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Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Mehmet T. Zeyrek
Head of Department, Physics

Prof. Dr. Ramazan Sever
Supervisor, Physics Department, METU

Examining Committee Members:

Prof. Dr. Cevdet Tezcan
Mechanical Engineering Dept., Başkent University

Prof. Dr. Ramazan Sever
Physics Department, METU

Prof. Dr. Hamit Yurtseven
Physics Department, METU

Assoc. Prof. Dr. Sadi Turgut
Physics Department, METU

Assoc. Prof. Dr. Serhat Çak�r
Physics Department, METU

Date:



I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: �ILKER KILIÇ
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ABSTRACT

HEAT AND MASS TRANSFER PROBLEM AND SOME APPLICATIONS

K�l�ç, �Ilker
Ph.D., Department of Physics
Supervisor : Prof. Dr. Ramazan Sever

February 2012, 51 pages

Numerical solutions of mathematical modelizations of heat and mass transfer in cubical and

cylindrical reactors of solar adsorption refrigeration systems are studied. For the resolution

of the equations describing the coupling between heat and mass transfer, Bubnov-Galerkin

method is used. An exact solution for time dependent heat transfer in cylindrical multilay-

ered annulus is presented. Separation of variables method has been used to investigate the

temperature behavior. An analytical double series relation is proposed as a solution for the

temperature distribution, and Fourier coefficients in each layer are obtained by solving some

set of equations related to thermal boundary conditions at inside and outside of the cylinder.

Keywords: Heat and mass transfer, Separation of variables, Bubnov-Galerkin method, Cylin-

drical reactor, Gauss-Jordan elimination
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ÖZ

ISI VE KÜTLE TRANSFER�I PROBLEM�I VE BAZI UYGULAMALAR

K�l�ç, �Ilker
Doktora, Fizik Bölümü
Tez Yöneticisi : Prof. Dr. Ramazan Sever

Şubat 2012, 51 sayfa

Solar adsorpsiyonlu so�gutma sistemlerinin kübik ve silindirik reaktörleri içerisindeki �s� ve

kütle transferinin matematiksel modellemelerinin nümerik çözümü incelenmiştir. Is� ve kütle

transferi aras�ndaki eşleşmeyi aç�klayan denklemlerin çözümleri için Bubnov-Galerkin yöntemi

kullan�lm�şt�r. Silindirik çok katmanl� dairesel halka içerisindeki zamana ba�gl� �s� transferinin

kesin (analitik) bir çözümü sunulmuştur. S�cakl�k davran�ş�n� incelemek için degişkenlere

ay�rma yöntemi kullan�lm�şt�r. S�cakl�k da�g�l�m�n�n bir çözümü olarak analitik bir çift-seri

denklemi önerilmiştir ve silindirin içindeki ve d�ş�ndaki termal s�n�r şartlar� ile ilgili baz�

denklem setlerini çözerek, her katmandaki Fourier katsay�lar� elde edilmiştir.

Anahtar Kelimeler: Is� ve kütle transferi, De�gişkenlere ay�rma , Bubnov-Galerkin metodu,

Silindirik reaktör, Gauss-Jordan eliminasyonu
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CHAPTER 1

INTRODUCTION

Together with the environmental problems and decrease in fossil-fuel resources, studies fo-

cused on renewable energy sources have been accelerated. Solar energy seems to be an alter-

native solution for these issues. In this study, we will analyze some speci�c components of

solar energy systems numerically and analytically and try to understand the nature of heat and

mass transfer issue in these parts of the system. Thus, we may have an idea about the energy

consumption needs and we might be able to develop some strategies for using solar energy

effectively.

Solid adsorption cooling machines constitute very attractive solutions to recover important

amount of industrial waste, to heat medium temperature and to use renewable energy sources

such as solar energy. The development of the technology of these machines can be carried

out by experimental studies and by mathematical modelization. This latter method allows

saving time and money because it is more supple to use to simulate the variation of different

parameters [1]. Chapter 2 is about the numerical solution of a mathematical modelization of

heat and mass transfer in cubical reactor of solar adsorption cooling machine. The adsorption

cooling machines consist essentially of an evaporator, a condenser and a reactor containing

a porous medium, which is in our case the activated carbon reacting by adsorption with am-

monia. (The reactor is heated by solar energy and contains a porous medium constituted of

activated carbon reacting by adsorption with ammonia).

In recent years, considerable attention has been paid to adsorption refrigeration systems,

which are regarded as environmentally friendly alternatives to conventional vapour compres-

sion refrigeration systems, since they can use refrigerants that do not contribute to ozone

layer depletion and global warming. In addition, the adsorption systems have the bene�ts of
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simpler control, no vibration and lower operation costs, if compared with mechanical vapour

compression systems and, in comparison with the absorption systems, they do not need a

solution pump or recti�er for the refrigerant, do not present corrosion problems due to the

working pairs normally used, they are less sensitive to shocks and to the installation posi-

tion [2] and they could be operated with no-moving parts [3]. Furthermore, refrigeration as a

solar energy application is particularly attractive because of (i) the non-dependence on con-

ventional power and (ii) the near coincidence of peak cooling loads with the solar energy

availability. A schematic diagram of the solar powered continuous adsorption refrigeration

system is presented by El Fadar et al. [4]. Chapter 3 is about the numerical solution of a

mathematical modelization of heat and mass transfer in cylindrical reactor of solar adsorption

refrigeration system (a cooling machine). For the resolution of the equations describing the

coupling between heat and mass transfer, we use Bubnov-Galerkin method. We choose an

appropriate (basis) function, hence �nd a transcendent equation which leads to a system of N

differential equations strongly non linear. Such systems are handled either by Gauss-Seidel

iterations, or by some numerical methods. As the basis function, we proposed �rst kind, ze-

roth order Bessel function (J0) for the Bubnov-Galerkin solution. This function provides us

with a good convergence to the exact solution (as time→ ∞), and the numerical solution.

In modern engineering applications, multilayered components are widely used due to the

advantage of combining physical, mechanical, and thermal properties of different materials.

Many of these applications require a detailed knowledge of transient temperature and heat-

�ux distribution within the component layers. Both analytical and numerical techniques may

be used to solve such problems. Because of unavailability or mathematical complexity of

exact solutions, numerical solutions are usually preferred in practice. However, in an era of

numerical modeling and simulation, there is still a need for simple, accurate and physically

meaningful analytical models. Rather limited use of analytical solutions should not diminish

their merit over numerical ones; since exact solutions, if available, provide an insight into

the governing physics of the problem, which is typically missing in any numerical solution.

Moreover, analyzing closed-form solutions to obtain optimal design options for any particular

application of interest is relatively simpler. In addition, exact solutions �nd their applications

in validating and comparing various numerical algorithms to help improve computational ef-

�ciency of computer codes that currently rely on numerical techniques [5]. In Chapter 4, we

present an exact solution for time dependent heat transfer in cylindrical multilayered annulus.
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Separation of variables method has been used to investigate the temperature behavior. An

analytical double series relation is presented as a solution for the temperature distribution,

and Fourier coefficients in each layer are obtained by solving some set of equations related

to thermal boundary conditions at inside and outside of the cylinder. Thermal continuity and

heat �ux continuity between each layer is considered, as well. The method of Gauss-Jordan

elimination will be used to solve some set of equations. During our study, we veri�ed analyt-

ical calculations comparing them with their numerical counterparts whenever it is necessary

and possible.

The thesis is organized as follows: Chapter 2 is basically an application of Bubnov-Galerkin

method in a cubically shaped reactor of a solar adsorption cooling machine. Chapter 3 is a

complementary of this work, however this time, about a cylindrical shaped system. At this

point, we will use the experience and basic knowledge gained during the study of the previous

system. The last physical system that we will be dealing with is a cylindrical multilayered

annulus; an analytical approach will be sought for transient heat equations.
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CHAPTER 2

NUMERICAL STUDY OF HEAT AND MASS TRANSFER IN

CUBICAL REACTOR

2.1 Cubical Reactor

This study is about the numerical solution of a mathematical modelization of heat and mass

transfer in cubical reactor of solar adsorption cooling machine. The adsorption cooling ma-

chines consist essentially of an evaporator, a condenser and a reactor (which is the object of

this work) containing a porous medium, which is in our case the activated carbon reacting

by adsorption with ammonia. (The reactor is heated by solar energy and contains a porous

medium constituted of activated carbon reacting by adsorption with ammonia). The �gure is

given below [1].

Figure 2.1: Sketch of the solar reactor studied

The principle can be described as follows;

When the adsorbent (at temperature T ) is in exclusive contact with vapour of adsorbate (at

pressure P), an amount m of adsorbate is trapped inside the micro-pores in an almost liquid

state. This adsorbed mass m, is a function of T and P according to a divariant equilibrium

m = f (T, P). Moreover, at constant pressure, m decreases as T increases, and at constant
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adsorbed mass P increases with T . This makes it possible to imagine an ideal refrigerat-

ing cycle consisting of a period of heating/desorption/condensation followed by a period of

cooling/adsorption/evaporation.

The model is mainly described by four equations;

ρcm
∂T
∂t − Q(T ) = Ke

∂2T
∂x2 (2.1)

Continuity of the heat �ux at the interface adsorbent - metallic wall:

h(T p − T (H)) = Ke
∂T
∂x

∣∣∣∣∣x=H
(2.2)

Adiabatic condition at the back of the solid adsorbent (x = 0):

∂T
∂x

∣∣∣∣∣x=0
= 0 (2.3)

Initial condition; The bed is assumed to be at the uniform temperature:

T (x, 0) = TA′ (2.4)

We make the following change of variable to eliminate the non-homogeneity of equations

Eq. (2.2) and Eq. (2.4):

T ∗ = T − Tp (2.5)

Eqs. (2.1-2.4) become:

ρcm
∂T ∗
∂t − Ke

∂2T ∗
∂x2 − Q + ρcm

∂Tp
∂t = 0 (2.6)

∂T ∗
∂x

∣∣∣∣∣x=0
= 0 (2.7)

∂T ∗
∂x

∣∣∣∣∣x=H
= − h

Ke
T ∗(H) (2.8)

T ∗(x, 0) = 0 (2.9)

For the resolution of the equations describing the coupling between heat and mass transfer,

�Bubnov-Galerkin� method is adapted. That is; the solution is assumed by the form:

T ∗(x, t) =

N∑

i=1
ai(t)ϕi(x) (2.10)

We choose an appropriate (base)function ϕi and then �nd the coefficients ai(t) such that

Eq. (2.10) satis�es Eqs. (2.6-2.9).
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If we choose ϕi(x) of the form:

ϕi(x) = cos(ωix) (2.11)

and satisfying the boundary conditions, then putting Eq. (2.11) in Eq. (2.8) we obtain

(ωiH)tan(ωiH) = Bi i = 1, ...N (2.12)

where Bi is the number of Biot: Bi=hH/Ke

The pulsations ωi (i = 1, ..N) are solutions of the transcendent equation Eq. (2.12).

The coefficients ai(t) are found by requiring that the scalar product of Eq. (2.6) and the

weighting function ϕ j(x) ( j = 1, ...N) over the solution region is zero:

N∑

i=1

dai
dt < ϕi,ϕ j > −

N∑

i=1
ai <

Ke
ρcm

d2ϕ

dx2 , ϕ j > + <
dTp
dt −

Q
ρcm

, ϕ j >= 0 (2.13)

j = 1, ...N

where

< u, v >=

∫ H

0
u(x), v(x)dx

On matrix notation this differential equation is equivalent to

[A] d
dt [a] + [B][a] = [F]

This represents a system of N differential equations strongly non linear. In order to simplify

this system of differential equations, and obtain a clear convergence analysis, we should deal

with dimensionless variables. This is what we do in next section.

