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February 2012, 74 pages 

 

 

The observability measure based on the mutual information between the last state and the 

measurement sequence originally proposed by Mohler and Hwang (1988) is analyzed in detail 

and improved further for linear time invariant discrete-time Gaussian stochastic systems by 

extending the definition to the observability measure of a state sequence. By using the new 

observability measure it is shown that the unobservable states of the deterministic system have no 

effect on this measure and any observable part with no measurement uncertainty makes it 

infinite. Other distance measures i.e., Bhattacharyya and Hellinger distances are also investigated 

to be used as observability measures. 

 

The relationships between the observability measures and the covariance matrices of Kalman 

filter and the state sequence conditioned on the measurement sequence are derived. Steady state 

characteristics of the observability measure based on the last state is examined. The observability 

measures of a subspace of the state space, an individual state, the modes of the system are 

investigated. One of the results obtained in this part is that the deterministically unobservable 

states may have nonzero observability measures. 

 



 v 

The observability measures based on the mutual information are represented recursively and 

calculated for nonlinear stochastic systems. Then the measures are applied to a nonlinear 

stochastic system by using the particle filter methods. The arguments given for the LTI case are 

also observed for nonlinear stochastic systems. The second moment approximation deviates from 

the actual values when the nonlinearity in the system increases. 

 

Keywords: Stochastic systems, observability measure, mutual information, particle filter, entropy 
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Bu tez kapsamında ilk olarak Mohler ve Hwang (1988) tarafından önerilen son durum vektörü ile 

ölçüm dizisi arasındaki karşılıklı bilgiye dayalı gözlenebilirlik ölçütü detaylıca analiz edilmekte 

ve doğrusal zamandan bağımsız kesikli zamanlı Gauss gürültülü olasılıksal sistemler için son 

durum yerine tüm durum dizisini kullanan gözlenebilirlik ölçütü tanımına genişletilerek 

iyileştirilmektedir. Yeni gözlenebilirlik ölçütü kullanılarak ulaşılan sonuçlar belirli 

(deterministic) sistemin gözlenemeyen durumlarının gözlenebilirlik ölçütünün üzerinde etkisi 

olmadığını ve durum vektörünün ölçüm belirsizliği olmadan gözlenen herhangi bir kısmının 

ölçütü sonsuz yaptığını göstermektedir.  

 

Tezde karşılıklı bilgi dışında diğer mesafe ölçütleri, Bhattacharyya ve Hellinger ölçütleri, de 

gözlenebilirlik ölçütü olarak kullanılmak amacıyla incelenmektedir. 

 

Tez kapsamında gözlenebilirlik ölçütleriyle Kalman süzgeci değişinti matrisi ve ölçüm dizisi 

verildiğinde durum dizisinin değişinti matrisi arasındaki ilişkiler türetilmektedir. Tezde ayrıca 

son duruma dayalı gözlenebilirlik ölçütünün kararlı durum karakteristikleri incelenmektedir. 



 vii 

Olasılıksal sistemlerin herbir durumunun, modlarının ve durum uzayının bir alt uzayının 

gözlenebilirlik ölçütleri önerilen gözlenebilirlik ölçütleri kullanılarak araştırılmaktadır. Bu 

kısımda elde edilen sonuçlardan birisi de belirli olarak gözlenemeyen durumların sıfırdan farklı 

gözlenebilirlik ölçütüne sahip olabilmesidir. 

 

Doğrusal olmayan olasılıksal sistemler için karşılıklı bilgiye dayalı gözlenebilirlik ölçütlerini 

kullanabilmek amacıyla bu ölçütler özyinelemeli olarak gösterilmektedir. Özyinelemeli olarak 

modellenen ölçütler parçacık süzgeçleri kullanılarak doğrusal olmayan sisteme uygulanmaktadır. 

Doğrusal sistemler için türetilen tartışmalar doğrusal olmayan olasılıksal sistemler için de 

gözlenmektedir. Sistemin doğrusal olmaması arttıkça, ikinci moment yaklaştırımı gerçek 

değerlerden uzaklaşmaktadır. 

 

Anahtar Kelimeler: Olasılıksal sistemler, gözlenebilirlik ölçütü, karşılıklı bilgi, parçacık süzgeci, 

dağıntı 
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CHAPTER 1 
 

 

 

INTRODUCTION AND LITERATURE SURVEY 
 

 

 

 

For deterministic systems, observability of a state space representation is generally handled by 

determining the rank conditions of the observability Gramian matrix (Kalman (1960)). The 

output of the process is binary; the system is either completely observable or completely 

unobservable. The process does not give any information about the degree of the observability. 

The aim of this study is to analyze the degree of observability of stochastic systems and to give 

an observability measure for them. 

 

Different measures are proposed as observability measures for either deterministic or stochastic 

systems in the literature (Müller and Weber (1972), Koyaz (2003), Chen et al. (2007), Lindner et 

al. (1989), Kam et al. (1987), Mohler and Hwang (1988), Hamdan and Nayfeh (1989), Porter and 

Crossley (1970)). In this study, the system studied is a stochastic system. The idea is to search 

whether the mutual information can be used as an observability measure of this system or not; 

and to see the effects of any information about the initial states, process and measurement noises 

and system matrices on the observability measure. The mutual information is a special case of 

Kullback-Leibler Distance. So, other distance measures namely Bhattacharyya and Hellinger 

distances are also investigated to be used as observability measures. 

 

Quantitative measures for the observability of deterministic systems are first proposed by Müller 

and Weber (1972). Three observability measures are presented: determinant, trace, and the 

maximum eigenvalue of the inverse of the observability Gramian matrix. 

 

Inverse of the norm of the inverse of the observability Gramian is proposed as a quantitative 

measure of observability by Koyaz (2003). The approach depends on the generalization of some 

ideas presented by Müller and Weber (1972). 
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Mode observability is examined for a deterministic linear multivariable system which has distinct 

eigenvalues by Porter and Crossley (1970). The measure of the mode observability is proposed 

for a deterministic system described by the triple (A, B, C) when A has a set of distinct 

eigenvalues by Lindner et al. (1989) and Hamdan and Nayfeh (1989). The proposed measure is 

the angle between the rows of the matrix C and the right eigenvectors of the matrix A. The angle 

is not invariant under any state-coordinate transformation that is not orthogonal. By using the 

notion of mode observability measure proposed by Hamdan and Nayfeh (1989), time dependent 

measures of mode and gross observability are proposed for linear time-varying systems by Choi 

et al. (1999). 

 

The observability measure, which is related to the frequency domain characteristics (zeros and 

residues) of a linear multivariable deterministic system, is proposed by Tarokh (1992) not only 

for the overall system, but also for the modes of the system. Tarokh’s measure covers both 

distinct and repeated eigenvalues cases. 

 

Two stochastic observability definitions, strict sense and wide sense observability, are given by 

Aoki (1967). The strict sense observability definition is the following. ‘A stochastic system is 

said to be stochastically observable in the strict sense if and only if the covariance matrix 

associated with the conditional probability density function of the last state given all the 

measurements goes to zero as time goes to infinity'. The wide sense observability definition is: 

‘A stochastic system is said to be stochastically observable in the wide sense if the covariance 

matrix associated with the conditional probability density function of the last state given all the 

measurements remains bounded as time goes to infinity'. Definitions that are similar to the above 

ones are also given by Han-Fu (1980) and Bageshwar et al. (2009). However, it is known that 

when the system is stable and observable the conditional probability density function has a steady 

state covariance which may not be zero. And also when the system is stable the steady state 

covariance matrix of the marginal density of the states does not go to infinity (Kumar and 

Varaiya (1986)). The necessary condition for the stochastic observability is given as the 

deterministic system being observable by Han-Fu (1980) and Bageshwar et al. (2009). In addition 

upper and lower bounds for covariance matrix of the conditional probability density function are 

given by Bageshwar et al. (2009). 

 

The degrees of observability for both the system and its subspaces are proposed by Hong et al. 

(2008) by using the observability Gramian for discrete linear systems. 

 

The mutual information between the last state and the measurement sequence is proposed as the 

measure of the observability of a continuous-time stochastic system by Mohler and Hwang 
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(1988). They propose a degree of observability for a stochastic system instead of a yes or no 

answer for observability. The mutual information between the last state and the measurement 

sequence is expressed as an entropy difference between a priori and a posteriori distributions. 

The relationship between the mutual information and the covariance matrix associated with the 

conditional probability density function of the last state given all the measurements is given and 

it is said that this relationship holds not only for Gaussian processes, but also for some other 

processes of interest. They propose the second moment approximation for the nonlinear and non 

Gaussian stochastic systems. Another contribution of this work is to propose the same measure 

for the individual states. The results of Mohler and Hwang (1988) are applied to the observer 

path design for the bearings-only tracking by Logothetis et al. (1997). The optimal paths are 

derived by maximizing the mutual information between the measurement sequence and the final 

target state or the entire target trajectory. Dynamic programming and enumeration with optimal 

pruning are used as optimization techniques. 

 

The observability measure is defined by using the mutual information and the entropy by Kam et 

al. (1987). The system is declared as a linear time-invariant stochastic system. However, the only 

probabilistic term is the discrete initial state distribution; there is no process noise or 

measurement noise in the model. They propose the entropy correlation coefficient 

       
      

              
 (1.1) 

as an observability measure for a discrete state system; where,      is the entropy, and        is 

the mutual information between the random variables   and  . 

 

The results of Kam et al. (1987) are extended to continuous state vector by Chen et al. (2007). 

They use Equation (1.1) as an observability measure for a discrete state (quantized) system. For 

continuous state systems, they propose to use the limits of the quantized states. 

 

Observability and detectability are investigated for a stochastic discrete-time hybrid switching 

systems by West and Haddad (1994). The observability test is based on mutual information 

between the system states and measurements. A stochastic Popov-Belevith-Hautus Criterion for 

observability of stochastic systems is presented by Zhang and Chen (2004). 

 

The observability analysis for the bearings-only tracking is considered by Le Cadre and Jauffret 

(1997). In the analysis, different maneuvers of target and observer are examined. The control 

problem is investigated for the optimization of observer maneuvers. The cost functional is based 

on the determinant of the Fisher information matrix. 
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The observability of target maneuvers via bearings-only and bearing-rate-only measurements is 

discussed by Hepner and Geering (1990). Intercept scenarios that result in the loss of 

observability are identified. A maximum likelihood estimate of the target motion is developed 

and analyzed for bearings-only tracking by Nardone et al. (1984). The Cramer-Rao lower bound 

(CRLB) is used to examine tracking strategies for bearings-only tracking by Fawcett (1988). 

 

The problem of optimal state estimation in stochastic systems is examined by using an approach 

based on information theoretic measures by Feng et al. (1997). It is shown that for a linear 

Gaussian system, the Kalman filter is the optimal filter not only for the mean-square error 

measure, but for several information theoretic measures. Similar discussions are also given by 

Tomita et al. (1976) and Kalata and Premier (1979). These measures are minimum error-

observation information, minimum error entropy, maximum mutual information between the 

state and the observations. 

 

The filtering problems are studied from the viewpoint of the information theory by Tomita et al. 

(1976). For a linear system, it is proved that the necessary and sufficient condition for 

maximizing the mutual information between a state and the estimate of the state is to minimize 

the entropy of the estimation error. 

 

1.1 Motivation of the Study 

For the deterministic systems the observability is the ability of finding the initial state from the 

given outputs. Once this is done the whole state sequence can be determined using the initial 

state. For the stochastic systems, although the literature is quite limited, the aim is to find the role 

of the past measurements on the optimal estimation of the last state. Although the information 

gained about the last state is important in quite a large set of applications, it is also important how 

well we know the whole state sequence especially for the applications that does batch processing. 

An example from the real world may be the dim target tracking. The dim target tracking uses the 

complete data measured in a given time interval to find the target existence as well as the state 

sequence of the target. The information gained about the target’s state sequence so its 

observability is the ultimate aim of this problem.  

