

Step

z

Step Step Step

x y z

Step Step Step

x y z

Step Step Step

x y z

Step

x

v a

Av a Av a Av a

Av a Av a Av a

Av a Av a Av a

Av a

∼

∼ ∼ ∼

∼ ∼ ∼

∼ ∼ ∼

∼ 11 11

12 12 12

13 13 13

14

)           ( )           ( )

( )           ( )           ( )

( )           ( )           ( )

( )           (

Step Step

y z

Step Step Step

x y z

Step Step Step

x y z

Step

x

Av a Av a

Av a Av a Av a

Av a Av a Av a

Av a Av a

∼ ∼

∼ ∼ ∼

∼ ∼ ∼

∼ ∼ 14 14

15 15 15

16 16 16

17 17

)           ( )

( )           ( )           ( )

( )           ( )           ( )

( )           ( )         

Step Step

y z

Step Step Step

x y z

Step Step Step

x y z

Step Step

x y

Av a

Av a Av a Av a

Av a Av a Av a

Av a Av a

∼

∼ ∼ ∼

∼ ∼ ∼

∼ ∼ 17

18 18 18

19 19 19

20 20 20

 ( )

( )           ( )           ( )

( )           ( )           ( )

( )           ( )           ( )

Step

z

Step Step Step

x y z

Step Step Step

x y z

Step Step Step

x y z

Av a

Av a Av a Av a

Av a Av a Av a

Av a Av a Av a

Av

∼

∼ ∼ ∼

∼ ∼ ∼

∼ ∼ ∼

21 21 21

22 22 22

23 23 23

24

( )           ( )           ( )

( )           ( )           ( )

( )           ( )           ( )

( )      

Step Step Step

x y z

Step Step Step

x y z

Step Step Step

x y z

Step

x

a Av a Av a

Av a Av a Av a

Av a Av a Av a

Av a

∼ ∼ ∼

∼ ∼ ∼

∼ ∼ ∼

∼ 24 24

25 25 25

26 26 26

27 27

    ( )           ( )

( )           ( )           ( )

( )           ( )           ( )

( )           (

Step Step

y z

Step Step Step

x y z

Step Step Step

x y z

Step Step

x y

Av a Av a

Av a Av a Av a

Av a Av a Av a

Av a Av a

∼ ∼

∼ ∼ ∼

∼ ∼ ∼

∼ ∼ 27

)           ( )

T

Step

zAv a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∼

 

 

(5.8) 

 



  50

Equation (5.6) was arranged to adapt least square fitting method to multi position test 

states. Gyroscope data, which is collected during the multi-position static test is used 

to determine gyroscope bias and g-dependent bias.  

 

It is assumed that there is not any angular rate input at any static position. Therefore, 

gyroscope outputs contain only bias and g-dependent bias effects and bias and g-

dependent bias coefficients can be acquired from multi-position test gyroscope 

outputs.  

 

Reference input matrix is identical with the accelerometer reference input matrix.  
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Updated measurement matrix is given in equation  (5.9). 
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Multi rate dynamic  test data is used to determine gyroscope scale factor error and 

misalignment parameters. In order to extract gyroscope scale factor and 

misalignment equation (5.6) is arranged according to multi-rate dynamic test states. 
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5.2 Deterministic Error Compensation Model 

 

The aim of deterministic error compensation algorithm is compensating the effect of 

deterministic error parameters of an IMU. A deterministic error compensation 

algorithm was developed and implemented within the scope of this thesis work.  

Output of the compensation model was used as input of the stochastic error 

estimation algorithm.  

 

The error model of the single axis accelerometer and gyroscope were given in 

equation (4.1) and (4.2). IMU deterministic error compensation algorithms are based 

on inverse of error models.   

 

 1(1 ) ( )x xx xa S a B
∧

−= + −
∼
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Deterministic error compensation simulation model was developed by using 

MATLAB Simulink software.   Equation (5.17) and (5.18) were generated in 

Simulink model. The error compensation model was used to process collected 

calibration data to observe true measurement values.  Sensor error parameters were 

extracted by the deterministic error estimation codes and the extracted   parameters 

were embedded to the deterministic error compensation model. 

 

In real applications, error compensation algorithms are designed according to the 

types of sensors and converted to embedded software. Then this software is installed 

on the IMU processor.  
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CHAPTER 6 

Equation Chapter (Next) Section 6 

6 ESTIMATION OF STOCHASTIC ERROR 

PARAMETERS 

 

 

 

This chapter suggests a method for estimation of stochastic sensor error parameters. 

The Kalman Filter algorithm which is explained in Chapter 3, was used as  

estimation technique. This technique needs a system model and a measurement 

model.  Therefore, Section 6.1 explains the system model and Section 6.2 gives the 

measurement model properties. 