2.1.1 Convergence Study

The quantities ρ, cm and Q depend strongly on the temperature and the pressure, hence the

problem is not linear. For a clear convergence analysis, the quantities ρ, cm and Q can be

considered as constants. Then by using the following dimensionless quantities:

θ =
T − Tp

To
, x̄ =

x
H τ =

tλ
ρcmH2 Bi =

hH
λ

Ψ =
H2

Toλ
(Q + ρcm

dTp
dt )

Eqs. (2.1-2.4) become:
∂θ

∂τ
− ∂

2θ

∂x̄2 − Ψ = 0 ∂θ

∂x̄ (τ, 0) = 0 (2.14)

∂θ

∂x̄ (τ, 1) = −Biθ(τ, 1) θ(0, x̄) = 0 (2.15)

6



Also, for simpli�cation, the boundary condition Tp is considered as a linear function of time

(Tp = ζt + TA′), the dimensionless source term Ψ becomes

Ψ =
H2

λ
(Q + ρcmζ) (2.16)

In this case Eq. (2.13) is written as:
N∑

i=1

dai
dτ < ϕi,ϕ j > −

N∑

i=1
ai <

d2ϕ

dx̄2 , ϕ j > − < Ψ, ϕ j >= 0 (2.17)

As time goes to in�nity the time derivative term dai
dτ goes to zero in order to have a physical

solution (for temperature). This means the term ∂θ
∂τ also goes to zero. Using this fact and

solving equations Eq. (2.14) and Eq. (2.15) simultaneously, we get the exact (analytical)

solution for θ. For the sake of simplicity in convergence study, we take Ψ = 1 and Bi = 10.

Then the exact solution comes out as

θ(∞, x̄) = − x̄2

2 +
3
5 (2.18)

As N > 1, Eq. (2.17) will have many non-linear terms which contain a(t) and da/dt with

different coefficients. Such system of coupled non-linear equations can be solved by using

Gauss-Seidel iterations. We solved them using Mathematica program, instead. As we use

bigger N's, the numerical solutions get closer to the analytical result obtained for θ. As an

example, see Table 2.1; [1]

Table 2.1: Comparison between the Bubnov-Galerkin solution and the exact solution (Bi =

10, Ψ = 1, τ = +∞)

x/H Bubnov-Galerkin Solution Exact Solution
N = 1 N = 2 N = 4 N = 6 N = 8 N = 10

0.0 0.6181 0.5968 0.5996 0.5999 0.5999 0.5999 0.6000
0.2 0.5930 0.5792 0.5802 0.5800 0.5799 0.5799 0.5800
0.4 0.5198 0.5230 0.5199 0.5199 0.5200 0.5199 0.5200
0.6 0.4045 0.4225 0.4198 0.4199 0.4200 0.4199 0.4199
0.8 0.2563 0.2766 0.2805 0.2801 0.2799 0.2799 0.2800
1.0 0.0874 0.0958 0.0990 0.0996 0.0998 0.0999 0.1000

2.1.2 Base function ϕi(x) = cos(ωix) + (ωix)sin(ωix)

In order to see whether we can have a better convergence of the data (to the exact values), we

tried some other test functions instead of ϕi(x) = cos(ωix).
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Note that using a different ϕi(x) gives us transcendental equations different than Eq. (2.12).

Let's use ϕi(x) = cos(ωix) + (ωix)sin(ωix) instead of ϕi(x) = cos(ωix). In this case our

transcendental equation is of the form;

(ωiH)tan(ωiH) = − Ke
hH (ω2

i H2 +
hH
Ke

) (2.19)

Noting that Bi = hH
Ke

, we have;

(ωiH)tan(ωiH) = − 1
Bi (ω2

i H2 + Bi) (2.20)

We use the roots (ωiH's) of this equation to construct the base functions (ϕi's), then we put

these base functions in the scalar products in Eq. (2.17). This procedure will provide us

with ix j coupled equations. We solved these coupled equations using Mathematica (instead

of Gauss-Seidel iteration method), and we found ai's, hence θ's (recall Eq. (2.10) and that

T ∗ = ΘT0). The results are summarized in the Table 2.2.

Table 2.2: Comparison between the Bubnov-Galerkin solution and the exact solution for the
new base function (Bi = 10, Ψ = 1, τ = +∞)

x/H Bubnov-Galerkin Solution Exact Solution
N = 1 N = 2 N = 4 N = 6 N = 8 N = 10

0.0 0.1700 0.2818 0.3788 0.4286 0.4591 0.4799 0.6000
0.2 0.1910 0.3251 0.4471 0.4994 0.5178 0.5244 0.5800
0.4 0.2374 0.3860 0.4464 0.4581 0.4791 0.4832 0.5200
0.6 0.2670 0.3538 0.3621 0.3839 0.3920 0.3954 0.4199
0.8 0.2302 0.2239 0.2553 0.2610 0.2626 0.2653 0.2800
1.0 0.0941 0.0740 0.0857 0.0905 0.0930 0.0945 0.1000

It is seen that the results are worse than we found before using ϕi(x) = cos(ωix) as the base

function. The reason for this bad result might be explained like this; Eq. (2.6) looks like an

inhomogenous heat equation when its last two terms are assumed constant. Heat equation is

solved [7] using separation of variables method in which we split the assumed solution into

space and time part. Space dependent part has a solution which has a cosine and sine . Here,

we eliminated the sine part of the assumed solution because it does not obey the boundary

conditions at hand. Most appropriate base function to be offered in Bubnov-Galerkin solution

for this system seems to be cos(ωix) since now. In the following section we will try another

base function.
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2.1.3 Base function ϕi(x) = P2 ((cosωix))

The transcendental equation for the Legendre Polynomial

ϕi(x) = P2 ((cosωix)) =
1
2

(
3 cos2(ωix) − 1

)
(2.21)

is of the form

(ωiH) sin(2ωiH) =
1
3 Bi

(
3 cos2(ωiH) − 1

)
(2.22)

Roots of this nonlinear equation are ω1H = 2, 0008 and ω2H = 0, 8669. Utilizing a Math-

ematica code, we used these roots for the solution of equation (2.17) and found Bubnov-

Galerkin solutions for θ at various x/H values for large time (τ) values. When these solutions

are compared with the exact solutions, a fast convergence to exact results are observed.

The solutions for the other Legendre Polynomials ϕi(x) = Pn ((cosωix)), n = 2, 3, 4, ..., 8 for

large time are calculated as well. As an example solutions of P2 and P8 are given in tabular

form in Table 2.3 and Table 2.4. As seen clearly, the convergence to exact solutions for various

x/H values are still good with higher order Legendre Polynomials.

Table 2.3: Comparison between the Bubnov-Galerkin solution for P2 ((cosωix)) and the exact
solution (Bi = 10, Ψ = 1, τ = +∞)

x/H Bubnov-Galerkin Solution for P2 ((cosωix)) Exact Solution
N = 1 N = 2 N = 4 N = 6 N = 8 N = 10

0.0 0.6220 0.5953 0.5994 0.5999 0.6000 0.6000 0.6000
0.2 0.5943 0.5783 0.5803 0.5801 0.5800 0.5800 0.5800
0.4 0.5143 0.5234 0.5199 0.5199 0.5200 0.5200 0.5200
0.6 0.3916 0.4233 0.4197 0.4200 0.4200 0.4200 0.4199
0.8 0.2408 0.2763 0.2807 0.2801 0.2799 0.2800 0.2800
1.0 0.0798 0.0950 0.0989 0.0996 0.0998 0.0999 0.1000

Table 2.4: Comparison between the Bubnov-Galerkin solution for P8 ((cosωix)) and the exact
solution (Bi = 10, Ψ = 1, τ = +∞)

x/H Bubnov-Galerkin Solution for P8 ((cosωix)) Exact Solution
N = 1 N = 2 N = 4 N = 6 N = 8 N = 10

0.0 0.6225 0.5931 0.5993 0.5998 0.6000 0.6000 0.6000
0.2 0.5934 0.5777 0.5805 0.5801 0.5800 0.5800 0.5800
0.4 0.5101 0.5250 0.5198 0.5199 0.5201 0.5200 0.5200
0.6 0.3842 0.4234 0.4196 0.4200 0.4200 0.4200 0.4199
0.8 0.2328 0.2719 0.2809 0.2802 0.2799 0.2799 0.2800
1.0 0.0762 0.0915 0.0982 0.0994 0.0998 0.0999 0.1000
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2.1.4 Results

As seen clearly; instead of a Cosine Function, a Legendre Polynomial (depending on cosine

function) of any order n can be chosen as a basis function for implementation of Bubnov-

Galerkin Method.

We may conclude that the most appropriate base functions to be offered in Bubnov-Galerkin

solution for this system is cos(ωix) or Pn ((cosωix)).

In the following chapter, as a complementary work, we will examine the implementation of

Bubnov Galerkin Method on a cylindrical reactor by choosing an appropriate basis function.
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CHAPTER 3

HEAT AND MASS TRANSFER IN CYLINDRICAL

ADSORPTION POROUS MEDIUM

3.1 Introduction

In recent years considerable attention has been paid to solid adsorption refrigeration systems.

They are environmentally friendly alternatives to conventional vapor compression refrigera-

tion systems, and they have been studied extensively [6]. They can use refrigerants that do not

contribute to ozone layer depletion and global warming. When compared to mechanical vapor

compression systems, bene�ts of the adsorption systems are; simpler control, no vibration and

lower operation costs. On the other hand, in comparison with the absorption systems; they

do not need a solution pump or recti�er for the refrigerant, do not present corrosion problems

due to the working pairs normally used, they are less sensitive to shocks [2]. They could be

operated with no-moving parts [3]. In spite of their advantages, the adsorption refrigeration

systems have some disadvantages such as low coefficient of performance (COP), low speci�c

cooling power (SCP), high weight and high cost. So as to overcome these inconveniences,

scientists undertook various tasks such as improvement of heat and mass transfer in adsor-

bent beds, enhancement of the adsorption properties of the working pairs, design and study

of different kind of cycles and improvement of regenerative heat and mass transfer between

beds. However, the widespread use of the adsorption refrigeration systems is still limited by

the technical and economic constraints. Works in this �eld are increasing to overcome these

problems [4].

A more detailed schematic diagram of the solar powered continuous adsorption refrigeration

system is presented by El Fadar et al [4]. The adsorption cooling machines consist essentially
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of an evaporator, a condenser and a reactor containing a porous medium (which is our task

in this study). Several solar adsorption refrigeration units were tested with different combi-

nations of adsorbents and adsorbates. The most studied pairs are activated carbon/ammonia,

activated carbon/methanol, zeolite/water and silica gel/water. In this paper we study the reac-

tor in which activated carbon is selected as adsorbent, and ammonia as refrigerant.

Assumptions in our theoretical model are;

◦ The adsorbent bed is considered as a continuous medium and the conduction heat transfer

in the medium is characterized by an equivalent thermal conductivity, λe.

◦ The porous medium properties have a cylindrical symmetry.

◦ The heat transfer is radial and the convection heat transfer due to the radial mass transfer is

neglected.

◦ The HTF temperature is uniform.

This chapter, through out the following sections, is organized as follows:

Heat & mass transfer equations and appropriate boundary conditions for a cylindrical reactor

are developed in the light of cubic reactor equations. To simplify these equations a change

of variable procedure is applied to the temperature. After proposing our basis function, us-

ing Bubnov-Galerkin method we end up with a system of N differential equations strongly

nonlinear which is Eq. (3.18). In order to simplify this system of differential equations,

some dimensionless quantities are substituted, and a simpler form is provided. This system of

equations can be solved using Gauss-Seidel method. We used numerical techniques, instead.

