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ABSTRACT

EFFICIENT PARTIALLY OBSERVABLE MARKOV DECISION PROCESS
BASED FORMULATION OF GENE REGULATORY NETWORK CONTROL

PROBLEM

Erdoğdu, Utku

Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Faruk Polat

Co-Supervisor : Prof. Dr. Reda Alhajj

April 2012, 130 pages

The need to analyze and closely study the gene related mechanisms motivated the

research on the modeling and control of gene regulatory networks (GRN). Different

approaches exist to model GRNs; they are mostly simulated as mathematical models

that represent relationships between genes. Though it turns into a more challenging

problem, we argue that partial observability would be a more natural and realistic

method for handling the control of GRNs. Partial observability is a fundamental

aspect of the problem; it is mostly ignored and substituted by the assumption that

states of GRN are known precisely, prescribed as full observability. On the other hand,

current works addressing partially observability focus on formulating algorithms for

the finite horizon GRN control problem. So, in this work we explore the feasibility of

realizing the problem in a partially observable setting, mainly with Partially Observ-

able Markov Decision Processes (POMDP). We proposed a POMDP formulation for

the infinite horizon version of the problem. Knowing the fact that POMDP problems

suffer from the curse of dimensionality, we also proposed a POMDP solution method
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that automatically decomposes the problem by isolating different unrelated parts of

the problem, and then solves the reduced subproblems. We also proposed a method

to enrich gene expression data sets given as input to POMDP control task, because

in available data sets there are thousands of genes but only tens or rarely hundreds of

samples. The method is based on the idea of generating more than one model using

the available data sets, and then sampling data from each of the models and finally

filtering the generated samples with the help of metrics that measure compatibility,

diversity and coverage of the newly generated samples

Keywords: Gene Regulatory Networks, Partially Observable Markov Decision Process,

Control of GRN, Gene Expression Data, Data Enrichment
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ÖZ

GEN AĞLARININ KISMİ GÖZLEMLENEBİLİR MARKOV KARAR SÜREÇLERİ
İLE MODELLENEREK ETKİN OLARAK KONTROLÜ

Erdoğdu, Utku

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Faruk Polat

Ortak Tez Yöneticisi : Prof. Dr. Reda Alhajj

Nisan 2012, 130 sayfa

Genlerin çalışma prensiplerini inceleme gereksinimi gen düzenleyici ağların (GDA)

modellenmesi ve kontrolü üzerine bilimsel çalışmalar yapılmasına yol açmıştır. GDA’ları

modellemek için değişik yaklaşımlar mevcuttur ve bu yaklaşımların çoğu genler arasındaki

ilişkileri matematiksel modeller vasıtasıyla modellemektedir. Problemi daha zorlaştırmasına

rağmen, GDA kontrol problemlerinin daha doğal ve gerçekçi çözülebilmesi için kısmi

gözlemlenebilirliğin önerilmesi gerektiğini savunuyoruz. Kısmi gözlemlenebilirlik bu

problemin temel bir bileşeni olmasına rağmen çoğunlukla gözardı edilmiş ve problemin

çözümünde GDA’nın tüm durumlarının mükemmel olarak bilinebileceği varsayımı

yapılmıştır, yani problem tam gözlemlenebilir kabul edilmiştir. Bir yandan da lit-

eratürdeki kısmi gözlemlenebilirliği dikkate alan yöntemler sınırlı adımdan oluşan bir

problem tanımı ile GDA kontrol problemini çözen algoritmalar üretmeye çalışmaktadır.

Bu çalışmada problemin kısmi gözlemlenebilir bir kurgu ile tanımlanması üzerinde

çalışılmakta ve Kısmi Gözlemlenebilir Markov Karar Süreçleri (POMDP) bu kurguda

kullanılmaktadır. Bu çalışmada problemin sonsuz adımdan oluşan bir hali problem

POMDP modeline uygun bir şekilde tanımlanarak sunulmaktadır. POMDP problem-

vi



lerinin boyutlardan kaynaklanan problemler yaşamasından dolayı POMDP problem-

lerin birbirinden bağımsız parçalarını ayırıp problemi otomatik olarak parçalayan ve

bu parçaları çözerek problemin çözümünü bulan bir çözüm yaklaşımı da bu çalışmada

sunulmuştur. Bu çalışmada ayrıca POMDP kontrol problemine girdi olarak verilen gen

ifade verisini zenginleştirmek için de bir metot sunulmaktadır. Gen ifade verilerinde

binlerce gen olmasına rağmen genelde onlarca, nadir olarak da yüz mertebesinde

örneklem bulunduğundan böyle bir metot gerekli ve faydalıdır. Sunulan metot varolan

veri kümesini kullanarak birden fazla model oluşturur; her modelden yeni veri nokta-

ları üretikten sonra üretilen veri noktalarını veri kümesinin uygunluğunu, farklılığını

ve genişliğini ölçen metrikler yardımıyla filtreyerek kullanıma hazır bir veri kümesi

oluşturur.

Anahtar Kelimeler: Gen Düzenleyici Ağlar, Kısmi Gözlemlenebilir Markov Karar

Süreçleri, GDA’ların Kontrolü, Gen İfade Verisi, Veri Zenginleştirme
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Sinan Kalkan, Burçin Sapaz, Turan Yüksel, Aykut Erdem, Erkut Erdem, Ruken
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CHAPTER 1

INTRODUCTION

In today’s world, it’s common knowledge that DNA is the code of life. DNA is the

key molecule that is used in the development and functioning of living organisms.

The information stored in DNA chain governs numerous biological phenomenon in

the organism; from synthesis of basic protein molecules in the cell, to determining

organism’s traits in their phenotype such as eye color.

Science hasn’t been able to understand and explain all the details of life, however in

20th century we witnessed a lot of important breakthroughs on the function of DNA

molecules and their impact on the biological structure and organization of a living

organism. Complex processes in cells were analyzed and explained by the biological

and genetics research. Today, the role of DNA in these complex processes is not a

mystery any more.

DNA molecules is made up of nucleobases that carry the genetic code of a living or-

ganism. This code is hereditary and responsible of all the genetic traits in a living

organism. Moreover, this code is basically responsible for most of the biological activ-

ities carried out in a cell. All cells in a living organism carry the same DNA sequence.

However, in complex organisms groups of cells are highly specialized and are organized

into tissues or organs. In this case different parts of the DNA code actively participate

in biological activities and thus different kind of cells can carry out different functions.

DNA molecules participate in the activities in a cell via a basic but fundamental

biochemical process called protein biosynthesis. In this process, the code in a DNA

chain is used to synthesize vital molecules for the cell, proteins. Proteins are bio-
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chemical compounds that participate in virtually every process within cells. They are

structured as chains of simpler compounds called amino acids. The role of the DNA

molecules in protein synthesis is that parts of the DNA sequence encodes the order of

amino acids in protein chains.

In the protein biosynthesis reaction, code on the DNA is copied to similar nucleobase

compounds known as RNA. Different types of RNA molecules are responsible for

carrying the genetic code from cell nucleus (where DNA molecules reside) to ribosomes

(where actual protein biosynthesis takes place), directing the assembly of amino acids,

and actual linking of amino acids to form the chains. Thus, DNA can be seen as a

blueprint for the protein biosynthesis. The process of copying the DNA code into

RNA molecules is known as the transcription process, and is one of the main steps of

protein biosynthesis.

In living species, all individuals synthesize same proteins. Thus we know that some

parts of the DNA sequence is shared for all individuals of species. Similarly different

genetic traits lead us to the know that some parts of the DNA sequence is unique

to individuals. DNA sequence is organized in genes. Genes are the genetic unit of

information on DNA code. When we express the genetic information and DNA code

in terms of genes it is easier to assign functional roles to the specific parts of the codes

and explain these specific parts with separate theories.

Differences in the genes of different individuals are used to explain different genetic

traits displayed by them. However, different behavior and functionality on different

parts of complex organisms can not be explained by different DNA codes, since all

cells have the same code. For explaining this phenomenon, scientists are actively

investigating how a specific gene is active in different kinds of cells in an organism.

Protein biosynthesis is a fundamental process and is regulated by numerous factors

in the cell. The amount a specific protein synthesized is not fixed and determined by

a complex process involving numerous external and internal molecules, enzymes and

dynamics of the cell.

Some of the factors influencing the transcription process are proteins themselves; they

bind to DNA sequences and promote or suppress the transcription process. They
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are called transcription factors (TFs). Since TFs are proteins, they are the product

of protein biosynthesis and other genes contain the genetic information necessary to

carry on the biosynthesis of the TFs. One gene might influence the expression level of

another gene via TFs. So, if we leave the external factors out and simplify our view,

protein biosynthesis is controlled by interaction between a number of genes.

The amount of RNA produced by a gene is known as gene expression level ; it is a

fundamental metric for measuring how much a gene is involved in protein biosynthesis.

In other words, upon a certain condition, cancer for example, genes start to behave

differently due to some changes in the genetic code or due to an effect from other

genes or from external conditions. Accurate identification of the genes that behave

differently in diseases or in any set of conditions is essential to understand the changes

in the cell as a system.

The contribution of each gene to transcription process and interactions between genes

form a network of genes that effect each other. This network is called Gene Regulatory

Network (GRN). Exploring the interaction between genes is an important research

problem for biologists; thus computational methods are being developed for inferencing

and modeling these interactions. GRN is a commonly used model for interactions

between genes. It is a network structure with positive and negative links representing

promoting and suppressing interactions, respectively.

In this work, we focus on the GRN control problem. The problem requires maintaining

certain expression level for a single gene or certain expression levels for a group of

genes. With the recent discoveries on functions of genes, we can identify harmful genes

(e.g., genes causing cancer) or we can establish relationships between certain genes

and certain biological conditions in organisms (e.g., genes causing insulin synthesis).

By using this knowledge, it might be possible to promote or suppress a certain gene

in order to prevent or promote related biological activities.

There are known TFs that can be used to control the expression levels of some genes.

They are called inputs. However, it is not possible to control most of the genes

directly. The GRN control problem can be solved by regulating known inputs in

order to maintain desired expression levels for target genes.
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Described in the literature, there are numerous mathematical models for simulating

GRNs. However, not all modeling approaches are equally effective; there are some facts

that could be used to give preference to certain models. For instance, the relationship

between two genes is not purely functional, but stochastic. Also, the dynamic nature

of the network should be represented by the model. Thus, probabilistic models, such

as Probabilistic Boolean Networks (PBN) and Dynamic Bayesian Networks (DBN)

are appropriate for modeling a gene regulatory network [26]. The control problem

can also be modeled as a Markov Decision Process (MDP). The states and transition

function of the MDP reflect network dynamics; actions and rewards represent the

inputs to the network and target genes. Solving the MDP problem produces a policy

which can be used for controlling the network.

One of the important aspects of the GRN control problem is that it is not possible to

obtain complete state information. Expression levels of genes are typically measured

imprecisely using different bio-techniques and sometimes it is not even possible to

measure expression level of some genes. Due to the imprecise measurement of real

states of a biological process, states can only be partially observable. Moreover, the

problem of finding optimal/good policies for the control of GRNs gets complicated

because of partial observability of real states.

In this work, we are proposing to model the GRN control problem in a more nat-

ural and realistic way, mainly as a Partially Observable Markov Decision Process

(POMDP). In fact, there are some aspects of the problem that are not fully observ-

able, and unfortunately all the above mentioned models assume full observability and

hence simplify the problem. We argue that it is only possible to solve the GRN con-

trol problem in a realistic setting if partially observability is properly accounted in the

model.

Another focus of this research is solving the POMDP problem more efficiently by

taking advantage of the problem structure. GRN structure provides a natural fac-

torization for the control problem formulation. Each gene contributes to problem

dynamics to some extent. However, some of the genes are highly coupled in a cell and

always interact together. These highly coupled genes are not affected by other genes

to same extent.
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Figure 1.1: Block Diagram of the proposed POMDP Formulation and Solution Frame-
work

When we have such a state space, it might be possible even necessary to distinguish

between highly relevant and irrelevant problem components. Decomposing the prob-

lem space accordingly, we could reduce it to a smaller subproblem that can be solved

in a much more efficient manner.

Having the POMDP model of GRN control problem, we further explore the possibility

to decompose the problem to smaller subproblems in order to benefit from solving

exponentially smaller subproblems. We are using the features of the gene expression

data to guide us in the partitioning.

An abstract block diagram of the POMDP based GRN control problem modeling and

solution is given in Figure 1.1. This diagram shows the main building blocks of our

approach which is based on GRNs and gene expression data. It is possible to sample

some gene expression data from a gene regulatory network; and similarly it is possible

to infer a GRN from some given gene expression data. Our approach makes use of

both alternatives; so if only one of them is available, it is necessary to infer or sample

the other. In this work, we used existing gene regulatory networks inferred from real

data. Also, in order to increase the variation in our experiments, we constructed
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random gene regulatory networks and sampled synthetic gene expression data from

these networks. We do not use an inference mechanism to generate gene regulatory

networks from real data.

The first step of our approach is realizing the control problem in the POMDP frame-

work based on gene expression data, the GRN and control parameters (i.e., input

genes, target genes, and goal). We devise a method for constructing a factored rep-

resentation of a POMDP problem by presenting all components of the problem in

a factored way. The target of all the steps following POMDP formulation is to ef-

ficiently solve the POMDP problem. These steps make use of gene expression data

for POMDP decomposition; however it is possible to adapt them to any POMDP

problem by slightly modifying the decomposition scheme. The main idea in this part

is decomposing the POMDP problem into subproblems. The motivation is the fact

that POMDP problems are known to be intractable and can only be solved for small

state spaces. In order to reduce the computational cost of the problem, we decompose

the problem and solve it in terms of subproblems. This method utilizes the factored

representation of the POMDP problem. The goal of the method is exploring the re-

lationship between genes and partitioning the problem accordingly. Thus unrelated

genes are classified into different groups. The produced subproblems have smaller

state spaces and some of them can be completely ignored.

The main policy generator component is the part responsible for coordinating all the

subproblems, solving them by interacting with a POMDP solver, and generating a

policy by combining the policies generated as solutions to the subproblems. By per-

forming the decomposition and solving the POMDP problem in terms of subproblems,

what we are trying to achieve is solving the control problem in a more realistic setting

without suffering from high computational cost. The method used is optimized for the

GRN control problem; however, it is possible to adapt the method to similar problems

in other domains, even to the general class of POMDP problems.

In this work we also present a possible pre-processing method to enrich gene expression

data. For GRN control problem we are using gene expression data for our source

of information on how genes interact and operate. There are different laboratory

experiments designed for detecting gene expression levels. The common part of all
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these techniques are that they produce data sets for further study. These data can

be studied by specialists on molecular biology. However, the most important problem

of this data is its size. This data is like a picture of the genes acting in the cell.

Laboratory procedures produces huge amounts of data most of the time and it is

rarely feasible for a human to analyze all of data produced. This is the focal point

of bioinformatics, where computational methods help the preparation and analysis of

the data.

Experimental techniques that identify gene expression profiles are typically working

on a wide range of RNA molecules and expression profiles of thousands of genes are

retrieved for a single experimental set up. However it is hard to repeat this set up to

generate more samples of the gene expression profiles. To have a meaningful data set

one should repeat the experiments on different biological samples, or create different

conditions to repeat the experiment. Thus gene expression data sets commonly contain

thousands of genes. On the contrary, the number of data points in the data set is

usually very low compared to number of genes, typically around 20 to 100.

This work also addresses the sample size problem of the gene expression data. We pro-

pose a method to enrich the real life biological gene expression data by producing new

samples that are compatible with the original data set and thus provide computational

methods with a more reliable data set to process.

The main idea behind the data enrichment process is using multiple models for gen-

erating new data samples. Each of the models we used has distinct properties. We

use

• Probabilistic Boolean Networks

• Hierarchical Markov Models

• Genetic Algorithm Model

to generate different models of GRNs. Using multiple distinct models gave us the

chance to generate new samples in a robust way.

We also defined some simple statistical metrics for data generation. The metrics

require new samples to be close to original sample set, but also be diverse from the
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original data points. Our metrics also values new data sets to cover the data space as

much as possible.

In summary, contributions of the problem solving method described in this work can

be enumerated as follows:

1. We realized that the partially observability of the GRN control problem has

been mostly ignored or has received little attention in the literature. Our work

is among very few approaches that take partial observability into consideration;

while all the other methods try to solve the GRN control problem in finite

horizon, to the best of our knowledge, our work is the first attempt that con-

siders both partial observability and infinite horizon. We focus on integrating

existing POMDP solving techniques and POMDP solvers. Thus, the method

proposed in this work can benefit from more efficient and robust POMDP solv-

ing algorithms. We evaluated our formulation by comparing the formulation and

solution method we proposed with existing GRN control problem formulations

that accompany partial observability.