 

6.1  System Model 

 

As mentioned in Chapter 4 gyroscope and accelerometer bias instabilities are 

modeled with first order Gauss-Markov process. An IMU has three accelerometers 

and three gyroscopes for measuring linear acceleration and angular rate about x, y 

and z axis. Therefore six sensors’ bias instabilities were estimated by using Kalman 

filter.  For this reason, the state vector contains six states and these states represent 

the bias instability of x gyroscope, y gyroscope, z gyroscope, x accelerometer, y 

accelerometer and z accelerometer respectively. The bias instability model of an 

inertial sensor was given with equation (4.1). That equation was developed for six 

sensor (3 gyroscope and 3 accelerometer) implementation and developed system 

model is presented in equation (6.1).  
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(6.1) 

k

k
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gx gxc

gy gyc

gz gzc

δB : x  gyro instability at time k  ,    T : x gyro time constant  

δB : y  gyro instability at time k  ,    T : y gyro time constant   

δB : z  gyro instability at time k  ,    T : z gyro t

k

k

k

ax axc

ay ayc

az

ime constant   

δB : x  acc instability at time k    ,   T : x acc time constant     

δB : x  acc instability at time k    ,   T : y acc time constant     

δB : x  acc instability at time k  azc ,    T : z acc time constant     

 

k-1

k-1

k-1

gx k

gy k

gz

δB : x  gyro instability at time k -1 ,   gyrx_bias_w : x gyro driven noise

δB : y  gyro instability at time k -1  ,   gyry_bias_w : y gyro driven noise

δB : z  gyro instability at time k -1 

k-1

k-1

k

ax k

ay k

,    gyrz_bias_w : z gyro driven noise

δB : x  acc instability at time k -1    ,   accx_bias_w : x acc driven noise

δB : x  acc instability at time k -1    ,   accy_bias_w : y acc driven noise

δ
k-1az kB : x  acc instability at time k -1   ,   accz_bias_w : z acc driven noise

 

 

6.2 Measurement Model 

 

The measurement model was constituted according to equation (3.3). Sensor 

measurements represent and random sensor noises represent the measurement noise 

vector. After the compensation of deterministic errors, gyroscope and accelerometer 

bias instabilities can be observed from sensor measurements directly. Therefore, 

measurement conversion matrix C tuned as an identity matrix. 
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The error compensation model’s outputs were used as measurements in Kalman filter 

algorithm. Therefore measurement matrix was selected as an identity matrix.  
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(6.2)  

 

6.3 Tuning of Kalman Filter Parameters 

 

All inertial sensors have some characteristic parameters such as time constant, 

random noise density and bias instability. In this thesis study these parameters are 

very useful inputs for Kalman filter parameter tuning and algorithm initialization.  

For example, gyroscope and accelerometer random noise densities were used to 

determine measurement noise covariance, R . Similarly, 3σ value of gyroscope and 

accelerometer bias instabilities were used to constitute initial value of error 

covariance matrix, P .   

 

6.3.1 Error Covariance Matrix Initialization 

 

It was assumed that  0
k k k k k kgx gy gz ax ay azB B B B B Bδ δ δ δ δ δ= = = = = =  for k=0.  

As mentioned in Chapter 3, error covariance represents the uncertainty in the state 

estimate. The estimate error, uncertainty in the states estimate, and the simplest 

representation of error covariance is given in equation (6.3) and (6.4).  

 

                    

   :  ,       :  

k k k

k k

e x x

x true state x estimated state
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= −
 (6.3)  
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[ ]T

k k kP E e e=  (6.4)  

  

The maximum value of the true state is 3σ  value of bias instability. Therefore, if the 

initial states are equal to zero, on the basis of equation (6.4), the maximum value of 

error can be 3σ  value of bias instability. For this reason initial value of the error 

covariance kP ’s  diagonal elements become 2(3 )σ value of gyroscope and 

accelerometer bias instabilities.  There is no correlation between the states and errors. 

Therefore, the off diagonal elements of kP  are equal to zero.  
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(6.5) 

 

 

6.3.2 Tuning of Measurement and Process Noise Covariance Matrix 

 

Like sensor bias instability, random sensor noise density is represented by 1σ value. 

In simulations and calculations, the noise density is multiplied by square root of 

sampling frequency to convert the noise density to angular rate noise and 

acceleration noise. Similar to the error covariance initialization, 2(3 )σ  value of 

angular rate noise and acceleration noise were used to tuning of measurement noise 

covariance matrix diagonal elements.  The 3σ  value of angular rate noise and 

acceleration noise denote the maximum values of the noise components. There is no 

correlation between measurements. Therefore, the off diagonal elements of R  are 

equal to zero.  
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(6.6) 

 

 

The 1σ value of  the driven noise was calculated by using equation (4.3).  After that, 

process noise covariance matrix was tuned by using 2(3 )σ  value of the driven noise.  
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CHAPTER 7 

Equation Chapter (Next) Section 7 

7 SIMULATION RESULTS  

 

 

 

The main motivation of this chapter is explaining the simulation models and 

algorithms which were designed and developed within the scope of this thesis study.  

7.1  IMU Error Model Simulation 

 

IMU error model was built by using Simulink software. Sensor error parameters, 

gyroscope and accelerometer bias, scale factor, misalignment, random noise error, 

bias instability and gyroscope g-sensitive bias coefficients were fed into the 

simulation. These parameters were chosen from actual accelerometer and gyroscope 

parameters. Deterministic and stochastic sensor error parameters which were used in 

IMU error model simulation are presented in Table 6 and Table 7.  

 

Purpose of simulation: Observing sensor error effects and generating inputs for 

deterministic and stochastic error estimation algorithm.  

 

Simulation input: Reference (true) angular rate and acceleration which were used to 

simulate multi-rate dynamic test and multi-position static test.  

 

Simulation output: Simulated IMU outputs were generated according to the 

gyroscope and accelerometer error model.  The raw IMU measurements were formed 

by adding errors according to equation (4.5) and (4.7). 
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Three different IMU error model simulations were performed within the scope of this 

thesis study. First of all, the reference state values of multi-position static test and 

multi-position dynamic test were generated. (States of multi-position static test and 

multi-rate dynamic test are explained in Chapter 5) After that, multi-position test was 

simulated in order to create input for deterministic error estimation algorithm.  