 

Another problem that requires how the measurements related with the state sequence is the model 

selection problem. The representation of the system by different models will give different 

observability measures. A typical example of this case occurs in passive tracking where the target 

state is ‘unobservable’. Using modified polar coordinates to separate the unobservable part is a 

common practice in the literature. Model selection as in the passive tracking problem can be 
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analyzed using the observability measure of the whole state sequence as described in this study. 

Another very important application area may be the sensor network design, i.e., decisions made 

on the number, type and placement of the sensors. The optimal path planning is another broad 

area that batch processing may help to design the maneuver of the own ship. The examples are 

not limited to the ones given above. We believe that the new observability definition given in this 

thesis will fill a gap that exists in this area.  

 

Analyzing the definition of observability given in the work of Mohler and Hwang (1988) in detail 

to understand its behavior deeply is another motivation of this study.  

 

The extension both of the definitions to the observability of some subspaces of the state space is 

considered as part of understanding the underlie structure of the observability definitions. 

Similarly the amount of decrease in the observability by using partial measurements is also an 

interesting problem that has potential applications.   

 

The observability of nonlinear systems is another important issue. The definitions of 

observability do not change for the nonlinear systems however their computability is a problem. 

Our motivation here is to generate an algorithm to obtain numerically the observability measures 

of nonlinear systems. Particle filtering and Monte Carlo methods seem natural tools to solve this 

problem.  

 

1.2 Contributions of the Study 

The observability measure based on the mutual information between the state and the 

measurement sequences is proposed here for the first time. The measure is derived in terms of the 

statistics of the basic random variables and system matrices and analyzed in detail for LTI 

discrete-time Gaussian stochastic systems. Since the mutual information is a special case of 

Kullback-Leibler distance, other probabilistic distance measures, namely Bhattacharyya and 

Hellinger distances, are also investigated in full detail to be used as observability measures. The 

relationships between the observability measures and the covariance matrix of the state sequence 

conditioned on the measurement sequence are derived explicitly. 

 

The second observability measure based on the mutual information between the last state and the 

measurement sequence originally proposed by Mohler and Hwang (1988) is analyzed in detail. 

Definition of observability of a single element of the state vector given by Mohler and Hwang is 

extended to observability of subspaces, so the modes, of linear Gaussian systems. Similarly it is 

also extended to the case of partial measurements. Partial measurement approach is unavoidable 
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for distributed systems like sensor networks. Also Bhattacharyya and Hellinger distances can be 

applied to this observability measure definition. 

 

The extension of the observability measure to the observability of a subspace of the state space is 

obtained for linear systems analytically. The dual of this problem is to restrict the measurements 

to a subspace of the measurement space. This problem can be interpreted as the sensitivity of the 

observability measure to the measurements. The second problem is also analyzed. The analysis of 

both cases given in this thesis is novel. 

 

The observability measures based on the mutual information are expressed in a recursive manner. 

The recursive expressions are not only interesting in themselves but also used in the computation 

of observability measures of nonlinear systems. The recursions are verified with LTI discrete-

time Gaussian Stochastic systems, both analytically and by simulations. The theory is applied to 

a simple nonlinear stochastic system by using the particle filters. The necessary relations are 

derived and the simulations are done. The results of the nonlinear case are compared with the 

linear case. 

 

The observability measures based on the Bhattacharyya and the Hellinger distances are proposed 

for the first time in this thesis. In addition, the analysis given for the observability measures 

based on the mutual information between the last state and the measurement sequence and the 

mutual information between the state and the measurement sequences are new. The algorithms 

which are developed for the computations of the observability measures based on the mutual 

information for the nonlinear systems by using the particle filter and the Monte Carlo methods 

are new. 

 

The observability measure analysis of the single output systems represented in the observable 

canonical form shed some light on understanding the ‘observability’ of the system. This analysis 

is done for the first time in this thesis. 

 

1.3 Scope of the Thesis 

The thesis is organized as follows: 

 

In Chapter 1, an introduction and a literature survey is given. 
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In Chapter 2, the theoretical background which is needed for the other sections is included. This 

section summarizes shortly the concepts of entropy, mutual information, Kullback-Leibler, 

Bhattacharyya and Hellinger distances. 

 

In Chapter 3 two observability measure definitions based on the measurement sequence and the 

state sequence or the last state are given. Observability measures used in this study are the mutual 

information, Bhattacharyya and Hellinger distances. These measures are explicitly derived for 

LTI discrete-time Gaussian stochastic systems. The results are discussed in detail. The 

relationships between the observability measures and Kalman filter covariance matrix and the 

covariance matrix of the state sequence conditioned on the measurement sequence are derived. 

The Observability measure of a subspace of the state space is obtained by using the same 

concepts and extended to an individual state and to the modes of the system. In addition, the 

observability measure of an individual state using the mutual information between the state and 

the measurement sequences is examined in detail for a single measurement system represented in 

observable canonical form. 

 

In Chapter 4, the observability measures are applied to nonlinear stochastic systems by using the 

particle filters. In this part only the observability measures based on the mutual information are 

considered. First the measures are expressed in a recursive manner. Then these recursions are 

verified with LTI discrete-time Gaussian stochastic systems. Then necessary relations are derived 

to evaluate the measures by the particle filters. Also these derivations are verified with a simple 

LTI discrete-time Gaussian stochastic system. Finally these derivations are applied to a simple 

nonlinear stochastic system. The results are discussed in detail. 

 

Chapter 5 contains the concluding remarks. 
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CHAPTER 2 
 

 

 

THEORETICAL BACKGROUND 
 

 

 

 

In this Chapter, the theoretical background which is needed in the later sections is given shortly. 

This includes the concepts of entropy, mutual information, f-divergence, Kullback-Leibler, 

Bhattacharyya and Hellinger distances. Detailed explanations can be found in the related 

references. 

 

2.1 Entropy 

Entropy is a measure of the uncertainty of a random variable (Cover and Thomas (2006)). The 

entropy      of a discrete random variable   is defined by 

                  

   

 (2.1) 

where,      is the probability mass function of the random variable  . For a discrete random 

variable, the entropy is always nonnegative. 

 

For continuous random variables, the differential entropy is defined by (Cover and Thomas 

(2006)) 

                    
 

 (2.2) 

where, S is the support set of the random variable, and      is the probability density function of 

the random variable  . Unlike discrete entropy, differential entropy may be negative. The 

conditional differential entropy is defined as: 

                              
 

             (2.3) 
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Note that the conditional entropy is the difference between the differential entropy of joint   and 

  (i.e.,       ) and the differential entropy of  . 

 

2.2 f-divergence 

There are many distance measures between probability distributions in the literature (Basseville 

(1989)). However, the distance measures used in this study are based on  -divergence. 

 

 -divergence is a kind of measure between two probability distributions and is given in Equation 

(2.4), It is intuitively natural to measure the distance between the two probability densities    and 

   with the aid of the dispersion (with respect to   ) of the likelihood ratio. More precisely, let   

be a measure on a space       such that any probability laws    and    are absolutely continuous 

with respect to  , with densities    and   . Let   be a continuous convex real function on   , and 

let   be an increasing function on  . Consider the following class of divergence coefficients 

between two probabilities: 

                
  

  
    (2.4) 

where, 
  

  
 is the likelihood ratio, and    is the expectation with respect to   . 

 

The distance measures used in the later chapters are derived from  -divergence by using the 

following relations. 

 

For Kullback-Leibler distance, 

                                 (2.5) 

                        
  

  
 

 

  (2.6) 

For Bhattacharyya distance, 

                                      (2.7) 

                              
 

  (2.8) 

For Hellinger distance, 

           
 
                   

 

 
   (2.9) 
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  (2.10) 

 

2.3 Kullback-Leibler Distance (Relative Entropy) 

Kullback-Leibler distance between two probability mass function      and      for discrete 

random variable   is defined by (Cover and Thomas (2006)) 

               
    

    
   

 (2.11) 

Relative entropy is always nonnegative and is zero if and only if          . However, it is not 

a true distance between distributions, since it is not symmetric and does not satisfy the triangle 

inequality (Cover and Thomas (2006)). 

 

For continuous random variables, the relative entropy between two densities      and      is 

defined as 

               
    

    
   (2.12) 

The relative entropy is always nonnegative as in the discrete case. However it is not symmetric 

and triangle inequality does not hold.  

 

2.4 Mutual Information 

Mutual information is a measure of the amount of information that one random variable contains 

about another random variable (Cover and Thomas (2006)). The mutual information between 

discrete random variables   and   is defined by 

                  
      

        
      

 (2.13) 

where,        is the joint probability mass function of random variables   and  . Mutual 

information is a special case of the relative entropy (Kullback-Leibler (KL) distance). 

 

The mutual information        between the two continuous random variables with joint density 

       is defined as 

                  
       

         
     (2.14) 

The mutual information is always nonnegative, as in the discrete case. 
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The relationship between the entropy and the mutual information for both continuous and 

discrete random variables can be given as 

                                                  (2.15) 

As can be seen from above the mutual information can be interpreted as the decrease in the 

entropy of a random vector due to the information obtained about it by knowing the value of the 

other. It can also be used as an independence measure between the two random vectors since the 

measure is zero only if the   and   are independent. 

 

2.5 Bhattacharyya Distance 

Bhattacharyya Distance between the two probability density functions has the general expression 

(Basseville (1989)): 

                                                              (2.16) 

where, Bhattacharyya Coefficient is defined as follows: 

                                                      (2.17) 

Bhattacharyya distance is zero only if            , otherwise it is positive as can easily be 

seen from the definition. Bhattacharyya distance is symmetric, however, does not satisfy triangle 

inequality (Upadhyaya and Sorenson (1977)). 

 

2.6 Hellinger Distance 

Hellinger distance between two probability density functions has the general expression 

(Basseville (1989)): 

                 
 

 
                

 

                           (2.18) 

Note that the Hellinger distance can be derived from the Bhattacharyya distance as: 

                                   (2.19) 

                         (2.20) 

Hellinger distance does obey the triangle inequality (Basseville (1989) and Upadhyaya and 

Sorenson (1977)). 
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CHAPTER 3 
 

 

 

OBSERVABILITY MEASURES FOR LTI DISCRETE-TIME 

GAUSSIAN STOCHASTIC SYSTEMS 
 

 

 

 

In this section two observability measure definitions are given. The first definition is the 

observability measure of the state sequence        
 . This definition is not a very familiar one 

however in some problems it is more meaningful to obtain some information about the whole 

state sequence rather than the initial state    or the last state    . The second definition is a more 

traditional one and is defined as the information obtained about the last state. The observability 

measures used in this section are the mutual information, Bhattacharyya and Hellinger distances. 

 

A short summary of the section is as follows: 

 

The observability measures, which are based on the mutual information, Bhattacharyya and 

Hellinger distances, are derived for LTI discrete-time Gaussian stochastic systems. The 

derivations are given explicitly. The results are discussed in detail. 

 

The relationships between the observability measures (the last state– measurement sequence 

observability or the state sequence-measurement sequence observability) and Kalman filter 

covariance matrix and the covariance matrix of the state sequence conditioned on the 

measurement sequence are derived. Steady state characteristics of the observability measure 

based on the last state is examined. An individual state, a mode and a subspace of the state space 

observability measures of stochastic systems are investigated by using the proposed observability 

measures. 

 

A single measurement system represented in observable canonical form is examined in detail and 

observability measure is obtained for the individual state sequences. One of the results obtained 

in this part is that the deterministically unobservable states have nonzero observability measures. 
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3.1 LTI Discrete-Time Gaussian Stochastic System 

For a LTI discrete-time Gaussian stochastic system, the system equations are given as 

             (3.1) 

           (3.2) 

where,      ,       is the measurement of the system.  ,  ,  ,   are constant matrices. It is 

assumed that                      
  are independent,         

  and        
  are both 

identically distributed and  

                                        (3.3) 

Definition 3.1:   ,      and      are defined as the basic random variables. 