2. We propose a method for decomposing and solving POMDP problems. The goal

of the proposed method is to reduce the complexity of the POMDP problem

solving method by utilizing domain specific properties of the problem. Thus,

the proposed method contributes a novel way to handle the scalability problem

of POMDP solving methods. We evaluated our formulation by comparing the

solution cost and quality of a plain POMDP formulation with the decomposed

version of the POMDP problem.

3. We presented a data enrichment method to enlarge gene expression data sets

without changing the characteristics of the original data set. We used different

generative methods to produce new samples and combined them to obtain a

robust method to generate new data points that do not depend on any specific

model. We formulated evaluation metrics that also guide us in selecting sam-

ples. We demonstrated our approach by running trials of experiments on a real

biological data set.

The rest of this dissertation is organized as follows. Chapter 2 briefly overviews the
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related work on genes, gene expression data and gene regulatory network control.

Chapter 3 introduces background material on POMDP model and presents related

work on factored representations of POMDP problems. Chapter 4 presents the pro-

posed method of using POMDP in handling the GRN control problem. This chap-

ter also covers gene expression data analysis process which is an important part of

POMDP formulation and decomposition of POMDP problem. Experimental results

that analyze of the success of POMDP formulation method and gene expression data

analysis are also presented in this chapter. Chapter 5 describes the process devel-

oped for the decomposition of POMDP problems and presents experimental results

that compare performance of plain and decomposed gene regulatory network control

problem solvers. Chapter 6 presents gene expression data enrichment process, models

used for this process and experimental evaluation of the process in different settings.

Chapter 7 is conclusions and future research directions
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CHAPTER 2

RELATED WORK

In recent years genes and gene expression have been studied extensively in classical

biological and bioinformatics research based on computational methods. Experimental

biological techniques devise new ways for measuring gene expression levels and we learn

more about genes by analyzing these data empirically or computationally.

Gene expression levels are the fundamental information we have about the dynamics

of genes and all of the computational effort, which is the focus of this study, depends

mainly on gene expression data. There are different techniques and approaches to

determine expression levels of genes of different organisms.

Computational models are built on top of gene expression data and they are primary

used for understanding and manipulating the biological structure underlying. There

are well studied computational models of gene expression and relationship between

expression levels of genes. In this work some of these models are used in different con-

texts and also we adapted models from different domains to represent gene expression

or minor concepts related to gene expression.

The focus of this work is using computational models as a tool for controlling the

underlying biological structure. Controlling the underlying biological structure essen-

tially means manipulating expression levels of genes by using a model for underlying

interaction mechanism. In literature generally well known control methods are applied

to the gene expression control problem with certain assumptions and restrictions. Our

research inspires from some of the existing work on control of genes, however our goal

is to solve the problem at a more realistic setting by lifting some of the assumptions.

10



Another focus of this work is solving the gene control problem in a partially observable

setting. Our approach for the solution makes use of factorization of the problem,

Partially Observable Markov Decision Process (POMDP) model and we propose a

decomposition method on top of these general concepts. This decomposition process

leads to simplification of the problem and then we have a chance to solve the problem

more efficiently. Thus, this work can also be interpreted as a case study about a

method that solves partially observable control problems by decomposing the problem.

This chapter presents the literature on the main research areas outlined above. A com-

plete discussion of experimental techniques that record expression profiles of genes is

beyond the scope of this work. However we provided very brief information on the

data generation methods we used extensively in this work. Most of the relevant dis-

cussion about the data is about synthetic gene expression data used in computational

methods and models and how this data is created and manipulated. We provided a

more detailed view on the computational models and methods used for representing

and manipulating gene networks. We also discuss related work on partially observable

control problems briefly. Fundamental concepts on partially observable problems and

POMDP model is presented in the following chapter.

2.1 Gene Expression Research and Gene Expression Data

This work is based on gene expression data. We do not restrict our selection of data or

our algorithms to work on a specific gene profile data. We gathered and used different

data sets from different sources. We also used synthetic data which is created by

different methods.

DNA Microarray technology is an experimental technique that is used to measure

gene expression profile of a cell of tissue sample, among many other possible measure-

ments. The use of DNA Microarray technology is common since the 80s. In the last

three decades, there were lots of important studies on genetics and bioinformatics to

analyze genetic profiles of living organisms and DNA Microarray technique was an

important tool. DNA Microarray technique allowed measurement of profiles of many

genes in parallel, thus using DNA Microarray technique it was possible to generate

gene expression profile of many genes in a biological sample.
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Emergence of DNA Microarray and similar other techniques made it possible to gather

realistic gene expression profiles of even complex organisms. Many related research ar-

eas benefited from the gene expression profiles created. One of the data sets commonly

used in bioinformatics, especially in GRN control research is a metastatic melanoma

data created with DNA Microarray technique [8]. We also used this data in our stud-

ies for testing the control method devised and as base data set for data enrichment

methods we used. This data is widely used since Bittner et al. identified the nine

genes most relevant to the cancerous behavior on samples. Identification of these nine

most relevant genes allows building small and realistic models based on this selection,

and allows us to evaluate any computational method without dealing with the huge

data set.

In 1990s, research on genes and gene expression accelerated with the Human Genome

Project [31, 59, 16]. Attempt to fully sequence genes of living organisms were an

important step in understanding and modeling how genes operate. Yeast specimen

were the first living organisms whose genome is fully sequenced. Yeast organisms

have genome structures that is similar to humans and other complex organisms, but

the number of genes in yeast genome is much less than the human genome. Yeast

are widely studied in biology and genetics due to their genome structure and ease to

work on them on the laboratory environment. There is a huge community working

on yeast organisms. In this study we also made use of some gene expression profile,

made available by research on the yeast organisms.

A common problem about gene expression profiles is that the data sets generally have

very small sample sizes compared to very high number of genes in the data set. The

number of samples is typically small for successfully applying known computational

models and methods. Also the dimensionality of the data is causes high costs of

computation for the methods used. These issues are also addressed in literature mostly

by feature selection approaches to reduce the dimensionality of the data, thus using

methods appropriate to small number of samples.
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2.2 Gene Regulatory Networks

Gene expression profile is the fundamental information we have about the actual

behavior of genes in organisms. However, in order to explain the interactions or to

use computational methods it is more feasible to build a model of how genes interact.

Gene expression data, which contains gene expression profiles can be used to build

such models.

There are numerous graphical models used for modeling gene regulation in the litera-

ture. Graphs, Boolean networks [26, 3, 39, 47, 46], differential equations and stochastic

master equations are commonly used as models for GRNs. In this work we mainly used

Probabilistic Boolean Networks (PBN) as a computational model for GRNs. We also

used graphs as a condensed and simpler representation for the relationships between

genes.

All these models are derived from the gene expression data. These models are always

constructed to fit the data. It is possible to use generic pattern recognition models

that are not aware of the genome structure of the underlying data. However a more

useful model would also include information about the relationships or dependencies

between genes. In our studies we focused on PBN based GRN representations. PBN

models are simplest graphical models that are rich in information about relationships

between genes.

One of the major assumptions of GRN control method in this work is both gene ex-

pression data and GRN is available to all components of the method we designed.

Mainly we make use of the gene expression data to formulate the partially observable

control problem and as a guide to decompose the control problem. However depen-

dency information about the genes is widely used in the decomposition phase of the

method. Thus the availability of a GRN is always assumed.

This assumption is realistic, since it is always possible to infer a GRN by using the

gene expression data we have. In this work we extensively inferred PBN models of

GRNs. Inferring PBNs from gene expression data is carried on by using a method

proposed Lähdesmäki by [30] . The method uses the coefficient of determination

concept introduced by Dougherty et al. [19] and is based on the evaluating all possible
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PBNs to find a model that best fits the gene expression data by evaluating models

using an error function and coefficient of determination.

A Boolean Network (BN) consists of a single Boolean function f
(i)
P (gi)

for each gene

gi. whose parents in the network are denoted by P (gi) ⊆ G (set of genes). For each

gene in the Boolean network it is possible to find the best set of parent genes and best

Boolean function by evaluating each possible set of parent genes and each possible

Boolean function by using the error function

ε(gi, f
(i)
P (gi)

, P (gi)) =
s−1∑
t=0


1 f

(i)
P (gi)

(Dt(gi1), D
t(gi2), ..., D

t(gik)) 6= Dt+1(gi)

0 else

where Dt(g) is value of gene g on the tth sample in the gene expression data and

P (gi) = gi1, ..., gik, parent function mentioned above. This error function simply gives

the number of values in gene expression data that are not predicted correctly by the

Boolean function. By using this error function, coefficient of determination can be

defined as

θ
P (gi)

f
(i)
P (gi)

=
ε(gi)− ε(gi, f (i)P (gi)

, P (gi))

ε(gi)

ε(gi) is the error of best constant Boolean function. A constant Boolean function is

a function that has 0 arity and always have the same value, 0 or 1. There are two

possible constant Boolean function for each gene and best constant Boolean function

is found by using the error function defined above. Since the function is constant,

f
(i)
P (gi)

(Dt(gi1), D
t(gi2), ..., D

t(gik)) is always equal to 0 or 1, depending on function.

Thus it is straight forward to calculate error of best constant Boolean function. This

error is basically the maximum possible error and coefficient of determination is the

normalization of error function w.r.t. this error value.

The coefficient of determination can be used to construct a PBN. Each node in the

network is based on several Boolean functions and parent sets as parameters of these

functions. Coefficient of determination values both determine the closest estimator

functions and parent sets; and they are also used to build a probability distribution

14



of chosen functions and parent sets. Constructed PBN is the closest network to fit to

gene expression data, when data is conceived as a time series.

We also used a simpler graph method of GRN. In our studies we always had this graph

model available for the datasets we used and for synthetic data, graph models were

used as primary means to sample data. However when a graph model is not readily

available, it is always possible to infer one. There are numerous methods in literature

to infer GRN from gene expression data [7, 56].

2.3 Gene Expression Data Enrichment

An important problem about gene expression data is although most of the time we

have excessive amounts of data, the huge size of the data is due to number of genes

involved in the laboratory process. On the contrary, the number of repeated data

points for a given gene is not very high, since generally each data point is produced

by repeating the laboratory procedure and repetition of the procedure many times is

never feasible [60].

Most of the computational methods working on this kind of data, first employ a

pre-processing phase. One of the goals of pre-processing, which is specific to gene

expression data, is detecting the genes relevant to the task at hand. This kind of

pre-processing is almost a requirement for gene expression data, whenever possible.

Without reducing the dimension of data to manageable levels it is very difficult to

process the data in any way.

Such a pre-processing on data and applying statistical [25] and computational methods

afterwards has been the standard way of processing gene expression data. However

there is also a trend in gene expression research that challenges this convenient way.

Some contemporary research, especially research on regulating gene expression levels,

tries to use gene expression data as a source of information for the changes in expres-

sion levels, too. Interpreting samples of the data as elements of a time series helps us

to view the data as a changing view of expression levels. This interpretation of data

is analogous to a video, if we carry on the picture analogy.

However there are two problems with this interpretation. On particular problem is,
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the data is not essentially a time series view of gene expression levels. The laboratory

processes does only guarantee that different samples are different snapshots of the

expression levels of genes. Most of the processes does not put any constraints on the

uniformity or order of the samples. It turns out that this problem is not very critical,

since the studies that view the data as time series produce valuable results in finding

interactions between genes in time.

Another important problem of this time series interpretation is the few number of

samples available. It is always a fact that sample size is very little compared to

dimension in gene expression data (n >> s). The practical outcomes of this fact are

numerous. The most important outcome is that the few number of samples affect the

quality of computational methods that rely on a very descriptive sample set. Limited

in number, the gene expression samples might fail to describe the expression levels of

a gene properly. Even when the limited number of samples draw an accurate picture

of the expression levels, since we have so little samples, confidence in the results on

any computational method is limited [43, 14, 20, 27].

Indirect approaches were proposed for enrichment of data, using biological techniques.

[32, 40, 58] discuss the impact of sample size to the distinction of gene expression

values and try to formulate necessary sample size by using experiment parameters.

The common goal in these works is to determine the number of samples necessary for

the experiment to be useful, and if the number of samples are limited, then to use an

appropriate experimental technique to utilize the available samples. [32] also suggests

repetition of microarray experiments for increasing sample size.

In this work we’ve used an alternative approach that benefits from generative models

for gene expression data. Our data enrichment method builds multiple models of same

data set and produce new samples by using these models. By using different models,

our goal was combining different expressive tools to produce a robust and rich data

enrichment process.

Models used in this generative process are Probabilistic Boolean Network model,Hierarchical

Markov model and Genetic Algorithm model.

Details of Probabilistic Boolean Networks and how they are constructed is discussed
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in Section 2.2. The formulation presented there also forms the foundation of the PBN

model we used for data enrichment.

Hierarchical Markov model is based on hierarchical dictionary methods and the idea

of using hierarchical phrase structures proposed by Witten [61]. Hierarchical Markov

models are mainly used for text mining. Witten formulates a way for storing text

with a set of phrase hierarchies which are hierarchical rule sets similar to context-free

grammars. They can be used to represent any string and can be used in generative

manner for producing new strings. Witten also discusses different ways to deduce

phrase hierarchies from a given text, both online and offline.

Thornton [57] applied the phrase hierarchies to the music generation problem with

a specific emphasis on uncertainty. A very successful method for formulating phrase

hierarchies would give us a model that generates musical pieces nearly identical to the

original one. In order to provide some diversity, uncertain rules are introduced. An

example is

S → abXcY |d|e

The last symbol in the rule is one of the symbols Y ,d or e. Providing these kind of

uncertain rules increases the expression power of the phrase hierarchy and leads to

generation of musical pieces that divert from the original ones.

Representing the gene expression data at hand is possible by using a similar tech-

nique. Existing data can be used to produce a set of phrase hierarchies. These phrase

hierarchies can be used as a generative model for producing new data strings .Phrase

hierarchies and similar computational structures are well studied in literature and it

is almost an elemental problem to devise a grammar from a set of strings. However

for phrase hierarchies with uncertain rules, no explicit methodology for building the

phrase hierarchies is defined. Thornton [57] emphasizes a number of possible criteria

for a desirable phrase hierarchy and directs the user to use any grammar construction

algorithm in literature, like the ones proposed by Witten [61].

Witten [61] studies different alternative approaches for building the phrase hierarchy.

Each of the approach aims to provide advantage in some specific setting, such as

online processing of data, fast offline construction of phrase hierarchies or constructing

a minimal phrase structure. In this work we developed a custom method that does
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not emphasize on one criteria strongly. Our methodology is based on representing

string in a fairly compact (not necessarily minimal) phrase hierarchy. We try to use

uncertain rules as much as possible and our algorithm is based on repetitions in the

gene expression data.

Genetic algorithms are well studied methods that are proposed by Holland et. al

[22] and used for major genetic tasks such as DNA sequence prediction [41] or pro-

tein structure prediction [42]. However to the best of our knowledge using genetic

algorithms for generating gene expression profiles is an approach that wasn’t tried

before.

2.4 Gene Regulatory Network Control

The GRN control problem is a popular problem that has gained more attention with

the advancements in molecular biology in the last decade. The idea of intervening with

the genes became possible with the research on transcription factors and other dy-

namics in the protein biosynthesis. From the biological point of view, simple pathways

of genes were formulated for explaining certain phenomena in the cell.

Lately, the research community has focused more on generic and complex interactions

between genes, and GRNs became an important tool; intervention problems have

been formulated using GRNs [18, 38, 37]. Different mathematical frameworks and

approaches have been used for devising mechanisms of intervention with genes in or-

der to accomplish some non-trivial goals. There are numerous useful examples of this

intervention mechanisms. For instance, targeted therapy is a cancer treatment tech-

nique based on suppressing the expression of some genes in order to prevent cancerous

behavior in cells [21]. Employing mathematical models and computational techniques

in undertaking the intervention problem would increase our ability to devise more

complex intervention mechanisms.

Modeling the GRN control problem using PBNs is an approach widely used by the

research community [26]. PBN models network dynamics and different approaches can

be used for solving control problems defined on this representation. Expressing the

problem in terms of an Markov Decision Process (MDP) and using general purpose

18



MDP solving algorithms is an approach well suited to PBN representation. Examples

of methods that use Markovian and MDP concepts are the work of Shmulevich et

al. [46] and the work of Datta et al. [18] who studied the dynamics of PBN model in

the probabilistic context of Markov chains. The work of Pal et al. [36] explores an

alternative model, namely context-sensitive PBN for the intervention problem.

