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ABSTRACT 
 
 

 
LEAST-SQUARES FINITE ELEMENT SOLUTION OF EULER 

EQUATIONS WITH ADAPTIVE MESH REFINEMENT 
 
 
 

Akargün, Hayri Yiğit 
M.Sc., Department of Mechanical Engineering 
Supervisor : Assist. Prof. Dr. Cüneyt SERT 

 
February 2012, 63 Pages 

 
 

 

 

Least-squares finite element method (LSFEM) is employed to simulate 2-D and 

axisymmetric flows governed by the compressible Euler equations. Least-squares 

formulation brings many advantages over classical Galerkin finite element methods. 

For non-self-adjoint systems, LSFEM result in symmetric positive-definite matrices 

which can be solved efficiently by iterative methods. Additionally, with a unified 

formulation it can work in all flight regimes from subsonic to supersonic. Another 

advantage is that, the method does not require artificial viscosity since it is naturally 

diffusive which also appears as a difficulty for sharply resolving high gradients in the 

flow field such as shock waves. This problem is dealt by employing adaptive mesh 

refinement (AMR) on triangular meshes. LSFEM with AMR technique is 

numerically tested with various flow problems and good agreement with the 

available data in literature is seen. 

  

 

Keywords: Least-Squares Finite Element Method, Computational Fluid Dynamics, 

Compressible Flow, Inviscid Flow, Euler Equations, Adaptive Mesh Refinement. 
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ÖZ 
 
 

 
EN KÜÇÜK KARELER SONLU ELEMANLAR METODU ĐLE EULER 

DENKLEMLERĐNĐN UYARLANMIŞ AĞLARDA ÇÖZÜMÜ 
 
 

Akargün, Hayri Yiğit 
Yüksek Lisans, Makina Mühendisliği Bölümü 
Tez Yöneticisi : Yrd. Doç. Dr. Cüneyt Sert 

 
Şubat 2012, 63 Sayfa 

 
 

 

 

Sıkıştırılabilir Euler denklemlerinin modellediği iki boyutlu düzlemsel ve eksenel 

simetrik akışların en küçük kareler sonlu elemanlar metodu kullanılarak benzetimi 

yapılmıştır. En küçük kareler formülasyonunun geleneksel Galerkin sonlu elemanlar 

metoduna göre birçok avantajı vardır. En küçük kareler formülasyonu kendine eş 

olmayan denklemler için simetrik kesin artı matris oluşturur ve böylece sonuç sistemi 

döngülü yöntemler ile verimli bir şekilde çözülebilir. Ayrıca, ses-altı hızlardan ses-

üstü hızlara kadar bütün akış rejimleri tek bir formülasyon ile çözülebilmektedir. Bu 

metod kendiliğinden dağılımlı olduğu için yapay viskozite kullanımına gerek 

duyulmamaktadır. Ancak metodun bu özelliği aynı zamanda akıştaki keskin 

değişimlerin yüksek hassasiyet ile çözümlenmesini zorlaştırmaktadır. Bu sebepten 

dolayı, akış çözücüsüne üçgen ağlar için çözüm ağı uyarlama algoritması 

eklenmiştir. Geliştirilen çözücü farklı akış problemleri için sayısal olarak test 

edilmiştir. Elde edilen sonuçlar literatürde ulaşılan sonuçlar ile uyumludur. 

 

 

Anahtar Kelimeler: En Küçük Kareler Sonlu Elemanlar Metodu, Hesaplamalı 

Akışkanlar Dinamiği, Sıkıştırılabilir Akışlar, Ağdasız Akışlar, Euler Denklemleri, 

Çözüm Ağı Uyarlaması 
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CHAPTER 1 

 INTRODUCTION 

In the past few decades, the progress in Computational Fluid Dynamics (CFD) has 

been enormous. Due to increasing computational power and development of various 

robust solution techniques, nowadays, many complex fluid dynamics problems can 

be numerically simulated with acceptable accuracy. But there is always need for 

further development in order to be able to solve large 3-D problems with limited 

computational resources 

 

In CFD, the most extensive equation of motion that describes a wide range of flow 

conditions is the Navier-Stokes (N-S) equations. Considering today's computational 

technology, direct numerical simulation of these equations is computationally 

expensive and not practical for many real life problems of engineering interest. For 

this reason, to simulate flow fields efficiently and accurately, some assumptions need 

to be done, which depend on the problem to be solved. For example, when the 

viscous forces are small compared to the inertial forces, such as high Reynolds 

number flows, inviscid flow assumption is usually used. For such flows, away from 

the boundary layer, compressible Euler equations can simulate the flow field in 

essentially the same manner as the Navier-Stokes equations. In the current study 2-D, 

compressible flow fields modeled by Euler equations are simulated. 

 

Governing equations of flow problems can be solved numerically with different 

methods such as finite volume method, finite difference method finite element 
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method, spectral method and boundary element method. In the current study finite 

element method is used and its basic principles are explained in the next section.  

 

1.1 Finite Element Method (FEM) 

 

FEM is a numerical technique used to solve partial differential, integral and 

variational equations. The first step in the FEM is discretizing the continuum into a 

finite number of simple-shaped elements. The most commonly used elements in 2-D 

are triangular and quadrilateral, shown in Figure 1-1. Polynomial order of shape 

functions that are used to describe the variation of unknowns over these elements is 

usually taken to be linear or quadratic in practice, but in theory it can be any desired 

order. In FEM, governing equations of the problem are written over each element of 

the solution domain one by one and individual elemental systems written in terms of 

elemental nodal unknowns are obtained by variational or weighted residual 

approaches. After obtaining elemental systems, they are assembled using element 

connectivity information to form a global system of linear algebraic equations. 

Finally, the global system is solved using an appropriate linear system solver. 

 

 

 

 

 

 

 

Figure 1-1: Linear triangular and quadrilateral elements 

 

The first use of FEM, in engineering sense, goes back to 1941 when Hrennikoff 

developed "framework method" by dividing an elastic continuum structure into beam 

elements [1]. In 1960, the term "finite element method" is first used by Clough in an 

article [2]. Zienkiewicz published the first book about FEM in 1967 [3]. Since then, 
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FEM has started to be used in a wide variety of engineering fields including fluid 

dynamics. 

 

In FEM literature, many studies have been done for the solution of compressible 

Euler equations. Many different versions of FEM and mesh refinement techniques 

have been developed throughout the years. Hughes and Tezduyar presented Petrov-

Galerkin finite element formulation for the solution of one and two dimensional 

compressible flows involving shocks [4]. Oden et al. used Taylor-Galerkin FEM for 

solving high speed compressible flows with an adaptive mesh algorithm [5]. In their 

study, artificial dissipation and flux-corrected transport scheme (FCT) is employed in 

order to avoid oscillations in the flow field. Loth, Baum and Löhner also used this 

method with FCT and artificial viscosity to solve high-speed axisymmetric nozzle 

flows [6].   

 

A popular version of FEM employed by Beau and Tezduyar is based on Streamline-

Upwind/Petrov-Galerkin (SUPG) formulation, which modifies the classical Galerkin 

formulation by adding numerical stability [7]. Based on this method, Tezduyar et al. 

introduced the deformable-spatial-domain/stabilized-space-time formulation which 

involves solution of moving boundary problems [8]. Peraire et al. modified SUPG 

formulation for solving compressible Euler equations at very low Mach numbers 

where standard SUPG algorithm fails to provide accurate results [9]. Peraire et al. 

also presented a higher order accurate FEM solution based on SUPG formulation for 

compressible Euler and N-S equations and compared the numerical solutions 

obtained by using linear and quadratic elements [10]. 

