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ABSTRACT

DIRECT NUMERICAL SIMULATION OF PIPE FLOW USING A SOLENOIDAL

SPECTRAL METHOD

Tuğluk, Ozan

Ph.D., Department of Engineering Sciences

Supervisor : Assoc. Prof. Dr. Hakan I. Tarman

April 2012, 99 pages

In this study, which is numerical in nature, direct numerical simulation (DNS) of

the pipe flow is performed. For the DNS a solenoidal spectral method is employed,

this involves the expansion of the velocity using divergence free functions which also

satisfy the prescribed boundary conditions, and a subsequent projection of the N-S

equations onto the corresponding dual space. The solenoidal functions are formulated

in Legendre polynomial space, which results in more favorable forms for the inner

product integrals arising from the Petrov-Galerkin scheme employed. The developed

numerical scheme is also used to investigate the effects of spanwise oscillations and

phase randomization on turbulence statistics, and drag, in turbulent incompressible

pipe flow for low to moderate Reynolds numbers (i.e. Re ∼ 5000) ).

Keywords: pipe flow, drag reduction, transition to turbulence, turbulence, direct
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numerical simulation, turbulence control, transition control, transient growth, wall-

bounded flows, spanwise oscillations, phase randomization, solenoidal basis, pseu-

dospectral methods
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ÖZ

SOLENOİDAL SPEKTRAL YÖNTEM KULLANILARAK BORU AKIŞININ

DOĞRUDAN SAYISAL BENZETİMİ

Tuğluk, Ozan

Doktora, Mühendislik Bilimleri Bölümü

Tez Yöneticisi : Doç. Dr. Hakan I. Tarman

Nisan 2012, 99 sayfa

Bu çalışmada, sıkıştırılamaz boru akışında açısal salınımların ve faz randomizasy-

onunun, düşük-orta Reynolds sayıları (Re ∼ 5000)) için türbülans istatistikleri ve

sürüklenme üzerindeki etkileri araştırılmıştır. Bu çalışmada, sayısal nitelikli olup, boru

akışının direkt sayısal simülasyonu (DNS) yapılmıştır. DNS için solenoidal spektral

yöntemi kullanılmış olup, bu yöntem öngörülen sınır şartlarını karşılayan solenoidal

bazlarla hız vektörünün açılımını ve sonrasında, ilgili ikili vektör uzayı üzerine NS

denklemlerinın projeksiyonunu içerir. Solenoidal baz fonksiyonları Legendre polinom

uzayında formüle edilmiş olup, kullanılan Petrov Galerkin şemasından kaynaklanan iç

çarpımlar için daha elverişli formlar sunmaktadır.

Anahtar Kelimeler: boru akışı, türbülansa geçiş, türbülans, direkt sayısal simülasyon,

türbülans kontrolü, geçiş kontrolü, geçici büyüme, duvara sınırlı akış, açısal salınımlar,
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faz rastlaştırma, solenoidal bazlar, pseudospectral yöntemler
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CHAPTER 1

INTRODUCTION

I am an old man now, and when
I die and go to Heaven there are
two matters on which I hope enlight-
enment. One is quantum electro-
dynamics and the other is turbulence
of fluids. About the former, I am
rather optimistic.

Sir Horace Lamb

1.1 Turbulence

Turbulence is a complex flow phenomenon, as a matter of fact most flows are turbulent

in nature. One can cite the ocean currents, jet streams in the atmosphere, the surface

of the sun, boundary layers and wakes created by aircraft, flow around an automobile,

flow in canals and rivers, flow in oil and gas pipelines, the gaseous nebulae [1], as

examples. In fact it would not be inaccurate to state that we, as human beings, spend

our lives immersed in flow of turbulent fluids. Turbulence is, by its nature, a nonlinear,

diffusive, three dimensional, unsteady, rotational and multiscale phenomenon which

involves three dimensional vorticity fluctuations. Hence many simplifying assumptions

of theoretical fluid mechanics are not valid for turbulent flow, so theoretical advances

in turbulence have been rather limited. It is widely accepted that the venerable

Navier Stokes equations adequately describe turbulence [2, 3] by admitting turbulent

solutions. However having such an admittedly complete mathematical description

does not alleviate the problems encountered in theoretical approach to turbulence, as

existence and smoothness of Navier-Stokes solutions in three space dimensions itself

1



is one of the seven Millennium Prize Problems set by the Clay Institute. Owing to

these difficulties, it would not be inaccurate to state that turbulence research has been

a basin of attraction, borrowing the term from dynamical systems, for studies which

are numerical in nature.

Returning to the nature of turbulence, the main implication of turbulent flow is that

the drag in a wall-bounded turbulent flow is always higher than the drag in the corre-

sponding laminar flow . The difference in the drag force can be orders of magnitude

depending on flow parameters such as viscosity and mean velocity. From an engi-

neering perspective this is certainly an undesirable characteristic of turbulent flows.

In addition to requiring more energy to drive, turbulence enhances mixing and heat

transfer. Enhancement of mixing and heat transfer are often desirable but depending

on the application one might want to minimize them as well.

Turbulence arises from instabilities in the flow, whether these are global or local

instabilities is a matter which is debated. As the nature of the instabilities is also

dependent on the flow geometry, next section gives the background for pipe flow,

which is considered in this study as a test case, and in the following section transition

to turbulence is discussed.

As a side note, we would like to stress that by the word turbulence we mean hy-

drodynamic or Navier-Stokes turbulence [1, 4, 5]. This has been stressed as the word

turbulence has gained recognition in dynamical systems community in a broader sense

to describe all spatio-temporally complex phenomena [6, 7, 8].

1.2 Pipe Flow

The geometry of choice in this study is pipe flow, which is essentially flow in a cylin-

drical pipe with circular cross section. The reason why this geometry is chosen is

twofold. From an application point of view, the industrial relevance and importance

of pipe flow is evident. Pipes with circular cross section are very widely utilized in

various industries and applications, such as oil and gas pipe lines, water and sewage

systems, fuel injection systems in space, air, sea and land vehicles, cooling systems

etc. Also pipe flow experiments are easier and cheaper to conduct than other wall

2



bounded flow geometries [9]. One interesting property of pipe flow, similar to Couette

flow, is that even though the flow in a pipe is linearly stable (see section 1.3), it cer-

tainly can and does become turbulent. Furthermore the Navier-Stokes equations have

coordinate singularities when formulated in cylindrical coordinates. Hence, pipe flow,

is one of the more difficult cases of wall-bounded flows, even though the geometry is

relatively simple, mainly due to the coordinate singularities.

Historically the pioneering work on pipe flow was performed by Jean Louis Marie

Poiseuille [10], a physician and physiologist, who was mainly interested in the flow of

blood within the veins, Gotthilf Hagen [11], a physicist and hydraulic engineer, and

Osborne Reynolds [12]. The first studies on the subject were experimental, as the

theoretical approach was, and is, much more difficult (see Sec. 1.1).

1.3 Transition to Turbulence in Pipe Flow

Stability of pipe flow has been studied for over a century, ever since the well known

experiments by Reynolds [12]. In his experiments Reynolds observed how direct flow in

a pipe became sinous. This phenomena, which is now called transition to turbulence,

has been subject to many diverse numerical, theoretical and experimental studies. It

is widely accepted that, the sole flow parameter for this phenomena is the Reynolds

number. Even though the pipe flow is geometrically very simple, and experiments

are relatively easy to conduct in this setting, the theoretical studies were limited,

and the numerical approach was more widely used. One of the main peculiarities of

pipe flow is that the flow is linearly stable [13] at even very high Reynolds numbers,

upto Re ∼ 107, as it was shown in [13]), causing a decay in small perturbations.

With linear stability it is meant that when the Navier-Stokes equations are linearized

around the laminar solution, the eigenvalues corresponding to the linearized system

all have negative real parts (for a detailed discussion consult [13]). The computations

in this study also verify that the associated eigenvalues have negative reals parts as

expected, this has been used as an initial validation case in section 4.1. The presence

of linear stability means, for transition in pipe flow to occur, both the flow speed

and the perturbation amplitude must be sufficiently high [14]. From a mathematical

standpoint, this means that the laminar solution does not offer a bifurcation point

3



at finite values of Reynolds number [15] and for infinitesimal values of disturbances.

It has been known for over a century, that the Reynolds number (Re = UD/ν as

defined by Reynolds himself, where U is the mean axial flow velocity), is the single

dimensionless flow parameter which governs the transition to turbulence in pipe flow

[12]. When Osborne Reynolds first observed transition to turbulence in pipe flow, he

wrote: “All the same I felt a certain amount of uncertainty in assuming the first cause

of instability to be general. This uncertainty was the result of various considerations,

but particularly from my having observed that eddies apparently come on in very

different ways, according to a very definite circumstance of motion . . . ” [12]. In his

aforementioned article, Reynolds also observes that there is no global critical value for

transition to turbulence, rather the transition is strongly linked to the perturbations

applied to the flow.

Recent studies also suggest that pipe flow undergoes transition in the absence of medi-

ation by a linear instability of the laminar profile, and it does not seem possible to find

a spatially and temporally simple intermediate state (like the famous Rayleigh-Benard

rolls for example) between turbulent and laminar regimes [14]. These observations,

taken from both numerical and theoretical studies, led most, if not all, of the turbu-

lence research community to consider the turbulent state represent a chaotic saddle in

the state space [14]. To further complicate the problem, it is still debated whether the

transition is a global or local phenomena [16]. Another complication is that it has been

shown, both numerically and experimentally, that turbulent states may decay and de-

generate into laminar flow without clear precursors [16, 17, 18], if the observation time

is sufficiently long [14].

As Kerswell clearly states in [15], the main issue with transition to turbulence in

general, and transition in pipe flow in particular, is not the governing equations or

their solution. We know that the Navier-Stokes equations are not lacking in these

transition regimes [8], further their solution can be obtained by a myriad of numerical

methods. The problem lies in the analyzing and rationalization of the obtained so-

lutions to this set of nonlinear equations. In simulations of Navier-Stokes equations,

one generally obtains a system of ODE’s with quadratic nonlinearity. The degree of

freedom routinely ranges from O(105) to O(107), depending on the Reynolds number

in which the simulation will take place, and obviously the available computational
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power. This means, to be able to use ideas from the dynamical system theory [19],

which has been widely used, the phase portrait of the system, in which a 3D flow

field is represented as a single point, will be of the quoted orders as well. Meaningful

visualization of such a high dimensional phase space is not achievable in a direct sense.

One of the latest developments, which also arises from dynamical systems theory, is

to use unstable periodic solutions to the underlying fluid flow problem, in a modal

expansion for spatio-temporally complicated problems [20, 21]. The forerunner of this

methodology was the work by Nagata [22], in which a pair of solutions (termed upper

and lower branch solutions) evolve to plane Couette flow starting from a solution of

Taylor-Couette flow (the wavy vortex solution). Later Waleffe generated families of

exact solutions (in the form of equilibria and waves) for Couette and Poiseuille flows

at a range of parameters [23, 24, 25]. Wallefe termed these solutions exact coherent

structures owing to the fact that these solutions resembled the coherent structures

observed in flow simulations and experiments. State-space visualization via the use

of these exact coherent structures (or equilibrium solutions), has been successfully

applied to Couette flow [26]. By constructing a basis out of the equilibrium solutions,

Gibson et. al manage to identify the unstable manifolds embedded in the phase space

[26].

As mentioned earlier in literature, transition to turbulence studies in pipe flow gener-

ally utilize DNS [27]. These DNS are usually implemented via spectral (pseudospectral

[28], spectral element [29]) or finite difference methods [30, 31], or a mixture of these

two method families. Within the framework of these methods, it is possible to employ

solenoidal basis functions in the expansion of velocity. The use of solenoidal functions

in fluid mechanics problems appeared earlier in various studies such as [32] in the

study of Taylor-Couette flow, and [33, 13] in the study of pipe flow. The convergence

properties of expansions in divergence-free functions in the case of Stokes equations

along with pressure reconstruction algorithm is studied in [34] and a domain decompo-

sition approach can be found in [35]. Another early formulation of the incompressible

fluid flow problems in terms of divergence-free functions can be found in [36].
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1.4 Turbulent Drag Reduction

Reduction of drag in turbulent flows is often desirable, especially in industrial applica-

tions, as one of the major differences between laminar flows and turbulent flows is the

fact that turbulent flows experience a marked increase in drag, this increase can be a

few orders of magnitude depending on the Reynolds number. Therefore reducing drag

in a turbulent flow is of paramount importance. There are numerous techniques, both

active and passive, employed for drag reduction. Active control within the framework

of flow control signifies the usage of energy power sources whereas passive control

mechanisms do not involve energy input into the system. Drag reduction due to span-

wise wall oscillations is a case of active flow control where the walls bounding the fluid

are oscillated resulting in the reorganization of near wall structures and a significant

drop in wall shear hence drag. Utilization of wall oscillations was first proposed by

Jung et al. [37], whose numerical study predicted approximately 40% drop in the drag

force. Flow in pipes with circular cross sections is commonly encountered and is of

obvious technological importance, hence various drag reduction strategies for pipe flow

have been object of numerous studies. There are various control strategies for wall

bounded flows, which are known to decrease drag, such as spanwise wall oscillations

[37, 38, 39, 40, 41, 42] particle addition [43], and phase randomization [44, 45]. Except

for phase randomization, the aforementioned methods had been applied successfully

to pipe flow.

In this study we employ a solenoidal spectral method to simulate the effects of different

approaches to drag reduction at moderate Reynolds numbers, including phase random-

ization and wall oscillations. We perform direct numerical simulation of Navier-Stokes

equations for flows driven by constant mass flux and constant pressure gradient. We

perform a comparative analysis on the effectiveness of these methods, together with

similarities and differences between their turbulence suppressing mechanisms. The

turbulence control mechanisms investigated here, eventhough a comprehensive para-

metric study is not in the scope of this work, are often classified under the category of

flow optimization without optimization [46], this is due to the fact we do not employ

sophisticated optimization techniques to attain our objective, i.e. drag reduction. One

other advantage of utilizing flow optimization without optimization is that, no sensors
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or measurements are necessary for the success of the control strategies.