Our research group has already contributed to the control and intervention of GRN

by developing novel approaches based on PBN formulation of the GRN and different

formulations of the intervention problem, including MDP formulation [1, 2, 53, 54, 55].

The main focus on these previous works by our group was formulating the GRN in

PBN model and trying to solve the MDP problem in different settings and exploring

different aspects of the problem such as finite or infinite horizon reward mechanisms,

factored representations of the MDP problems, and improved modeling and solution

techniques for plain and factored MDP problems. Although this approach has been

effective in controlling GRNs as demonstrated at [1, 2, 53, 54, 55], the need for incor-

porating partial observability in the problem definition is a strong requirement for a

realistic model. Accordingly, the target of our approach described in this work is to

develop appropriate solutions for the problem augmented to be partially observable.

The need to cover partial observability has been realized by some other researchers;

however, the problem has not yet received enough and comprehensive attention. Datta

et al. [17] developed a finite horizon control algorithms for GRNs; their algorithms can

work with imperfect information. Their approach was a revision of the MDP based

fully observable optimization approach they used in their previous study [18]. In the

previous study they modeled the GRN as a PBN and used Markovian probabilities

for their control algorithm. They had modeled the optimization problem in terms of

states of a GRN and Markovian probabilities specifies possible successive states given

a state of GRN. Thus, it is possible to find expected reward of all states in a finite

horizon by using a dynamic programming algorithm similar to value iteration.

For the partially observable version of the problem a similar dynamic programming

algorithm is devised by using Markovian state transition probabilities and observation

probabilities of the system. By using an observation state description based on obser-

vation history, it is possible to solve a similar dynamic programming task when the
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horizon is limited. The size of the dynamic programming task increases exponentially

as the horizon increases, thus the computational cost of the solution is very high and

the problem is not tractable when horizon exceeds very small numbers. (Refer to

Section 4.3 for an analysis of the performance of this method).

Bryce et al. [11] were first to model the GRN control problem by using POMDP

model. Their approach makes use of PBN representation of the problem and their

POMDP formulation is similar to MDP formulation based on PBN. Their focus was

on solving the control problem in finite horizon. They did not use a POMDP solver for

solving the defined POMDP problem. They applied a custom probabilistic planning

algorithm for extracting an intervention mechanism for a finite horizon. Their planning

algorithm is a modified version of the algorithm used by Datta et al. at [17]. They

reformulated the algorithm as a search algorithm appropriate for a planning problem.

Thus, they are able to prune some of the configurations of the problem, leading a more

efficient solution in the given horizon. However this improvement only improves the

computational cost by removing some redundant node expansions. Feasible values of

horizon is increased by the improvements introduced, however the solution algorithm-

is still intractable for even reasonable horizon values.

The goal of this work is to solve this control problem in a partially observable setting,

not limited by a low boundary on horizon value. Our approach described in this work

is a major contribution to the literature because to the best of our knowledge it is

the first effort to develop a method that properly and comprehensively incorporates

partial observability in handling the control of GRNs.
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CHAPTER 3

BACKGROUND ON PARTIALLY OBSERVABLE

CONTROL PROBLEMS

In this chapter, we present the fundamental concepts on partially observable control

problems. Our main goal in this work is to model GRN control problem in a realistic

setting. POMDP is the model we’ve used for this purpose. POMDPs are general

models for representing partially observable dynamic systems. POMDP provides a

convenient representation for partially observable problems and they provide a com-

mon ground for solution efforts. Solving POMDP problems is known to be hard due

to a number of reasons outlined below. However there are important research efforts

that try to solve real life POMDP problems.

POMDP model is important in this work since we aim to formulate the GRN control

problem in POMDP setting and thus, aim to benefit from the existing efforts for

solving POMDP problems efficiently. We are also proposing a method to decompose

the POMDP problem so that in certain circumstances we can reduce the problem to

a smaller form and solve this reduced form more efficiently. Thus POMDP model can

be viewed as heart of all the research effort in this work.

3.1 Markov Decision Processes

Markov Decision Process (MDP) is a framework for studying decision making problems

in probabilistic domains, proposed by Richard Bellman [4]. An MDP is based on

stochastic processes, decision problems and Markovian property.
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Probabilistic decision making can be modeled similar to a stochastic process. In AI

perspective an agent interacts with an environment and after each action executed by

the agent, environment changes in a probabilistic way.

The Markovian property indicates that, at any state, the following state will not be

related to previous states. Formally,

Pr(sk+1|sk, sk−1, . . . , s0) = Pr(sk+1|sk).

A decision problem with a Markovian property has distinct states and at each state

the following states are determined by actions taken and world dynamics. Most of the

probabilistic decision problems fall into this category. In general, for real-life problems

and even for simple demonstrative problems, different histories of execution that lead

to the same state have no distinct importance. Thus any solution attempt does not

have to deal with execution histories.

3.1.1 Formulation

An MDP is formulated as

• Set of state space, S

• Set of actions, A

• State transition function, T : S × S ×A→ [0, 1]

These three factors determine how the world changes. As the nature of a decision

problem dictates, some states are desirable and some states are not desirable in an

MDP. Reward function captures this notion.

• Reward Function, R : S × S ×A→ R

T (s, s′, a) is the probability that taking action a at state s leads to state s′. R(s, s′, a)

is the amount of reward received immediately when system changes from state s to

state s′ via action a.
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3.1.2 Deterministic Case

When state transition function is formulated as

T : S ×A→ S

or

T : S × S ×A→ {0, 1}

the system is deterministic, i.e. there is a single next state for a given state-action

pair. In this setting the problem reduces to a classical planning problem.

3.1.3 Acting on an MDP Problem

In AI perspective, an agent acting on an MDP reacts to the environment via S,A, T

and R. At any state s, agent chooses an action among A. This action changes the

world, according to T and the world enters a new state s′. Agent is noticed the reward

received upon this transition. Thus, a time-tick is completed. Agent now chooses a

new action for s′.

An execution history is a string of states and actions of such an agent acting on an

MDP. It is a snapshot of lifetime of an agent in a given time frame.

H = s0a0s1a1s2 . . . an−1sn

The cumulative reward gained at such an execution history is the sum of rewards

gained at each step.

CumulativeReward(H) =
i=n∑
i=1

R(si−1, si, ai−1)

The agent may decide which action to take according to its internal architecture. For

MDP problems, it is assumed that the agent knows all problem dynamics (S,A, T and

R) perfectly. Also it is assumed that at each time-tick, the new state s′ is perfectly

observable by the agent (See Section 3.2 for generalization). For MDP problems

general practice is constructing a policy in form of a mapping from states to actions.

Thus acting on an MDP environment is simply executing the action that the policy

dictates for the current state.
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3.1.4 Solving an MDP Problem

In simple terms, solving an MDP problem is finding a way to act optimally for a

decision problem expressed in terms of an MDP.

The optimality is measured generally in terms of cumulative reward. Cumulative

reward of an execution history might be quite precise to measure the optimality of a

solution. However there are two factors that complicate this view:

1. There is an infinite number of execution histories, since there is no boundary for

the length of an execution history and the formulation of MDP does not specify

any concept of termination.

2. Even in the case of restricting execution histories to some fixed length, since

state transition is probabilistic in nature, applying same actions starting with

the same initial state might lead to different execution histories.

Since there are infinitely many execution histories, it is essential to formulate an

expected cumulative reward of a policy δ, given a fixed execution history length t

(which is commonly called horizon).

V δ
t (s) =

∑
s′ T (s, s′, δ(s))[R(s, s′, δ(s)) + V δ

t−1(s
′)] t > 0

V δ
1 (s) =

∑
s′ T (s, s′, δ(s))[R(s, s′, δ(s))]

V δ
t (s) is the expected cumulative reward of applying policy δ for t+ 1 steps, starting

at state s. The value function is defined recursively. The value of any state is the sum

of expected immediate reward and expected value of the next state. The base case,

value of a single step MDP, is defined only in terms of immediate reward. In this case

after executing a single action no more reward is collected, i.e. the value of next state

does not have any meaning for the actor.

3.1.5 Algorithms for Solving MDP Problems

3.1.5.1 Value Iteration

Value Iteration is a dynamical programming method used in learning and decision

problems[51]. The pseudo code for the algorithm is given in Figure 1.
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In a state oriented view of the world each state has a value, based on the reward

received at that state, and possible next states. Value Iteration algorithm tries to

approximate this value iteratively. A modified version of value iteration algorithms

try to approximate value of state-action pairs.

In a dynamical system, value of a state is the expected cumulative reward gained after

that state. It is possible to formulate this statement recursively. At a given state,

there are finite number of possible next states, even we do not have a restriction for

the action taken. Thus, if we know the value of all the next states, we can calculate

the value of the current state.

Value of a state is denoted by V ∗ The main difference between Vt and V ∗ is Vt

depends on the horizon value, i.e. a state s have different values (different expected

future reward) when reached in different times in execution history. This might be

the case for some control problems, however it is always possible to formulate a state

description that does not cause value function to depend on time. In this case a real

value function exists and maps a state to a real number, regardless of the t value.

Below formulation was used for calculating expected cumulative reward with an arbi-

trary horizon t:

V δ
t (s) =

∑
s′

T (s, s′, δ(s))[R(s, s′, δ(s)) + V δ
t−1(s

′)]

We can use this formula for formulating an iterative form that converges to V ∗. After

V ∗ is found, δ(s) follows as:

δ(s) = argmax
a

∑
s′

T (s, s′, a)[R(s, s′, a) + V ∗(s′)]

With combining these two ideas, we can formulate an algorithm to calculate V ∗.

Algorithm starts with an initial random guess of V ∗, called V 0.A refined version of

V 0, V 1 can be constructed by using the cumulative reward formula and using V 0 for

value of the next state (operator := symbolizes update)

V 1(s) :=
∑
s′

T (s, s′, δ(s))[R(s, s′, δ(s)) + V 0(s′)]

It’s usually preferred to use a discount factor γ(0 < γ < 1) to speed up the convergence

to V ∗:

V 1(s) :=
∑
s′

T (s, s′, δ(s))[R(s, s′, δ(s)) + γ.V 0(s′)]

25



Thus the actual reward values influence V 1 more than V 0 values.

Since delta formula and this formula are similar, it is possible to rewrite this formula

with eliminating delta:

V 1(s) := max
a

∑
s′

T (s, s′, a)[R(s, s′, a) + γ.V 0(s′)] (0 < γ < 1)

Note that this formula should be applied to each state. At each application, we have a

maximization over all actions and we have a summation over all states. Generalizing

this formula we have:

V k+1(s) := max
a

∑
s′

T (s, s′, a)[R(s, s′, a) + γ.V k(s′)] (0 < γ < 1)

We can apply this formula repeatedly to find better approximations to V ∗. It is

possible to show that this iteration converges to V ∗, if it exists.

It’s also possible to forget to maintain separate V k and V k+1 values, or we can use a

dynamic programming approach, eliminating the indexes and iterating continuously

for all states:

V (s) := max
a

∑
s′

T (s, s′, a)[R(s, s′, a) + γ.V (s′)] (0 < γ < 1)

When V converges to V ∗, right and left sides of the formula get equal and no update is

done. Thus, it is possible to terminate the iteration by examining the update amount :

∆ := max
s
|V (s)−max

a

∑
s′

T (s, s′, a)[R(s, s′, a) + γ.V (s′)]

When ∆ gets low enough, algorithm is terminated. Each iteration of Value Iteration

Algorithm (Do-While loop) takes O(|S|2|A|) operations, due to maximization on

actions and summation over next state. The number of iterations is polynomial in

terms of |S|[24].

3.1.5.2 Policy Iteration

Policy Iteration is an algorithm based on improving a policy for a learning problem

or a decision problem. The main idea behind policy iteration is, given a policy, it is

possible to calculate a value function based on this policy. And given a value function,

it is possible to refine the policy.
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Algorithm 1: Value Iteration Algorithm

Input: Environment dynamics T,R ; Learning Rate γ;

Termination threshold Θ

Initialize V arbitrarily, e.x. V (s) := 0, for all s;

repeat

∆ := 0;

foreach s ∈ S do

v := V (s);

V (s) := max
a

∑
s′ T (s, s′, a)[R(s, s′, a) + γ.V (s′)];

∆ := max(∆, |v − V (s)|);

end

until ∆ < Θ;

δ(s) := argmax
a

∑
s′ T (s, s′, a)[R(s, s′, a) + V ∗(s′)];

Policy iteration algorithm is similar to value iteration, in the sense that both algo-

rithms try to improve the solution in iterations. Solution of policy iteration algorithm

is policy itself.

Policy iteration algorithm starts with an initial arbitrary policy π. Each iteration of

algorithm has two phases: Value calculation phase and policy improvement phase.

In the Value calculation phase phase the value function of the policy π is calculated.

The classical value function formula is sufficient for this calculation:

Vπ(s) =
∑
s′

T (s, s′, π(s))[R(s, s′, π(s)) + γ.Vπ(s′)]

Writing this equation for each s ∈ S gives us |S| different equations. Vπ(s) and Vπ(s′)

are unknowns in these equation, for each s, s′ ∈ S. We have a linear system of |S|

variables and |S| unknowns, it is possible to find a solution. The solution for Vπ(s)

gives us value function of the policy.

In the policy refinement phase, a refined version of the policy is calculated by using

the value function. This phase is identical to policy extraction step of value iteration

algorithm.

π′(s) := argmax
a

(
∑
s′

T (s, s′, a)[R(s, s′, a) + γ.V (s′)])
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This two phases are iterated and policy π′(s) converges to optimal policy. After

the policy π′(s) converges to optimal policy, value function calculated at the first

phase converges to optimal value function. Thus the refined policy extracted at the

second phase is the same policy extracted in the previous iteration. This fact gives

us a sufficient termination condition. When an iteration does not refine the policy

anymore, i.e. refined policy is equal to the previous one, the algorithm terminates,

converging to optimal policy.

Each iteration of the algorithm has two phases. Value calculation phase is simply

solving a linear system with |S| equations. This phase has polynomial complexity,

specifically O(|S|3) if Gaussian elimination is used. Policy improvement phase has

complexity O(|S|).

At the worst case, the policy algorithm iterates over all possible policies until find-

ing the optimal one. Since there is |A||S| possible policies, the number of policies

have exponential complexity. However it is shown that the running time is pseudo

polynomial[33, 24].

3.2 Partially Observable Markov Decision Processes

A POMDP is a framework for modeling probabilistic decision making problems fea-

turing partial observability. The framework is similar to MDPs, where there is no

partial observability and the state information is known perfectly. However, in the

POMDP framework, it is not possible to observe the state perfectly, instead an im-

perfect observation is available [23, 12, 13].

The model is formulated as

• Set of state space, S

• Set of actions, A

• State transition function, T : S × S ×A→ [0, 1]

These model elements are identical to elements of an MDP. The distinction between

MDPs and POMDPs is in a POMDP system any executing action does not have any
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knowledge about current world state s ∈ S. An agent acting on a POMDP perceives

an observation at each time-tick, which is different than the state information.

• Set of observations, O

• Observation function, Ø : S ×A×O → [0, 1]

The observation function is a function of observations, states and actions, gives the

probability of perceiving given observation after the world goes to given state with the

effect of given action. The reward function is also a function of observations, reward

given at any time-tick is dependent to the observation perceived.

• Reward Function, R : S × S ×A×O → R

The major impact of partially observability is that the system no longer has the

Markovian property by agent’s view. The underlying state based model is still Marko-

vian. However observation based view of the system does not hold this property. Any

observation to be perceived in the future is not only dependent to current observation,

since this current observation might not uniquely map to the current state. Different

observation might be perceived at any state and an observation might be perceived

at a number of states.

Also since the observations are probabilistic it is not generally possible to establish a

mapping between states and observations. Still some of the solution methods try to

establish such a mapping, even if it is probabilistic.

An agent acting on a POMDP problem has a similar view with the MDP version. The

only major difference is the agent perceives an observation at each time-tick, instead

of a new world state. Thus an execution history has form

H = o0a0o1a1o2 . . . an−1on

at agent’s perspective.

Since the reward function is dependent to state information and state information is

inaccessible to agent, it is not possible to calculate a cumulative reward in any way
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except summing the actual rewards. Thus reward information might be added to

execution history.

H = o0a0r0o1a1r1o2 . . . an−1rn−1on

Solving a POMDP problem is still about finding a way to act optimally. For POMDP

problems, an agent may act upon a policy but it is not possible to construct a policy

simply as a mapping.

