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ABSTRACT

DETERMINATION OF STRESS INTENSITY FACTORS IN CRACKED PANELS
REINFORCED WITH RIVETED STIFFENERS

SAYAR, M. Burak

M.Sc., Department of Aerospace Engineering

Supervisor : Prof. Dr. Altan KAYRAN

Co-Supervisor : Prof. Dr. Rıza GÜRBÜZ

February 2012, 131 pages

This thesis presents a study about the determination of the stress intensity factors in cracked

sheets with riveted stiffeners. Stress intensity factors are determined with both analytical

method and finite element method for different combination of rivet/stringer spacing and

stringer to sheet stiffness ratio. Analytical part of the thesis is a replication of the original

study of Poe which assumes rigid rivet connections with no stringer offset. In the analytical

part, the whole systems of equations of Poe are re-derived, and it is shown that there are two

typographical errors in the expressions for the calculation of the influence coefficients of the

cracked sheet and the stringer. Major objective of the analytical part is to develop a computer

code which calculates the variation of the normalized stress intensity factor with the crack

length for any combination of rivet/stringer spacing and stringer to sheet stiffness ratio. Ana-

lytical part of the study also covers the effect of broken stiffener on the stress intensity factor of

the cracked sheet. The stress intensity factors of stiffened cracked sheets are calculated by the

finite element method by incorporating fastener flexibility and stringer offset. Finite element

solutions are performed by Franc2D/L and Abaqus, and comparisons are made. The effect

of geometry, fastener flexibility, and stringer offset on the stress intensity factors are studied

by presenting normalized stress intensity factor versus crack length curves. Finally, as a case
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study a sample damage tolerant stiffened panel is designed according to FAR 25 safety crite-

ria. Experiments are performed for determining mechanical and crack growth properties of

Al 2124 which is used as the material in the case study. Present study showed that the most

significant effect on the stress intensity factor is seen when stringer-cracked sheet offset is

included in the analysis model.

Keywords: stiffened cracked sheets, fastened stringers, stress intensity factor, finite element

method
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ÖZ

GÜÇLENDİRİLMİŞ PERÇİNLİ PLAKALARDA GERİLİM ŞİDDET KATSAYISININ
HESAPLANMASI

SAYAR, M. Burak

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Altan KAYRAN

Ortak Tez Yöneticisi : Prof. Dr. Rıza GÜRBÜZ

Şubat 2012, 131 sayfa

Bu tezde güçlendirilmiş panellerde çatlak ilerlemesi esnasında oluşan gerilim şiddet kat-

sayılarının hesaplanma yöntemleri ele alınmıştır. Gerilim şiddet katsayıları, değişen çatlak

boyu kirişler arasına uzaklık oranı ve çeşitli kiriş/çatlak levha sağlamlık oranları için anal-

itik ve numerik yöntemlerle hesaplanmıştır. Analitik hesaplamada Poe’nin yöntemi esas

alınmış sonsuz sağlamlıkta perçinler kullanılmıştır, ayrıca kirişler ile çatlak içeren levha aynı

düzlemde kabul edilmiştir. Analitik çalışmanın esasını oluşturan bütün denklemler yeniden

türetilmiş, katsayılar yeniden hesaplanmıştır. Buna ek olarak kırık kirişin altından ilerleyen

çatlak durumu için de katsayılar düzenlenmiş, ve çalışmaya dahil edilmiştir. Analitik çalışmanın

ana amacı normalize edilmiş gerilim şiddet katsayılarının değişik çatlak boyları ile değişimini,

çeşitli kiriş/levha sağlamlık oranları ve, perçinler arası uzaklık kirişler arası uzaklık oranları

için hesaplayan bilgisayar programını geliştirmektir. Analitik çalışmayı sonlu elemanlar anal-

izleri takip etmiş, analizler için Franc2D/L ve Abaqus kullanılmıştır. Çıkan sonuçlar birbirleri

ile ve analitik yöntemle karşılaştırılmıştır. Geometrik faktörler, perçin esnekliği, kalınlık of-

seti gibi birçok değişkenin çözümlere olan etkisi incelenmiş ve irdelenmiş, çatlak uzunluğu,

normalize edilmiş gerilim şiddet katsayısı grafikleri ile içerikte sunulmuştur. Son olarak, ger-

ilim şiddet katsayısı hesaplarının önemini ve işlevini vurgulamak için, FAR 25 kriterlerine
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uygun örnek hasara toleranslı güçlendirilmiş panel tasarlanmış, tasarımda alüminyum 2124

kullanılmıştır. Malzemenin mekanik ve çatlak hızı özellikleri ise deneyler ile elde edilmiştir.

Anahtar Kelimeler: güçlendirilmiş paneller, gerilim şiddet katsayısı, çatlak ilerlemesi, perçinli

plakalar, sonlu elemanlar yöntemi
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Rock’n Roll is forever to stay
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how to use the experimental set-up. Without his friendship, support and guidance it would be

very difficult to accomplish the experimental study.

I also want to thank to Asst. Prof. Dr. Demirkan ÇÖKER for being so nice and understanding
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Study

Fatigue is a progressive failure mechanism and material degradation due to the cyclic loads

which results in crack nucleation and propagation. Fatigue failures are very dangerous be-

cause it is unexpected and it happens suddenly which may lead to the failure of the complete

structure. Fatigue should be taken into consideration in order to avoid unexpected failure dur-

ing design. There are two design concepts for considering the fatigue, firstly the crack free

design in other words fatigue approach, secondly the damage tolerance approach.

The fatigue design philosophy is based on the assumption that a structure must remain crack-

free during its service life is called as Safe Life Design.

Damage Tolerance is another fatigue design philosophy based on the assumption that a struc-

ture must be safe even if it is damaged. Damage tolerance design requirements are specified

in MIL and JAR/FAR, and are generally satisfied by applying two concepts:

1. Fail-safe design criteria where unstable crack propagation is locally contained through

the use of multiple load paths or crack stoppers.

2. Slow crack growth design concept where flaws or defects are not allowed to attain the

size required for unstable crack propagation.

In 1988, Aloha Airlines experienced an explosive decompression at 24,000 feet altitude after

89,681 flight cycles which showed that fatigue analysis is necessary but not sufficient for

determining the life of the aircraft [1].
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Figure 1.1: Aloha Airlines Boeing 737-200 experienced explosive decompression after
89,681 flight cycles [2]

Therefore, new regulations are introduced to aircraft industry which is about Fatigue and

Damage Tolerant design of the aircraft. The philosophy under the damage tolerance concept is

that, every structure has a crack and it is progressively propagating, therefore for the structure

to sustain its integrity, it has to withstand the damage. In other words, structure must be safe

even if it is damaged. Moreover the structure must be designed such that crack growth must

be slow. The reason of desiring the slow crack growth is that, as the crack moves slower, the

flight cycles between inspection intervals which are determined considering the crack growth

rate, is allowed to be longer. The best design is the design for which the inspection intervals

are the longest, and the crack moves the slowest. Longer inspection intervals will reduce the

maintenance cost, and the risk of failing of panels significantly.

According to FAR 25.571 two bay criterion, the crack must be arrested in two frame bays

[3]. In other words, the crack should be detected, and precautions should be taken before the

crack passes through two bay. The time history information of the crack should be known to

design the panel properly according to the damage tolerance specifications.

In order to get the time history information, the geometry of the panel and the loading con-

dition should be considered together. Generally stiffened panels are sized according to the

cabin pressure loading [4] at least for the first stages of design, which causes the most critical

type of loading for the panels. The geometry effect is taken into account by the normalized

stress intensity factor, which is the stress intensity factor of the cracked stiffened panel divided

by the stress intensity factor of the cracked infinite sheet Equations (1.1a) and (1.1b). Stress

intensity factor is a powerful and important tool used in linear elastic fracture mechanics.

Stress intensity factor can be used for life prediction, but in the case of complex geometries
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Figure 1.2: Crack should be arrested before it reaches to the critical limit, FAR 25.571 Two
Bay Criteria [1]

and complex loading, determination of stress intensity factor is very difficult by analytical

methods, therefore the only way to determine the SIFs is by using the finite element method.

This thesis is dedicated to developing reliable methodologies for determining stress intensity

factors for cracked stiffened panels both analytical method and finite element method.

1.2 Background and Literature Survey

Fracture mechanics analysis of stiffened panels, that are typically used in aerospace structures,

is a subject that has been studied extensively in the literature. In this section some of these

studies are highlighted to give an insight to the reader on the background of the subject.

Bloom and Sanders [5] investigated the effect of a rivet-attached stringer on the thin elastic

cracked sheet, which is loaded at the infinity by a uniform tensile stress.

The original work, which is one of the key references on the calculation of the stress intensity

factor for cracked sheets with riveted stringers, is done by Poe [6]. The variation of the stress

intensity factor in the stiffened cracked sheets with the crack length for discrete rivet pitch,

stringer spacing and stringer to total panel stiffness ratios are considered in this report. In his

study, Poe presented an analytical formulation to determine the variation of the stress intensity

factor with the cracked length, for cracks extending equally on both sides of point midway

between two stringers, and crack extending equally on both sides of the stringer. On a follow-

up study, Poe presented results on the effect of broken stringers on the stress intensity factor

for a uniformly stiffened sheet containing a crack [7, 8]. According to Newman [9] the effect

of the holes on the SIF is negligible if the crack tip is more than one diameter away from the
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rivet hole. Hence, Poe neglected the rivet hole effect in the formulation.

Rooke and Cartwight [10] extended the compounding method for determining approximate

stress intensity factors to stiffened sheets with cracks. The compounding method is also in-

cluded in the ESDU (Engineering Sciences Data Unit) database [11]. ESDU is an engineer-

ing advisory organization based in the United Kingdom which provides validated engineering

analysis tools to engineers and teachers in the aerospace engineering, process engineering and

structural engineering fields.

In references [6, 7, 10, 11], rivet flexibility was not taken into account in determining the

stress intensity factor. Swift [12] included fastener flexibility and bending effect in the stress

intensity factor calculations, and showed that considerable error in the stress intensity fac-

tor can be produced by ignoring fastener flexibility and the stiffener offset. Swift alternatively

used the Westergaard formulation in Cracks Handbook [13] for four symmetrical point forces,

which is derived with the manipulation of the Westergaard formula [14]. Previous fundamen-

tal studies [6, 7, 10, 11, 12] on the fracture mechanics analysis of stiffened panels are still

referenced by the damage tolerance standards of aircraft companies such as Airbus.

Finite element and boundary element methods are also frequently used in the fracture analysis

of stiffened panels [15, 16, 17, 18]. MSC/NASTRAN developed a primitive crack tip element

CRAC2D and CRAC3D [19] which can be used in 2D and 3D problems for extracting the

SIF. The main problem with this element is about the user interface. The crack element has

to be created directly from the input file, and all the nodes around the crack should be tracked

very carefully. Moreover, the output produced by this element is very sensitive to mesh size,

therefore SIF extraction for a crack length is not practical, and tracking SIF for a propagating

crack is very painstaking.

Franc2D/L is a two dimensional finite element based program for simulating crack propa-

gation for planar structures [20]. Franc2D/L is a very simple and useful software which is

very popular among the engineers. It can simulate the planar structures for the plain stress

and the plain strain cases, also it has simple rivet and cohesive elements which only takes

the shear stiffness into account. The most beautiful thing about Franc2D/L is that it can

propagate the crack automatically. Therefore in a model, there is a chance to extract SIF for

different crack lengths. The only disadvantage of Franc2D/L in crack problems is that, it has

a very simple pre-processor CASCA, and there are many limitations in creating the model
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with CASCA. Moreover, Franc2D/L is capable of simulating limited number of layers [20].

Although there is some open source codes for translating some of the FEM input files such

as ANSYS, ABAQUS, PATRAN... etc [21], it is not very practical to do this. In addition,

the Kansas State University version of Franc2D/L[20] has some differences from the Cornell

University version [21]. Although Franc2D/L is a very powerful tool for simulating plane

problems, it can not be used for simulations in 3D space even if the plane structures are to be

modeled.

Franc3D can be used in 3D simulations. Especially for modeling the shell structures, STAGS

(STructural Analysis of General Shells) module may be used [22]. According to Seshadri

[15], there is a very good correlation between the test results and the STAGS analysis results

for cracked aluminum stiffened sheet.

ABAQUS is also a very powerful software for a crack problem. Simulating a stationary crack

in 2D or 3D structures is quite practical in Abaqus [23]. The main problem with simulating

the crack problems with FEM is that, the solution is dependent on the mesh size. Therefore

the crack tip should be meshed carefully. Moreover, for every single crack length a new

model has to be prepared, because ABAQUS does not have the ability to propagate the crack.

Although X-Fem module of the ABAQUS enables a crack growth independent of the mesh,

it has some limitations [24, 25, 26, 27, 28, 29] such that;

• Only the STATIC analysis procedure is allowed.

• Only linear continuum elements are allowed (CPE4, CPS4, C3D4, C3D8) with or with-

out reduced integration.

• No contour integrals for cracks (available in Abaqus 6.9-EF6 and later for linear brick

and tetrahedron elements).

• No fatigue crack growth.

• Domain must contain single or non-interacting cracks.

• Only one crack may exist within a particular element.

• A crack may not turn more than 90 degrees within a particular element.

• A crack may not branch.
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• Not available in Abaqus/Explicit.

In this thesis, for modeling cracks, ABAQUS static edge crack with contour integration mod-

ule is used [23]. For the pre-determined crack paths, it can be logical to use the fracture

interface elements with the virtual crack closure technique [17]. Some of the commercial

FEM software such as MSC/MARC, ANSYS, ABAQUS...etc, has the ability to simulate the

crack problem with the virtual crack closure technique.

Experimental methods can also be used for determining the stress intensity factor for complex

geometries. Nurse, Güngör and Peterson [30] demonstrated how transmission photo-elasticity

has been used to determine the stress intensity factor for stiffened plates in tension for cracks

that are developed at a center hole. In the experiment, stiffeners are attached to the plate at

a right angle. Because aluminum is an opaque material transmission photo-elasticity can not

be used. Digital image correlation technique may be an alternative for determining the stress

intensity factors for stiffened aluminum plates but unfortunately the experiment set up is not

available in the METU.

1.3 Flight Loads on the Fuselage Panels

During the flight, fuselage panels are exposed to complex loading, such as shear coming from

torsion, transverse shear, axial stresses and bending stresses as it is illustrated in Figure 1.3.

In such a complex geometry and complex loading, there is a need to do some simplifications.

An engineer has to decide how to design the panel so as to be safe side and think what to

consider in the calculations. Therefore in aircraft industry, it is a rule of thumb that in the

initial stages of the design, the fuselage is sized considering the cabin pressure which results

in a bi-axial loading, also this is the most critical load case for stiffened fuselage panels.

According to damage tolerance design philosophy, the most critical scenario has to be cho-

sen and aircraft should be designed such that; it must remain safe even if it experiences the

worst case load. As it is commonly known, the first mode, in other words the crack opening

mode, is the most critical fracture mode which is responsible for the propagation of the crack.

Therefore, KI loading is the most dangerous type of loading in aerospace structures. Sources

of force which can create the KI loading are the cabin pressure load for the fuselage, lift force

for wings, and other aerodynamic and inertial forces for the whole aircraft.
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Figure 1.3: Complex loading of fuselage panels [1]

Figure 1.4: Cabin pressure [1].

Due to the cabin pressure illustrated in Figure 1.4, the fuselage panels are loaded bi-axially

as it is shown in Creff:BiaxialLoading. Such a loading may lead to radial and circumferential

cracks in the skin of the aircraft.

Figure 1.5: Bi-axial loading of stiffened panels due to the cabin pressure[1]

1.4 Critical Crack Directions

Under the bi-axial loading, the most critical crack possibilities are shown in Figure 1.6, which

are longitudinal and circumferential cracks.
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Figure 1.6: Critical crack directions under bi-axial loading [1]

1.5 Influence of Geometry

The effect of the geometry of the panel is taken into account with normalized stress intensity

factor, which is the stress intensity of the stiffened panel divided by the stress intensity of the

cracked infinite sheet. In fracture mechanics it is known as the geometry factor β.

KN =
KI

K0
(1.1a)

KN =
βσ
√
πa

σ
√
πa
= β (1.1b)

1.6 Contribution of the Thesis to Literature

This thesis has the following contributions to the area of determining stress intensity factors

in the stiffened panels:

1. Sources of the typographical errors in the original study of Poe are shown and correc-

tions are made. A code is developed to calculate the variation of the normalized stress

intensity factor with respect to crack length for any combination of geometrical param-

eters and stringer to sheet stiffness ratio. Poe’s report gives the stress intensity curves

for certain discrete values of geometrical parameters such as stringer pitch, rivet pitch,
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stringer to sheet stiffness ratio etc [6, 7]. However, for the intermediate values of the

geometrical and material parameters one has to interpolate from the curves which are

available in Poe’s reports. Therefore, the geometrical and material parameters which

are outside the range studied by Poe, one needs to develop a computer program and

replicate the Poe’s study. One of the main contribution of the thesis is the development

of the code for the determination of stress intensity factors in cracked stiffened sheets.

With such a code stress intensity factor calculation can be performed for continuous

variation of the geometric and material parameters. Correction of the typographical

errors in the original study of Poe is another contribution which is linked to the an-

alytical part of the study. A code based on the equations given in Poe’s report gives

incorrect stress intensity factors, hence without the re-derivation of the complete sys-

tem of equations in Poe’s report, it could not have been possible to find the sources of

the typographical errors.

2. A robust finite element modeling methodology is developed with Abaqus and Franc2D/L

for extracting the stress intensity factors in the stiffened panels.

3. Comparative study of the parameters which influences the stress intensity factor cal-

culations in cracked sheets with riveted stringers is presented by Poe [6] for the intact

stiffeners. In this study, formulation modification recommended in the second article of

Poe [7] for the broken stiffener is included in the analytical model, parametric study is

done on the effect of geometric and material parameters and the design charts for the

broken stiffener model is presented, which are not available in the literature.

4. The most significant effect on the stress intensity factor is seen when stringer-cracked

sheet offset is included in the analysis model.

5. Analytical modeling is checked with finite element modeling techniques, and in gen-

eral, very good agreement is observed between the analytical, Franc2D/L and Abaqus

results for the various case studies that are conducted, therefore reliability of the ana-

lytical method is checked with finite element study.

6. Analytical tool is developed for the determination of the stress intensity factors for the

stiffened panels. This tool may be used by the industry after a couple of improvement

such as including the effect of stiffener geometry, offset effect, and the rivet flexibility

effect explained in detail respectively in Sections 3.1.2.1 and 3.2.1.2.
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1.7 Scope of the Thesis

To produce continuous data for the stress intensity factor, the formulation given in the report

has to be coded.

In the first part of the present study, it is shown that in the report prepared by Poe [6] there are

two typographical errors in the expressions for the calculation of the influence coefficients of

the cracked sheet and the stringer, respectively. In the thesis, the complete system of equations

in Poe’s report are re-derived and the sources of the typographical errors are identified. Ty-

pographical errors are then corrected and the selected stress intensity factor curves calculated

with the original and corrected expressions are compared.

The second part of the thesis is devoted to the finite element modeling and fracture mechanics

analysis of stiffened cracked sheets. Franc2D/L [20] and commercial FE software Abaqus

[23] are used to model stiffened cracked sheets to determine the variation of the stress intensity

factor with the crack length. In the first part of analysis, no rivet flexibility and stiffener offset

is considered and an appropriate model is generated to replicate the analytical solution of

Poe [6]. Second part of finite element based analysis is performed by incorporating fastener

flexibility and stringer offset.