 

These simulation outputs were used to determine accelerometer bias, scale factor and 

misalignment error. Additionally gyroscope bias and g-dependent bias coefficient 

were estimated from multi-position test simulation output. Similarly, multi-rate 

dynamic test was simulated. Gyroscope scale factor and misalignment errors were 

obtained by processing this simulation’s outputs.   

 

Finally, IMU error model simulation was used to create a measurement data for 

Kalman filter algorithm.  Outputs of this simulation were corrected by performing 

IMU error compensation simulation and then corrected outputs fed to the Kalman 

filter algorithm as measurement.  

 
           Table 6 Simulated IMU Deterministic Error Parameters 

Gyroscope Error 

Parameters 
Value of the parameter 

x axis scale factor error 10817 ppm 

y axis scale factor error 9124  ppm 

z axis scale factor error 15529 ppm 

x axis bias 1.1464 deg/s 

y axis bias 1.1241 deg/s 

z axis bias 1.6820 deg/s 

x axis acceleration sensitivity 0.05 deg/s/g 

y axis acceleration sensitivity 0.05 deg/s/g 
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Table 6 continued 

z axis acceleration sensitivity 0.05 deg/s/g 

x axis to y axis misalignment 7.5879 mrad 

x axis to z axis misalignment 3.3769 mrad 

y axis to x axis misalignment 5.6617 mrad 

y axis to z axis misalignment 6.3705 mrad 

z axis to x axis misalignment 7.5009 mrad 

z axis to y axis misalignment 3.8084 mrad 

Accelerometer Error 

Parameters 
 

x axis scale factor error 3916 ppm 

y axis scale factor error 3284 ppm 

z axis scale factor error 4733 ppm 

x axis bias 349.66 mg 

y axis bias 346.36 mg 

z axis bias 250.18 mg 

x axis to y axis misalignment 3.9824 mrad 

x axis to z axis misalignment 0.6601 mrad 

y axis to x axis misalignment 1.6875 mrad 

y axis to z axis misalignment 0.8487 mrad 

z axis to x axis misalignment 2.5776 mrad 

z axis to y axis misalignment 2.7814 mrad 
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                                   Table 7 Simulated IMU Stochastic Error Parameters 
Gyroscope Error 

Paramaters 
 

x axis time constant 15 seconds 

y axis time constant 15 seconds 

z axis time constant 15 seconds 

x axis bias instability (1σ ) 0.005 deg/s 

y axis bias instability (1σ ) 0.005 deg/s 

z axis bias instability (1σ ) 0.005 deg/s 

x axis noise density (1σ ) 0.0015 deg/s/ Hz  

y axis noise density (1σ ) 0.0015 deg/s/ Hz  

z axis noise density (1σ ) 0.0015 deg/s/ Hz  

Accelerometer Error 
Parameters 

 

x axis time constant 1 second 

y axis time constant 1 second 

z axis time constant 1 second 

x axis bias instability (1σ ) 0.5 mg 

y axis bias instability (1σ ) 0.5 mg 

z axis bias instability (1σ ) 0.5 mg 

x axis noise density (1σ ) 0.00027 g/ Hz  

y axis noise density (1σ ) 0.00027 g/ Hz  

z axis noise density (1σ ) 0.00027 g/ Hz  

 

Multi-rate dynamic test and multi-position static test reference inputs are represented 

with IMU error model simulation outputs in the following figures. 
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Figure 36 x acc reference input and simulation output 
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Figure 37 y acc reference input and simulation output 
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Figure 38 z acc reference input and simulation output 
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Figure 39 x gyro reference input and simulation output 
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Figure 40 y gyro reference input and simulation output 
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Figure 41 z gyro reference input and simulation output 
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7.2 Deterministic Error Estimation Algorithm 

 

Deterministic error estimation algorithm was developed by using MATLAB 

software. Detailed information about data processing steps and algorithm are given 

in Chapter 5.  

Purpose of algorithm: Determination of deterministic IMU error parameters. 

 

Algorithm input: Raw calibration test data.  IMU error model simulation outputs  

(multi-position and multi-rate test simulation) were used as an input for deterministic 

error estimation algorithm. Furthermore, collected real IMU calibration data  can be 

used as input for the algorithm.  

 

Algorithm output: Estimated accelerometer and gyroscope deterministic error 

parameters. Comparative table of real and estimated error parameters are presented 

in Table 8 and Table 9 .  

 

Table 8 Deterministic Error Estimation Algorithm Outputs (Gyroscope) 
Gyro x 

real 

x 

estimated

y   

real 

y 

estimated 

z  

real 

z 

estimated 

Bias 1.1464 

deg/s 

1.1457 

deg/s 

1.1241 

deg/s 

1.1210 

deg/s 

1.6820 

deg/s 

1.6756 

deg/s 

G-dep bias 

Coefficient  

0.05 

deg/s/g 

0.0522 

deg/s/g 

0.05 

deg/s/g 

0.0488 

deg/s/g 

0.05 

deg/s/g 

0.0526 

deg/s/g 

Scale Factor 
Error 

10817 

ppm 

10802 

ppm 

9124  

ppm 

9079   

ppm 

15529 

ppm 

15584 

ppm 

Misalignment xy 

7.5879 

mrad 

xz 

3.3769 

mrad 

xy  

7.5812 

mrad 

xz  

3.3749 

mrad 

yx 

5.6617 

mrad 

yz 

6.3705 

mrad 

yx 

5.6634 

mrad 

yz 

6.3827 

mrad 

zx 

7.5009 

mrad 

zy 

3.8084 

mrad 

zx  

7.5156 

mrad 

zy 

 3.7935 

mrad 
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Table 9 Deterministic Error Estimation Algorithm Outputs (Accelerometer) 
Acc x real x 