1.4.1 Drag Reduction via Spanwise Wall Oscillations

Reduction of turbulent activity via spanwise wall oscillations is a well known phe-

nomenon but not all the mechanisms involved are fully understood [47]. In their 1992

study Jung et al. [37], observed that the wall-oscillations caused time-sustained re-

duction of the streamwise wall-shear stress. They conjectured the drag reduction due

to wall oscillations was due to the modification of turbulence producing activity in

the near wall region. Further studies, numerical and experimental, also supported

this claim that wall oscillations tend to weaken turbulence producing activity in the

vicinity of the walls [38, 39, 40, 48, 41, 47, 49]. An experimental study [50], reports

the usual reduction in mean velocity gradient near the wall and an upwards shift in

the logarithmic velocity profile and conjecture this to be caused by the negative span-

wise vorticity in the near-wall region as a result of spanwise wall oscillations. Wall

oscillations have been more extensive for channel flow and a scaling parameter has

been suggested for this geometry [47]. In pipe flow the main experimental work is

[38], and one can cite [40, 42] among the numerical studies (DNS) .

Spanwise oscillations, for pipe flow geometry are oscillations about the pipe axis.

There are two parameters for wall oscillations, the oscillation amplitude A, which

corresponds to the maximum angular displacement, and the frequency of oscillations

Ω. For a pipe oscillating about its axis with amplitude A, and frequency Ω the

azimuthal component of velocity at the pipe wall satisfies vosc(1, θ, z, t) = A sin(Ωt).

Spanwise oscillations represent azimuthal forcing on the flow, and do work on the flow.

Hence spanwise wall oscillations constitute active flow control.

1.4.2 Drag Reduction via Phase Randomization

Turbulent drag reduction via phase randomization was first suggested in a numerical

study [44] for channel flow. Later an experimental study was performed, developing

a possible real world analogue of phase randomization in simulations [45]. It was

suggested by this wind tunnel experiment that specially arranged wall protrusions
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resulted in drag reduction by interacting with near wall structures, and certain other

arrangements resulted in drag increase, similar to the effects of randomizing higher

wave-number modes in numerical studies [45]. The idea behind phase randomization

is to disrupt the energy transfer between roll-like structures and wave like structures,

which was earlier suggested to cause burst phenomena in plane channel flow, which

in turn contribute significantly to turbulence intensity [51].

The idea presented in [44] is to introduce a spatially uniform randomization to Fourier

modes throughout the channel, and it was shown that the results are strongly cor-

related with the period of phase randomization and the mode band selected for the

randomization. It was also shown that randomization in higher modes resulted in

an increase in turbulent activity. The experimental work carried out to mimic the

effects of phase randomizations via designed wall protrusions [45] also showed that

certain configurations of protrusions resulted in increased drag (hence increased mix-

ing) instead of drag reduction observed in other cases. Hence, even though phase

randomization is an example of passive drag reduction techniques, it is possible to

attain a net drag enhancement with this method.

1.4.3 Other Drag Reduction Methods

There are numerous methods to facilitate drag reduction. In this section some of these

methods, which are not considered in this study, are listed and briefly explained to

give the reader a general perspective on known drag reduction techniques.

Introduction of particles into turbulent flows, such as polymer chains is known to

produce drag reduction [43]. The existence of a possible link between drag reduction

via polymer addition and phase randomization was suggested in [45], but to this day

this alleged connection has not been investigated. In addition to polymer addition,

use of bubbles and micro-bubbles and gas injection have also shown to be effective

[52, 53] in turbulent drag reduction, especially in external flows, where their effects

are better investigated in comparison to spanwise oscillations. Further drag reduction

methodologies include, but are not limited to, pumping/sucking action through walls

[54], use of wavy surfaces [55], and more recently formation of artificial traveling waves

for flow stabilization [56].
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1.5 Solenoidal Basis Functions

One of the main difficulties in direct numerical simulation, or any other simulation for

that matter, of incompressible fluid flow is the divergence-free condition which arises

from the conservation of mass, and the pressure variable which is bereft of an equation

of state [57, 58]. The problem with the fact that an equation of state cannot be defined

in incompressible flow results in pressure being transformed into a mathematical arti-

fact rather than a relevant physical variable [57, 59]. In incompressible Navier-Stokes

equations, hence, the pressure acts, in a sense, like a Lagrangian multiplier which con-

strains the flow to remain divergence-free (i.e. solenoidal). It must be added however,

that the gradient of pressure is a relevant physical quantity (force per unit volume).

The most difficult issues in dealing with pressure are specifying boundary conditions

and the expensiveness of its computation during simulations [57, 58, 59].

There are various possible formulations of the momentum part of the Navier-Stokes

equations, which are mathematically equivalent, whose discretized forms vary signifi-

cantly in terms of momentum and energy conservation, and handling of various bound-

ary conditions. These different formulations of Navier-Stokes equations, in addition,

respond differently to various numerical methods. At least 16 different formulations of

the Navier-Stokes equations are possible [58]. In this study, the primitive variable for-

mulation (the so called u−P equations which were actually recommended by Gresho

in his excellent 1991 review [58] as the most favorable form to be utilized) is used,

with the conventional form for the viscous term and the advective/convective form for

the nonlinear term during computation.

There are various approaches as well, to the problem of the divergence-free condition.

Fractional step/time splitting [60], Helmholtz decomposition/projection methods [61],

toroidal-poloidal expansion [62], influence matrix method [63, 64], artificial compress-

ibility [65] and penalty methods [66],among others. Some of the aforementioned meth-

ods are combined with staggered grid (or MAC) configurations [67], in an effort to

decrease the discretization errors. It is also worthwhile to note that, while the methods

mentioned above may result in divergence-free velocity fields, the question whether

the obtained velocity fields are in fact a solution to the incompressible Navier-Stokes

equations is disputed [59].
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Solenoidal basis functions span the space of functions whose divergence is zero. When

these basis functions are employed to expand the velocity field in fluid dynamics

problems, the continuity equation is automatically satisfied [32]. In addition, usage of

the functions renders the solution for the pressure unnecessary [32], resulting in simpler

computer code. More importantly by using solenoidal basis functions, the dynamical

system obtained is suitable for use in a bifurcation analysis. Thus the need for separate

simulation and bifurcation analysis is eliminated. This is a clear advantage over using

Karhunen-Loeve (K-L) analysis in conjunction with DNS, however the solenoidal basis

functions are not optimal in the energy sense, unlike K-L basis functions (this is only

true if the POD is used statically).

The use of solenoidal functions in fluid mechanics problems was proposed, among

others, in [32], the convergence properties in case of Stokes equations along with

pressure reconstruction algorithm can be found in [34] and a domain decomposition

approach can be found in [35], also for a slightly different approach was detailed in

[36]. There are also methods to create discrete divergence-free bases (see [68] and the

references therein), which could aid in construction of solenoidal bases for arbitrary

geometries. A Fourier-Chebyshev based solenoidal method was developed in [69] for

pipe flow. This method was utilized to investigate the linear stability properties of

pipe flow up to very high centerline Reynolds numbers [69], and the linear stability of

pipe in the presence of infinitesimal disturbances upto centerline Reynolds number of

105 was shown. A similar method was employed in the investigation of transition to

turbulence in pipe flow in a series of studies [70, 71]. A modified version of the same

method was used in studying the Takens-Bogdanov bifurcation of traveling waves in

pipe flow [72], as well as the investigation of localized transition in pipe flow for very

long pipes [73].

1.6 What is new in this study

In descending order of novelty, and to the best of authors knowledge, in this study,

• Effects of phase randomization for pipe flow have been analyzed for the first

time in literature
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• Effects of phase randomization for constant mass flux flow have been analyzed

for the first time in literature,

• Effects of wall oscillations on transient growth of perturbations in the transition

region have been investigated for the first time,

• A solenoidal spectral method has been used for simulation of drag reduction for

the first time [74].

1.7 Outline

The rest of this work is organized in five chapters. Chapter 2 details the governing

equations uswd and the scalings employed, details about our numerical method is pre-

sented in chapter 3, turbulence statistics at reference Reynolds numbers are presented

in chapter 4 for constant pressure and mass flux driven flows. Chapter 5 presents the

simulation of drag reduction via spanwise wall oscillations and phase randomization.

Finally, Section 6, summarizes our findings and our comments on the strengths and

weaknesses of the numerical method as well as the effectiveness of drag reduction

methodologies employed.
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CHAPTER 2

PIPE FLOW

Turbulence is the graveyard of theo-

ries.

H. W. Liepmann

2.1 Governing Equations

The widely accepted mathematical model for fluid flow is the set of equations known

as Navier-Stokes equations. Although existence and uniqueness properties of this set

of equations are essentially unknown in three space dimensions, except for some trivial

cases, Navier-Stokes equations are regarded as being an accurate mathematical model

for fluid flow. It is also universally agreed upon that N-S equations are adequate

in describing turbulent flow phenomena [2, 3]. For the presented study we use the

unsteady incompressible NS equations in cylindrical coordinates as our mathematical

model. The dimensional, unsteady, incompressible N-S equations in polar coordinates,

in the absence of body forces, are given by (2.1),

∂tu + (u · ∇)u = − 1

ρ
∇p+ ν ∆u (2.1)

∇ · u =0,

where, ν is the kinematic viscosity of the fluid.
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Figure 2.1: Pipe flow geometry

2.1.1 Non-dimensionalization

Non-dimensionalization in fluid mechanics is a well known, and almost universally

applied technique, which enables a drastic reduction in the number of independent pa-

rameters for fluid flow. In the case of incompressible viscous flow, which is the working

assumption of this thesis, all the parameters are reduced to the well known Reynolds

number. This is a significant advantage for comparing of different works, both ex-

perimental and numerical, and decreases the search in the parameter space a few

orders of magnitude. Buckhingam-Π Theorem is the root of non-dimensionalization

[75], which provides a systematic way of constructing non-dimensional parameters.

Osborne Reynolds states this as [12],

“...[T]hat the general character of the motion of fluids in contact with solid surfaces

depends on the relation between a physical constant of the fluid and the product of

the linear dimensions of the space occupied by the fluid and the velocity.”,

where he essentially describes what is now known as the Reynolds number. For the

non-dimensionalization procedure, first a number of reference quantities must be de-

fined. With the choice of length scale [L] = lref , velocity scale [V ] = uref , and the

corresponding time scale [T ] =
[lref ]
[uref ] , together with a scaling for the pressure in the

13



form p = p∗ρu2
ref , the scaled (non-dimensionalized) operators and the variables read,

u∗ =
u

uref

p∗ =
p

ρu2
ref

∇ =
∇∗

lref

∆ =
∆∗

l2ref
, (2.2)

where the superscript ∗ is used to denote the scaled variables and operators. When

the scalings and the scaled operators (2.2) are applied to (2.1), one obtains (2.3) as,

u2
ref

lref
∂tu
∗ + (uref u∗ · 1

lref
∇∗)uref u∗ =−

u2
ref

lref
∇∗p∗ +

uref
l2ref

ν ∆∗u∗ (2.3)

∇∗ · u∗ =0.

rearranging (2.3), and dropping the superscript ∗, as is customary, results in,

∂tu + (u · ∇)uref u =−∇p+
ν

uref lref
∆u (2.4)

∇ · u =0.

Hence, the governing system of unsteady incompressible Navier-Stokes (N-S) equations

in polar coordinates, when non-dimensionalized with a reference velocity uref and ref-

erence length lref , with the introduction of the Reynolds number Reref = uref lref/ν,

can be written in the form shown in the following form,

∂tu + (u · ∇)u = −∇p+
1

Reref
∆u (2.5)

∇ · u = 0,

where, u = (u, v, w), denotes the velocity field with radial, azimuthal and axial com-

ponents, respectively and p = p′ + Gz the pressure. The symbol G in Equation (2.5)

represents the magnitude of the mean non-dimensional pressure gradient along the

pipe axis, ez. Various forms G assumes for different scalings commonly used are given

in (2.6)-(2.8).
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When the centerline velocity, Ucl, of laminar flow, is selected as the velocity scale, and

the length scale is set to be the pipe radius R (also called as macro scaling, and the

resulting units are called macro units),

Recl =
ΠR3ρ

4µ2
and G =

4

Recl
, (2.6)

where Π is the dimensional driving pressure gradient, ρ the density and µ is the

dynamic viscosity. On the other hand, when the velocity scale is the friction velocity

and the length scale is again the pipe radius (also called friction or inner scaling and

the resulting units are called friction units or inner units),

Reτ =
uτR

ν
and G = 2, (2.7)

where uτ =
√
τw/ρ is the wall friction velocity and τw the wall shear stress. For

friction scaling the mean (driving) pressure gradient is independent of the Reynolds

number, and is fixed.

Another scaling arises, when the bulk mean velocity is kept constant,

UB = 1
π

∫ 2π

0

∫ 1

0
wr drdθ,

and the pressure gradient varies in time in order to keep the bulk velocity constant. In

this case the velocity scale becomes 2 UB, which corresponds to the maximum (which

is locates at the pipe center) velocity of the laminar flow. Originally the Reynolds

number was defined under this scaling [12] and takes the form,

Re =
2UBR

ν
and G = G(t), (2.8)

where G(t) is the time varying pressure gradient required to keep the bulk velocity con-

stant. In this study the constant pressure gradient and constant mass flux (constant

bulk mean velocity) cases will be investigated.

The solution domain of the problem at hand is, in all of the scalings used for compu-

tation( namely (2.6), (2.8), (2.7) ),

r ∈ (0, 1], θ ∈ [0, 2π), z ∈ [0, L/R).

In this domain, the flow is naturally periodic along azimuthal (θ) direction and taken

to be periodic along the axial (z) direction. The no-slip condition (2.9),

u(1, θ, z, t) = 0 (2.9)
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is imposed at the pipe wall.

In addition to the presented scalings, it is customary to present some results in the so

called wall-units. The wall-units or the wall scaling can be defined with the velocity

scaling selected similar to (2.7), as uτ , with a length scale ν/uτ (which is also called as

the viscous thickness), and subsequently a time scale given by ν/u2
τ . In order to relate

the time in friction units to time in wall units, consider an arbitrary dimensional time

T , with its value in friction scaling T τ , and the relevant value in wall units T+,

T =
T+ν

u2
τ

,

T =
T τR

uτ
,

Hence,

T τR

uτ
=
T+ν

u2
τ

.

So the relation becomes,

T τ =
T+ν

uτR
.

From the definition of friction Reynolds number,

Reτ =
uτR

ν
,

finally one gets,

T τ =
T+

Reτ
.

Similarly for the radial coordinate,

r+ = Reτ (1− r),

as the radial coordinate in wall units is customarily measured starting from the wall.