 

For time k, the state equation of the system can be written in terms of the basic random variables 

as: 

                  

   

   

 (3.4) 

which yields the measurement equation:  

                    

   

   

     (3.5) 

Since the aim is to obtain an observability measure for the complete state sequence the above 

expressions are defined in a more compact form. By using above Equations (3.4) and (3.5), the 

following equations can be written. 

 
 
 
 
 
  

  

  

 
   

 
 
 
 

 

 
 
 
 
 

 
 
  

 
   

 
 
 
 

   

 
 
 
 
 

   
   
    

 
 
 

   
           

 
  
 
 
 
 

 

  

  

 
    

  (3.6) 

 
 
 
 
 
  

  

  

 
   

 
 
 
 

 

 
 
 
 
 

 
  
   

 
    

 
 
 
 

   

 
 
 
 
 

   
    
      

 
 
 

   
             

 
   

 
 
 
 

 

  

  

 
    

   

  
  

 
 

 
 

    
    

  

  

  

 
  

  (3.7) 

These equations are linear equations of the state and the output sequences in terms of the basic 

random variables. For notational simplicity we will define the following random vectors and 

matrices. 
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;    

 
 
 
 
 
  

  

  

 
   

 
 
 
 

          

;    

 
 
 
 
 

 
 
  

 
   

 
 
 
 

          

 (3.8) 

    

  
  

 
 

 
 

    
    

 

               

;      

  
  

 
 

 
 

    
    

 

               

 (3.9) 

   

 
 
 
 
 

   
   
    

 
 
 

   
           

 
  
 
 
 
 

           

;     

  
  

 
 

 
 

    
    

 

       

 
(3.10) 

    

  
  

 
 

 
 

    
    

 

               

      

  

  

 
    

 

      

      

  

  

 
  

 

          

 (3.11) 

Now one can write the dynamic equation and the measurement equation as: 

           
  (3.12) 

               
     

  (3.13) 

Theorem 3.1: The random vectors    and    have normal densities, their means are         and 

          . Their covariance matrices are given by: 

          
        

 
 (3.14) 

            
   

          
   

        
         

        
  (3.15) 

           
 
 (3.16) 

Proof: Gaussianity is trivial. The covariance matrices of    and    can be easily obtained from 

Equations (3.12) and (3.13) by considering the independence of the basic random variables. The 

last equality can be obtained by considering the covariance matrix of the joint random vectors     

and    

          
        

        
  (3.17) 

where the cross covariance matrix of     and    is 

                            
 

  (3.18) 

                       
       

             
      

  
 
  (3.19) 
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  (3.20) 

           ■ 

Theorem 3.1 gives the necessary matrices that are used in the observability measures. 

 

3.2 Observability Measures Based on the State Sequence 

The observability measures are defined as distances between the complete state sequence    and 

the complete set of measurements   . In this section, the definitions of the observability 

measures based on the observability of the complete state sequence are given for LTI discrete-

time Gaussian stochastic systems. 

 

3.2.1    Observability Measure Based on the Mutual Information 

Definition 3.2: The observability measure is the mutual information between the state sequence 

   and the measurement sequence   . 

 

The following theorem gives a simple expression for the observability measure for the linear 

Gaussian system described above. A special case of this theorem is given in Huang, T., Chen, B. 

(2008)). 

 

Theorem 3.2: The variables    and    have Gaussian distributions and the mutual information 

between these variables can be calculated as  

         
 

 
   

          

          
 (3.21) 

where     is the determinant. 

 

Proof: By using Equation (2.14), the mutual information between    and    can be calculated 

as: 

                     
        

          
       (3.22) 

where,  

        

 
 

                         

 
 

 
 
           

 
           

 
  

       
   

          

          
 

 

(3.23) 
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 (3.24) 

      
 

                
  

 
 
          

 
 

  
            

 (3.25) 

By substituting Equations (3.23), (3.24) and (3.25) into Equation (3.22) the mutual information 

between    and    can be found as: 

                                                        (3.26) 

                                                     

                   

(3.27) 

                               (3.28) 

By using the derivation given in Appendix-A one can write: 

          
          

 
 

 

 
                            

      

 

 
 

 
                   

      

 
 

 

 
                   

(3.29) 

         
 

 
   

                              

                        
 (3.30) 

         
 

 
   

          

          
 (3.31) 

           ■ 

The above theorem gives the mutual information between the state and the measurements in 

terms of the covariance matrices of the related variables. The aim of the next theorem is to obtain 

the same mutual information in terms of the basic system parameters. 

 

Theorem 3.3: The mutual information between    and    is 

         
 

 
   

         
   

          
   

        
  

       
  

 (3.32) 

Proof: Determinant of          can be written as: 

            
        

        
                    

         (3.33) 

By substituting Equations (3.15) and (3.16) into Equation (3.33), 
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   (3.34) 

                        
         

        
               

   (3.35) 

Note that 

       
    

     
     

 
 

 
 

    

       

        
   

 (3.36) 

Substitution of Equation (3.35) into Equation (3.31) gives the observability measure as: 

         
 

 
   

          

            
  

 
 

 
   

         
   

          
   

        
  

       
  

 

(3.37) 

           ■ 

Theorem 3.3 gives the mutual information in terms of the system matrices. Some conclusions 

about observability will be obtained from this result. However some other convenient forms of 

this expression that are useful will be given first. 

 

Fact 3.2.1: The observability measure is  

         
 

 
   

          
 

             
        

 (3.38) 

Proof: By using the derivation (      and           ) given in Appendix-B, Equation (3.37) can 

be written as 

         
 

 
   

          

                  
        

 
 

 
   

          
 

             
        

 (3.39) 

■ 

Fact 3.2.2: The observability measure is  

         
 

 
   

     

         
 (3.40) 

Proof: The denominator term in Equation (3.39) is equal to         which is the covariance 

matrix of the state sequence conditioned on the measurement sequence (Logothetis et al. (1997)).

           ■ 

 



18 

 

Several conclusions can be derived from the above given results to understand the meaning of it 

as well as to assess the measure. 

 

3.2.1.1    Discussion on the Observability Measure 

One can make several observations to criticize the proposed observability measure. The 

observations are listed in below as facts.  

 

Before giving the list one should point out that in the derivation of the observability measure 

given in Equation (3.32), the term       is cancelled. When      and/or        are singular this 

creates a problem that the mutual information becomes indefinite. For this case, the limit of 

         as      and/or        approaches to zero can be considered as the actual measure. 

 

Note also that the observability measure compares the determinants of the conditional and 

unconditional covariance matrices of the state sequence. 

 

Fact 3.2.1.1.1: Unobservable states of the pair       have no effect on the observability 

measure. 

 

Proof: Let       be written in the following form: 

   
      

    
                         (3.41) 

where     contains the unobservable modes of      . Assume that    and      are partitioned 

accordingly: 

    
      

      
                       

      

      
   (3.42) 

The terms of the mutual information given in Equation (3.32) can be written in terms of the basic 

system parameters as follows: 

        
   

  

 
 
 
 
     

     
   

     
  

  

     
      

   
      

  
  

 
      

 
 

      
   

  

       
  

   
 
 
 
 

 (3.43) 

        
   

  

 
 
 
 
 
 
 
    

        
           

  

 
 

 
           

  

                     
   

   

   

 
 
 
 
 
 
 

 (3.44) 
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If we use the matrices given in Equations (3.41) and (3.42) the following result can be found. 

      
           

       
  

   
                                      (3.45) 

So the term         
   

 
 is independent of the unobservable part. Similarly         

   
 

 

contains the terms of       
       

  
   

 
. So again the unobservable part is not involved. ■ 

 

The above fact seems to be paradoxical in the sense that the observability measure is not zero 

when we have unobservable states. This is obviously not the case because of two reasons, one is 

that the measurements provide us some information about the state sequence and the second is 

that the classical observability of the deterministic sates is concentrated on the computation of the 

initial state. However, even if the initial state cannot be determined, its later values may be found 

by using the available measurements. Later we will be talking about the ‘amount of 

observability’ of unobservable states to make this point more clear. 

 

Fact 3.2.1.1.2: When the observation noise is zero, the observability measure is equal to infinity. 

Even if there is only one noiseless measurement i.e.,      is singular, this fact holds. 

 

Proof: Trivial from Equations (3.32) and (3.36).      ■ 

 

This property suggests the following treatments: 

a. The observability measure gives infinity because of the existence of the outputs with no 

noise since they provide a perfect estimation for some part of the state vector. So we 

change our aim as obtaining an observability measure for the remaining states by 

eliminating the perfectly estimated part. The procedure is described as an algorithm 

below. 

i. Define         so that       
  

 
     

  

 
 , where M is nonsingular. 

ii. Define a transformation on the state of the system as         so that    

        
 
      

  
 , where   is the identity matrix and   is nonsingular. The new 

system equations are 

 
     

 

     
    

        

        

  
   

 

   
    

   
 

   
   

(3.46) 

 
   

 

   
     

 
      

  
  

   
 

   
    

  

 
   

   
         

 

   
         

  
  

   
 

   
    

  

 
  (3.47) 
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  is measured directly with    

 . The state equation of    
  is 

     
         

         
     

  
(3.48) 

Note that        
  is known and it can be treated as a known input of the system. Then 

the system is reduced to  

     
         

        
                             

      (3.49) 

where        
         

  and           
 . As a result, the proposed observability 

measure can be applied to the reduced system. 

a. Another approach to overcome the perfect measurement problem is to add a fixed small 

noise to all measurements. This approach helps to differentiate the observability of two 

perfectly measured modes. After this treatment they may have different observability 

indices. 

 

Fact 3.2.1.1.3: The observability measure is bounded from below as           
 

 
            

     
 

 
            where            . 

 

Proof: Let us make a nonsingular transformation on the measurement equation such that 

        where    is the     identity matrix. Then the observability measure becomes 

         
 

 
                     

 
  where    is the new measurement matrix after the 

transformation. By using the determinant property                             the 

measure becomes          
 

 
               

 
       . Note that    

 
    and     are both 

positive definite for which the square roots exist. Let       
     and        .Using the 

determinant property again, the measure will be          
 

 
                 . Define 

    , then the measure will be          
 

 
                . Note that     

     
           . If we use the inequality,               for positive definite matrices, we 

obtain  
 

 
                 

 

 
           .       ■ 

 

The above inequality shows the relationship between the ‘largeness’ of several system matrices 

and the mutual information. It also indicates that when the determinant of the state sequence 

covariance matrix     increases the lower bound of the observability measure increases.  
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Fact 3.2.1.1.4: If the determinant of the covariance matrix of the process noise,  , increases, the 

observability measure increases. 

 

Proof: Trivial from Equation (3.37)       ■ 

 

Fact 3.2.1.1.5: If the determinant of the initial covariance matrix,   , increases, the observability 

measure increases. 

 

Proof: Trivial from Equation (3.37).       ■ 

 

Fact 3.2.1.1.6:. When there are no process noise and the initial state uncertainty, the 

observability measure is zero. 

 

Proof: Trivial from Equation (3.37).       ■ 

 

The above given facts shed further light on the definition of the observability measure as the 

mutual information. The facts can be interpreted as that the observability measure is actually a 

measure for the value of the measurement in the determination of the state vector. If the 

uncertainty of the state is large then the measurement is more valuable so one gets a larger value 

as the observability measure. Fact 3.2.1.1.6 tells that the measurements are not valuable at all 

when the initial uncertainty and the process noise are zero since the initial state is known exactly 

and the system has no uncertainty. 

 

The Facts 3.2.1.1.7 and 3.2.1.1.8 are intuitive; they are similar to our conception of observability. 