It is possible to construct the policy as a state-action mapping by solving the MDP

problem underlying. However since state information is not accessible to agent, this

solution has little use from the agent’s perspective. Even when such a policy is con-

structed, the policy should also contain a way to determine or predict the current

state to use these state-action pairs.

It is also not meaningful to construct the policy as an observation-action mapping

since this view does not hold the Markovian property and current observation does

not implicate current state. Acting upon observations is a very primitive way to act

in most decision problems and completely ignores the state of the system.

Unfortunately such simple approaches are not sufficient for overcoming the the par-

tially observability and build policies appropriate for POMDP problems. It is nec-

essary to construct a more sophisticated policy model for agents acting at POMDP

problems.

Since there is no simple policy structure for a POMDP, it is also not possible for a

simple optimality metric. The principal of optimality is same with the MDP case.

A policy is optimal if and only if expected cumulative reward received by applying

the policy is optimal. Calculation of expected cumulative reward should be similar

to MDP case for any policy type. It is important to note that next state should be

dependent to observations too.
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3.2.1 Algorithms for Solving POMDP problems

3.2.1.1 History Based Algorithms

Most important challenge of solving POMDP problems is their lack of Markov prop-

erty, in terms of observations and actions. However, if an execution history is available,

it can be used for defining a new MDP problem in terms of history states.

In order to apply a history based algorithm, one should have sufficient history data on

all the state space. Thus an history-based algorithm can be configured in a generative

way, which involves producing history data from known world dynamics; or it can be

configured as a learning problem.

Set of states of the new problem is strings of execution histories of the POMDP

problem, containing alternating actions and observations. Set of actions of the new

problem is set of action of the POMDP problem.

An important probability function is belief state probability function, which is a prob-

ability distribution of current state, given a history-state. This function can be

computed iteratively, by using initial state distribution, state transition function of

POMDP and observation distribution function of POMDP.

State transition function of the new problem is formulated by calculating the proba-

bilities of perceiving an observation of POMDP problem, given a history-state and an

action. Next state in this formulation is the history-state, concatenated with given

action and observation. This transition function can be computed using transition

and observation functions of POMDP with belief state probability function.

Reward function of the new problem is similarly probability of receiving a certain

reward after executing a given action at a given history-state. This function can also

be computed using original reward function and observation distribution functions of

POMDP with the belief state probability function.

The calculation of both functions just consists of taking expected value over the belief

state probability function. With all the components of an MDP system, the derived

MDP problem can be solved using Value Iteration or any other MDP solving method.
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This approach is successful in the sense that, even we don’t know the transition and

observation distributions of the POMDP, we can generate estimates from the execution

history and use them in the algorithm. This algorithm can be constructed as a pure

model-free method to solve a POMDP online. However it is apparent that the state

space of the constructed MDP is exponential in terms of state and action spaces of

the original POMDP. Thus even if this approach provides a way to successfully solve

POMDP problems, it does not provide a scalable approach.

3.2.1.2 Belief State Based Algorithms

History-state based approach suffers from the huge state space of the constructed MDP

problem. Using belief state probability function provides a simpler approach if the

system dynamics are well known. When the transition function and the observation

function are known, belief state probability function can be used to maintain a policy.

The general approach of all belief state based algorithms is similar to the value itera-

tion algorithm of MDP problems. As state information, we have belief states, which

is the domain of the belief state probability function. A belief state is a probability

distribution over set of states and represents agent’s prediction on the current state

he is in.

A belief state can be formulated as a vector. The value function over belief state space

is a piecewise linear function. So similarly value function can be represented as a set

of vectors, too.With such vectorial representation, value of an arbitrary belief state,

w.r.t to value function is the maximum value of the dot product of each vector in

value function with the belief state vector.

The belief state space is the set of all |S|−dimensional probability distribution vectors,

and this space is continuous . Using value iteration and other similar algorithms over

this state space in not straight forward but not impossible. The value functions of a

POMDP based on belief states is known to be piecewise linear. Thus it is possible

to use a simplified discrete version of the belief state space and formulate solution

algorithms accordingly.

Different algorithms are proposed for maintaining a discrete view of the belief state

32



space.

• Sondik/Monahan’s enumeration algorithm tries to enumerate all possible useful

belief states and apply value iteration algorithm only considering these belief

states [35]. The algorithm is originally proposed by Monahan, but mentioned by

Sondik before in [49] and is commonly known as Sondik/Monahan’s algorithm.

• Sondik’s one pass algorithm tries to find a value function component for a single

belief state, and then explore the belief state interval, on which this component

of value function is dominating by examining possible actions and outcomes [49].

• Cheng’s linear support Algorithm tries to build the value function directly [15].

The approach is similar to the one pass algorithm, however linear support al-

gorithm relies of geometric properties of piecewise linear value function, rather

than using possible actions and their outcomes.

• Witness Algorithm is similar to Linear Support Algorithm, but it also uses

observations in order to simplify the calculation of real value of belief points

[23].

3.3 Factoring of POMDP Problems

3.3.1 Factored MDP and POMDP

There are a number of challenges, of which all POMDP algorithms, especially belief

based ones, suffer from:

• Continuity of belief space is an important challenge for belief state based POMDP

algorithms. A belief state based algorithm has to find a way to deal with the

continuous state space as a first task. Luckily a value function of a PODMP

problem is piecewise linear and we have a simple finite mean to represent it. Thus

different methods to overcome continuous nature of the problem are possible.

• Curse of Dimensionality is the difficulty of manipulating value function for huge

problems, which have many states and actions. Value function should be cal-

culated by considering all states and actions even in the simplest possible form.
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Thus huge number of states and actions increases both the size of value function

and time/space necessary to compute it. This term is attributed to Richard

Bellman in his famous Dynamic Programming book [5].

• Curse of Horizon is an effect of Curse of Dimensionality. Most of the algorithms

proposed for solving POMDP problems are iterative. Solving a POMDP problem

optimally also requires iterations over horizon. As in MDP case, it is not possible

to formulate the value function independent of the horizon since the belief state

changes with time-ticks. Optimal solutions of POMDP problems always generate

all possible belief states by iterating over execution horizon. Each iteration

produces a policy for a specific horizon. At each iteration, horizon is increased.

Since the horizon increases, each iteration deals with a more complex belief state,

a more complex value function. We can simply say that Curse of Dimensionality

gets worse as the horizon increases.

It is possible to formulate more efficient algorithms to overcome this issues. It is even

possible to use approximation algorithms to completely evade some of the challenges

presented here. As an example, there are point based algorithms that sample from

belief state space uniformly. Thus it is possible to solve POMDP problems without

iterating over horizon.

However one of the underlying reasons of these difficulties is that POMDP models

use representations more inefficient than it should be. Most of the real life problems

do not have distinct unique states, actions and observations. Most of the real world

problems exhibit some structure in action space, state space and observation space

[45].

Factored POMDPs could be seen as the most important attempt made to exhibit the

structure of POMDP problems [9]. The idea was originally used for MDP problems.

Instead of representing the problem with a set of states and actions, the factored

approach represents MDP problems with state variables and actions. The state no-

tion is simply the cross product of all state variables. This idea is also applicable

to POMDP problems where the state space is only partially observable. Partial ob-

servability provides a natural factorization among states. This is known as mixed

observability. Using factorization structure of the state space can be used to simplify
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the problem [48, 29]. Our intention is to use the factored PODMP in tackling the

GRN control problem.

Factored POMDP can be demonstrated by using an example . RockSample is a simple

2-D robot problem. A robot is navigating in an obstacle free environment with some

rocks available to collect. Some rocks have value and others do not. The robot knows

its location and the locations of rocks, but does not know the quality of samples, which

makes the problem partially observable. The robot can use its long range sensors to

determine the quality of any rock. The sensor reading is noisy proportional to the

distance to the rock sensed. The robot have specific start and goal locations.

A RockSample problem with 4 rocks and 4 × 4 environment can be represented in

factored form as

• S = {L,RQ1, RQ2, RQ3, RQ4} where V al(L) ∈ {(a, b)|1 ≤ a, b ≤ 4} and

V al(RQ1), V al(RQ2), V al(RQ3), V al(RQ4) ∈ {havevalue, novalue}

• A = {ML,MR,MU,MD,SR1, SR2, SR3, SR4, G}

• O = SR where SR ∈ positive, negative

In this representation, L,RQ1, RQ2, RQ3 and RQ4 are state variables where L is the

location of agent, RQ1, RQ2, RQ3 and RQ4 are qualities of 4 rocks in the environment.

Action set contains four actions for moving (MMR,MU and MD), four actions for

sensing the rocks in the environment (SR1, SR2, SR3 and SR4) and a grab action

to collect the rock at the agent’s location. After trying to sense any rock in the

environment, agent receives an observation of positive or negative. Without activating

the senses, agent does not receive any observation.

This representation not only fully explains the simple problem at hand, but also

separates independent parts of the problem. Different components of the problem are

represented by different variables or sets of variables. These variables change over

time, but again the changes in each variable are dependent to a small set of variables,

such as changes in robot location are independent of rock sample quality. Thus this

system can be modeled efficiently with a dynamic Bayesian network.
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In Figure 3.1, three dynamic Bayesian Networks that represents the above state vari-

ables is given. Each network shows casual dependencies between variables for a specific

action. In the first figure effect of moving left with action ML is demonstrated. Lo-

cation of agent changes as an effect, other variables remain same. In the second figure

effect of sensing rock sample 2 is demonstrated. When agent activates its sensor and

senses the rock sample, the result of the observation is an observation variable de-

noted by SR. The result of the observation depends on the actual rock quality and

the location of agent, since sensor readings are noisy with a noise function inversely

proportional to the distance of agent to the sample. In the last figure, effect of grab-

bing a sample is demonstrated. The effect of grabbing depends on the location of the

agent. Grabbed rock sample disappears and the corresponding rock quality variable

is updated accordingly. Other rock quality variables are not affected.

The problem complexity is still unchanged with this representation, however since the

independencies between variables is exposed in this representation it is possible to

exploit these independencies and try to fully separate unrelated parts of the problem.

The possibility of such a decomposition is one of the goals of this research and explored

for the gene regulatory network control problem in Chapter 5.

3.4 POMDP Solving and Fundamental Representation Schema

This work focuses on presenting a POMDP formulation of GRN control problem and

formulating more a efficient solution method by decomposing the problem elements.

The efficient POMDP solution process we want to create does not involve solving a

POMDP problem more efficiently, but involves simplifying or reducing the problem

into a smaller problem, or partitioning a problem into multiple subproblems and

combining the solutions to obtain a policy for the GRN control problem at hand.

Thus we did not attempt to build a custom POMDP solver in this work, but we

have chosen a POMDP solver that is appropriate for our purposes. Most important

requirement of this work is solving POMDP problems in factored form since all our

representation depends heavily on factored forms.

We used Symbolic Perseus developed by Pascal Poupart for solving POMDP problems
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RQ4t−1 RQ4t

G

Figure 3.1: Factored dependencies of the problem for three different action: ML (Move
Left), SR2 (Sense Rock Sample 2) and G (Grab)
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in this work [44]. Symbolic Perseus is based on Perseus solver by Matthijs Spaan and

Nikos Vlassis [50]. Perseus solves flat POMDP problems with a point-based value

iteration algorithm. Symbolic Perseus uses a similar algorithm for solving POMDP

problems and it specifically works on POMDP problems with factored representations.

Thus Symbolic Perseus is well fit for solving for our gene regulatory network control

problem.

Symbolic Perseus is implemented in Matlab and Java. The execution system we

built deals with POMDP problems. These problems can easily be exported to a

format recognizable by Symbolic Perseus and a policy can be generated by running the

solver on the exported problem. Thus our execution system handles all the problem

formulation, decomposition and integration tasks while using Symbolic Perseus for

solving any POMDP problem it needs.
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CHAPTER 4

MODELING AND SOLVING GRN CONTROL

PROBLEM USING POMDP

In order to use the POMDP model for handling a partially observable GRN control

problem in hand, we need to define each model element in terms of the GRN control

problem. Our goal is to solve the formulated POMDP problem by using a conventional

POMDP solver. However, we intend to decompose the problem into subproblems

before attempting to produce a solution; and we intend to make use of the factored

representation in this decomposition. Thus, the POMDP model formulation presented

in this work constructs a POMDP instance in a factored form.

This chapter presents POMDP formulation used for solving GRN control problem.

All components of POMDP model are addressed individually and it is discussed how

each model component is expressed for gene regulatory network control problem.

The calculation of transition properties depend on the gene expression data analysis

process and the exact formulation of transition function is also presented in this chap-

ter. The goal of the data analysis is exploring similarities between expression profiles

of genes, and then using these similarities both in formulation of the POMDP problem

and in determining how to decompose the POMDP problem into sub problems.

Finally we present experimental results evaluating the POMDP formulation and gene

expression data analysis algorithm outlined. There are two sets of experiments pre-

sented in this chapter.

In the first set of experiments we compared POMDP formulation with similar finite

horizon methods. The goal of this experiment set is to verify the benefit of POMDP
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formulation for the GRN control problem. We’ve shown that POMDP formulation we

propose allows us to solve the gene regulatory network control problem for problem

sizes where other finite horizon methods fail to produce any solution within reason-

able computational time. In this experimental study, we compared our work with

two existing work on partially observable GRN control problems: optimization based

algorithm of Datta et al.[17] and POMDP based plan theoretic algorithm of Bryce et

al. [10].

In the second set of experiments we tested our data analysis method with different

permutations of gene expression data and with synthetic gene expression networks of

different connectivity levels from sparse to very dense. The goal of this experiment set

is to explore how our gene expression data analysis method is affected by the nature

of the gene regulatory network and gene expression data sampled from this network.

4.1 POMDP Model Formulation for GRN Control Problem

4.1.1 States

A joint expression level vector of all genes in the network is a state in the sense of rep-

resenting the gene expression control problem as a POMDP. For a flat representation

of states, we need to consider all the joint values of expression levels. However, for a

factored representation, it is easy to represent each gene as a state variable separately.

The most important question about accuracy of this state representation is whether

all the necessary genes are included in this state vector. In the ideal sense, since we

do not perfectly know all the interactions in the cell, we can never be certain that

the expression level of a gene that is not included in the problem does not affect the

expression levels of genes included. However in reality, for known problems it might

be possible to identify related genes, and we can assume that the state vector contains

all genes related to the control problem. This assumption might be crude for some

gene regulation control problems, but the assumption is strong in the generalized case.

Another important point to consider is related to components of the gene expression

vector. Our source of information for gene expression levels is generally experimental
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data, possibly from multiple sources. The data format only affects the solution process.

However, if the gene expression levels are continuous then we have a continuous state

POMDP, and this should be taken into consideration. In gene regulation processes,

minor differences between gene expression levels do not have major impact on the

behavior of genes. And for the general case, it is possible to restrict the ideas here to

discrete state POMDP problems. In this work, we assumed all gene expression levels

are discretized to a multi-value set.

In all examples and experiments, we discretized gene expression data into binary

values. So each state variable has two values: off and on. For a network of n genes,

we have n state variables in factored form, each with 2 values; this corresponds to 2n

states for a flat representation.

4.1.2 Actions

Actions in the GRN problem are intervening with the network, setting expression levels

of some inputs. These inputs might be any biological agent. As long as the input is

part of the network and the relationship between the input and any of the genes can

be expressed as the relationship between two genes, the biological characteristics are

not significant.

In this work, we assume that some of the nodes in the GRN can be controlled directly.

There are no joint actions. Each action sets the expression level of a single gene either

off or on. We also assume that action noop is available to represent the case of not

intervening with the dynamics of the network. The set of actions are specified as

control parameters.

4.1.3 State Transition Function

The state transition function of the GRN problem expresses the interaction between

genes. The GRN control problem itself does not dictate a transition function. If

a GRN for the control problem is known (which is our assumption all through this

work) the computational model for the GRN specifies dependencies between genes in

the network.
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As an example, PBN formulation of GRN contains probability distributions for each

Boolean function a gene is associated with. By using these probabilities, it is possible

to infer expected value of the whole network moving from one state to another. By

combining action descriptions with these expected values, it is possible to formulate

the state transition function of the POMDP model.

However, it is also possible to deduce the transition function by using the gene expres-

sion data available. We developed a method for analyzing the gene expression data

and extracting state transitions by using the available analysis results. This method

has two advantages : i) Since already computed values are used there is no need to

re-process the data; ii) using analysis results leads to a formulation more consistent

with the decomposition, which is also done using the analysis results. The details of

the method are described in Section 4.2.