estimated

y real y 

estimated 

z real z 

estimated 

Bias 349.66 

mg 

349.6557 

mg 

346.36 

mg 

346.2070 

mg 

250.18 

mg 

249.9346 

mg 

Scale Factor 
Error 

3916 

ppm 

4003 

ppm 

3284 

ppm 

3106 

ppm 

4733 

ppm 

4964 

ppm 

Misalignment xy 

3.9824 

mrad 

xz 

0.6601 

mrad 

xy 3.8995 

mrad 

xz 0.5115 

mrad 

yx 

1.6875 

mrad 

yz 

0.8487 

mrad 

yx  

1.4454 

mrad 

yz  

0.9496 

mrad 

zx 

2.5776 

mrad 

zy 

2.7814 

mrad 

zx 2.5641 

mrad 

zy 2.7139 

mrad 

 

The difference between the actual error parameters and the estimated parameters 

comes from the effect of the sensor noise and the stochastic errors such as bias 

instability. 

 

In addition to the multi-position static and multi-rate dynamic test method, six 

position direct method was performed to estimate deterministic error parameters. 

Results of the six-position direct method were compared with the multi-position and 

multi-rate method. IMU error model simulation was run with six-position direct 

method reference input (Reference angular rate is equal to 10 deg/s and reference 

acceleration is equal to gravity.). Simulation outputs are given in the following 

figures. Deterministic errors of simulated IMU were estimated by using equations 

(5.1), (5.2), (5.3) and (5.4). IMU error model simulation outputs of six-position direct 

method are presented with reference inputs of six-position direct method in Figure 42 

to Figure 47. 
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Figure 42 x gyro reference input and simulation output (six position test) 
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Figure 43 y gyro reference input and simulation output (six position test) 
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Figure 44 z gyro reference input and simulation output (six position test) 
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Figure 45 x acc reference input and simulation output (six position test) 
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Figure 46 y acc reference input and simulation output (six position test) 
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Figure 47 z acc reference input and simulation output (six position test) 
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Table  10 Six position direct method results (gyroscopes) 
Gyro x real x 

estimated 

y  real y 

estimated 

z real z 

estimated

Bias 1.1464 

deg/s 

1.1449 

deg/s 

1.1241 

deg/s 

1.1248 

deg/s 

1.6820 

deg/s 

1.6832 

deg/s 

Scale 

Factor 

Error 

10817 

ppm 

10980 ppm 9124  

ppm 

9288   

ppm 

15529 

ppm 

15690   

ppm 

 

Table  11 Six position direct method results (accelerometers) 
Acc x real x 

estimated 

y real y 

estimated 

z real z 

estimated

Bias 349.66   
mg 

349.401 
mg 

346.36 
mg 

346.496 
mg 

250.18 
mg 

250.445  
mg 

Scale 
Factor 
Error 

3916  
ppm 

3581   ppm 3284  
ppm 

2950   
ppm 

4733  
ppm 

4399     
ppm 

 

It can be observed from Table 10 and Table 11, performance of six-position direct 

method is lower than multi-position and multi-rate test methods.  The estimated 

parameters which are determined by using multi-position and multi-rate test data are 

closer to actual error parameters. Also, misalignment error could not be estimated by 

six-position direct method. As a result, multi-position and multi-rate test method are 

more useful than six-position direct method.  

 

7.3 IMU Error Compensation (Calibration) Model Simulation 

 

IMU error compensation model was built by using Simulink software.  Equation 

(5.17) and (5.18) were implemented to simulate the  error compensation algorithm. 

Estimated deterministic error parameters was inserted into simulation blocks as 

calibration parameters.  
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Simulation input:  Raw IMU measurements. IMU error model simulation results or 

collected IMU data can be used as an input for IMU error compensation simulation.  

 

Simulation output: Error compensated angular rate and linear acceleration 

measurements.  Deterministic error effects were eliminated from raw IMU 

measurements but stochastic error effects could not be compensated.  

 

Purpose of simulation: Compensation of deterministic error parameters of an IMU. 

The optimum bias, scale factor and misalignment were estimated according to 

calibration test states.  As shown in Table-8 and Table-9 estimated error parameters 

are not equal to actual error parameters. The difference between estimated and actual 

error parameters is caused by the effect of sensor bias instability and random sensor 

noise.  

 

The raw data was calibrated with IMU error compensation model by using the 

estimated deterministic error parameters.  After the calibration process, the 

difference between the calibrated data and the reference data (IMU error model input 

data) was calculated to evaluate the performance of the error compensation 

algorithm. This difference represents the IMU’s total residual error.  The magnitude 

of the residual errors vary depending on the difference between the actual and the 

estimated error parameters. Furthermore, the magnitude of bias instability and 

random sensor noise also affect the magnitude of residual errors.  