The effect of more accurate modeling of the fastener/stiffener/cracked sheet combination on

the variation of the stress intensity factor with the crack length is studied. The differences

between the stress intensity factor values obtained by more accurate finite element modeling

of cracked sheets with riveted stringers and the analytically obtained stress intensity factor

values by Poe [6] are calculated, and conclusions are inferred with regard to the effect of

fastener flexibility and stringer offset on the stress intensity factor in stiffened cracked sheets.
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CHAPTER 2

ANALYTICAL STUDY

2.1 Formulation of the Problem

In this section, firstly the original analytical solution presented by Poe [6] is described briefly,

secondly the effect of broken stiffener on the stress intensity is taken into account by modify-

ing the equations which is explained in another article presented by Poe [7].

2.1.1 Stiffened panel with intact stiffeners

A stiffened sheet with equally spaced stringers which is exposed to uni-axial stress is illus-

trated in Figure 2.1. Assuming that the stiffened panel is a monolithic structure, it can be

concluded that the displacements in the stiffener and the crack sheet at the far field are equal

to each other. Hence sheet and the stiffener share the the stress proportional to their stiffness’s.

As it can be seen from the Figure 2.1a, there are two critical crack possibilities. These are

crack between two intact stiffeners, and crack under the intact stiffener.

According to Poe [6], at the rivet points, the displacements of the cracked sheet and the

stiffener must be the same. It should be noted that since the displacements at the far field

are the same, without the crack there are no rivet forces. However as the crack forms and

propagates, the sheet starts to transfer some of the loads to stringers, therefore forces occur

on the rivets due to the load transfer between cracked sheet and the stiffener. Poe presented

a method [6] for calculating the unknown rivet forces. In Poe’s work, by making use of the

Westergaard [13] or Muskehlishvili’s methods [31], stress intensity factor due to the rivet

forces can be determined.
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(a) Geometry description (b) Unknown rivet forces

Figure 2.1: Definition of the problem [6]

By superposing the stress intensity factor due to the uni-axial stress and rivet forces, the total

SIF in the crack sheet is determined.

The displacements at the rivet points on the stringer vs
i and the sheet vi should be equated in

order to solve for the unknown rivet forces Q j’s. This is the fundamental assumption which

is used by Poe in solving for the unknown rivet forces. Hence, in the calculation of the

displacements, rivet forces on the sheet and stringers are assumed to act at the mid-plane of

the sheet, and no offset is considered between the stringer and the sheet. Moreover, Poe’s

assumption also implies that rivets are rigid.

vi = −
∑

j

Ai jQ j + BiS (2.1a)

vs
i =

∑
j

As
i jQ j + Bs

i
Es

E
S (2.1b)

where Ai j, and As
i j are the influence coefficient for the sheet, and stiffener, respectively. In-

fluence coefficients represents the displacement at the i’th rivet due to the force at the j’th

rivet. E is the Young’s Modulus for the sheet, and Es denotes the Young’s Modulus for the

stiffeners. Bi and Bi are the influence coefficients for the sheet, and the stringer respectively

due to the uni-axial force S .

Equating Equation (2.1a) to Equation (2.1b) and rearranging the equations, the general equa-

tion for the unknown rivet forces in the stiffened plate is derived as it is given in Equation (2.2).

12



∑
j

(Ai j + As
i j)Q j − (Bi −

Es

E
Bs

i )S = 0 f or i = 1, 2, 3, ... (2.2)

Unknown rivet forces Q j are determined solving Equation (2.2). After obtaining the unknown

rivet forces, the stress intensity factors for the cracked stiffened sheet can be determined by uti-

lizing the Mushkelisvili’s equation given in Equation (2.3). The first term in Equation (2.3a)

accounts for the SIF due to axial load, and the second term accounts for the contribution of

the rivet forces to the stress intensity factor. The stress intensity factors for the symmetrical

set of rivet forces shown in Figure 2.2 is calculated from Equation (2.3b).

Figure 2.2: Symmetrical rivet forces acting on the cracked sheet [6]

K = S
√
πa +

∑
j

K jQ j (2.3a)

K =
√
πa
πt

[(3 + ν)Φ1 − (1 + ν)Φ2] (2.3b)

where,

Φ1 =
γ√

(x2
0 − y2

0 − a2)2 + 4x2
0y2

0

(2.3c)

Φ2 =

[
(x2

0 + a2)y2
0 + (x2

0 − a2)2
]
γ2 + x2

0y2
0(x2

0 + y2
0 − a2)

γ
[
(x2

0 − y2
0 − a2)2 + 4x2

0y2
0

]1.5 (2.3d)

γ =
1
√

2

[√
(x2

0 − y2
0 − a2)2 + 4x2

0y2
0 − (x2

0 − y2
0 − a2)

]0.5
(2.3e)
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It should be noted that K due to the symmetrical rivet forces can be calculated using Wester-

gaard Method [13] as an alternative solution, but analytical study in this thesis showed that

the Westergaard Method [13], and the Muskehlishvili’s Method [31] gives exactly the same

results.

2.1.2 Stiffened panel with a broken stiffener

In this part of the thesis, the effect of the broken stiffener on the SIF is investigated. The

formulation of Poe [6] is extended accounting for the broken stiffener at the center of the

crack [7]. Investigations showed that the broken stiffeners cause higher SIF than the cracked

sheet with intact stiffeners, especially when the crack tip is near a broken stiffener [7]. For

the broken stiffener case, only the displacement equation for the broken stiffener is changed,

whereas the equations for the rivet forces on the intact stiffeners remain the same. The solution

described in this section is for one broken stiffener, however the formulation can be easily

extended to cover the two or three broken stiffener cases.

It should be noted that one broken stiffener calculation is enough for satisfying the two bay

criteria.

Figure 2.3: Broken stiffener geometry description [7]

The cracked sheet geometry with a broken stiffener is illustrated in the Figure 2.3. Following

the recommended modifications as it is presented in the article of Poe [7], the equations for

the unknown rivet forces are obtained by modifying the equations in Poe [6].
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The displacements of the rivets for the broken stiffeners can be written in the form of Equa-

tion (2.4).

vbs
i = v1 + vbs

i (i = 1, 2, 3, ....n) (2.4)

where, n is the number of rivets on the broken stiffener, vbs
i are displacements of rivet points

in the broken stiffener, v1 is the displacement of the sheet at the first rivet, and vbs
i are dis-

placements of the i’th rivet relative to the first rivet.

The displacement vbs
i is expressed in terms of influence coefficients is given in Equation (2.5).

vbs
i =

n∑
j=2

(A
s
i jQ j) + B

s
i S Es/E (i = 1, 2, 3, ....n) (2.5)

A
s
i j and B

s
i are the influence coefficients for the relative displacements of the desired riveting

point with respect to the first rivet point. The derivation of the influence coefficients for the

relative displacements are explained in detail in the Section 2.2.5 and Section 2.2.6.

Equating the displacements of the sheet and the stringers at the rivet locations in the same

manner as for the intact stringers, and using Equation (2.4) for the broken stiffener, the general

equations for the unknown rivet forces becomes Equations (2.6) and (2.7).

n∑
j=2

(Ai j + A
s
i j)Q j +

N∑
j=n+1

(Ai j − A1 j)Q j

+
[
B

s
i Es/E − Bi + B1 − (Ai1 − A11)wtsEs/E

]
S = 0 i = 2, 3, 4...n (2.6)

n∑
j=2

(Ai j − A1 j)Q j +

N∑
j=n+1

(As
i j + Ai j)Q j

+
[
Bs

i Es/E − Bi − Ai1wtsEs/E
]

S = 0 i = n + 1, n + 2, ...N (2.7)
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It should be noted that for the force equilibrium to be satisfied, the Equation (2.8) should be

satisfied for the broken stiffener.

n∑
j=1

Q j + S Eswts/E = 0 (2.8)

In the article presented by Poe [7], the modifications are given for two broken stiffeners.

However in the Chapter 1 it is explained that for sizing of the aircraft it is critical to satisfy

the two bay criteria which brings the need of determining the stress intensity factors for only

one broken stiffener. Therefore, the modifications recommended in the Poe’s article [7] is

re-arranged for the one broken stiffener under the cracked sheet. The equations given in this

section and in Section 2.2.5 and Section 2.2.6 can be extended to any number of broken

stringers.

2.2 Influence Coefficients

In this section derivation of the influence coefficients of the stiffened cracked sheets with

intact and broken stiffeners is explained in detail.

2.2.1 Ai j Coefficient-Displacement at the ith Rivet on the Cracked Sheet due to the Unit

Force at the jth Rivet

As explained in Section 2.1.1, stress intensity factor for the infinite size cracked sheet, with

crack extending equally on both sides of point midway between two stringers, is determined

by superimposing the stress intensity factors calculated for the symmetrically applied rivet

forces, shown in part of c Figure 2.4, and for the applied far field stress. The displacements

for the cracked sheet with symmetrically applied forces can be obtained by superposing the

displacement for the point forces applied to the sheet which has no crack as shown in part a of

Figure 2.4, and displacement for the stress which has to be applied at the crack line due to the

point forces for the no-crack case. As shown in part c of Figure 2.4, since there is no traction

at the crack surface, the stress applied in part b of Figure 2.4 must be in equal magnitude and

distribution but in opposite direction to the stress due to symmetrically applied rivet forces

shown in part a of Figure 2.4.
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Figure 2.4: Superposition for Ai j Coefficient [6]

Part a of the solution starts with the Love solution for infinite sheets [32], which has a point

force at the origin of the infinite sheet.

Figure 2.5: Point force at the origin [6]

Firstly, as shown in Figure 2.5, displacements and stresses are obtained from the Love Solu-

tion for single point force as:

v = − (1 + ν)Q
4πtE

[
1
2

(3 − ν) ln (x2 + y2) + (1 + ν)
(

x2

x2 + y2

)]
(2.9)

σyy = −
(1 + ν)Q

4πt

(
y

x2 + y2

) (
3 + ν
1 + ν

− 2x2

x2 + y2

)
(2.10)

It is clearly seen from the Equation (2.9) that there is singularity at the origin. Therefore, in

order to get rid of the singularity, point force Q is assumed to be distributed over the rivet

diameter uniformly. As shown in Figure 2.6, replacing x by x − x in Equation (2.9) and
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integrating from − 1
2 d to 1

2 d, Equation (2.12) is obtained. Derivation of the Equation (2.9) and

Equation (2.10) is described respectively in Appendix A.3.1 and Appendix A.3.2.

Figure 2.6: Distributing the point rivet force over the rivet diameter

It should be noted since the rivet force Q is assumed to be distributed uniformly over the rivet

diameter, vertical displacement of the sheet is determined by obtaining the displacement due

to (Q/2d)dx and integrating with respect to x from x = −d/2 to x = d/2.

v = − (1 + ν)Q
8dπtE

∫ d/2

−d/2

1
2

(3 − ν) ln
(
(x − x)2 + y2

)
+ (1 + ν)

 (x − x)2

(x − x)2 + y2

 dx (2.11)

Integrating Equation (2.11), Equation (2.12) is obtained for a single point force which is

distributed over the diameter at the origin (0, 0).

v = − (1 + ν)(3 − ν)Q
16πtE

{(
2x
d
+ 1

)
ln

(2x
d
+ 1

)2

+
4y2

d2

−(
2x
d
− 1

)
ln

(2x
d
− 1

)2

+
4y2

d2

 + (
1 − ν
3 − ν

) (
8y
d

) arctan
y
d

x2

d2 +
y2

d2 − 1
4


}

(2.12)

In order to get solution for the case for four point forces shown in Figure 2.2, point forces must

be translated to (∓x0,∓y0) and displacements due four point forces must be superimposed.

To translate the point forces to (∓x0,∓y0) x should be replaced by x ∓ x0 and y should be

replaced by y ∓ y0. For instance, to translate the first point force from origin to (x0, y0), in
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Figure 2.7: Symmetrical four point forces acting on four quadrant

Equation (2.12) x should be replaced by x − x0 and y should be replaced by y − y0.

v = − (1 − ν)(3 − ν)Q
4πtE

{[
2(x − x0)

d
+ 1

]
ln

(2(x − x0)
d

+ 1
)2

+
4(y − y0)2

d2

−[
2(x − x0)

d
− 1

]
ln

(2(x − x0)
d

+ 1
)2

+
4(y − y0)2

d2

+
1 − ν
3 − ν

(
8(y − y0)

d

)
arctan

 y−y0
d

(x−x0)2

d2 +
(y−y0)2

d2 − 1
4


}

(2.13)

Finally, after the superposition of the displacements due to four point forces, displacement

field for part a of Figure 2.4 can be written as:

va =
(1 + ν)(3 − ν)Q

16πtE
Ω (2.14)

where, Ω is given in Equation (2.15).
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Ω = (α1 + 1) ln

 (α1 + 1)2 + α2
4

(α1 + 1)2 + α2
3

 − (α1 − 1) ln

 (α1 − 1)2 + α2
4

(α1 − 1)2 + α2
3


+ (α2 + 1) ln

 (α2 + 1)2 + α2
4

(α2 + 1)2 + α2
3

 − (α2 − 1) ln

 (α2 − 1)2 + α2
4

(α2 − 1)2 + α2
3


+ 4

(
1 − ν
3 − ν

) {
α4

arctan
 2α4

α2
1 + α

2
4 − 1

 + arctan
 2α4

α2
2 + α

2
4 − 1


− α3

arctan

 2α3

α2
1 + α

2
3 − 1

 + arctan

 2α3

α2
2 + α

2
3 − 1

} (2.15)

The α coefficients which are used in Equation (2.15) are given by:

α1 =
2(x − x0)

d

α2 =
2(x + x0)

d

α3 =
2(y − y0)

d

α4 =
2(y + y0)

d

At this point displacement, in the line of action of the point forces applied, due to four sym-

metrically placed point forces in an intact sheet is calculated. Following the same procedure

and Equation (2.10), stress in part a of Figure 2.4 can be written as in Equation (2.16). The

derivation of the Equation (2.14) is included in Appendix A.3.3.

σyy =
(1 + ν)Q
πtd

{
1
2

(
1 − ν
1 + ν

)  α4

α2
1 + α

2
4

+
α4

α2
2 + α

2
4

− α3

α2
1 + α

2
3

− α3

α2
2 + α

2
3


+ α4

 α4

α2
1 + α

2
4

2

+

 α4

α2
2 + α

2
4

2 − α3


 α3

α2
1 + α

2
3

2

+

 α3

α2
2 + α

2
3

2} (2.16)

Thus, from the full field stress field, the stresses on the y = 0, x = ζ line can be easily

determined for the intact sheet. This is the stress σyy that must be removed in part a of

Figure 2.4. Substituting y = 0, x = ζ in Equation (2.16), Equation (2.17) is obtained, the

derivation of the Equation (2.17) is explained in Appendix A.3.4 in detail.

σyy(ς, 0) =
(1 + ν)Qy0

2πt
Γ (2.17)
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where,

Γ =
1 − ν
1 + ν

 1
(ς − x0)2 + y2

0

+
1

(ς + x0)2 + y2
0

+
2y2

0︸︷︷︸
Corrected Exp.


 1
(ς − x0)2 + y2

0

2

+

 1
(ς + x0)2 + y2

0

2 (2.18)

As shown in the expression for ν, the first correction is on the exponent of in the second term

of ν. In the original report by Poe the exponent is 1 whereas the correct exponent should be 2.

It should be noted that without a complete re-derivation of the full set of equations, it would

be impossible to identify the error in the expression for ν. Derivation of the Ai j coefficient

with the sources of errors is explained in Appendix A.3 in detail.

The stress field around −a < x < a and y = 0 line due to the applied symmetrical forces

is known from Equation (2.17). Because the crack faces are traction free, the negative of

σyy should be applied to the crack line to get zero traction. Therefore, the displacement

due to negative σyy is determined and the resulting displacement is superimposed with the

displacement field determined for the non-cracked sheet, as shown in Figure 2.4.

The displacement field due to σyy in part b of Figure 2.4 is determined by making use of

the known Westergaard solution for the four point load on the crack surface [13] shown in

Figure 2.8.

Equation (2.19) gives the displacement due to four point forces applied on the crack surface

case as shown in Figure 2.8 [14].

v =
1
E

[
2ℑ(Z) − (1 + ν)yℜ(Z)

]
(2.19)

where z = x + ℑ(y) ,Z is the first integral of the Z, and Z is the complex function given by

Equation (2.20) [13].

Z =
2Pz

πt
(
z2 − ζ2)

√
a2 − ζ2

z2 − a2 (2.20)

Substituting Equation (2.20) into Equation (2.19), Equation (2.21) is derived.
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Figure 2.8: Westergaard solution for symmetrical four point forces applied on the crack sur-
face [6]

v =
P
πtE
Λ (2.21)

where,

Λ = ln

a2 − ζ2 + 2
√

a2 − ζ2
√

C1 +C2 + 2C2

a2 − ζ2 − 2
√

a2 − ζ2
√

C1 +C2 + 2C2

−
(1 + ν)y

√
a2 − ζ2

C2

 x
(
x2 + y2 − ζ2

) √
C2 −C1 − y

(
x2 + y2 + ζ2

) √
C1 +C2(

x2 − y2 − ζ2)2
+ 4x2y2

 (2.22)

where,

C1 =
1
2

(
a2 + y2 − x2

)
C2 =

√
C2

1 + x2y2

The displacement equation for four point load is derived, but for the real problem, the dis-

placement for the σyy is needed. Therefore, in Equation (2.21) point load is replaced by

tσyydϵ as shown in Figure 2.9 and by making use of the Westergaard solution for the four

point load applied on the crack surface, and using Equation (2.17), Figure 2.9 is derived.
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Figure 2.9: Distributing the point load so as to simulate the σyy on Figure 2.4

dP = tσyy(ζ, 0)dζ

vB =
1
πE

∫ a

0
σyy(ζ, 0)Λdζ

vB =
(1 + ν)Qy0

2π2tE

∫ a

0
ΛΓdζ (2.23)

By adding the displacements of the parts a and b in Figure 2.4, displacement of part c of

Figure 2.4 is obtained. Thus, for a cracked sheet with symmetrically applied point forces, the

displacement and the influence coefficients Ai j for unit load Q is given by Equation (2.25).

vB =
(1 + ν)Q
16πtE

{
(3 − ν)Ω + 8y0

π

∫ a

0
ΛΓdζ

}
(2.24)

Ai j =
(1 + ν)
16πtE

{
(3 − ν)Ω + 8y0

π

∫ a

0
ΛΓdζ

}
(2.25)

At this point, it should be noted that there is also an alternative way to determine the dis-

placements and stress intensity factor for the cracked sheet with symmetrically applied point

forces using the Equation (2.26), which is described in the article of Westergaard [14]. The

complex functions which are needed for the Westergaard formulation is provided from the

Cracks Handbook [13].

v =
1

2µ

{
κ + 1

2
ℑZ − yℜZ

}
(2.26)

where,
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κ =

 (3 − ν)/(1 + ν) Plane stress

3 − 4ν Plane strain

µ =
E

2(1 + ν)

Figure 2.10: Cracks Handbook Formulation for symmetrical four point forces acting on a
cracked sheet [13]

ZI(z) =
1
π

P
[
1 − αy0

∂

∂y0

] 

√

a2 − z2
0

z2 − z2
0

+

√
a2 − z2

0

z2 − z2
0

 1√
1 − (a/z)2

− q(z, z0, z0)

 (2.27a)

ZI(z) =
1
π

P
[
1 − αy0

∂

∂y0

] {
arctan

√
z2 − a2

a2 − z2
0

+ arctan

√
z2 − a2

a2 − z2
0

−
(
arctanℑ z

z0
− arctanℑ z

z0

)}
(2.27b)

KI =
1
√
πa

P
[
1 − αy0

∂

∂y0

]  a√
z2 − z2

0

+
a√

z2 − z2
0

 (2.27c)

q(z, z0, z0) =
1
ℑ

 z0

z2 − z2
0

− z0

z2 − z2
0

 (2.27d)
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where,

α =


1
2 (1 + ν) Plane stress
1
2 ( 1

1−ν ) Plane strain

It is clearly seen that, the Equations (2.27a) and (2.27b) are singular at the origin, therefore,

again the same procedure should be followed and point loads should be distributed over the

crack length.