In the ideal case, this transition function formulation is an approximation and we can

never be sure that the constructed transition function captures all the relationships

between genes. However, this is a minor problem for transition functions, since we

can use methods that construct a transition function that models the premises (the

probabilistic graphical models of the GRN or the gene expression data) as close as

possible. Assuming our construction actually builds a close model, the only reason

behind missing influences in the transition function could be imprecise premises. We

may have the chance for building up better premises to construct the transition func-

tion. However, if it is not the case, we have to stick to the premise in hand, and we

have to model a transition function that fits the premises as much as possible.

4.1.4 Observations and Observation Function

The gene expression problem has many unknown components in reality. Most of the

time, what we know about genes is one of the following:

• Gene expression profiles that describe expression levels of a set of genes as snap-

shots

• Correlations between expression levels of genes, derived from biological research
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In order to formulate a model for GRNs, it is common practice to use any modeling

structure and to assume that such structure approximates the GRN. If the dynamics

of the system is accessible from the point of view of a manipulator, then the problem is

fully observable. This approach is successful in modeling simple isolated gene expres-

sion networks; it is capable of producing policies for controlling the modeled networks.

If we focus on representing GRNs as MDP problems, this modeling approach assumes

that the GRN is fully observable. The generated policies are expressed in terms of

the expression levels of genes. This view is only sound under certain assumptions. In

reality, there are a number of aspects that are not fully observable

The traditional biological approach explains certain processes in the cell by pathways.

Each gene causes another gene to get activated or suppressed and at the end of the

chain reaction a target gene is activated. The control policies defined on simple linear

pathways are simply intervening with the gene that starts the chain reaction. Since

in reality there is no restriction on the interactions between genes, more complex

interactions are possible. The control problem turns to be more complicated in many

ways when the interactions between genes become more complex. When the problem

becomes more complicated, one important point related to observability is the fact

that only more complicated policies can achieve optimal or near-optimal results for the

control problem. Typically, a more complicated policy requires monitoring the gene

expression levels when executing the policy, and taking different actions for different

situations. This is not a strong assumption. When intervening with a set of genes;

generally it might not be possible to observe the activation levels simultaneously. This

fact is our primary motivation for building a partially observable model of the control

problem.

The gene regulatory network modeling the interactions between genes is usually de-

duced from gene expression data by computational methods, or empirically. Regard-

less of the confidence level of the method used, there is always room for error and

the actual interaction scheme between genes can not be fully observed. Imprecise

measurements is always a source of partial observability for control problems. An

important problem about imprecise measurement is unless you are sure that you are

absolutely free of imprecise measurements, you should always make room for partially

observability in order to have a realistic model. This fact is our secondary motivation
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for building the partially observable model.

If we concentrate on the first motivation mentioned, instead of defining the control

problem as fully observable, it is more realistic to identify an observation set. This

observation set is typically direct or indirect information on the expression levels of

some genes. One might be the capability to monitor the expression levels of some of

the genes directly, or via some marker related to the controlled genes.

Of course, for modeling the problem as POMDP, we also need to build an observation

function. The observation function is directly related to the definition of the observa-

tion set. However, there is one important thing to mention here: Each observation on

the GRN is related to a single gene if the observation is simply the expression level of

a gene. Then, the observation function can be defined trivially. It might be possible

to define more complex observations (e.g., a marker that is related to two genes and

observed only when both genes are expressed) and thus the observation function might

get more complicated.

In this work, we assume that a given proper subset of genes in the GRN are observable

and observation related to these genes is perfect. Other genes in the GRN are not

observable and we do not have any direct information on their expression levels. The

set of observable genes are specified as control parameters and denoted by O, where

O ⊂ S, i.e. observation set contains genes that are observable.

The observation function can be formulated by using the notation for plain repre-

sentation. Remember that the formulation for state and action sets is given in the

factored form. Thus the plain form of state and observation function is a vector. In

state description each component of the state vector s represents expression level of a

gene. Similarly observation vector contains expression levels for observable genes. In

this fashion observation function can be defined as

Ø(s, a, o) =


1 if ∀g ∈ O, sg = og,

0 else

(4.1)

where O is the observation set, sg and og denotes the component of state and obser-

vation vectors related to gene g. The observation function states that probability of

receiving observation o in state s is 1 if for all the genes in the observation set, the
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observed expression level in the observation vector and the actual expression level in

the state vector are matching. The observation o can not be perceived if the expres-

sion levels in observation vector and state vector do not match for any gene, thus the

observation probability is 0 in this case.

4.1.5 Reward Function

Generally, the goal of controlling a gene regulatory network is to satisfy some condition

over genes (e.g., prevent the expression of a gene) by intervening with the expression

level of some other genes. We can express the condition to be satisfied with a Boolean

function. If the state representation is discrete, it is possible to enumerate states

satisfying the goal. In general, it is always possible to test a state in order to determine

whether it satisfies the goal or not.

In this work, we use a reward template which is specified as follows:

R(s, a) =



α if goal(s) and a = noop,

α− 1 if goal(s) and a 6= noop,

0 if ¬goal(s) and a = noop,

−1 if ¬goal(s) and a 6= noop.

This reward template is based on two factors: (1) whether the goal description is

satisfied or not, and (2) the action executed; the noop action is a special no action.

It is possible to read this template as a linear combination of two reward templates.

The goal reward template assigns reward α whenever the goal description is satisfied

and the action reward template assigns reward −1 whenever an action is executed.

Since these two events are independent, their summation is used as the general reward

template. If the goal description is satisfied, a reward of α is granted, reduced by 1

whenever an action is executed. Similarly, no reward is granted when the goal is not

realized, even reduced by −1 whenever an action is executed.

In the experiments, we typically used α = 10. The ratio of this value and the cost of

an action (1 in this work) determine the significance of satisfying the goal compared

to the cost of intervention; it is a parameter of the control problem that should be

specified.
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4.2 Gene Expression Data Analysis

The motivation behind this analysis is the importance of the gene expression data for

GRN related problems. Mostly, gene expression data is the primary source of informa-

tion for gene interactions. Using this data, GRNs are constructed by empirical studies

or computational methods. One can use the POMDP (or any other) representation of

GRNs to explore similarities between genes; however, analyzing gene expression data

would give a much more precise result.

The basic analysis algorithm used in this study outputs a similarity matrix for genes.

Each entry ei,j represents the degree of similarity in the expression levels of the two

genes i and j. Genes labeled as similar are also returned as a list of pairs.

The algorithm works on the discretized version of the gene expression data. The data

is padded with don’t care values and all genes have the same number of samples. For

each gene pair, the algorithm compares the expression levels of genes, for each sample

in a fixed size window. The window is shifted all through the data circularly and for

each position of window local similarity is measured. These local similarity values

make up the global similarity of gene pairs.

For a single position of window, for each pair of genes, the frequency of identical

samples inside the window is the local similarity of the two genes for that window

location. For two genes to be locally similar this similarity measure should exceed a

local threshold.

Similarly, if the frequency of the window positions with similar expression levels is

above some global threshold, the two genes are labeled as globally similar. This fre-

quency is recorded as the degree of similarity; it roughly reflects the percentage of

data for which the two genes behave similarly.

The above described similarity analysis is illustrated in Figure 4.1, where we analyze

the gene expression data of 3 genes; sample size of 10 and window size is 3. Values of

both local and global similarity thresholds are 50%. The two expression levels on and

off are shown with values 1 and 0, respectively. Table 4.1 presents the results of the

analysis. Each row in the table corresponds to a step of the algorithm, and each + or -
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Figure 4.1: An example of shifting window for similarity analysis. Each position of
the windows is a step in the algorithm. At each step, expression levels of all samples
in the window are compared for each pair of genes. Window is shifted circularly.

Table 4.1: Results of the example similarity analysis carried on in Figure 4.1

1-2 1-3 2-3

Step 1 + + -
Step 2 + + -
Step 3 + - -
Step 4 + - -
Step 5 + - +
Step 6 + - +
Step 7 + - -
Step 8 + - -
Step 9 + - -
Step 10 + - -

Global + - -

sign is a positive or negative result of the local similarity test. For example, the entry

+ at row Step 5 and column 2-3 indicates that the two genes 2 and 3 exhibit similar

expression levels when the window is on samples 5, 6 and 7. This result follows from

gene2[5] 6= gene3[5], gene2[6] = gene3[6] = 0 and gene2[7] = gene3[7] = 1. Since

2/3 = 0.67% of the samples are equivalent (which is greater than the local threshold

50%), the two genes 2 and 3 are locally similar for Step 5. Note that only the two

genes 1 and 2 are globally similar by considering all the steps; for all other pairs, the

frequencies of local similarities are less than 50%.

Figure 4.1 visualizes the search process with the sliding window. At each step, for

each positioning of the window, local similarity measure between each pairs of genes
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are calculated as following:

γp(gi, gj) =

p+WS∑
k=p


1 ifELk(gi) = ELk(gj)

0 else

(4.2)

SMLp(gi, gj) =
γp(gi, gj)

WS
(4.3)

Function γ calculates the number of identical positions for a specific positioning of the

window ( at [p, p+WS]) where WS is the window size and ELk(g) is the expression

level of gene g at sample k. Thus SML function, calculating the frequency of samples

with identical expression values for both genes, gives the local similarity measure be-

tween two genes for a specific positioning of the window. By using the SML function,

it is possible to calculate the global similarity measure as following:

δ(gi, gj) =

#ofsamples∑
k=1


1 ifSMLk(gi, gj) > θl

0 else

(4.4)

SM(gi, gj) =
δ(gi, gj)

#ofsamples
(4.5)

Function δ calculates the number of window positionings where local similarity mea-

sure SML exceeds a threshold θl. Thus by calculating the frequency of local similar-

ities exceeding this threshold value, we obtain similarity measure function SM which

maps a pair of genes to [0, 1].

Another important feature of the algorithm is compensating noise in the gene expres-

sion data. For this purpose the calculation of local similarity measures are carried

on with flexible alignment of samples from different genes. For each window position,

the comparison is actually performed multiple times, each time shifting the expression

data of one of the genes for a small amount (typically 1 to 3 samples). The genes are

labeled similar for the actual window position if any of these comparisons succeeds.

Among the two threshold values used, the first one is called local similarity threshold ;

it is used in comparing the expression values of genes for a fixed placement of the

window. This threshold determines how strong we define the similarity concept for

our purpose. When this threshold is low, for each placement of the window, the

expression levels of the two analyzed genes are marked similar more often. When this
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threshold is high, the two analyzed genes have similar expression levels for a placement

of the window only when they follow exactly the same pattern.

The second threshold value is called global similarity threshold ; it is used in deciding

whether two genes are globally similar. This threshold determines the allowed degree

of locality for observing the similarity between two genes in order to mark them glob-

ally similar. When this threshold is high, the similarity between the two genes should

be observed in the majority of the gene expression data (i.e., for most placements

of the window) for marking them similar. When this threshold is low, only a small

number of local similarities might be sufficient for marking the two genes similar.

In our experiments, we selected values for both thresholds empirically by running some

initial tests and we compared different values. In this work, for the gene expression

data, it is important for us to have high confidence in the similarity of the expression

levels. And the gene expression data is known to have very small number of samples.

So, we always used very high values for both similarity thresholds, typically over 75%.

Another parameter used in the method is window size. The size of the window de-

termines the number of samples compared at each iteration of the algorithm. In a

way, window size defines the locality measure. When the window size is small, only a

small number of samples are compared at each step. When the window size is large,

a significant portion of the whole data is compared for each step. Here it is worth

noting that we are using a twofold comparison scheme; first we compare all the values

inside a sample and decide on local similarity; and second we repeat this process by

sliding the window through the data and accordingly decide on global similarity. In

the conducted experiments, we concluded that when both thresholds have similar val-

ues the twofold process produces similar results for any choice of the window size. It is

also possible for the reader to grasp this result by considering the two extreme cases,

where window size is 1 and windows size is equal to the sample size, respectively.

When the window size is equal to 1, values for a single sample are compared at each

step. Two genes are marked as similar if they have the same expression level, regard-

less of the value of the local similarity threshold (since there is a single sample, it

is not possible to calculate a frequency). For deciding whether two genes are simi-

lar globally, we test whether the frequency of the local similarity is higher than the
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global similarity threshold. Consider two genes with expression data of 10110101 and

01000110. When the window size is equal to one, each position of the data produces

a separate local similarity. And we decide whether they are similar or not, based on

the global similarity threshold. If this threshold is 50%, we mark these two genes as

not similar since only 2 of 8 local similarity checks succeed.

When the window size is equal to the sample size, there is a single step for testing

local similarity, where all samples are compared (the window surrounds the whole

data). Two genes are marked as similar if the frequency of the samples at which the

two genes have the same expression level is larger than the local similarity threshold.

This process is not repeated and two genes are marked as globally similar if they are

locally similar. Consider the same genes again with expression data of 10110101 and

01000110. When the window size is equal to 8, we determine local similarity based

on the whole data. If the local similarity threshold is 60%, then the whole data will

not be marked as locally similar, since only 2 samples are equal. Since the only local

similarity check does not succeed, two genes are marked as dissimilar.

Note that these two cases become identical in case the global similarity threshold and

the local similarity threshold are equivalent. In both cases, the two genes are similar

if the frequency of samples with similar expression levels for the two genes is above

the threshold. This conclusion similarly follows for any window size.

Since we are using a window to compare gene expression values locally, our approach

is sensitive to the order of samples. The windows used is shifted through the data

circularly and theoretically it is possible that two different orderings of the samples

might produce different results for the analysis we carry on.

In this work, we assumed that the gene expression data is given in a specific ordering

which is treated as a problem parameter, where the sampling methods or strategy

might have some meaning as in the case of time-series data. We do not attempt

to reorder the samples, or consider different permutations of samples. We assume

that the order in which the samples are given is better than any other alternative,

unless we have prior knowledge. There are two reasons for this assumption. First,

without any further knowledge on the correct ordering of data, the only optimal way

to analyze the data is to repeat the analysis for all permutations of samples, which
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is a computationally intractable task. Second, especially in the case of real biological

data we know that the original order of the data might have a real life impact on the

dataset.

Note that the effect of ordering on analysis results is also related to the window

size. Consider expression data for two genes 10101010 and 11111111. For a window

of size 1 and global similarity threshold 60%, these two genes would be marked as

dissimilar, since none of the local similarity test succeeds. For a window size of 4 with

local similarity threshold of 60% and global similarity thresholds 25%, these genes

would be marked dissimilar again. When we reorder the samples of the first gene

as 11110000, first analysis still produces the same result; however second analysis

would mark the genes similar, since three of the local similarity tests succeed. Larger

windows decrease the coincidental positive or negative effects of ordering and leads

to more accurate analysis results generally, despite the fact that with larger windows

sizes the impact of local similarities decrease.

In Section 4.3 we present an independent study on the order of samples. This study

also shows that preserving the original ordering of data does not seem to reduce the

correctness of the analysis, on the contrary original ordering produces slightly more

confident results than the average case.

The complete gene expression data analysis algorithm is given in Figure 2.

The result of algorithm in Algorithm 2 is used to serve two purposes in this work,

namely identifying classes of genes and constructing the transition function; details

are discussed in the sequel.

4.2.1 Identifying Classes of Genes

The similarity relation calculated in the previous section is used in our work for

decomposing the formulated POMDP problem into subproblems; each subproblem

contains problem components closely related to each other, but not coupled with

other subproblems and other problem component.

For the GRN control problem, the similarity relation provides an appropriate way for

51



Algorithm 2: Gene Expression Data Analysis

Input: m× n gene expression data matrix D (m genes, n samples), gene set G

(m elements), window size w, window shift amount s, local similarity

threshold θl, global similarity threshold θg

Result: Similarity matrix SM , similarity list SL

Initialize SM to all zero

for i = 0 to n− w do shift window through all samples circularly

wp1 ←− [i, i+W ]th columns in D

foreach gene pair g1, g2(g1! = g2) do

for j = −s to s do shift one window

wp2 ←− D[i+ j, i+W + j]th columns in D

sim ←− number of identical entries in gth1 row of wp1 and gth2 row of

wp2

if sim > θl ∗ w then

SM [g1, g2]+ = 1

SM [g2, g1]+ = 1

break for

end

end

end

end

Divide all entries in SM by n

foreach gene pair g1, g2(g1! = g2) do

if SM [g1, g2] > θg then add (g1, g2) to SL

end
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guiding the decomposition. In the POMDP formulation of the problem, the expression

level of each gene is a state variable, intervening and observing the expression level

of each gene is a potential action and observation. So it is possible to define each

subproblem in terms of a set of genes. Each subproblem defined in this fashion, is

only related to the set of genes, as if these genes are closely coupled as a group;

isolating this group leads to isolate a part of the control problem.