 

The following figures show the changes in IMU’s total residual errors according to 

the reference inputs. It was observed that the magnitude of total residual error 

increases when the magnitude of the input rate and acceleration increases.  This 

situation can be explained with the observability of the scale factor error and 

misalignment error.  The effect of residual scale factor error and misalignment error 

becomes observable at high rates and accelerations. Besides, the effect of residual 

bias can be observable at all rates and accelerations. As a result total residual errors 

include the effects of residual scale factor, bias and misalignment errors. 
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Figure 48 x gyro residual error distribution 
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Figure 49 y gyro residual error distribution 
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Figure 50 z gyro residual error distribution 
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Figure 51 x acc residual error distribution 
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Figure 52 y acc residual error distribution 
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Figure 53 z acc residual error distribution 
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The RMS value and the repeatability of the total residual error determine the 

performance limitations of an IMU. The simulated IMU’s residual error RMS value 

and repeatability are given in Table-12 

 

Table 12 Simulated IMU’s residual error 
 X Y Z 

Gyro Error RMS 
value 109,8451 deg/h 107,1827 deg/h 98,1508 deg/h 

Acc Error RMS 
value 0,8190 mg 0,6837 mg 1,0323 mg 

Gyro Error 
Repeatability   95.6266 deg/h 95.8356 deg/h 96.3739 deg/h 

Acc  Error 
Repeatability   0,6080 mg 0,7057 mg 1,1307 mg 

 

The standard deviation,1σ , of the residual errors is called as the error repeatability. 

The error distribution is assumed to be Gaussian. Therefore, the 3σ value of the error 

repeatability indicates the maximum error limit of an IMU.  [25,26] 

 

7.4  Stochastic Error Estimation Algorithm 

 

Stochastic error estimation algorithm was built by using MATLAB software. 

Equations (3.5), (3.6), (3.7), (3.8) and (3.9) were implemented to process the Kalman 

filter algorithm. Bias instabilities of gyroscopes and accelerometers estimations were 

observed from the outputs of this algorithm. In order to observe the effects of 

parameter tuning and sensor properties, the algorithm was processed under different 

conditions.   

 

Algorithm input: The difference between the calibrated IMU data and the reference 

input. 

Algorithm output: Instantaneous values of accelerometer and gyroscope bias 

instabilities. 
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Purpose of algorithm: Estimation of stochastic error parameters of an IMU. 

Stochastic properties of the simulated IMU are given in Table 13. These parameters 

were generated accordance with real MEMS gyroscope and MEMS accelerometer 

specifications.  Furthermore, properties of the algorithm are also given in Table 14.  

 

Table 13 Stochastic Properties of the IMU Sensors 
 Correlation Time 

(Time Constant) 
Bias Instability 
(1σ ) 

Sensor Noise 
Density (1σ ) 

Gyroscopes 15 seconds 0.005 deg/s 0.0015 
deg/s/ Hz  

Accelerometers 1 second 0.5 mg 0.00027 

g/ Hz  

 

Table 14 Properties of the simulation 
Simulation Properties  

Sampling interval (dt) 0.001 second 

           Processing duration         100000 iteration = 100 seconds

 

State transition matrix, A, was calculated according to the stochastic properties of the 

simulated IMU and stochastic model of sensor bias instability. (Detailed information 

about A is given in Chapter 6. ) 

 

 
0.9999      0          0           0           0          0
    0       0.9999     0           0           0          0 
    0           0       0.9999     0           0          0 
    0           0  

A =
        0       0.9999      0          0

    0           0          0           0       0.9999     0
    0           0          0           0           0      0.9999 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (7.1)

Initial value of error covariance matrix, 0P , was calculated accordance with equation 

(6.5). 
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2

2

2

0

(0.0150)       0           0           0           0          0
    0       (0.0150)       0           0           0          0 
    0           0       (0.0150)       0           0          0 
    0 

P =
2

2

2

          0          0       (0.0015)        0          0
    0           0          0           0       (0.0015)       0
    0           0          0           0           0      (0.0015)   

⎡ ⎤
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

 (7.2)

 

Similarly, the measurement noise covariance matrix, R ,was calculated by using 

equation (6.6). The calculated numerical value of related matrix is given below. 

 

 2

2

2

(0.1422)       0          0               0                0          0
    0       (0.1422)      0               0                0          0 
    0           0       (0.1422)          0            

R =
2

2

    0          0 
    0           0               0       (0.0255)           0          0
    0           0               0               0       (0.0255)      0
    0           0               0        2      0                0      (0.0255)  

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (7.3)

 

Finally, the process noise covariance matrix,Q , was calculated by using equation 

(6.7). The calculated numerical value of related matrix is given below. 

 

 5 2

5 2

5 2

(2.999*10 )        0            0             0                0            0
    0        (2.999*10 )       0              0               0            0
    0             0        (2.999*10 )    

Q

−

−

−

=
5 2

5 2

    0               0            0
    0             0              0        (6.705*10 )         0            0
    0             0              0              0        (6.705*10 )       0
    0       

−

−

5 2      0              0              0             0        (6.705*10 )−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (7.4)

 

Results of the algorithm (x,y,z channel gyroscope and accelerometer bias instability 

estimation) are given in Figure 58 to 63. Additionally, changes in the Kalman gain 

and the error covariance values are presented in Figures 54 ,55, 56 and 57. 
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Figure 54 Gyroscope bias instability estimation Kalman gain variation 
 

The Kalman gain variations for the x,y,z gyro bias instability estimations are 

identical. Therefore, only x gyro’s Kalman gain variation is presented.  