 

Bassi and Rebay used a higher-order discontinuous Galerkin FEM (DGFEM) to 

solve 2-D Euler equations [11]. This method combines the features of finite element 

and finite volume methods to develop a robust and accurate solver for flow problems 

involving shocks. Hartmann and Houston used the same method with an adaptive 

mesh refinement algorithm for compressible Euler equations and tested it with 

transonic nozzle flow and supersonic flow over airfoil problems [12]. Tu and 
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Aliabadi used DGFEM with a slope limiting procedure in order to remove 

oscillations at shock regions [13]. Authors claimed that added slope limiting 

procedure results in a robust DG solver for compressible Euler equations. Another 

DGFEM study presented by Feistauer and Kucera aims to solve compressible Euler 

equations in a wide range of Mach numbers [14]. Solution of compressible flows 

with DGFEM based methods is still an active research area [15-18]. 

 

1.2 Least-Squares Finite Element Method (LSFEM) 

 

Another version of FEM, which is also used in the current study, is LSFEM. The 

basic principle of this method is to minimize the residuals of a first-order differential 

equation system in a least-squares sense [19]. As stated by Jiang the theoretical basis 

of the least-squares method is the bounded inverse theorem of linear operators. Based 

on this theorem, Jiang proved that LSFEM always leads to a convergent solution for 

a well-posed first order partial differential equation system without need to apply any 

special treatments such as upwinding or artificial dissipation. 

 

There are significant advantages of least-squares finite element formulation 

compared to the classical Galerkin finite element formulation [19]. Maybe the most 

important one is the efficiency of the method. In LSFEM, non-self-adjoint equation 

systems, one of which is the governing equations of fluid dynamics, result in 

symmetric positive-definite global system matrices which can be solved efficiently 

by iterative linear solvers with relatively less memory requirement and CPU time 

compared to Galerkin FEM solutions [19]. This makes LSFEM especially more 

suitable for large-scale problems without need of high computational resources. 

Additionally, the theoretical basis of the least-squares minimization makes LSFEM a 

robust technique that does not need any special treatments and does not have 

problem dependent parameters to tune [20]. It can work in all flow regimes; 

subsonic, transonic, supersonic and hypersonic with a unified formulation. This 

advantage also extends to the field of structural mechanics, making LSFEM suitable 
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for fluid structure interaction problems. Recent increase of interest in LSFEM also 

confirms these advantages. In the next section studies found in the literature to solve 

compressible Euler equations with LSFEM are summarized. 

 

For the solution of the compressible Euler equations Fletcher used the least-squares 

method in primitive variables form [21]. Jiang and Carey used this method for the 

solution of incompressible flows with adaptive mesh refinement (AMR) in which 

least-squares functional is used as an error-indicator for AMR [22]. The resulting 

system is solved by the element-by-element conjugate gradient method. In another 

study, same authors extend their work for solving compressible Euler equations 

without mesh adaptation [23]. They used two different schemes; one minimizes the �� norm of the residual and the other minimizes the weighted �� norm of the 

residual with the backward-Euler time-discretization. In the �� norm based scheme, 

numerical dissipation is further increased at the discontinuities by introducing an 

additional term to the least-squares functional which is controlled by a user tuned 

parameter to overcome the oscillations near the shock regions. Both methods are 

tested with various problems and it is seen that �� scheme is a robust method but has 

relatively poor shock resolution, whereas �� method has better shock resolution but 

it needs user defined shock control parameter. Due to the numerical dissipation 

inherent to LSFEM, shock waves cannot be resolved sharply on coarse grids. To 

obtain high shock resolution, Habashi et al. used an r-type grid adaptation algorithm 

[24]. Supersonic and transonic shock reflection and flow over a bump problems are 

solved and flow features are shown to be captured accurately. Guaily and Megahed 

also used LSFEM with r-type grid adaptation for 2-D planar and axisymmetric 

compressible flows [25]. In addition to flow over a bump and shock-reflection 

problems, they also solved nozzle flow with shocks and axisymmetric jet flow. 

Moussaoui used a unified formulation based on LSFEM to calculate both very low 

Mach number flows and compressible flows [26]. Moussaoui's approach is basically 

to apply a new scaling technique for the flow variables which makes it numerically 

appropriate for very low Mach numbers. Reddy et al. presented least-squares finite 

element models for both high-speed inviscid and low-speed viscous compressible 
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flows [27]. For the solution of the compressible Euler equations, Gerritsma et al. 

employed least-squares formulation with higher order spectral methods [28]. 

 

1.3 Adaptive Mesh Refinement (AMR) 

 

In computational fluid dynamics, sometimes the initially created mesh can not 

accurately resolve the flow features such as variations and discontinuities of the 

variables especially for flows involving shock and expansion waves. In order to 

simulate the variations in a flow field accurately, the initial mesh can be 

adapted/modified until the desired accuracy is achieved. There are mainly three 

methods used for grid adaptation which are r-refinement, h-refinement and p-

refinement. These methods can also be combined for hybrid adaptation purposes. 

 

In r-refinement, mesh is modified by moving nodes without changing grid 

connectivity and number of nodes/elements. Grid movement algorithm is usually 

based on the spring analogy which basically considers each element edge as a spring 

with a spring constant being a function of a user selected error indicator. Figure 1-2 

taken from Habeshi et. al [24] demonstrates r-refinement for supersonic flow over a 

bump problem. As seen from Figure 1-2, grids are moved to the shock regions to 

accurately capture discontinuities in the flow field. But this method is highly 

dependent on the initial mesh because the extend of refinement is limited to the 

available nodes in the domain. 

 

In p-refinement, higher order polynomial interpolations are used on the elements to 

be refined without changing the number of elements. Even though the number of 

elements is not changed, resultant mesh has non-conformal elements with hanging 

nodes. An example to p-refinement of a 2-D quadrilateral element is given in Figure 

1-3, in which the order of upper left element is increased from 1 to 2.  
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Figure 1-2: Initial and refined (using r-refinement) meshes for supersonic bump flow 

[24] 

 

 

 

Figure 1-3: p-refinement of a quadrilateral element with hanging nodes shown in 

black 

 

In h-refinement, elements are divided into smaller elements at desired regions to 

increase accuracy. Grid connectivity and number of nodes/elements are changed by 

this method, which brings complications to code development. Many different 

element division techniques have been developed so far. An example to h-refinement 

of a two-dimensional mesh of quadrilateral elements is given in Figure 1-4 , in which 

element 1 is divided into four elements and others remain the same, which results in 

non-conformal elements (element 2 and 3) with hanging nodes. It is also possible to 

refine quadrilateral elements without generating hanging nodes. 

1 

3 

2 

4 3 

2 

4 

1 
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On the other hand it is easier to divide triangular elements without creating any 

hanging nodes as seen in Figure 1-5. The element division shown in Figure 1-5 is not 

a preferred method because dividing an element several times results in very skew 

elements in the region where high accuracy is needed. Another method introduced by 

Rivara considers the longest edge of the element to be refined [29]. In this algorithm, 

elements selected for refinement and their neighboring elements are bisected by their 

longest edges until the mesh is conforming.. This is an effective method to refine 

mesh without causing mesh degeneracy. But in this method mesh outside the desired 

refinement region is also refined to satisfy the longest edge rule. Suarez et al. pointed 

out this undesired mesh propagation problem [30], an extreme case of which is 

illustrated in Figure 1-6. 

 

 

 

Figure 1-4: h-refinement of a quadrilateral element with hanging nodes shown in 

black 

 

 

Figure 1-5: h-refinement of a triangular element without hanging nodes 

1 

3 

2 

4 3 

2 

4 
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Figure 1-6: Demonstration of undesired mesh propagation problem of the longest 
edge refinement algorithm [30] 

 

1.4 Current Study 

 

In the current study, a solver based on LSFEM with an h-type AMR technique is 

developed to numerically simulate 2-D planar and axisymmetric flows governed by 

the compressible Euler equations. The developed solver works with both 

quadrilateral and triangular elements of linear and quadratic shape functions and it is 

tested with transonic and supersonic flow problems. Numerical results are in good 

agreement with the literature for both element types and orders. The developed code 

solves unsteady versions of the governing equations and marches in time to obtain a 

steady state solution, if one exists. In LSFEM, numerically introduced artificial 

viscosity can be decreased by using smaller time steps in order to sharply resolve 

shock waves. But using a small time step on a relatively coarse mesh causes 

oscillations near the shock region. In order to achieve sharp shock resolution without 

oscillations, AMR technique is employed for meshes with triangular elements. 