Finally a convergence study is presented with the help of tabulated values.

3.2 Cylindrical reactor

The adsorption refrigeration system we analyze has two cylindrical reactors (adsorbers) that

contain the activated carbon-ammonia inside. An adsorber looks like the one shown in Fig.

3.1.
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Figure 3.1: Sketch of the cylindrical solar reactor studied; 1. shell (insulating material), 2.
adsorbent, 3. metal of heat exchange [4]

3.2.1 System Equations

The equation of heat and mass transfer in the porous medium is obtained by application of

energy and mass conservation laws to a layer with radial coordinate r and thickness dr. [8].

Energy balance equation is

d
dt

[
2πrdrLr

((1 − ε)ρsus +
(
ε − θ)ρgug + θρaua

)]

+q(r + dr, t)Hg
(T (r + dr) , p) − q(r, t)Hg

(T (r) , p)

= 2πrλedrLr

[
∂2T
∂r2 +

1
r
∂T
∂r

]
(3.1)

where Hg(T ) = Ha(T ) + ∆Hads. Hg(T ) and Ha(T ) are speci�c enthalpies of ammonia at

gaseous phase and adsorbed phase respectively. Mass conservation equation is

d
dt

[
2πrdrLr

((ε − θ)ρg + θρa
)]

= q(r, t) − q(r + dr, t) = −∂q
∂r dr (3.2)

Heat and mass transfer equation in the porous medium is found by combination of equations

Eq. (3.1) and Eq. (3.2).

ρ cm(T ) ∂T
∂t − Q = λe∇2

r T (3.3)
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where

ρ cm(T ) = (1 − ε) ρsCps + (ε − θ) ρgCpg + θρaCpa (3.4)

Q =
∂

∂t
( (ε − θ) ρg

) p
ρg

+
1

2πrdrLr

(
p
ρa

+ ∆Hads

) (
∂ma
∂t

)
(3.5)

∇2
r =

[
∂2

∂r2 +
1
r
∂

∂r

]
(3.6)

∇2
r is the Laplacian. [4]

3.2.1.1 Temperature Boundary and Initial Conditions

The initial and boundary conditions depending on pressure and temperature are reported in

detail for an adsorption refrigeration system which has two adsorbers in the work of El Fadar

et al. [4]. Since this study deals with one of these adsorbers, we will only provide with

temperature boundary conditions of one adsorber. Pressure boundary & initial conditions

does not interest us for the time being.

Assuming that the metal of heat exchanger is thin, we take its inner and outer radius as R0

for simplicity. Then, continuity of heat �ux between adsorbent & metallic wall interface is

written as

hgl
[THT F − T (R0)] = −λe

(
∂T
∂r

)
r=R0

(3.7)

where hgl is the heat transfer coefficient between the heat transfer �uid (HTF) and the adsor-

bent bed. Adiabatic condition at the rim of the cylinder shaped adsorber is

∂T (r, t)
∂r

∣∣∣∣∣r=R1
= 0 (3.8)

The porous medium (or �adsorbent bed� as it is sometimes called) is assumed to be at the

uniform temperature at t = 0

T (r, 0) = T0 (3.9)

where T0 is the morning ambient temperature for a cubic reactor [1], and Tmin or Tmax for a

refrigeration system having two cylindrical adsorbers [4].

14



3.2.1.2 Bubnov-Galerkin Method

To eliminate the non-homogeneity of equations Eq. (3.7) and Eq. (3.9), let's make the fol-

lowing change of variable

T ∗ = T − THT F (3.10)

Hence, Eqs. (3.3,3.7-3.9) become:

ρ cm
∂T ∗
∂t − λe∇2

r T ∗ − Q + ρ cm
∂THT F
∂t = 0 (3.11)

∂T ∗
∂r

∣∣∣∣∣ r=Ro
=

hgl
λe

T ∗(Ro) (3.12)

∂T ∗
∂r

∣∣∣∣∣ r=R1
= 0 (3.13)

T ∗(r, 0) = 0 (3.14)

For the resolution of the equations describing the coupling between heat and mass transfer,

�Bubnov-Galerkin� method is adapted. In this method [10], the assumption is that the solu-

tion can be represented by an appropriate combination of analytical functions over the whole

solution region without passing inevitably (in some conditions) by the discretization of the

domain [11] as in the case of �nite element method. By the Bubnov-Galerkin method, the

solution is assumed by the form

T ∗(r, t) =

N∑

i=1
ai(t)ϕi(r) (3.15)

The main problem at this stage is to choose an appropriate function ϕi(r). In cartesian ge-

ometry [1], ϕi(x) may be chosen as cos(ωix). Since our study is carried out on cylindrical

coordinate, we should choose a basis function ϕi(r) which might form a complete set of ba-

sis functions. The most appropriate one appears to be the First Kind, Zeroth Order Bessel

function, J0(ωir). [9, 12].

There are two boundary conditions that ϕi(r) should satisfy in these four equations; Eq. (3.12)

and Eq. (3.13). When we try to satisfy the boundary condition Eq. (3.13), we face with

different R1 values for each index value �i� that we use. To get rid of this trouble, we use

J0(ωi(R1 − r)) instead of J0(ωir). Thus, the boundary condition is satis�ed trivially without

any discretization. Hence, Eq. (3.15) takes the form;

T ∗(r, t) =

N∑

i=1
ai(t)J0

(
ωi(R1 − r)) (3.16)
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By inserting Eq. (3.16) into the second boundary condition Eq. (3.12), we obtain

d
dr̄

[
J0

(Xi(1 − R0
R1

r̄))
]∣∣∣∣∣r̄=1

= Bi Jo(Xi(1 − R0
R1

)) (3.17)

where Bi is the Biot number; Bi =
hglR0
λe

. The pulsations Xi = ωiR1 (i = 1, ..N) are solutions of
this transcendent equation. R0 and R1 are known. Some numerical values are given in Table
3.1.

Table 3.1: Roots of Eq. (3.17) for Bi = 10

i 1 2 3 4 · · · N
ωiR1 2.9709 6.8205 10.6952 14.5786 · · · · · ·

Next step is to �nd the coefficients ai(t) such that Eq. (3.16) satis�es Eqs. (3.11-3.14). The

coefficients ai(t) are found by imposing that the scalar product of Eq. (3.11) and the weighting

function ϕ j(r), ( j = 1, ...N) over the solution region is zero;

N∑

i=1

dai
dt < ϕi(r), ϕ j(r) > −

N∑

i=1
ai(t) <

λe
ρ cm
∇2

rϕi, ϕ j > + <
∂THT F
∂t − Q

ρ cm
, ϕ j >= 0 (3.18)

where

< ϕi(r), ϕ j(r) >=

∫ R1

R0

ϕi(r)ϕ j(r)2πrdr (3.19)

In matrix notation this differential equation is equivalent to

[A] d
dt [a] + [B][a] = [C] (3.20)

This represents a system of N differential equations strongly nonlinear. The resolution is made

by implicit discretization. The coefficients in the discretization equations will themselves

depend on T . Such situations may be handled by Gauss-Seidel iterations combined with the

following expression of relaxation:

[a]m = Γ [a]m∗ + (1 − Γ) [a]m−1 (3.21)

where [a]m is the approximation at the current iteration m, [a]m−1 is the approximation at the

previous iteration, m∗ is the solution by Gauss-Seidel method at the current iteration m, Γ is

the relaxation factor varying between 0 and 2. Utilizing a Fortran code, the required solution

can be achieved.
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3.2.2 Convergence Study and Calculations

The quantities ρ, cm and Q depend strongly on the temperature and the pressure, so the prob-

lem is not linear. For a clear convergence analysis, the quantities ρ, cm and Q can be consid-

ered as constants.

In order to simplify this system of differential equations, let's use the following dimensionless

quantities;

θ =
T − THT F

T0
, r̄ =

r
R0
, τ =

tλe

ρcmR2
0
, Bi =

hglR0
λe

, ψ =
R2

0
T0λe

(
Q − ρcm

dTHT F
dt

)

Eqs. (3.3,3.7-3.9) become
∂θ

∂τ
− ∇2

r̄θ − ψ = 0 (3.22)

∂θ(r̄, τ)
∂r̄

∣∣∣∣∣r̄=
R1
R0

= 0 (3.23)

∂θ(r̄, τ)
∂r̄

∣∣∣∣∣r̄=1
= Bi θ(1, τ) (3.24)

θ(r̄, 0) = 0 (3.25)

For the sake of simplicity, the boundary condition THT F is considered as a linear function of

time (THT F = ςt + T0); so the dimensionless source term ψ becomes ψ =
R2

0
T0λe

(Q − ρcmς).

Remembering that T ∗ = T − THT F we get

θ(r, t) =
T ∗
T0

=

N∑

i=1

ai(t)ϕi(r)
T0

(3.26)

Putting this term into Eq. (3.22), then taking scalar product with ϕ j gives
N∑

i=1

dai(t)
dτ < ϕi, ϕ j > −

N∑

i=1
ai < ∇2

r̄ϕi, ϕ j > − < Ψ, ϕ j >= 0 (3.27)

where

Ψ =
R2

0
λe

(Q − ρcmς) (3.28)

Eq. (3.27) may also be obtained by imposing new parameters r̄ and τ on Eq. (3.18).

As we consider the parameter τ as a variable for the convergence analysis, the comparison be-

tween the Bubnov-Galerkin solution and the exact solution can be carried out in the stationary

regime (τ→ ∞) by writing ∂θ
∂τ = 0 in Eq. (3.22). See Table 3.3. As τ→ ∞ exact solution is

θ(r̄,∞) = − r̄2

4 +
R2

1
2R2

0
ln(r̄) +

R2
1

20R2
0

+
1
5 (3.29)

Note also that as τ → ∞ �rst term of Eq. (3.27) vanishes, and equation becomes solvable

analytically for small N integers.
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3.3 Results

We have studied cylindrical reactor analytically by using Bubnov-Galerkin method. The prob-

lem is reduced solution of a system of N coupled differential equations strongly nonlinear. We

have applied First kind, Zeroth order Bessel function which has been readily used for the solu-

tion of homogenous, cylindrical heat and mass transfer equation [9,12]. The results shown in

Tables 3.2 and 3.3 are coherent with the expectations. The percentage error in θ changes with

the Biot number. However, the value of Biot number does not seem to affect the convergence

pattern. See Fig. 3.2.