2.2.2 As
i j Coefficient-Displacement at the ith Rivet on the Stiffener due to the Unit Force

at the jth Rivet

According to Poe [6], the stiffener with the finite width can be approximated by the infinite

sheet subjected to equal spaced loading Q as shown in Figure 2.11. The only boundary con-

dition that is not satisfied is σxx = 0 along x = ∓w/2.

Figure 2.11: Approximating a finite width stringer by an infinite size sheet [6]

The displacement at a rivet location y due to the rivet force Q applied at y0 is obtained by

superimposing Equation (2.14) for (∓nw,∓y0). However, it should be noted that since Equa-

tion (2.14) is valid for four equally spaced point forces, the term for x = 0 in the series

summation should be divided by two since there are only two point forces. Superimposing

Equation (2.14) for (∓nw,∓y0), after manipulation, yields Equation (2.28).

v =
(1 + ν)(3 − ν)Q

8πtsEs

∞∑
n=0

Ψn (2.28)
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where,

Ψ0 = ln

1 + α2
4

1 + α2
3

 + 2
(
1 − ν
3 − ν

) α4 arctan
 2α4

α2
4 − 1

 − α3 arctan

 2α3

α2
3 − 1

 (2.29)

Ψn =

(
1 − 2nw

d

)
ln


(
1 − 2nw

d

)2
+ α2

4(
1 − 2nw

d

)2
+ α2

3

 +
(
1 +

2nw
d

)
ln


(
1 + 2nw

d

)2
+ α2

4(
1 + 2nw

d

)2
+ α2

3


+

Corr. Exp.︷︸︸︷
4 ∗

(
1 − ν
3 − ν

) α4 arctan
2α4(

2nw
d

)2
+ α2

4 − 1
− α3 arctan

2α3(
2nw

d

)2
+ α2

3 − 1

 (2.30)

In Equation (2.30) the second major correction is shown. The 4 factor in Equation (2.30)

is missing in the report by Poe [6]. The derivation of the As
i j coefficient and the sources of

errors is explained in Appendix A.2 in detail. It should be noted that without the corrections

presented in this chapter, it is not possible to reproduce the normalized stress intensity versus

crack length curves that are given in the appendix of the report by Poe. It should also be noted

that with the corrected expressions stress intensity versus crack length data can be obtained

for any stiffened crack sheet configuration such as for any stringer pitch, rivet pitch, ratio of

total stringer stiffness to total panel stiffness.

2.2.3 Bi Coefficient-Displacement on the Cracked Sheet at the i’th Rivet due to the

Uni-axial Loading

In this section the displacement on the cracked sheet due to uni-axial loading is presented.

Figure 2.12 shows the cracked sheet subject to uni-axial loading. Bi coefficient is defined as

the displacement at the i’th rivet location due to unit uni-axial load S .

Using the Stanford complex function [33] and Westergaard method [14], the displacement

for the cracked sheet exposed to uni-axial loading can be derived. Equation (2.31) gives the

displacement in the cracked sheet due to a uni-axial stress S , and Equation (2.32) gives the

Bi coefficient which is displacement on the cracked sheet due to unit value of the uni-axial

stress.
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Figure 2.12: Cracked sheet subject to uni-axial loading [6]
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(2.32)

where ρ1, ρ2, Φ1, Φ2 are given by:

ρ1 =

√
(x − a)2 + y2 ϕ1 = arctan

( y
x − a

)
(2.33)

ρ2 =

√
(x + a)2 + y2 ϕ1 = arctan

( y
x + a

)
(2.34)

The derivation of the Bi influence coefficient is derived in Appendix A.1, using the West-

ergaard approach described in the article Bearing Pressures and Cracks [14] with Stanford

Function which is quoted from the ME-583 lecture notes [33].
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2.2.4 Bs
i Coefficient-Displacement on the Stiffener at the i’th Rivet due to the Uni-axial

Loading

The y displacement on the stiffeners due to applied uni-axial stress S ∗ Es/E as shown in

Figure 2.13 is given by the Equation (2.35).

Figure 2.13: Displacement of the stiffener under uni-axial loading [6]

v =
S y
E

(2.35)

The influence coefficients Bs
i are determined from Equation (2.35) by setting S ∗ Es/E = 1.

Bs
i =

y
Es

(2.36)

2.2.5 A
s
i j Coefficient-Displacement at the ith Rivet on the Broken Stiffener due to the

Unit Force at the jth Rivet

A
s
i j is the influence coefficient which defines the displacement at the i’th rivet location due

to a unit force applied at the j’th rivet relative to the first rivet. Figure 2.14 shows the su-

perposition applied to determine the influence coefficient A
s
i j. It is seen from the Figure 2.14

that, relative displacement in the broken stiffener can be approximated as the superposition of

the displacements in parts a and b of Figure 2.14. Thus, the influence coefficient A
s
i j can be

expressed with Equation (2.37).
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Figure 2.14: Superposition for A
s
i j Coefficient [7]

A
s
i j =

Figure 2.14 Part (b)︷       ︸︸       ︷
(As

i j − As
1 j) −

Figure 2.14 Part (a)︷       ︸︸       ︷
(As

i1 − As
11) (2.37)

2.2.6 B
s
i Coefficient

B
s
i is the influence coefficient which defines the displacement at the i’th rivet location, due

to the unit axial stress applied, relative to the first rivet. Figure 2.15 shows the superposition

applied to determine the influence coefficient B
s
i .

Figure 2.15: Superposition for B
s
i Coefficient [7]

From Figure 2.15 it is seen that relative displacement in the broken stiffener can be approx-

imated as the superposition of the displacements in parts a and b of Figure 2.15. Thus, the

influence coefficient B
s
i , due to unit axial stress, can be expressed as as in the Equation (2.38).

B
s
i =

Figure 2.15 Part (b)︷     ︸︸     ︷
(Bs

i − Bs
1) −

Figure 2.15 Part (a)︷                ︸︸                ︷
(wtsAs

i1 − wtsAs
11) (2.38)
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2.3 Results of the analytical solution

The effect of the two major corrections, described in the previous sections, is demonstrated in

Figure 2.16 which shows the variation of the total normalized stress intensity factor KN with

the ratio of the crack length a to the stringer pitch b. Stress intensity factors are calculated

for different rivet pitch p to stringer pitch b ratios and for different total stringer stiffness

wtsEs to total panel stiffness (wtsEs + btE) ratios denoted by µ. Calculations are performed

for a Poisson’s ratio of 0.3 for both stringer and the sheet which are assumed to be made of

Aluminum. In Figure 2.16, continuous curves give the correct KN values, and dotted curves

give the KN values which are calculated by the expressions given in the report by Poe [6].

Figure 2.16 clearly shows that the effect of corrections on the normalized stress intensity

factor is very significant. Thus, with the corrected expressions it is possible to produce stress

intensity factor curves for any combination of rivet pitch, stringer spacing and ratio of total

stringer stiffness to total panel stiffness.

Figure 2.16: Normalized stress intensity factor vs crack length, µ = 1

30



2.3.1 Variation of stress intensity factor for different crack configurations

In this section, variation of normalized stress intensity factor with the cracked length is pre-

sented for different stiffened cracked sheet configurations, and comparisons are made. Results

are presented in Figures 2.17 to 2.19 where the vertical red lines denote the stiffener positions,

and crack is assumed to exist at a/b = 0.

The configuration one, as shown in Figure 2.17 is the central crack configuration which has

an origin at a/b = 0 in between the two intact stiffeners. In real engineering applications,

although this case is not the most critical, it is still referenced in the technical notes of Airbus

Company.

Figure 2.17: Normalized stress intensity factor for the crack between two intact stiffeners,
µ = 0.5, d/p = 0.25

The configuration two as shown in Figure 2.18 is the central crack configuration where the

crack originates under the intact stiffener. In this configuration, although the sheet under the

stiffener is cracked, it is assumed the stiffener remains intact during the crack growth. Again,

in real engineering applications this case is not the most critical case.
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Figure 2.18: Normalized stress intensity factor for the crack under intact stiffener, µ = 0.5,
d/p = 0.25

Figure 2.19: Normalized stress intensity factor for the crack under broken stiffener, µ = 0.5,
d/p = 0.25
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The configuration three as illustrated in Figure 2.19 is the most critical case for the stiffened

panels for the single crack case. This case corresponds to the crack under the broken stiffener.

This is the most critical case, because when the stiffener is broken there is no structure to

support the sheet anymore. Moreover, stiffener also forces the crack to propagate, and as a re-

sult of this the crack growth speed increases considerably. In the inspection and maintenance,

some of the aircraft companies treats the crack under intact stiffener case as the crack under

broken stiffener, because this is the most critical scenario for the stiffened panels. It should

also be noted that sometimes inspection of the stiffener under the sheet can be hard

Figures 2.17 to 2.19 give the variation of the normalized stress intensity factor with the ratio of

the crack length a to stringer pitch b for different rivet pitch p to stringer pitch b ratios. Stress

intensity factor curves are produced by the analytical relations all of which are re-derived

and summarized in this chapter. For the three crack configurations given in Figures 2.17

to 2.19, the total stringer stiffness (wtsEs) to total panel stiffness (wtsEs + btE) ratio, which

is denoted by µ is taken as 0.5, and the ratio of the rivet diameter d to rivet pitch pis taken as

0.25. Calculations are performed for a Poisson’s ratio of 0.3 for both stringer and the sheet

which are assumed to be made of Aluminum.

2.3.2 Variation of KN with the normalized crack length a/b

Figures 2.17 to 2.19 show that normalized stress intensity factor decreases as the crack prop-

agates for all rivet and stringer configurations. It is also observed that when the crack tip

approaches to the stiffener KN starts to decrease, and when the crack tip passes the stiffener

the KN starts to increase. When the crack tip approaches to the stiffener, it gets closer to the

rivets, which exert a force to close the crack. Therefore, rivets close to the crack tip has a

stress relieving effect which results in decrease in KN .

2.3.3 The effect of the rivet pitch to stringer pitch p/b on KN

Looking at the Figures 2.17 to 2.19 one can deduce that, with increasing p/b, KN also in-

creases as expected. For large values of p/b, a steady decrease of KN is observed, whereas,

when the rivet pitch is decreased, KN starts to fluctuate, as it can be seen clearly for low val-

ues of p/b in Figures 2.17 to 2.19. For large values of rivet pitch to stringer pitch ratio, rivet
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forces cause a steady decrease in KN because crack tip is farther away from the closest rivet.

On the other hand, there is not a steady decrease of KN when p/b is decreased. For small val-

ues of p/b, KN starts to show wavy behavior, and KN increases when the crack moves away

from a stringer. This is because, since rivets are closer to the crack tip, rivet forces are more

influential on the crack tip stresses and stringer can support the sheet better. Therefore, when

the crack moves away from a stringer, normalized stress intensity factor increases because of

the increase in stress in the vicinity of the crack tip.

2.3.4 The effect of the Stiffness Ratio on KN

This section presents the stiffness ratio effect on the normalized stress intensity factor for all

configurations Figures 2.20 to 2.23 show the influence of the stiffness ratio on the normalized

stress intensity factor for configuration one, which is the central crack in between two intact

stiffener case. From Figures 2.20 to 2.23, it can be deduced that with increasing stiffness

ratio, in other words as the stiffener gets stiffer, the stress intensity factor tends to decrease, as

expected.

Figure 2.20 shows the case for which the stiffness ratio is zero which implies that there is no

stiffener, and stiffness ratio is the lowest. For this case, it is seen that for all p/b ratios, KN

asymptotically approaches its limit value of one. On the other hand, as shown in Figure 2.23,

for the largest stiffness ratio of one, KN values are the lowest among the configurations that

have the same p/b ratios.

The variation of the normalized stress intensity factor with the crack length for different stiff-

ness ratios are all compared in Figure 2.28 for a p/b ratio of 1/12. Figure 2.28 shows that as µ

approaches zero, which means there is no stiffener, KN approaches to its asymptotic value of

one. As µ approaches one, which means that stiffener is infinitely stiff, KN has the minimum

value as it is seen in Figure 2.28.

For configuration two, the behavior of the curves are the same as the ones in configuration

one. As the stiffness ratio increases, KN tends to decrease, and again the normalized stress

intensity factor approaches to the bounding values for for µ = 0 and µ = 1.
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Figure 2.20: Configuration one, µ = 0
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Figure 2.21: Configuration one, µ = 0.3
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Figure 2.22: Configuration one, µ = 0.5

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

K
N

a / b

1

2/3

1/3

1/6 

1/12

p/b

Figure 2.23: Configuration one, µ = 1
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Figure 2.24: Configuration three, µ = 0
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Figure 2.25: Configuration three, µ = 0.3
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Figure 2.26: Configuration three, µ = 0.5
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Figure 2.27: Configuration three, µ = 0.9
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Figure 2.28: Stiffness ratio comparison for configuration one, p/b = 1/12
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Figure 2.29: Stiffness ratio comparison for configuration two, p/b = 1/12
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Figure 2.30: Stiffness ratio comparison for configuration three, p/b = 1/12

For the broken stiffener configuration, Figures 2.24 to 2.27 and 2.30 show the variation of the

normalized stress intensity factor with the crack length for different stiffness ratios µ. Again

zero µ value corresponds to the no stiffener case which ultimately implies that normalized

stress intensity factor is unity along the crack front. For the broken stiffener case, as the

stiffener gets stiffer and when the crack tip is close to the broken stiffener, implying low a/B

ratio, the stress intensity factor becomes very high, as shown in Figure 2.27. The increase of

the normalized stress intensity factor near the broken stiffener is considered to be mainly due

to the fact stiffer stringers carry more load, and the broken stiffener tends to open up the crack.

It should be noted that in order for the far field strains to be same in the sheet and the stringers,

the stringers are loaded by S Es/E. Therefore, in the broken stiffener the rivet forces, which

become very high, tend to open up the crack in the sheet causing the stress intensity factor to

increase sharply near the broken stiffener. However, away from the broken stiffener the rivet

forces in the intact stiffeners act on the sheet such that they tend to close the crack. Since

the stiffer stringer is loaded more compared to the less stiff stringer, away from the broken

stiffener stress intensity factor becomes less for the sheet reinforced with stiffener stringers,

compared to the stress intensity factor for the sheet reinforced with less stiff stringers.
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2.3.5 The effect of the rivet diameter on KN

In the analytical study of Poe [6], rivet diameter enters into the formulation in the calculation

of the influence coefficient Ai j. During the derivation of the influence coefficient, the rivet

force is distributed uniformly over the rivet diameter d, and this is how the rivet diameter is

included in the analysis. In the thesis, the effect of the rivet diameter on the normalized stress

intensity factor is also studied. Results are presented for the central crack between the two

stiffener case (configuration 1).

Figures 2.31 and 2.32 show that with increasing rivet diameter, KN slightly decreases. It is

seen that for small rivet pitch to stringer pitch ratio (p/b), the effect of the rivet diameter on the

stress intensity factor is more influential near the stiffeners, and away from the stiffeners the

effect of the rivet diameter becomes less. However, for high p/b, the effect of rivet diameter

on the stress intensity factor is less influenced by the stiffener. For large values of p/b, rivet

forces cause a steady decrease in the stress intensity factor because crack tip is farther away

from the closest rivet, and the effect of the rivet diameter on the stress intensity factor is not

affected from the closeness of the crack to the stiffener.
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Figure 2.31: Comparison of rivet diameters, configuration one, µ = 0.3, p/b = 1
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Figure 2.32: Comparison of rivet diameters, configuration one, µ = 0.3, p/b = 1/12

42



CHAPTER 3

DETERMINATION OF THE STRESS INTENSITY FACTOR

BY THE FINITE ELEMENT METHOD

3.1 Determination of Stress Intensity Factors by Franc2D/L Analysis

Calculation of SIF in cracked stiffened sheets by the finite element method is first carried

out by Franc2D/L [20], and analytical solution of Poe is replicated. For this purpose, a very

wide sheet, containing many stiffeners, is modeled. Calculations are done for a stiffened sheet

with a crack extending equally on both sides of point midway between two stringers, which is

configuration one and the broken stiffener case, which is configuration three. Although SIF’s

are calculated for the crack propagating up to a/b ratio of 3, to eliminate the effect of the

boundary and to simulate an infinite size sheet, 25 stringers are created in the half symmetric

model.

Figure 3.1 shows a small portion of the finite element mesh with riveted stringers. Franc2D/L

simulates crack growth in layered structures but the total number of layers is limited with a

default value of ten. Because there is a need for high number of stringers in the half model,

in the current study a distinct layer allocation could not be made for each stringer. Therefore,

all stringers are included in a single layer, which has two distinct material zones denoted by

two and three in Figure 3.1. In Figure 3.1 part (b), zone two represents stringers which are

shown by the shaded regions, and zone three is a very weak material with a very low Young’s

modulus and a Poisson’s ratio of zero, which implies a region without any material. With

such a modeling technique, all the stringers are included in a single layer and the maximum

number of layer limitation of Franc2D/L is bypassed.
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3.1.1 Model Definition

3.1.1.1 Intact stiffener model

Figure 3.1 shows the finite element model for configuration one. As shown in Figure 3.1 part

(b), cracked sheet is modeled in layer 1 with a crack that is introduced at the symmetry plane,

and crack is allowed to propagate along the crack line shown in Figure 3.1 part (a). The two

layers, cracked sheet and stringers, are represented with separate meshes which overlap with

each other and layers are connected with rivet elements. In Franc2D/L, rivets are treated as

elastic shear springs, shown by triangles in Figure 3.1, which connect two layers at the nodes.

Figure 3.1: Finite element model of cracked sheet with riveted stringers (a) Layer 1: Cracked
sheet (b) Layer 2: with two distinct material zones; 2:Stringer material, 3:Weak material

Stress intensity factors are calculated by assigning different shear modulus to the rivet ele-

ment. To replicate the analytical solution of Poe, initial calculations are done for rigid con-

nection between the stringers and the cracked sheet at the rivet locations. For this purpose, a

very high shear modulus is assigned to the rivet element and SIFs are calculated, at incremen-

tal crack lengths, by the modified crack closure technique.

3.1.1.2 Broken stiffener model

A very simple modification is done for the broken stiffener case. As it is shown on Figure 3.2,

the neighboring elements to the crack on the first stiffener are modeled with very low stiffness

material. Thus, the first stiffener on the crack in the sheet behaves like a broken stiffener. In

the present study, only the stiffener at the symmetry plane is modeled as broken stiffener. The

number of broken stiffeners can be increased easily by following the same modeling approach.
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Rivet Locations

(a) Layer 1: Cracked sheet (b) Layer 2: Stiffeners, with two distinct material
zones; 2:Stringer material, 3:Weak material

Figure 3.2: Finite element model of the cracked sheet with broken stiffener

3.1.2 Analysis results of Franc2D/L for the intact and broken stiffener configurations

Figure 3.3 and Figure 3.4 show the KN versus crack length curves calculated analytically and

by the finite element method for total stringer stiffness to total panel stiffness ratios of 0.33 and

0.5 for configuration one. For this analysis the rivet diameter to rivet pitch ratio d/p is taken as

1/4, as in the Poe’s article. Very good agreement is seen for the KN curves between analytical

method and Franc2D/L. Franc2D/L solution gives slightly higher KN values, because in the

analytical model the rivet diameter is taken into account, however in Franc2D/L, rivets do not

have physical radius, they only have shear stiffness. In addition, Franc2D/L model is a finite

sized sheet, whereas analytical solution is valid for infinite size sheet.