 

It is also worth to mention that the current solver is developed starting from an initial 

code which was capable of solving 2-D planar, steady, incompressible Navier-Stokes 

equations in the � − � − � formulation on linear quadrilateral mesh. The code is 

developed in C++ language. 
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CHAPTER 2 

 GOVERNING EQUATIONS & LEAST SQUARES FEM 
FORMULATION 

In this chapter, first the governing equations for 2-D, compressible, inviscid flow will 

be recalled. Time-discretization of these equations will be done and the resultant 

equations will be linearized. Finally least-squares finite element formulation of the 

resultant equation set will be provided. 

2.1  Governing Equations 

 

Fundamental equations of fluid mechanics are the conservation of mass, momentum 

and energy. For an inviscid compressible flow, governing equations are the following 

 
���
 + ∇ ∙  �!"#$ = 0 (2.1) 

 
�!"#�
 + !"# ∙ ∇!"# + 1� ∇� = 0 (2.2) 

 
���
 + !"# ∙ ∇� + %� ∇ ∙ !"#$ = 0 (2.3) 

 

where � is the fluid density, !"# is the velocity vector, � is the pressure and the % is the 

constant specific heat ratio. Conservation of energy is written in terms of pressure by 

using the perfect gas relation. In this thesis, compressible Euler equations are solved 

for two spatial dimensions, both planar and axisymmetric. Conservation equations 

for a planar flow in the �& Cartesian plane are given below 
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���
 + � ���� + � ���� + � �'�& + ' ���& = 0 (2.4) 

 
���
 + � ���� + ' ���& + 1� ���� = 0 (2.5) 

 
�'�
 + � �'�� + ' �'�& + 1� ���& = 0 (2.6) 

 
���
 + %� ���� + � ���� + %� �'�& + ' ���& = 0 (2.7) 

 

where � and ' are the velocity components in � and & directions. 

 

For an axisymmetric flow, variables are represented in cylindrical coordinates; (, * 

and + with the following assumptions; unknowns (�, '- , '. , �) are independent of the 

angular variable * and the velocity in the * direction is zero. Conservation equations 

for an axisymmetric flow in the (+ plane are given below 

 

 
���
 + � �'-�+ + '- ���+ + � �'.�( + '. ���( + �'.( = 0 (2.8) 

 
�'-�
 + '- �'-�+ + '. �'-�( + 1� ���+ = 0 (2.9) 

 
�'.�
 + '- �'.�+ + '. �'.�( + 1� ���( = 0 (2.10) 

 
���
 + %� �'-�+ + '- ���+ + %� �'.�( + '. ���( + % �'.( = 0 (2.11) 

 

where '- and '. are the velocity components in + and ( directions, respectively. 

 

Conservation equations for planar flows (2.4-2.7) can be written in matrix form in 

terms of primitive variables (in non-conservative form) as follows 

 

 
�0�
 + 1� �0�� + 1� �0�& = 0 (2.12) 
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where 02 = (�, �, ', �) is the unknown vector and the entries of the 1� and 1� 

matrices are given below 

 

1� = 3� � 0 00 � 0 1 �⁄0 0 � 00 %� 0 � 5
         

1� = 3' 0 � 00 ' 0 00 0 ' 1 �⁄0 0 %� ' 5 (2.13) 

 

Time discretization of the equation set (2.12) is done by the backward Euler method, 

during which a new unknown vector is introduced as ∆0 = 0�7� − 0�
, where the 

superscripts denote discrete time levels. This relation can also be expressed as 

follows 

                  3��'�5�7� = 3��'�5� + 3∆�∆�∆'∆�5
         

 (2.14) 

 

 

 

 

Continuity equation (2.4), written for the current time level 8 + 1 can be expressed 

in terms of the new ∆ unknowns and known values from the previous time level 8 as 

follows 

 Δ�Δ
 + (∆� + ��) �(∆� + ��)�� + (∆� + ��) �(∆� + ��)��
+ (∆� + ��) �(∆' + '�)�& + (∆' + '�) �(∆� + ��)�& = 0 

(2.15) 

 

Neglecting the following higher order terms in the above equation 

 

∆� �∆��� , ∆� �∆��� , ∆' �∆��& , ∆� �∆'�&  

new time-step 
values 

previous time-step 
values (known) 

new introduced 
unknown vector 
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and re-arranging it such that known values are on the right-hand side, following 

continuity equation is obtained 

 Δ�Δ
 + Δ� ����� + �� �∆��� + ∆� ����� + �� �Δ��� + Δ� �'��& + �� �∆'�&
+ ∆' ����& + '� �Δ��& = − :�� ����� + �� ����� + �� �'��& + '� ����& ; 

(2.16) 

 

Similar to the continuity equation, momentum equation in the �-direction (2.5) 

written at time level 8 + 1 can be expressed in terms of the new Δ unknowns as 

follows
 

 Δ�Δ
 + (∆� + ��) �(∆� + ��)�� + (∆' + '�) �(∆� + ��)�&
+ 1∆� + �� �(∆� + ��)�� = 0 

(2.17) 

 

Pressure term can be simplified by multiplying its numerator and denominator by (�� − Δ�). Neglecting higher order terms and re-arranging equation (2.17), �-

momentum equation becomes 

 Δ�Δ
 + Δ� ����� + �� �Δ��� + Δ' ����& + '� �Δ��& − Δ� 1(��)� �����
+ 1�� �∆��� = − :�� ����� + '� ����& + 1�� ����� ; 

(2.18) 

 

Similarly, y-momentum equation can be obtained as
 

 Δ'Δ
 + Δ� �'8�� + �8 �Δ'�� + Δ' �'8�& + '8 �Δ'�& − Δ� 1(�8)2 ��8�& + 1�8 �∆��&
= − =�8 �'8�� + '8 �'8�& + 1�8 ��8�& > 

(2.19) 
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Following a similar procedure energy equation (2.7) in terms of the new Δ unknowns 

can be written as 

 Δ�Δ� + %∆� ��8�� + %�8 �∆��� + ∆� ��8�� + �8 �∆��� + %∆� �'8�& + %�8 �∆'�&
+ ∆' ��8�& + '8 �∆��& = − =%�8 ��8�� + �8 ��8�� + %�8 �'8�& + '8 ��8�& > 

(2.20) 

 

To summarize, equation set (2.4-2.7) is now discretized in time and linearized, 

yielding the following set of equations, for which the unknown vector is           ∆02 = (∆�, ∆�, ∆', ∆�). 