Figure 3.2: Relative deviation of error in θ with different Biot numbers. error=
∣∣∣∣∣ θN (r̄)−θ(r̄)

θ(r̄)

∣∣∣∣∣
θN(r̄) are the Bubnov-Galerkin solutions, θ(r̄) is the exact solution. r̄ is chosen as 1.
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Table 3.2: Comparison among different solutions of θ using First kind, Zeroth order Bessel
function (J0) for a cylindrical reactor (Bi = 10, Ψ = 1, τ = 1, R0 = 53 cm, R1 = 250 cm)

Radius(cm) Bubnov-Galerkin Numerical
N = 5 N = 10 N = 15

53.00 0.1159 0.1313 0.1351 0.1373
81.14 0.6404 0.6309 0.6290 0.6295

109.29 0.8553 0.8487 0.8460 0.8461
137.43 0.9276 0.9392 0.9401 0.9400
165.57 0.9890 0.9774 0.9786 0.9784
193.71 0.9915 0.9939 0.9931 0.9929
211.86 0.9928 0.9979 0.9980 0.9972
250.00 1.0103 0.9974 0.9992 0.9988

Table 3.3: Comparison among different solutions of θ using First kind, Zeroth order Bessel
function (J0) for a cylindrical reactor (Bi = 10, Ψ = 1, τ = +∞ (chosen as 1000 in the
numerical solution, 100 in Bubnov-Galerkin Solution), R0 = 53 cm, R1 = 250 cm)

Radius(cm) Bubnov-Galerkin Numerical Exact
N = 5 N = 10 N = 15

53.00 0.9550 1.0294 1.0498 1.0617 1.0625
81.14 5.5728 5.4706 5.4624 5.4641 5.4648

109.29 8.4237 8.3121 8.3010 8.2997 8.3004
137.43 10.2528 10.2243 10.2335 10.2309 10.2316
165.57 11.7036 11.5359 11.5478 11.5445 11.5452
193.71 12.4921 12.3927 12.3948 12.3910 12.3917
211.86 12.9448 12.8559 12.8634 12.8592 12.8599
250.00 13.1844 12.9938 13.0104 13.0060 13.0067
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CHAPTER 4

EXACT SOLUTION OF TRANSIENT HEAT TRANSFER

EQUATION IN CYLINDRICAL MULTILAYERED ANNULUS

4.1 Introduction

An exact solution for time dependent heat transfer in cylindrical multilayered annulus is pre-

sented. Separation of variables method has been used to investigate the temperature behavior.

An analytical double series relation is presented as a solution for the temperature distribution,

and Fourier coefficients in each layer are obtained by solving some set of equations related

to thermal boundary conditions at inside and outside of the cylinder. Thermal continuity and

heat �ux continuity between each layer is considered, as well. The method of Gauss-Jordan

elimination will be used to solve some set of equations.

4.2 Formulation

Let us consider an n-layer annulus as shown schematically in Fig. 4.1 (r0 6 r 6 rn). All the

layers are assumed to be isotropic in thermal properties and are in perfect thermal contact.

Let ki and αi be the temperature independent thermal conductivity and thermal diffusivity of

the ith layer, respectively. At the initial time t = 0, each ith layer is at a speci�ed temperature

f (i)(r, θ), and time-independent heat sources g(i)(r, θ) are switched on at t = 0. The inner sur-

face (r = r0, i = 1), as well as the outer surface (r = rn, i = n) of the annulus may be subjected

to any combination of temperature and heat-�ux boundary conditions. Since perfect thermal

contact between the adjacent layers is not frequently observed in real materials, dealing with

imperfect contact would require explicit modeling of the thermal resistance at the layer inter-
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Figure 4.1: An n-layer annulus, ith layer of which has an inner and outer radii equal to ri−1
and ri, respectively.

faces [13�15]. Under such circumstances, the temperature at the contact interfaces will not

be continuous.

Under these assumptions; the governing heat transfer equation can be written as (0 6 θ 6 2π,

ri−1 6 r 6 ri ,and t > 0, where i = 1, 2, ..., n);

1
αi

∂T (i)

∂t (r, θ, t) =
1
r
∂

∂r

(
r∂T (i)

∂r (r, θ, t)
)

+
1
r2
∂2T (i)

∂θ2 (r, θ, t) +
g(i)(r, θ)

ki
(4.1)

Boundary conditions are;

∗ Inner surface of the �rst layer (0 6 θ 6 2π and t > 0)

Ain
∂T (1)

∂r (r0, θ, t) + BinT (1)(r0, θ, t) = Cin(θ) (4.2)

∗ Outer surface of the nth layer (0 6 θ 6 2π and t > 0)

Aout
∂T (n)

∂r (rn, θ, t) + BoutT (n)(rn, θ, t) = Cout(θ) (4.3)
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∗ Interface of the (i − 1)st and the ith layer (0 6 θ 6 2π and t > 0, where i = 2, ..., n);

T (i)(ri−1, θ, t) = T (i−1)(ri−1, θ, t) (4.4)

ki
∂T (i)

∂r (ri−1, θ, t) = ki−1
∂T (i−1)

∂r (ri−1, θ, t) (4.5)

∗ Periodic boundary conditions (ri−1 6 r 6 ri, t > 0, where i = 1, 2, ..., n)

T (i)(r, θ = 0, t) = T (i)(r, θ = 2π, t) (4.6)
∂T (i)

∂θ
(r, θ = 0, t) =

∂T (i)

∂θ
(r, θ = 2π, t) (4.7)

∗ Initial condition (ri−1 6 r 6 ri, 0 6 θ 6 2π, where i = 1, 2, ..., n);

T (i)(r, θ, t = 0) = f (i)(r, θ) (4.8)

Boundary conditions may be imposed at r = r0 and r = rn by choosing the appropriate

coefficients in Eq. (4.2) and Eq. (4.3). In addition, multiple layers with zero inner radius

(r0 = 0) can be simulated by assigning zero values to constants B(in) and C(in) in Eq. (4.2).

Due to the limitation of the separation of variables method, the formulation presented in this

paper only applies to time independent boundary conditions and/or source terms; the solution

methodology presented here can not be extended to include the time dependence in boundary

conditions and/or sources. Such problems can be solved analytically using the �nite integral

transform technique [16, 17].

4.3 Solution Method

In order to apply the separation of variables method, which is only applicable to homoge-

nous problems, the nonhomogeneous problem has to be split into homogenous transient part

and nonhomogeneous steady-state part. This is done by splitting transient temperature in

governing equations Eqs. (4.1-4.8) as

T (i)(r, θ, t) = T (i)
ss (r, θ) + �T (i)(r, θ, t) (4.9)

where T (i)
ss (r, θ) is the steady-state part and �T (i)(r, θ, t) is the �complementary� transient part of

the solution.
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4.3.1 Inhomogeneous Steady State Part

Inhomogeneous steady-state equations corresponding to Eqs. (4.1-4.8) are as follows:

∗ Governing equation (ri−1 6 r 6 ri, 0 6 θ 6 2π, where i = 1, 2, ..., n);

1
r
∂

∂r

r∂T (i)
ss

∂r (r, θ)
 +

1
r2
∂2T (i)

ss
∂θ2 (r, θ) +

g(i)(r, θ)
ki

(4.10)

Boundary conditions are;

∗ Inner surface of the �rst layer (0 6 θ 6 2π)

Ain
∂T (1)

ss
∂r (r0, θ) + BinT (1)

ss (r0, θ) = Cin(θ) (4.11)

∗ Outer surface of the nth layer (0 6 θ 6 2π)

Aout
∂T (n)

ss
∂r (rn, θ) + BoutT (n)

ss (rn, θ) = Cout(θ) (4.12)

∗ Periodic boundary conditions (ri−1 6 r 6 ri, where i = 1, 2, ..., n);

T (i)
ss (r, θ = 0) = T (i)

ss (r, θ = 2π) (4.13)
∂T (i)

ss
∂θ

(r, θ = 0) =
∂T (i)

ss
∂θ

(r, θ = 2π) (4.14)

∗ Interface of the (i − 1)st and the ith layer (0 6 θ 6 2π, where i = 1, 2, ..., n)

T (i)
ss (ri−1, θ) = T (i−1)

ss (ri−1, θ) (4.15)

ki
∂T (i)

ss
∂r (ri−1, θ) = ki−1

∂T (i−1)
ss
∂r (ri−1, θ) (4.16)

4.3.2 Homogenous (Complementary) Transient Part

Homogeneous complementary transient equations corresponding to Eqs. (4.1-4.8) are as fol-

lows:

∗ Governing equation (ri−1 6 r 6 ri, 0 6 θ 6 2π and t > 0, where i = 1, 2, ..., n);

1
αi

∂ �T (i)

∂t (r, θ, t) =
1
r
∂

∂r

(
r∂

�T (i)

∂r (r, θ, t)
)

+
1
r2
∂2 �T (i)

∂θ2 (r, θ, t) (4.17)

Boundary conditions are;
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∗ Inner surface of the �rst layer (0 6 θ 6 2π and t > 0)

Ain
∂ �T (1)

∂r (r0, θ, t) + Bin �T (1)(r0, θ, t) = 0 (4.18)

∗ Outer surface of the nth layer (0 6 θ 6 2π and t > 0)

Aout
∂ �T (n)

∂r (rn, θ, t) + Bout �T (n)(rn, θ, t) = 0 (4.19)

∗ Periodic boundary conditions (ri−1 6 r 6 ri, and t > 0), where i = 1, 2, ..., n)

�T (i)(r, θ = 0, t) = �T (i)(r, θ = 2π, t) (4.20)

∂ �T (i)

∂θ
(r, θ = 0, t) =

∂ �T (i)

∂θ
(r, θ = 2π, t) (4.21)

∗ Interface of the (i − 1)st and the ith layer (0 6 θ 6 2π, and t > 0, where i = 1, 2, ..., n)

�T (i)(ri−1, θ, t) = �T (i−1)(ri−1, θ, t) (4.22)

ki
∂ �T (i)

∂r (ri−1, θ, t) = ki−1
∂ �T (i−1)

∂r (ri−1, θ, t) (4.23)

∗ Initial condition (ri−1 6 r 6 ri, 0 6 θ 6 2π, where i = 1, 2, ..., n)

�T (i)(r, θ, t = 0) = f (i)(r, θ) − T (i)
ss (r, θ) (4.24)

4.4 Solution to the Inhomogeneous Steady-State Part

Eigenfunction expansion method is used to solve the inhomogeneous steady-state problem

[5]. The steady-state temperature distribution governed by Eq. (4.10) can be written as a

generalized Fourier series in terms its angular eigenfunctions [22];

T (i)
ss (r, θ) = T (i)

0 (r) +

∞∑

m=1
T (i)

c,m(r) cos(mθ) +

∞∑

m=1
T (i)

s,m(r) sin(mθ) (4.25)

where ri−1 6 r 6 ri and 1 6 i 6 n.

The source term g(i)(r) of Eq. (4.10) can also be expanded in a generalized Fourier series as

g(i)(r, θ) = g(i)
0 (r) +

∞∑

m=1
g(i)

c,m(r) cos(mθ) +

∞∑

m=1
g(i)

s,m(r) sin(mθ) (4.26)

where

g(i)
0 (r) =

1
2π

2π∫

0

g(i)(r, θ)dθ (4.27)
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g(i)
c,m(r) =

1
π

2π∫

0

g(i)(r, θ) cos(mθ)dθ (4.28)

g(i)
s,m(r) =

1
π

2π∫

0

g(i)(r, θ) sin(mθ)dθ (4.29)

Substituting Eq. (4.25) and Eq. (4.26) into Eq. (4.10) gives

1
r

d
dr (r

dT (i)
0 (r)
dr ) +

g(i)
0 (r)
ki

= 0 (4.30)

1
r

d
dr (r

dT (i)
c,m(r)
dr ) − m2

r2 T (i)
c,m(r) +

g(i)
c,m(r)
ki

= 0 (4.31)

1
r

d
dr (r

dT (i)
s,m(r)
dr ) − m2

r2 T (i)
s,m(r) +

g(i)
s,m(r)
ki

= 0 (4.32)

Cin(θ) and Cout(θ) in Eq. (4.11) and Eq. (4.12) can similarly be expanded in generalized

Fourier series to give us boundary conditions for ordinary differential equations in Eqs. (4.30-

4.32).

Eq. (4.31) and Eq. (4.32) are Euler equations, the solutions of which can be written as

T (i)
c,m(r) = A(i)

c,mrm + B(i)
c,mr−m + fcp(r) (4.33)

T (i)
s,m(r) = A(i)

s,mrm + B(i)
s,mr−m + fsp(r) (4.34)

where fcp(r) and fsp(r) are particular integrals which can be evaluated by applying the method

of undetermined coefficients, or the method of variation of parameters. The constants A(i)
c,m,

B(i)
c,m, A(i)

s,m, B(i)
s,m can be evaluated using boundary and interface conditions for T (i)

c,m(r) and

T (i)
s,m(r). The solutions for T (i)

0 (r) are easily found once g(i)
0 (r) are determined.