 

At the end of 10 seconds, Kalman gain, which was used in gyro bias instability 

estimation, approached the equilibrium. This situation shows that the  estimated gyro 

bias instability states converged to actual bias instability. On the other hand, 

convergence of the accelerometer bias instability estimation happened earlier than 

the gyro bias instability estimation convergence. On the basis of this point, it can be 

said that convergence accelerometer bias instability estimation occurred before the 

convergence of gyroscope bias instability estimation.  
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Figure 55 Accelerometer bias instability estimation Kalman gain variation 
 

The Kalman gain variations for the x,y,z accelerometer bias instability estimations 

are identical. Therefore, only x acceleromreter’s Kalman gain variation is presented.  
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Figure 56 Gyroscope bias instability estimation error covariance variation 



  86

The error covariance variations for the x,y,z gyro bias instability estimations are 

identical. Therefore, only x gyro’s error covariance variation is presented.  
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Figure 57 Accelerometer bias instability estimation error covariance variation 
 

The error covariance variations for the x,y,z accelerometer bias instability 

estimations are identical. Therefore, only x accelerometer’s variation is presented.  

 

Similar to the Kalman gain convergence, accelerometer bias instability estimation 

error covariance approached equilibrium before the bias instability estimation error 

covariance. It can be also explained by more rapid convergence of accelerometer bias 

instability estimation. 
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Figure 58 x gyro estimated bias instability 
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Figure 59 y gyro estimated bias instability 
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Figure 60 z gyro estimated bias instability 
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Figure 61 x acc estimated bias instability 
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Figure 62 y acc estimated bias instability 
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Figure 63 z acc estimated bias instability  
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At the end of 4 seconds, all accelerometer bias instability estimations converged to 

real accelerometer bias instability values. On the other hand, convergence of 

gyroscope instability took 60 seconds. Gyroscope’s sensor noise density and 

correlation time are greater than the accelerometer’s noise level and correlation time.   

It can be observed that, the performance of estimation is directly affected by noise 

density and correlation time.  

 

As mentioned earlier, random sensor noise represents the uncertainty in sensor 

outputs.  Therefore, an increase in sensor noise level causes an increase in 

convergence duration. Additionally, correlation time gives information about the 

relationship between successive values of sensor bias instability and the relationship 

between consecutive values of bias instability reduces when the sensor correlation 

time increases. This means that, an increase in correlation time leads an increase in 

convergence duration.  

 

Stochastic error estimation algorithm was processed in three different ways to 

observe the effects of the sensor parameters and Kalman filter components. The 

method which is described above, is the most basic implementation and intended to 

be used in practical applications. Other implementations were carried out to evaluate 

the effect of each parameter alone. The generated conditions for testing the effects of 

the parameters are listed below: 

 

• The effect of measurement noise covariance matrix, R . 

• The effect of sensor correlation time (time constant),  

Initially, effect of measurement noise covariance matrix tuning was observed. Thus, 

the diagonal elements of R matrix were increased and all other parameters which are 

listed in Table 13 and Table 14 remained the same. The revised R  matrix and 

algorithm outputs are given below:  
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 (7.5)

 

The diagonal elements of R matrix were multiplied by 10 and the algorithm was 

processed in this way. Results of the algorithm are given in the following figures.  
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Figure 64 Gyroscpe bias instability estimation Kalman gain variation (R effect) 
 

The Kalman gain variations for the x,y,z gyro bias instability estimations are 

identical. Therefore, only x gyro’s Kalman gain variation is presented.  

 

The measurement uncertainties became large with the increased measurement noise 

matrix. Therefore the initial value of the Kalman gain decreased, weighting the state 

estimates toward to their previous valuesXX[15]XX. 
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Figure 65 Accelerometer bias instability estimation Kalman gain variation (R effect) 
 

 

The Kalman gain variations for the x,y,z accelerometer bias instability estimations 

are identical. Therefore, only x acceleromreter’s Kalman gain variation is presented.  
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Figure 66 Gyroscope bias instability estimation error covariance variation (R effect) 
 

 

The error covariance variations for the x,y,z gyro bias instability estimations are 

identical. Therefore, only x gyro’s error covariance variation is presented.  
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Figure 67 Accelerometer bias instability estimation error covariance variation (R 
effect) 

 

 

The error covariance variations for the x,y,z accelerometer bias instability 

estimations are identical. Therefore, only x accelerometer’s variation is presented.  
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Figure 68 x gyro estimated bias instability (R effect) 
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Figure 69 y gyro estimated bias instability (R effect) 
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Figure 70 z gyro estimated bias instability (R effect) 
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Figure 71 x acc estimated bias instability (R effect) 
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Figure 72 y acc estimated bias instability (R effect) 
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Figure 73 z acc estimated bias instability (R effect) 
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At the end of 1 second, all accelerometer bias instability estimations converged to 

real accelerometer bias instability values. On the other hand, convergence of 

gyroscope instability took 40 seconds.  

 

The uncertainties in measurements become large with the increase in measurement 

noise covariance. As a result of this, the Kalman gain decrease to maintain the 

performance of the estimation.  

 

As obtained from the algorithm results rate of convergence increases when the 

measurement noise covariance increases. It means that the estimations of 

accelerometer and gyroscope bias instabilities can reach the true values of 

accelerometer and gyroscope bias instabilities more quickly. Because, increase in 

measurement noise covariance causes the Kalman gain to drop, weighting the state 

estimates more toward their previous states XX[15]XX.  

 

Secondly, the effect of sensor correlation time on the algorithm performance was 

investigated.  In order to investigate the effect of sensor correlation time, stochastic 

properties of accelerometers and gyroscopes were changed. Correlation time of the 

accelerometers was increased from 1 second to 10 seconds and correlation time of 

the gyroscopes was also increased from 15 seconds to 30 seconds. Additionally, 

simulation duration was raised to 200 seconds. Other parameters which are listed in 

Table 13, Table 14 and equation (7.3) remained the same.  