  Δ�Δ
 + Δ� ����� + �� �∆��� + ∆� ����� + �� �Δ��� + Δ� �'��& + �� �∆'�&
+ ∆' ����& + '� �Δ��& = − :�� ����� + �� ����� + �� �'��& + '� ����& ; 

(2.21) 

Δ�Δ
 + Δ� ��8�� + �8 �Δ��� + Δ' ��8�& + '8 �Δ��& − Δ� 1(�8)2 ��8�� + 1�8 �∆���
= − =�8 ��8�� + '8 ��8�& + 1�8 ��8�� > 

(2.22) 

Δ'Δ
 + Δ� �'8�� + �8 �Δ'�� + Δ' �'8�& + '8 �Δ'�& − Δ� 1(�8)2 ��8�& + 1�8 �∆��&
= − =�8 �'8�� + '8 �'8�& + 1�8 ��8�& > 

(2.23) 

Δ�Δ� + %∆� ��8�� + %�8 �∆��� + ∆� ��8�� + �8 �∆��� + %∆� �'8�& + %�8 �∆'�&
+ ∆' ��8�& + '8 �∆��& = − =%�8 ��8�� + �8 ��8�� + %�8 �'8�& + '8 ��8�& > 

(2.24) 

 

Using the matrix notation previously used in equation (2.12), new set of equations 

can be written as  

 

1∆0 = 1�� �∆0�� + 1�� �∆0�& + 1@�∆0 = A (2.25) 
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where 1� and 1� matrices are the same as given before in equation (2.13) and the 

newly introduced 1@ matrix and A vector are given as follows (from now on, the 

superscript "8" which denotes the previous time-step in the unknowns will be 

omitted for clarity) 

 

1@ =
BCC
CCC
CCD

1∆
 + ���� + �'�& ���� ���& 0
− 1�� ���� 1∆
 + ���� ���& 0
− 1�� ���& �'�& 1∆
 + �'�& 0

0 ���� ���& 1∆
 + % :���� + �'�&;EFF
FFF
FFG
 (2.26) 

 

A = −
BCC
CCC
CCD � ���� + � ���� + � �'�& + ' ����� ���� + ' ���& + 1� ����� �'�� + ' �'�& + 1� ���&%� ���� + � ���� + %� �'�& + ' ���&EFF

FFF
FFG
 (2.27) 

 

Following the same procedure with the planar case, for axisymmetric problems it can 

be shown that only the 1@ matrix and the A vector are modified as follows 

 

1@HI� = 1@ +
BCC
CCD
'.( 0 �( 00 0 0 00 0 0 00 0 %�( %'.( EFF

FFG       ,      AHI� = A −
BCC
CCD

�'.(00%�'.( EFF
FFG (2.28) 

 

and terms �, ', � and & in 1�, 1�, 1@ and A are expressed as '-, '., z and (, 

respectively. 
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Calculations in the code are performed with the non-dimensional variables. Non-

dimensionalization of these variables are done as follows 

 �∗ = ��K �∗ = �LK '∗ = 'LK �∗ = ��KLK�  

 

where the subscript "∞" denotes the free-stream values and "L" is the speed of 

sound. 

 

2.2 Least-Squares Finite Element Formulation 

 

Residual of equation set (2.21-2.24) is defined as follows 

 N = 1Δ0 − A (2.29) 

 

LSFEM is based on the minimization of this residual function over the problem 

domain, resulting in the minimization of the following functional [19] 

 

O(Δ0) = 12 P N2NQΩ 
S  (2.30) 

 

In FEM, the domain is divided into finite number of non-overlapping subdomains, 

which are called elements and the variation of the unknowns over these elements are 

approximated by the use of nodal values of the unknowns and polynomial shape 

functions as given below [19] 

 

Δ0 ≈ U VW∆0W
XYX
WZ�  (2.31) 
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where NEN is the number of elemental nodes, ∆0W are the nodal unknown values that 

need to be calculated and VW are known shape functions of space coordinates. More 

details about the shape functions used in this study will be given in the next section. 

Substituting the above approximate representation of the unknowns into equation 

(2.30) written over a single element, and minimizing the functional in a least squares 

sense it is possible to get the following elemental linear algebraic equation set 

 [�∆0� = \� (2.32) 

 

where ∆0� is the unknown variable vector, [� and \� are the elemental stiffness 

matrix and force vector of an arbitrary element ] given as follows 

 

[�W� = P(1V�)2 1VW$QΩ 
S^  (2.33) 

\�� = P(1V�)2AQΩ 
S^  (2.34) 

 

where the differential operator 1 is 

 

1 = 1� ��� + 1� ��& + 1@ (2.35) 

 

In the developed code, elemental stiffness matrix [� and force vector \� are 

numerically calculated using Gauss-Legendre quadrature [31]. After the calculation 

of all elemental systems, they are assembled into a global set of equations. As an 

important property of LSFEM, global stiffness matrix turns out to be symmetric 

positive-definite, which is solved using an efficient element-by-element Jacobi 

preconditioned Conjugate Gradient method [31].  

 

Although the formulation presented above involves unsteady terms, in this study 

only steady problems are solved through a time marching procedure. Upon 
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convergence of a solution to steady-state unknown vector ∆0 is expected to approach 

zero. Based on this, a convergence criterion is defined as the node number averaged �� norm of the unknowns as shown below, which is calculated for (��, ��, �', ��) 

separately 

 

_U(Δ0��)�NN
�Z� NNa          b = 1,4 (2.36) 

 

where NN is the total number of nodes in the mesh. 

 

2.3 Lagrange Shape Functions 

 

In this thesis, 2-D triangular and quadrilateral elements in linear and quadratic forms 

are used to approximate the solution. Linear (4-node) and quadratic (9-node) 

quadrilateral master elements are shown in Figure 2-1. 

 

 

 

 

 

 

 

Figure 2-1: 4-node linear and 9-node quadratic quadrilateral master elements 

 

Shape functions of the linear quadrilateral element are 

 

V� = 14 (1 − d)(1 − e)                V� = 14 (1 + d)(1 − e) 

Vf = 14 (1 + d)(1 + e)                Vg = 14 (1 − d)(1 + e) 

(2.37) 

ξ 
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and the ones for the 9-node quadrilateral are 

 

V� = 14 (d� − d)(e� − e)
 

V� = 14 (d� + d)(e� − e)
 

(2.38) 

Vf = 14 (d� + d)(e� + e)
 

Vg = 14 (d� − d)(e� + e)
 Vh = 12 (1 − d�)(e� − e)

 
Vi = 12 (d� + d)(1 − e�)

 Vj = 12 (1 − d�)(e� + e)
 

Vk = 12 (d� − d)(1 − e�)
 Vl = (1 − d�)(1 − e�)

 
 

Linear (3-node) and quadratic (6-node) triangular master elements are shown in 

Figure 2-2. 

 

 

 

 

 

 

 

 

 

Figure 2-2: 3-node linear and 6-node quadratic triangular master elements 

 

Shape functions for the 3-node triangular elements are 

 V� = 1 − d − e
              

V� = d Vf = e (2.39) 

 

and the ones for the 6-node triangular element are given as follows 

 

ξ 

η 

1 2 

3 

(0,1) 

(1,0) (0,0) 
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η 
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V� = 2(1 − d − e) :12 − d − e;
 

V� = 2d :d − 12;
 

(2.40) Vf = 2e :e − 12;
 

Vg = 4(1 − d − e)d
 Vh = 4de

 
Vi = 4(1 − d − e)e

 
 

When the shape functions are defined over master elements as given above, integrals 

of the elemental stiffness matrices and force vectors require a change of variables 

from (�, &) to (d, e), for which the standard Jacobian transformation is used [31]. 

 

2.4 Boundary Conditions 

 

In order to have a well-posed problem, boundary conditions, number of which 

depends on the problem physics, have to be specified. For the equation system solved 

in this study, boundary conditions are easily imposed as Dirichlet type except for the 

wall boundary conditions. For inviscid flows, flow at the wall boundaries is tangent 

to the wall. Flow tangency boundary condition is usually imposed by using the 

penalty method or the coordinate rotation method. Both methods are implemented in 

the developed code, and details about them are presented below. 

 

2.4.1 Penalty Method 

 

In the penalty method, flow-tangency boundary condition is imposed by adding the 

following functional to equation (2.30) 

 m2 P  !"# ∙ 8"#$�QΓ 
opqrr

= m2 P ���  QΓ 
opqrr

 (2.41) 

 

where !"# is the velocity vector , 8"# is the unit vector normal to the wall boundary and m is the penalty parameter. Velocity components at the wall boundary are shown in 
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Figure 2-3. Penalty parameter determines how strongly the flow tangency boundary 

condition is imposed. Selecting a too large penalty parameter results in slower 

convergence, whereas a too small penalty parameter value decreases the accuracy at 

the wall boundaries. In this study, penalty parameter is selected in the range 0.05 and 

0.2. 