They simply tell that if the measurement noise increases than the observability measure 

decreases.  

 

Fact 3.2.1.1.7: If the determinant of the matrix,    , increases the lower bound of the 

observability measure increases. 

 

Proof: Trivial from the proof of the Fact 3.2.1.1.3.     ■ 

 

Fact 3.2.1.1.8: If the determinant of the covariance matrix of the measurement noise,  , 

increases, the lower bound of the observability measure decreases. 
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Proof:  

        
        

  

       
  

 
       

          
  

  
       

          

       
  

 (3.50) 

        
        

  

       
  

         
  

  
       

           (3.51) 

By using the same procedure given in the proof of the Fact 3.2.1.1.3, it is seen that the 

determinant of the covariance matrix of the measurement noise increases, the lower bound of the 

observability measure decreases. Note that        
         

   
.   ■ 

 

Defining observability measure as the mutual information between the measurements and the 

states seems to be natural. Considering the fact  that the mutual information is a special case of 

the Kullback-Leibler distance, it can be stated that the observability measure reduces to the 

Kullback-Leibler distance between the two Gaussians. Based on this fact, it is thought that other 

distance measures may also be used to define an observability measure for stochastic systems. In 

the following subsection, we will derive Equations for the Bhattacharyya distance (BD) and the 

Hellinger distance (HD) based observability measures by using the state and the measurement 

sequences. 

 

3.2.2    Observability Measure Based on Bhattacharyya Distance 

Definition 3.3: The observability measure is the Bhattacharyya distance between the two 

Gaussian densities          and           . 

 

The covariance matrix of the joint probability density function          of    and    is given in 

Equation (3.17), and the density function of            is, 

          

 
 

                         

 
 

 
 
           

 
           

 
  

       
   

          

          
 

 
(3.52) 

where,           
    

    
 . 

 

Notice that, the only difference between two Gaussian density functions          and 

           is the covariance matrices. The covariance matrix of            does not involve 
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cross covariance matrices       and       of         . These equations are used in the 

following theorems. 

 

Theorem 3.4: Bhattacharyya distance between          and            is 

                        
 

 
   

 
 
        

        
  

      
   
      

 
 

 (3.53) 

Proof: Bhattacharyya distance between these two Gaussian densities can be found from the 

following equation (Fukunaga (1990)). 

                       

 
 

 
  

     

     
   

     

     
  

 

 
                 

 
 

  

  
     

     
 

  
     

     
   

 

 
   

 
                 

  

                     

 

(3.54) 

The first term in the right side of Equation (3.54) is zero since the two densities have the same 

mean value. Then 

 
                 

 
    

   

     

 
     

 
   

         
 

 
       

        
   (3.55) 

and 

                                       
                   (3.56) 

                          
 
           

   
 (3.57) 

By substituting Equations (3.55) and (3.57) into Equation (3.54) the observability measure can be 

found as 

                        
 

 
   

 
 
        

        
  

      
   
      

 
 

 (3.58) 

           ■ 

 

By examining Equation (3.58), it can be seen easily that the discussions given in Section 3.2.1.1 

are also valid for this measure. Unobservable states of the pair       have also no effect on this 

observability measure since Equation (3.58) includes the same matrices. When        is 
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singular the measure is equal to infinity. Note that the numerator term in Equation (3.58) is equal 

to      
 

 
      

   and is very similar to the numerator term in Equation (3.32). Therefore 

when the determinants of the initial state covariance   , the covariance matrix of the process 

noise  , the state sequence covariance matrix     and the matrix    , increases, the measure 

increases as in the mutual information case since the power of the denominator term of       is 

0.5. Also when the determinants of the covariance matrix of the measurement noise increases, the 

observability measure decreases. It is seen easily from Equation (3.58) that when there is no 

process noise and the initial state uncertainty, the observability measure is zero. 

 

Fact 3.2.2.1: The observability measure can be written in terms of the conditional and 

unconditional covariance matrices of the state sequence as: 

                        
 

 
   

 
 
 
    

 
 
        

               

 (3.59) 

Proof: By using Equation (3.54) the following relation can be found: 

                        
 

 
   

          
 
         

   
     

                             
        

 (3.60) 

                        
 

 
   

 
 
     

 
         

               

 (3.61) 

           ■ 

 

3.2.3    Observability Measure Based on Hellinger Distance 

Definition 3.4: The observability measure is the Hellinger distance between          and 

          . 

 

Theorem 3.5: The Hellinger distance between          and            is 

                           
      

   
      

 
 

 
 
        

        
  

 
 

 (3.62) 

Proof: The relation can be found easily from Equations (3.58) and (2.20).   ■ 
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Equation (3.62) implies again that the discussions given for the mutual information case and the 

Bhattacharyya case are also valid for this measure. Note that the maximum value of the Hellinger 

distance is one. 

 

Fact 3.2.3.1: The observability measure can be written in terms of the conditional and 

unconditional covariance matrices of the state sequences as: 

                           
                

 
 

 
 
     

 
         

 
 

 (3.63) 

Proof: The relation can be easily found from Equations (3.59) and (2.20).   ■ 

 

The mutual information between the states and the outputs for time   can be found by using the 

same procedure as: 

         
 

 
        

         
 

 
          (3.64) 

where    
 is the covariance matrix of   . Note that, when      is singular, the mutual 

information goes to infinity. 

 

By using the same procedure for the two Gaussian densities          and            the 

Bhattacharyya Distance can be found as: 

                        
 

 
   

 
 
 

    
        

      
 
     

 
 
 

 (3.65) 

Also Hellinger distance between          and            can be found by using Equations (3.65) 

and (2.20) as: 

                             
      

 
     

 
 
 

 
 
     

        

 
 

 (3.66) 

 

3.3 Observability Measures Based on the Last State 

In some applications knowledge about the last state may be important, so the definition of the 

observability measure can be changed to concentrate on the last state. This definition is the one 

given in Mohler and Hwang (1988). In this section we will give further analysis of this 

observability measure.  
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In Mohler and Hwang (1988) the observability measure is defined for continuous time stochastic 

systems. The consequences of the definition are not exploited however the definition is applied to 

‘the bearings only tracking’ problem. In this part we exploit the definition almost fully for linear 

time invariant discrete time Gaussian stochastic systems, extend the definition to the 

Bhattacharyya and the Hellinger distances. Also the analysis given below is firstly presented for 

this measure in this thesis. 

 

3.3.1    Observability Measure Based on the Mutual Information 

Definition 3.5: The observability measure is the mutual information between the last state    and 

the measurement sequence    (Mohler and Hwang (1988)). 

 

The following theorem that gives the computation of this measure is from Mohler and Hwang 

(1988). 

 

Theorem 3.6: The observability measure is related with the ratio between the determinant of the 

marginal density covariance matrix    
 of    and the determinant of the Kalman filter state 

covariance matrix         at time  . That is 

      
   

 

 
   

    
 

         
 (3.67) 

Proof: : Kalman Filter state covariance at time k is (Anderson and Moore (1979)),  

           
         

       
 (3.68) 

where,         is the conditional covariance matrix of    given all measurements    at time k,    
 

is the covariance matrix of   ,     is the covariance matrix of   ,       and      
 are cross 

covariances matrices of    and   . 

 

The mutual information between    and    can be written as given in Equation (3.21) 

      
   

 

 
   

    
      

          
 (3.69) 

where,        is covariance matrix of joint probability density function of    and   , 

 

          
   

     

     
   

  (3.70) 

Determinant of          is, 



27 

 

                    
         

       
  (3.71) 

Note that, the second term on the right side of Equation (3.71) is the determinant of the Kalman 

Filter state covariance at time k. By substituting Equation (3.71) into Equation (3.69), the mutual 

information between    and    can be found as: 

      
   

 

 
   

    
      

         
         

       
 
 (3.72) 

      
   

 

 
   

    
 

    
         

       
 
 (3.73) 

      
   

 

 
   

    
 

         
 (3.74) 

           ■ 

 

The state covariance matrix of the Kalman filter certainly represents the uncertainty of the state at 

any time    so it may be argued that this can also be used as an observability measure. 

 

3.3.1.1    Discussion on the Observability Measure 

The second observability measure which is based on the last state has similar properties as the 

first measure which is based on the state sequence. They are summarized below. 

 

Fact 3.3.1.1.1: When      is singular, the observability measure is equal to infinity. 

 

Proof: When      is singular,           will be zero and the measure will be equal to infinity. ■ 

 

To overcome this difficulty, the procedure given in 3.2.1.1 can be used. 

 

Fact 3.3.1.1.2: When the system is stable, the initial uncertainty on the state does not affect the 

observability measure at the steady state. 

 

Proof: The numerator given in Equation (3.67) is the determinant of    
      

  
 

                     
    which is independent of the initial covariance when     if the 

system is stable. The denominator is the determinant of the conditional covariance so again 

independent of the initial covariance.       ■ 
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Fact 3.3.1.1.3: When there are no process noise and no initial state uncertainty, the observability 

measure is zero. 

 

Proof: System is deterministic and the initial state is known so the states can be found exactly 

and the measurements will not give any new information. Therefore         is equal to    
 and the 

measure is zero.          ■ 

 

Fact 3.3.1.1.4: When the covariance matrix of the measurement noise decreases, the 

observability measure increases. 

 

Proof: Note that the observability measure is inversely proportional with the conditional 

covariance of the state. By looking at the Kalman filter equations it is seen that the conditional 

covariance of the state decreases with decreasing the measurement noise.   ■ 

 

Fact 3.3.1.1.5: If the determinant of the matrix,    , increases the observability measure 

increases. 

 

Proof: Trivial from the fact that increasing the determinant of the matrix     corresponds to a 

decrease in the covariance of the measurement noise.     ■ 

 

3.3.2    Observability Measure Based on Bhattacharyya Distance 

Definition 3.6: The observability measure is the Bhattacharyya distance between the two 

Gaussian densities       
   and         

  . 

 

Theorem 3.7: The Bhattacharyya distance between the two Gaussian densities       
   and 

        
   is 

         
           

    
 

 
   

 
 
    

 
 
         

     
          

 (3.75) 

Proof: By using Equation (3.54) the following relations can be written. 

         
           

    
 

 
   

         
 

 
 
        

   
    

 

     
               

         
       

 

 (3.76) 
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 (3.77) 

           ■ 

 

By looking at Equation (3.77) it is seen that the discussions given in 3.3.1.1 can also be applied 

to this measure. 

 

3.3.3    Observability Measure Based on Hellinger Distance 

Definition 3.7: The observability measure is the Hellinger distance between the two Gaussian 

densities       
   and         

  .  

 

Theorem 3.8: The Hellinger distance between the two Gaussian densities       
   and 

        
   is 

         
           

       
     

           

 
 

 
 
    

 
 
         

 
 

 (3.78) 

Proof: The relation can be found easily from Equations (3.77) and (2.20).   ■ 

 

By looking at Equation (3.78) it is seen that the discussions given in 3.3.1.1 can also be applied 

to this measure. 

 

3.4 Observability Measures for the Subspaces of the State Space 

In this section the observability measure of a subspace of the state space is analyzed. We use the 

mutual information definition of the observability measure in this section. Both the sequence and 

the final state definitions are given. In particular, it is started by analyzing the observability 

measure of a one dimensional subspace that corresponds to an element of the state vector. For 

individual states of the stochastic system, the mutual information between an individual state and 

the observations can be used to define the observability measure. 

 

Definition 3.8: The observability measure of a subspace of the state space represented as 

       of a stochastic system is defined as the mutual information between    and the 

measurement sequence that is,       
  . 
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From the previous analysis we can compute       
   as: 

      
   

 

 
   

    
 

         
 (3.79) 

Note that the matrix   can be chosen such that only a particular state variable is selected as    by 

choosing an appropriate row for  . In Mohler and Hwang (1988) only this special case is 

introduced with no analysis. 