Figures 3.5 and 3.6 show the normalized stress intensity factor versus crack length curves for

the broken stiffener case. It is seen that the analytical and the finite element method also give

very close results for the broken stiffener case. This study in a way verifies that the modifi-

cation that was made in [7] is quite reliable. It should be noted that the analytical solution

gives closer results with Franc2D/L for small rivet diameters. This is expected, because as it

is stated before, in the analytical solution rivet diameter is taken into consideration, whereas

in Franc2D/L rivets are assumed to exist at points with no physical radius. The effect of the

rivet diameter on KN discussed in detail in Section 3.2.1.1.
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Figure 3.3: Analytical Method vs Franc 2D/L, configuration one, µ = 0.33, d/p = 0.25
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Figure 3.4: Analytical Method vs Franc 2D/L, configuration one, µ = 0.5, d/p = 0.25
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Figure 3.5: Analytical Method vs Franc 2D/L, configuration three, µ = 0.33, d/p = 0.1875
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Figure 3.6: Analytical Method vs Franc 2D/L, configuration three, µ = 0.5, d/p = 0.1875
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3.1.2.1 The effect of rivet material

Normalized stress intensity factor versus crack length curves are also obtained for stiffened

cracked sheets which use aluminum and titanium rivets in stringer-sheet connections. Stringers

and the cracked sheet are assumed to be in the same plane, and Franc2D/L analysis are per-

formed for the calculation of KN values of stiffened cracked sheets with aluminum, titanium

and rigid rivets. KN versus crack length curves for the aluminum, titanium and rigid rivet

cases are compared in Figures 3.7 and 3.8 for rivet pitch to stringer pitch ratios respectively 1

and 0.25, for µ = 0.5. As expected, highest KN values are obtained for the stiffened cracked

sheet with aluminum rivet, which has the lowest shear modulus. Figures 3.7 and 3.8 show

the impact of using fasteners with low flexibility in reducing the SIF. For stiffened cracked

sheets with aluminum and titanium rivets, the absolute differences between KN values are in

the range of 0.02 − 0.04 over most of the crack length. However, when rigid rivet assumption

is made, as in Poe’s analytical solution, the reduction in SIF is considerably higher.
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Figure 3.7: Rivet material comparison, µ = 0.5, p/b = 1
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Figure 3.8: Rivet material comparison, µ = 0.5, p/b = 1/4

3.2 Determination of Stress Intensity Factors by Abaqus Analysis

The second part of the finite element based SIF calculations of stiffened cracked sheets is

performed by Abaqus [23] using the same model that is used in Franc2D/L analysis. Abaqus

finite element model of the cracked sheet with riveted stringers is illustrated in Figure 3.9.

Figure 3.9a shows the deformed cracked sheet under uniform tension which is applied as

shown in Figure 2.1, and Figure 3.9b shows the deformed finite element mesh on the crack

tip region.

(Avg: 75%)

SNEG, (fraction = −1.0)

S, Mises

+5.690e+00
+8.358e+01
+1.615e+02
+2.394e+02
+3.173e+02
+3.952e+02
+4.730e+02
+5.509e+02
+6.288e+02
+7.067e+02
+7.846e+02
+8.625e+02
+9.404e+02

Step: Step−1
Increment 1: Step Time = 1.000
Primary Var: S, Mises
Deformed Var: U Deformation Scale Factor: +6.893e+01

ODB: mu05_aovb30.odb Abaqus/Standard 6.10−2 Fri Mar 11 15:05:31 GTB Standart Saati 2011

X

Y

Z

STIFFENERS

(a) Deformed stiffened cracked sheet under uniform ten-
sion

(Avg: 75%)

SNEG, (fraction = −1.0)

S, Mises

+5.690e+00
+8.358e+01
+1.615e+02
+2.394e+02
+3.173e+02
+3.952e+02
+4.730e+02
+5.509e+02
+6.288e+02
+7.067e+02
+7.846e+02
+8.625e+02
+9.404e+02

Step: Step−1
Increment 1: Step Time = 1.000
Primary Var: S, Mises
Deformed Var: U Deformation Scale Factor: +6.893e+01

ODB: mu05_aovb30.odb Abaqus/Standard 6.10−2 Fri Mar 11 15:05:31 GTB Standart Saati 2011

X

Y

Z

(b) Focused mesh around the crack tip

Figure 3.9: Abaqus finite element model of the cracked sheet with riveted stringers
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Cracked sheet and the stringers are modeled with four node S4R shell elements, and point

based mesh independent fasteners are generated by the face to face attachment method. To

model the rigid riveted connection, rigid bushing type connector section is used, and for

flexible rivet connections, aluminum and titanium bushing connectors are defined and used

accordingly. Crack is defined by creating duplicate grids along the crack line, and focused

mesh is generated around the crack tip for obtaining better J integral results. Stress intensity

factors are calculated by the contour integration, and square root singularity option is selected

to perform LEFM based SIF calculations, which is explained in detail in [23]. Finite element

analysis is performed on the half symmetric model.

3.2.1 Analysis results of Abaqus

Figures 3.10 to 3.12 give the comparison of the stress intensity factor versus crack length

curves, which are calculated by Franc2D/L and Abaqus respectively for the rigid rivet, alu-

minum rivet and the titanium rivet cases, and no stringer-sheet offset is taken into account.Very

good agreement is observed between the results of Franc2D/L and Abaqus analysis.

Although the rivets are given the same shear rigidity, SIF’s predicted by Abaqus are slightly

higher than the Franc2D/L for the titanium rivets and slightly lover than the Franc2D/L for

the aluminum. This may be due to the formulation differences of the Abaqus and Franc2D

rivet elements. In the Abaqus, the rivets has to have a physical radius, and the flexural rigidity

and the shear rigidity should be defined for all three dimensions, but in the Franc 2D, simply

the nodes of the sheet and the stringer is tied, and this tie has only shear stiffness. It should

be noted that when the stringer-sheet offset is not modeled, the nodes on the stringer and the

sheet coincide, and rivets essentially behave like shear springs as is the case in Franc2D/L.

For the rivet pitch to stringer pitch ratio of 1 and µ = 0.33, Figure 3.13 compares the KN

values, calculated by Abaqus, for the rigid, aluminum and titanium rivets cases. Abaqus

results also show the impact of using fasteners with low flexibility in reducing the stress

intensity factor. It should be noted that when the stringer-sheet offset is not modeled, the

nodes on the stringer and the sheet coincide, and rivets essentially behave like shear springs

as is the case in Franc2D/L. Therefore, Franc2D/L and Abaqus results are very close to each

other.
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Figure 3.10: Stress intensity factor versus crack length for the rigid rivet case: Abaqus vs
Franc2D/L, µ = 0.33
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Figure 3.11: Stress intensity factor versus crack length for the aluminum rivet case: Abaqus
vs Franc2D/L, µ = 0.5
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Figure 3.12: Stress intensity factor versus crack length for the titanium rivet case: Abaqus vs
Franc2D/L, µ = 0.5
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Figure 3.13: Rivet material comparison with Abaqus, µ = 0.33, p/b = 1
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3.2.1.1 The effect of physical diameter of the rivet on the stress intensity factor

The effect of physical diameter of the rivet on KN is given in Figures 3.15 and 3.16, which

show respectively the results obtained analytically and by Abaqus for the rigid rivet case

with fixed rivet pitch p and p/b = 1. In Figures 3.15 and 3.16, both Analytical and Abaqus

results show that increase in the physical rivet diameter has a lowering effect on the stress

intensity factor. However, in the analytical solution if the rivet diameter is decreased too

much, truncation error becomes dominant in the series summation for Equation (2.25). It is

observed that Abaqus results are slightly higher than the results of the analytical solution. This

could be due to the fact that in the analytical solution, rivet forces are assumed to be uniformly

distributed at the y = 0 line along the diameter of the rivet as illustrated in Figure 3.14a, but

Abaqus distributes the rivet force to the circular stiffener area AR uniformly which can be seen

from the Figure 3.14b.

QAnalytic =

∫ d/2

−d/2

Q
d

dx QAbaqus =

∫
AR

Q
AR

dA (3.1)

(a) Uniformly distributed rivet
force over diameter line in Ana-
lytical Method

(b) Uniformly distributed rivet
force over the rivet C/S area in
Abaqus Model

Figure 3.14: The difference between Analytical and Abaqus rivet formulation

It is also noted that the finite sized sheet used in the FEM solution could also be another factor

for the slightly higher SIF’s calculated by Abaqus compared to the analytical solution.
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Figure 3.15: Comparison of the KN for the effect of rigid rivet diameter on the KN with
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Figure 3.16: Comparison of the KN for the effect of rigid rivet diameter on the KN with
Abaqus
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3.2.1.2 The effect of sheet-stiffener offset on the stress intensity factor

Figures 3.17, 3.18, 3.21 and 3.22 show the stiffened sheet configurations without and with

offset, respectively. The effect of stringer-sheet offset (o) on the normalized stress intensity

factors is shown in Figures 3.19 and 3.20 for the rigid and aluminum rivet cases, and for a

stringer offset (o) to stringer pitch (b) ratio of 0.25.

From Figure 3.20, it can be seen that stringer-sheet offset has a very significant effect on the

stress intensity factors because of the additional moment effect of the stringer loads on the

cracked sheet, and stress intensity factor increases significantly when stringer-sheet offset is

included.

It is also observed from the Figures 3.21 and 3.22 that when flexible rivets are used, although

stress intensity factors increase compared to the rigid rivet case, the effect of stringer offset on

the stress intensity factors decreases slightly compared to rigid rivet case.

Figure 3.17: The cracked sheet and the stringers are in the same plane

Figure 3.18: The cracked sheet and the stringer has an offset (o) due their thicknesses
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Figure 3.19: Cracked sheet and the stiffener are in the mid-plane
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Figure 3.20: Cracked sheet and the stiffener are offsetted
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Figure 3.21: Comparison of the SIF’s for the offsetted stiffener with rigid rivets, µ = 0.33,
d/p = 0.25
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Figure 3.22: Comparison of the SIF’s for the offsetted stiffener with Aluminum rivets, µ =
0.33, d/p = 0.25
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CHAPTER 4

LIFE PREDICTION OF A STIFFENED PANEL

4.1 Introduction

In this chapter a sample life calculation of a fuselage panel with a broken stiffener is demon-

strated for a cargo airplane. The aim of this study is to emphasize the importance of the

determination of the stress intensity factors for obtaining the time history evolution of cracks,

and designing the structure accordingly to prevent sudden failure. It should be noted that since

it is very difficult to find all of the technical specifications and dimensions of the airplanes,

reasonable specifications and dimensions are assigned to get a reasonable life for a generic

fuselage panel. As it is explained in Section 1.3, the airplane is exposed to internal pressure

loading due to the pressure difference in very high altitudes, therefore the structure of the

airplane should be strong enough to withstand that internal pressure loading, in other words

the structure should be designed such that there must not be a static failure at a limit load-

ing. Moreover, the airplane should be damage tolerant such that, there must not be a sudden

detrimental failure due to the fatigue.

4.1.1 Technical Specifications and Geometry of the Aircraft

In the life prediction demonstration of the stiffened panel, A-400M military cargo airplane is

chosen as the aircraft to be investigated. Available technical specifications and dimensions

such as service ceiling and fuselage diameter are taken from Wikipedia and A-400M official

website [34, 35], and those properties, which are not available, are only reasonable guesses.

Since the main aim of this section is to demonstrate the methodology of life prediction, it is

deemed that using the exact geometric properties of the stiffened panel of the aircraft is not
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necessary. Table 4.1 summarizes the technical specifications and geometry of the airplane

which are made up except the service ceiling for this sample life prediction analysis. More-

over, frame and stringer cross sectional dimensions are not given in any sources, therefore

reasonable values are assigned to them as illustrated inFigure 4.1.

Table 4.1: Technical Specifications and Geometry of the Cargo A/C

Service Ceiling 11.300 [m]
Fuselage Diameter 5000 [mm]
Stringer Spacing 131 [mm]
Frame Spacing 500 [mm]
Rivet Diameter 2.5 [mm]
Rivet Spacing 25 [mm]

Skin Thickness 1 [mm]
Stringer C/S Area 110 [mm2]
Frame C/S Area 260 [mm2]

Skin Material Al 2124 T-851
Frame Material Al 2124 T-851

Stringer Material Al 2124 T851

 

10 mm 

25 mm 

10 mm 

5 mm 

2 mm 

5 mm 

(a) Stringer C/S geometry

 

20 mm 

30 mm 

20 mm 

2 mm 

5 mm 

5 mm 

(b) Frame C/S geometry

Figure 4.1: Cross sectional geometry of the stringer and frame
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4.2 Methodology of damage tolerance analysis

The loading and the geometry plays the two main parts of the damage tolerant analysis. In

damage tolerant calculations, besides the pressure loading, other loads due to the gusts, tur-

bulence, maneuvers, landing etc., are also taken into consideration. However, in this study to

keep the loading simple, only the internal pressure is taken into consideration. In the pressure

loading it is assumed that the airplane climbs to the service ceiling in all of the flights. For

this loading, pressure difference between the cabin and the atmosphere is maximum, and such

a pressure loading is conservative. Therefore, in a one ground-air-ground cycle (GAG), the

airplane experiences a pressure difference ∆P which is equal to Psealevel − P11.300m. This is a

repeating load that the aircraft experiences in every flight, therefore it may cause fatigue. It

should be noted that the stress range of the GAG cycle for the pressure structure of a pressur-

ized fuselage is probably the largest and most frequently applied single load cycle for most

transport aircraft.

4.2.1 Calculation of Loads

The aircraft chosen for the sample calculation has a service ceiling of 11.300 m altitude [34].

Therefore, pressure difference between the sea level and 11.300 m can be calculated using the

altitude calculator [36].

∆P = P(sealevel) − P(11.300m) (4.1)

where,

P(sealevel) = 101[kPa] (4.2)

P(11.300m) = 24[kPa] (4.3)

therefore, ∆P becomes,
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∆P = 0.077[MPa] (4.4)

In order to obtain close end condition, axial stress due to the internal pressure applied sepa-

rately, longitudinal stress for a cylinder can be written as in Equation (4.5),

Figure 4.2: Longitudinal stress in an cylindrical pressure vessel [37]

σL =
∆Pr
2t

(4.5)

where, ∆P is the difference between internal pressure, and the outside pressure, r is the cylin-

der radius, and t is the thickness of the cylinder. This case is valid for a cylinder without

stiffener. For a stiffened cylinder, assuming that the stiffened cylinder is monolithic, which

means that the displacements are equal at the riveting points, the longitudinal stress becomes:

σL =
πr2∆P

2πrt + AsNs
(4.6)

where, As is the stringer area and Ns is the number of stringers. Substituting the numerical

value of the pressure difference, σL becomes:

σL = 68.06MPa (4.7)
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4.2.2 Determination of the normalized stress intensity factor with FEM

4.2.2.1 Model Definition

Figure 4.3 represents the forward fuselage of the aircraft which contains 120 stringers and 6

frames. Because of the limited time and memory, symmetry boundary conditions used on a

smaller area which is highlighted red in Figure 4.3.

1

2

3

Figure 4.3: Forward center fuselage model

Figure 4.4 represents the local model of the crack area, which is the half of the highlighted

red area in the full fuselage model. The center crack is located in the symmetry plane which

is the Plane 1-2 in the FEM models. For clarifying the model construction better, details of

the local model is illustrated in Figure 4.5 in details.

Figures 4.5a to 4.5d show the position of the broken stringer, local model structure, the center

crack with broken stringer and the details of the crack respectively.
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Figure 4.4: Forward center fuselage, cracked stiffened panel local model

(a) Broken Stringer (b) Local Model

(c) Local Model Crack Definition (d) Local Model Crack Details

Figure 4.5: Details of the local model
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For stress intensity factor evaluations to be accurate, fine mesh is needed around the crack.

Focused mesh and the size of the mesh affect the precision of the stress intensity factor signif-

icantly. Therefore, fine mesh FEM model is used in the stress intensity factors calculations.

The boundary conditions and forces applied to the local modal in Figure 4.4, which represents

the full fuselage modal shown in Figure 4.3, are given in Tables 4.2 and 4.3.

Table 4.2: Boundary conditions on the local model shown in Figure 4.6

BC-Front Face U1 = − U2 = − U3 = 0 R1 = 0 R2 = 0 R3 = −
BC-Back Face U1 = − U2 = − U3 = − R1 = 0 R2 = 0 R3 = −
BC-Side Faces U1 = − U2 = 0 U3 = − R1 = 0 R2 = − R3 = 0

BC-Crack Surface U1 = − U2 = − U3 = − R1 = − R2 = − R3 = −
BC-Broken Stringer U1 = − U2 = − U3 = − R1 = − R2 = − R3 = −

In Table 4.2, “−” sign represents that the bounded nodes are free, and “0” sign represents that

the nodes are restricted.

The cylindrical reference coordinate system is located at the origin, and 1 represents the radial

direction, 2 represents tangential direction and 3 is the z direction.

Similarly, in Table 4.3 forces and moments in the same mutually perpendicular directions are

shown by the same variables U1, U2, U3 and R1, R2, R3.

Table 4.3: Applied forces on the local model shown in Figure 4.7

Axial Skin Stress U1 = 0 U2 = 0 U3 = 68.06MPa R1 = 0 R2 = 0 R3 = 0
Axial Stringer Stress U1 = 0 U2 = 0 U3 = 68.06MPa R1 = 0 R2 = 0 R3 = 0

Figures 4.6 and 4.7 respectively show the boundary conditions and the forces applied on the

local model to simulate the full fuselage model under internal pressure loading condition.
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(a) Side faces boundary conditions
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(b) Back face boundary conditions
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(c) Front face boundary conditions

Figure 4.6: Boundary conditions applied on the local model shown in Figure 4.4
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(a) Longitudinal stress applied on skin
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(b) Longitudinal stress applied on stringers
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(c) Internal pressure ∆P applied on skin

Figure 4.7: Applied forces on the local model shown in Figure 4.4
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Figures 4.8 and 4.9 show the half crack model. As shown in Figures 4.8 and 4.9, symme-

try boundary conditions are used instead of modeling the full structure because of the the

computation time and memory considerations. In Figures 4.8 and 4.9, the edge which is not

highlighted in red show the traction free edge which is corresponds to 90 mm long crack. On

the other hand, the highlighted edges in red are the restricted regions where the symmetry

boundary conditions are applied.

1

2

3

Figure 4.8: Position of the crack in the stiffened panel

Figure 4.9 shows the focused mesh is used for modeling the crack tip region. 3D contour

integral crack is defined at the crack tip with mid-side node parameter 0.25 option in order to

perform LEFM based SIF calculations.

X

Y

Z

A

B

C

Figure 4.9: Focused mesh around the crack tip; A-B-C nodes are on the crack tip element
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In the finite element model of the stiffened panel, stringers and the frames are modeled with

S4R linear shell elements and the skin is modeled with C3D20R quadratic brick elements

with reduced integration, which has 20 nodes.