4.5 Solution to Homogeneous Transient Part

Transient part is solved using the separation of variables method. Transient temperature can

be written as;
�T (i)(r, θ, t) = R(i)(r) Θ(θ) Γ(i)(t) (4.35)

Applying the separation of variables:
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For radial directions
1
r
∂

∂r (r∂R(i)(r)
∂r ) + (λ2

i −
m2

r2 )R(i)(r) = 0 (4.36)

in the range ri−1 6 r 6 ri, and where i = 1, 2, ..., n.

On the other hand, in between 0 6 θ 6 2π

∂2Θ

∂θ2 + m2Θ(θ) = 0 (4.37)

Finally
1
αi

∂Γ(i)(t)
∂t + λ2

i Γ(i)(t) = 0 (4.38)

where λ2
i are constants of separation.

In the view of these three ODE's given above, we are lead to a general solution for Eq. (4.17)

as

�T (i)(r, θ, t) =

∞∑

p=1
C0pe−αiλ2

i0ptR(i)
0p(λi0pr)

+

∞∑

m=1

∞∑

p=1
Dmpe−αiλ2

imptR(i)
mp(λimpr) cos(mθ)

+

∞∑

m=1

∞∑

p=1
Empe−αiλ2

imptR(i)
mp(λimpr) sin(mθ) (4.39)

where continuity of the heat-�ux at the layer interfaces is expressed by the following expres-

sion [16, 18�20].

λimp = λ1mp

√
α1
αi

(4.40)

where i = 1, 2, ..., n.

The radial (transverse) eigenfunction R(i)
mp in Eq. (4.39) is in the form

R(i)
mp(λimpr) = aimpJm(λimpr) + bimpNm(λimpr) (4.41)

where Jm(λimpr) and Nm(λimpr) are Bessel functions of the �rst and second kind of order m,

respectively. The corresponding orthogonality condition for Rmp is (see Appendix A.2)

n∑

i=1

ki
αi

ri∫

ri−1

rR(i)
mp(λimpr)R(i)

mq(λimqr)dr =


Nrmp p = q

0 p , q
(4.42)

where Nrmp is the normalization integral in the radial direction [21]. Standard orthogonality

condition is valid for the angular eigenfunctions Θm(θ). [16]
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Coefficients Cop, Dmp, and Emp in Eq. (4.39) are evaluated by applying the initial condition

Eq. (4.24), and then making use of the orthogonality conditions in the radial and angular

directions. (see Appendix A.1). Hence we get;

C0p =
1

2πNr0p

n∑

i=1

ki
αi

2π∫

0

ri∫

ri−1

rR(i)
0p(λi0pr) �T (i)(r, θ, t = 0)drdθ (4.43)

Dmp =
1

πNrmp

n∑

i=1

ki
αi

2π∫

0

ri∫

ri−1

rR(i)
mp(λimpr) �T (i)(r, θ, t = 0) cos(mθ)drdθ (4.44)

Emp =
1

πNrmp

n∑

i=1

ki
αi

2π∫

0

ri∫

ri−1

rR(i)
mp(λimpr) �T (i)(r, θ, t = 0) sin(mθ)drdθ (4.45)

Using the ith interface condition, coefficients aimp and bimp in Eq. (4.41) are evaluated from

the recurrence relationship (see Appendix A.3 for proof)

ai+1,mp

bi+1,mp

 =


Jm(λi+1,mpri) Nm(λi+1,mpri)

ki+1J′m(λi+1,mpri) ki+1N′m(λi+1,mpri)



−1 
Jm(λimpri) Nm(λimpri)

kiJ′m(λimpri) kiN′m(λimpri)




aimp

bimp

 (4.46)

where i=1,2,...,n-1, and also

b1mp = −C1in
C2in

a1mp (4.47)

valid for arbitrary a1mp.

4.6 Illustrative example: three-layer system

Now, we will �nd the transient temperature pro�le of a three layer annulus, with r0 6 r 6 r3,

0 6 θ 6 2π and 1 6 i 6 3. See Fig. 4.2; each layer has a different thermal diffusivity (αi) and

thermal conductivity (ki). The lower-half of the annulus where π 6 θ 6 2π is kept insulated,

while the upper-half (0 6 θ 6 π) is subjected to a θ-dependent heat-�ux. The system is

initially at a uniform zero temperature at t = 0, which means f (i)(r, θ) = 0 in Eq. (4.8) and

Eq. (4.24). For t > 0 heat �ux is given as

q′′(r = r3, θ) =


q0 sin(θ) for 0 6 θ 6 π

0 for π 6 θ 6 2π
(4.48)

is applied towards the outer surface (r = r3), while the inner surface (r = r0) is constantly kept

at zero temperature. These conditions lead us to de�ne the relevant coefficients as Ain = 0,

Bin = 1, Cin(θ) = 0, Aout = k3, Bout = 0, and Cout(θ) = q′′(r = r3, θ) in the boundary condition
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equations Eq. (4.11) and Eq. (4.12). We assume that there is no heat generation in any of the

layers, which means g(i)(r, θ) = 0.

We arbitrarily choose the parameter values in this example as k2/k1 = 2, k3/k1 = 4, α2/α1 = 4,

α3/α1 = 9, r1/r0 = 2, r2/r0 = 4, and r3/r0 = 6.

In the results that follow; r, t, and T (i)(r, θ, t) are expressed in terms of r0, r2
0/α1, and, q0r0/k1,

respectively.

For this particular example, the in�nite series solution for the complementary transient tem-
perature �T (i)(r, θ, t) is truncated at m = 10 and p = 10.

Figure 4.2: Three layer annulus.
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4.6.1 Solution to steady-state part for three-layer system

Since the heat generation term g(i)(r, θ) is assumed to be zero, the term g(i)
0 (r) in Eq. (4.30) is

zero, as well. Then, the solution to this equation is straightforward, which is

T (i)
0 (r) = Ci0 ln(r) + Ci (4.49)

The heat generation terms in Euler equations Eq. (4.31) and Eq. (4.32) are also zero. Solu-

tions to these homogeneous equations are written as

T (i)
c,m(r) = A(i)

c,mrm + B(i)
c,mr−m (4.50)

T (i)
s,m(r) = A(i)

s,mrm + B(i)
s,mr−m (4.51)

Using three results above in the eigenfunction expansion, the steady-state temperature distri-

bution in Eq. (4.25) is written as

T (i)
ss (r, θ) = Ci0 ln(r) + Ci +

∞∑

m=1

[
A(i)

c,mrm + B(i)
c,mr−m]

cos(mθ)

+

∞∑

m=1

[
A(i)

s,mrm + B(i)
s,mr−m]

sin(mθ) (4.52)

We may de�ne a new function as another solution to Eq. (4.10); Instead of T (i)
ss (r, θ),

Γ
(i)
ss(r, θ) = T (i)

ss (r, θ) − T (1)
ss (r0, θ) (4.53)

is also a solution to Eq. (4.10), as T (1)
ss (r0, θ) = 0 in Eq. (4.11). Alternatively we may write

Γ
(i)
ss(r, θ) = Ci0 ln(r) + Ci +

∞∑

m=1

[
A(i)

c,mrm + B(i)
c,mr−m]

cos(mθ)

+

∞∑

m=1

[
A(i)

s,mrm + B(i)
s,mr−m]

sin(mθ) (4.54)

Introducing unitless temperature written in terms of (q0r0/k1) , and writing r in terms or r0

�Γ(i)
ss( r

r0
, θ) = �Ci0 ln

(
r
r0

)
+ �Ci +

∞∑

m=1

[
�A(i)

c,m

(
r
r0

)m
+ �B(i)

c,m

(
r
r0

)−m]
cos(mθ)

+

∞∑

m=1

[
�A(i)

s,m

(
r
r0

)m
+ �B(i)

s,m

(
r
r0

)−m]
sin(mθ) (4.55)

where �Γ(i)
ss( r

r0
, θ) = Γ

(i)
ss( r

r0
, θ)/(q0r0/k1) ...and etc.
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Since T (1)
ss (r0, θ) = 0, Cin(θ) = 0 in Eq. (4.11). This means Γ

(1)
ss (1, θ) = 0. Then

�C10 = unknown for now (4.56)

�C1 = 0 (4.57)
[
A(1)

c,mrm + B(1)
c,mr−m]

= 0 (4.58)
[
A(1)

s,mrm + B(1)
s,mr−m]

= 0 (4.59)

Noting that �T (i)
ss = �Γ(i)

ss(r, θ) + �T (1)
ss (r0, θ) and inserting this into Eq. (4.15) (interface condition)

for i = 2, 3;
�Ci0 ln

(
ri−1
r0

)
+ �Ci = �Ci−1,0 ln

(
ri−1
r0

)
+ �Ci−1 (4.60)

�A(i)
c,m

(
ri−1
r0

)m
+ �B(i)

c,m

(
ri−1
r0

)−m
− �A(i−1)

c,m

(
ri−1
r0

)m
− �B(i−1)

c,m

(
ri−1
r0

)−m
= 0 (4.61)

�A(i)
s,m

(
ri−1
r0

)m
+ �B(i)

s,m

(
ri−1
r0

)−m
− �A(i−1)

s,m

(
ri−1
r0

)m
− �B(i−1)

s,m

(
ri−1
r0

)−m
= 0 (4.62)

Inserting �T (i)
ss this time into Eq. (4.16) (interface condition) for i = 2, 3;

�ki �Ci0 = �ki−1 �Ci−1,0 (4.63)

�ki �A(i)
c,m

(
ri−1
r0

)m−1
− �ki �B(i)

c,m

(
ri−1
r0

)−m−1
− �ki−1 �A(i−1)

c,m

(
ri−1
r0

)m−1
+ �ki−1 �B(i−1)

c,m

(
ri−1
r0

)−m−1
= 0 (4.64)

�ki �A(i)
s,m

(
ri−1
r0

)m−1
− �ki �B(i)

s,m

(
ri−1
r0

)−m−1
− �ki−1 �A(i−1)

s,m

(
ri−1
r0

)m−1
+ �ki−1 �B(i−1)

s,m

(
ri−1
r0

)−m−1
= 0 (4.65)

On the other hand, Eq. (4.12) turns into

(
k3
k1

)
∂ �Γ(3)

ss ( r3
r0
, θ)

∂( r
r0

) = sin(θ) (4.66)

Integrating both sides of this equation with
2Π∫
0

cos(nθ)dθ,
2Π∫
0

sin(nθ)dθ and
2Π∫
0

dθ, we get

�A(3)
c,m

(
r3
r0

)m−1
− �B(3)

c,m

(
r3
r0

)−m−1
=

(−1)m+1 − 1
π k3

k1
m(m2 − 1)

(4.67)

where m=1,2,3. Also we get

�A(3)
s,m

(
r3
r0

)m−1
− �B(3)

s,m

(
r3
r0

)−m−1
=



1
2 k3

k1

for m = 1

0 for m > 1
(4.68)
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and thirdly

�C30 = 2 (4.69)

If we organize everything we found through Eqs. (4.56-4.69), we obtain;

�C1 = 0 (4.70)

�C30 = 2 (4.71)

�C10 = �k2 �C20 (4.72)

�k2 �C20 = �k3 �C30 (4.73)

�C20 ln
(
r1
r0

)
+ �C2 = �C10 ln

(
r1
r0

)
(4.74)

�C30 ln
(
r2
r0

)
+ �C3 = �C20 ln

(
r2
r0

)
+ �C2 (4.75)

There are six equations with six unknowns above. Hence, this system of equations is solvable.