 

Figure 2-3: Velocity components at a solid wall 

 

The angle * at Figure 2-3 is calculated at the nodes and more than one element may 

share the same wall boundary node as seen in Figure 2-4 

 
 

Figure 2-4: Wall boundary node A 

 

For such cases the angle at the wall boundary node A can be calculated as follows, 

by using the angles and lengths of the adjacent edges [24] 

 

*s = t�*� + t�*�t� + t�  (2.42) 
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Knowing these, velocity normal to the wall boundary can be written as 

 �� = − sin(*) � + cos(*) ' (2.43) 

 

where * is the angle between wall boundary and the �-coordinate. Considering the 

velocity components in equation (2.43) to be written for time level 8 + 1 and 

expanding them in terms of velocities at the previous time level 8 and the velocity 

differences between two time levels yields 

 �� = − sin(*) Δ� + cos(*)Δ' − sin(*) �� + cos(*)'� (2.44) 

 

The last two terms in the above equation are known values from the previous time 

step. Introducing equation (2.44) into the functional (2.41), elemental stiffness matrix [� and force vector \� are modified at the wall boundary nodes by adding following 

matrix and vector respectively 

 

[�z��H��{ = [� + m 30 0 0 00 sin�(*) − sin(*) cos(*) 00 − sin(*) cos(*) cos�(*) 00 0 0 05 (2.45) 

 

\�z��H��{ = \� + m 3 0(sin(*) � − cos(*) ') sin(*)(sin(*) � − cos(*) ') cos(*)0 5 
(2.46) 

 

Note that elemental stiffness matrix and force vector are modified at the wall 

boundary elements' wall boundary nodes only. It is also worth to mention that this 

modification do not destroy the important symmetric positive definite property of the 

discretized equation system. 
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2.4.2 Coordinate Rotation Method 

 

Coordinate rotation method is a direct approach to impose flow tangency at wall 

boundaries. In this method, wall boundary nodes are rotated to a local coordinate 

system in which the velocity components are tangent and normal to the wall as seen 

in Figure 2-3. After this rotation, boundary condition can be implemented as a 

Dirichlet boundary condition by setting the normal velocity component to zero. The 

relation between tangent and normal velocity components and the original velocity 

components is given below 

 

|����} = ~ cos (*) sin (*)−sin (*) cos (*)� |�'} (2.47) 

 

Considering that this coordinate transformation only affects the velocity components 

but not density or pressure, the following transformation matrix between the 

unknowns of the original and rotated local coordinates can be written 

 

� = 31 0 0 00 cos(*) sin(*) 00 − sin(*) cos(*) 00 0 0 15 (2.48) 

 

In order to set the normal velocity components at the wall boundaries to zero 

elemental system for the wall boundary elements are modified using the 

transformation matrix as follows 

 (�2[��)∆0 = (�2\�) (2.49) 

 

Similar to the penalty approach, coordinate rotation also preserves the symmetric 

positive-definite property of the final equation set. 
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2.5 Adaptive Mesh Refinement (AMR) 

 

In this study AMR is mainly used for efficient and accurate shock capturing and it is 

used only with triangular meshes. For this purpose first an error indicator is 

calculated for each element and the elements with an error exceeding the user 

defined tolerance value are divided into smaller ones. Details of these two steps are 

given below. 

 

2.5.1 Error Indicator 

 

The first step of grid adaptation is assigning error values for each element to 

determine the elements that need to be refined. These errors can be estimated by 

many different approaches. In this thesis the gradient approach, which is very 

suitable for supersonic inviscid flows, is used [38]. It uses the following area 

weighted �� norm of the pressure gradient as an error indicator 

 ](( = 1����|∇�| (2.50) 

 

where 1���� is the area of the element. In determining the element division, error 

indicators are scaled with the average error indicator over the problem domain, 

which makes the algorithm more robust and problem independent. Note that 

although pressure gradient is used in error calculation in this study, one can also 

adopt other variables for this purpose. 

 

2.5.2 Element Division 

 

After determining the elements that need to be refined, element division is done by 

paying attention to preserving the conformity of the mesh. Element division 

algorithm used in this study is based on the bisection of the element by its longest 

edge [29]. In this algorithm, elements which are flagged for division are divided by 
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their longest edges and then the non-conforming neighboring elements are bisected 

across their non-conforming edges to get rid of the undesired hanging nodes. Note 

that after the first division non-conforming neighbors are not recursively divided by 

their longest edges until the mesh is conforming as in Rivara's method [29].  

 

A simple illustration of element division is shown in Figure 2-7. If the top element is 

flagged to be refined, first it is divided by its longest edge and then the neighbor 

element is divided to make the mesh conformal. As seen in the figure the 

neighboring element is not necessarily divided through its longest edge.  

 

 

 

Figure 2-5: Element division 

 

After the element division process is done, mesh connectivity is updated and new 

coordinates, flow-field variables and boundary condition information are assigned to 

the newly created nodes. This algorithm is not the best alternative if we strictly 

consider avoiding grid degeneracy, but it is simple and FEM is known to tolerate grid 

skewness to a certain degree. In addition, possible propagation problem 

demonstrated in Figure 1-6, which may occur in the recursively longest-edge 

refinement algorithms is avoided. 

 

element flagged to be refined 

will be divided for conformity 
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CHAPTER 3 

 RESULTS 

In this chapter, results obtained with the developed code for various problems are 

given. First, supersonic and transonic flow over a circular bump is simulated and the 

results are compared with the ones found in literature. For this first problem both 

linear and quadratic types of quadrilateral and triangular elements are used. For the 

triangular elements, transonic and supersonic cases are also solved with AMR. The 

second test problem is chosen to be the supersonic flow over a wedge, which has a 

known analytical solution. In this problem AMR algorithm is challenged by starting 

the solution from a very coarse initial mesh. Wedge problem is also used to study the 

effect of time step on numerical dissipation and shock capturing. Then flow over an 

axisymmetric body is simulated and results are compared with available data in 

literature. The final test case is the supersonic flow in a scramjet inlet. 

 

3.1 Supersonic Flow Over a Circular Bump 

 

In this problem supersonic flow inside a channel with 4 % blockage by a circular 

bump as seen in the Figure 3-1 is considered. Channel length and height is 3.0 and 

1.0 units respectively. Circular bump is positioned at the lower wall with a height of 

0.04 units. In this classical benchmark problem it is known that as the supersonic 

flow with the inlet Mach number of 1.65 interacts with the bump an oblique shock 

emanates from the leading edge of the bump and reflects from the upper wall, which 
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further interacts with the oblique shock that originates from the trailing edge of the 

bump. 

 

The inlet boundary condition of the problem is given in the Figure 3-1. The specific 

heat ratio of the flowing gas is taken as 1.4. The exit boundary is left free (nothing 

special is done for it in the code) and on the upper and lower walls, flow tangency 

boundary condition is imposed by the penalty method. 

 

 

 

 

Figure 3-1: Sketch of the supersonic flow over a circular bump problem 

 

For this first test case calculations are done for both quadrilateral and triangular 

meshes with linear and quadratic interpolating functions and results will be compared 

with the data found in the literature [33]. Quadrilateral and triangular meshes should 

be similar for a proper comparison of the solutions obtained with them. For this 

purpose, first the mesh of quadrilateral elements shown in Figure 3-2 is created and 

the triangular mesh, also shown in Figure 3-2 is obtained by dividing each 

quadrilateral element into two, ending up with the same number of nodes and 

unknowns for each mesh. For both meshes, on the bottom wall there are 30 

uniformly distributed elements on the bump and after the bump and there are 20 

elements before the bump clustered to the bump. On the inlet and exit there are 30 

uniformly distributed elements.  