Some other useful relations between various scaled quantities in different unit systems

are as follows.
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The bulk velocity in wall or friction units, in the case of bulk scaling, is also given by,

u+
B =

√
1

2GB

where GB is the pressure gradient required to drive the flow with constant mass flux

in bulk scaling [76]. In addition, the friction Reynolds number in this scaling can be

calculated by,

Reτ =

√
Re

∂w

∂r
,

yet another useful expression which relates the bulk flow velocity in friction scaling

directly to radial derivative of the mean velocity profile in bulk scaling is ,

(uB/uτ )2 = Re/(4
∂w

∂r
).

2.1.2 Laminar Flow

As a final derivation of the laminar flow in the case of pipe flow is detailed below.In

order to obtain the laminar solution to N-S equations for pipe flow, one assumes the

flow to be steady, velocity be oriented along the axis of the pipe, and be independent of

azimuthal and radial directions, these can be written as, denoting the laminar solution

with subscript l,

ul =(0, 0, wl)

∂wl
∂t

=0

∂wl
∂r

=0

∂wl
∂θ

=0. (2.10)

With the simplifications given in (2.10), the first two components of (2.1) becomes,

∂p

∂r
=0

∂p

∂θ
=0, (2.11)
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this implies, p = Π ẑ + c, where c is an arbitrary constant and Π is the pressure

gradient along the axis of the pipe, hence the N-S equations are reduced to,

w′′ +
w′

r
= − Π

ρν
,

where the superscript ’ denotes derivative with respect to r. This second order ODE

can be written as,
1

r

d

dr

(
rw′
)

= − Π

ρν
.

Integrating once yields,

rw′ =
Πr2

2ρν
+ c1,

where c1 is the integration constant. Integrating once more, one obtains,

w =
Πr2

4ρν
+ c1ln(r) + c2.

For the solution to be non-singular at r = 0, the integration constant c1 must be equal

to zero, applying the no-slip boundary condition at the wall (i.e r=1), results in the

well known parabolic velocity profile,

w =
Πr2

4ρν

(
R2 − r2

)
, (2.12)

where R is the radius of the pipe, and r is the radial variable ranging from [0-R].

Under the scalings in (2.6) and (2.6), the laminar flow becomes ul = (0, 0, 1− r2).

The present numerical approach for solving (2.5) is essentially a Galerkin type scheme

involving the solenoidal basis functions satisfying the boundary conditions for the ex-

pansion of the velocity field and the solenoidal dual basis functions for the construction

of the projection space. In the process, the pressure variable in (2.5) is eliminated.

The next section details this approach.
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CHAPTER 3

THE NUMERICAL METHOD

There appeared to be two ways of
proceeding-the one theoretical, the
other practical. The theoretical
method involved the integration of
the equations for unsteady motion in
a way that had not been accomplished
and which, considering the general in-
tractability of the equations, was not
promising.

Osborne Reynolds [12]

In this chapter, the numerical method developed in oder to solve Equation (2.5) is

presented. The method employs solenoidal bases for the space discretization and an

IMEX (semi-implicit) scheme for marhing in time. A similar approach utilizing the

solenoidal basis functions for the study of turbulence transition and transient growth

of perturbations for pipe flow are detailed in [77, 13]. In the aformentioned works,

the construction of the bases is facilitated by Chebyshev polynomials. In this work,

however, Legendre polynomials are used in the formulation of the solenoidal basis

functions and their duals. This is preferred for their performance in the numerical

evaluation of the inner product integrals and for the resulting form of the solenoidal

basis functions.

This study employes two solenoidal basis function sets, namely the pysical (trial) basis

functions, and the dual (test) basis functions. The function sets have different uses.

The physical basis functions are used to expand the velocity field, whereas the dual

basis functions define the space unto which the governing equations are projected.

To summarize the workings of the numerical method, first the velocity field is ex-
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(a) Clustered grid (b) Non-clustered grid

Figure 3.1: Comparison of clustered and non-clustered grids for 8 radial grid points

panded in terms of the first set of solenoidal bases (physical basis functions), the

expression for velocity is then substituted into the governing equations and the result-

ing residual equations are projected onto the second set of solenoidal bases (dual basis

functions), with the aim of eliminating the residual error. Following the projection,

space dependence in the problem and the pressure term are eliminated. This results in

a system of differantial algebraic equations (DAEs), for the time dependent expansion

coefficients [78, 79], which is continous in time. The resulting system of DAEs then is

discretized in time using an semi-implicit (or IMEX) scheme.

Discretization in space is handled by equidistant grids in two dimensions and a Leg-

endre grid along the other space dimension. Equally spaced grids are used along the

homogenous (periodic), azimuthal and axial, directions, a Gauss-Legendre grid is used

to dicretize the radial direction. Special attention has to be paid to the distribution

of grid points in the vicinity of the pipe center r = 0, as one would like to avoid the

singularity at the pipe center and also to avoid excessive grid crowding (clustering)

near the origin [80]. The grid clustering phenomena in polar geometries is illustrated

in Fig. 3.1.
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3.1 Basis Functions

There are two sets of conditions to be satisfied by the physical Ψ and the dual Φ basis

function families. The first one is the solenoidal condition, i.e. the basis functions

should be divergence free,

∇ ·Ψ = 0 (3.1)

∇ · Φ = 0.

It is worthwhile to note that the above formulation for the dual bases is only valid,

if the dual bases are constructed using Legendre polynomials, which are orthogonal

with respect to weight unity. If for example Chebyshev polynomials are used, as in

[13], the condition becomes ∇· (ω Φ) = 0, where ω = 1/(
√

1− r2), which further com-

plicates the construction of the solenoidal bases. In addition to the above condition,

the physical basis functions are required to satisfy the no-slip boundary conditions

prescribed in (2.9). On the other hand, the dual bases are only required the satisfy

the condition of the vanishing flux through the walls in order to enable the elimination

of the pressure term ∇p′ from the equations (2.5) [32]. These additional conditions

are

Ψ(1, θ, z) = 0 (3.2)

Φ(1, θ, z) · er = 0.

In the pipe geometry, while the flow in the azimuthal direction is naturally periodic,

the flow in the axial direction is taken to be periodic as it is a common practice in

literature. This leads to the use of Fourier representation along the corresponding

θ, z coordinates and the basis functions take the following form,

Ψ
(1,2)
lnm (r, θ, z) = ei(nθ+2πlz/Q) V(1,2)

lnm (r)

Φ
(1,2)
lnm (r, θ, z) = ei(nθ+2πlz/Q) V(1,2)

lnm (r).

The superscripts on the basis functions signify the sufficiency of the two degrees of

freedom in representing the three components of a solenoidal velocity field as the

continuity equation provides the connection between the components. In the Fourier

representation, the three components (Vr, Vθ, Vz) of V and V are required to satisfy
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the reduced form of the continuity equation,

D+Vr +
in

r
Vθ + ilVz = 0, (3.3)

where D+ = D+ 1
r and D = d/dr. The basis functions are then constructed to satisfy

(3.2) and (3.3). The regularity requirement in the vicinity of the pipe center [81, 82]

and the use of Gauss-Legendre quadrature (ωk, rk) [83] in the numerical evaluation of

the inner product integrals,

(V,V) =

1∫
0

V(r)∗ · V(r) rdr =
1

2

1∫
−1

V(r)∗ · V(r) rdr

=
1

2

K∑
k=0

V(rk)
∗ · V(rk) rk ωk, (3.4)

impose additional requirements on the basis functions such as the evenness of the

integrands.

3.1.1 Construction of the Bases

In this section the construction of the bases is detailed. We start with the continuity

equation transformed to Fourier space (3.3). For various values of wave number and

other constraints, such as the analicity and the parity of the functions are used to

construct the bases.

Case I, l 6= 0 n = 0, ⇒ D+Vr + ilVz = 0

Physical “1-basis”:

V(1) =


0

Vθ
0



Physical “2-basis”:

V(2) =


−ilVr

0

D+Vr

 ,

where Vr = rfE(r), Vθ = rgE(r) for some fE ,gE analytic and even functions for the

analticity of the flow field. The boundary conditions,

Vr(r = 1) = Vθ(r = 1) = 0,
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on the wall give

Vr = r(1− r2)2P2m and Vθ = r(1− r2)P2m.

The dual is constructed similarly, only that the boundary conditions needed for the

pressure term to vanish is Ṽr(r = 1) = 0. Thus

Ṽr = (1− r2)P2m and Ṽθ = P2m,

thus the dual reads,
Dual “1-basis”:

Ṽ(1) =


0

Ṽθ
0



Dual “2-basis”:

Ṽ(2) =


−ilṼr

0

D+Ṽr

 ,

Another criteria in selecting the form of the dual basis is the parity of the following

intergrands, ∫ 1

0
a∗ · b rdr =

1

2

∫ 1

−1
a∗ · b rdr,

arising in the projection of the governing equations onto the dual space. The integrand

needs to be even or a∗ · b needs to be odd.

Case II, l 6= 0 n 6= 0, ⇒ D+Vr + in
r Vθ + ilVz = 0

Writing Vθ in terms of the other velocity components using continuity equation as a

constraint,

V =


Vr

r
in (−D+Vr − ilVz)

Vz



=


Vr

− r
inD+Vr

0

+


0

− rl
nVz

Vz



=


−inVr

rD+Vr

0

+


0

−irlVz

inVz

 =


−inVr

D(rVr)

0

+


0

−irlVz

inVz


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Analycity requirement for n 6= 0 [81],

ur = r|n|−1fE uθ = r|n|−1gE uz = r|n|hE ,

dictates that,

Vr = r|n|−1(1− r2)2P2m Vz = r|n|(1− r2)P2m.

Also note that the equivalence of index negation and complex conjugacy, i.e.,

V(−l,−n, r) = V∗(l, n, r),

is satisfied. In order to construct the dual basis, the parity is considered, if n is odd,

V1 =


even

even

0

 V2 =


0

even

odd

 ⇒ V1
=


odd

odd

0

 V2
=


0

odd

even

 ,

Hence for this case, the dual base read

V =


−inVr

D(rVr)

0

+


0

−ilrVz

inVz

 ,

using the only boundary condition, Vr(r = 1) = 0, yields

Vr = r(1− r2)P2m Vz = P2m.

In case n is even, then the the dual basis becomes,

V1 =


odd

odd

0

 V2 =


0

odd

even

 ⇒ V1
=


even

even

0

 V2
=


0

even

odd

 ,

V =


−inVr

D(rVr)

0

+


0

−ilrVz

inVz

 ,

with,

Vr = (1− r2)P2m Vz = rP2m.
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Case III, l = n = 0, ⇒ D+Vr = 0

In this case, noting that Vr = 0 is a solution,

V =


0

Vθ
0

+


0

0

Vz

 with Vθ(r = 1) = Vz(r = 1) = 0.

Analycity requires Vθ = rgE , Vz = hE , thus

Vθ = r(1− r2)P2m Vz = (1− r2)P2m.

The dual basis in this case is,

V =


0

Vθ
0

+


0

0

Vz

 ,

where,

Vθ = P2m Vz = rP2m

Case IV, l = 0, n 6= 0, ⇒ D+Vr + in
r Vθ = 0

V =


Vr

− r
inD+Vr

Vz

 =


Vr

− r
inD+Vr

0

+


0

0

Vz



=


−inVr

inD(rVr)

0

+


0

0

inVz

 ,

again considering the parity, for n odd,

V1 =


even

even

0

 V2 =


0

0

odd

 ⇒ V1
=


odd

odd

0

 V2
=


0

0

even

 ,

this implies,
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V =


−inVr

D(rVr)

0

+


0

0

inVz

 ,

where Vr = r(1− r2)P2m and Vz = P2m. Similarly for n even,

V1 =


odd

odd

0

 V2 =


0

0

even

 ⇒ V1
=


even

even

0

 V2
=


0

0

odd

 ,

this implies,

V =


−inVr

D(rVr)

0

+


0

0

inVz

 ,

where Vr = (1− r2)P2m and Vz = rP2m.

3.2 Projection

Having constructed the basis functions, the projection procedure is now employed to

reduce (2.5) to a dynamical system via the inner product

(Ψ,Φ) =

1∫
0

rdr

2π∫
0

dθ

L∫
0

dz(Ψ∗ · Φ) (3.5)

which reduces to (3.4) due to the orthogonality of Fourier bases. Only the coefficients

a(1), a(2) in the expansion of the velocity field,

u(r, θ, z, t) =

Q∑
l=−Q

N∑
n=−N

M∑
m=0

a
(1)
lnm(t) Φ

(1)
lnm(r, θ, z) + a

(2)
lnm(t) Φ

(2)
lnm(r, θ, z), (3.6)

depend on time, and solely on time. Hence, the substitution of (3.6) into (2.5), and

the projection of the resulting residual onto the dual bases via (3.5), result in the

dynamical system for the expansion coefficients alnm in the form,

Alnm′m ȧlnm = Blnm′m alnm − blnm′ (3.7)
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Figure 3.2: Mode (0,1,0) radial contours

where,

Blnm′m = (Ψlnm′ ,
1

Re
∆Φlnm −∇p)

blnm′ = (Ψlnm′ , (u · ∇)u).

The pressure term ∇p appears in the expression, but the term ∇p′ cancels under

projection. The system (3.7) is numerically integrated in time using the 3rd order

semi-implicit time-solver,

3.3 Time Solvers

The system of nonlinear equations for wave number pairs (l, n), which are given by

(3.7) are coupled by the nonlinear terms only. This means after the calculation of

the global nonlinear contributions, b, each system corresponding to wave number pair

(l, n) can be solved independently for the expansion coefficients a. This property

aids in the parallelization of the code via OpenMP library. Thus at each time step

first the nonlinear terms, which correspond to the advective part of the NS equation,

27



-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure 3.3: Mode (0,1,0) azimuthal contours

are calculated, they are projected onto the dual basis, and the resulting vectors are

distributed among the wave number pairs. Following this step, (3.7) is solved for each

wave number pair separately, yielding the expansion coefficients.

The time solver selected to solve (3.7), is a semi-implicit scheme in which the linear

(diffusive) terms are treated implicitly with backward differentiation of order 4 and the

nonlinear (advective) terms are treated with with polynomial extrapolation of order

3 or 4. Methods of these nature are often called IMEX (implicit-explicit) methods,

and our specific choice of time solver is dubbed SBDF [84]. In addition to favorable

stability and accuracy properties, IMEX methods are also shown to decrease the

aliasing errors arising from employing spectral methods, even though we utilize a

fully de-aliased method, this is a notable property.