The similarity relation introduced in the previous subsection is symmetric and reflex-

ive. To convert it into a equivalence relation we can take the transitive closure of

the similarity relation. Thus, the transitive closure of the similarity relation can be

used to partition the gene set into classes. Each class is simply a set of genes. Our

aim is to define a POMDP subproblem for each class. In the classification process,

we use the similarity list produced by the gene expression data analysis. The process

for constructing classes is described in Figure 3. This algorithm is a simple transitive

closure algorithm.

Chapter 5 presents how subproblems are created by using these classes.

Algorithm 3: Forming classes of genes

Input: Similarity list SL, gene set G (m elements)

Result: A partition of gene set P

P ←− ∅ foreach gene g in G do

if empty(P) then

P ←− {{g}}

else

foreach class c in P do

if SL contains (g, g′) for each g′ ∈ c then add g to c

end

if g is not added to any class then P ←− P
⋃
{{g}}

end

end
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Table 4.2: An Example on Inferring Conditional Probabilities Between Genes

genej genek genei
On Off

On On 0.85 * 0.55 = 0.47 / 0.87 0.15 * 0.45 = 0.07 / 0.13
On Off 0.85 * 0.45 = 0.38 / 0.83 0.15 * 0.55 = 0.08 / 0.17
Off On 0.15 * 0.55 = 0.08 / 0.17 0.85 * 0.45 = 0.38 / 0.83
Off Off 0.15 * 0.45 = 0.07 / 0.13 0.85 * 0.55 = 0.47 / 0.87

4.2.2 Constructing the State Transition Function

The similarity matrix produced from the gene expression data analysis is used in the

POMDP formulation of the GRN control problem. The entry at position (i,j) in

the matrix is used as the conditional probability value Pr(genei = on|genej = on).

This probability value is used for constructing the transition function of the POMDP

problem.

When constructing the state transition function for the factored representation, we do

not need a joint probability distribution over all genes. For each state variable s, we

need a probability distribution of the value of the state variable, given values of other

related states at the previous state of s. By related variables, we mean state variables

that are known to influence the next value of s.

For the GRN control problem, since each state variable is a gene, we need a probability

distribution over the expression level of the gene, given the expression levels of related

genes. The related genes can easily be found by using the GRN. For constructing

the probability distributions, we assumed that the relationship between two genes is

always independent of the other relationships. Thus, if a gene is influenced by mul-

tiple genes, each interaction is considered as an independent event. This assumption

simplifies the calculation of the transition function. Also we assumed that genes be-

have according to a linear model. Thus a gene only effects other genes positively or

negatively and the effected gene is influenced by a linear combination of all influences.

Our transition function formulation has two steps:

1. Gene expression data is analyzed and similarity on the behavior of genes is
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extracted. Details of this analysis is presented in Section 4.2. The output of

this analysis step is a function SM defined G × G → [0, 1] where G is the set

of genes in GRN. This function represent the similarity of any two genes, where

value 1 indicates two genes behave similarly for the data we analyzed.

2. We use the similarity measure function SM produced at the previous step and

the GRN to formulate the transition function of the POMDP model. We make

use of the factored representation in this step to simplify the process. Each gene

is conceived as a state variable and the transition function is calculated for each

gene separately.

We assume that only a limited number of other genes directly effect the expres-

sion level of a gene. This assumption is also used in PBN model, where each

node is connected to only a limited number of other nodes. For determining

which genes effect a given gene directly, we refer to the gene regulatory network.

A gene gi is assumed to be directly influenced by another gene gj if there is a

directed edge (gj , gi) in the gene regulatory network.

Assume that for each gene gi, the gene is influenced by only genes g1i , g
2
i , ...g

j
i

directly. Then we formulate factored transition function T that determines the

expression level of gene gi at next time step, given expression levels of genes

g1i , g
2
i , ...g

j
i by using probabilities:

Pr(gi = on|g1i , g2i , ...g
j
i ) =

j∏
x=1


SM(gi, g

x
i ) if gxj = on,

1− SM(gi, g
x
i ) if gxj = off.

Pr(gi = off |g1i , g2i , ...g
j
i ) =

j∏
x=1


SM(gi, g

x
i ) if gxj = off,

1− SM(gi, g
x
i ) if gxj = on.

For factored representation, the state space is expressed in terms of each state

variable separately. Thus it is possible to directly use these probability values as

descriptors of state variables. Symbolic Perseus uses a factored representation

and will take care of calculating the plain transition function where necessary.

It is possible to formalize this function in the plain POMDP notation equiv-

alently. One need to calculate joint probability values by assuming that each

probability calculated is independent of each other. This assumption is compat-
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ible with our previous assumption, where each gene is only influenced by genes

it is connected to in the GRN.

Calculating joint transition probabilities by using these values gives us the tran-

sition function with no intervention action noop performed (such as T ′(s, s′) that

does not depend to any action. If A is the action function over S → S we can

derive T for other actions as:

T (s, noop, s′) = T ′(s, s′) (4.6)

T (s, a, s′) = T ′(A(s), s′) (4.7)

As we stated before, since we use the factored POMDP representation, our formulation

only need to express transition probabilities for each gene and action descriptions.

When action descriptions and state transitions are given together, plain representation

of the state transition function can easily be generated by the planner.

To illustrate the process, assume gene i is influenced by genes j and k. The similarity

matrix contains the values SM(j, i) = 0.85 and SM(k, i) = 0.55. Then the conditional

probability distribution of gene i is computed as given in Table 4.2.

Note that these values are not actual probability distribution. We need to normalize

these values in order to use them as transition probabilities. The values shown after

the ‘/’ in Table 4.2 are normalized values. Note that values in a row add up to 1.

4.3 Experimental Evaluation of POMDP Formulation and Data Anal-

ysis

For the experiments, we built implementations of our POMDP formulation method

and two other gene regulatory network control problem settings mentioned above.

For the realization of the optimization method developed by Datta et. al. we used

two alternate implementations. One of the implementations strictly follows the al-

gorithm proposed by Datta et. al. at [17]. Gene regulatory network control prob-

lem is formalized as a finite horizon, stochastic optimization problem with imprecise

knowledge about the system. A dynamic programming algorithm is used to solve the
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optimization problem and extracting a policy. We designated this implementation as

Optimization-1.

We also implemented the alternative realization of this algorithm, as formulated in [10]

by Bryce et.al. This version of the method uses the same algorithm, however suggests

an identical graph search instead of dynamic programming. Bryce et.al. used this

alternative realization since this realization is more similar to their method and it

is easier to compare two, then comparing a dynamic programming algorithm with a

graph search algorithm. We designated this implementation as Optimization-2.

Similarly we also realized the AO* method proposed by Bryce et. al. by implementing

the graph search algorithm they proposed. Alternative implementation of optimization

method and the implementation of AO* method share similar components and only

differ in the way they expand nodes of the search graph. This implementation is

designated as AO*.

For our POMDP formulation method we used Symbolic Perseus POMDP solver for

solving the constructed POMDP problem. We designated our implementation as UHP

which is an acronym for Unbounded Horizon POMDP.

All four methods are evaluated with a gene regulatory network based on metastatic

melanoma data [8]. Kim et.al. developed a PBN model based on this gene expression

data [28]. Datta et.al formulated a control problem on a 7-gene version of this PBN

formulation. The number of observed genes, intervened genes and target genes vary

in the different settings of the control problem. This control problem is also used by

Bryce et.al. for comparison. In this experimental evaluation, we also used this problem

for comparing the performance of our POMDP formulation with these related work.

For evaluating the alternative algorithms we first solved the control problem and

measured processing time and memory used in solution process. Then we measured

the quality of the solution by running 100 simulations of the solution. Total simulation

time and average reward are calculated after this simulation.

Since our UHP method works on an unbounded horizon, we did not solve the control

problem for different horizon values as we did with other methods. For each problem

setting with given number of actions, observations and target genes, we run our solu-

57



Table 4.3: Running time and memory usage for alternative methods with |A| = 1

|O| Horizon Solution Time (s) Memory Used

Opt-1 Opt-2 AO* UHP Opt-1 Opt-2 AO* UHP

1

h = 3 0.16 1.94 0.44

8.34

395 K 943 K 527 K

26 K

h = 6 0.38 - 19.14 570 K - 2 M
h = 9 13.72 - - 17 M - -
h = 12 853.60 - - 1 G - -
h = 15 - - - - - -
h = 18 - - - - - -
h = 21 - - - - - -

2

h = 3 0.17 46.62 6.86

8.68

404 K 5M 1 M

64 K

h = 6 6.81 - - 11 M - -
h = 9 3577.26 - - 8 G - -
h = 12 - - - - -
h = 15 - - - - -
h = 18 - - - - -
h = 21 - - - - -

3

h = 3 0.30 - 625.35

8.79

475 K - 10 M

66 K

h = 6 205.06 - - 704 M - -
h = 9 - - - - - -
h = 12 - - - - - -
h = 15 - - - - - -
h = 18 - - - - - -
h = 21 - - - - - -

4

h = 3 0.41 - -

11.03

1 M - -

68 K

h = 6 - - - - - -
h = 9 - - - - - -
h = 12 - - - - - -
h = 15 - - - - - -
h = 18 - - - - - -
h = 21 - - - - - -

tion method only once. Then the generated policy is used in simulations for different

horizon values.

All software components except the POMDP formulation part of our own method work

on MATLAB. We used Symbolic Perseus for solving our POMDP formulations and

Probabilistic Boolean Network Toolbox for formulations of other competing methods.

POMDP formulation of our method is implemented on Ruby. All experiments are

carried on Intel Core i7 740QM 1.73 Ghz Processor and 6 GB memory. We used the

default memory limitations of MATLAB as memory limit in our experiments. For

each experimental run, we used 30 minutes as time limit.

4.3.1 Experimental Results for Evaluation of POMDP Formulation and

Data Analysis

Tables 4.3-4.7 present the results of the experiments we run on four approaches.

Tables 4.3-4.6 present solution time and total memory used for four competing ap-
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Table 4.4: Running time and memory usage for alternative methods with |A| = 2

|O| Horizon Solution Time (s) Memory Used

Opt-1 Opt-2 AO* UHP Opt-1 Opt-2 AO* UHP

1

h = 3 0.25 8.79 0.63

9.32

535 K 2 M 732 K

27 K

h = 6 1.79 - 25.91 1 M - 3 M
h = 9 325.41 - - 436 M - -
h = 12 - - - - - -
h = 15 - - - - - -
h = 18 - - - - - -
h = 21 - - - - - -

2

h = 3 0.24 539.92 10.41

8.42

545 K 15 M 2 M

67 K

h = 6 45.23 - - 84 M - -
h = 9 - - - - - -
h = 12 - - - - - -
h = 15 - - - - - -
h = 18 - - - - - -
h = 21 - - - - - -

3

h = 3 0.35 - 980.69

10.35

703 K - 13 M

68 K

h = 6 1630.95 - - 5 G - -
h = 9 - - - - - -
h = 12 - - - - - -
h = 15 - - - - - -
h = 18 - - - - - -
h = 21 - - - - - -

4

h = 3 0.93 - -

23.74

2 M - -

61 K

h = 6 - - - - - -
h = 9 - - - - - -
h = 12 - - - - - -
h = 15 - - - - - -
h = 18 - - - - - -
h = 21 - - - - - -

Table 4.5: Running time and memory usage for alternative methods with |A| = 3

|O| Horizon Solution Time (s) Memory Used

Opt-1 Opt-2 AO* UHP Opt-1 Opt-2 AO* UHP

1

h = 3 0.32 44.63 0.81

10.32

655 K 5 M 936 K

30 K

h = 6 6.55 - 25.91 6 M - 3 M
h = 9 - - - - - -
h = 12 - - - - - -
h = 15 - - - - - -
h = 18 - - - - - -
h = 21 - - - - - -

2

h = 3 0.36 13.28

10.06

690 K - 2 M

68 K

h = 6 190.53 - - 352 M - -
h = 9 - - - - - -
h = 12 - - - - - -
h = 15 - - - - - -
h = 18 - - - - - -
h = 21 - - - - - -

3

h = 3 0.66 - 1121.24

13.51

971 K - 16 M

70 K

h = 6 - - - - - -
h = 9 - - - - - -
h = 12 - - - - - -
h = 15 - - - - - -
h = 18 - - - - - -
h = 21 - - - - - -

4

h = 3 - - -

15.35

- - -

72 K

h = 6 - - - - - -
h = 9 - - - - - -
h = 12 - - - - - -
h = 15 - - - - - -
h = 18 - - - - - -
h = 21 - - - - - -
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Table 4.6: Running time and memory usage for alternative methods with |A| = 4

|O| Horizon Solution Time (s) Memory Used

Opt-1 Opt-2 AO* UHP Opt-1 Opt-2 AO* UHP

1

h = 3 0.49 177.07 1.02

11.61

1 M 9 M 1 M

31 K

h = 6 - - 44.10 - - 4 M
h = 9 - - - - - -
h = 12 - - - - - -
h = 15 - - - - - -
h = 18 - - - - - -
h = 21 - - - - - -

2

h = 3 0.93 - 19.82

12.12

2 M - 3 M

70 K

h = 6 190.53 - - 352 M - -
h = 9 - - - - - -
h = 12 - - - - - -
h = 15 - - - - - -
h = 18 - - - - - -
h = 21 - - - - - -

3

h = 3 1.47 - -

12.67

3 M - -

71 K

h = 6 - - - - - -
h = 9 - - - - - -
h = 12 - - - - - -
h = 15 - - - - - -
h = 18 - - - - - -
h = 21 - - - - - -

proaches, for action sets of different cardinalities (denoted by |A|). Each table for

an action set presents solution time and memory values for different cardinalities of

observation set (denoted by |O) and different horizon values (denoted by h). Table 4.7

present the average reward collected, when the policy generated by each approach is

tested on a simulation run. This table again presents results for different cardinalities

of action set and observation set, and different horizon values.

In all experiments, solution time is the time to build the problem description and

generate the policy. As the number of actions and observations increase, the problem

gets more complicated and solution time typically increases for all methods in our

experiment. This increase is very fast for both optimization implementations and

AO* algorithm. None of these algorithms produce policies in given time with h > 12,

even in the simple setting of single action and single observation. However, UHP

method calculates the policy without considering the horizon value, thus the solution

time does not exceed 30 seconds even in the most complex problem setting and high

horizon values (h = 21)

Figure 4.2 shows the solution times as the horizon increases. UHP method have a

constant solution time w.r.t. horizon and it’s insignificant compared to other methods.

Other methods exceed execution time limit for horizon values larger than 3-5.