 

ρ = 1.0 
u = 1.65 
v = 0.0 
p = 0.7143 
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Figure 3-2: Quadrilateral and triangular computational meshes used for supersonic 
bump problem (2511 nodes) 

 

As clearly stated by Jiang [19] selection of the number of Gauss quadrature points is 

important when least-squares formulation is used. Number of quadrature points 

(NGP) is selected as 4 for quadratic and linear quadrilateral elements and for linear 

triangular elements. However, due to stability issues NGP is selected as 3 for 

quadratic triangular elements. 

 

Time step is set to 0.1 for the solutions of the supersonic bump problem. The 

numerical viscosity produced by the least-squares formulation is a function of time 

step, of which details are given by Jiang et al. [23]. Selecting a smaller time-step 

decreases numerical viscosity and as a result shock resolution increases, but it may 

also cause oscillations close to the discontinuities. The effect of time step will be 

inspected in detail for the flow over wedge problem. 

 

Pressure contours of the flow field for both meshes and both element orders are 

given in Figure 3-3. Interactions of shock waves stated in the problem description are 

clearly seen in the figure. For quadrilateral and triangular linear elements (Figure 3-3 

a, c) shock waves are relatively dispersed. Shock resolution improves when second 

order elements are used, which is expected because the number of nodes almost 

doubles as compared to the use of linear elements. 
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Figure 3-3: Pressure contours for supersonic bump problem with ������ = 1.65 and �
 = 0.1: (a) linear quadrilateral elements (b) quadratic quadrilateral elements       
(c) linear triangular elements (d) quadratic triangular elements 
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Before comparing these results in further detail, let us apply the AMR technique to 

the mesh of linear triangular elements. The mesh after 6 adaptation cycles can be 

seen in Figure 3-4. For this adaptive solution first the original triangular mesh of 

linear elements is used without mesh adaptation for 40 time steps. Then at every 10 

iteration mesh is adapted with a pre-defined maximum adaptation level and 

minimum element size. After mesh is adapted 6 times, iterations continue until the 

convergence criterion is satisfied. It is clearly seen in Figure 3-4 how AMR increases 

the mesh resolution at the shock regions. A closer look at the adapted mesh around 

the leading edge shock is given in Figure 3-5, for which black and red colors indicate 

initial and final meshes, respectively. 

 

Figure 3-4: Final adapted mesh for supersonic bump problem 

 

Figure 3-5: Zoomed view of the adapted mesh around the leading edge shock of 
supersonic bump problem 
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Pressure contours obtained with the final adapted mesh are given in Figure 3-6. 

 

 

Figure 3-6: Pressure contours of the final adapted solution of the supersonic bump 
problem 

 

As seen in Figure 3-6, compared to previous non-adaptive solutions shocks are 

captured sharply without any oscillations in the flow field. A 3-D view of the 

pressure contour plot is also presented in Figure 3-7. In order to compare shock 

resolutions better, slices are taken at & = 0.5 from quadrilateral and triangular 

meshes with order � = 1 (linear) and � = 2 (quadratic) and also from adapted 

triangular mesh with � = 1 (see Figure 3-7) and 5 different solutions are compared 

in Figure 3-8. 

 

Figure 3-7: Pressure data extraction from y=0.5 for the supersonic bump problem 

0.5 0.6 0.7 0.8 0.9 1 1.1�: 
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As seen in Figure 3-7, the slice at the & = 0.5 intersects the leading edge shock wave 

and its reflection from the upper wall, as well as the trailing edge shock wave after its 

interaction with the reflected shock. All of these flow features can also be seen in 

Figure 3-8.  

 

 

Figure 3-8: Comparison of pressure distribution at y=0.5 for 5 different solutions of 
the supersonic bump problem 

 

Figure 3-8 illustrates the improvement in the shock resolution with AMR. With 

linear elements, for both quadrilateral and triangular meshes, shock resolution is 

poor. Increasing element order, improves the shock resolution to a certain degree, but 

cannot capture discontinuities as good as the adapted solution. 

 

For further comparison, Mach number distribution at the lower wall is presented in 

Figure 3-9. The reason of the deviations can be found by analyzing the pressure 

contours given in Figures 3-3 and 3-6. In these contour plots, it is seen that the shock 

wave reflecting from the upper wall leaves from the supersonic exit. When the shock 
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resolution is poor, shock wave is smeared and this affects the lower wall near the 

supersonic exit. Also, there is a shift in the Mach number distribution at the right side 

of the bump, which is only seen in the neighboring elements to the wall boundary. 

This effect is smaller at higher order elements and it is not seen in the adapted 

solution. 

 

Figure 3-9: Mach number distribution at the lower wall of the supersonic bump 
problem 

 

In Figure 3-10 Mach number distribution at the upper and lower wall are compared 

with the solution of Eidelman et al. [33] and Taghaddosi et al. [24]. At the upper 

wall, results are in good agreement with each other. It is seen that the reflected shock 

wave at the upper wall is more sharply captured in the current solution and 

Taghaddosi's solution since both results are obtained with AMR. At the lower wall, 

there is also good agreement between the results except the deviation after the bump. 

The Mach number at the lower wall after and before the bump is expected to be the 

same for an inviscid flow, which is captured only by the current solution.  
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Figure 3-10: Mach number distribution at the upper (top) and lower wall (bottom) for 
the supersonic bump problem 

 

Convergence histories of all the performed solutions are shown in Figure 3-11. As 

seen the convergence rate of the solution with quadratic triangular element after 60 
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solution, after 40 time iterations after which the flow features become apparent, mesh 

adaptation takes place. At every 10 time iterations mesh adaptation is performed 

without waiting for the residual to drop further and after the final adaptation 100 time 

iterations was enough for the solution to converge. 

 

 

Figure 3-11: Convergence histories of different solutions for the supersonic bump 
problem 
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3.2 Transonic Flow Over a Circular Bump 

 

This time, transonic flow with an inlet Mach number of 0.675 passes through a 

channel with a 10 % blockage by a circular bump. Channel dimensions and the 

position of the bump are the same as the previously studied problem. Flow enters the 

channel at a subsonic speed and reaches to supersonic speeds on the bump, which 

results in the formation of a shock wave. 

 

The inlet boundary condition of the problem is given in the Figure 3-12. The specific 

heat ratio, %, is taken as 1.4. At the exit boundary, pressure is set to inlet pressure 

value of 0.7143. On the upper and lower walls, flow tangency boundary condition is 

imposed. For this problem, calculations are be done with both quadrilateral and 

triangular meshes with linear and quadratic interpolating functions, similar to the 

previous problem, and the results are compared with the data found in the literature 

[24, 33].  

 
 

 

 

Figure 3-12: Sketch of the transonic flow over a circular bump problem 

 

Similar to the previous problem first the quadrilateral mesh seen in Figure 3-13 is 

prepared and the triangular mesh is obtained by dividing each quadrilateral element 

into 2. For each mesh, the bottom wall has 40 uniformly distributed elements on the 

bump and 20 elements on the both sides of the bump clustered to the bump. There 

are 30 uniformly distributed elements across the channel height. Both meshes have 
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2511 nodes for the linear elements. Number of Gauss quadrature points and time step 

selections are the same as the previous supersonic bump problem. 

 

 

 

Figure 3-13: Computational meshes of (top) rectangular and (bottom) triangular 
elements, both having 2511 nodes 

 

Mach number contours of the flow-field for both meshes and both element orders are 

given in Figure 3-14. It is seen from the figure that there is a viscous effect after the 

shock wave which is also mentioned in Taghaddosi et al. [24]. This effect is greatest 

for the use of quadrilateral linear elements. Also for second order elements, 

oscillatory behavior can be seen in the flow field, especially after the shock wave. In 

all of the solutions, shock wave is captured sharply and the shock location is 

approximately at � = 1.72 on the bump, which is in good agreement with the 

literature data.  
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Figure 3-14: Mach number contours for transonic bump problem with            ������ = 0.675 (a) linear quadrilateral elements (b) quadratic quadrilateral elements 
(c) linear triangular elements (d) quadratic triangular elements 
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Mach number distribution at the lower wall is given in Figure 3-15. Results are in 

good agreement with the literature data except small shifts in the Mach number after 

the bump, which is related to the viscous effect mentioned in the previous paragraph. 