 

The definition and the related result given in Equation (3.79) can be extended to the observability 

measure of a subspace sequence        
  by using Equation (3.40). Define           

 . 

 

Definition 3.9: The observability measure of    is defined as the mutual information between 

  and the measurement sequence.  

 

Similar arguments as given above leads writing the mutual information in terms of the covariance 

matrices as follows: 

         
 

 
   

     

         
 (3.80) 

One can also define observability measures of    and    by considering only a part of the 

measurement sequence. 

 

Definition 3.10: The observability measures of    and    by considering only a part of the 

measurement sequence is defined as the mutual information between    or     and a part of the 

measurement sequence   
 . That is, 

       
   

 

 
   

    
 

  
     

   
 (3.81) 

       
   

 

 
   

     

  
     

   
 (3.82) 

When the state equation is in Jordan form, these equations can be used to define the observability 

measures of the system modes. Also similar derivations can be done for the observability 

measures which use Bhattacharyya and Hellinger distances. 

 

Example 3.1: We will apply the above ideas to a simple example. Let the system equations be 

defined as:  
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     (3.83) 

               
    

    
     (3.84) 

where 

            
  
  

  ,       
 
 
   

    
    

  ,             (3.85) 

Note that the system representation is selected in the diagonal form so that the observability 

measures of the individual states become the observability measures of the modes. The process 

noise is selected so that both states are under the process noises that are independent but having 

same statistics. Since the coefficient of the first state in the matrix   is higher than the coefficient 

of the second state, the expectation is that the first state is more observable compared to the 

second one. The computed observability measures of the states      and      according to 

Equation (3.79) are:         
           and         

         . These values are for the 

steady state i.e., a large k and satisfy the expectation. Similarly for the state sequence, the 

computed observability measures of   
  and   

  according to Equation (3.80) are     
      

         and     
            , as expected, for      . And also the observability 

measures of    and    according to Equations (3.67) and (3.32) are       
           and 

                . 

 

If we change the matrix   to  
     

     
 , the results are;       

         ,         
   

      ,         
         ,                 ,     

             ,     
            . 

As seen from the results,       
   and          values decrease. This is actually comes from the 

fact that the changes of the determinant of the matrix   decreases with respect to the above 

example. Even if the changes of the determinant of the matrix   do not affect the determinant of 

the    , the eigenvalues of     change so that the observability measure          decrease. 

 

        
   and     

      decreases more as compared with       
   and         . This is 

because, while the eigenvalue of this mode decreases the eigenvalue of the second mode 

increases. In addition, since the eigenvalue of the second mode increases         
   and 

    
      values increase. 
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3.5 Observability Measure of a Single Measurement System in 

Observable Canonical Form 

In this part, the observability measure based on the mutual information for a single measurement 

system which is represented in observable canonical form is analyzed in detail. The relationships 

between the observability measures for the system and the individual state sequences are 

examined. 

 

Let the system equations be defined in observable canonical form as: 

 

      

      

 
      

   

  
  

   

   

  
  

  
   

  

    

    

 
    

      (3.86) 

           

    

    

 
    

      (3.87) 

By using the above system representation we will analyze the variation of the observability 

measure among the states. 

 

Theorem 3.9: When the system equations are given as in Equations (3.86) and (3.87), the 

observability measure of the system          is equal to the observability measure of the  th
 

state     
     , i.e.,     

              . 

 

Proof: The observability measure of the system          is given in Equation (3.32) as: 

         
 

 
   

     

       
  

 
 

 
   

         
   

          
   

        
  

       
  

 

(3.88) 

It is easy to see that both the numerator and the denominator of this expression are the related 

covariance of the last state because of the special structure of the matrix C. The covariance 

matrix of the measurement sequence is given in Equation (3.15). By using the measurement 

matrix   given in Equation (3.87), the covariance matrix of the measurement sequence is 

       
        

  (3.89) 

Again by using the measurement matrix properties, the cross covariance of   
  and the 

measurement sequence is 
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  (3.90) 

The observability measure of the  th
 state     

      can be calculated as 

    
      

 

 
   

    
       

     
      

 
 

 
   

     

          
    

 
     

    
 (3.91) 

And by using Equations (3.89) and (3.90), the following relation can be found. 

         
    

 
     

       
        

     
    

 
   

  
 

       
  (3.92) 

By using Equations (3.91) and (3.92), the observability measure of the  th
 state can be found as 

    
      

 

 
   

     

       
  

          (3.93) 

           ■ 

 

Theorem 3.10: The observability measure of the  th state     
            is smaller than or 

equal to the observability measure of the  th
 state         , i.e.,     

          
     . 

 

Proof: By using Equation (3.91) the observability measure of the  th state     
      is 

    
      

 

 
   

     

          
    

 
     

    
 (3.94) 

The cross covariance of   
  and    is 

   
       

   
  (3.95) 

By substituting Equations (3.89) and (3.95) into Equation (3.94), one can get 

    
      

 

 
   

     

    
        

     
   

    
 
     

   
  

 (3.96) 

    
      

 

 
   

     

       
     

     
   

    
 
     

   
  

 (3.97) 

The term    
     

   
    

 
     

   
  is the covariance matrix of   

    
  . When this covariance 

matrix is equal to zero, the observability measure of the  th state     
      becomes equal to the 

observability measure of the system         . Otherwise it is smaller than the observability 

measure of the system          because the denominator term in Equation (3.97) increases. 

           ■ 
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Theorem 3.11: When the system is given in observable canonical form as in Equations (3.86) 

and (3.87), if there is no process noise (i.e.,    is a zero vector), the observability measure of the 

 th state     
                is equal to the observability measure of the system          for 

all   . 

    
                

 

 
   

  
   

       
  

;                ; (3.98) 

Proof: Since the system is given in the observable canonical form, if the one of the states is 

known exactly, other states can be calculated exactly in n steps from this state information. When 

this is the case, the term    
     

   
    

 
     

   
  in Equation (3.97) becomes equal to the zero 

matrix and     
      becomes equal to         .      ■ 

 

Note that Theorems 3.9-3.11 use only the measurement matrix   properties of the above system 

representation, they are also valid for the systems having the same measurement matrix. 

 

Theorem 3.12: Unobservable states of the pair       of the system given in Equations (3.1) and 

(3.2) have zero observability measure when the off-block diagonal terms of    and      are 

zero and when     given in Equation (3.41) is a zero matrix, otherwise they have nonzero 

observability measure. 

 

Proof: Let us assume that the system matrices are given as 

   
    
    

                         (3.99) 

    
    
    

                       
    
    

   (3.100) 

for the system given in Equations (3.1) and (3.2). It is seen in the measurement matrix that   
  is 

measured and   
  is not measured and unobservable. The observability measure of   

  can be 

found from the following relation by using Equation (3.97) 

    
      

 

 
   

     

        
   

    
 
     

   
  

 (3.101) 

The observability measure is zero only when    
   

  is zero.    
   

  is composed of the terms 

          
 
       

   
. 

 

Let us use the system matrices given in Equations (3.99) and (3.100).     contains the following 

terms: 
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                                        (3.102) 

and 

           
   

        
  

 

    
        

                               (3.103) 

As seen from Equations (3.102) and (3.103) that when the off-block diagonal terms of    and 

     are zero and when     given in Equation (3.41) is a zero matrix, the terms           
 
       

   
 

(upper right in the matrices given in Equations (3.102) and (3.103)) are zero so    
   

  is a zero 

matrix. Otherwise it is not zero and the observability measures of the unobservable states are 

nonzero.          ■ 

 

The results of this theorem can be seen in Example 3.3. 

 

Example 3.2: Here we apply these ideas to an example. Let the system equations be defined in 

the observable canonical form as: 

 

      

      
      

      

   

  
  

    
    

  
  

    
    

  

    

    
    

    

   

  

  
  

  

  (3.104) 

          

    

    
    

    

     (3.105) 

where, 

            

  
  

  
  

  
  

  
  

  ,         

    
    

  
  

  
  

    
    

  ,             (3.106) 

For       the observability measures can be found as:                 ,     
      

       ,     
              ,     

             ,     
             . Note that 

         and     
      are equal to each other. And also for         the mutual information 

between   
  and        

      is less than         . 

 

If we use the same system equations and if there is no process noise, the observability measures 

can be found as        for          and     
               . The observability measure 

obtained is much smaller than the observability measures obtained for the non-zero process noise 

case. This fact can be explained by investigating the related covariance matrices. However one 
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can also explain the phenomena by arguing that ‘if the process noise is zero then the only 

uncertainty in the state is due to the uncertainty of the initial state and the observations provide 

information only to the value of the initial state’. 

 

Example 3.3: In this example we will see an interesting result which shows that even if the 

individual state is unobservable, the observability measure of that individual state may not be 

zero. Let the system equations be defined as: 

 

      

      
      

      

   

  
  

    
    

  
  

    
    

  

    

    
    

    

   

  

  
  

  

  (3.107) 

          

    

    
    

    

     (3.108) 

where,  

            

  
  

  
  

  
  

  
  

  ,         

    
    

  
  

  
  

    
    

  ,             (3.109) 

Note that the first state is not observable,       pair is not full column rank (rank=3). For 

     , the observability measures can be found as:                 ,     
            , 

    
             ,     

             ,     
              . 

 

Note that again          and     
      are equal to each other. Even if the first state is 

unobservable, the observability measure of the state is not zero. This comes from the fact that the 

uncertainty of the unobservable state decreases by using the information coming from the 

estimation of the observable states. Also if the state which drives the unobservable state is more 

observable, the observability measure of the unobservable state increase. In addition if the 

unobservable state is also driven by the unobservable states, the observability measure decreases 

because of the increasing in the uncertainty which is not observable. 

 

3.6 Discussion 

The observability measures based on the mutual information between the state and the 

measurement sequences and the mutual information between the last state and the measurement 

sequence are derived explicitly and analyzed in detail. The definitions are extended by using 

other probabilistic distance measures which are the Bhattacharyya and the Hellinger distances.  
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By using the observability measure based on the mutual information between the state and the 

measurement sequences it is shown that the unobservable states of the deterministic system have 

no effect on this measure. In spite of this fact the observability measures of the unobservable 

states considered individually may not be zero.  

 

Another important observation is that any observable part with no measurement uncertainty 

makes the measure infinite. This is reasonable in the sense that some part of the state is known 

exactly which corresponds to infinite information. 

 

Both of the observability measure definitions are extended to the observability measure of any 

subspace of the state space. Another important extension is the observability measure obtained by 

using partial measurements. Partial measurement approach is unavoidable for distributed systems 

like sensor networks. Also the Bhattacharyya and the Hellinger distances can be applied to these 

observability measure definitions. 

 

The analysis of several observability measures defined in this section shows that they do not 

contribute much to the observability measure concept over the basic mutual information 

definition. However the Hellinger distance may be preferable because of its boundedness. The 

definition is clearly expandable to non Gaussian and nonlinear systems. 
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CHAPTER 4 
 

 

 

COMPUTATION OF THE OBSERVABILITY MEASURES FOR 

NONLINEAR STOCHASTIC SYSTEMS 
 

 

 

 

In this Chapter, the observability measures based on the mutual information between the 

measurement and the state sequences; and the mutual information between the measurement 

sequence and the last state are calculated for nonlinear stochastic systems. The measures are 

represented recursively to be applied to nonlinear stochastic systems. The measures are applied to 

a nonlinear stochastic system by using the particle filter methods. Finally these derivations are 

applied to a simple nonlinear stochastic system. The results are discussed in detail. 

 

4.1 Recursive Evaluation of the Observability Measures 

In this section the two observability measure definitions are represented recursively. They are 

 the mutual information between the state and the measurement sequences 

 the mutual information between the last state and the measurement sequence 

The recursive evaluation of the measures is itself an asset but at the same time it is an 

unavoidable requirement for the computation of the observability measures for the nonlinear 

systems. In the recursions, the only assumption is that the basic random variables of the system 

are independent and the process noise and the measurement noise sequences are identically 

distributed. 