In shell element meshes, mechanical loads which act normal to the shell surface and are

applied within the contour integral domain are not taken into account in the calculation of

the contour integral. For example, pressure loads are not considered because they act normal

to the shell surface. Therefore, solid elements has to be used if there is out of plane loading

within the contour integral region. In the Abaqus Lecture Notes [38] it is recommended

that if the response is membrane dominated, the C3D20R quadratic brick elements should

be preferred since these solid elements include out-of-plane loading contributions to contour

integrals.

For the stress intensity factor calculation, if only one element is used through the thickness,

the stress intensity factors which are calculated at nodes A, B and C are averaged as shown in

Equation (4.8). It should be noted that stress intensity factors have to be averaged, otherwise

the stress intensity factor calculation may exhibit significant path dependence [38].

Kaverage =
KA + 4KB + KC

6
(4.8)

In the finite element model of the stiffened panel, point based mesh independent fasteners are

generated by the face to face attachment method, and finite element analysis is performed on

the half symmetric model. To model the rigid riveted connection, rigid beam type connector

section is defined. Stress intensity factors are calculated by the contour integration, and square

root singularity option is selected to perform LEFM based SIF calculations.
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4.2.2.2 Analysis results

The deformed local mesh under the internal pressure loading with the closed end condition is

seen in Figure 4.10. The deformation behavior is quite different from the other cases where

plane sheets with stiffeners exposed to only uni-axial loading. Out of plane loading, which is

the pressure in this case, changes the deformation behavior significantly, and bulges form in

the skin in the regions between the stringers. In the literature this is called as bulging effect

[39].

Figure 4.10: Deformed symmetric half crack model containing 90 mm crack over broken
stiffener, the deformations are 4X exaggerated

So many assumptions has to be made in analytical modeling, such as calculating the effect

of the internal pressure analytically considering the structure is like a pressure vessel with

an open ends condition presented in Section 4.2.1. This assumption neglects the bulging of

the skin which is very influential on the KN factors. However including the internal pressure

and the curvature is not done yet in the analytical modeling. Therefore obtaining SIF’s with

including all these effects in FEM model is more feasible, there is no need for assumptions to

simplify, which is a beauty of finite element analysis. The only disadvantage of this approach

is; it needs a lot of time for developing the local FEM models, computation time, and mem-

ory. Therefore, at first stages of design for parametric studies, using analytical methods for

determining the stress intensity factors is more suitable but later FEM analysis should be used

for a safe design.
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For the stiffened curved fuselage panel under internal pressure with a closed end condition,

local finite element analysis results for the variation of the stress intensity factor with the

crack length is given on Figure 4.11. Figure 4.11 shows that unlike the analytical model or

the finite element model with stiffened plates without curvature, normalized stress intensity

factor for curved panels under internal pressure is fluctuating at a value of around 2.5. In

addition, while the crack approaches a stiffener, stress intensity factor does not decrease much,

as it is in the analysis done with analytical method and FEM method for the stiffened panels

without curvature and internal pressure. Therefore, neglecting the bulging effect and the panel

curvature, and determining the stress intensity factors only under uni-axial stress assumption

in the calculation of stress intensity factors do not give reasonable results.

Results for the local FEM model analysis is included in Figure 4.11 and Table 4.4. The stress

intensity factors calculated at the nodes A, B and C shown in Figure 4.9 is averaged using

Equation (4.8).
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Figure 4.11: Variation of the normalized stress intensity factor with the crack lengths for the
stiffened cargo A/C fuselage panels with a broken stiffener
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Table 4.4: Stress Intensity Factors [MPa
√

m] for various crack lengths [mm] for the curved
fuselage panes with a broken stiffener under internal pressure

Crack Length mm a/b KI(A) KI(B) KI(C) KAverage KN

5 0.04 1316 1438 1566 1439 2.67
10 0.08 1869 2007 2274 2029 2.66
20 0.15 2647 2728 3081 2773 2.57
30 0.23 3205 3259 3026 3211 2.43
40 0.31 3849 3727 3595 3725 2.44
50 0.38 4438 4160 3561 4107 2.41
60 0.46 4651 4562 4983 4647 2.49
70 0.54 5506 4958 4820 5026 2.49
80 0.62 5845 5327 5213 5394 2.50

100 0.77 6664 5992 6532 6194 2.57
110 0.85 6837 6228 6638 6398 2.53
120 0.92 6678 6261 7309 6505 2.46
130 1.00 5950 6154 6066 6105 2.22

The yellow line on Figure 4.13 obtained by the FEM analysis denotes the KN factors changing

with the crack length when the curved fuselage panel treated as a pressure vessel with closed

ends and the stress on the skin and the stringers are calculated analytically as it is described

in Section 4.2.1. This brings the assumption of neglecting the bulging effect and also only

uni-axial stress contributes to KN as in the case of analytical solution of flat stiffened panels,

the only difference is the panel is curved in this case. The dotted red lines denotes the FEM

results of the curved fuselage panel exposed to internal pressure described in details in Sec-

tion 4.2.2.1. It is clearly seen from the Figure 4.13 that the bulging of the skin increases the

KN values considerably. Figure 4.14 illustrates the variation of KN vs a/b curve for curved

fuselage panel and the flat fuselage panel as shown in Figure 4.12 under only uni-axial loading

condition.

(a) Curved FEM Model (b) Flat FEM Model

Figure 4.12: Finite element models of curved and flat fuselage panel with a broken stiffener
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Figure 4.13: Variation of the KN with the a/b for the stiffened fuselage panels with and
without internal pressure
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Figure 4.14: Variation of the KN with the a/b for the stiffened fuselage panels with and
without curvature under uni-axial stress
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4.2.3 Experimental Material Characterization

Although the material properties of the most of the aluminum alloys are available in the Mil-

itary Handbook [40], most of the aircraft firms such as Airbus, always do material character-

ization before using the material in building aircraft [1] because, the mechanical properties

of the same metal which are bought from different companies may not be the same. There-

fore, in this thesis experimental material characterization is done for determining mechanical

properties of the aluminum that is used in the design of sample stiffened panel.

For the life estimation of the sample stiffened panel, Al 2124 T-851 is used for both the skin

material of the curved fuselage panel, stringers and frames. In this section, material character-

ization of Al 2124 T-851 is performed. Al-2124 T-851 block, available in the Metallurgy and

Materials Engineering Laboratory is used for determining the mechanical properties, such as

yield stress, fracture toughness, hardness, crack propagation data.

Al 2124 alloy is an aluminum copper alloy which is mostly produced in the form of plates.

The only difference between 2024 and the 2124 is the improved production techniques used

for Al 2124, therefore it has higher purity. Moreover, the elongation in short-transverse di-

rection is also higher. As a result, Al 2124 has higher fracture toughness than Al 2024. This

alloy is mostly produced in the T-851 temper, which improves the stress corrosion cracking of

the material. Al 2124 also has very good mechanical properties at elevated temperatures just

like Al 2024. Most of the physical properties of Al 2124 are same as Al 2024, but fracture

properties Al 2124 is far better than that of Al 2024 [40].

4.2.3.1 Mechanical Properties

The mechanical and physical properties of the Al 2124 alloy with T 851 temper is available

in military handbook [40]. Although the properties of the material are known, industrial firms

always test them before using. Airbus company crack propagation tests showed that although

the mechanical properties of the Al-2024 remains the same, the crack propagation properties

are now worse than twenty years ago [1]. In this thesis study, some of the mechanical and

physical properties are obtained by experiments in order to verify the material data and prac-

tice fracture testing. In addition, some of the experimentally determined material properties

are also directly used in the life calculations. Room temperature plain strain fracture tough-
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ness of aluminum 2124-T851 material is presented in Table 4.5. Stress intensity factors are

given in British Unit System which is ksi
√

in .

Table 4.5: Room-Temperature Plane-Strain Fracture Toughness of Aluminum 2124-T851 [40]

Product Form Orientation Thickness Range KIC(max) KIC(avg) KIC(min)
Plate L-T 0.5 − 2.5 38 29 18
Plate T-L 0.5 − 2.0 32 25 19
Plate S-L 0.3 − 1.5 27 21 16

The mechanical and the physical properties of the Al 2124 T-851 alloy is presented in Fig-

ure 4.15. Some of the values are used from this source and some of them will be determined

from the experiments. The experiments are presented in detail in Appendix B.

Figure 4.15: Mechanical and Physical Properties of 2124-T851 Aluminum Alloy [40]
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4.2.4 Life assessment of the fuselage panel with a broken stiffener

Prediction of the life of a component under cyclic loading has been extensively studied in

the literature. Various models are proposed such as Paris [41], Forman [42], Pearson [43],

Walker [44], Davies and Federsen [45], Elber [46], Wheeler [47], Willenborg [48, 49, 50], and

NASGRO [51, 52, 53, 54] model, for simulating the fatigue crack growth. Until the 1970s the

crack growth models only considered the instantaneous events which are the loading during

a single cycle, but did not consider the previous crack growth history. Elber, Willenborg

and Wheeler considered the previous loading history which is called as crack retardation.

Moreover, Elber also considered the crack closure effect. Crack growth retardation models

take into account the variable amplitude loading. In this study, retardation models are not

used, since it is more conservative to ignore the existence of a reverse cyclic plastic zone in

fatigue crack growth calculations for critical aircraft components.

In this section the most commonly used three crack model is described which are the Paris

and Erdoğan model, Forman Model, and NASGRO Model. Neglecting the effect of retarda-

tion, the life of the stiffened panel will be calculated utilizing the Forman Model due to the

convenience of determining the constants with the experiments and the success in modeling

the secondary and tertiary region.

4.2.4.1 Paris and Erdoğan Model

Paris and Erdoğan introduced a power law relationship between the crack growth rate during

the experiment and the range of the stress intensity factor [41] as it is given in the Equa-

tion (4.9). This is the first, and the simplest model that can be used for crack growth calcula-

tions. The only disadvantage of using Paris and Erdoğan model is that it considers only the

linear region, namely the secondary region on the da/dN vs △K curve, but not the primary

and the tertiary region.

da
dN
= C (∆K)m (4.9)

where,
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∆K = Kmax − Kmin

K = βσ
√
πa (4.10)

and, a is the crack length, β is the geometry factor, in this thesis denoted as KN , σ is the

remote stress, C and m are the material constants for Paris Erdoğan Equation. The material

constants C and m can be determined following the methodology described for determining

the Paris and Erdoğan Model Constants described in Section 4.2.5.

4.2.4.2 Forman Model

Forman model is another power law relationship between the crack growth rate and the range

of stress intensity factors but in the Forman Model the effect of the stress ratio R, and the

critical fracture toughness of the material is taken into account. Determination of the Forman

Constants are described in Section 4.2.5. Forman Model is used in this study for the life

calculations due to the success at modeling the secondary and the tertiary region. It is also

convenient to obtain the Forman Constants from the crack growth rate experiments described

in Appendix B.4.

da
dN
=

C (∆K)m

(1 − R) KCR − ∆K
(4.11)

where,

R =
S min

S max

KCR is the critical fracture toughness of the material, S max and S min are the maximum and the

minimum remote stress in one cycle respectively, C and m are the Forman constants.
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4.2.4.3 Nasgro Model

The equation for crack growth used in NASGRO (Version 3.0) is developed by Forman and

Newman at NASA, De Koning at NLR, and Henriksen at ESA [53, 54, 55].

da
dN
= C

[(
1 − f
1 − R

)
∆K

]n
(
1 − ∆Kth

∆K

)p(
1 − Kmax

Kcr

)q (4.12)

C, n, p, and q are empirically derived, and f is:

f =
Kop

Kmax
=


max

(
R, A0 + A1R + A2R2 + A3R3

)
R ≥ 0

A0 + A1R −2 ≤ R < 0

A0 − 2A1 R ≤ −2

where, Ai coefficients are:

A0 =
(
0.825 − 0.34η + 0.05η2

) [
cos

(
π

2
S max/σ0

)] 1
η

A1 = (0.415 − 0.071η) S max/σ0

A2 = 1 − A0 − A1 − A3

A3 = 2A0 + A1 − 1

where,

η : Plane stress/plane strain constraint factor

S max/σ0 : The ratio of the maximum applied stress divided by the flow stress

Kop : Opening stress intensity factor, above which the crack is open

Kmax, Kmin : Maximum and minimum stress intensity factors in a cycle

KCR : Critical stress intensity for fracture

KC : Fracture toughness at plane stress condition

These values are provided by the NASGRO material database. Crack growth rate tests, which

are presented in Appendix B.4 showed that, the da/dN vs △K curve AFGROW proposing is

very close to the test results. Therefore there is no need to re-calculate the coefficients for the

NASGRO equation but they will be used as it is in this study.
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∆Kth = ∆K0

(
a

a + a0

) 1
2

/

(
1 − f

(1 − A0)(1 − R)

)1+CthR

(4.13)

where,

∆Kth : threshold stress intensity factor range

∆K0 : threshold stress intensity factor range at R = 0

a : crack length

a0 : intrinsic crack length ( 0.0015 in or 0.0000381 m)

Cth : threshold coefficient

∆K0 and Cth are also provided by the NASGRO material database.

NASGRO takes into account the thickness by Equation (4.14).

Kcr

KIc
= 1 + Bke

−
(
Ak

t
t0

)2

(4.14)

KIC : Plain strain fracture toughness

Ak : Fit parameter

Bk : Fit parameter

t : Thickness

t0 : Reference thickness (Plain strain condition)

4.2.5 Determination of Critical Fracture Toughness and Crack Constants

Using the crack growth rate data obtained from the experiment which is presented in Ap-

pendix B.4 in details, da/dN vs △K graph is prepared. It should be noted that da/dN vs △K

curve is drawn in logarithmic scale. As it can be seen from the Figure 4.16, crack propagation

may be divided into three phases, which are primary region, secondary region and tertiary

region. Paris and Erdoğan observed that the secondary region is almost linear [41]. Crack

spends most of the time in the secondary region, therefore many crack propagation models

uses the linearity of the secondary region such as the Paris and Erdoğan and Forman model

given by Equations (4.9) and (4.19).
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Figure 4.16: da/dN vs △K curve for Al 2124-T851

4.2.5.1 Determination of Critical Fracture Toughness

Determination of the plain strain fracture toughness of the Aluminum 2124-T851 for T-L

direction which is 24.3 MPa
√

m, is explained in detail in the experimental study in Appendix

B.3.

It is known that the critical fracture toughness is a function of the plain strain fracture tough-

ness and the thickness, therefore for 1 mm sheet, which is the thickness of the curved fuselage

panel, critical fracture toughness should be calculated.The formulation presented in NASGRO

4 [54] is utilized for determining the critical fracture toughness of the 1 mm sheet KCR.

KCR/KIC = 1 + Bke−(Akt/t0)2
(4.15)

t0 = 2.5
(
KIC/σys

)2
(4.16)

78



Ak, Bk : Fit parameters

σys : Yield stress

Ak and Bk parameters are recommended to be 1 in the NASGRO and AFGROW database,

therefore they are assumed to be 1. Using the Equation (4.15), and substituting the numerical

values, for 1 mm thickness, fracture toughness KCR comes out to be 48.1 Mpa
√

m.

4.2.5.2 Determination of the Paris and Erdoğan Constants

As it is described in section 4.2.4.1,the crack growth rate is related to the △K linearly propor-

tional in secondary region. The Paris and Erdoğan Constants which are C and m are the two

unknowns in the Equation (4.17). Picking two points from the da/dN vs △K graph which is

obtained from the experiment explained in detail in Appendix B.4, and solving the equations

simultaneously C and m can be obtained.

da
dN
= C (∆K)m (4.17)

Natural logarithm of the both side in Equation (4.17) is taken to get a linear equation which

is given in Equation (4.18).

ln
(

da
dN

)
= ln (C) + m ln (∆K) (4.18)

Substituting numerical values and solving the equations simultaneously, Paris and Erdoğan

Constants are obtained, and given in Table 4.6.

Table 4.6: Paris and Erdoğan Constants for Al 2124 T-851

C 1.31911 ∗ 10−11

m 3.61911

4.2.5.3 Determination of the Forman Constants

The Forman Equation is already presented in Section 4.2.4.2. Similar like the Paris and

Erdoğan Constants; Forman Constants, C and m will be obtained by picking up two points
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from the linear region on the da/dN vs △K graph obtained from the experiment which is

presented in Appendix B.4, and solving the Equation (4.19) simultaneously for these points.

Note that Equation (4.19) includes KCR and the R terms apart from the Paris and Erdoğan

Equation. Knowing that the crack growth rate tests discussed in Appendix B.4 are done

with R = 0, the only term to be calculated before obtaining the Forman Constants is KCR.

Determination of the KCR from the KIC is described in Section 4.2.5.1. Therefore, obtaining

the fracture toughness KIC and σys from the experiments which are respectively included in

Appendix B.2 and Appendix B.3, and utilizing the methodology described in Section 4.2.5.1,

the critical fracture toughness KCR can be obtained. The crack growth rate tests are done with

12.7 mm specimens, therefore KCR is calculated for t = 0.0127m, which is 24.6 MPa
√

m.

da
dN
=

C (∆K)m

(1 − R) KCR − ∆K
where, R =

S min

S max
(4.19)

t : Thickness.

KCR : Critical fracture toughness of the material at thickness t.

KIC : Plain strain fracture toughness.

S max, S min : The maximum and the minimum remote stress in one cycle respectively.

C, m : Material parameters known as Forman constants .

Natural logarithm of the both side in Equation (4.19) is taken to get a linear equation which

is given in Equation (4.20).

ln
(

da
dN

)
= ln C + m ln∆K − ln (KCR − ∆K) (4.20)

Performing the necessary manipulations, substituting numerical values and solving the equa-

tions simultaneously, Forman constants are obtained, and given in Table 4.7.

Table 4.7: Forman Constants for Al 2124 T-851

C 8.09735 ∗ 10−10

m 3.36876
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4.2.6 Life Calculation with AFGROW

Details of the crack growth calculations, and the results of the analysis are presented in this

section. Although it is almost impossible that the skin and the stringer contains a 1.27 mm

crack at the same time, in order to be on the conservative side, it is assumed that both sheet

and the stringer have an initial crack of 1.27 mm in length. The reason why the crack starts

with a 1.27 mm length is that, it is the smallest crack length that the NDT inspection can detect

during the maintenance periods.

The uni-axial loading of the fuselage panels, is caused by the ∆P loading with a closed end

condition, as it is mentioned in Section 4.2.1 results in 68 MPa constant cyclic loading with

the stress ratio R = 0 on the skin and the stringers, therefore knowing the stress spectrum and

the stress intensity factors for the specified geometry, fatigue life can be calculated.

The crack growth calculations are performed by the crack propagation program AFGROW

(Air Force Growth) which is a crack propagation prediction software enables to analyze fa-

tigue life of the metallic structures [56]. AFGROW is mostly used in Aerospace applications

for predicting the fatigue life of a component. The stress intensity factor library contains over

30 different simple but useful crack geometries. There are a lot of critical scenarios, which

may occur during the service life of the aircraft, and engineers have to predict the possible

critical scenario to prove that the A/C is still safe even if that critical scenario becomes reality.

In this sample calculation, the critical scenario chosen for the life calculation consists of two

stages.

The life prediction results presented in this section are obtained utilizing the Forman and

NASGRO Model as explained respectively in Sections 4.2.4.2 and 4.2.4.3, but the life predic-

tion methodology is described with presenting the detailed results of AFGROW utilizing the

Forman Equation. The results of the NASGRO Equation is also presented in this section.