For the derivation of the 4th order time solver, we first write,
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A
(

25
12a

n+1 − 4an + 3an−1 − 4
3a

n−2 + 1
4a

n−3
)

=

∆t Ban+1 + ∆t(4bn − 6bn−1 + 4bn−2 − bn−3),

rearranging, we obtain the the time solver also used in [77],

(25A− 12∆t B) a(k+1) = (3.8)

A(48a(k) − 36a(k−1) + 16a(k−2) − 3a(k−3))

−∆t(48b(k) − 72b(k−1) + 48b(k−2) − 12b(k−3)).

This scheme is not self starting, so for the initial steps we use a Runge-Kutta integra-

tor, as in [77]. Similarly a third order time integrator can be obtained using backward

differences and extrapolation of order three. It is given by,

(11A− 6∆t B) a(k+1) = A(18a(k) − 9a(k−1) + 2a(k−2))

−∆t(18b(k) − 18b(k−1) + 6b(k−2)). (3.9)

While the time integration scheme given by (3.9) is third order, the time step restric-

tion on this method is less severe than the restriction on (3.8). It was also reported

that [84], the 3rd order SBDF scheme has the least error among all IMEX methods

when it is stable [84]. The only disadvantage in using third order is that the time step

restriction is stringent in comparison to second order methods in the low Reynolds

number range. For larger integration times and higher resolutions, therefore, the

third order scheme is preferable. Therefore the calculations presented in this study

are performed using the 3rd order time solver, unless otherwise is stated.

3.4 The Computer Code

Our code was first written in octave (octave reference here) for the sake of rapid proto-

typing, after the initial tests were successfully completed, it was then re-programmed

in fortran 95. The GNU fortran compiler was used to compile the code. For the

calculation of the fast Fourier transform, the fftw library was used [85], the linear

algebra operations were handled using blas, lapack [86].
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Although one version of the code exists in reality, we depict the flowchart of the code

in the constant pressure gradient case in Figure 3.4 and the constant mass flux case

in Figure 3.5 , for the sake of clarity. The main difference between these two cases is

the calculation of the pressure gradient (B.1) and the enforcement of mass flux in the

latter case (B.2).

As mentioned earlier, the code uses the OpenMP library for parallelization. This

provides a speed-up of 2.7 on a i7 (930) CPU. Although the creation of the matrices

appearing in (3.9) are also parallel, the main speed-up is achieved in the time solver.

The time solver is parallelized using a OMP PARALLEL DO loop, where the algebraic

system (3.9) is divided into four parts. The division is facilitated by the fact that

the equations in (3.9) are in essence decoupled after the calculation of the non-linear

coefficinets bk for each azimuthal-axial wave number pair (l, n), so they can be handled

by different processing cores, the result then is accumulated in the coefficient matrix

ak+1. In the same manner all the FFT and inverse-FFT calculations are performed

in four parts.
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Read input file for simulation parameters 

(Re, pipe length, grid ...)

Create the solenoidal base pair

 Create mass and stiffnes matrices

Assign or read in the initial flowfield

IFFT

Advance the solution (n-1) steps using Runge-Kutta integrator

(n=order of the solver used)

t==t_f STOP

YES

NO

Advance the solution in time using the semi-implicit

 solver of order n

Calculate flow stats.

FFT

Nonlinear term

FFT

IFFT

Nonlinear term

Calculate the required pressure gradient

Figure 3.4: Flowchart of the computer code, constant pressure gradient
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Read input file for simulation parameters 

(Re, pipe length, grid ...)

Create the solenoidal base pair

 Create mass and stiffnes matrices

Assign or read in the initial flowfield

IFFT

Advance the solution (n-1) steps using Runge-Kutta integrator

(n=order of the solver used)

t==t_f STOP
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Advance the solution in time using the semi-implicit

 solver of order n

Calculate flow stats.

FFT

Nonlinear term

FFT

IFFT

Nonlinear term

Calculate the required pressure gradient

Calculate and assign the pressure gradient

Enforce mass flux

Figure 3.5: Flowchart of the computer code, constant mass flux
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CHAPTER 4

CODE VALIDATION

Perfect numbers like perfect men are

very rare.

Rene Descartes

4.1 Laminar Test Case and Linear Stability

The first test we employ is to see whether our code can reproduce the famous parabolic

profile in the laminar region starting from various initial conditions (such as various

random flowfields or starting from rest). Our code manages to compute the well known

laminar profile in the low Reynolds region starting from various initial conditions up

to machine accuracy. For testing purposes, flow starting from rest, and random initial

flow fields were employed. It is worthwhile to note that all the compuations involving

this phase of the validation process were performed without linearization, i.e. the

nonlinear of (2.5), are solved.

As another means of testing our method, we consider the linearization of (2.5) about

the laminar base flow, uB, and assume an exponential time evolution, eλt, of the veloc-

ity. These operations and assumptions result in an independent generalized eigenvalue

problem, for each wave-number pair (l, n).

(λAlnm′m −Blnm′m(Re))alnm = 0. (4.1)

We compute the eigenvalues, λ, of (4.1), at the reference Reynolds number Recl = 9600
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and (l, n) = (1, 1), and the least stable 20 eigenvalues at Recl = 30000, and (l, n) =

(0, 0 : 1) for a pipe length of L = 2π. The results are presented in Table 4.1 and 4.2,

for various values for the number of selected radial modes (M). An agreement up to

10 digits is obtained with those computed and cited in [13], [81]. It is also possible to

observe the convergence behaviour from Table 4.1, as the resolution (which depends

on the number of radial modes, M, used) is increased. The findings suggest spectral

accuracy is achieved, as expected.

Table 4.1: Leading eigenvalue of (4.1) corresponding to Recl = 9600, and (l=1, n=1)

M λ1
20 -0.022998556376 + 0.950174903582i

30 -0.023170716674 + 0.950481315400i

40 -0.023170795763 + 0.950481396669i

50 -0.023170795764 + 0.950481396669i

50 [82] -0.023170795764 + 0.950481396670i

In addition Table 4.1 also represents the convergence of the eigenvalue to the reference

value with the number of selected radial modes M, even at M=30 the solution is

accurate for singel precision calculations.

Table 4.2: The least stable 20 eigenvalues for Rec = 3000 l=1, n=0,1

-0.051973111282644 + 0.948360222051104 -0.041275644693407 + 0.911465567623395
-0.051973123205372 + 0.948360198487025 -0.061619018004190 + 0.370935092696298
-0.103612364040202 + 0.896719200868016 -0.088346025188592 + 9.58205542990992
-0.103612889227902 + 0.896720444100115 -0.088870156636980 + 8.54788817414939
-0.112217160388022 + 0.412396334210064 -0.116877153586895 + 2.16803862997431
-0.121310028245816 + 0.218435814727458 -0.137490337053408 + 7.99699469657846
-0.155220165293265 + 0.845071799711795 -0.144346144867780 + 9.10037309551185
-0.155252667199022 + 0.845080668126344 -0.186432986148937 + 7.45304357825299
-0.200463047767108 + 0.376242360026110 -0.195839466536939 + 5.49311582651879
-0.206476811414885 + 0.793784129833576 -0.198646109004200 + 8.60749463479149
-0.206892849012486 + 0.793440799040388 -0.204955511398794 + 3.76431414665149
-0.227465621406848 + 0.626296998166060 -0.234333469326204 + 6.93462325172212
-0.257315715842993 + 0.502037310430882 -0.251809086876346 + 5.02642513256198
-0.258508466819554 + 0.741757503077691 -0.252123495622001 + 8.10844875959245
-0.258880615514801 + 0.747046472275328 -0.270458581648370 + 3.25130263224953
-0.297526502769712 + 0.347392291849359 -0.289647206916430 + 6.55064338952368
-0.301051765118837 + 0.610862593988543 -0.305126503954746 + 7.60702408738928
-0.308166308458014 + 0.692606209723818 -0.309010453617850 + 6.07934472120832
-0.324318059574355 + 0.710304305793957 -0.344790480797114 + 5.87438024854394
-0.370532966168264 + 0.674579596375438 -0.359140146606135 + 7.11236702877725
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It is also possible to plot the associated eigenmodes ans the streamline associated with

the computed eigenvalues. This can be facilitated by defining a spiral transformation

[82],
dz

dθ
= −n

l

where n,l are the azimuthal and axial wavenumbers respectively, under which the

solenoidal variables, such as velocity, are invariant. Following [82], one can define a

new coordinates, also called as spiral coordinate,

ζ = nθ + lz

.

After some manipulation (for details consult [82]), one can construct Ξ such that

particle movement is constrained to Ξ = constantsurfaces, using,

∂ζξ =− ru

∂rξ =nv + rlw

u =2Relz+nθ
M∑
0

amvm (4.2)

Case 1: l=1, n=0, The associated stream function is shown in Figure 4.1. The corre-

sponding vector field is depicted in Figure 4.2.

Case 2: l=0, n=1 , the associated stream function is shown in Figure 4.3 . The

corresponding vector field is depicted in Figure 4.4.

Case 3: l=1, n=1, the associated stream function is shown in Figure 4.5. The corre-

sponding vector field is depicted in Figure 4.6.

4.2 Transient Growth of Perturbations

In this section, results of the numerical approach for the study of transient growth of

perturbations are presented. To asses the growth of perturbations, we introduce the

define the energy of a velocity field, u as,

ε =
1

2
(u, u) ,
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Figure 4.1: Stream function, l=1, n=0, λ = −0.0519731113 + 0.9483602221i

Figure 4.2: Corresponding vector field, l=1, n=0,λ = −0.0519731113 + 0.9483602221i
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Figure 4.3: Stream function, l=0, n=1, λ = −0.0087915391

Figure 4.4: Corresponding vector field, l=0,n=1,λ = −0.0087915391
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Figure 4.5: Stream function, l=1,n=1,λ = −4.1275644693e−02+9.1146556762e−01i
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Figure 4.6: Corresponding vector field, l=1,n=1,λ = −4.1275644693e − 02 +
9.1146556762e− 01i

38



Figure 4.7: Time evolution of various 2D perturbations at Recl = 3000 where energy
ε is measured relative to the initial disturbance energy ε0.

where the paranthesis signify the inner product defined in (3.5). First, the growth

factors ε
ε0

(instantaneous energy divided by the initial energy) associated with an

initial two-dimensional disturbance

a0
lnm =

 A0 for l = 0, n = ±1, m = 0

0 otherwise
(4.3)

are presented for centerline Reynolds number, Recl of 3000 with 8 modes in the radial

direction (M = 8), 19 in the azimuthal direction (number of strictly positive azimuthal

Fourier modes, N = 9), and finally 3 in the axial direction (number of strictly positive

axial Fourier modes, L = 1), with ∆t = 5 · 10−2 in Figure 4.7. For ε0 = 10−6, a

maximum amplification factor of ∼ 630 is obtained at t ∼ 146, while for ε0 = 10−5, it

is ∼ 600 at t ∼ 142 in accordance with [87]. The corresponding streak formation for

Recl = 3000 with ε0 = 10−2 is shown in Figure 4.8 and it is in qualitative aggrement

with [77, 87].

As another numerical experiment, the current numerical approach is also tested re-

garding the effect of the spanwise wall oscillations on the growth of perturbations.

This has been the subect of various drag reduction studies in literature [37, 42]. For

this purpose, the scaling based on the friction units is used. Figure 4.7 presents the
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Figure 4.8: Streak formation for Recl = 3000 with ε0 = 10−2 in the axial flow at
t = 0, 17, 75, 150.
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growth of perturbation (4.3) of ε0 = 10−2 and Figure 4.9 shows the correspond-

ing change in the mean axial velocity for the spanwise wall oscillations of the form

vθ|r=1 = A+sin(Ωt+). These results were obtained for the friction Reynolds number

100 (Reτ = uτR
ν ) and for the frequency of oscillations Ω = 2π/50. The time in the

plot is in wall units (t+ = uτ 2t
ν ). The preliminary computations show that the impo-

sition of the spanwise wall oscillations enhances the decay of perturbations and the

convergence back to the parabolic profile in accordance with the literature. These are

encouraging to further our studies on the the effects of the spanwise wall oscillations

using the current numerical approach.

The main advantage of using solenoidal bases in incompressible fluid flow problems

is that the solution is strictly solenoidal (i.e. divergence-free) throughout the solution

domain. This eliminates the possible effects of the errors associated with poor res-

olution of the continuity equation. In addition, the elimination of the pressure due

to the projection onto the dual solenoidal basis simplifies the algorithm by removing

the need for a pressure solver. In contrast to the popular solenoidal Karhunen-Loeve

(POD) bases, no separate simulation stage is required in the generation of the current

bases. In regards to the energy optimality in POD bases, on the other hand, the POD

bases are no longer optimal when used for off-reference parameter values while the

current bases are parameter-independent. The main disadvantage of the current ana-

lytic solenoidal bases is that they are generally limited to simple geometries. However,

there are domain decomposition approaches (see [34]) as a possible remedy.
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Figure 4.9: Decay of 2D perturbation energy ε0 versus t+ for various oscillation am-
plitudes A+ = 0, 1, 2.5, 5, 13.

Figure 4.10: Mean axial velocity for 2D perturbation versus t+ for various oscillation
amplitudes A+ = 0, 1, 2.5, 5, 13.
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4.3 Benchmark cases for turbulent pipe flow at low Reynolds number

This section presents benchmark cases for the numerical code, for both constant pres-

sure and constant mass flux driven flows. The main issue in DNS of turbulence in

pipe flow, is ironically the triggering of turbulene [87, 30, 88, 89]. One of the main

approaches is the use of a formarly obtained turbulent flow field. Having no prior

data in this study, however, specially constructed initial conditions has to be used. It

is important to note that, as one might be led to believe, starting from random ini-

tial conditions will almost always fail [30], as they will unnaturally excite the higher

modes, and in turn create excess viscosity. It was previously shown that the suitable

initial conditions for triggering turbulence are spatially localized [87, 89, 14]. In this

study the widely used Zikanov modes [87] are used as initial conditions. One other

point is that, it is preferrable to start the simulation at a higher Reynolds number than

intended, so as to suppress the viscous effects while a turbulent flow field is achieved,

and then gradually decrease (relax) the Reynolds number until the desired simulation

parameter is achieved. For the constant mass flux case, a turbulent flow field from

the constant pressure case was used as a starting point, with proper scaling, and the

same Reynolds number relaxation was performed. With the correct choice of initial

conditions and Reynolds number relaxation, transition to turbulence was abrupt, as

commonly reported [88]. The initial conditions used for the constant pressure case are

plotted in 4.11(a), 4.11(b), 4.11(c) at the pipe inlet, where they are localized.