 

For a discrete-time stochastic system, the system equations that are used in this study can be 

given as: 

              (4.1) 

            (4.2) 
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where      ,       are the state and the measurement of the system. It is assumed that, the 

basic random variables              
  are all independent and         

  and        
  are both 

identically distributed. 

 

4.1.1    Recursive Evaluation of the Observability Measure Based 

on the State Sequence 

In this subsection the observability measure which is the mutual information between the state 

and the measurement sequences          are expressed in a recursive manner. 

 

The state sequence    and the measurement sequence    are represented as 

   

 
 
 
 
 
  

  

  

 
   

 
 
 
 

                         

 
 
 
 
 
  

  

  

 
   

 
 
 
 

  (4.3) 

The mutual information between    and    can be calculated as 

                     
        

          
       (4.4) 

where,       and       are the probability density functions of    and    respectively,          

is the joint probability density function of    and   . 

 

Theorem 4.1: The observability measure based on the mutual information between the state and 

the measurement sequences can be written recursively as: 

                             
         

      (4.5) 

Proof:          can be written as: 

               
              

                       (4.6) 

By assuming the basic random variables are independent and the process noise and the 

measurement noise are identically distributed, this relation can be written as: 

                
           

               (4.7) 

Same assumptions lead also  

               
          (4.8) 

            
             (4.9) 

By substituting Equations (4.7), (4.8) and (4.9) into Equation (4.4), one can get 
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       (4.10) 

                      
            

              
    

       
  

           
        (4.11) 

                     
            

              
      

             
       

  

      
     

       

(4.12) 

The integration of the first term on the right side of Equation (4.12) first with respect to    and 

then   , gives us the following.  

            
            

              
      

                 
            

              
           

(4.13) 

which is equal to             . 

 

Integrating the second term in Equation (4.12) with respect to appropriate variables we obtain the 

following. 

            
       

  

           
                          

        

                   
           

                    
                        

         

(4.14) 

The final equation can be written in terms of the conditional entropies. 

            
       

  

           
               

         
      (4.15) 

By substituting Equations (4.13) and (4.15) into Equation (4.12), one can get 

                             
         

      (4.16) 

           ■ 

 

Equation (4.16) indicates that when the information gained from    about    is more valuable 

than the information gained from      about    the mutual information increases in time. 

 

Equation (4.5) is not recursive in a strict sense since the term       
      depends on the past 

values of the measurements. We will suggest a method to overcome this problem later.  
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To elaborate the recursive mutual entropy concept further similar recursions for linear time 

invariant systems are obtained and compared with Equation (4.16). 

 

The mutual information between the state and the measurement sequences for an LTI discrete-

time stochastic system is 

         
 

 
   

          

          
 (4.17) 

Note that  

                    (4.18) 

                                      (4.19) 

            
             (4.20) 

                         (4.21) 

                
        (4.22) 

                  
      

  (4.23) 

By substituting these relations into Equation (4.17) one can get 

         
 

 
   

                               

                          
 

 

 
   

                         

                    
 (4.24) 

         
 

 
   

              

              
 

 

 
               

 

 
          (4.25) 

The first term in Equation (4.25) is              . The second term is  

 
 

 
          

 

 
                       

         
      (4.26) 

Equation (4.25) together with Equation (4.26) shows that Equation (4.16) agrees with the 

derivations about the mutual information between the state and the measurement sequences for 

the LTI discrete-time Gaussian stochastic systems. 

 

An interesting observation about the change of the value of the mutual information with respect 

to time is stated by the fact given below. 

 

Fact 4.1.1.1: 

                        (4.27) 
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Proof: 

                         
          

            
         (4.28) 

                     
                 

         
              

         
                

         (4.29) 

                     
                 

            

              
         (4.30) 

                           
            

              
           (4.31) 

which is equal to             .        ■ 

 

The fact proved above indicates that the information gained about the state sequence does not 

change without the new information, i.e., a new measurement. Following derivations confirms 

this fact for LTI discrete-time Gaussian stochastic systems. 

 

By using Equation (4.17) for the linear time invariant systems, the mutual information between 

the state and the measurement sequences can be written as: 

           
 

 
   

            

            
 (4.32) 

The above equation and 

 

                                  (4.33) 

lead to the following result 

           
 

 
   

                    

                    
 

 

 
   

              

              
 (4.34) 

which is equal to             . This result shows that Equation (4.27) agrees with the previous 

derivations about mutual information between the state and the measurement sequences for the 

LTI discrete-time Gaussian stochastic systems. 

 

4.1.2    Recursive Evaluation of the Observability Measure Based 

on the Last State 

In this subsection, the observability measure based on the mutual information between the last 

state and the measurement sequence       
   is expressed in a recursive manner.  
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Theorem 4.2: The observability measure based on the mutual information between the last state 

and the measurement sequence       
   can be expressed in a recursive manner as: 

      
           

                                     
    

       
                    

     
(4.35) 

Proof: The mutual information between the last state and the measurement sequence       
   

can be expressed by using the relationships between the entropy and the mutual information 

(2.15), 

      
                     

   (4.36) 

      
               

   (4.37) 

        
                             

     (4.38) 

By adding and subtracting         
     to and from Equation (4.36), one can get 

      
                     

           
                    

         
     

(4.39) 

By using Equation (2.3),       and       can be written as 

                    
     (4.40) 

                                      (4.41) 

Substituting Equations (4.40) and (4.41) into Equation (4.39) and arranging the terms, one can 

get the following relation: 

      
           

                                     
    

       
                    

     
(4.42) 

           ■ 

 

A similar expression for the mutual information is also given in (Bansal and Basar (1989)). Their 

result is given below as Fact 4.1.2.1. We prove this fact once again to show the relationship 

between the observability measures of the last sate and the state sequence using our framework. 

 

Fact 4.1.2.1: (Bansal and Basar (1989)) 

      
         

                    
     (4.43) 

Proof: By using Equation (2.15), one can write the following relation: 

      
                         

     (4.44) 

By adding and subtracting       
     to and from Equation (4.36), one can get 
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(4.45) 

      
         

                         
           

   (4.46) 

By using Equation (2.3), one can write the following relations: 

                    
     (4.47) 

      
           

             (4.48) 

By substituting Equations (4.47) and (4.48) into Equation (4.46), one can get the following result: 

      
         

                    
     (4.49) 

           ■ 

 

Note that the increment from       
     to       

   is exactly equal to the increment from 

             to         . This comes from the following fact. 

 

Fact 4.1.2.2: 

                  (4.50) 

Proof: 

                     
        

          
       (4.51) 

                     
           

  

          
       (4.52) 

                     
        

     
       (4.53) 

                     
        

          
                (4.54) 

           ■ 

 

The fact tells that the information increase due to the new measurement    is directly related with 

  , and the possible increase in the information of the previous states is implicit and related to the 

information of the last state. 
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Fact 4.1.2.3: 

      
             

                                     
    

       
     

(4.55) 

Proof: By using Equations (4.43) and (4.35), the proof is trivial.    ■ 

 

Equivalent recursive expressions are obtained below for the linear time invariant systems. To 

verify the relations given in Equations (4.35), (4.43) and (4.55) we refer to Chapter 3. The mutual 

information expressions derived in Chapter 3 are as follows: 

      
   

 

 
   

    
 

         
 (4.56) 

      
   

 

 
   

    
 

           
 

 

 
   

     

             
 (4.57) 

In Equation (4.57), the first term is       
    . The second term is 

      
                                      

 

 
   

     

             
 (4.58) 

By using Equation (4.56), one can write the following relation: 

      
     

 

 
   

    
 

           
 

 

 
   

      
 

             
 

 

 
   

    
              

                 
 
 (4.59) 

The first term in Equation (4.59) is         
    . By using Equation (2.3), one can write the 

following relation: 

                               
           

    

                       
           

     

(4.60) 

which is equal to the second term in Equation (4.59) for the LTI discrete-time Gaussian 

stochastic systems. 

 

Hence Equations (4.35), (4.43) and (4.55) agree with the derivations given for the LTI discrete-

time Gaussian stochastic systems. 

 

Below we give a very short summary of the basics of particle filtering. This part is by no means a 

complete description of the filter but is put here for the sake of completeness.  
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4.2 Particle Filter 

Filtering is the recursive computation of the conditional pdf of the state. Bayes theory gives the 

necessary equations that are used for this purpose. Here we will briefly write the recursive 

expressions for the pdf of the state conditioned on the given measurements and explain again 

very briefly how the particle filter approach solves the computation problem. Ristic et al. (2004) 

and Arulampalam et al. (2002) are good references for the particle filtering. 

 

In this part, for simplicity, it is assumed that the process and measurement noises are additive so 

the nonlinear stochastic system is represented by: 

              (4.61) 

            (4.62) 

Note that the aim in filtering is to find       
   recursively. The following is the derivation of 

the necessary equations. 

 

In Bayes filtering, the following equations are given for filtering (Equation (4.63)) and prediction 

(Equation (4.64)). 

      
   

              
    

          
∝               

     (4.63) 

      
               

          
          (4.64) 

Analytical evaluation of the above two equations is possible only for very limited cases. One well 

known case is the Linear Gaussian system that can be solved analytically by Kalman filter. When 

the system is nonlinear it is almost impossible to find an analytic solution. The particle filtering is 

a numerical method that can give a numerical solution to the problem. Here it will be very briefly 

explained the most primitive but much used form of the filter namely SIR (Sequential Importance 

Resampling) algorithm. 

 

SIR algorithm is based on the following approximation:  

        
          

   
           

   
 

 

   

 (4.65) 

In the above expression     
   

 is the last element of a state sequence which is called a ‘particle’.   

is the delta Dirac function. Prediction step consists of computation of       
      This can be 

achieved by using the prediction equation and the approximate         
     given in Equation 

(4.65) as follows: 
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 (4.66) 

To continue with the filtering part we need to represent       
     approximately by impulses 

again. The requirement is satisfied if we draw samples from the prediction density. Another way 

of drawing samples from the prediction density is to draw one sample from the process noise and 

add it to       
     for each (i), i.e.,   

          
         

   
. Prediction density is obtained as the 

following sum. 

      
          

   
       

   
 

 

   

 (4.67) 

The above method is corresponds to the selection of the importance density as the prior. So that 

the new samples are drawn from the prior, i.e.,       
    . Using the prior as the importance 

density is not the optimal use of the available measurements. However, since the aim is to only 

demonstrate the use of the particle filter in the computation of the observability measure the 

subject will not elaborated from this point of view. 

 

The filtering step of the algorithm can be considered as recomputation of the weights of the 

particles according to the fit of the measurement to the predicted density. Using the filtering 

equation of the Bayes filter the following relations are obtained: 

    
   

    ∝        
   

     
   

    
   

        
   

     
   

 (4.68) 

The new weights obtained above should be normalized to have the sum equal to one. Normalized 

weights are denoted by   
   

. 

 

The above algorithm is named as SIS (Sequential Importance Sampling) algorithm. The 

algorithm is summarized in Table 4.1 below. 

 

Table 4.1 Filtering via SIS 

______________________________________________________________________________ 

    
      

    
   

 
           

        
    

   

 
      

 FOR       

o Draw   
        

        
   

  

o Evaluate the importance weights    
        

          
   

  

 END FOR 
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 Calculate total weight:           
    

   

 
  

 FOR       

o Normalize:   
          

   
 

 END FOR 

______________________________________________________________________________ 

 

The main drawback of the algorithm is its divergence problem: after few time steps the weights 

of almost all of the particles reduce to very small numbers except for few. The resultant sum of 

the impulses becomes insufficient to represent the underlying density. To overcome this problem 

resampling is done and ‘good’ particles are multiplied and ‘bad’ particles are eliminated either at 

each time or whenever necessary. There are several methods to resample the particles. One well 

known method which has low computation cost is Systematic Resampling. This algorithm first 

obtains the cumulative distribution of the weights. A real number   is drawn from the uniform 

distribution         . At each time this number is increased by an amount     and the value 

obtained is compared with the cumulative distribution of the weights. The overall algorithm is 

given in Table 4.2. 