 

When the algorithm was processed for the first time, duration was set to 100 seconds.  

However, estimated accelerometer and gyroscope bias instabilities could not 

converge to real instabilities. Therefore duration of simulation was increased to 200 

seconds.  

 

The following figures show that the sensor correlation time is one of the major 

components for algorithm design. Because the length of correlation time directly 

affects the convergence time. With the increase of correlation time, occurrence of 

bias instability takes more time.  Besides, high correlation time represents that the 
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successive values of sensor outputs are weakly correlated. Therefore, the 

performance of the estimation algorithm decreased and convergence happened later.  

Consequently, it can be said that if the sensor has a high correlation time, stability 

performance of the sensor is good and the sensor does not need any instability 

estimation and correction algorithm. For example, correlation time of ring laser 

gyroscopes is approximately 1000 seconds and the IMUs which contain ring laser 

gyroscopes do not use bias instability estimation algorithm.  Outputs of the algorithm 

are given in the following figures. 

 

All estimated stochastic error parameters oscillates between 3σ−  and 3σ+  values of 

the bias instabilities. This result indicates that the estimation algorithm works 

properly.   
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Figure 74 Gyroscope bias instability estimation Kalman gain variation (correlation 
time effect) 

 
 

The Kalman gain variations for the x,y,z gyro bias instability estimations are 

identical. Therefore, only x gyro’s Kalman gain variation is presented.  
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Figure 75 Accelerometer bias instability estimation Kalman gain variation 
(correlation time effect) 

 
 

The Kalman gain variations for the x,y,z accelerometer bias instability estimations 
are identical. Therefore, only x accelerometer’s Kalman gain variation is presented. 
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Figure 76 Gyroscope bias instability estimation error covariance variation 
(correlation time effect) 

 

The error covariance variations for the x,y,z gyro bias instability estimations are 

identical. Therefore, only x gyro’s error covariance variation is presented.  
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Figure 77 Accelerometer bias instability estimation error covariance variation 
(correlation time effect) 

 

The error covariance variations for the x,y,z accelerometer bias instability 

estimations are identical. Therefore, only x accelerometer’s variation is presented.  
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Figure 78 x gyro estimated bias instability (correlation time effect ) 
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Figure 79 y gyro estimated bias instability (correlation time effect ) 
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Figure 80 z gyro estimated bias instability (correlation time effect) 
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Figure 81 x acc estimated bias instability (correlation time effect ) 
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Figure 82 y acc estimated bias instability (correlation time effect ) 
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Figure 83 z acc estimated bias instability (correlation time effect ) 
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7.5 Experimental Test Results  

 

A tactical grade IMU was used to perform real experiments. The commercial IMU 

which was used in the experiments contains three MEMS Colibrys MS9000.D series 

accelerometer and three identical ADIS16100 MEMS gyroscope.  Additionally, the 

IMU has a processing unit for running deterministic error compensation algorithm. 

 

 
Figure 84 Representation of MEMS IMU 

 

Multi-position static test and multi-rate dynamic test were performed respectively. 

The IMU data which was collected during the multi-position static test and multi-rate 

dynamic test were used to estimate deterministic errors of the IMU.  

 

Acutronic 3-axis rate table was used to simulate reference position and angular rate. 

In addition, test computer and power supply were used in the experimental tests. Test 

setup is presented in Figure 85.  

 

 

 
Figure 85 Experimental test setup 
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Deterministic error parameters of the IMU were estimated by processing the 

collected test data accordingly deterministic error estimation algorithm. Estimated 

error parameters are given in Table-15. Error compensation (calibration) simulation 

was run by using estimated deterministic error parameters and calibrated IMU 

outputs were acquired. 

 

Table 15Deterministic Error Estimation Results (Real data) 
Gyro x 

estimated 
y 
estimated 

z  
estimated 

Bias 1,7507   
deg/s 

0,1589 
deg/s 

1,5544 
deg/s 

G-dep bias 

Coefficient  
0.0365 
deg/s/g 

0.0389 
deg/s/g 

0.0101 
deg/s/g 

Scale Factor 
Error 

6900   
ppm 

5112    
ppm 

10685   
ppm 

Misalignment 

 

xy 9.7416 
mrad 

xz 9.1504 
mrad 

yx 6.5824 
mrad 

yz 6.4949 
mrad 

zx 2.9288 
mrad 

zy 1.3613 
mrad 

Accelerometer    

Bias 262.6618 
mg 

203.9583 
mg 

394.0867  
mg 

Scale Factor 
Error 

7771   
ppm 

5734   
ppm 

13.3880 
ppm 

Misalignment xy 1.4531 
mrad 

xz 2.2908 
mrad 

yx 4.9527 
mrad 

yz 7.9273 
mrad 

zx 1.4983 
mrad 

zy  0.3184 
mrad 

 

Collected raw IMU data and calibrated IMU data is given in the following figures. It 

can be observed that the error compensation (calibration) model outputs oscillate 

around the reference values. 
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Figure 86 uncalibrated and calibrated x acc output (real data) 
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Figure 87 uncalibrated and calibrated y acc output (real data) 
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Figure 88 uncalibrated and calibrated z acc output (real data) 
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Figure 89 uncalibrated and calibrated x gyro output (real data) 
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Figure 90 uncalibrated and calibrated y gyro output (real data) 
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Figure 91 uncalibrated and calibrated z gyro output (real data) 
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Table 16 and Table 17 summarize the total errors in the IMU sensors before and after 

calibration. The difference between the error levels demonstrates the importance and 

functionality of the error compensation model. Deterministic error estimation and 

compensation provided %99 improvement in accelerometer performance. Similarly, 

%95 improvement was ensured in gyroscope performance.  