4.3.1 Constant Pressure Gradient Case

After completing the validation for the linear case, we compute the turbulence statis-

tics at Reτ = 180. The computations were performed for a pipe with a length of 10

radii (i.e L = 10). The results are presented in Table 4.3 and in Figures 4.12-4.18,

in comparison with the DNS and experimental results presented in [30], and the nu-

merical results from [31]. Fukagata et al. [31] use a highly energy conserving scheme

based on a finite difference method, with a resolution (radial × azimuthal × axial)

of 96 × 128 × 256, whereas Eggels et al. [30] use a finite volume discretization with

the same resolution. In our method we do not impose any explicit energy conserving

constraint on the system and use a resolution of 53 × 127 × 227. Our computations
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(a) Initial conditions, contours of radial ve-
locity

(b) Initial conditions, contours of azimuthal
velocity

(c) Initial conditions, contours of axial ve-
locity

Figure 4.11: Axial averages of initial conditions for the simulations
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are fully de-aliased in the periodic directions using the 3/2 rule and, a time step of

2.5 × 10−4 non-dimensional time units. The statistics are computed using 100 flow

fields equispaced in time with a spacing of 0.4 non-dimensional time units after dis-

carding the initial transients, amounting to 100000 timesteps, and 40 frictional time

units. It is worthwhile to note that even though we use a coarser grid, we have seven

grid points within the viscous sublayer whereas [30] have only three. Thus, our grid

is denser near the walls in comparison. It is widely known that spectral methods

have superior energy conserving properties [90, 83, 80, 91] when compared to finite

difference methods. In addition, Galerkin type projections are known to be stable in

the energy sense [91].

In regards to turbulence statistics, in Figures (4.12-4.18), it can observed that, our

method can predict the turbulence statistics with a relative error in the order of 3%.

The main difference with the reference calculations is that, our code predicts rms ve-

locity fluctuations closer to the experimental results [30] in the near wall region (Figure

4.17) and seems to match the peak experimental Reynolds stress magnitude closely

(Figure 4.18). We believe that this increased predictive power at a lower resolution

comes from the combination of accuracy of spectral methods, inherent satisfaction

of the continuity equation by solenoidal bases expansion and the fact that we have

a denser grid composed of Gauss-Legendre points in the near wall region. However,

when comparing the results for the core region (near the pipe centerline), our method

under-predicts the rms fluctuations of the azimuthal velocity by a fair margin. In

addition, the computed mean axial velocity is lower than suggested by experimental

results. This however, is expected as our grid is relatively coarse in the core region.

In the light of these observations it is safe to say that, at the resolutions employed,

our method provides increased accuracy in the wall region at the expense of predictive

power in the center region.

In addition to friction scaling, a simulation keeping the bulk velocity constant is

also performed, at Re = 5200. This Reynolds number roughly corresponds to our

earlier simulation at Reτ = 180. In keeping the bulk velocity constant, at a value of

0.5 after non-dimensionalization, an adjustable pressure gradient is used in contrast

to a constant pressure gradient used in the friction scaling case. For this case the

simulation has been carried out for 600 non-dimensional time units (in bulk scaling)
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Table 4.3: Turbulence statistics for pipe flow in the cases of (1) constant pressure
gradient, (2) constant mass flux.

Present Present Quadrio et al. Eggels et al. Eggels et al.
(1) (2) (DNS) (2) [40] (DNS) (1) [30] (PIV) (1) [30]

Ucl/UB 1.32 1.32 1.31 1.31 1.30
UB/uτ 14.58 14.24 14.24 14.73 14.88
Ucl/uτ 19.27 18.79 18.63 19.31 19.38
cf 0.00941 0.0098 0.00963 0.00922 0.00903
Recl 6864 6468 6400 6950 7100
Re 5200 4900 4900 5300 5450
Reτ 180 173 172 180 183

Table 4.4: Maximum allowable time step, in units of 2t UB/R

N ∆t, clustered grid ∆t, non-clustered grid

25 0.00282 0.0156

50 0.000775 0.00625

100 0.0000477 0.00196

after discarding the initial transients as in [40], a total of 150 flow fields equidistant

in time were employed in calculation of the statistics. The findings are summarized

in Table 4.3 along with the earlier studies ([30],[40]).

During our computations, the average CFL number computed to be equal to 0.4, as

defined by,

CFL = max
(
urms∆t

∆r + vrms∆t
r∆θ + wrms∆t

∆z

)
,

over the grid, where the subscript rms denotes root mean square value of velocity

component. As mentioned before, our code uses a non-clustered grid configuration in

the radial direction (see Fig.3.1). Table 4.4 gives the maximum allowable time step

(CFL < 1), as a function of number of radial grid points for both clustered and non

clustered cases for the reference velocities computed above, it is evident that the time

step restriction is quite severe for a clustered grid configuration. The code, with the

resolution stated above, uses approximately 4 Gb of memory and serial calculation for

a single time step takes 2.5 seconds on a 2.8 GHz i7 CPU.
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Figure 4.12: Semi-logarithmic plot of mean axial velocity,’◦’ PIV Eggels et al.[30], ’�’
Fukagata et al. [31], ’♦’ present study where r+ = (1− r)Reτ
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Figure 4.13: Mean axial velocity scaled by mean centerline velocity, ’◦’ PIV Eggels et
al.[30], ’�’ Fukagata et al. [31], ’♦’ present study.
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Figure 4.14: RMS velocity fluctuations of u,’◦’ PIV Eggels et al.[30], ’�’ Fukagata et
al. [31], ’♦’ present study.
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Figure 4.15: RMS velocity fluctuations of v,’◦’ PIV Eggels et al.[30], ’�’ Fukagata et
al. [31], ’♦’ present study.
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Figure 4.16: RMS velocity fluctuations of w,’◦’ PIV Eggels et al.[30], ’�’ Fukagata et
al. [31], ’♦’ present study.
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Figure 4.17: RMS velocity fluctuations,’◦’ PIV Eggels et al.[30], ’�’ Fukagata et al.
[31], ’♦’ present study.
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Figure 4.18: Mean Reynolds stress, u′w′, ’◦’ PIV Eggels et al.[30], ’�’ Fukagata et al.
[31], ’♦’ present study.

4.3.2 Constant mass flux

This section presents simulations using constant mass flux driven flow. For this kind

of forcing, as the name implies, the mass flux is kept constant, and is equal to the

mass flux in the case of laminar flow. Eventhough a laminar flow and constant mass

flux driven turbulent flow have the same flowrate, in the case of turbulent flow the

pressure gradient required is about 3 times larger for Reynolds numbers around 5000.

When the mass flux is kept fixed in a simulation, it is both natural and customary

to scale (non-dimensionlize) the NS equations using twice the bulk velocity as the

velocity scale, as given in (2.8). The derivation of the constant flux formulation

is greatly simplified thanks to the employment of solenoidal basis functions for the

expansion of velocity. The detailed derivation of the constant mass flux formulation

can be found in Appendix B. The same grid which was used in the constant pressure

gradient case was utilized, with a resolution of 53×127×227, and the time step chosen

was 5 × 10−3. After the initial transients, the simulation was run for 600 time units

for computing the flow statistics, which is equivalent to 120000 time steps.
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Figure 4.19: Mean streamwise velocity profiles and bulk velocity for constant mass
flux case, and the constant pressure gradient case.
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Figure 4.20: Mean streamwise velocity profiles and bulk velocity for constant mass
flux case, and the constant pressure gradient case.
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Figure 4.21: Mean Reynolds stress for constant mass flux case, and the constant
pressure gradient case.

4.3.3 Energy conserving property

In this section, the energy conserving property of the developed numerical method is

investigated. In order to investigate the energy conserving properties, one assumes

Reτ → ∞, which is to say the viscousity tends to zero, with these assumptions, one

obtains the Euler equations. For this investigation an instantaneous velocity field from

earlier DNS calculations is interpolated on a much coarser grid, the mean velocity is

equated to zero, and finally a scaling is applied to render the flow kinetic energy

unity, as in [31]. This is followed by the removal of the forcing term and also the

dissipative terms (which correspond to the second derivative terms in N-S equations)

in the governing equations are dropped. As mentioned previously, these modifications

lead to the Euler equations with no forcing and an initial field of zero mean velocity.

We simulate this system, follow the change in kinetic energy and note the time it

takes for the energy to increase by 1% (t1), 50% (t50) and diverge (tdiv). Our results

are summarized in Table 4.5 in comparison to [31]. It is evident that the presented

method has very good energy conservation properties. We beleive this is due to the

inherent satisfaction of the continuity equation, imposed regularity of the solution at

r = 0 and the efficiency of spectral methods in conserving the energy.
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Table 4.5: Growth of kinetic energy as Reτ →∞

Resolution, time step t1 t50 tdiv
Current, 13× 16× 32 ∆t = 0.01 470.8 799.9 856.1

Current, 13× 16× 32 ∆t = 0.001 471.1 800.1 856.4

Fukagata et. al. [31], 12× 16× 32 ∆t = 0.0001 2.71 34.16 167.13

Intereseted readers, can consult [92], where it is explained how and why the Euler

equation is bound to diverge for two homogenous directions for all non-trivial initial

conditions.
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CHAPTER 5

DRAG REDUCTION STRATEGIES

It is far better to foresee even without

certainty than not to foresee at all.

Henri Poincare

5.1 Drag Reduction via Spanwise Oscillations

Drag reduction due to spanwise oscillations is a well known phenomenon [37, 38, 39,

40, 41, 42], and numerical studies routinely report a drag reduction on the order of

40%. Spanwise oscillations in the case of pipe flow are essentially azimuthal oscil-

lations (about the pipe axis). When the spanwise oscillations are imposed with the

frequency Ω and the amplitude A, the azimuthal velocity at the pipe wall satisfies

vosc(1, θ, z, t) = A sin(Ωt). In order to study the effect of the spanwise oscillations

using the present approach, we set v = vosc − rAsin(Ωt), so that v still satisfies the

homogenous boundary condition at the pipe wall, which is satisfied by the bases em-

ployed. With this change of variables (2.5) is transformed into (5.1) and the imposed

oscillation acts as a forcing term in the new system;

∂tu + (u · ∇)u = −∇p+ 1
Reref

∆u + F (5.1)

∇ · u = 0

u(1, θ, z, t) = 0
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where F is the forcing due to the oscillation of the pipe wall,

F =


(A sin (Ωt)∂θu− 2A sin (Ωt))v + r(Asin(Ωt))2

rΩA cos (Ωt) + 2uA sin (Ωt) +A sin (Ωt)∂θv

A sin (Ωt)∂θw


In this section, the drag reducing effect of spanwise wall oscillations in turbulent

regime is investigated. The investigation is carried out in two different settings. One

simulation is run at Reτ = 180, with the flow driven by a constant pressure gradient.

Use of this setting enables the investigation of the effects of wall oscillations on bulk

flow. In a separate simulation, the mass flux is kept constant and the driving pressure

gradient becomes time dependent. In this setting the Reynolds number is set to

Re = 5200, as in the uncontrolled case. Keeping the mass flux constant enables the

observation of changes in wall shear, and the pressure gradient needed to achieve

constant flow rate.

5.1.1 Constant Pressure Gradient Case

In this case, friction scaling is employed at Reτ = 180. The simulation is performed

with the same parameters as the fixed wall case, with various values of the oscillation

amplitude A and oscillation frequency Ω.

The time evolution of skin friction coefficient scaled by the value for uncontrolled case

(A = 0) is given in Figure 5.1. In this plot we present the results for a fixed oscillation

frequency of Ω = 6π (frequency used in [42]), and vary the oscillation amplitude A.

The skin friction coefficient, defined by,

cf = τw
1
2ρU

2
b

,

decreases from a value of 0.0094 to 0.0061 at A = 20 in the mean (see Figure 5.1). This

amounts to a drag reduction of 35% consistent with the results previously published

[41, 42]. At higher amplitudes, drag reduction seems to level in our computational

domain length of 10 radii as reported by [40] where a 20 radii length is used. In

Figure 5.2, we present the mean velocity profile for controlled and uncontrolled cases.

A summary of our results is presented in Table 5.1. We compute a bulk velocity Ub of

14.58 in the case of uncontrolled flow. When spanwise oscillations are imposed on the
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Figure 5.1: Time evolution of skin friction coefficient scaled by uncontrolled (A = 0)
case. For oscillation amplitudes, A = 2, 5, 10, 15, 20, and frequency Ω = 6π

walls, a significant increase in bulk velocity is observed. The average magnitude of the

bulk velocity is observed to increase to a value of 18.08, at an oscillation frequency of

6π, and oscillation amplitude of 20.

Table 5.1: Comparison of turbulence statistics for controlled and uncontrolled flow,
for fixed oscillation frequency Ω = 6π

No control A = 5 A = 10 A = 20

Ucl/UB 1.32 1.31 1.31 1.34
UB/uτ 14.58 15.215 16.93 18.08
Ucl/uτ 19.27 19.878 22.1 24.28
cf 0.00941 0.00864 0.00698 0.00611
cf/cf0 1.000 0.918 0.742 0.649
Recl 6864 7156 7922 8722
Re 5200 5477 6094 6508
Reτ 180 180 180 180
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Figure 5.2: Mean streamwise velocity profiles and bulk velocity for controlled (A 6= 0)
and uncontrolled (A = 0) cases: ’�’ No control, ’4’ A=20, Ω = 6π.
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Figure 5.3: Mean Reynolds stress for controlled (A 6= 0) and uncontrolled (A = 0)
cases: ’�’ No control, ’4’ A=20, Ω = 6π.
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Figure 5.4: Mean urms for controlled (A 6= 0) and uncontrolled (A = 0) cases: ’�’ No
control, ’4’ A=20, Ω = 6π .

Table 5.2: Comparison of turbulence statistics for controlled and uncontrolled flow,
for fixed oscillation amplitude A = 10

No control Ω = 3π Ω = 4π Ω = 5π Ω = 6π

Ucl/UB 1.32 1.33 1.32 1.33 1.31
UB/uτ 14.58 16.66 17.25 17.09 16.93
Ucl/uτ 19.27 22.08 22.75 22.68 22.10
cf 0.00941 0.00724 0.00675 0.00685 0.00698
cf/cf0 1.000 0.769 0.717 0.728 0.742
Recl 6864 7977 8197 8168 7922
Re 5200 5998 6210 6151 6094
Reτ 180 180 180 180 180
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5.1.2 Constant Mass Flux Case

In addition to the constant pressure gradient case, a simulation in which the mass flux

is kept constant, has been performed at Re = 5200. For this simulation an oscillation

amplitude of A = 0.68 and an oscillation frequency of Ω = 0.648 are chosen based

on the underlying scaling. These values approximately correspond to A = 20 and

Ω = 6π, when scaled as in the uncontrolled constant pressure gradient case. The

bulk Reynolds number Re = 5200, in this case was chosen as it corresponds to earlier

simulations using fixed pressure gradient, as well as previous experimental work [30].