Table 4.2 Resampling Algorithm 

______________________________________________________________________________ 

    
    

   
   

      
   

 

              
      

    
   

 
   

 Initialize the CSW:      
  

 FOR       

o Construct CSW:           
   

 

 END FOR 

 Start at the bottom of the CSW:     

 Draw a starting point:             

 FOR j     

o Move along the CSW:               

o WHILE       

       

o END WHILE 

o Assign sample:   
    

   
   

 

o Assign weight:   
   

     

o Assign parent:        
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 END FOR 

______________________________________________________________________________ 

 

4.3 Calculation of the Observability Measures by Using the 

Particle Filters 

In this section, the recursive calculations of the observability measures are presented by using the 

particle filters. In the first subsection, the calculation of the observability measure based on the 

mutual information between the state and the measurement sequences is considered. The 

calculation of the observability measure based on the last state and the measurement sequence is 

given in the second subsection. At the end of the section, we provide an example by applying 

these calculations to a simple LTI discrete-time Gaussian stochastic system. 

 

4.3.1    Calculation of the Observability Measure Based on the 

State Sequence 

The observability measure based on the mutual information between the state and the 

measurement sequences is written recursively as in Equation (4.5) 

                             
         

      (4.69) 

where      is the differential entropy,    is the state sequence and    is the measurement 

sequence. 

 

The differential entropies given in the above equation can be written as 

       
                        

         (4.70) 

      
                       

         (4.71) 

      
                      

               
              (4.72) 

To evaluate these differential entropies, we need the probability density functions         , 

       
  ,       and       

      . The state conditional probability density function of the output, 

       
   is a known function that determines the measurement equation. The joint pdf of the last 

state and the last output,         , can be calculated as 

                
        (4.73) 

In Equation (4.73)       can be calculated recursively as 
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               (4.74) 

where          
   is the conditional pdf that represents the dynamic structure of the system. 

 

In Equation (4.72), the function       
      can be calculated from 

      
              

        
         (4.75) 

Notice that       
      is the prediction density in the filtering problems. 

 

The problem that is analyzed in this thesis is not the computation of the estimated states but the 

mutual information between the states and the measurements. This requires the computation of 

the unconditional pdf of the state. The computation is done by Monte Carlo methods. The 

required pdf is represented by 

         
 

 
           

   
 

 

   
 (4.76) 

and the recursion equation is obtained by using the Bayes theory as given in Equation (4.74) as: 

                
                

 

 
         

   
 

 

   
 (4.77) 

To complete the cycle new N samples are drawn from this distribution and the distribution is 

approximated as before, 

       
 

 
       

   
 

 

   
 (4.78) 

The conditional densities of the state are obtained by the particle filtering. These densities are 

assumed to have the representations given below. 

      
              

   
           

   
 

 

   
 (4.79) 

      
          

   
         

   
 

 

   
 (4.80) 

The particle filter gives the relationship between         
          

     and       
        

    . 

 

To find the incremental change in the observability measure it is necessary to calculate 

        
         

      . Each term of the expression is computed by first computing         . 

By using Equation (4.73)          can be calculated as 

                        
 

 
       

            
   

 
 

   
 (4.81) 

By substituting Equation (4.81) into Equation (4.70) the following relation can be found 
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         (4.82) 

       
     

 

 
        

                
        

 

   
 (4.83) 

The computation of       
      is problematic since we need       

      which depends on the 

past measurements as the given information. Here we make an approximation and replace the 

given information      by the conditional pdf of the state. With this approximation for the inner 

integral one can write: 

       
               

         

              
   

       
   

                    
   

       
   

        

(4.84) 

which becomes independent of     . The outer integral then reduces to 1. Note that 

      
              

   
           

      
     (4.85) 

which is not in the form of the sum of impulses but is a continuous function of     Using 

Equations (4.84) and (4.85), Equation (4.71) can be written as 

      
                 

            
     

 

   
              

            
     

 

   
     (4.86) 

The computation of the update in the observability measure for the next observation is the 

difference of the expressions given in Equations (4.86) and (4.83). Unfortunately the computation 

requires integration for both of the terms. These integrals can be calculated by using numerical 

integration techniques (Hoffmann and Tomlin (2010), Ryan and Hedrick (2010)). Numerical 

integration may be again performed by the Monte Carlo integration. 

 

4.3.2    Calculation of the Observability Measure Based on the Last 

State 

In this section we formulate the observability measure based on the mutual information between 

the last state and the measurement sequence for the nonlinear systems. In this computation 

instead of using the recursive expressions we use the direct relationship between the mutual 

information and the entropy. 

 

The mutual information between the last state and the measurements is given in Equation (4.37) 

as: 

      
               

    (4.87) 

where 
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                          (4.88) 

      
            

            
          (4.89) 

In the following derivations it is assumed that the particle filter is applied to estimate the 

posterior density of the state. Both the prior and posterior pdf’s are approximated by sum of 

weighted impulses. 

 

From Equations (4.77) and (4.88)       can be expressed as: 

                          

        
   

         
     

 

   
           

   
         

     
 

   
     

(4.90) 

      
    can be calculated from the following relation: 

      
    

       
  

           
      

      (4.91) 

      
    can be written as  

      
            

            
         

         
       

       
  

           
      

             

(4.92) 

      
           

         
            

      (4.93) 

       
   and       

      are given in Equations (4.83) and (4.86), respectively. 

 

      
      can be calculated from the density       

      as: 

      
                

           
           (4.94) 

where         
      is the filtering density at time      . Then 

        
                

   
               

   
 

 

   
 (4.95) 

      
                

                
     

 

   
 (4.96) 

      
                      

               
              (4.97) 
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The given information of the conditional pdf’s is      which can be approximated as the 

conditional pdf of the state,           
            

    . Using this approximation the inner integration 

becomes independent of      and can be considered as a term which is fixed. For this case the 

outer integration reduces to 1. With this explanation the following expression is obtained for 

      
     , 

      
     

              
   

             
     

 

   
                

   
             

     
 

   
     

(4.98) 

Again Equations (4.98) and (4.90) can be calculated using numerical integration techniques. 

 

Here the observability measures are obtained, both for the state sequence and the last state cases. 

Below the theory is applied to a simple linear system. We demonstrate that the particle filter 

approach and the theory developed for the linear systems agree with the observability measures. 

 

Example 4.1: Let us assume that we have a LTI discrete-time Gaussian stochastic system 

represented by Equations given below. 

              (4.99) 

         (4.100) 

where 

         ,          ,           (4.101) 

The aim of the example is to compute          and       
   both using the theory developed in 

Chapter 3 and the particle filter method developed in this chapter. Simulation time is taken as 

     and the particle filter is realized by 1000 particles. 

 

In Figure 4.1, the system state obtained by the Kalman filter is compared with the one obtained 

by the particle filter. Since the system is linear and the noises are Gaussian the optimal estimate 

is the Kalman filter estimate. The similarity of the outputs of the two filters shows that, for this 

simple example, the particle filter with 1000 particles is sufficiently successful. 

 

Figure 4.2 shows the increase in the value of          as time increases. The curves also show 

the close relationship between the theoretical (using the theory of Chapter 3) and the 

computational (the particle filter) observability measures. In Figure 4.3 the value of       
   (the 

result of Monte Carlo simulation (100 runs)), again computed in two ways are shown. 
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Figures 4.1-4.3 demonstrate that the observability measures obtained by using the particle filters 

are close to the true results obtained theoretically.          increases with time as expected. On 

the other hand       
   converges to a steady state value as time increases since the system is 

observable and stable. This result is similar to the convergence of the Kalman filter covariance 

matrices to finite and initial condition independent values at the steady state. Note that if the 

single state example were unobservable, meaning that nothing is measured about the state, 

obviously          or       
   would be zero. On the other hand if the system were unstable the 

measurements would be very valuable that makes the observability measure       
   increasing 

to infinity. Note that if the quality of the estimation increases the calculations of the observability 

measures become more accurate. This accuracy can be achieved by using more particles in the 

particle filter. 

 

Figure 4.1 System State (True (Black), KF Estimate (Red), PF Estimate (Blue)) 

 

Figure 4.2          (Theoretical (Red), PF Calculation (Blue)) 
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Figure 4.3       
   (Theoretical (Red), PF Calculation (Blue)) 

 

4.4 Computation of the Observability Measures to a Nonlinear 

Example 

In this section, the two observability measures, the observability measure for the whole state 

sequence and the observability measure for the last state, are computed for a simple nonlinear 

stochastic system and the conclusions derived for LTI discrete-time Gaussian stochastic systems 

are investigated for nonlinear systems. 

 

Equations of a simple one state nonlinear system are given below: 

            

  

    
 
    (4.102) 

            
     (4.103) 

where           ,          ,          ,   ,   , and    are constants and    is an 

increasing function of time. 

 

We have performed six simulations using different sets of parameters. Case 1 can be considered 

as the baseline experiment. The parameters that are different than the baseline experiment are 

shown as bold for the remaining cases.  

 

 

 

0 5 10 15 20 25 30 35 40 45

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

k

I(
x
k
,Y

k )



56 

 

Case 1:  

      ,      ,       
         

  
     ,        ,     ,     ,       (4.104) 

Case 2:  

      ,      ,       
         

  
     ,         ,     ,     ,       (4.105) 

Case 3:  

      ,     ,    
         

  
     ,        ,     ,     ,       (4.106) 

Case 4:  

      ,      ,    
         

  
     ,        ,     ,     ,     (4.107) 

Case 5:  

      ,      ,    
         

  
     ,        ,     ,    ,       (4.108) 

Case 6: s 

      ,      ,    
         

  
     ,        ,        ,     ,       (4.109) 

 

Case 2 differs from Case 1 only in the value of   .    is decreased in Case 2 compared to Case 1 

by a factor of 10 so the effect of the nonlinear term in the measurement equation is decreased as 

well as the observation gain. 

 

Case 3 differs from Case 1 only in the value of          is decreased which causes a decrease in 

the effect of the nonlinearity in the state equation as well as the gain related with the previous 

value of the state. 

 

Case 4 differs from Case 1 only in the value of the measurement noise covariance   which is 

increased. Case 5 differs from Case 1 only in the value of the process noise covariance   which 

is decreased. Case 6 differs from Case 1 only in the value of the initial state uncertainty    which 

is decreased. 

 

Experiments are performed for all six cases; however only for the first three cases the detailed 

results are given. The results of the last three experiments are summarized in Table 4.4. 

 

The Sequential Importance Resampling (SIR) filter is used in the simulations. 5000 particles are 

used to represent the probability density functions to avoid the poor estimation performance.  
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The results for Case 1 are shown in the Figures 4.4-4.7. Figure 4.4 shows the performance of the 

state estimation. Since    increases with time the quality of the estimation increases as well. 

Figure 4.5 shows that          increases with time as expected. It may be interesting to see the 

difference between                         and       
  . This comparison is given in 

Figure 4.6. We have included into this figure the result of ‘the second moment approximation’ 

method of Mohler and Hwang (1988). The second moment approximation is calculated from the 

following equations (Ryan and Hedrick (2010)). Equations given below simply approximates 

      
   by the corresponding mutual information expression obtained for linear systems. 