Stage 1(a) : Two double cracks start from the skin and the stringer at the same time. Stage 1(a)

is illustrated in Figure 4.17. For the AFGROW life calculations for this stage, for both skin

and stringer, an application defined double through crack at a hole model, which is illustrated

in Figure 4.20a, is used. The crack propagation is done under 68 MPa uni-axial constant

cyclic loading, with Forman and NASGRO crack growth model with plain stress option.
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Figure 4.17: Stage 1(a): Double crack starts from a hole on the skin and the stringer at the
same time

Stage 1(b) : After the propagation of the cracks, one of the crack on the stringer, which is

close to the free end, completely breaks one side of the stringer with a brittle fracture as the

SIF reaches KC . From there on, crack on the stringer can be treated as an edge crack which

is shown on Figure 4.18. The new crack on the stringer is modeled with a application defined

edge through crack as shown in Figure 4.20b. It should be noted that at this stage, the skin is

still modeled with application defined double through crack at a hole.

 

a2 

d 

a1 

a 

a = a1 + a2 

c c 

a 

Figure 4.18: Stage 1(b): Center crack on the stringer breaks through to the edge; crack on the
stringer becomes an edge crack
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Stage 2 : This stage starts when the edge through crack at Stage 1(b) reaches its final length

and the stringer is completely broken. Up to Stage 2 application defined models of AFGROW

are used with an assumption of constant cyclic stress on both skin and stringer. For these

cases, AFGROW has its own stress intensity history. However, after the stiffener failure, the

whole picture changes, and since the stiffener carries no more load, this situation affects the

the stress intensity factors tremendously. For this stage, using the application defined models

of the AFGROW just like Stage 1 is not suitable. Therefore, finite element model is developed

and the stress intensity factors are obtained for this geometry as explained in Section 4.2.2.

As illustrated on Figure 4.19 the center through crack model is used with SIF correction for

this stage.

 

d 

a a 

Figure 4.19: Stage 2: Stringer is completely broken, and the crack propagates on the skin

Figures 4.20a to 4.20c shows the built in AFGROW models which are used in crack growth

calculations.

(a) Double through crack with a hole, application de-
fined model

(b) Edge through crack model, application defined
model

(c) Center through crack, application defined model used
with KN correction

Figure 4.20: Applied forces on the local model shown in Figure 4.4
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4.3 Analysis Results of AFGROW

4.3.1 Stage 1

Stage 1 starts with an initial through crack, of length 1.27 mm, on both sides of skin and

stringer rivet hole at the same time. As it is noted before, crack length of 1.27 mm which is

the smallest crack length which can be detected with NDT.

Stage 1(a) is the stage that the symmetric double crack starts and propagates from the stringer

rivet hole as it is illustrated on Figure 4.17 until the crack reaches the closer end of the stringer.

In this stage when the crack length reaches a value of c f = 6.9 mm Net Section Yielding

failure occurs therefore it is assumed that the crack reaches tho the closer end. The results of

the AFGROW analysis are presented for Stage 1(a) in Table 4.8.

Table 4.8: Stage 1(a): Double through crack propagating on the stringer, Forman Eq.

we f f 20 mm

d 2.5 mm

t 2 mm

ci 1.27 mm

c f 6.9 mm

ai 2.52 mm

a f 8.15 mm

N 174800 Cycles

where,

we f f : Twice the distance from the rivet center line to the closer end of the stringer includ-

ing the stringer vertical flange length for Stage 1(a)

d : Rivet hole diameter

t : Thickness defined in Figures 4.20a to 4.20c

ci : Initial crack length at the beginning of the stage measured from the edge of the rivet

hole as shown in Figure 4.20a

c f : Final crack length at the end of the stage measured from the edge of the rivet hole

ai : Initial crack length at the beginning of the stage, measured from the center of the

rivet hole
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a f : Final crack length at the end of the stage, measured from the center of the rivet hole

N : Number of cycles

As explained before, Stage 1(a) starts with two double crack at the edge of the rivet diameter

on both skin and stringer. After the crack propagates, crack on the stringer, which is closer to

the free end of the stringer, reaches to the free end with a brittle fatigue fracture which is the

end of the Stage 1(a). Crack propagation results for the stringer for Stage 1(a) are presented

in Table 4.8.

Stage 1(b) starts after the one of the crack which is closer to the free end of the stringer reaches

to the free end. Therefore, in Stage 1(b), crack on the stringer can be treated as an edge

through crack. After a while of propagation of the crack, the stringer is completely broken

with a brittle fracture again with a brittle fracture due to the SIF reaching the KCR, which is

the end of the Stage 1(b). In AFGROW life calculations, application defined edge through

crack model is used, as illustrated in Figure 4.20b. Stage 1(a) ends with a final crack length of

a f = 8.15 mm and one side of the stringer including the vertical length is completely broken

which is 10 mm. Therefore, the initial edge crack length for the Stage 1(b) for the stringer is

ai = 18.15 m.

Table 4.9: Stage 1(b): Edge through crack propagating on the stringer, Forman Eq.

we f f 55 mm

d 2.50 mm

t 2 mm

ci 6.9 mm

c f -

ai 18.15 mm

a f 26.24 mm

N 1246 Cycles

Note that the effective width we f f defined here is the total length of the stringer including all

horizontal and vertical members. Because the double through crack turns to be a edge through

crack at the end of this stage c f is not applicable, and a f here is the length which is described

as a = a1 + a2 in Figure 4.18.

The AFGROW crack propagation analysis results of the Stage 1(a), and Stage 1(b) are pre-

sented respectively in Tables 4.8 and 4.9. It should be noted that at the same time, skin crack
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also propagates during Stages 1(a) and 1(b). Summing up the number of cycles for Stage 1(a)

and Stage 1(b), total number cycles for Stage 1 can be obtained.

NS tage1 = NS tage1(a) + NS tage1(b) (4.21)

NS tage1 = 176046 Cycles (4.22)

After obtaining the total number of cycles at Stage 1, and utilizing the application defined

AFGROW double through crack at a hole model, as illustrated in Figure 4.20a, the final crack

length on the skin at the end of Stage 1 is calculated propagating the initial crack of 1.27

mm cracks for 176046 cycles. Crack growth analysis results for the skin during Stage 1 is

presented in Table 4.10. It is seen that during Stage 1, the crack reaches to a length of 4.62

mm (a f = 4.62 mm) in 176046 cycles on the skin.

Table 4.10: Stage 1: Double through crack at the rivet hole propagating on the skin, Forman
Eq.

we f f 262 mm

d 2.50 mm

t 1 mm

ci 1.27 mm

c f 3.37 mm

ai 2.52 mm

a f 4.62 mm

N 176046 Cycles

4.3.2 Stage 2

Stage 2 starts right after the stiffener failure. In Stage 2, crack propagates very fast, because

the broken stiffener is no more carrying the load, moreover it causes a tremendous increase in

stress intensity factors.

In AFGROW model database, there is no built in model for simulating such a complicated

geometry. Therefore, stress intensity factors are obtained using finite element method, as

explained in Section 4.2.2, and they are used in the AFGROW center through crack model

shown in Figure 4.20c as a β correction factor, in this thesis defined as KN . Now the AFGROW
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is not calculating the stress intensity factors but directly uses the values obtained from the

finite element analysis.

AFGROW crack propagation results for Stage 2 are presented in Table 4.11. The crack prop-

agates from 4.62 mm to 25.8 mm in N = 4360 Cycles until the brittle fracture occurs due to

the stress intensity factor reaching to the critical value KCR. Analysis showed that in Stage 2,

crack propagates very fast comparing with the Stage 1.

Table 4.11: Stage 2: Center through crack propagates on the skin, Forman Eq.

we f f 262 mm

d 2.5 mm

t 1 mm

ci -

c f -

ai 4.62 mm

a f 25.75 mm

N 4360 Cycles

Summing up the number of cycles at Stage 1 and Stage 2, the fatigue life of the stiffened

panel is calculated as N = 180406 flight cycles. The crack propagation vs flight cycles graph

is given in Figure 4.21 which clearly shows that crack propagates very fast in Stage 2. The

life prediction result using the NASGRO equation with the constants available in database is

also presented in Figure 4.22.
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Figure 4.21: Crack growth time history for the skin, utilizing Forman Equation with experi-
mentally determined constants
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Figure 4.22: Crack growth time history for the skin, utilizing NASGRO Equation with using
the constants available in database
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4.3.3 Conclusion

The method of inspection, and the interval between inspections depends on damage tolerance

capability of the design. The best damage tolerant designs always provides long fatigue life

and slow crack growth. Slow crack growth enables the manufacturer to set longer inspection

intervals, because although there may be a crack propagating, it is known that the crack will

not get to the critical length rapidly. The method and the intervals of inspection has significant

effect on maintenance cost of the aircraft, such as the maintenance using visual inspection

is far cheaper than maintenance with NDT. Although NDT is more precise than the visual

inspection, it needs more money and time.

It is noted that since the crack propagates very fast in Stage 2, detecting the crack before it

gets critical needs considerable effort and money. Therefore, the design should be changed.

Because the crack rapidly speeds up in Stage 2, to catch the crack before it gets critical, the

inspection intervals should be close which will increase the maintenance cost.

Decreasing the stiffener thickness may be a solution to this problem, because as the stiffness

ratio increases, the portion of the load that the stiffener carries increases, and as discussed in

Section 2.3.5 stress intensity factor increases until a/b u 1 for broken stiffener configuration.

Note that remote stress on skin will increase, if the stiffness ratio is to be decreased.

Thicker skin and stringer may be used to reduce the remote stress. It should be noted that,

the normalized stress intensity factor for the 3D model of the fuselage structure is different

from the analytical solution and the Franc 2D/L solution. The bulging effect and the curvature

effect are the responsible for the crack to move very fast in Stage 2.
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CHAPTER 5

CONCLUSION

Comparative study of stress intensity factor calculations in cracked sheets with riveted stringers,

by the analytical and finite element method, is presented. Three main crack configurations are

studied. In the first two configurations, stiffeners are intact and crack in the sheet exists in be-

tween two intact stiffeners and underneath the intact stiffener. The third configuration studied

involves the crack in the sheet just under the broken stiffener. In the first part, details of the

analytical solution is given, and all the equations of the analytical study of Poe [6] are re-

derived. In the first part of the thesis, the sources of the typographical errors in the original

study of Poe [6] for the intact stiffener configurations, are shown and corrections are made.

In the second part of the thesis, a finite element modeling methodology is developed for the

infinite width stiffened panels, which can be easily adapted for the finite width stiffened pan-

els. Finite element based stress intensity factor calculations are performed by Franc2D/L and

Abaqus, and in general, very good agreement is observed between the analytical, Franc2D/L

and Abaqus results for the various case studies pertaining to the intact stiffener configura-

tions. For the broken stiffener case, analytical solution of stress intensity factors by Poe [7]

is checked against Franc2D/L only. Very good agreement is found between the analytical

solution of stress intensity factors for the broken stiffener case by Poe [7], and Franc2D/L re-

sults. Some main conclusions drawn from the analytical and finite element study of stiffened

cracked plates with intact and broken stiffeners are highlighted below.

• Increasing rivet flexibility increases the stress intensity factor. Therefore, assuming

rigid connector elements is not a conservative approach in fracture mechanics analysis

of riveted structures.
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• It is found that by increasing the rivet diameter, stress intensity factors decrease slightly.

This conclusion is verified by both analytical and finite element analysis.

• For large values of rivet pitch, rivet forces cause a steady decrease in the stress intensity

factor because crack tip is farther away from the closest rivet. On the other hand, for

small values of rivet pitch when the crack moves away from a stringer, stress intensity

factor increases. Similarly when the crack approaches to the stringer the stress intensity

factor decreases. This is because, since rivets are closer to the crack tip, rivet forces are

more influential on the crack tip stresses. Therefore, when the crack moves away from

a stringer, stress intensity factor increases because of increase of stress in the vicinity of

the crack and for a crack approaching the stiffener, the stress intensity factor decreases

due to the decreasing stress on the crack tip vicinity.

• The most significant effect on the stress intensity factor is seen when stringer-cracked

sheet offset is included in the analysis model. This is due to the additional moment

effect of the stringer loads on the cracked sheet, and stress intensity factors increase

significantly when stringer-sheet offset is included in the analysis.

• As the stiffener gets stiffer and when the crack tip is close to the broken stiffener, the

stress intensity factor becomes very high. Very much increase of the stress intensity

factors near the stiffer broken stiffener is considered to be mainly due to the fact that

the stiffer stringers carry more load, and the broken stiffener tends to open up the crack.

• When the crack moves away from the broken stiffener and approaches to the neighbor-

ing intact stiffeners, the rivet forces at the intact stiffeners act on the sheet such that they

tend to close the crack. Since the stiffer stringer is loaded more compared to the less

stiff stringer, away from the broken stiffener stress intensity factor becomes less for the

sheet reinforced with stiffener stringers, compared to the stress intensity factor for the

sheet reinforced with less stiff stringers.

In the last part of the thesis, a sample life calculation of the fuselage panels with a broken

stiffener is performed for a cargo airplane. The aim of the study was to highlight the impor-

tance of determination of the stress intensity factors for complex geometries for which stress

intensity factors are not available. For this purpose, a curved fuselage panel with frames and

stringers is analyzed by Abaqus. Stress intensity factor versus crack length data is obtained
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by the finite element analysis of the pressurized fuselage panel with a broken stiffener under

the cracked fuselage panel. It is seen that unlike the plat panels under uni-axial load, in the

pressurized fuselage panel, stress intensity factors along the crack length remains almost con-

stant and does not decrease as the crack approaches to an intact stinger. Bulging effect and

the curvature effect are considered to be the main reasons for this behavior. However, as the

crack approaches the broken stiffener, increase in the stress intensity factor is observed as it

is in the flat plate case under uni-axial loading. Life assessment of the fuselage panel with

a broken stiffener is performed in two stages. In Stage 1 the crack on the stringer is let to

grow until the stiffener is completely broken. Application defined crack models of AFGROW

are used to estimate the life until the stiffener is completely broken up. After the stiffener is

broken, stress intensity factor versus crack length data obtained by the finite element analysis

is employed in the NASGRO crack growth model to estimate the remaining life of the panel.

Based on the sample case study, it is seen that after the stiffener is broken, because of the

increase of the stress intensity factors for the cracked panel, crack propagates very fast in the

panel.

For the sample fuselage panel studied, it is concluded that if the stiffness of the broken stiffener

is decreased, stress intensity factors of the cracked panel decreases for the a/w is in between

nearly 0 and 1. This conclusion was verified both by the analytical study of Poe [7] and

finite element analysis by Franc2D/L. However, in real life applications it may not be always

possible to predict the location of the broken stiffener. Therefore, decreasing the remote stress

by increased skin and stringer thickness may also be a remedy to prevent the fast growth of

the crack in Stage 2.

As a final conclusion, the main contributions of the thesis are listed below.

• An analytical tool is developed for determining stress intensity factors of stiffened in-

finite size plates for any rivet pitch, stringer pitch, rivet diameter and total stringer

stiffness to total plate stiffness ratio. Therefore, for the intermediate geometrical values

of the stiffened plate, there is no need for interpolation to determine the stress intensity

factors from the charts presented in Poe’s reports [6], [7].

• Sources of the typographical errors in the original study of Poe [6] are shown and

corrections are made.
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• Finite element model is developed to simulate infinite size cracked stiffened sheets, and

stress intensity factor versus crack size data are obtained for different crack and geo-

metrical configurations. Finite element modeling technique can be easily implemented

to complex geometries, and the variation of the stress intensity factor with the crack

length can be determined for complex real life geometries.

• A sample fatigue life estimation example is demonstrated for a stiffened fuselage panel

with a broken stiffener. It is shown that for complex geometries, determination of stress

intensity factor can not be possible using tools as such as AFGROW. Therefore, deter-

mining the stress intensity factor data by the finite element analysis is very crucial in

assessing the structural integrity and also in calculating the fatigue life of critical struc-

tural components. The example on the fatigue life estimation of the fuselage panel is a

practical example, and all aircraft companies perform such calculations to estimate the

fatigue life of critical components. Thus, with this example the significance of finite

element analysis based stress intensity factor determination is emphasized and a life

estimation approach is demonstrated.

The following items are also listed as recommendations for future works:

• For the future work, the effect of different modeling alternatives of connector elements

and mesh independent fasteners on the stress intensity factors of stiffened cracked

sheets can be studied thoroughly. Finite element codes have many modeling alternatives

for the connector elements and the effect of using different modeling approaches of the

connector elements on the stress intensity factors is a worthwhile study to perform.

• In the present study, analytical and finite element based determination of stress intensity

factors for the broken stiffener case is performed for single broken stiffener case. As a

future work, the study can be expanded to multiple broken stiffener case.

• The curvature and the bulging effects on the stress intensity factors for the stiffened

fuselage panels may be investigated thoroughly.

• Franc 3D model can be developed for validating the 3D Abaqus model results, pre-

sented in the sample case, for determining the stress intensity factor for pressurized

fuselage panel.
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• In the present study, the effect of fastener pre-load is not included in the analysis. In-

corporating fastener pre-load on the stress intensity factor determination of stiffened

panels is considered to be an important future study to conduct. Studies can be con-

ducted to include the effect of fastener pre-load on the stress intensity factor analytically

and numerically through appropriate finite element modeling approaches, the effect of

fastener pre-load on the stress intensity factor will also be investigated.

• The effect of the stiffener geometry may be investigated thoroughly, and these effects

may be included in the analytical tool.
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[41] Paris, P. and Erdoğan, F., “A critical analysis of crack propagation laws,” Journal of
Basic Engineering, Vol. 85, No. 4, 1963, pp. 528–534.

[42] Forman, R., Kearney, V., and Engle, R., “Numerical Analysis of Crack Propagation
in Cyclic - Loaded Structures,” Journal of Basic Engineering, Vol. 89, No. 3, 1967,
pp. 459–464.

[43] Pearson, S., “The effect of mean stress on fatigue crack propagation in half-inch (12.7
mm) thick specimens of aluminium alloys of high and low fracture toughness,” Engi-
neering Fracture Mechanics, Vol. 4, No. 1, 1972, pp. 9–24.

[44] Walker, K., “The effect of stress ratio during crack propagation and fatigue for 2024-T3
and 7075-T6 aluminum,” Effects of environment and complex load history on fatigue
life, ASTM STP, Vol. 462, 1970, pp. 1–14.

[45] Davies, K. and Feddersen, C., “Inverse hyperbolic tangent model of fatigue crack
growth,” Journal of Aircraft, Vol. 12, 1975, pp. 943–947.

[46] Elber, W., “The significance of fatigue crack closure,” ASTM STP, Vol. 486, 1971,
pp. 230–242.

[47] Wheeler, O., “Spectrum loading and crack growth,” 1997.

97



[48] Jefferson, A., “Linear elastic fracture mechanics,” Noise and vibration, 1982, pp. 463.

[49] Broek, D., Elementary engineering fracture mechanics, Kluwer Academic Pub, 1986.

[50] Stephens, R. and Fuchs, H., Metal fatigue in engineering, Wiley-Interscience, 2001.

[51] De Koning, A., “A simple crack closure model for prediction of fatigue crack growth
rates under variable-amplitude loading,” ASTM STP, Vol. 743, 1981, pp. 63–85.

[52] Newman, J., “A crack opening stress equation for fatigue crack growth,” International
Journal of Fracture, Vol. 24, No. 4, 1984, pp. 131–135.

[53] Forman, R., Shivakumar, V., and Newman Jr, J., “Development of the NASA/FLAGRO
computer program for analysis of airframe structures,” Advanced Structural Integrity
Methods for Airframe Durability and Damage Tolerance, Part 2, Vol. 1, 1994, pp. 277–
288.