We also obtain the following matrix relation



1 1 0 0 0 0

(1 + k2
k1

)( r1
r0

)m ( k2
k1
− 1)( r1

r0
)−m −2 k2

k1
( r1

r0
)m 0 0 0

0 2( r1
r0

)−m ( k2
k1
− 1)( r1

r0
)m −(1 + k2

k1
)( r1

r0
)−m 0 0

0 0 (1 +
k3
k2

)( r2
r0

)m ( k3
k2
− 1)( r2

r0
)−m −2 k3

k2
( r2

r0
)m 0

0 0 0 2( r2
r0

)−m ( k3
k2
− 1)( r2

r0
)m −(1 +

k3
k2

)( r2
r0

)−m

0 0 0 0 ( r3
r0

)m−1 −( r3
r0

)−m−1



x



�A(1)
c,m

�B(1)
c,m

�A(2)
c,m

�B(2)
c,m

�A(3)
c,m

�B(3)
c,m



=



0

0

0

0

0

Ω



(4.76)
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where Ω =
(−1)m+1−1
π

k3
k1

m(m2−1)
and i = 1, 2, 3.



1 1 0 0 0 0

(1 +
k2
k1

)( r1
r0

)m ( k2
k1
− 1)( r1

r0
)−m −2 k2

k1
( r1

r0
)m 0 0 0

0 2( r1
r0

)−m ( k2
k1
− 1)( r1

r0
)m −(1 +

k2
k1

)( r1
r0

)−m 0 0

0 0 (1 +
k3
k2

)( r2
r0

)m ( k3
k2
− 1)( r2

r0
)−m −2 k3

k2
( r2

r0
)m 0

0 0 0 2( r2
r0

)−m ( k3
k2
− 1)( r2

r0
)m −(1 +

k3
k2

)( r2
r0

)−m

0 0 0 0 ( r3
r0

)m−1 −( r3
r0

)−m−1



x



�A(1)
s,m

�B(1)
s,m

�A(2)
s,m

�B(2)
s,m

�A(3)
s,m

�B(3)
s,m



=



0

0

0

0

0

∆



(4.77)

where

∆ =



1
2 k3

k1

if m = 1

0 if m > 1
(4.78)

and i = 1, 2, 3.

Eqs. (4.70-4.77) allow us to �nd all coefficients of Eq. (4.55).

By using the method of Gauss-Jordon elimination (simply row reduction), or LU factorization,

these solutions can be obtained for matrices Eq. (4.76) and Eq. (4.77). Solving these systems

by using the method of Gauss-Jordon elimination (in general for 1 ≤ i ≤ nL), we obtain;



τ1 ν1 0 0 0 · · · 0 0

φ1 τ2 ν2 0 0 · · · 0 0

0 φ2 τ3 ν3 0 · · · 0 0

0 0 φ3 τ4 ν4
. . . 0 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . φ2nL−3 τ2nL−2 ν2nL−2 0

0 0 . . .
. . .

. . . φ2nL−2 τ2nL−1 ν2nL−1

0 0 · · · 0 0 0 φ2nL−1 τ2nL





�A(1)
c,m

�B(1)
c,m

�A(2)
c,m

�B(2)
c,m
...

�B(nL−1)
c,m

�A(nL)
c,m

�B(nL)
c,m



=



0

0

0

0
...
...

0

Ω



(4.79)
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

τ1 ν1 0 0 0 · · · 0 0

φ1 τ2 ν2 0 0 · · · 0 0

0 φ2 τ3 ν3 0 · · · 0 0

0 0 φ3 τ4 ν4
. . . 0 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . φ2nL−3 τ2nL−2 ν2nL−2 0

0 0 . . .
. . .

. . . φ2nL−2 τ2nL−1 ν2nL−1

0 0 · · · 0 0 0 φ2nL−1 τ2nL





�A(1)
s,m

�B(1)
s,m

�A(2)
s,m

�B(2)
s,m
...

�B(nL−1)
s,m

�A(nL)
s,m

�B(nL)
s,m



=



0

0

0

0
...
...

0

∆



(4.80)

where the coefficients are found as

�A(i)
c,m =

(−1)m+2 + 1
π

knL
k1

m(m2 − 1)

2nL−1∏

`=2i−1
ν`

2nL∏

`=2i−1
ψ`

=
(−1)m+2 + 1
π

knL
k1

m(m2 − 1)
1

ψ2nL

2nL−1∏

`=2i−1

ν`
ψ`

(4.81)

�B(i)
c,m =

(−1)m+1 − 1
π

knL
k1

m(m2 − 1)

2nL−1∏

`=2i
ν`

2nL∏

`=2i
ψ`

=
(−1)m+1 − 1
π

knL
k1

m(m2 − 1)
1

ψ2nL

2nL−1∏

`=2i

ν`
ψ`

(4.82)

�A(i)
s,1 = − 1

2 knL
k1

2nL−1∏

`=2i−1
ν`

2nL∏

`=2i−1
ψ`

= − 1
2 knL

k1

1
ψ2nL

2nL−1∏

`=2i−1

ν`
ψ`

(4.83)

�B(i)
s,1 =

1
2 knL

k1

2nL−1∏

`=2i
ν`

2nL∏

`=2i
ψ`

=
1

2 knL
k1

1
ψ2nL

2nL−1∏

`=2i

ν`
ψ`

(4.84)

�A(i)
s,m = 0 and �B(i)

s,m = 0 for m > 1 (4.85)
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for 1 ≤ j ≤ nL − 1, where

ν1 = 1 (4.86)

ν2 j = −2
k j+1
k j

( r j
r0

)m
(4.87)

ν2 j+1 = −
(
1 +

k j+1
k j

) ( r j
r0

)−m
(4.88)

ψ1 = 1 (4.89)

ψ j+1 = τ j+1 −
φ j ν j
ψ j

(4.90)

τ1 = 1 (4.91)

τ2 j =

(k j+1
k j
− 1

) ( r j
r0

)−m
(4.92)

τ2 j+1 =

(k j+1
k j
− 1

) ( r j
r0

)m
(4.93)

τ2nL = −
(rnL

r0

)−m−1
(4.94)

φ2 j−1 =

(
1 +

k j+1
k j

) ( r j
r0

)m
(4.95)

φ2 j = 2
( r j
r0

)−m
(4.96)

φ2nL−1 =

(rnL

r0

)m−1
(4.97)

Ω =
(−1)m+1 − 1
π

knL
k1

m(m2 − 1)
(4.98)

∆ =



1
2 knL

k1

m = 1

0 m > 1
(4.99)

Using these relations, we can �nd all the coefficients in Eq. (4.55), hence we can calculate

steady-state temperature for each layer.

4.6.2 Solution to transient part for three-layer system

Now that we found the steady-state solution, we are ready to continue with the transient

solution and �nally, we should add the two results in order to get the resultant temperature.

Since f (i)(r, θ) = 0 in Eq. (4.24), what we found is actually the unitless transient temperature

at t = 0, cause Eq. (4.24) now becomes

�T (i)(r, θ, t = 0) = −T (i)
ss (r, θ) (4.100)
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Initial transient temperature is used to �nd the coefficients C0p, Dmp and Emp in Eqs. (4.43-

4.45), which will then be used in Eq. (4.39). In order to obtain (4.39) as whole, we should

also �nd λ1mp and write it in terms of λimp by using Eq. (4.40). We should also �nd radial

transverse eigenfunctions R(i)
mp(λimp) by using Eq. (4.41). Coefficients of radial transverse

eigenfunctions aimp and bimp are found using Eq. (4.46) in Section 4.6.2.2 .

4.6.2.1 Finding the normalization integral Nrmp

Normalization integral Nrmp that appears in Eq. (4.42) is found as (see Appendix A.4);

Nrmp =


k1r2

0
α1


3∑

i=1

�N(i)
rmp (4.101)

where

�N(i)
rmp =


ki
k1
αi
α1


�ri∫

�ri−1

�r
(
R(i)

mp(�λimp �r)
)2 d(�r) (4.102)

is a unitless integral to be found for each ith layer, and where �r = r/r0 and �λimp = λimpr0 are

unitless variables.

4.6.2.2 Finding aimp and bimp

There are 2 interfaces for 3 layers. For each interface, application of Eq. (4.18) for i = 1, 2

gives us a2mp, b2mp, a3mp and b3mp. Note that a1mp is arbitrary; so b1mp is found using the

relation

b1mp = −C1in
C2in

a1mp (4.103)

where C1in and C2in can be found by application of R(i)
mp(λimp) in Eq. (4.41), to Eq. (4.18);

then

C1in = Ain
∂

∂r Jm(λ1mpr0) + BinJm(λ1mpr0) (4.104)

C2in = Ain
∂

∂r Nm(λ1mpr0) + BinNm(λ1mpr0) (4.105)

where Ain = 0, Bin = 1 for our system. Thus

C1in = Jm(λ1mpr0), C2in = Nm(λ1mpr0) (4.106)

for three-layer system.
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4.6.2.3 Finding λimp terms

Application of the boundary condition equations Eqs. (4.18-4.19) and interface condition

equations Eqs. (4.22-4.23) to the transverse eigenfunction R(i)
mp yields a 2nLx2nL matrix for

each integer value of m. Transverse eigencondition is obtained by setting the determinant of

this matrix equal to zero, roots of which, in turn, yield the in�nite number of eigenvalues

λ1mp corresponding to the �rst layer for each integer value of m. For three layers, the matrix

is found as


C1in C2in 0 0 0 0

−Jm(λ1mpr1) −Nm(λ1mpr1) Jm(λ2mpr1) Nm(λ2mpr1) 0 0

−k1J′m(λ1mpr1)−k1N′m(λ1mpr1) k2J′m(λ2mpr1) k2N′m(λ2mpr1) 0 0

0 0 −Jm(λ2mpr2) −Nm(λ2mpr2) Jm(λ3mpr2) Nm(λ3mpr2)

0 0 −k2J′m(λ2mpr2)−k2N′m(λ2mpr2) k3J′m(λ3mpr2) k3N′m(λ3mpr2)

0 0 0 0 C1out C2out



x



a1mp

b1mp

a2mp

b2mp

a3mp

b3mp



=



0

0

0

0

0

0



(4.107)

where C1out and C2out can be found by application of R(i)
mp(λimp) in Eq. (4.41), to Eq. (4.19);

so

C1out = Aout
∂

∂r Jm(λnL,mprnL) + Bout Jm(λnL,mprnL) (4.108)

C2out = Aout
∂

∂r Nm(λnL,mprnL) + BinNm(λnL,mprnL) (4.109)

where Aout = k3, Bout = 0 and nL = 3 for the system we chose. Thus

C1out = k3
∂

∂r Jm(λ3mpr3), C2out = k3
∂

∂r Nm(λ3mpr3) (4.110)

Inserting C1in and C2in from Eq. (4.106), C1out and C2out from Eq. (4.110), recalling �r = r
r0

,
d
dr = 1

r0
d
d�r , �λ = λr0, and remembering that we should write ki in terms of k1, we can write the
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determinant of this matrix equation as



Jm(�λ1mp) Nm(�λ1mp) 0 0 0 0
−Jm(�λ1mp �r1) −Nm(�λ1mp �r1) Jm(�λ2mp �r1) Nm(�λ2mp �r1) 0 0
− d

d�r Jm(�λ1mp �r1) − d
d�r Nm(�λ1mp �r1) k2

k1
d
d�r Jm(�λ2mp �r1) k2

k1
d
d�r Nm(�λ2mp �r1) 0 0

0 0 −Jm(�λ2mp �r2) −Nm(�λ2mp �r2) Jm(�λ3mp �r2) Nm(�λ3mp �r2)
0 0 − k2

k1
d
d�r Jm(�λ2mp �r2) − k2

k1
d
d�r Nm(�λ2mp �r2) k3

k1
d
d�r Jm(�λ3mp �r2) k3

k1
d
d�r Nm(�λ3mp �r2)