To facilitate quantitative comparison with [40], another simulation was performed

with Re = 4900, an oscillation amplitude of A = 0.25 and an oscillation frequency of

Ω = 0.35 in bulk units as in [40].

The results from both simulations are summarized in Table 5.3 in comparison to [40]

where an oscillation amplitude of A ∼ 7.1, and frequency Ω ∼ 10 in friction units

is used. It is evident that, the pressure gradient required to keep the bulk velocity

constant is decreased significantly in the case of wall oscillations. In this case, with

relatively high oscillation frequency and amplitude, the order of drag reduction is

about %40. The comparison in Table 5.3 conforms to the behavior of drag reduction

which levels as oscillation amplitude and frequency are increased.

Table 5.3: Comparison of turbulence statistics for controlled and uncontrolled flow in
the case of constant mass flux. GP denotes the mean pressure gradient required for
corresponding laminar flow.

No control A = 0.68 A = 0.25 Quadrio et al. [40]
Ω = 0.648 Ω = 0.35

Ucl/UB 1.30 1.33 1.34 1.34
UB/uτ 14.30 18.31 16.37 16.60
Ucl/uτ 18.59 24.35 21.80 22.18
cf 0.00978 0.00597 0.0075 0.00726
cf/cf0 1.000 0.610 0.746 0.736
G/GP 3.2 1.94 2.29 -
G/Gnc 1 0.604 0.722 -
Recl 6760 6916 6542 6556
Re 5200 5200 4900 4900
Reτ 182 142 149 148

From Figs. 5.5 and 5.6, it is evident that spanwise wall oscillations do not alter the
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Figure 5.5: Mean streamwise velocity profiles and bulk velocity for controlled (A 6= 0)
and uncontrolled (A = 0) cases: ’�’ No control, ’4’ A=0.68, Ω = 0.648.

mean flow as dramatically as in the flow driven by constant pressure gradient. This is

to be expected, as in constant pressure case the flowrate is increased significantly in the

presence of wall oscillations, in the constant mass flux case however, as the name itself

implies, the flowrate is constant. Hence the effect of wall oscillations for the constant

mass flux case is the decrease in the magnitude of time dependent forcing G, this is

depicted in Fig. 5.11. However, as is the case for flow driven by constant pressure

gradient, mean Reynolds stress, u′w′, and root mean square velocity fluctuations all

show both a decrease in peak values, and a centerward shift of the peak location

consistent with literature. The Reynolds stress for controlled and uncontrolled flow

is given in Fig. 5.7, in this figure, while the peak stress value is decreased from a

value of 0.74 to 0.58 as a result of wall oscillations, the peak location is shifted from

r+ = 33 to r+ = 52 which is closer to the pipe center. The shifting of peak locations

and the accompanying decrease in peak values (except for rms axial velocity, which

experiences a slight increase) is plotted in Fig. 5.8 for urms values of radial velocity,

Fig. 5.9 for rms values of azimuthal velocity and finally for rms values of axial velocity

in Fig. 5.10.
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Figure 5.6: Mean streamwise velocity profiles and bulk velocity for controlled (A 6= 0)
and uncontrolled (A = 0) cases: ’�’ No control, ’4’ A=0.68, Ω = 0.648.
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Figure 5.7: Mean Reynolds stress for controlled (A 6= 0) and uncontrolled (A = 0)
cases: ’�’ No control, ’4’ A=0.68, Ω = 0.648.
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Figure 5.8: rms u for controlled (A 6= 0) and uncontrolled (A = 0) cases: ’�’ No
control, ’4’ A=0.68, Ω = 0.648.
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Figure 5.9: rms v for controlled (A 6= 0) and uncontrolled (A = 0) cases: ’�’ No
control, ’4’ A=0.68, Ω = 0.648.
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Figure 5.10: rms w for controlled (A 6= 0) and uncontrolled (A = 0) cases: ’�’ No
control, ’4’ A=0.68, Ω = 0.648.
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Figure 5.11: Pressure gradient g for controlled (A 6= 0) and uncontrolled (A = 0)
cases: ’�’ No control, ’4’ A=0.68, Ω = 0.648.

63



5.2 Phase Randomization

The main idea behind drag reduction via phase randomization is that, a statistically

significant drag reduction can be obtained via distrupting the wave-like structures in

the flow. This impedes the energy transfer between the wave like structures and the

rolls present in the flow field [44]. To distrupt these structures, a periodic phase ran-

domization is applied to some of the wave modes. This approach was first undertaken

for the case of channel flow by Sirovich and Handler [44] in a numerical manner and

later backed by an experimental study [45]. Both the mentioned works report a drag

reduction of upto around 50 %, depending on the mode selection and the distruption

frequency. It was also shown that randomizing the phases of high wave number modes

or rolls results in a drag increase.

Conceptually phase randomization is very simple, considering the expansion for ve-

locity (3.6),

u(r, θ, z, t) =

Q∑
l=−Q

N∑
n=−N

M∑
m=0

a
(1)
lnm(t) Φ

(1)
lnm(r, θ, z) + a

(2)
lnm(t) Φ

(2)
lnm(r, θ, z), (5.2)

where alnm are the complex time dependent expansion coefficients. At given intervals

a random shift of φnm is introduced, such that,

alnm → eiφnmalnm. (5.3)

The operation in (5.3) can also be seen as a velocity dependent forcing (5.4), obviously

this operation preserves continuity, furthermore it does not change the flow energy.

Thus phase randomization does no work on the flow [44].

∂tu + (u · ∇)u = −∇p+
1

Reref
∆u +

∑
T

FT (u)δ(t− T ). (5.4)

To reiterate, the application of phase randomization process on a given flowfield does

not alter the mean flow statistics, such as the average velocity and vorticity profile.

The only visible effect is the rotation or translation of vortices with respect to each

other.
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Typical large eddy turnover time for the flow can be estimated as 2r/u′, where u′

is a typical rms velocity fluctuation level [44]. For the uncontrolled flow the peak

streamwise fluctuation is calculated to be on the order of 2.5 in our case. As the

friction Reynolds number was calculated as 175 for this case, the large eddy turnover

time is calculated as T+
e = 140. Our simulations were run for 50 large eddy turnovers

(corresponding to roughly 40 friction units or 1120 bulk time units) before phase

randomization was turned on, following [44]

The random phase shifts are applied to the low band of modes such that,

1 < l < 8 |n| < 5,

this corresponds, roughly, to

√
k2
l + k2

n ≤ kmax/6,

as in [44], where k denotes the wave number and kmax = 75 × 2π/Lz, 75 being the

number of positive Fourier modes selected along the axial direction in this study. The

application of phase randomization does not effect the flow energy and to continue

integrating in time two techniques are possible. One method is to perform the phase

randomization and continue time integration using a self starting scheme (such as

Runge-Kutta), the other is to apply the phase randomization precedure to all the time

levels stored for the IMEX type scheme detailed in Sec. 3.3. Application of the same

phase randomization to all the stored time levels results effectively in modification of

Eq. (3.9), as

eiφnm (11A− 6∆t B) a(k+1) =eiφnmA(18a(k) − 9a(k−1) + 2a(k−2)) (5.5)

− eiφnm∆t(18b(k) − 18b(k−1) + 6b(k−2)), (5.6)

hence the validity of the time solver is not violated. The tests reveal the two mentioned

methods yield the same turbulent statistics, and for performance reasons the latter

approach (application of the same phase randomization to all the stored time levels)

has been selected for performance reasons.
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5.2.1 Constant Pressure Gradient Case

The effects of phase randomization were investigated at friction Reynolds number

Reτ = 180 with a constant pressure gradient applied along the pipe axis. The findings

are summarized in Table 5.4. Also presented is a brief comparison of turbulence

statistics in comparison to uncontrolled case and to the oscillatory wall case 5.5. The

main difference between wall oscillations and phase randomization is the fact that,

with the mode selection given in Sec. 5.2, the transition from re-laminarization to

drag-reduced turbulent flow is quite abrupt. It is worthwhile to point out that, even

though the drag reduction values for phase randomization appear lower than those

obtained by spanwise wall oscillations, the maximum net power saved amounts to

about 8% with this method, which is comparable to the values obtained via phase

randomization.

Table 5.4: Effect of phase randomization for constant axial pressure gradient

Time step ∆phaset
+ Percent Drag reduction

Ns = 500∆t 22.48 Re-laminarization

Ns = 600∆t 26.98 Re-laminarization

Ns = 616∆t 27.7 8

Ns = 875∆t 32.32 4

Table 5.5: Comparison of turbulence statistics for controlled and uncontrolled flow,
for fixed oscillation frequency Ω = 6π and phase randomization

No control A = 5 A = 10 A = 20 Phase randomization
T+ = 27.7

Ucl/UB 1.32 1.31 1.31 1.34 1.30
UB/uτ 14.58 15.215 16.93 18.08 15.23
Ucl/uτ 19.27 19.878 22.1 24.28 19.79
cf 0.00941 0.00864 0.00698 0.00611 0.0086224
cf/cf0 1.000 0.918 0.742 0.649 0.916
Recl 6864 7156 7922 8722 7124
Re 5200 5477 6094 6508 5483
Reτ 180 180 180 180 180
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Figure 5.12: Mean Reynolds stress for controlled and uncontrolled cases: ’�’ No
control, ’4’ Phase randomization, constant pressure gradient.
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Figure 5.13: Mean urms for controlled (A 6= 0) and uncontrolled (A = 0) cases: ’�’
No control, ’4’ phase randomization.
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5.2.2 Constant Mass Flux Case

For the constant mass flux case, a bulk Reynolds number of 4900 was chosen, to

facilitate comparison with the oscillatory wall case. The findings are summarized in

Table 5.6. In comparison to constant pressure driven flow in Sec. 5.2.1, with mass

flux fixed, the transition between re-laminarization and drag reduced turbulent flow is

less abrupt, however the maximum achievable drag reduction is on the order of 20%,

which is lower than the maximum levels attainable with spanwise wall oscillations.

One major point in comparing the two drag redcution strategies however is the fact

that, phase randomization is a passive mechanism and in real life applications the

drag reduction reported here will likely be the net power saved however in the case of

wall oscillations, which constitute active flow control, this is not the case.

Table 5.6: Effects of phase randomization, constant mass flux

Step Time wall units Percent Drag reduction

Ns = 500∆t 13.23 Re-laminarization

Ns = 850∆t 18.682 Re-laminarization

Ns = 875∆t 19.85 20

Ns = 1000∆t 23.158 7

Ns = 1250∆t 26.46 4

Table 5.7: Turbulence statistics for controlled and uncontrolled flow in the case of
constant mass flux. GP denotes the mean pressure gradient required for corresponding
laminar flow.

No control A = 0.25 Phase randomization T+ = 19.85
Ω = 0.35

Ucl/UB 1.31 1.34 1.32
UB/uτ 14.08 16.37 15.80
Ucl/uτ 18.45 21.80 20.86
cf 0.01008 0.0075 0.008012
cf/cf0 1.000 0.746 0.795
G/GP 3.17 2.29 2.54
G/Gnc 1 0.722 0.78
Recl 6419 6542 6468
Re 4900 4900 4900
Reτ 174 142 155
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Figure 5.14: Mean Reynolds stress for controlled (A 6= 0) and uncontrolled (A = 0)
cases: ’�’ No control, ’4’, phase randomization, constant mass flux.
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Figure 5.15: rms u for controlled and uncontrolled cases: ’�’ No control, ’4’ phase
randomization, constant mass flux.
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5.2.3 Drag Reduction Summary

In this section, common features appearing in the two drag reduction methodologies

tested are presented. For the sake of brevity only the results from constant mass flux

driven flow are presented in the section, as qualitatively there appears to be negligible

difference between these two forcing mechanisms.

As this section presents vorticity plots from the simulations for the first time, it is

worthwhile to remind the reader, that vorticity in the cylindrical coordinates is given

in (5.7),

~ω =

(
1

r

∂w

∂θ
− ∂v

∂z

)
r̂ +

(
∂u

∂z
− ∂w

∂r

)
θ̂ +

(
1

r

∂

∂r
(rv)− 1

r

∂u

∂θ

)
(5.7)

As a means of underlying the effect of drag reduction techniques applied, we present

the instantaneous steam traces emanating from a line perpendicular to the pipe axis

at the pipe entrance. Fig. 5.16(a) presents the streamlines for the uncontrolled flow at

t = 800 in bulk units, while Fig. 5.16(b) and Fig. 5.16(c) depicts the streamlines for

oscillatory control and phase randomization respectively. It is immediately evident

from Fig. 5.16(a) and Fig. 5.16(c) that, the phase randomization procedure does not

seem to affect the velocity field, as the flow rate is fixed, however in the case of wall

oscillations, it is readily observable from Fig. 5.16(b) that the underlying streamline

are effected considerably. It might be stated that spanwise wall oscillations, naturally,

enhance mixing while concurrently decrease drag, even though these two phenomenon

are generally reported not to occur simultaneously [45]. This property might be the

deciding factor in choosing a drag reduction mechanism in real time applications.

The effects of both drag reduction mechanisms investigated were found to be quali-

tatively similar in transferring turbulent activity away from the wall, which was first

observed for wall oscillations in [38, 93]. Both mechanisms presented, showed a ten-

dency to suppress root mean square velocity components in azimuthal and radial

directions, as well as shift the positions of the corresponding maxima away from the

wall (Figs 5.17(a) – 5.18(c)). For the radial component of average root mean square

velocity (Figs 5.17(a), – 5.17(c)) , it was observed that phase randomization was
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(a) Stream lines at t=800 constant mass flux, no control

(b) Stream lines at t=800, constant mass flux, phase randomization with
T+ = 875

(c) Stream lines at t=800, constant mass flux, oscillatory wall, A=0.5, Ω =
0.35

Figure 5.16: Stream lines at t=800 constant mass flux, controlled and uncontrolled
cases
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more effective in comparison with spanwise wall oscillations. For the average root

mean square velocity in the azimuthal direction (Figs. 5.18(a) – 5.18(c)) however

spanwise wall oscillations perform better in suppressing azimuthal velocity when com-

pared to phase randomization. The stronger suppression of azimuthal velocities in the

case of wall oscillations is attributable to the azimuthal forcing nature of this drag

reduction technique [38, 93]. The region in which the drag reduction methods were

effective was found to be the wall region as anticipated.