[54] Mettu, S., Shivakumar, V., Beck, J., Yeh, F., Williams, L., Forman, R., McMahon, J.,
and Newman, J., “NASGRO 3.0-A software for analyzing aging aircraft,” NASA CON-
FERENCE PUBLICATION, NASA, 1999, pp. 792–801.

[55] Harter, J., “AFGROW users guide and technical manual,” 2008.

[56] AFGROW, Air Force Growth, http://en.wikipedia.org/wiki/AFGROW, 21/02/2012.

[57] Crack plane orientation of the materials, from http://www.ndt-
ed.org/EducationResources/CommunityCollege/Materials/Mechanical/FractureToughness.htm,
21/02/2012.

[58] Leng, Y., Materials characterization: introduction to microscopic and spectroscopic
methods, Wiley, 2008.

[59] ASTM, E., “399-90. Annual book of ASTM standards,” American Society of Testing
and Materials, 2001.

[60] Standard, A., “E8/E8M, 2009. Standard test methods for tension testing of metallic ma-
terials. ASTM international, West Conshohocken PA; 2009. doi: 10.1520,” Tech. rep.,
E0008-E0008M-09. www.astm.org.

[61] ASTM, E., “647-08 Standard test method for measurement of fatigue crack growth
rates,” Annual Book of ASTM Standards.

[62] ZunZun.com Online Curve Fitting and Surface Fitting Web Site, http://zunzun.com//,
21/02/2012.

98



APPENDIX A

DERIVARION OF INFLUENCE COFFICIENTS

A.1 Derivation of Bi Coefficient

Derivation of the influence coefficient Bi, which is the displacement at the i’th rivet location

in the cracked sheet due to the uniform loading of the infinite sheet perpendicular to the

crack direction is given in this section. Figure A.1 shows the infinite size sheet under bi-axial

loading.

 

 

 

k.  k.  

Figure A.1: Infinite size cracked sheet under bi-axial loading

According to Stanford [33], the Airy stress function for the bi-axial loading condition shown

in Figure A.1 is given by Equation (A.1).

Φ = ℜZ + y
(
ℑZ + ℑY

)
(A.1)
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Z and Y are the Westergaard functions given by Equations (A.2a) and (A.2b), which is pro-

posed by Stanford for bi-axial loading case [33].

Z =
σz

√
z2 − a2

(A.2a)

Y = −1 − k
2
σ (A.2b)

For uni-axial load case studied in the thesis k = 0, and Z, Z, Z′ and Z′′ are defined as Equa-

tions (A.3) to (A.6).

Z =
∂Z
∂z

(A.3)

Z =
∂Z
∂z

(A.4)

Z′ =
∂Z
∂z

(A.5)

Z′′ =
∂Z′

∂z
(A.6)

Similar derivative expressions are valid for the Y function, with Z being substituted by Y in

the above relations namely Equations (A.3) to (A.6).

In-plane stresses are defined in terms of the Airy stress function as given in Equation (A.7c).

σxx =
∂2Φ

∂y2 (A.7a)

σyy =
∂2Φ

∂x2 (A.7b)

σxy = −
∂2Φ

∂x∂y
(A.7c)
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Now, the in-plane stresses are expressed in terms of Westergaard functions.

∂Φ

∂y
= ℑY + y

(ℜZ +ℜY
)

(A.8a)

σxx =
∂2Φ

∂y2 = 2ℜY +ℜZ − y
(ℑZ′ + ℑY ′

)
(A.8b)

∂Φ

∂x
= ℜZ + y

(ℑZ + ℑY
)

(A.9a)

σyy =
∂2Φ

∂x2 = ℜZ + y
(ℑZ′ + ℑY ′

)
(A.9b)

σxy = −y
(ℜZ′ +ℜY ′

) − ℑY (A.10)

Displacements are then determined by making use of the constitutive equations, given as

Equation (A.11).

εxx =
∂u
∂x
=

1
8µ

{
(κ + 1)σxx − (3 − κ)σyy

}
(A.11a)

εyy =
∂v
∂y
=

1
8µ

{
(κ + 1)σyy − (3 − κ)σxx

}
(A.11b)

εxy =
1

2µ
σxy (A.11c)

Since the influence coefficients are defined for the y direction displacement, which is denoted

by v, Equation (A.11b) must be integrated with respect to y. To integrate Equation (A.11b),

normal stresses in the x and y direction must be integrated with respect to y. The integral of

the normal stresses in the x and y direction is given by Equation (A.12).

∫
σyy.dy = 2ℑZ + ℑY − y

(ℜZ +ℜY
)

(A.12a)

∫
σxx.dy = ℑY + y

(ℜZ +ℜY
)

(A.12b)
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Inserting Equation (A.12) into Equation (A.11b), Equation (A.13) is obtained.

v =
1

8µ

{
(κ + 1)

[
2ℑZ + ℑY − y(ℜZ +ℜY)

]
− (3 − κ)

[
ℑY + y(ℜZ +ℜY)

]}
(A.13)

where,

µ =
E

2(1 + ν)
and κ =

3 − ν
1 + ν

(A.14)

Z =
σz

√
z2 − a2

(A.15a)

Z = σ
√

z2 − a2 (A.15b)

Y = −1 − k
2
σ (A.15c)

Y = − z
2
σ f or k = 0 (A.15d)

It should be noted that the coordinates of a point z in the cracked zone, as shown in Figure A.2,

can be written in polar coordinates as in Equation (A.16).

Figure A.2: Crack tip zone

z = a + r1eℑθ1 or z − a = r1eℑθ1 (A.16a)

z = −a + r2eℑθ2 or z + a = r2eℑθ2 (A.16b)

z = reℑθ (A.16c)

102



Substituting Equation (A.15) in Equation (A.13) and using Equation (A.16) in Equation (A.15),

displacement v given by Equation (A.17) is derived.

v =
σ

E

{
2
√

r1r2 sin
θ1 + θ2

2
− y − y(1 + ν)

√
r1r2

[
x cos

θ1 + θ2
2
+ y sin

θ1 + θ2
2
− √r1r2

]}
(A.17)

Influence coefficient Bi is determined from Equation (A.17) by substituting σ = 1.

A.2 Derivation of As
i j Coefficient

Using the equations of the configuration for four point forces as shown in Figure A.3, as

mentioned in Page 19, and manipulating it for the finite width single stiffener,one can get

the influence coefficient As
i j which gives the displacement at the i’th rivet location due to

a unit force at the j’th rivet location. Figure A.4 shows the approximation of a finite width

riveted stiffener by the infinite size riveted sheet. It should be noted that in this approximation,

the only boundary condition for the finite width stiffener that is not satisfied is σxx = 0

at x = ∓w/2. In order to carry out the calculation, the effect of the rivet forces, show in

Figure A.3, must be superimposed. However, in this case the contribution of the rivet forces

in the central stiffener must also be added to get the displacement equation for the single

stiffener.

Figure A.3: Symmetrical four point forces acting on four quadrant

The y displacement due to four rivet forces in an infinite size sheet, shown in Figure A.3 and

given by Equation (A.18), was derived in Chapter 2 as (Equation (2.14)).
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Figure A.4: Approximation of the finite width riveted stiffener by the infinite size riveted
sheet [6]

va =
(1 + ν)(3 − ν)Q

16πtE
Ω (A.18)

where Ω is given by

Ω = (α1 + 1) ln

 (α1 + 1)2 + α2
4

(α1 + 1)2 + α2
3

 − (α1 − 1) ln

 (α1 − 1)2 + α2
4

(α1 − 1)2 + α2
3


+ (α2 + 1) ln

 (α2 + 1)2 + α2
4

(α2 + 1)2 + α2
3

 − (α2 − 1) ln

 (α2 − 1)2 + α2
4

(α2 − 1)2 + α2
3


+ 4

(
1 − ν
3 − ν

) {
α4

arctan
 2α4

α2
1 + α

2
4 − 1

 + arctan
 2α4

α2
2 + α

2
4 − 1


− α3

arctan

 2α3

α2
1 + α

2
3 − 1

 + arctan

 2α3

α2
2 + α

2
3 − 1

} (A.19)

A.2.1 Derivation of Ψ0

To derive the displacement at the ith rivet location in a riveted stiffener, shown in Figure A.4,

because we are interested in the displacement of the stiffener which is at the origin of the

coordinate system, x values should be set to zero while superimposing the effects of the rivet

forces of the infinite size sheet shown in Figure A.3. Thus, in the series summation given by
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Equation (2.28) n = 0, x = 0, x0 = 0 and y and y0 are distinct y coordinates indicating the

locations where displacement is desired and where rivet force is applied, respectively.

Therefore α coefficients, defined in Chapter 2, become

α1 =
2(x − x0)

d
α1 = 0

α2 =
2(x + x0)

d
α2 = 0

α3 =
2(y − y0)

d
α3 = α3

α4 =
2(y + y0)

d
α4 = α4

Substituting the expression for αi to Equation (A.19), for n = 0, Ω0 becomes,

Ω0 = 4 ln

1 + α2
4

1 + α2
3

 + 8
(
1 − ν
3 − ν

) α4 arctan
 2α4

α2
4 − 1

 − α3 arctan

 2α3

α2
3 − 1

 (A.20)

Note that Ψ0 = Ω0/4, therefore;

Ψ0 = ln

1 + α2
4

1 + α2
3

 + 2
(
1 − ν
3 − ν

) α4 arctan
 2α4

α2
4 − 1

 − α3 arctan

 2α3

α2
3 − 1

 (A.21)

A.2.2 Derivation of Ψn

For Ωn, x0 = nw and x = 0 therefore the α coefficients become;

α1 = −
2nw

d

α2 =
2nw

d

α3 = α3

α4 = α4

Substituting α1 to α4 into Equation (A.18), and after manipulating the resulting expressions

one gets,
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Ψn =

(
1 − 2nw

d

)
ln


(
1 − 2nw

d

)2
+ α2

4(
1 − 2nw

d

)2
+ α2

3

 +
(
1 +

2nw
d

)
ln


(
1 + 2nw

d

)2
+ α2

4(
1 + 2nw

d

)2
+ α2

3


+ 4

(
1 − ν
3 − ν

) α4 arctan
2α4(

2nw
d

)2
+ α2

4 − 1
− α3 arctan

2α3(
2nw

d

)2
+ α2

3 − 1

 (A.22)

It should be noted that Ψn = Ωn/2.

A.3 Derivation of Ai j Coefficient

A.3.1 Derivation of Equation (2.9)

Derivation of Equation (2.9) starts from Equation (A.23) which is taken from [32]. Equa-

tion (A.23) gives the displacement of an infinite size sheet which is subjected to a concen-

trated force at the origin. Equation (A.23) is the displacement due to the concentrated force

of magnitude 2πAt applied in the -x direction.

u =
λ′ + 3µ

2µ(λ′ + 2µ)
A

ln
(
x2 + y2

)
2

+
λ′ + µ

2µ(λ′ + 2µ)
A

y2

x2 + y2 (A.23)

For plane stress, λ′, µ and λ are given by

λ′ =
2λµ
λ + 2µ

µ =
E

2(1 + ν)
λ =

Eν
(1 + ν)(1 − 2ν)

(A.24)

SubstitutingEquation (A.24) to the Equation (A.23), Equation (A.25) can be obtained.

u =
A(1 + ν)

2E

{
3 − ν

2
ln

(
x2 + y2

)
+ (ν + 1)

y2

x2 + y2

}
(A.25)

where for a plate of unit thickness,the concentrated force applied is given by Q = −2Aπ.

Therefore, in Equation (A.25) A can be taken as Q
−2π .

After performing the necessary simplifications, and substituting A into Equation (A.25), Equa-

tion (A.26) is derived.
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v = − (1 + ν)Q
4πtE

[
1
2

(3 − ν) ln (x2 + y2) + (1 + ν)
(

x2

x2 + y2

)]
(A.26)

It should be noted that the derivation of the v displacement is done by using the formula for

the u displacement. This is because, in the work of Love [32], concentrated force is applied

in x direction. In the present study, the point load is applied in y direction, therefore variables

are changed accordingly.

A.3.2 Derivation of Equation (2.10)

Derivation of Equation (2.10) starts from Equation (A.27) which is taken from Love [32].

Equation (A.27) gives the x direction stress in an infinite size sheet which is subjected to a

concentrated force at the origin. Equation (A.27) is the stress due to the concentrated force of

magnitude 2πAt applied in the -x direction.

σx = A
x

x2 + y2

{
2λ′ + 3µ
λ′ + 2µ

− 2(λ′ + µ)
λ′ + 2µ

y2

x2 + y2

}
(A.27)

Substituting Equation (A.24) into Equation (A.27), Equation (A.28) is obtained. Equation (A.28)

gives the stress in the x direction due to a concentrated force acting at the origin in the -x di-

rection in an infinite size plate. However, in the present study, the concentrated force acts

in the +y direction. Therefore, variables must be changed to obtain the expression for the y

direction stress σyy.

σx = A
x

x2 + y2

ν + 1
2

[
ν + 3
ν + 1

− 2y2

x2 + y2

]
(A.28)

After replacing x with y, and substituting A = − Q
2π in Equation (A.28), Equation (A.29),

which gives the y direction stress σyy is derived.

σyy = −
(1 + ν)Q

4πt

(
y

x2 + y2

) (
3 + ν
1 + ν

− 2x2

x2 + y2

)
(A.29)
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A.3.3 Derivation of Equation (2.14)

Equation (2.14) gives the displacement in part a of Figure 2.4. In the derivation process of

Equation (2.14), in order to get rid of the singularity at the origin, x should be replaced by

x − x as shown in Figure A.5, and Equation (A.26) should be integrated from − 1
2 d to 1

2 d.

Figure A.5: Distributing the point force to the diameter

Changing the variables as shown in Equation (A.30), the y direction displacement v for part

a of Figure 2.4 is obtained. Equation (A.31) gives the integral expression, when evaluated,

gives the displacement v for part a of Creff:aijcoefficient.

z = x − x dz = −dx (A.30)

v = − (1 + ν)Q
4πtEd

∫ z=x−d/2

z=x+d/2

[
1
2

(3 − ν) ln (z2 + y2) + (1 + ν)
(

z2

z2 + y2

)]
dz (A.31)

Integrating Equation (A.31), and doing the necessary simplifications Equation (A.33) is ob-

tained.
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v =
(1 + ν)Q
4πtEd

[(
−2z + 2y arctan

z
y
+

z ln
(
z2 + y2

))3 − ν
2
+ (1 + ν)

(
z − y arctan

z
y

)]x−d/2

x+d/2
(A.32)

v = − (1 + ν)(3 − ν)Q
16πtE

{(
2x
d
+ 1

)
ln

(2x
d
+ 1

)2

+
4y2

d2

 − (
2x
d
− 1

)
ln

(2x
d
− 1

)2

+
4y2

d2


+

8(1 − ν)y
d(3 − ν) arctan

 y
d

x2

d2 +
y2

d2 − 1
4


}
+

(1 + ν)(3 − ν)Q
16πtE

[
8(1 − ν)
d(3 − ν) +

8 ln2 (2/d)
d(3 − ν)

]
︸                                                ︷︷                                                ︸

Constant

(A.33)

It should be noted that in the article of Poe [6], the constant term in Equation (A.33) is not

shown. For the single concentrated load, the constant term has to exist in Equation (A.33).

However, in the derivation of the influence coefficient Ai j, the y direction displacement is ob-

tained for four concentrated forces which act on four quadrants, shown in part a of Figure 2.4,

and in symmetric locations with respect to the x and y axes. To calculate influence coefficient

Ai j, displacements due to four concentrated forces acting on four quadrants are superimposed.

During the summation of the displacements due to forces acting in four quadrants, the con-

stant terms cancel out each other. Therefore, the constant term in Equation (A.33) is not

shown by Poe [6].

A.3.4 Derivation of Equation (2.17)

Equation (A.29) gives the y direction stress for the configuration of a concentrated force acting

at the origin. In order to derive Equation (2.17), which gives the y direction stress for part B

of Figure 2.4,firstly the point forces should be translated to the (∓x0,∓y0) and stresses should

be added up. By re-arranging Equation (A.29), Equation (A.34) is obtained.

σyy = −
(1 + ν)Q

2πtd

3 + ν
1 + ν

2y
d(

2x
d

)2
+

( 2y
d

)2 − 2
(
2y
d

) 
(

2x
d

)2(
2x
d

)2
+

( 2y
d

)2


 (A.34)

For translating the point forces to get the four point force configuration of part a of Figure 2.4

x and y should be replaced by x− x0 and y− y0, x+ x0 and y− y0, x− x0 and y+ y0, x+ x0 and
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y + y0 in sequence, and the resulting stress expressions must be added up. Superimposing the

stress expressions due to four concentrated forces acting at four quadrants and re-arranging

the terms, Equation (A.35) is obtained.

σyy =
(1 + ν)Q

2πtd

{
3 + ν
1 + ν

(
α4

(α1)2 + (α4)2 +
α4

(α2)2 + (α4)2 −
α3

(α1)2 + (α3)2 −
α3

(α2)2 + (α3)2

)
+ 2α3

( α1

(α1)2 + (α3)2

)2

+

(
α2

(α2)2 + (α3)2

)2 − 2α4

( α2

(α2)2 + (α4)2

)2

+

(
α1

(α1)2 + (α4)2

)2}
(A.35)

Equation (A.35) is the full-field equation for the y direction stress which applies for part A

of Figure 2.4 To determine the y direction stress corresponding to part B of Figure 2.4, stress

σyy acting at y = 0 along the crack line must be determined. Therefore, by setting y = 0 and

x = ξ in Equation (A.35), Equation (A.36) is derived.

σyy(ξ, 0) =
(1 + ν)Q

2πt

{(
1 − ν
1 + ν

+ 2
)  y0

(ξ − x0)2 + y2
0

+
y0

(ξ + x0)2 + y2
0


− 2y0

 (ξ − x0)2(
(ξ − x0)2 + y2

0

)2 +
(ξ + x0)2(

(ξ + x0)2 + y2
0

)2


}

(A.36)

Finally, re-arranging Equation (A.36), Equation (A.37) is obtained. In Equation (A.37), the

corrected exponent 2 is also shown here. This is one of the typographical errors in the report

of Poe [6]. With such an error, it is impossible to replicate the stress intensity graphs presented

in the technical report of Poe, and it is also impossible to obtain the correct stress intensity

values, for any combination of geometrical and material properties of stiffened cracked sheets,

which are not available in report by Poe [6].

σyy(ξ, 0) =
(1 + ν)Qy0

2πt

{
1 − ν
1 + ν

 1
(ς − x0)2 + y2

0

+
1

(ς + x0)2 + y2
0


+

Corrected Exp.︷︸︸︷
2y2

0


 1

(ς − x0)2 + y2
0

2

+

 1
(ς + x0)2 + y2

0

2} (A.37)
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APPENDIX B

TESTING OF MATERIAL PROPERTIES

B.1 Micro-structure Analysis

Micro-structure analysis should be done to determine the orientation of the grains before

preparing the specimens which are used to determine the yield stress, fracture toughness and

da/dN vs △K curve. The mechanical properties of the aluminum sheet changes with the

direction, because during the production process the row aluminum blocks are deformed to

form the sheets, therefore the shape of the grains and their orientations are changing according

to this deformation process. The crack moves in different directions with a different speed

and the fracture toughness also changes with the crack direction. Therefore, there is a need to

specify the grain directions, or the rolling direction before the preparation of the specimens.

In the literature, the rolling direction is denoted by L in which the grains lie longitudinally,

S is the short transverse in the thickness direction of the plate, and T is the long transverse

which is the third direction which is perpendicular to L and T directions, as illustrated in

Figure B.1. Figure B.2 shows the convention of the directions of the crack planes. The first

letter designates the normal of the fracture plane, and the second letter designates the growing

direction of the crack. Therefore, six principal fracture plane directions exist which are L-T,

L-S, T-L, T-S, S-L, and S-T [57].