0 0 0 0 k3
k1

d
d�r Jm(�λ3mp �r3) k3

k1
d
d�r Nm(�λ3mp �r3)



In order to �nd the values of λ1mp, we should write every �λimp in terms of �λ1mp in this matrix.
Hence we obtain



Jm(�λ1mp) Nm(�λ1mp) 0 0 0 0

−Jm(�λ1mp �r1) −Nm(�λ1mp �r1) Jm(�λ1mp

√
α1
α2

�r1) Nm(�λ1mp

√
α1
α2

�r1) 0 0

− d
d�r Jm(�λ1mp �r1)− d

d�r Nm(�λ1mp �r1) k2
k1

d
d�r Jm(�λ1mp

√
α1
α2

�r1) k2
k1

d
d�r Nm(�λ1mp

√
α1
α2

�r1) 0 0

0 0 −Jm(�λ1mp

√
α1
α2

�r2) −Nm(�λ1mp

√
α1
α2

�r2) Jm(�λ1mp

√
α1
α3

�r2) Nm(�λ1mp

√
α1
α3

�r2)

0 0 − k2
k1

d
d�r Jm(�λ1mp

√
α1
α2

�r2)− k2
k1

d
d�r Nm(�λ1mp

√
α1
α2

�r2)k3
k1

d
d�r Jm(�λ1mp

√
α1
α3

�r2)k3
k1

d
d�r Nm(�λ1mp

√
α1
α3

�r2)

0 0 0 0 k3
k1

d
d�r Jm(�λ1mp

√
α1
α3

�r3)k3
k1

d
d�r Nm(�λ1mp

√
α1
α3

�r3)



Making the determinant of this matrix equal to zero gives us in�nitely many λ1mp roots for

each m and p.

4.7 Calculations and Results

We are ready to �nd temperature distribution for our system. Isotherms in three-layer annulus

are shown in Fig. 4.3. Maximum temperatures on the outer part of the cylinder (r = r3) are

located around θ = π/2, and minimum temperatures around θ = 3π/2, as expected. Dis-

continuities on the temperature slopes on the interfaces indicate that each layer has different

thermal properties.

Radial temperature variations at some different angular positions (θ = 0, θ = π/2, and θ =

3π/2) are given in Fig. 4.4. At any radius and time (r, t), minimum temperatures are observed

at θ = 3π/2), and maximum temperatures at θ = π/2). This is an expected result, since the

heat-�ux applied above the system has its maximum at θ = π/2).
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Figure 4.3: Transient isotherms in three-layer annulus: a) t=5, b) t=10, c) t=15,
d) steady-state
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Figure 4.4: Transient temperature variation in the radial direction at a) θ = 0, b) θ = π/2, c)
θ = 3π/2.
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CHAPTER 5

CONCLUSIONS

Heat equation is solved [7] using separation of variables method in which we split the assumed

solution into space and time parts. Space dependent part has a solution which has cosine

and sine trigonometric functions. Here, we eliminated the sine part of the assumed solution

because it does not obey the boundary conditions at hand. So we may conclude that one of

the most appropriate base functions to be offered in Bubnov-Galerkin solution for our system

in this chapter is cos(ωix). We also see that Pn ((cosωix)) is another suitable one.

A cylindrical reactor has been studied analytically using Bubnov-Galerkin method. The prob-

lem is reduced solution of a system of N coupled differential equations strongly nonlinear.

We have applied First kind, Zeroth order Bessel function which has been readily used for

the solution of homogenous, cylindrical heat and mass transfer equation [9, 12]. The results

shown in Table 3.2 and Table 3.3 are coherent with the expectations. The percentage error in

θ changes with the Biot number. However, the value of Biot number does not seem to affect

the convergence pattern. Fig. 3.2 makes this point clear.

Isotherms in three-layer annulus are shown in Fig. 4.3. Maximum temperatures on the outer

part of the cylinder (r = r3) are located around θ = π/2, and minimum temperatures around

θ = 3π/2, as expected. Discontinuities on the temperature slopes on the interfaces indicate

that each layer has different thermal properties. Radial temperature variations at some differ-

ent angular positions (θ = 0, θ = π/2, and θ = 3π/2) are given in Fig. 4.4. At any radius

and time (r, t), minimum temperatures are observed at θ = 3π/2), and maximum temperatures

at θ = π/2). This is an expected result, since the heat-�ux applied above the system has its

maximum at θ = π/2).
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APPENDIX A

Derivations

A.1 Determination of coefficients C0p, Dmp and Emp in Eq. (4.39)

Eq. (4.39) is in the form

�T (i)(r, θ, t) =

∞∑

p=1
C0pe−αiλ2

i0ptR(i)
0p(λi0pr) +

∞∑

m=1

∞∑

p=1
(. . .) cos(mθ) +

∞∑

m=1

∞∑

p=1
(. . .) sin(mθ) (A.1)

Integrating both sides of this equation with
2π∫
0

dθ gives

2π∫

0

�T (i)(r, θ, t)dθ =

2π∫

0

∞∑

p=1
C0pe−αiλ2

i0ptR(i)
0p(λi0pr)dθ (A.2)

= 2π
∞∑

p=1
C0pe−αiλ2

i0ptR(i)
0p(λi0pr) (A.3)

Operating both sides with
n∑

i=1
ki
αi

ri∫
ri−1

rR(i)
0q(λi0qr)dr

n∑

i=1

ki
αi

2π∫

0

ri∫

ri−1

rR(i)
0q(λi0qr) �T (r, θ, t)drdθ = 2π

∞∑

p=1
C0p

n∑

i=1
e−αiλ2

i0pt ki
αi

ri∫

ri−1

rR(i)
0p(λi0pr)R(i)

0q(λi0qr)dr

At initial time (namely, at t = 0) we obtain

n∑

i=1

ki
αi

2π∫

0

ri∫

ri−1

rR(i)
0q(λi0qr) �T (r, θ, t = 0)drdθ = 2π

∞∑

p=1
C0p

n∑

i=1

ki
αi

ri∫

ri−1

rR(i)
0p(λi0pr)R(i)

0q(λi0qr)dr

︸                                     ︷︷                                     ︸
=

{ Nr0p for p = q
0 for p , q

= 2πC0pNr0p

Hence,

C0p =
1

2πNr0p

n∑

i=1

ki
αi

2π∫

0

ri∫

ri−1

rR(i)
0p(λi0pr) �T (r, θ, t = 0)drdθ (A.4)
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which is equal to Eq. 4.43.

In order to �nd Dmp, let's begin with integrating both sides of Eq. (4.39) with
2π∫
0

cos(lθ)dθ

2π∫

0

�T (i)(r, θ, t)cos(lθ)dθ =

∞∑

m=1

∞∑

p=1
Dmpe−αiλ2

imptR(i)
mp(λimpr)

2π∫

0

cos(lθ)cos(mθ)dθ

︸                    ︷︷                    ︸
=

{
π for l = m
0 for l , m

= π

∞∑

p=1
Dmpe−αiλ2

imptR(i)
mp(λimpr)

operating both sides with
n∑

i=1
ki
αi

ri∫
ri−1

rR(i)
mq(λimqr)dr gives

n∑

i=1

ki
αi

2π∫

0

ri∫

ri−1

rR(i)
mq(λimqr) �T (i)(r, θ, t)cos(mθ)drdθ

= π

∞∑

p=1
Dmp

n∑

i=1
e−αiλ2

impt ki
αi

ri∫

ri−1

rR(i)
mq(λimqr)R(i)

mp(λimpr)dr (A.5)

at t = 0, this relation changes into

n∑

i=1

ki
αi

2π∫

0

ri∫

ri−1

rR(i)
mq(λimqr) �T (i)(r, θ, t = 0)cos(lθ)drdθ

= π

∞∑

p=1
Dmp

n∑

i=1

ki
αi

ri∫

ri−1

rR(i)
mq(λimqr)R(i)

mp(λimpr)dr

︸                                        ︷︷                                        ︸
=

{ Nrmp for p = q
0 for p , q

= π

∞∑

p=1
DmpNrmp

Hence we obtain

Dmp =
1

πNrmp

n∑

i=1

ki
αi

2π∫

0

ri∫

ri−1

rR(i)
mp(λimpr) �T (i)(r, θ, t = 0)cos(mθ)drdθ (A.6)

which is equal to Eq. (4.44).

In order to �nd Emp, �rst, we integrate both sides of Eq. (4.39) with
2π∫
0

sin(nθ)dθ), then operate

both sides of the resultant equation with
n∑

i=1
ki
αi

ri∫
ri−1

rR(i)
mq(λimqr)dr and evaluate this equation at

44



t = 0 again. Similar steps lead us to Eq. (4.45), which is;

Emp =
1

πNrmp

n∑

i=1

ki
αi

2π∫

0

ri∫

ri−1

rR(i)
mp(λimpr) �T (i)(r, θ, t = 0) sin(mθ)drdθ

Since we want to �nd the transient temperature of three-layer system in terms of q0r0/k1 (this

term is in Kelvin unit), C0p, Dmp and Emp coefficients in Eqs. (4.43-4.45) should be modi�ed

according to this aim. Note that, these coefficients are in the unit of Kelvin. On the other

hand, unit of ki are W/mK, unit of αi are m2/s, Rimp(λimpr) are unitless functions. Our aim is

to write C0p, Dmp and Emp in terms q0r0/k1, ki in terms of k1 and αi in terms of α1 and r in

terms of r0.

So, let us begin with de�ning �r = r
r0

. Then dr = r0d�r and dr = r0d�r. Let us also de�ne
�λimp = λimpr0. Thus,

(
λimpr

)
= (λimpr0.

r
r0

) = (�λimp �r).

Inserting these variables into Eq.4.43

C0p =
1

2πNr0p


k1r2

0
α1


3∑

i=1

ki
k1
αi
α1

2π∫

0

�ri∫

�ri−1

�rR(i)
0p(�λi0p �r) �T (r0 �r, θ, t = 0)d�rdθ (A.7)

where �Nr0p = Nr0p/(
k1r2

0
α1

) (recall Eq. (A.48)) and �T (r0 �r, θ, t = 0) = T (i)
ss (r0 �r, θ) cause we take

f (i) = 0 in Eq. (4.24) for three-layer system. Hence can we write

C0p = − 1
2π �Nr0p

3∑

i=1

ki
k1
αi
α1

2π∫

0

�ri∫

�ri−1

�rR(i)
0p(�λi0p �r)T (i)

ss (r0 �r, θ)d�rdθ (A.8)

dividing both sides of this relation with q0r0/k1

�C0p = − 1
2π �Nr0p

3∑

i=1

ki
k1
αi
α1

2π∫

0

�ri∫

�ri−1

�rR(i)
0p(�λi0p �r) �T (i)

ss (r0 �r, θ)d�rdθ (A.9)

Applying similar steps to Eqs. (4.44-4.45) gives

�Dmp = − 1
π �Nrmp

3∑

i=1

ki
k1
αi
α1

2π∫

0

�ri∫

�ri−1

�rR(i)
mp(�λimpr) �T (i)

ss (r0 �r, θ)cos(mθ)d�rdθ (A.10)

�Emp = − 1
π �Nrmp

3∑

i=1

ki
k1
αi
α1

2π∫

0

�ri∫

�ri−1

�rR(i)
mp(�λimpr) �T (i)

ss (r0 �r, θ)cos(mθ)d�rdθ (A.11)
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A.2 Orthogonality condition: Eq. (4.42)

Let R(i)
mp and R(i)

mq be transverse eigenfunctions satisfying Eq. (4.36). So

1
r

d
dr

r
dR(i)

mp
dr

 +

(
λ2

imp −
m2

r2

)
R(i)

mp = 0 (A.12)

1
r

d
dr

r
dR(i)

mq
dr

 +

(
λ2

imq −
m2

r2

)
R(i)

mq = 0 (A.13)

Boundary and interface conditions for �T (i)(r, θ, t) (Eqs. (4.18-4.23)) are also valid for trans-

verse eigenfunctions.