This effect is higher for quadrilateral elements and lower for triangular elements of 

which results agree well with Ni [34]. Taghaddosi et al. [24] mentioned in their paper 

about this effect and compared their results with Eidelman et al. [33] and Ni [34]. In 

this comparison they observed a similar deviation of Mach number, which amplifies 

by the use of larger time steps [24].  

 

 

Figure 3-15: Mach number distribution at the lower wall for different element types 
and orders 

 

Before investigating the results further, solution with AMR will be presented. Unlike 

the previous problem, AMR is done with a coarser mesh. The generated mesh seen in 

figure 3-16 consists of 797 nodes which is approximately three times less than the 

previous mesh. Adaptive computations with this coarse mesh are done with a time 

step of 0.2. Adaptation took place at every 20 time iterations until reaching 8 levels 
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of adaptation. Zoomed view of initial and final adapted mesh at the shock position on 

the bump is given in Figure 3-17, which illustrates the improvement in the grid 

resolution at the shock wave. The modified grid and pressure contours near bump at 

different adaptation levels are given in Figure 3-18 which shows the improvement in 

shock resolution. 

 

 

Figure 3-16: Initial coarse mesh for AMR 

 

 

Figure 3-17: Initial (black) and adapted (red) mesh for the transonic bump problem 
  

x

y

1.7 1.72 1.74 1.76

0.08

0.1

0.12



41 
 

       

  

 

  

 

  
 

  
 
Figure 3-18: Initial and adapted meshes and pressure contours near bump, �
 = 0.2: 

(a) Initial mesh, (b) 2nd adaptation, (c) 4th adaptation, (d) 8th adaptation 
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In Figure 3-19, Mach number distribution over the lower wall obtained with the 

adapted solution is compared with the literature data. Adapted solution results agree 

very well with the results of Eidelman et al. [33] and Ni [34] throughout the channel 

wall and with Taghaddosi et al. [24] before the trailing edge. After the trailing edge, 

results of Taghaddosi et al. under predict the Mach number as the authors stated. 

They used a coarse quadrilateral initial mesh and employed r-type refinement and 

after the adaptation grid became even coarser at the downstream of the bump, which 

apparently increased the viscous effect. Similar behavior is also observed in the 

current study, especially with non-adaptive solutions as discussed before. In order to 

see this effect more clearly, Mach number distribution at the exit plane is given in 

Figure 3-20. It is seen that underestimation of Mach number at the lower wall due to 

viscous effect is limited to the elements right above the wall boundary only. 

 

 

Figure 3-19: Mach number distribution at the lower wall of adapted solution of the 
transonic bump problem 
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Figure 3-20: Mach number distribution at the exit of the transonic bump problem 

 

Convergence history of the solutions are given in the below graph. 

 

Figure 3-21: Convergence histories of different solutions for the supersonic bump 
problem 
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3.3 Supersonic Ramp Flow 

 

In this test case, supersonic flow with an inlet Mach number of 2.0 flows over a 

wedge which makes a 5° angle with the free stream flow as seen in Figure 3-22. Inlet 

boundary conditions are given in the figure, flow tangency boundary condition is 

imposed at the lower and upper walls and the right boundary is left free. Gas enters 

the domain through the inlet at the left and an oblique shock wave emanates from the 

leading edge of the ramp with an angle of 34.3°. Flow properties after the shock 

wave can be calculated analytically. In this problem, first the effect of time step in 

LSFEM formulation will be inspected and then LSFEM with AMR technique will be 

tested by solving the problem with a very coarse initial mesh. 

 

 

 

Figure 3-22: Sketch of the supersonic ramp flow 

 

Numerical viscosity produced by the least-squares formulation is known to be a 

function of time step [23]. Using a smaller time step decreases numerical viscosity 

and as a result shock resolution increases. However, it may also cause oscillations in 

the solution. In order to see the effect of time step on numerical viscosity and shock 

resolution, triangular mesh given in Figure 3-23 is generated. 
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Figure 3-23: Uniform mesh for the supersonic ramp flow (7512 elements, 3872 
nodes) 

 

Pressure contours for time step values of 0.3, 0.1, 0.05 and 0.02 are given in Figure 

3-24. The effect of time step on shock resolution can be seen in this figure. As 

expected, as the time step decreases shock wave becomes thinner. However, by 

decreasing the time step we also observe oscillations near the shock region. In order 

to see this behavior clearly, pressure data at � = 2.8 is presented in Figure 3-25. 

Shock wave intersects the � = 2.8 line approximately at & = 1.226.  

 

As seen in Figure 3-25 as the time step gets smaller shock resolution gets better, but 

overshoots and undershoots before and after the shock are amplified, clearly showing 

the link between the time step and numerical dissipation. It is also observed that 

decreasing time step results in a small shift of the shock position. The possible reason 

of this is the oscillations before the shock wave. Another possible reason is stated in 

the literature as using non-conservative form of the governing equations [28, 35]. 

Further discussion of this issue will be done after solving the problem with AMR. 
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Figure 3-24: Pressure contours of supersonic ramp flow obtained with different �
 

 

 
Figure 3-25: Effect of time step on pressure distribution at x=2.8 for supersonic ramp 

flow 
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It is seen that, the uniform grid used for this problem (Figure 3-23) is not fine enough 

to capture the shock wave accurately without oscillations. AMR can be used for 

better shock capturing. To show the real power of AMR, a very coarse initial mesh of 

113 nodes and 194 elements (approximately 40 times coarser than the previously 

used uniform grid) is generated (Figure 3-26). 

 

Figure 3-26: Coarse initial mesh for solving the supersonic ramp problem with AMR 
(113 nodes and 194 elements) 

 

Adaptive solution of the problem is started with a time step of 0.2 and after 7 

adaptation cycles, time step is reduced to 0.1 and 2 more mesh adaptation is done 

before finalizing the solution. Figure 3-27 shows the modified grid and improvement 

in shock resolution at different adaptation levels. After the final adaptation, number 

of elements and nodes become 11303 and 5684, respectively. It can be seen in Figure 

3-29 that only the elements at the shock location are refined and undesired mesh 

propagation is avoided.  

 

Because the solution started from a very coarse initial mesh, the final mesh contains 

very skew elements near the shock region, as seen in Figure 3-29. In order to see the 

effect of mesh skewness on the solution, a new simulation is done with a modified 

AMR algorithm, in which skew elements are also refined to make them more 

orthogonal. However, it is seen that this brings no improvement to the solution, but it 

only increases computational work and solution time. So it can be concluded that 

LSFEM can work satisfactorily with the skew elements seen in Figure 3-29. 



 

Figure 3-27: The grids and pressure contours for initial and adapted solutions of the 
supersonic ramp pro

a) 

b) 

c)

d) 
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The grids and pressure contours for initial and adapted solutions of the 
supersonic ramp problem: (a) Initial mesh, (b) 3rd adaptation, (c) 6

9th adaptation 

 

 

 

 

The grids and pressure contours for initial and adapted solutions of the 
adaptation, (c) 6th adaptation, (d) 
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The initial and final adapted mesh is shown together in Figure 3-28 to clearly 

illustrate the refinement process. Zoomed view to the refined elements at shock 

position is also presented in Figure 3-29. 

 

Figure 3-28: Initial and final adapted mesh used for the supersonic ramp problem 

 

Figure 3-29: Zoomed view of the initial and adapted mesh at shock location 
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Figure 3-30 shows the pressure distribution of the adapted solution at � = 2.8. 