During the preparation of the fracture specimens, small cuts are taken from the Al-2124-T851

block. After sealing the small specimens which improves the ability to grab the specimen,

grinding operation is done to obtain a shiny surface. In order to see the grain boundaries, the

specimens are etched with Keller’s reagent which is a special solution for etching aluminum

and aluminum alloys [58].
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Figure B.1: Rolling direction and the grain directions

Figure B.2: Conventions for the crack planes for plates [59]
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Figure B.3 shows the grain boundaries and the rolling direction of the fracture specimens.

Because the specimens are taken from a thick block, the grain boundaries are not very thin, but

still they are elongated and oriented in the L direction. In order to be in the conservative side,

the test specimens are prepared in T-L direction, because it is the weakest crack propagation

direction of the aluminum sheet. Hence, the worst data is collected for the crack propagation

analysis of Al-2124-T851.

Figure B.3: Specimen inspection under the light microscope for the determination of the
rolling direction
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B.2 TENSION TEST

The tension test is done for obtaining the Elastic Modulus E, and the 0.2 % Offset yield stress

σys which are needed in life calculations and the validation calculations of the fracture tough-

ness test and the crack growth rate test respectively included in Appendices B.3 and B.4.

Instron Tensile Test Equipment which has built-in optical extensometer, available in the Met-

allurgical and Materials Engineering is utilized for the tension test. Figure B.4 shows the

stress strain data obtained from the tension test which is conducted according to the ASTM

E8/E8M-09 [60].
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Figure B.4: Stress vs Strain data for Aluminum 2124 T-851

The purple line in the Figure B.4 represents the tangent line to the linear region of the test

data, and the orange line is the 0.2 % Offset given to the purple line. The intersection of

the test data and the 0.2 % Offset line gives the 0.2 % yield stress of the Aluminum 2124-
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T851. Elastic Modulus is simply the slope of the tangent line to the stress strain curve given

in Figure B.4. The material properties obtained from the tension test is included in Table B.1.

The results are quite reasonable.

Table B.1: Tension Test Results

Tensile extension at Break [mm] 0.98155
Tensile strain at Break [mm/mm] 0.03534

Young’s Modulus [MPa] 68259.86328
Tensile stress at Tensile Strength [MPa] 485.55713

Tensile strain at Tensile Strength 3.67012
Tensile extension at Tensile Strength [mm] 1.01922

Tensile stress at Yield (Offset 0.2 %) [MPa] 450.96612
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B.3 FRACTURE TOUGHNESS TEST

Figure B.5 shows the experimental set-up which is used in both fracture toughness and crack

propagation testing. MTS Universal Testing Machine available in the Metallurgical and Ma-

terials Engineering Mechanical Testing Laboratory, METU is utilized for the experiments.

During the experiment the crack lengths are measured visually by means of the traveler mi-

croscope, as shown in Figure B.5b. A light bulb is used for illumination of the specimen.

CT SPECIMEN

TRAVELING MICROSCOPE

(a) MTS Universal Testing Machine (b) Travelling Microscope

(c) Position of the compact tension specimen (d) The compact tension specimen

Figure B.5: Experiment Equipment
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Compact tension(CT) specimen is preferred for both fracture toughness and crack propagation

tests, due to the available fixtures in the mechanical test laboratory. Moreover, the Compact

tension(CT) type specimens provides a longer distance which the crack can propagate. Di-

mensions of the CT specimen, which is used in the experiments for determination of fracture

toughness is given in Figure B.6. The fracture toughness and crack propagation specimens

are the same in all dimensions except for the thicknesses. The thicknesses of crack propaga-

tion specimens are chosen to be the half of the fracture toughness specimens, therefore for

the fracture toughness testing 25.4mm thickness is used but for the crack propagation tests

12.7mm thickness is chosen.

Figure B.6: CT test specimen geometry used in the experiment for crack propagation

The technical drawings of the specimens as presented in Figure B.6 is prepared in accordance

with the ASTM-E399 [59] standard, and the specimens are produced in the Metallurgy and
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Materials Engineering workshop. The geometry given in the standard is parametric as shown

on Figure B.7 which gives the chance to adjust the dimensions compatible with the fixtures.

The positions and the diameters of the holes on the specimens are critical, therefore the speci-

mens are drilled in the Mechanical Engineering Workshop with CNC machine with very close

tolerances. The fixtures on the MTS testing machine are tried to be aligned perfectly in line,

because any misalignment can cause the fatigue crack to propagate faster in one face that

ruins the symmetry. Instead of installing the displacement gauge the displacement are mea-

sured by the MTS system, therefore there is no need of producing Centik Detay part shown

on Figure B.7. As recommended in the standard, a saw-cut notch is preferred [59].

Figure B.7: CT test specimen geometry for crack propagation given in ASTM-E399 [59].

Details of the crack tips are presented in Figure B.8. The Chevron type notch is preferred due

to the easiness of pre-cracking and the convenience of the production in a way that the staff

in workshop is familiar with the Chevron.

According to the ASTM-E399 standard[59], the initial crack including the pre-crack has to

be formed with a length in a range of 0.45W < anotch+apre−crack < 0.55W. Therefore, given a

sinusoidal cyclic loading, fatigue crack is initiated on the notch, and the crack is propagated up

to reaching the terminal value of the pre-crack recommended as the 0.0125W in the ASTM-

E399 standard [59]. At the end of the pre-cracking the specimen was loaded up to the fracture

with a constant load rate of respectively 1KN/S ec and 0.5KN/S ec which are in the range that

standard [59] is proposing.
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Figure B.8: Crack tip details

During the experiment, care should be taken on the issues that:

• Maximum stress intensity factor should not exceed 80 % of the Kq value that is guessed

or obtained from previous experiment [59].

• For terminal stage of pre-cracking, maximum stress intensity factor should not exceed

60 % of the Kq obtained in previous experiment[59].

Kq is the prospective fracture toughness value of the material. After the testing, if the va-

lidity criteria proposed in the standard are achieved, then the Kq value is named as the frac-

ture toughness of the material. The calculation of Kq and the validity requirements will be

discussed in Appendix B.3.0.3. Successive three experiments were done to obtain fracture

toughness. At the first experiment the prospective value of fracture toughness (Kq) is guessed

around 25MPa which is higher than the fracture toughness of the real specimen. Therefore,

the 60 % of the load is exceeded automatically and the validity requirements are not satisfied,

in the preceding experiment the Kq is guessed as 15 MPa and during the whole pre-cracking

stage the load is kept such that the maximum stress intensity factor is around the 40 % of

the Kq value. The last two successive experiments are presented as the first and the second

fracture toughness experiment in the Appendices B.3.0.1 and B.3.0.2.
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B.3.0.1 First fracture toughness experiment

Before starting the experiment, the dimensions of the specimens are measured again. The

dimensions of the first specimen is presented in Table B.2.

Table B.2: Compact tension specimen test data

W B h ai a f

50.35 mm 23.50 mm 60.93 mm 20.24 mm 26.24 mm

where,

W : Specimen width, measured from the load line

B : Specimen thickness

h : The thickness of the saw cut described in Figure B.8

ai : The length of the initial notch measured from the load line

a f : The average length of the final length measured after the experiment

Before starting the experiment terminal length of the pre-crack should be determined which

is the 0.0125W. Giving the cyclic loading calculated utilizing the Equation (B.1) which is the

40 % of the maximum load that the specimen will be broken with a fast fracture.

Kq =
Pq

B
√

W

(2 + α)

(1 − α)
3
2

(
0.886 + 4.64α − 13.32α2 + 14.73α3 − 5.6α4

)
(B.1)

where, a is the crack length measured from the load line, and α = a/W. Kq and Pq are

respectively the prospective maximum stress intensity factor and the load that the fracture

occurs at that crack length [59].

At first stages of pre-cracking sinusoidal cyclic loading with R = 0 is applied with 60 % of

the Pq that is calculated for the initial starter crack. As the terminal crack length is reached

the load decreased to the 40 % of the Pq which is calculated for the terminal crack length. In

other words, the maximum load is decreased from 13836.6N to the 8160.0 and the minimum

load is kept as close as zero during the pre-cracking stage.

After the crack reaches the terminal value, the specimen is loaded with a load rate of 1KN/s

which is in the range that the standard proposed for this geometry [59], and the Load vs

Displacement data is recorded during the experiment.
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Figure B.9 shows the load, and displacement data that is obtained during the test. The purple

line in the graph denotes the tangent line to the linear region on the test data, and the red line

denotes 95 % slope of the tangent line which crosses the test data. The intersection of the test

data and the 95 % slope tangent line is called as Kq which is a candidate of KIC if the validity

requirements are achieved. The valid requirements will be explained in Appendix B.3.0.3.
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Figure B.9: Load vs Displacement data obtained from fracture toughness testing according to
E-399

The results obtained from the experiment one is presented in Table B.3.

Table B.3: Compact tension specimen test results

W B Kq Pq a
50.35 mm 23.50 mm 15.07 MPa

√
m 7700 N 26.24 mm
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B.3.0.2 Second fracture toughness experiment

The same procedure that is described in Appendix B.3.0.1 is followed in this experiment. The

dimensions of the second compact tension test specimen is given in Table B.4.

Table B.4: Compact tension specimen test data

W B h ai a f

50.54 mm 23.6 mm 60.8 mm 20 mm 25 mm

This time the loading rate is chosen as 0.5 KN/s which is again in the range that the standard

is proposing for this geometry [59]. The load, displacement data collected in the second

experiment is presented in Figure B.10.
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Figure B.10: Load vs Displacement data obtained from fracture toughness testing according
to E-399

The test results for the second fracture toughness determination experiment is given in Ta-

ble B.5.
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Table B.5: Compact tension specimen test results

W B Kq Pq a
50.54 mm 23.40 mm 15.02 MPa

√
m 8000 N 25.63 mm

B.3.0.3 Validity requirements, and Calculation of the Kq

The validity requirements, which are needed to be satisfied for the Kq to be called as fracture

toughness of the material is listed below :

• The value of the 2.5(Kq/σys)2 should be less than the un-cracked ligament which is

W − a. Where the σys is the 0.2 % offset yield stress obtained from the tension test in

Appendix B.2.

• Kmax/E should not exceed 0.003
√

m during the experiment, where the Kmax is the max-

imum stress intensity factor and the E is the Young’s Modulus obtained from the tension

test in Appendix B.2.

• The ratio Pmax/Pq, where the Pmax is the maximum load that the specimen is able to

sustain, and Pq is the intersection of the test data with the 95 % tangent line as shown

in Figures B.9 and B.10.

Kq value of the aluminum 2124-T851 alloy is determined as 15MPa in two successive exper-

iments. In both tests the first two requirements above are satisfied, however the third validity

requirement is not satisfied. Therefore, the fracture toughness of the material could not be

determined. This may be due to the misalignment of the testing fixtures or due to the unsym-

metrical chevron notch. Moreover, the displacement gauge is recommended for measuring the

displacement of the load line, but in this study the displacements of the load line is obtained

by the MTS output.

The hardness of the specimen is obtained by the hardness test as 139 Brinell, which is close

to the available data in the literature, therefore the it can be deduced that the material is not

softened due to the over aging. Considering the composition and the temper condition of the

material, which is very close to the material given in the literature, the fracture toughness

value of 24 MPa
√

m is accepted. Later, during the successive crack growth experiments, as it

is presented in Appendix B.4, it is observed that the fracture toughness value of the material

is around 24 MPa
√

m.
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B.4 CRACK PROPAGATION TEST

The same experimental set-up which is introduced before in Figure B.5 is used in the crack

propagation tests. Dimensions of the CT specimen, which is used in the experiments for

determination of da/dN vs △K curves, are given in Figure B.11. Five successive experiments

were done to obtain the linear region on the da/dN vs △K curve.

The crack length measuring systems which are working with a similar principal with strain

measuring systems, are now widely being used in the world such as Fractomat Crack Measur-

ing Device. Fractomat system in the Metallurgical and Materials Engineering Laboratory is

intended to be used for measuring the crack length, but due to the lack of crack folios which

are attached to the crack path, as illustrated before in Figure B.5b the traveler microscope

is utilized, which is a very old historical device that allows magnification of 8X. Although

the standard recommends the traveler microscope has 20X to 50X magnifying capacity [61],

this tired old man proved itself by supplying surprisingly accurate data. One needs to be very

careful trying to keep away the system from shaking even being careful when breathing which

may lead to the measurement error and has to have sharp eyes with sharp hands to get a reli-

able data from the system. Every, one unit in the ocular with the built in ruler corresponds to

the 0.1825 mm.

The experiments are performed under load control, with constant ∆P loading which means

the △K is increasing during the experiment with growing crack length. This is the recom-

mendation of the ASTM-E647 standard for the crack growth rate data expected above the

10−8[m/Cycle] [61]. Six successive experiments were done and only last two of them gives

the reliable results that can be used for determination of the da/dN vs △K curve.

The technical drawing of the crack growth rate experiment specimens is prepared in CATIA in

accordance with the specifications in the ASTM-E647 [61] and the specimens are produced

in the Metallurgy and Materials Engineering workshop. Figure B.11 shows the geometric

properties of the compact tension (CT) specimens used in the experiments. In Figure B.11, all

dimensions are given in mm. Figure B.12 shows the Compact tension test specimen geometry

given in ASTM-E647 [61].
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Figure B.11: Compact tension test specimen geometry used in the experiment

Figure B.12: Compact tension test specimen geometry given in ASTM-E647 [61].
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According to ASTM-E647 [61], the crack tips should be one of the types given in Figure B.13.

In this experiment the Chevron type crack tip is preferred, because it is more practical to

induce the initial crack, and it is almost guaranteed that the crack starts from the notch, which

considerably reduces the possibility of double starter crack.

Figure B.13: Crack tip types and the minimum fatigue pre-crack size for compact tension test
specimen [61]

The compact tension test condition data is presented in Table B.7. It should be noted that

the R ratio is chosen very close to zero but not zero. This is due to prevent losing contact

between the specimen lug and the pins. Standard recommends that the Kmax should be stable

in pre-cracking as possible. Further decreasing of the maximum load more than 20 % and

decreasing more than 10 % is not recommended due to the transient effects which may affect

the measurements. At the pre-cracking stage initially the maximum load Pmax is set to 2500

N which is the 30 % of the critical load may lead to the fracture with a starter crack length

of 21.3 mm. The R ratio is kept as close as zero. Applying the sinusoidal loading more

than 100’000 cycles the initial starter crack not observed, therefore the pre-cracking load is
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re-selected as 4000 N which is the 48 % of the maximum load for the initial crack length.

The terminal crack length of 2.6 mm is reached approximately after 80’000 cycle of propaga-

tion, the maximum load is gradually decreased with an increment less than 10 % as recom-

mended in the standard [61]. At the last stages of the pre-cracking, the load is stabilized at a

maximum load Pmax = 2500N with R � 0.

The following requirements has to be satisfied in order to get valid results from the experi-

ment:

• It is required that the machined notch in the compact specimen should be at least 0.2W

so that the K values are not influenced by the small variations in the location and di-

mensions of the loading pin holes.

• The terminal value of the pre-crack length should be grater than the maximum of the

preceding values which are; 0.1B, h or 1mm, where h is the distance due to saw-cut as

illustrated in Figure B.13.

• The value of the 4/π(Kmax/σys)2 should be less or equal to the un-cracked ligament

which is W − a.

Standard is also recommending to collect the data in such intervals that the da/dN should

be evenly distributed with respect to the ∆K [61]. For the compact tension specimens the

suggested intervals are:

∆a ≤ 0.04W for 0.25 ≤ a/W ≤ 0.40

∆a ≤ 0.02W for 0.40 ≤ a/W ≤ 0.60

∆a ≤ 0.01W for 0.25 ≤ a/W

For the CT specimen used in the experiments, the intervals of measurement is then becomes

to be:

∆a ≤ 2.02mm for 12.6mm ≤ a ≤ 20.2mm

∆a ≤ 1.01mm for 20.2mm ≤ a ≤ 30.3mm

∆a ≤ 0.05mm for 30.3 ≤ a
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The crack lengths and the cycles which are presented in Figure B.14 are recorded with paying

attention to the recommended crack length intervals during the experiment. In order to obtain

the da/dN, derivative of the crack length vs cycles graph is needed. Standard is recommend-

ing two methods which are, Secant Method, and the Incremental Polynomial Method. In this

thesis an alternative solution to this problem is proposed, which is, fitting a suitable analytic

equation to the Cycles vs Crack length curve, and differentiate the equation with respect to

the cycles to get the da/dN data for a specific crack length.
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Figure B.14: Cycles vs Crack Length data obtained according to the ASTM-E647 [61]

Utilizing the function finder available in zunzun.com [62] the best analytic equation with least

error is chosen to be the Inverse Bleasdale Equation with Offset presented as Equation (B.2).

y =
x

(a + bx)−1.0/c + O f f set (B.2)

For representing the experiment data, x and y in Equation (B.2) will be replaced by respec-

tively Cycles and Crack Length and constant coefficients a,b,c and Offset are obtained. The
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coefficients and the fitting target of lowest sum of squared absolute error is presented in Ta-

ble B.6. As it can be seen from the Figure B.14 the Inverse Bleasdale Equation with Offset is

perfectly fitting to the data obtained from the experiment.

Table B.6: Inverse Bleasdale Equation Coefficients and squared absolute error

a b c Offset Squared absolute error
7.97E+026 -7,99E+021 -3,64 2,35 5,81E-008

The ∆K values corresponding to the crack length, at which the da/dN data obtained by taking

the derivative of the Equation (B.2), can be calculated utilizing the Equation (B.3) which is

proposed by the standard [61].

∆K =
∆P

B
√

W

(2 + α)

(1 − α)
3
2

(
0.886 + 4.64α − 13.32α2 + 14.73α3 − 5.6α4

)
(B.3)

where, a is the crack length measured from the load line, and α = a/W. According to the

standard [61], Equation (B.3) is valid for a/W ≥ 0.2. The experiment conditions for da/dN

vs △K curve determination is presented in Table B.7.

Table B.7: Compact tension specimen test data

Pmax Pmin ∆P B W Frequency
2500 [N] 50 [N] 2450 [N] 12.43 [mm] 50.16 [mm] 10 Hz

where,

Pmax : Maximum applied load in a cycle during the experiment

Pmin : Minimum applied load in a cycle during the experiment

∆P : Pmax − Pmin, load range in a cycle

B : Specimen thickness

W : Specimen width described in Figure B.12

Using the data given in Table B.7 and the crack length vs cycle data collected during the

experiment as presented in Figure B.14 with the Equation (B.3), da/dN vs ∆K curve which is

presented in Figure B.17, is obtained. The da/dN vs ∆K curve obtained according to ASTM-

E647 [61] is used for the life calculations and determining the Forman Constants is described

in Section 4.2.5.
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Figure B.15: Crack growth rate changing with the range of stress intensity factor data obtained
from the experiment, Inverse Bleasdale with Offset
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Figure B.16: Crack growth rate changing with the range of stress intensity factor data obtained
from the experiment, Secant Method

130



1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 10 100

d
a
/d

N

K

Secant Method

Inv. Bleasdale Eq.

Afgrow

da/dN vs K

Test    

Results

Available

Data

Figure B.17: Comparison of the crack growth rate changing with the range of stress intensity
factor data obtained with Secant Method, and curve fitting with Inverse Bleasdale Eq. with
Offset
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