Since αiλ2
imp = α1λ2

1mp from Eq. (4.40), we can write

1
r

d
dr

r
dR(i)

mp
dr

 +


α1λ2

1mp
αi

− m2

r2

 R(i)
mp = 0 (A.14)

and similarly
1
r

d
dr

r
dR(i)

mq
dr

 +


α1λ2

1mq
αi

− m2

r2

 R(i)
mq = 0 (A.15)

Multiplying Eq. (A.14) by R(i)
mq and Eq. (A.15) by R(i)

mp and subtracting from each other, we

obtain

R(i)
mq

1
r

d
dr

r
dR(i)

mp
dr

 − R(i)
mp

1
r

d
dr

r
dR(i)

mq
dr

 + α1


λ2

1mp
αi
−
λ2

1mq
αi

 R(i)
mqR(i)

mp = 0 (A.16)

Integrating both sides with
ri∫

ri−1

rdr

ri∫

ri−1

R(i)
mq

d
dr

r
dR(i)

mp
dr


 dr −

ri∫

ri−1

R(i)
mp

d
dr

r
dR(i)

mq
dr


 dr + α1

ri∫

ri−1


λ2

1mp
αi
−
λ2

1mq
αi

 rR(i)
mqR(i)

mpdr = 0

(A.17)

Applying integration by parts twice on the �rst integral in Eq. (A.17)
ri∫

ri−1

R(i)
mq

d
dr

r
dR(i)

mp
dr


 dr =

rR(i)
mq

dR(i)
mp

dr − rR(i)
mp

dR(i)
mq

dr


r=ri

r=ri−1

+

ri∫

ri−1

R(i)
mp

d
dr

r
dR(i)

mq
dr


 dr (A.18)

Substituting Eq. (A.18) in Eq. (A.17), second term in Eq. (A.17) cancels last term in Eq.

(A.18) and we will get
rR(i)

mq
dR(i)

mp
dr − rR(i)

mp
dR(i)

mq
dr


r=ri

r=ri−1

+ α1

ri∫

ri−1


λ2

1mp
αi
−
λ2

1mq
αi

 rR(i)
mqR(i)

mpdr = 0 (A.19)

46



Multiplying Eq. (A.19) by ki and then summing over all i, we obtain

n∑

i=1

kirR(i)
mq

dR(i)
mp

dr − kirR(i)
mp

dR(i)
mq

dr


r=ri

r=ri−1

+

n∑

i=1

α1ki
αi

ri∫

ri−1

(
λ2

1mp − λ2
1mq

)
rR(i)

mqR(i)
mpdr = 0 (A.20)

Applying interface conditions Eq. (4.22) and Eq. (4.23), we get

knrR(n)
mq

dR(n)
mp

dr − knrR(n)
mp

dR(n)
mq

dr


r=rn

−
k1rR(1)

mq
dR(1)

mp
dr − k1rR(1)

mp
dR(1)

mq
dr


r=r0

+

n∑

i=1

α1ki
αi

ri∫

ri−1

(
λ2

1mp − λ2
1mq

)
rR(i)

mqR(i)
mpdr = 0 (A.21)

On the other hand, from the outer layer boundary condition Eq. (4.19), we have
Aout

dR(n)
mp

dr + BoutR(n)
mp


r=rn

= 0 (A.22)

Aout
dR(n)

mq
dr + BoutR(n)

mq


r=rn

= 0 (A.23)

Multiplying Eq. (A.22) by knrnR(n)
mq(r = rn) and Eq. (A.23) by knrnR(n)

mp(r = rn) and subtract-

ing,

Aout

knrR(n)
mq

dR(n)
mp

dr − knrR(n)
mp

dR(n)
mq

dr


r=rn

= 0 (A.24)

Now, consider three different cases;

(a) Aout , 0 and Bout , 0

(b) Aout , 0 and Bout = 0

(c) Aout = 0 and Bout , 0

For cases (a) and (b), Eq. (A.24) reduces to
knrR(n)

mq
dR(n)

mp
dr − knrR(n)

mp
dR(n)

mq
dr


r=rn

= 0 (A.25)

For case (c), Eq. (A.22) and Eq. (A.23) respectively imply that Rnmp(r = rn) = 0 and

Rnmq(r = rn) = 0. Thus, we see that Eq. (A.25) is also true for case (c).

Similarly, we can show that
k1rR(1)

mq
dR(1)

mp
dr − k1rR(1)

mp
dR(1)

mq
dr


r=r0

= 0 (A.26)
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In the view of Eq. (A.25) and Eq. (A.26), Eq. (A.21) gives

(
λ2

1mp − λ2
1mq

) n∑

i=1

α1ki
αi

ri∫

ri−1

rR(i)
mpR(i)

mqdr = 0 (A.27)

For p , q,
(
λ2

1mp − λ2
1mq

)
, 0. Therefore [21]

n∑

i=1

ki
αi

ri∫

ri−1

rR(i)
mpR(i)

mqdr = 0, for p , q (A.28)

Eq. (A.27) implies that, Eq. (A.28) is not necessarily equal to zero for p = q. This explains

the existence of normalization integral Nrmp in Eq. (4.42).

A.3 Recurrence relationship: Eq. (4.46)

From Eqs. (4.4-4.5), for the interface of the (i − 1)st and the ith layer (0 6 θ 6 2π and t > 0,

where i = 2, ..., n), we have;

T (i)(ri−1, θ, t) = T (i−1)(ri−1, θ, t) (A.29)

ki
∂T (i)

∂r (ri−1, θ, t) = ki−1
∂T (i−1)

∂r (ri−1, θ, t) (A.30)

We can alternatively write Eqs. (A.29-A.30) as

T (i+1)(ri, θ, t) = T (i)(ri, θ, t) (A.31)

ki+1
∂T (i+1)

∂r (ri, θ, t) = ki
∂T (i)

∂r (ri, θ, t) (A.32)

where 0 6 θ 6 2π, t > 0, and i = 1, 2, 3, ..., (n − 1). Inserting the radial function R(i)
mp(λimpr)

in Eqs. (A.31-A.32)

R(i+1)
mp (λ(i+1)mpri) = R(i)

mp(λimpri) (A.33)

ki+1
∂R(i+1)

mp
∂r (λ(i+1)mpri) = ki

∂R(i)
mp
∂r (λimpri) (A.34)

where

R(i+1)
mp (λ(i+1)mpr) = a(i+1)mpJm(λ(i+1)mpr) + b(i+1)mpNm(λ(i+1)mpr)

Hence we obtain

a(i+1)mpJm(λ(i+1)mpri) + b(i+1)mpNm(λ(i+1)mpri) = aimpJm(λimpri) + bimpNm(λimpri) (A.35)
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ki+1a(i+1)mpJ′m(λ(i+1)mpri) + ki+1b(i+1)mpN′m(λ(i+1)mpri)

= kiaimpJ′m(λimpri) + kibimpN′m(λimpri) (A.36)

where J′m(λimpri) ≡
(dJm

dr
)
r=ri

and N′m(λimpri) ≡
(dNm

dr
)
r=ri

.

Writing Eqs. (A.35-A.36) in matrix form gives


Jm(λi+1,mpri) Nm(λi+1,mpri)

ki+1J′m(λi+1,mpri) ki+1N′m(λi+1,mpri)




ai+1,mp

bi+1,mp

 =


Jm(λimpri) Nm(λimpri)

kiJ′m(λimpri) kiN′m(λimpri)




aimp

bimp

 (A.37)

where i=1,2,...,n-1. Eq. (A.37) is equal to Eq. (4.46)

A.4 Normalization integral: Eq. (4.101)

Using Eq. (4.42), for the �rst layer (i = 1), we can write

N(1)
rmp =

k1
α1

r1∫

r0

r
(
R(1)

mp
(
λimpr

))2 dr (A.38)

where R(1)
mp is a unitless function. Let us de�ne �r = r

r0
, then r = r0 �r, and dr = r0d�r. Let us also

de�ne �λimp = λimpr0. Thus,
(
λimpr

)
= (λimpr0.

r
r0

) = (�λimp �r). Hence, we can write

N(1)
rmp =

k1
α1

r1/r0∫

1

r0 �r
(
R(1)

mp(�λ1mp �r)
)2 r0d�r (A.39)

=


k1r2

0
α1


r1/r0∫

1

�r
(
R(1)

mp(�λ1mp �r)
)2 d�r

︸                       ︷︷                       ︸
≡ �N(1)

rmp

(A.40)

where �N(1)
rmp is a unitless integral.

For i = 2, we get

N(2)
rmp =

k2
α2

r2∫

r1

r
(
R(2)

mp
(
λ2mpr

))2 dr (A.41)

=
k2
α2

r2/r0∫

r1/r0

r0 �r
(
R(2)

mp(�λ2mp �r)
)2 r0d�r (A.42)

=
k2r2

0
α2

r2/r0∫

r1/r0

�r
(
R(2)

mp(�λ2mp �r)
)2 d�r (A.43)
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Multiplying the last equation above with ( k1
k1
α1
α1

) does not harm the equality

N(2)
rmp =

k2r2
0

α2

(
k1
k1

α1
α1

) r2/r0∫

r1/r0

0 �r
(
R(2)

mp(�λ2mp �r)
)2 d�r (A.44)

=
k1r2

0
α1

(
k2
k1

α1
α2

) r2/r0∫

r1/r0

�r
(
R(2)

mp(�λ2mp �r)
)2 d�r (A.45)

=


k1r2

0
α1




k2
k1
α2
α1


r2/r0∫

r1/r0

�r
(
R(2)

mp(�λ2mp �r)
)2 d�r

︸                               ︷︷                               ︸
≡ �N(2)

rmp

(A.46)

Similar calculation for i=3 gives

N(3)
rmp =


k1r2

0
α1




k3
k1
α3
α1


r3/r0∫

r2/r0

�r
(
R(3)

mp(�λ3mp �r)
)2 d�r

︸                               ︷︷                               ︸
≡ �N(3)

rmp

(A.47)

Comparing Eq. (A.40), Eq. (A.46) and Eq. (A.47), we see that we can use induction method

to generalize the normalization integral for ith layer as

N(i)
rmp =


k1r2

0
α1

 �N(i)
rmp (A.48)

where

�N(i)
rmp =


ki
k1
αi
α1


ri/r0∫

ri−1/r0

�r
(
R(i)

mp(�λimp �r)
)2 d�r (A.49)

Note that, Eq. (A.49) is eqaul to Eq. (4.102).

The normalization constant in radial direction for i = n layers can be found by summing up

the results of Eq. (A.48) found for each n layer. Then;

Nrmp = N(1)
rmp + N(2)

rmp + . . . + N(n)
rmp (A.50)

=


k1r2

0
α1


n∑

i=1

�N(i)
rmp (A.51)

Our illustrative example has three layers. Hence, we take n = 3 in the equation above, which

gives us Eq. (4.101).
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