      
   

 

 
   

    
 

         
 (4.110) 

   
     

   
  

  
       

 

   

 (4.111) 

              
     

    
       

 

   

 (4.112) 

 

Figure 4.4 Particle Filter Estimation of the state for Case 1 (True (Black), Estimated (Red)) 
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Figure 4.5          for Case 1 

 

Figure 4.6 The observability measures between the last state and the measurements: The blue line 

is       
  ; Red line is                      ; Black line is the Second Moment 

Approximation for Case 1 

 

Figure 4.7 Correlation plot of the second moment approximation and the observability measures 

for Case 1. Blue:       
   vs. the Second Moment Approximation. Red: Difference          

              vs. the Second Moment Approximation 
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As seen from Figure 4.6       
   and the difference                       increases with 

time as expected; they have similar characteristics. However since the nonlinearity in the system 

is large, especially at the beginning, the second moment approximation deviates from 

      
   and does not have a similar characteristics as the characteristics of       

  .  

 

The results of Case 2 can be seen in the Figures 4.8-4.9. Since the nonlinearity in the 

measurement equation is reduced system becomes more ‘linear’ and the second moment 

approximation gives similar results as       
   and/or the difference                      . 

 

Figure 4.8 The observability measures between the last state and the measurements: The blue line 

is       
  ; Red line is                      ; Black line is the Second Moment 

Approximation for Case 2 

 

Figure 4.9 Correlation plot of the second moment approximation and the observability measures 

for Case 2. Blue:       
   vs. the Second Moment Approximation. Red: Difference          

              vs. the Second Moment Approximation 
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The results of Case 3 can be seen in the Figures 4.10-4.11. For this case the measurement 

nonlinearity is the same as Case 1 however the coefficient of the nonlinear term in the state 

dynamics is reduced by 1/25. Since the nonlinearity in the state equation is decreased the second 

moment approximation becomes closer to the       
  . Note that comparison of the cases 2 and 

3 with Case 1 shows the effect of the nonlinearity of the measurement equation: higher 

measurement nonlinearity produces more diverse results for the second moment approximation. 

 

Figure 4.10 The observability measures between the last state and the measurements: The blue 

line is       
  ; Red line is                      ; Black line is the Second Moment 

Approximation for Case 3 

 

Figure 4.11 Correlation plot of the second moment approximation and the observability measures 

for Case 3. Blue:       
   vs. the Second Moment Approximation. Red: Difference          

             vs. the Second Moment Approximation 
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The correlation coefficients between the second moment approximation and       
   or the 

difference                       can be seen in Table 4.3. As seen from the figures and 

Table 4.3, when the nonlinearity increases the observability measures differs from the second 

moment approximation. In the most nonlinear case, which is Case 1, the correlation values are 

smaller than the other cases. In the least nonlinear case, which is Case 2, the figures of the 

observability measures versus the second moment approximation are less scattered. 

 

The effects of system parameters given in Subasi and Demirekler (2011) for LTI discrete-time 

Gaussian stochastic systems are also observed for the nonlinear case. Observability measure of 

Case 2 is much smaller than the observability measure of Case 1. This is due to the decrease in 

the coefficient of the state in the measurement equation (like a noise power increase in the 

measurement), The system is much less ‘observable’. If we compare the measures for the Case 1 

and Case 3, the measures again decrease by a decrease in the coefficient of the state in the state 

equation. The effect of the noise terms are given in Table 4.4. in the rows 4-6. The fourth row of 

Table 4.4, corresponding to Case 4, shows that an increase in the measurement noise cause a 

decrease in the observability measures. The fifth row of the table, corresponding to Case 5, 

indicates that by decreasing the process noise the observability measures also decrease. The sixth 

row, Case 6, shows the relationship between the initial state uncertainty and the observability 

measures. A decrease in the initial state uncertainty causes an decrease in the measures. 

However, the effect of the initial state uncertainty is limited, especially for large k. 

 

Table 4.3 Cross Correlation Coefficient Values 

 

 Case 1 Case 2 Case 3 

Cross correlation coefficients between       
   and the 

second moment approximation 

0.7627 0.9756 0.8886 

Cross correlation coefficients between the difference 

                      and the second moment 

approximation 

0.6007 0.9250 0.8637 
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Table 4.4 Effects of System Parameters 

 

                    
   

                
         

  
                        

      (Case 1) 

102.9626 3.8127 

                
         

  
                         

      (Case 2) 

52.6770 2.9593 

               
         

  
                        

      (Case 3) 

67.9165 3.0871 

                
         

  
                        

    (Case 4) 

62.2956 2.5881 

                
         

  
                       

      (Case 5) 

60.1768 2.6094 

                
         

  
                           

      (Case 6) 

99.0484 3.5944 

 

4.5 Discussion 

In this study the observability measure definitions based on the mutual information are expressed 

in a recursive manner. An algorithm is generated for the computation of both of the observability 

measures using the particle filters. The recursive expressions obtained for these measures plays 

an important role in the proposed algorithm. The algorithm is tested on a linear system and the 

observability measures obtained by the recursive algorithm are compared to the ones given 

theoretically as derived in Chapter 3. 

 

The proposed algorithm is also applied to a simple nonlinear system which is a variation of a 

commonly used nonlinear system in the literature. The results of this example are also compared 

with the results of the ‘second moment’ approximation of Mohler and Hwang (1988). 

 

From the experiments that we have conducted on the nonlinear system the following conclusions 

could be deduced: 

 The effects of the changes in the parameters of the nonlinear system are very similar to 

the effects of the changes in the system matrices of linear systems. 
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 The Second moment approximation is not very suitable for highly nonlinear systems. 

This conclusion is due to the observed increase in the discrepancy between mutual 

information and its second moment approximation.  
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CHAPTER 5 
 

 

 

CONCLUSIONS 
 

 

 

 

In this study two observability measure definitions are given. The first measure considers the 

relationship between the output sequence of a stochastic system and its state sequence. The 

second one is more traditional and is based on the relationship between the measurement 

sequence and the last state. The observability measures used in this study are the mutual 

information, and the Bhattacharyya and the Hellinger distances. 

 

The mutual information between the state and the measurement sequences as an observability 

measure of a stochastic system is proposed for the first time in this thesis. This observability 

measure is examined for LTI discrete-time Gaussian stochastic systems in detail and related 

analytical expressions are obtained. The measure is derived in terms of the statistics of the basic 

random variables and the system matrices. The effects of the system matrices, initial state 

uncertainty, and the process and the measurement noises on the observability measure are 

examined. Two interesting results are observed: 

1. The unobservable states of the deterministic system has no effect on the measure 

2. Any observable part with no measurement uncertainty makes the measure infinite 

Since the mutual information is a special case of Kullback-Leibler distance, other probabilistic 

distance measures, the Bhattacharyya and the Hellinger distances, are also investigated in full 

detail to be used as observability measures. These measures show results that are similar to the 

ones obtained using the mutual information.  

 

The relationship between the observability measures and the covariance matrices of the states 

conditioned on the measurements are derived explicitly. The mutual information compares the 
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determinants of the conditional (to the measurements) and the unconditional covariance matrices 

of the state sequence. 

 

The second observability measure definition is based on the mutual information between the last 

state and the measurement sequence, originally proposed by Mohler and Hwang (1988). This 

definition is not new, but in this study it is analyzed in detail. The analysis is based on our own 

derivations. For the second definition, the observability measures based on the Bhattacharyya and 

the Hellinger distances are also obtained and analyzed. The relationships between the 

observability measures and the Kalman filter state covariance matrices are derived. It is found 

that the measure based on the mutual information compares the determinants of the conditional 

(to the measurements) and the unconditional covariance matrices of the last state. 

 

An interesting part of the Mohler and Hwang’s work is their results related with the observability 

measure of the components of the last state vector. This study is extended to the observability 

measure of the subspaces, so the modes, of linear Gaussian systems. Similarly it is also extended 

to the case of partial measurements which is unavoidable for distributed systems like sensor 

networks. The extensions mentioned here are obtained for both the state sequence observability 

measure and the last state observability measure definitions. 

 

The individual state observability of a single measurement LTI discrete-time Gaussian stochastic 

system represented in observable canonical form is analyzed in detail for the observability 

measure based on the state sequence. As it is mentioned previously, the deterministically 

unobservable states have no effect on the observability measure. However it is interestingly 

observed that the individual state observability measures of the unobservable states are not zero 

when they are derived by the observable states. 

 

The definitions of the observability measures given in this thesis are not restricted to the linear 

and/or Gaussian systems. However it is not trivial to apply the definitions to general nonlinear 

systems. It is almost impossible to obtain analytic expressions that relate the system parameters 

to the observability measures defined here. So we have concentrated on the numerical 

computation of the measures. Among the three definitions we have selected the one that uses the 

mutual information and derived an algorithm to compute this measure both for the state sequence 

based and the last state based definitions.  

 

To achieve the goal of obtaining the observability measures numerically first the observability 

measures are expressed in a recursive manner. Although the recursive evaluation of the 

observability measure is unavoidable for the numerical computation for nonlinear systems, one 
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can say that it has some value in itself since recursive expression shows exactly the mutual 

information increment.  

 

The particle filtering which is a powerful method that copes with the nonlinearity problem is 

selected here as the computational method. A particle filter based algorithm that uses Monte 

Carlo techniques whenever necessary is generated. Its performance is tested on a simple linear 

example by comparing its results with the analytical results found previously for linear systems. 

The second example that the method is applied is a nonlinear system. The observations made on 

this example show the similarity of the properties of the measures for linear and the nonlinear 

systems. 

 

To the best of our knowledge the only work on the observability of the nonlinear systems is the 

one given by Mohler and Hwang (1988). In this work the effect of the nonlinearity is summarized 

as a covariance matrix, so the second moment approximation, for the last state observability case. 

The second moment approximation is compared with our results. The comparison is done on the 

nonlinear example and shows that, for highly nonlinear systems, the second moment 

approximation is not suitable. 

 

A definition is valuable if it can lead to some success in applications. Our definition should be 

tested in some applications to evaluate its value. We consider the future work as the applications 

of the theory to engineering problems. We mention two important application examples below 

that are still hot subjects in the literature. Obviously the applications are not restricted to the two 

examples given below. 

 

First application area of the theory as well as the numerical algorithm developed for the nonlinear 

systems is the optimal trajectory planning. As an example the bearings only tracking problem 

requires a trajectory planning of the own ship to get good estimates of the state. Observability 

measure can be used as an objective function that should be maximized for this problem. 

 

The transfer alignment type of problems that require some maneuver to estimate some parameters 

of the system are also in the category of the trajectory planning. Maximization of a certain 

observability measure is also necessary to get sufficiently reliable estimates of the required 

parameters. 
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APPENDIX - A 
 

 

 

ENTROPY OF A MULTIVARIATE NORMAL DISTRIBUTION 
 

 

 

 

Entropy of a multivariate Gaussian distribution is a well known subject. However we will give 

derivation here for the sake of completeness.  

Let      has a multivariate normal distribution with mean      and covariance matrix  . The 

probability density function of      is, 

     
 

     
 
   

 
 

  
 
 
        

 
           

 (A.1) 

Then, differential entropy is (Cover and Thomas (2006)), 
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APPENDIX - B 
 

 

 

DETERMINANTS OF     AND          

 

 

 

 

Fact B.1: Determinant of     is, 

                
 
 (B.1) 

 
Proof :     is 
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 (B.3) 

If the first row is multiplied with   from left and subtracted from the second row, the result is, 

 
 
 
 
 
 
      

 
    

  
                                                        

     
                                                        

 
    

 
     

          

                                                                   

      
                     

   

    
 
 
 
 
 
 

 (B.4) 

Note that, by applying this procedure, the determinant is not affected. And, if the same procedure 

is applied to the other rows, the following results can be found. 

 
 
 
 
      

 

     

 
 

   
  

         

    
        

 
 
 
 

 

(B.5) 

The determinant of this matrix, which is the determinant of    , is 
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Fact B.2: Determinant of          is, 

                     
 
      

   
 (B.7) 

Proof :          is 

          
        

        
  (B.8) 

By using (3.35), (3.36) and (B.1), 
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