With regards to vortical activity, changes similar to those found in radial and az-

imuthal root mean square velocity components was observed (Figs. 5.19(a) – 5.21(c)).

For the vorticity components, both a drop in magnitude and a centerward shift of

maximum locations resulted from the use drag reduction mechanisms. Among the

differences, wall oscillations were found to be better in suppressing radial vortex ac-

tivity near the wall, and in pushing the activity center away from the pipe wall (Figs.

5.19(a) – 5.19(c)). However, even though phase randomization was a comparatively

worse performer in these regards, application of phase randomization results in an

almost uninterrupted prominent low radial vorticity region in the center. Looking at

the components of radial vorticity (5.7), the more aggressive nature of wall oscilla-

tions against radial vorticity components is readily explicable by its azimuthal forcing

nature.

The near wall prominence of the drag reduction techniques is most evident in the case

of azimuthal vorticity components (Figs. 5.20(a) – 5.20(c)). In this case, the thin near

wall region of high azimuthal vorticity is considerably weakened by the application of

both wall oscillations and phase randomization, phase randomization being to more

effective, this is most probably related to its effectiveness against radial component of

average root mean square velocity.

The axial vortices, or the axial vorticity components respond differently to spanwise

oscillations in comparison to other two vorticity components (Figs 5.21(a), 5.21(b)).

The r-dependent azimuthal velocity induced by wall oscillations is shown to result

in a high vorticity near wall layer (5.7). This however is less relevant in terms of

drag reduction, as the suppression of cross components of vorticity (i.e. radial and

azimuthal) have been cited as the principal cause of drag reduction for most drag
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reduction techniques [38, 93]. In contrast to wall oscillations, phase randomization

results in a significant drop in overall axial vorticity in the flow field, this however,

as mentioned before is not as relevant for drag reduction as the effects previously

mentioned.

As a final visualization of the effects of the control methods introduce, the centerward

shift in vortices in the presence of drag control is visualized in Fig. 5.22(a), Fig. 5.22(b),

and Fig. 5.22(c). In these graphs radial vorticity in an outer cylindrical portion of the

pipe is depicted. The inner radius of this outer shell is r = 0.95 when scaled with the

pipe radius, this corresponds to r+ ∼ 9, in wall units, and represents the so-called wall

region [30]. The removal of radial vortical activity from the wall region is especially

dramatic in the case of wall oscillations (Fig. 5.22(b)), as earlier cross-sectional plots

suggest (Fig. 5.19(b)). Application of phase randomization shows elimination of radial

vortical activity, albeit at a lower rate (Fig. 5.19(c)).

Overall, drag-reducing effect of phase randomization in pipe flow was found to be

similar to that of wall-oscillations, namely the suppression of cross-flow and cross-

vorticity components. Differences exist however, as phase randomization is more pro-

ficient in suppressing radial cross-flow component and azimuthal vorticity component

than spanwise wall oscillations.
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(a) RMS u velocity, time average, constant mass flux, no control

(b) RMS u velocity, time average, constant mass flux, oscillatory wall, A=0.5, Ω =
0.35

(c) RMS u velocity, time average, constant mass flux, phase randomization with T+ =
875

Figure 5.17: RMS radial velocity, time average, constant mass flux, controlled and
uncontrolled cases.
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(a) RMS v velocity, time average, constant mass flux, no control

(b) RMS v velocity, time average, constant mass flux, oscillatory wall, A=0.5, Ω =
0.35

(c) RMS v velocity, time average, constant mass flux, phase randomization with T+ =
875

Figure 5.18: RMS azimuthal velocity, time average, constant mass flux, controlled
and uncontrolled cases.
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(a) RMS r-vorticity, time average, constant mass flux, no control

(b) RMS r-vorticity, time average, constant mass flux, wall oscillations

(c) RMS r-vorticity , time average, constant mass flux, phase randomization

Figure 5.19: RMS r-vorticity , time average, constant mass flux, controlled and un-
controlled cases.
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(a) RMS θ-vorticity , time average, constant mass flux, no control

(b) RMS θ-vorticity,time average, constant mass flux, wall oscillation

(c) RMS θ-vorticity,time average, constant mass flux, phase randomization

Figure 5.20: RMS θ-vorticity , time average, constant mass flux controlled and un-
controlled cases.
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(a) RMS z-vorticity,time average, constant mass flux, no control

(b) RMS z-vorticity,time average, constant mass flux, wall oscillation

(c) RMS z-vorticity,time average, constant mass flux, phase randomization

Figure 5.21: RMS z-vorticity,time average, constant mass flux, controlled and uncon-
trolled cases.
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(a) Average rms r vorticity, uncontrolled case, wall region, constant mass
flux

(b) Average rms r vorticity wall oscillations, wall region, constant mass flux

(c) Average rms r vorticity phase randomization, wall region, constant mass
flux

Figure 5.22: Average rms r vorticity, wall region, constant mass flux, controlled and
uncontrolled cases
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CHAPTER 6

CONCLUSION

There is no conversation more boring
than the one where everybody agrees.

Michel Eyquem de Montaigne

Employing solenoidal basis functions for the numerical study of incompressible fluid

flow has some benefits. The main benefit is that the velocity field obtained is strictly

solenoidal (i.e. divergence-free) throughout the solution domain for all time. The exact

satisfaction of the continuity equation due to the solenoidal nature of the employed

bases eliminates the possible detrimental effects of the errors associated with the

handling of incompressibilty condition, which is known to be a common problem for

incompressible fluid flow [58]. Furthermore, as the pressure variable is eliminated

via the projection onto the dual solenoidal basis functions, the resulting computer

code is simplified, and a separate pressure solver is not necessary hence the problems

associated with boundary conditions for pressure, which can be quite problematic

[57, 58, 59], are avoided.

Further the obtained solution is much more likely to correspond to physical solution

as it is free of simplifications and assumptions found in other popular methods with

respect to the pressure boundary conditions and the treatment of the incompressibility

condition [59]. In contrast to the popular solenoidal bases obtained from Karhunen-

Loeve (KL) analysis (also known as Principal Orthogonal Decomposition), no separate

simulation stage is required in the generation of the current bases. KL bases are known

to be optimal in the energy sense. On the other hand, they are no longer optimal

when used for off-reference parameter values, while the current bases are parameter-
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independent.

It is also shown that, the method is effective in calculating the turbulence statistics

at moderate Reynolds numbers, and has excellent energy conserving properties. In

addition to other advantages, with the use of solenoidal basis functions, constant mass

flux formulation is relatively easy. The usage of the analytic solenoidal basis functions

for the solution of incompressible flow problems has some disadvantages, arguably

the most important of these disadvantages is the limitation to simple geometries in

the current formulation. However, there are domain decomposition approaches (see

[34]) as a possible remedy. However, the reader should note that, direct numerical

simulations (DNS), themselves are computationally expensive, and hence are limited

to simple geometries, therefore the use of solenoidal bases does not present a significant

disadvantage in terms of electable geometries.

In this study the solenoidal basis functions were utilized in constructing a spectral

method with which the unsteady incompressible Navier-Stokes equations were solved

numerically for the case of pipe flow. For the simulation both constant pressure gra-

dient and constant mass flux cases were treated. The code has been validated for the

linear stability results as well as turbulence statistics at moderate Reynolds numbers.

The method was also shown to posses excellent energy conserving properties. Follow-

ing favorable validation results, effects of two drag reduction mechanisms were also

simulated. These mechanisms are spanwise wall oscillations and phase randomiza-

tion. Effects of phase randomization for pipe flow were investigated for the first time

in literature, in addition the effects of phase randomization coupled with constant

flow rate, too, were treated for the first time. Both drag reduction mechanisms were

shown to work at different extents, and the case of drag reduction via wall oscillation

was validated using results found in the literature.

It is observed that both wall oscillations and phase randomization cause a decrease

in vorticity, root mean square cross-velocity (azimuthal and radial) magnitudes and

diminish vortical activity near the wall region, in accordance with earlier works in drag

reduction [38, 42, 93]. The simulations show that phase randomization is more effective

and abrupt in flow-relaminarization when compared to wall oscillations. Differences in

the nature of drag reduction for phase randomization and wall oscillations were iden-

81



tified during the course of this study, with phase randomization being more effective

in suppressing radial cross-flow component and the azimuthal vorticity component,

whereas wall-oscillations being relatively better at diminishing azimuthal cross-flow

component and radial vorticity component.

Spanwise wall oscillations can be controlled by varying the oscillation amplitude and

the frequency, both in real life applications and numerical simulations. In the case of

phase randomization, the parameters to be considered are the selection of the modes

whose phases will be randomized and the randomization period. This renders, com-

bined with the comparatively long lasting transients, parametric studies using phase

randomization relatively difficult. It must be stated that, the real world application

of phase randomization is less obvious, as stated previously, specially arranged arrays

of finite wall protrusions were suggested as a candidate for the physical counterpart

of phase randomization [45], as were addition of polymer chains [44]. One other

important point in comparing the drag reduction mechanisms involved is that, phase

randomization does not significantly alter the mixing properties of the underlying flow

(as an example consult Figs. 5.16(b), 5.16(c)), whereas spanwise wall oscillations

would conceivably enhance mixing while diminishing turbulent activity.

6.1 Future Work

The work presented here can be extended or enhanced in a number of ways. Some of

these possible enhancements are listed below,

• The alleged link between polymer addition and phase randomization can be

investigated. This would either involve a different code for the simulation of

the polymer additives or using the outlook in [94] a many body solver can be

coupled with the present numerical code. If such a link indeed exists, modelling

via phase randomization can result in faster simulations for certain cases of

particulate flow.

• The possible production of stabilizing traveling waves due to wall oscillations

and phase randomization in a lower Reynolds number range (Re ∼ 3000) could

be investigated.
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• Effects of phase randomization and spanwise wall oscillations on turbulent life-

times could be investigated, using [95] as a reference to build upon.

• Larger Reynolds numbers can be investigated to test the effectiveness of the

numerical approach at flow parameters close to some real life applications, al-

though this would require parallelization of the code on a larger number of

processing cores (currently 4 are used via OpenMp), with the possible use of

graphics processing units.

• Connected to the above, the code can be (re)parallelized using MPI.
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space in plane Couette flow,” Journal of Fluid Mechanics, vol. 611, pp. 107–130,
Aug. 2008.

[27] P. Moin and K. Mahesh, “Direct numerical simulation: a tool in turbulence
research,” Annual Review of Fluid Mechanics, vol. 30, pp. 539–578, Jan. 1998.

[28] T. Schneider, B. Eckhardt, and J. Vollmer, “Statistical analysis of coherent struc-
tures in transitional pipe flow,” Physical Review E, vol. 75, June 2007.

[29] A. Duggleby, K. Ball, M. Paul, and P. Fischer, “Dynamical eigenfunction decom-
position of turbulent pipe flow,” Journal of Turbulence, vol. 8, no. 772815469,
2007.

[30] J. G. M. Eggels, F. Unger, M. H. Weiss, J. Westerweel, R. J. Adrian, R. Friedrich,
and F. T. M. Nieuwstadt, “Fully developed turbulent pipe flow: a comparison be-
tween direct numerical simulation and experiment,” Journal of Fluid Mechanics,
vol. 268, no. -1, pp. 175–210, 1994.

[31] K. Fukagata, “Highly energy-conservative finite difference method for the cylin-
drical coordinate system,” Journal of Computational Physics, vol. 181, pp. 478–
498, Sept. 2002.

85



[32] R. Moser, P. Moin, and a. Leonard, “A spectral numerical method for the Navier-
Stokes equations with applications to Taylor-Couette flow,” Journal of Compu-
tational Physics, vol. 52, pp. 524–544, Dec. 1983.

[33] A. Leonard and A. Wray, “A new numerical method for the simulation of three-
dimensional flow in a pipe,” Tech. Rep. 19820023768, NASA, 1982.

[34] F. Pasquarelli, “Domain decomposition for spectral approximation to Stokes
equations via divergence free functions,” Applied Numerical Mathematics,
pp. 493–514, 1991.

[35] F. Pasquarelli, A. Quarteroni, and G. Sacchi-Landriani, “Spectral approxima-
tions of the Stokes problem by divergence-free functions,” Journal of scientific
computing, vol. 2, no. 3, pp. 195–226, 1987.

[36] N. M. G. Mhuiris, “The construction and use of divergence free vector expansions
for incompressible fluid flow calculations,” Tech. Rep. 86, NASA, 1986.

[37] W. J. Jung, N. Mangiavacchi, and F. L. Akhavan, “Suppression of turbulence
in wall-bounded flows by high-frequency spanwise oscillations,” Physics of Fluids
A, vol. 4, no. 8, pp. 1605–1608, 1992.

[38] K.-S. Choi and M. Graham, “Drag reduction of turbulent pipe flows by circular-
wall oscillation,” Physics of Fluids, vol. 10, no. 1, p. 7, 1998.

[39] N. V. Nikitin, “On the mechanism of turbulence suppression by spanwise surface
oscillations,” Fluid Dynamics, no. 2, pp. 185–190, 2000.

[40] M. Quadrio and S. Sibilla, “Numerical simulation of turbulent flow in a pipe
oscillating around its axis,” Journal of Fluid Mechanics, vol. 424, pp. 217–241,
Dec. 2000.

[41] M. Quadrio and P. Ricco, “Critical assessment of turbulent drag reduction
through spanwise wall oscillations,” Journal of Fluid Mechanics, vol. 521,
pp. 251–271, Dec. 2004.

[42] A. Duggleby, K. S. Ball, and M. R. Paul, “The effect of spanwise wall oscillation
on turbulent pipe flow structures resulting in drag reduction,” Physics of Fluids,
vol. 19, no. 12, p. 125107, 2007.

[43] J. M. J. Den Toonder, M. a. Hulsen, G. D. C. Kuiken, and F. T. M. Nieuwstadt,
“Drag reduction by polymer additives in a turbulent pipe flow: numerical and
laboratory experiments,” Journal of Fluid Mechanics, vol. 337, pp. 193–231, Apr.
1997.

[44] R. A. Handler, E. Levich, and L. Sirovich, “Drag reduction in turbulent channel
flow by phase randomization,” Physics of Fluids A, vol. 5, no. 3, pp. 686–695,
1993.