60



Table 4.7: Average Reward Gained for alternative methods

|A|, |O| Horizon Average Reward |A|, |O| Average Reward

Opt-1 Opt-2 AO* UHP Opt-1 Opt-2 AO* UHP

|A| = 1
|O| = 1

h = 3 8.7 14.9 12.6 13.28

|A| = 3
|O| = 1

9.2 12.3 12.2 13.28
h = 6 19.5 - 23.94 21.65 24.9 - 32.83 21.65
h = 9 46.4 - - 28.12 - - - 28.12
h = 12 64.5 - - 33.22 - - - 33.22
h = 15 - - - 37.65 - - - 37.65
h = 18 - - - 40.80 - - - 40.80
h = 21 - - - 42.79 - - - 42.79

|A| = 1
|O| = 2

h = 3 9.8 12.3 12.54 13.44

|A| = 3
|O| = 2

15 - 14.7 13.44
h = 6 21.6 - - 23.50 30.9 - - 23.50
h = 9 40.3 - - 31.34 - - - 31.34
h = 12 - - - 36.94 - - - 36.94
h = 15 - - - 40.83 - - - 40.83
h = 18 - - - 43.86 - - - 43.86
h = 21 - - - 45.90 - - - 45.90

|A| = 1
|O| = 3

h = 3 13.6 - 12.08 13.28

|A| = 3
|O| = 3

15.8 - 15.82 13.28
h = 6 33.4 - - 23.40 - - - 23.40
h = 9 - - - 30.93 - - - 30.94
h = 12 - - - 37.39 - - - 37.39
h = 15 - - - 41.64 - - - 41.63
h = 18 - - - 44.47 - - - 44.47
h = 21 - - - 46.60 - - - 46.60

|A| = 1
|O| = 4

h = 3 11.4 - - 13.28

|A| = 3
|O| = 4

- - - 13.28
h = 6 - - - 23.15 - - - 23.15
h = 9 - - - 30.10 - - - 30.10
h = 12 - - - 35.45 - - - 35.45
h = 15 - - - 39.12 - - - 39.12
h = 18 - - - 40.32 - - - 40.31
h = 21 - - - 41.27 - - - 41.27

|A| = 2
|O| = 1

h = 3 13.9 13.2 11.4 13.28

|A| = 4
|O| = 1

14.5 13.1 11.24 13.28
h = 6 20.9 - 24.12 21.65 - - 18.75 21.65
h = 9 42.9 - - 28.12 - - - 28.12
h = 12 - - - 33.22 - - - 33.22
h = 15 - - - 47.65 - - - 37.65
h = 18 - - - 40.80 - - - 40.80
h = 21 - - - 42.79 - - - 42.79

|A| = 2
|O| = 2

h = 3 13 5.12 6.52 13.44

|A| = 4
|O| = 2

10.5 - 10.6 13.44
h = 6 -0.4 - - 23.50 - - - 23.50
h = 9 - - - 31.34 - - - 31.34
h = 12 - - - 36.94 - - - 36.94
h = 15 - - - 40.83 - - - 40.83
h = 18 - - - 43.86 - - - 43.86
h = 21 - - - 45.90 - - - 45.90

|A| = 2
|O| = 3

h = 3 14.2 - 12.3 13.28

|A| = 4
|O| = 3

12 - - 13.28
h = 6 28 - - 23.40 - - - 23.40
h = 9 - - - 30.94 - - - 30.94
h = 12 - - - 37.39 - - - 37.39
h = 15 - - - 41.64 - - - 41.64
h = 18 - - - 44.47 - - - 44.47
h = 21 - - - 46.60 - - - 46.60

|A| = 2
|O| = 4

h = 3 13.1 - - 13.28

|A| = 5
|O| = 1

14.6 13.2 11.18 13.28
h = 6 - - - 23.15 - - 36.8 21.64
h = 9 - - - 30.10 - - - 28.12
h = 12 - - - 35.45 - - - 33.22
h = 15 - - - 39.12 - - - 37.65
h = 18 - - - 40.32 - - - 40.80
h = 21 - - - 41.27 - - - 42.79

|A| = 5
|O| = 2

13.3 12.98 13.44
- - - 23.50
- - - 31.34
- - - 36.94
- - - 40.83
- - - 43.86
- - - 45.90
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Figure 4.2: Change of solution times for different implementations when horizon value
increases. Graphs are plotted for different |A| and |O| values.
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Figure 4.3: Change of average reward for different implementations when horizon
value increases. Graphs are plotted for different |A| and |O| values.
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Figure 4.4: Change of memory used for different implementations when horizon value
increases. Graphs are plotted for different |A| and |O| values.
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Memory column in experimental results also give hints on the scalability of the ap-

proaches. optimization-1 implementation scales better than optimization-2 im-

plementation, because it extensively uses dynamic programming tables that organize

the solution space more efficiently. These dynamic programming tables might get as

big as 8 GBs. When the same algorithm is implemented with search graphs, the uti-

lization of memory decreases and the scalability drops significantly. AO* algorithm

is similar to the optimization-2 implementation in memory use. However, the most

important aspect of this algorithm is the pruning parts of the state space, which can

be observed in memory usage values. UHP method uses significantly less memory

than all other methods considered.

Figure 4.4 shows the memory usage of the methods. In this figure, cases where time

limit is exceeded are also shown on maximum memory usage for smoother graphs.

Reader can refer to Tables 4.3-4.6 to see the actual memory usage in details, which

is consistent with this choice. Behavior of memory usage is very similar to execution

time. Our method uses minimal memory, while for larger horizon values all other

methods either exceed memory limit, or failed to terminate in time limit.

The average reward gained at simulation is similar for all approaches. Note that the

average is taken on the number of runs, not on the length of horizon and thus as the

horizon length increases the average reward increases too.

Figure 4.3 shows the reward collected by each method. For cases where a method

exceeds time of memory limit no reward is collected. All methods collect similar

amounts of rewards for small horizon values. However uhp method collect consistently

increasing amount of reward for larger horizons, while other methods fail to complete

in time or memory limit.

Most significant outcome of the experiments is the comparison of the scalability of

methods. Optimization methods and AO* algorithm scale poorly as the horizon in-

creases. Especially the optimization methods fail to produce any results as A∪O gets

bigger. Figure 4.5 displays scalability of tested algorithms with different values of |A|

and |O|. The scalability value shown is the maximum horizon value for which each

method were able to produce an answer without violating time or memory limit.
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Figure 4.5: A surface plot of scalability of four alternative approaches. Surfaces are
also plotted as color map to improve visual distinction. XY-axis indicates |A| and
|O| values. Z-axis indicates the horizon value. Each surface are drawn at maximum
horizon value it scales to.
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For small values of |A| and |O| all algorithms scale around horizon values of 5 or 10.

AO* method scales better than optimization-2 method. However Optimization-1

implementation of the same algorithm outperforms AO*. This is due to our choice of

implementation environment, MATLAB. On MATLAB optimization-1 implementa-

tion uses arrays for dynamic programming tables and linear algebra routines for calcu-

lating necessary probability distributions. Since these are the programming tools that

MATLAB can handle very efficiently scalability of optimization-1 increases drasti-

cally. Conversely, MATLAB does not offer any efficient implementation for general

purpose computing tools, such as graphs that are used extensively by optimization-2

and AO*. It is safe to predict that on a general purpose programming environment,

optimization-1 and optimization-2 implementations would scale to close horizon

values, while AO* would scale better than both of them.

Our uhp method is indifferent to the horizon value of the problem so it always scales up

to maximum horizon value used, which is 21 for this experimental setting. However our

UHP approach does not sacrifice from the solution quality as average rewards clearly

depicts. The average reward received is not significantly less than the other three

approaches even for high horizon values.This is a very important result, since other

approaches, especially optimization-1 and optimization-1 theoretically generate

the best policy for the GRN control problem. The actual average rewards still do

not converge to a single value due to uncertainties involved in the problem. However

average reward collected by these approaches is the expected average reward to be

collected when GRN is controlled optimally. Our approach makes use of point-based

value iteration algorithm for solving POMDP problems. This algorithm is based

on approximating the whole value function by sampling points on the belief state

space, and theoretically is a sub-optimal solution algorithm for finite horizon. However

experimental results show that our formulation and solution method collects rewards

close to other optimal solution methods.
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4.3.2 Experiments on the Influence of Gene Expression Data and Gene

Regulatory Network

This section presents two sets of experimental results for evaluating the impact of vari-

ations in gene expression data and gene regulatory network to data analysis method

we proposed. In order to understand and improve the gene expression data analysis,

we felt the necessity of exploring the impact of fundamental features of the gene ex-

pression data and gene regulatory network to the data analysis algorithm. These test

are designed to fulfill this need.

4.3.2.1 Experiments on Data Order

As Section 4.2 discusses, the order of samples in our data set has an impact on our

window based gene expression data analysis algorithm. A trivial way to reduce the

impact of ordering, one can theoretically carry on the analysis for all permutations

of the data and combine the results as we combined the local results to obtain global

similarity values. However this approach is computationally intractable. It is impos-

sible to carry on even the simplest analysis on all different permutations, since the

number of permutations of the data grows with the order of factorial function.

Thus we designed a simpler test that analyzes an arbitrary number of permutations of

our data. We used the metastatic melanoma gene expression data we used in previous

experiments. We reordered or data samples 10000 times randomly and carried on

our gene expression analysis for each of the 10000 permutations. We obtained a

partitioning of genes for each case.

For our original analysis, which is based on the original ordering of the data, we

calculated the average Hamming Distance between our analysis result and the analysis

results from 10000 permutations.

Then we chose 50 permutations among 10000. Each of the 50 permutations are used

as an alternative ordering of samples on which gene expression analysis can be applied.

For each of the 50 samples we calculated the average Hamming Distance between the

analysis result of the permutation and all 10000 analysis results. The results of all 51
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Figure 4.6: Comparison of solution similarity for different permutations of data sam-
ples

cases are shown in Figure 4.6

Since our data set contains 7 genes and we relabel all the analysis results, maximum

Hamming Distance between two analysis results are 6 (partition of the first gene is

always labeled as the first group).

The results show that for most of the possible ordering of data, An average Hamming

Distance between 3 and 4 exists between the analysis result and all possible analysis

results. Only a minority of permutations lead to Hamming Distances greater than 4

or less than 3.

This shows that a different permutation of data samples might produce different analy-

sis results. However different permutations only show slight deviation from an average

case where half of the other possible analysis results are equivalent or very close to

the selected permutation and the remaining other half gives different analysis results.

Moreover our original analysis based on the original ordering of data has an average

Hamming Distance of less than 3 to all 10000 permutations (shown with the horizontal

line in the Figure). Thus we experimentally verified that analysis result we obtained

using the original ordering of the data has the similar statistical properties to a differ-

ent analysis result produced with a different ordering of data. We can conclude that

using the original ordering of the data does not deviate the analysis results much,

in fact the analysis results in this case are closer to the other possible results above
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average.

4.3.2.2 Experiments on Network Connectivity

Another experiment set we conducted attempts to measure the effect of network con-

nectivity to our method.

The main focus of our method is to analyze the gene expression data, explore and

group genes according to their impact on the control problem to be solved. Genes

that have little influence on the control problem are eliminated totally. According to

this perspective it is expectable for our approach to identify such genes more frequently

in a sparse network than a dense one. In a dense network each gene is connected to

more genes and thus eliminating each gene has a bigger impact on the whole network.

Figure 4.7: Comparison of reduction in decomposed problem size for networks with
different connectivity and size

To identify how our approach behaves with different levels of connectivity we gener-

ated a separate set of random gene regulatory networks. These networks are created

by modifying randomly generated graphs. They are processed identically with the

synthetic gene regulatory networks we used in the experiments. First synthetic gene

expression data is created by using these networks, this data is analyzed and the

analysis results are used for creating decomposed version of the POMDP problems at

hand.

Figure 4.7 illustrates the ratio of decomposed problem and original POMDP problem
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size. For dense graphs of 80% connectivity decomposition preserves nearly all of the

states. However it is possible to eliminate 10%-15% percentage of the genes when the

network is denser.

This result verifies the expectation that, in sparse networks there are more isolated

genes that can be identified and removed from problem description by our method.
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CHAPTER 5

EFFICIENT POLICY GENERATION BY

AUTOMATIC DECOMPOSITION OF POMDP

MODEL OF GRN

The previous chapters presented the POMDP problem formulation of the GRN control

problem. As we have stated above, after this formulation, it is possible to use any

POMDP solver to generate a policy and intervene with the GRN accordingly. In order

to efficiently solve the POMDP problem, we also developed a method to pre-process

the POMDP problem. The goal of this method is decomposing the POMDP problem

into subproblems. Each subproblem will contain genes closely related and exhibiting

similar behavior. The motivation behind this decomposition is separating different

parts of the problem from each other.

One of the important problems of the existing POMDP solution methods is curse of

dimensionality [6]. The complexity of solving the problem is dominated by the number

of possible states and for a flat representation, POMDP problems have huge state space

(exponential in terms of state variables). Fortunately, factored representation is a way

to represent the problem in a more compact form. However, without taking advantage

from this compact representation, the computational cost of the solution methods

does not decrease. Decomposing the problem into subproblems produces a number

of subproblems; each subproblem can be solved with a very small computational

cost compared to the cost of solving complete large problem. Moreover, separating

different parts of the problem provides the chance to identify and remove the unrelated

subproblems from the solution process.
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The gene expression data analysis explained in Section 4.2 is the method we used

for identifying classes of genes. The next sections present how the subproblems are

created for each class and how these subproblems are coordinated for the solution.

Algorithm 4 gives a brief outline of POMDP decomposition.

Algorithm 4: POMDP Decomposition and Execution

Input: M: POMDP Problem Formulation of GRN Control Task, G: Gene

Regulatory Network, P: Partitioning of genes

foreach partition p in P do

Formulate POMDP problem for p using M and add it to DEC-POMDP

end

Eliminate Redundant Subproblems in DEC-POMDP

foreach problem dp in DEC-POMDP do

Determine Goal Description of dp

Postulate Action Set of dp

end

Construct Execution Graph EG using DEC-POMDP

Solve subproblems in DEC-POMDP

Execute Policy using solutions of DEC-POMDP and EG

5.1 POMDP Formulation of subproblems

It is possible to apply the POMDP formulation presented in Chapter 4 to each class

of genes in order to produce POMDP formulation for the subproblems. However, we

did not apply the same method, instead we partitioned the POMDP problem into

subproblems by using some elements of the POMDP formulation in the process.

The main motivation for not using the same POMDP formulation as a constructive

manner is the fact that the main problem is something more than the union of the

subproblems. It is possible to use the POMDP formulation for constructing every

component of every subproblem. However, some of the subproblems may contain genes

that are influenced by genes that belong to other subproblems. Similarly, some of the

subproblems may contain genes that influence genes that belong to other subproblems.
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We call these relations dependencies and these dependencies are not components of

any single subproblem. If we use this approach, we should also regenerate these

dependencies by repeating some of the steps used in constructing the main problem.

Moreover, generating components of the subproblems (e.g., transition functions) also

require multiple repetition of the already carried POMDP formulation. So, using the

POMDP formulation for subproblems brings a lot of excessive computation if we want

the subproblems to fully express the main problem. Thus, instead of repeating the

same process, we adapted a decomposition approach which basically uses projections

or subsets of POMDP components of the main problem.

Another motivation underlying not using the POMDP formulation is to keep the

formulation and solving methods independent from each other as much as possible.

In this work, POMDP formulation and POMDP solving methods have only a single

common element, which is the gene expression data analysis. The POMDP solving

method can be adapted to any other partially observable probabilistic control problem

by replacing the gene expression data analysis with an appropriate method particular

to the investigated problem (possibly a similar data analysis component). However,

if we had used the POMDP formulation for defining the subproblems, the solving

method would have been dependent on the POMDP problem formulation, which would

have been customized for the GRN control problem. This would severely affect the

portability of the POMDP solving method.

In order to partition a POMDP problem, it is sufficient to partition each problem

element. Partitioning the state space, action space, observation space and observation

function are trivial, since all of them are made up of elements related to a single gene.

For each existing partition, we identify the states, actions and observations related to

the genes in the partition. For each observation, the function can be defined based on

the same genes and by obeying the specifications given in Section 4.1.4.

The reward function for each subproblem is the same as the reward function defined

for the main problem, however the goal description might change. The goal of the

main problem mentions a number of genes. For each subproblem, we modify the

goal description, such that it only mentions genes (i.e., state variables) related to the

subproblem.
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Note that, some of the subproblems might not be related to any gene (state variable)

mentioned in the goal description. Thus, their goal descriptions become empty and

the reward function becomes meaningless after decomposition. Similarly, some of the

subproblems might not be related to any input gene. Thus, these subproblems would

not contain any action after decomposition. We will enumerate and process these

cases further when coordinating the subproblems in the next subsection.

The transition function is derived as explained in Section 4.2.2. The conditional prob-

ability values extracted from the gene expression data are used for constructing the

transition function for each subproblem. However, for each subproblem, the transition

function only contains probability distributions for expression levels of related genes.

Note that a gene g might be influenced by gene g′ from another partition. In this

case, the similarity value between the two genes should be used when constructing

the transition function. However, using this dependency in the transition functions of

both subproblems is redundant. We only add the influenced gene (g) to the subprob-

lem containing influencing gene (g′), and we use the similarity value to calculate the

transition function value regarding g and g′. Influenced gene (g), which now exists

in both subproblems, is called subproblem input for the original subproblem in which

it exists; and it is called subproblem output for the other subproblem to which it is

added.

This is the outline for producing each subproblem from the main POMDP problem

components and gene expression data analysis. When all the subproblems are con-

structed, what is left is to postprocess them in order to fill any remaining detail in

their formulation, and coordinating the subproblems to produce a policy for the main

problem.

5.2 Coordinating Subproblems

5.2.1 Idea Behind Coordination

By decomposing the POMDP problem, we obtained a number of subproblems. It is

possible to solve these problems by a POMDP solver; however, we need to organize
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the solution process by coordinating these subproblems. The idea behind this orga-

nization is to establish how each subproblem contributes to the main problem. Each

subproblem contains three kinds of genes (or state variables in a more general form):

1. Influencing Genes: It is possible to influence the expression levels of these

genes. This group contains:

(a) Input genes: These are genes that are in the input gene set of the main

control problem

(b) Subproblem input genes: These are genes that are not in the input gene

set of the main control problem (i.e., can not be influenced directly), how-

ever their expression level is influenced by gene(s) that belong to another

subproblem.

2. Influenced Genes: The expression levels of the genes in this group are impor-

tant because this group contains:

(a) Target genes: These are genes that are in the target gene set of the main

problem

(b) Subproblem output genes: These are genes that are not in the target

gene set, however their expression levels influence gene(s) that belong to

another subproblem.