Adapted LSFEM solution predicts the shock position correctly and provides high 

shock resolution without oscillations. Comparing this result with the non-adaptive 

ones (Figure 3-25), improvement in the shock resolution is quite significant. It is also 

important to mention that, unlike previous observations, no deviation from the exact 

shock location is observed by using the non-conservative formulation with AMR 

algorithm.  

 

 

Figure 3-30: Pressure distribution for adapted and exact solution at � = 2.8 for the 
supersonic ramp problem 

 

Finally, convergence history of the adapted solution is given in Figure 3-31. In the 

solution of the problem, adaptations are successively performed without waiting for 

the residual to drop further up to the final adaptation step after which iterations 

continued until the solution reaches the steady state. After 7 adaptations, time step is 

reduced from 0.2 to 0.1 which is followed by 2 more adaptations. 
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Figure 3-31: Convergence history of the adapted solution of the supersonic ramp 
problem 
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3.4 Flow Over an Axisymmetric Body 

 

In this problem, supersonic flow of Mach number 3.0 over an axisymmetric body is 

solved and results are compared with available data in literature [36]. The 

axisymmetric body geometry is six diameters in length which has a three diameter 

length secant-ogive nose with a radius of 18.88 diameters. 

 

 

 

 
Figure 3-32: Axisymmetric body geometry (dimensions are in body diameters) 

 

The boundary conditions for the freestream Mach number of 3.0 are � = 1.0, � = 3.0, ' = 0.0 and � = 0.7143. The computational domain does not include the 

base of the axisymmetric body. Flow tangency boundary condition imposed at the 

axisymmetric body and top and right boundaries are left free. Initial mesh around the 

body is given in the Figure 3-33. Time step is set to 0.05 for the solution of the 

problem. The mesh is adapted to get the final results. Adapted mesh and pressure 

contours can be seen in the Figure 3-34. 

 

 

Figure 3-33: Initial mesh around the axisymmetric body with 4092 nodes 
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As seen in 3-34, oblique shock wave attached to the nose of the body is captured 

well. Expansion waves at the end of the nose and at the boattail can also be seen. 

 

 

 

 

 

Figure 3-34: Adapted mesh and pressure contours of the axisymmetric flow problem 

 

In Figure 3-35, surface pressure ratio is compared with the one found in literature 

and good agreement is observed. 
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Figure 3-35: Pressure distribution on the axisymmetric body 
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3.5 Flow Through Scramjet Inlet 

 

In this final test case, supersonic flow of Mach number 2.0 enters the scramjet inlet 

and compressed through a 10° ramp as seen in Figure 3-36. Inlet boundary 

conditions are also given in figure. Flow tangency boundary condition is imposed at 

the solid wall of the inlet by penalty method and only the upper half of the flow 

domain is studied by setting the velocity in the vertical direction to zero at the 

symmetry line. Supersonic exit is left free. 

 

 

 

 

Figure 3-36: Sketch of the inlet problem (all dimensions are in meters) 

 
Initial grid consists of 1422 triangular elements and 775 nodes and can be seen in 

Figure 3-37. Solution started with a time step of 0.1 and after 8 adaptations, 

numerical viscosity reduced by setting the time step to 0.05 followed by 2 more 

adaptations which can also be seen in Figure 3-40 from the jumps of the residuals. 

 

 

Figure 3-37: Initial mesh for the scramjet inlet problem with 1422 elements and 775 
nodes 
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In Figure 3-38 adapted grid and pressure contours of the solution are given. Final 

adapted mesh consists of 20790 elements and 10512 nodes. It is seen that, shock 

waves and expansion fans are sharply resolved by the adapted grid and as a result 

discontinuities are captured with a high level of accuracy. 

 

 

 

Figure 3-38: Adapted mesh and pressure contours of the scramjet inlet problem 

 

Pressure coefficient along the wall, compared with the results of Hosseini et al. [37] 

is given in Figure 3-39. Adaptive LSFEM results are in good agreement with the 

literature data. Discontinuities are sharply captured without oscillatory behavior by 

LSFEM with AMR algorithm. 

 

Convergence history of the adapted solution is given in Figure 3-40. The jump at 

iteration 300 corresponds to the change in the time step and others occurred due to 

mesh refinement.  
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Figure 3-39: Pressure coefficient along the wall of the scramjet inlet  

 

 

Figure 3-40: Convergence history of the adapted solution for the scramjet inlet 
problem 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

c
p

x

adapted solution

Hosseini et al. [37]

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 50 100 150 200 250 300 350 400 450 500

lo
g
(R
)

Number of iterations



58 
 

CHAPTER 4 

 CONCLUSION & FUTURE WORK 

4.1 Conclusion 

 

In this thesis, least-squares finite element method (LSFEM) is employed to 

numerically simulate 2-D planar and axisymmetric flows governed by the 

compressible Euler equations. There are many advantages of LSFEM over traditional 

FEMs. The governing equations of fluid dynamics are non-self-adjoint equations. In 

LSFEM, discretization of these equations yield to symmetric positive definite 

matrices which can be solved efficiently by iterative matrix solvers using less 

memory and CPU load compared to classical Galerkin FEMs. Another advantage is 

the robustness of the least-squares formulation; it works for all flow regimes from 

subsonic to supersonic with a unified formulation without need of special treatments 

and free parameters to tune. 

 

In order to avoid the use of artificial viscosity for wiggle free shock capturing, h-type 

adaptive mesh refinement (AMR) is employed. The developed code can work with 

both quadrilateral and triangular elements of linear and quadratic order. The effect of 

element type and order on the solution accuracy is inspected in detail. The results 

indicate that, both element types resolve the flow features correctly and also 

resolution of the discontinuities increased by using quadratic interpolating functions 

as expected. Further increase in shock resolution is achieved by employing AMR. It 

is seen that very satisfactory results can be obtained by starting with a relatively 
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coarse mesh and applying AMR. Upon inspecting the solution of flow over a bump 

problem, underestimation of the Mach number is seen after the trailing edge of the 

bump which is due to numerical diffusion. This effect is more apparently seen for the 

quadrilateral elements and it is lowest for the adaptive solution. 

 

The effect of time step on numerical diffusion is studied with the supersonic ramp 

problem. It is observed that the use of smaller time step decreased the numerical 

diffusion and as a result shock waves become thinner, but also oscillatory behavior is 

seen in the shock regions. By the use of AMR with a very coarse initial mesh, good 

shock resolution without any oscillations can be obtained. It is showed that AMR 

refines only the elements at the shock locations and undesired mesh propagation is 

avoided which also introduced skew elements in the domain. But it is also seen that 

solution is not affected by these skew elements, which indicates the robustness of the 

LSFEM with AMR. 

 

4.2 Future Work 

 

In the current study, only mesh refinement was done. But it is planned to implement 

a mesh coarsening algorithm for performance considerations. It may be more 

efficient to start with a uniform medium density mesh and perform mesh refinement 

and coarsening at the same time. 

 

Another fact concerning AMR is that, the h-type refinement is effective especially 

for the discontinuities in the flow field. But in the smooth flow regions, using p-type 

mesh refinement may give better results compared to h-type refinement. Therefore, 

increasing element number and order for the smooth flow regions should be 

investigated thoroughly in order to determine the need of combining h-type and p-

type refinement. 
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The developed code is capable of solving 2-D planar and axisymmetric problems, 

and it be extended to 3-D problems. The difficulties of achieving this goal seemed to 

be related mostly to the modification of AMR. 

 

Another useful study, especially for 3-D problems, will be the parallelization of the 

element-by-element Jacobi preconditioned Conjugate Gradient solver. This solution 

technique is known to have a very high parallelization potential and there are many 

studies in literature that can be consulted [39, 40].  
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