[45] L. Sirovich and S. Karlsson, “Turbulent drag reduction by passive mechanisms,”
Nature, no. February, pp. 728–730, 1997.

[46] M. D. Gunzburger, Perspectives in flow control and optimization. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2002.

86



[47] P. Ricco and M. Quadrio, “Wall-oscillation conditions for drag reduction in tur-
bulent channel flow,” International Journal of Heat and Fluid Flow, vol. 29,
pp. 891–902, Aug. 2008.

[48] M. Quadrio, “Initial response of a turbulent channel flow to spanwise oscillation
of the walls,” Journal of Turbulence, no. December, pp. 37–41, 2003.

[49] M. R. Dhanak and C. Si, “On reduction of turbulent wall friction through span-
wise wall oscillations,” Journal of Fluid Mechanics, vol. 383, pp. 175–195, Mar.
1999.

[50] K.-S. Choi, “Near-wall structure of turbulent boundary layer with spanwise-wall
oscillation,” Physics of Fluids, vol. 14, no. 7, p. 2530, 2002.

[51] K. S. Ball, R. A. Handler, and L. Sirovich, “Propagating structures in wall-
bounded turbulent flows,” in 12th Symposium on Turbulence (X. B. Reed Jr.,
G. K. Patterson, & J. L. Zakin, ed.), p. 9, 1990.

[52] J. Xu, M. R. Maxey, and G. E. Karniadakis, “Numerical simulation of turbu-
lent drag reduction using micro-bubbles,” Journal of Fluid Mechanics, vol. 468,
pp. 271–281, Oct. 2002.

[53] S. L. Ceccio, “Friction drag reduction of external flows with bubble and gas
injection,” Annual Review of Fluid Mechanics, vol. 42, pp. 183–203, Jan. 2010.

[54] J. Hœ pffner and K. Fukagata, “Pumping or drag reduction?,” Journal of Fluid
Mechanics, vol. 635, p. 171, Sept. 2009.

[55] K. Fukagata, “Drag reduction by wavy surfaces,” Journal of Fluid Science and
Technology, vol. 5, no. 1, p. 1, 2010.

[56] B. B. K. Lieu and R. Moarref, “Controlling the onset of turbulence by streamwise
traveling waves. Part 2. Direct Numerical Simulations,” October, no. 2009, 2010.

[57] P. M. Gresho and R. L. Sani, “On pressure boundary conditions for the incom-
pressible navier-stokes equations,” International Journal for Numerical Methods
in Fluids, vol. 7, no. 10, pp. 1111–1145, 1987.

[58] P. M. Gresho, “Incompressible fluid dynamics - Some fundamental formulation
issues,” Annual Review of Fluid Mechanics, vol. 23, pp. 413–453, 1991.

[59] D. Rempfer, “On boundary conditions for incompressible navier-stokes prob-
lems,” Applied Mechanics Reviews, vol. 59, no. 3, pp. 107–125, 2006.

[60] H. Choi and P. Moin, “Effects of the computational time step on numerical solu-
tions of turbulent flow,” J. Comput. Phys., vol. 113, pp. 1–4, July 1994.

[61] A. J. Chorin, “Numerical solution of the navier-stokes equations,” Mathematics
of Computation, vol. 22, no. 104, pp. pp. 745–762, 1968.

[62] B. Schmitt and W. von Wahl, “Decomposition of solenoidal fields into poloidal
fields, toroidal fields and the mean flow. applications to the boussinesq-
equations,” in The Navier-Stokes Equations II - Theory and Numerical Methods
(J. Heywood, K. Masuda, R. Rautmann, and V. Solonnikov, eds.), vol. 1530 of
Lecture Notes in Mathematics, pp. 291–305, Springer Berlin / Heidelberg, 1992.
10.1007/BFb0090349.

87



[63] O and Daube, “Resolution of the 2d navier-stokes equations in velocity-vorticity
form by means of an influence matrix technique,” Journal of Computational
Physics, vol. 103, no. 2, pp. 402 – 414, 1992.

[64] L. S. Tuckerman, “Divergence-free velocity fields in nonperiodic geometries,” J.
Comput. Phys., vol. 80, pp. 403–441, Feb. 1989.

[65] T. Ohwada and P. Asinari, “Artificial compressibility method revisited: Asymp-
totic numerical method for incompressible Navier-Stokes equations,” Journal of
Computational Physics, vol. 229, pp. 1698–1723, Mar. 2010.

[66] J. C. Heinrich, O. C. Zienkiewicz, and R. S. Marshall, “Penalty function solution
of coupled convective and conductive heat transfer,” in Numerical Methods in
Laminar and Turbulent Flow (C. Taylor, K. Morgan, & C. A. Brebbia, ed.),
pp. 935–946, 1978.

[67] F. H. Harlow and J. E. Welch, “Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface,” Physics of Fluids, vol. 8, no. 12,
pp. 2182–2189, 1965.

[68] S. Le Borne and D. Cook, “Construction of a discrete divergence-free basis
through orthogonal factorization in H-arithmetic,” Computing, vol. 81, pp. 215–
238, Nov. 2007.

[69] L. N. Trefethen, “Fourth-order time-stepping for stiff pdes,” Society, vol. 26,
no. 4, pp. 1214–1233, 2005.

[70] F. Mellibovsky and A. Meseguer, “Pipe flow transition threshold following lo-
calized impulsive perturbations,” Physics of Fluids, vol. 19, no. 4, p. 044102,
2007.

[71] F. Mellibovsky and A. Meseguer, “Critical threshold in pipe flow transition.,”
Philosophical transactions. Series A, Mathematical, physical, and engineering sci-
ences, vol. 367, pp. 545–60, Feb. 2009.

[72] F. Mellibovsky and B. Eckhardt, “Takens-Bogdanov bifurcation of travelling-
wave solutions in pipe flow,” Journal of Fluid Mechanics, pp. 1–34, Jan. 2011.

[73] F. Mellibovsky, A. Meseguer, T. M. Schneider, and B. Eckhardt, “Transition in
localized pipe flow turbulence,” Physical Review Letters, vol. 054502, no. July,
pp. 1–4, 2009.

[74] O. Tugluk and H. I. Tarman, “Direct numerical simulation of pipe flow using a
solenoidal spectral method,” Acta Mechanica, pp. 1–13, 2012. 10.1007/s00707-
011-0602-z.

[75] E. Buckingham, “On physically similar systems,” Physical Review D, vol. 4, no. 4,
pp. 345–376, 1914.

[76] K. Fukagata, “Theoretical studies on friction drag reduction control with the aid
of direct numerical simulation-a review,” Integration The Vlsi Journal, vol. 13,
no. 4, pp. 96–106, 2008.

88



[77] L. N. Meseguer, A.; Trefethen, “A spectral Petrov-Galerkin formulation for pipe
flow: II nonlinear transitional stages,” tech. rep., Oxford University Computing
Laboratory, Oxford, 2001.

[78] O. Tugluk and H. I. Tarman, “Solenoidal bases for numerical studies of transition
in pipe flow,” Physica Scripta, vol. T142, p. 014009, Dec. 2010.

[79] O. Tugluk and H. I. Tarman, “Direct numerical simulation of pipe flow using a
solenoidal spectral method,” Acta Mechanica, vol. 223, pp. 921–935, May 2012.

[80] L. N. Trefethen, Spectral methods in matlab. Philadelphia: Society for Industrial
and Applied Mathematics, 2000.

[81] V. Priymak, “Accurate Navier-Stokes investigation of transitional and turbulent
flows in a circular pipe,” Journal of Computational Physics, vol. 142, pp. 370–411,
May 1998.

[82] A. Meseguer and L. N. Trefethen, “A spectral Petrov-Galerkin formulation for
pipe flow I: Linear Stability and transient growth,” tech. rep., Oxford University
Computing Laboratory.

[83] J. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral methods for time-dependent
problems. Cambridge, 2007.

[84] U. Ascher, S. J. Ruuth, and B. T. R. Wetton, “Implicit-explicit methods for
time-dependent pde’s,” SIAM J. Numer. Anal., vol. 32, 1995.

[85] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Pro-
ceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005. Special issue on “Program
Generation, Optimization, and Platform Adaptation”.

[86] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK users’ guide. Philadelphia, PA: Society for Industrial and Applied
Mathematics, third ed., 1999.

[87] O. Y. Zikanov, “On the instability of pipe Poiseuille flow,” Physics of Fluids,
vol. 8, no. 11, p. 2923, 1996.
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APPENDIX A

Solenoidal Basis Functions

We list the forms of the solenoidal basis functions employed in this study below. In

all the cases P2m denotes the Legendre polynomial of order 2m, D+ = D + 1/r, and

D = d
dr is replaced by a suitable Legendre differentiation submatrix after discretization

based on the Gauss-Legendre grid in the radial direction [80], [78].

Case I, l 6=0 n=0:
Physical “1-basis”:

v(1) =


0

rH

0


H =(1− r2) P2m

Dual “1-basis”:

ṽ(1) =


0

H

0


H =P2m

Physical “2-basis”:

v(1) =


−ilrG

0

D+(rG)


G =(1− r2)2 P2m

Dual “2-basis”:

ṽ(1) =


−ilG

0

D+G


G =(1− r2) P2m

Case II, l=0 n=0:
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Physical “1-basis”:

v(1) =


0

rH

0


H =(1− r2) P2m

Dual “1-basis”:

ṽ(1) =


0

H

0


H =P2m

Physical “2-basis”:

v(2) =


0

0

H


H =(1− r2) P2m

Dual “2-basis”:

ṽ(1) =


0

0

rH


H =P2m

Case III, l 6=0 n 6=0:
Physical “1-basis”:

v(1) =


−inr(α−1) G

D(rα G)

0


G =(1− r2)2 P2m

α = min(|n|, 2−mod(n, 2))

Dual “1-basis”:

ṽ(1) =


−inr(α−1) G

D(rα G)

0


G =(1− r2) P2m

α =mod(n, 2) + 1

Physical “2-basis”:

v(2) =


0

−ilr(α+1) H

inrα H


H =(1− r2) P2m

α = min(|n|, 2−mod(n, 2))

Dual “2-basis”:

ṽ(1) =


0

−ilrα H

inr(α−1) H


H =P2m

α =2−mod(n, 2)
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APPENDIX B

Constant Mass Flux Formulation

While using a constant pressure gradient to drive the flow, the numerical manifestation

of this forcing is trivial. In the case constant mass flux however, this is not the case.

Some prior work is necessary to ensure the mass flux is indeed kept constant.

First let us consider the open form of the NS equations in cylindrical coordinates, i.e

Equation (2.5),

ut + uur +
1

r
vuθ + wuz −

1

r
v2 = −pr +

1

Re

[
urr +

1

r
ur +

1

r2
uθθ + uzz −

2

r2
vθ −

1

r2
u

]
vt + uvr +

1

r
vvθ + wvz +

1

r
uv = −1

r
pθ +

1

Re

[
vrr +

1

r
vr +

1

r2
vθθ + vzz +

2

r2
uθ −

1

r2
v

]
wt + uwr +

1

r
vwθ + wwz = −pz +

1

Re

[
wrr +

1

r
wr +

1

r2
wθθ + wzz

]
,

together with the continuity equation,

ur +
1

r
vθ + wz +

1

r
u = 0.

The objective is to find the pressure gradient, G that enforces constant mass flux Q

along the pipe where,

Q =

∫ 2π

o

∫ 1

0
wr drdθ,

.

Note that by incompressibility,
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∂Q

∂z
=

∫ 2π

o

∫ 1

0

∂w

∂z
r drdθ

= −
∫ 2π

o

∫ 1

0

(
ur +

1

r
vθ +

1

r
u

)
r drdθ

= −
∫ 2π

o

∫ 1

0

(
∂

∂r
(ru)−�u+ vθ +�u

)
drdθ

= −
∫ 2π

o
[ru]

∣∣∣∣1
r=0︸ ︷︷ ︸

0 by no−slip b.c.

dθ −
∫ 1

0
[v]

∣∣∣∣2π
θ=0︸ ︷︷ ︸

0 by periodicity

dr = 0

⇒ Q = Q(t) only.

In order to determine the pressure gradient G that generates constant Q, we need

to relate G to Q. Let us start with the definition of G, which is the mean pressure

gradient in the z-direction:

G =
1

πL

∫ L

0

∫ 2π

o

∫ 1

0

[
−∂p
∂z

]
r drdθdz.

=
1

πL

∫ L

0

∫ 2π

o

∫ 1

0

[
wt + uwr +

1

r
vwθ + wwz

− 1

Re

[
wrr +

1

r
wr +

1

r2
wθθ + wzz

]]
r drdθdz.

After some manipulation, the above relation leads to,

G =
1

πL

{
∂

∂t

∫ L

0
Q dz − 1

Re

∫ L

0

∫ 2π

0

∂w

∂r

∣∣∣∣
r=1

dθdz

}
.

If one wants to keep the flux Q constant, i.e. time independent, then,

G = − 1

πL Re

∫ L

0

∫ 2π

0

∂w

∂r

∣∣∣∣
r=1

dθdz.

Considering the Fourier representation of velocity,

w = ŵ(r)ei(nθ+2πlz/L),

results in,

G = − 2

Re

∂ŵ

∂r
(l = 0, n = 0, r = 1).

Using the solenoidal representation,
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ŵ(l = 0, n = 0, r) =
∑
m

a2
m(l = 0, n = 0, t)(1− r2) P2m,

where P2m is the legendre polynomial of order 2m, results in,

G =
4

Re

∑
m

a2
m(l = 0, n = 0, t). (B.1)

Furthermore, one can obtain the constraining equation for the expansion coefficients

for a given flux Q,

Q =

∫ 2π

o

∫ 1

0
wr drdθ

= 2π

∫ 1

0
ŵ(l = 0, n = 0, r)rdr,

where l = 0 follows from Q = Q(t) only, and finally

Q = 2π
∑
m

a2
m(l = 0, n = 0, t)

∫ 1

0
r(1− r2)P2m(r) dr︸ ︷︷ ︸

I2m

, (B.2)

where I2m is given by [96],

I2m =
(−1)m+1 Γ(m+ 1/2)

8
√
π Γ(m+ 3)

{
2(m+ 2)(m− 3/2) + 3

(m− 1/2)(m− 3/2)

}
,

where Γ is the gamma function. Hence, both the required pressure gradient G and

the constraining equation (B.2) are now known, and it is ensured that the mass flux

is kept constant throughout the simulation by their incorporation into the computer

code.
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