 

 
Table 16  IMU total error before calibration 

 X Y Z 

Gyro Error RMS 
value 2219.8076 deg/h 686.9059 deg/h 1931.243deg/h 

Acc Error RMS 
value 264.359 mg 204.188 mg 393.844 mg 

 

Table 17 IMU total error after calibration 
 X Y Z 

Gyro Error RMS 
value 131.4674 deg/h 31.8297 deg/h 106.5706 deg/h 

Acc Error RMS 
value 0.7912 mg 0.8465 mg 1.2005 mg 

Gyro Error 
Repeatability   122.2887 deg/h 30.9998 deg/h 80.0051 deg/h 

Acc  Error 
Repeatability   0.8046  mg 0.8612 mg 1.2219 mg 

 

After the deterministic error estimation and compensation, stochastic properties of 

the IMU were tested. These tests include gyroscope and accelerometer bias 

instability estimation. Results of these tests are given below. Stochastic properties of 

the real IMU sensors are the same as the simulated IMU. Stochastic properties of the 

simulated IMU are given in Table 13 The IMU data was collected in a fixed position 

for 120 seconds to perform stochastic error estimation test. 



  115

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2
x 10-6

K
al

m
an

 G
ai

n

time (s)

x gyro bias inst. estimation Kalman Gain vs Iteration

 

Figure 92 Gyroscope bias instability estimation Kalman gain variation (real data) 
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Figure 93 Accelerometer bias instability estimation Kalman gain variation (real 
data) 
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Figure 94 Gyroscope bias instability estimation error covariance variation (real 
data) 
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Figure 95 Accelerometer bias instability estimation error covariance variation (real 
data) 
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Figure 96 x gyro estimated bias instability (real data) 
 

 

0 10 20 30 40 50 60 70 80 90 100
-14

-12

-10

-8

-6

-4

-2

0

2

4

6
x 10-3 y gyro estimated bias instability vs time

bi
as

 in
st

ab
ili

ty
(d

eg
/s

)

time (s)
 

Figure 97 y gyro estimated bias instability (real data) 
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Figure 98 z gyro estimated bias instability (real data) 
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Figure 99 x acc estimated bias instability (real data) 
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Figure 100 y acc estimated bias instability (real data) 
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Figure 101 z acc estimated bias instability (real data) 
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Stochastic error estimation algorithm was applied to experimental test data.  

Experimental test results are similar to simulated test results. Instantaneous values of 

the bias instabilities oscillates between 3σ−  and 3σ+ . (1σ  value of the gyroscope 

or accelerometer bias instability is the specification of the sensor.) This results shows 

that performance of the estimation algorithm is consistent. Behavior of the 

simulation results and real experiment results are the same.   

 

As observed from Figures 92, 93, 94 and 95 real accelerometer bias instability 

estimation’s Kalman gain and error covariance approached before real gyroscope 

bias instability estimation’s Kalman gain and error covariance. Correlation time and 

sensor noise effects can be explained as the main reason for these situations.  
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CHAPTER 8 

 

8 CONCLUSIONS AND FUTURE WORK  

 

 

 

8.1 Conclusions  

 

This thesis study suggests some methods for estimation of deterministic and 

stochastic IMU error parameters. Estimation of deterministic error parameters and 

stochastic error parameters were investigated separately. Firstly deterministic error 

estimation methods were researched. In order to determine the optimum calibration 

method, six position direct method and multi rate & position method were 

implemented and test results were compared. According to the results, multi rate & 

position method determined as the optimum method for estimation of deterministic 

IMU errors. After estimation of deterministic error parameters, error compensation 

model was designed to fix deterministic error effects. After the correction of 

deterministic errors, the remaining errors, difference between reference inputs and 

error compensation model outputs, were defined as stochastic errors and these errors 

were divided into two groups. First group was defined as random noise and the 

second group was determined as gyroscope/accelerometer bias instability. The 

second group errors, gyroscope and bias instabilities, were estimated by using 

Kalman filter algorithm. Thereby effect of bias sensor instabilities of could be 

corrected. The purpose of all these studies is improving the performance of MEMS 

IMU. 

 

Deterministic errors are the major part of IMU errors. Therefore, deterministic error 

estimation and compensation algorithm design is more critical than stochastic error 

estimation and compensation algorithm. However, bias instability error 
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compensation becomes very crucial in long-term navigation. Because of this, 

deterministic and stochastic error compensation should be considered together. 

 

8.2 Future Work 

 

Although, the deterministic and stochastic error compensation algorithms were 

developed, these algorithms are not ready to run on the processor. These algorithms 

must be converted to embedded code.  Moreover, temperature effects on the MEMS 

sensors were not modeled. 

 

As a future work, the existing algorithm can be converted to embedded code. 

Thereby, performance limit of the MEMS based tactical grade IMUs can be 

increased. Furthermore, temperature effects can be modeled and temperature effect 

compensation algorithm can be added to present algorithms. Besides, scale factor 

instability effect can be modeled and estimated by using nonlinear estimation 

techniques.  
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