3. Abstract Genes: It is not possible to influence the expression levels of these

genes, and furthermore their expression levels are not important because they

are neither influencing nor influenced genes.

Note that a gene can be a member of more than one group. For example, an input

gene might also be a subproblem output gene.

Each subproblem can be viewed as a small portion of the main control problem. Each

subproblem has two purposes:

1. If all of the subproblems have little or no dependency (i.e., there is only a small

number of subproblem input and output genes) then solving each subproblem
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is enough for deducing a policy to control target genes that belong to this sub-

problem. In this case, we can see each subproblem as a portion of the main

control problem; it is concentrated on a group of target genes and all unrelated

problem elements are discarded.

2. If subproblems have dependencies among themselves, beside solving each sub-

problem for controlling target genes, we should also take into consideration ef-

fects of each subproblem on others. Subproblem input and output genes are

formulated for this purpose. They maintain the dependencies between subprob-

lems and can be used for controlling how one subproblem influences another.

By solving subproblems it is possible to control the influenced genes, which contains

target genes and subproblem output genes. Controlling target genes is the main

purpose, and controlling subproblem output genes allows us to control subproblem

input genes. Subproblem input genes, with input genes, are used as control inputs of

the sub problems when solving them. Abstract genes acts as hidden state elements

that effect the system dynamics, but can not be controlled directly and their expression

values are not important for our purposes.

As an example. assume a gene regulatory network of genes labeled from 1 to 8 as

shown in Figure 5.1. Genes 1, 2, 3, 4, and 5 are observable. Genes 1 is input genes

and gene 2 is the target gene. Assume a subproblem set generated by our approach

is {{1, 3}, {2, 4, 8}, {5, 6, 7}}. For the first subproblem, gene 1 is both an input gene

and a subproblem output gene; gene 3 is a subproblem output gene. For the second

subproblem genes 4 and 8 are subproblem input genes since all of them are influenced

by gene 1; gene 2 is a target gene. For the third subproblem gene 5 is influenced by

gene 3; genes 6 and 7 are influenced by gene 1 so all of them are subproblem input

genes.

5.2.2 Eliminating Redundant Subproblems

The first step in coordinating the subproblems is to decide for each subproblem,

whether we should solve it or not. It is obvious that we should solve the subproblems

with a goal description (i.e., subproblems related to at least one of the target genes).

77



However, we mentioned before that some of the subproblems might not have a goal

description (i.e., not related to any of the target genes). We should decide which one

of them should be solved.

We use a simple algorithm for this purpose. First, we mark all subproblems with a

goal description to be solved. Then, we iterate over the remaining subproblems. If any

of these subproblems contain a subproblem output which is related to a subproblem

previously marked “to be solved”, then the subproblem containing the output is also

marked “to be solved”. We repeat this iteration until no more subproblem could be

marked “to be solved”.

By using this simple algorithm, we identify all subproblems directly or indirectly

related to the controlling target genes. It is sufficient to solve only these subproblems

and the other subproblems are discarded.

Note that there is a slight possibility that subproblems marked “to be solved” do not

contain any of the input genes. In this case, we can conclude that the input genes are

not influential on the target genes and the control problem has no possible solution,

regardless of the formulation used.

Considering the example of the previous subsection, subproblem {5, 6, 7} can safely

be eliminated since all subproblem input genes of the subproblem {2, 4, 8} are related

to subproblem {1, 3} and this subproblem does not have any subproblem inputs.

5.2.3 Determining Goal Descriptions

For the second step, we should formulate goal descriptions for subproblems marked

“to be solved”. It is guaranteed that these subproblems have subproblem outputs

(If they did not have, then either they would not be marked “to be solved”, or they

would already have a goal description). The outputs of these subproblems should be

used as goal description. However, it is not possible to automatically specify whether

it is desirable for these genes to be expressed or not.And also there is a non-trivial

relationship between these subproblem output genes and related subproblem input

genes. In order to postulate a complete problem description, we add the related

subproblem input genes to the problem and mark them as goal of the subproblem.
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However, it is still not possible to state whether it is desirable for these genes to be

satisfied, or not. Thus, we produce multiple copies of these subproblems, one for each

expression level of the goal genes. If there are k goal genes for a given subproblem,

we produce 2k copies of the problem, assuming a binary expression level. In the worst

case, this approach produces exponential number of copies of each problem and the

total performance of the method suffers from this step. However, for most cases, if the

gene expression data properly partitions the genes, then each subproblem would have

very few number of (typically 1 or 2) goal genes. Thus, we predict that this approach

will on average contribute a constant factor to the computational complexity.

Continuing with our example, for the first subproblem 1, 3 we extend the problem to

1, 3, 4, 8 and the goal description includes genes 4 and 8. For the second subproblem,

goal description only includes gene 2. This means we have to solve 4 copies of problem

1 for each possible goal description regarding genes 4 and 8; we only need to solve a

single copy of the second subproblem.

5.2.4 Postulating Action Sets

For the third step, we formulate actions for all subproblems. We have already men-

tioned above that some of the subproblems might not contain any action at all. If these

subproblems contain subproblem inputs, these genes are treated as input genes and

action descriptions for controlling these genes are provided. If these subproblems do

not contain any input gene or subproblem input, then they are discarded and marked

as “not to be solved”. We repeat this process until no subproblem is discarded.

Note that there is also a slight possibility that the subproblems discarded in this step

contain target genes. In this case, we can conclude that these target genes can not be

controlled by any input gene. If all of the target genes are removed in this fashion, we

can conclude that the problem has no possible solution, regardless of the formulation

used.

For our example since both subproblems contains input genes or subproblem input

genes, none of them can be eliminated. Action set for the subproblem {1, 3, 4, 8} only

contains gene 1; action set of subproblem {2, 4, 8} contains genes 4 and 8.

79



5.2.5 Construction of Execution Graph

For the fourth step, we construct a directed graph of subproblems. Vertices of the

graph are subproblems and there is a directed edge between two subproblems con-

nected with a subproblem input-output pair. This graph structure is our scheme for

solving subproblems. For simplicity, we process this graph and remove all loops. We

detect loops from short to longer, and for each loop found, all subproblems in the loop

are merged into a single problem. The merging process can be carried out as the in-

verse of decomposition. State, action, and observation spaces are merged; observation

functions are merged; new reward functions and transition functions are formulated.

Finally, as a binding element, all subproblems on the directed graph are solved using

POMDP solver. Each subproblem generates a policy for intervening its input genes.

Note that these input genes might be actual input genes, or subproblem inputs. The

policy elements with actions intervening actual input genes can be realized; however,

it is not possible to realize the policy elements with actions intervening subproblem

inputs. So, we apply a controlled execution scheme.

We select the subproblems with target genes as main execution subproblems. At

each instance, the policies generated by these subproblems are always executed. For

input genes related to these subproblems, intervening actions are executed directly.

However, for actions intervening subproblem inputs, we do not execute any action;

we just select the related subproblem’s policy for execution. For example, assume

that SPa is a subproblem containing a target gene as state variable and gene i as

subproblem input. There exists another subproblem SPb with subproblem output

gene i (there should be an edge in the binding graph from SPb to SPa). Then if the

policy generated by SPa tells us to intervene with gene i and set its expression level

to on, then we execute the policy related to SPb. At each instance, we can just select

the policies to be executed in this fashion. Since each subproblem contains different

genes and different action, no inconsistency arises from executing multiple policies.

For our example, the execution graph is a simple 2-node graph. There is a directed

edge from subproblem {1, 3, 4, 8} to subproblem {2, 4, 8}. Execution is based on sub-

problem {2, 4, 8}. Genes 4 and 8 are input to this subproblem. A policy is based on

these input genes. Four copies of subproblem {1, 3, 4, 8} are solved for each possible

80



expression level of genes 4 and 8. Whenever the policy for the subproblem {2, 4, 8}

requires genes 4 and 8 are set to specific expression levels, the related policy is fetched

and input gene 1 is set to the expression level designated in the fetched policy.

5.3 Experimental Evaluation of Decomposition Method

In this section we present experimental results of the comparisons of plain POMDP

formulation and POMDP decomposition models. The goal of this experiment set

is to understand the overhead of POMDP decomposition method and compare this

overhead with the benefit gained.

5.3.1 Experiments on POMDP Decomposition

In this subsection, we evaluate the proposed decomposition method by conducting a

sequence of experiments to demonstrate its applicability, effectiveness and efficiency.

We start by describing the implementation and the testing environment. Then we

present an illustrative example. Finally we report and analyze the test result.

We used two synthetic networks and one real network in the experiments. For each of

the two networks, the gene expression data is generated using the method proposed

by Yu et al. [62]. For solving the POMDP problems, we used symbolic Perseus. The

main policy generator uses symbolic Perseus extensively; it has been coded partially

in Matlab and Ruby. All other modules of the system are coded in Ruby.

The execution times presented in the reported results have two components, problem

preparation phase and execution phase. The problem preparation phase was run

on AMD Turion x2 1.8Ghz CPU/1GB RAM and Intel Core 2 Duo E4600 2.4 Ghz

CPU/4GB RAM configuration computer; and the problem solution phase was run on

Intel Core 2 Duo E4600 2.4 Ghz CPU/4GB RAM configuration computer.
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Figure 5.1: Example gene regulatory network

5.3.1.1 An Example Decomposition and Execution

Shown in Figure 5.1 is one of the synthetic GRNs used in the experiments. In this

subsection, we will use this network to illustrate and demonstrate the decomposition

and execution phases.We typically defined gene 2 to be a target gene in our experi-

ments. Note that genes 5, 6 and 7 in this network do not effect the expression level of

gene 2. So, we predicted our approach could decompose the problem such that these

genes could be eliminated.

Assume that in the network shown in Figure 5.1 the control problem is defined such

that gene 1 is the input gene and gene 2 is the target gene to be promoted. In Sec-

tion 4.2, we presented an example of similarity analysis based on gene expression data.

Here we will not go into the details of the gene expression data analysis, instead we

will consider two different scenarios with two possible partitioning schemes extracted

after the data analysis.

For the first scenario, consider a partition of genes, say P1, extracted via gene ex-

pression data analysis, where P1 = {{1, 2, 3, 4, 6, 8}, {5, 7}}. Then the problem will be

divided into two subproblems, one subproblem for genes {1, 2, 3, 4, 6, 8} and another

subproblem for genes {5, 7}. For the first subproblem, the goal gene is 2 and the input

gene is 1. These genes are from the input and goal sets of the main problem. For

the second subproblem, there is no goal gene or input gene, since genes 5 and 7 are

neither in the goal nor in the input set of the main problem.

Note that gene 5 is controlled by genes 1 and 3; and gene 7 is controlled by gene 8. So,

the second subproblem is controlled by some genes in the first subproblem; however,

the inverse is not true. Genes 5 and 7 do not influence any gene in the first subproblem.

For the first step in coordinating the subproblems, we enumerate the subproblems to
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be solved. The first subproblem has some goal description (promoting gene 2), so it

is marked “to be solved”. The second subproblem does not have any goal description;

so it is not marked “to be solved”. Then, we explore whether the first subproblem

is controlled by the second subproblem; because the result of the check is negative,

no other subproblem is marked “to be solved”. Therefore, the first subproblem is the

only subproblem we should solve. In the execution part, we simply solve the first

subproblem and use the policy returned.

As a more complex scenario, consider another partition of genes P2 extracted via gene

expression data analysis, where P2 = {{1, 3, 5, 6}, {2, 4, 7, 8}}. Then the problem will

be divided into two subproblems, one subproblem for genes {1, 3, 5, 6} and another

subproblem for genes {2, 4, 7, 8}. Note that genes 4, 7 and 8 are controlled by gene

1. So the second subproblem is controlled by some genes in the first subproblem.

However, the inverse is not true. Genes 2, 4, 7 and 8 do not influence any gene from

the first subproblem. For the first step in coordinating the two subproblems, we

enumerate the subproblems that should be solved. The first subproblem does not

have any goal description, so it is not marked “to be solved”. The second subproblem

has some goal description (promoting gene 2) so it is marked “to be solved”. Then, we

explore whether the second subproblem is controlled by the first subproblem. Since the

first subproblem controls the second subproblem, the first subproblem is also marked

“to be solved”.

Now both subproblems should be solved. The influenced genes 4, 7 and 8 are added

to the first subproblem as target genes. The first subproblem now contains genes

1, 3, 4, 5, 6, 7, 8. The three genes 4, 7 and 8 are also input genes for the second sub-

problem. The second subproblem is solved for a policy governing genes 4, 7 and 8.

Since in this work we do not make use of joint actions, each action in this policy will

govern the expression level of a single gene and there are six possible actions, namely

gene4 = on, gene4 = off , gene7 = on, gene7 = off , gene8 = on and gene8 = off .

Each of these six case is a goal description for the first subproblem; however some

of the actions might not be used in the policy. Assume these three actions are used

in the policy gene4 = on, gene7 = off and gene8 = on; accordingly, we solve three

copies of the first problem, each with a single goal description corresponding to one

of these actions.
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Finally, our policy is simply a glued version of policies from the two problems. When

we need to execute the action gene4 = on, instead we execute the action in the policy

of the first subproblem (with goal description gene4 = on), we use observations from

the second problem to decide on an action in the policy of the second problem and

observations from the first problem to decide on an action in the policy of the first

problem.

5.3.1.2 General Outline of the Quantitative Experiments

In the following subsection, we present and discuss the results of the conducted ex-

periments. We have conducted two sets of experiments for analyzing the performance

of our method. The first group of experiments are performed using two random syn-

thetic GRNs and the gene expression data sampled from these networks. We defined

a control problem on each network, and we used gene expression data samples of dif-

ferent sizes to solve the control problems by using our method. For each result set,

the outcome from the two control problems defined on the two GRNs are presented

together.

The second group of experiments are based on gene profiling data produced from a

study of metastatic melanoma by Bittner et al. [8]. This data contains 31 samples

of 587 genes. Kim et al. [28] first studied this data for finding a PBN representation

of the GRN. It is computationally intractable to use all the genes for the control

problem. So, they detected the 10 most relevant genes and built a PBN of these 10

genes. Datta et al. [18] and Bryce et al. [11] separately used this same data in their

studies; they separately formulated partially observable control problems. Datta et

al. used a seven genes GRN. We used both the ten genes and the seven gene networks

in our experiments. These networks are actually wiring diagrams of the PBNs, where

each gene is influenced by 3-4 other genes. We also used sparser versions of these

networks, where all bidirectional connections are dropped. We present the results

from the second group of experiments in the next subsection where we discuss the

performance of our method relative to the works of Datta et al. [18] and Bryce et

al. [11].

For all the experimental cases, we present two sets of results from two problems. The
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first problem uses only the POMDP formulation method and a policy is generated by

solving a single POMDP. The second problem applies the whole POMDP decompo-

sition method outlined. In the first problem, the policy generated by our method is

identical to the policy generated from the original POMDP problem. Thus, the re-

sults related to this problem can be interpreted as worst case scenario. In the second

problem, we observed smaller policies generated in less time. Thus, this problem can

be interpreted as a best case scenario, where maximum benefit from our approach is

reported.

There are also two sets of separate experiments used to explore the impact of network

connectivity and data order to our approach. For experiments on data order, we used

the metastatic melanoma data and generated permutations of this data as explained

in the corresponding subsection. For experiments related to network connectivity we

generated randomly connected and directed graphs and constructed gene regulatory

networks by slightly modifying these graphs.

Figure 5.2: Problem formulation module execution times for two different networks

5.3.1.3 Experiments on Synthetic GRNs

The problem formulation costs are shown in Figure 5.2. POMDP result set is the

computational cost of constructing the main POMDP problem in seconds. Decom-

posed POMDP result set is the computational cost of formulating the control problem

in decomposed POMDP format. Note that the latter process requires first formulat-

ing the main problem, thus the actual cost of decomposing the main problem is the
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Figure 5.3: Execution times for policy generation

difference between the two bars, which is quite small. The dominating factor in both

formulations is the gene expression data analysis. For a data set of 1000 samples, due

to the cost of this analysis, the execution time goes up to 6 minutes. However, on

average it is possible to conclude that the analysis and the problem formulation are

completed in a reasonable amount of time. These result sets clearly show that the

overhead of decomposing the POMDP problem is very small.

Figure 5.3 shows the execution times used for constructing the policies. This result

set may be considered as the most important result because the main goal of our

approach is to solve the GRN control problem more efficiently. Note that for the first

problem, the execution times are close; our approach is performing slightly better for

larger gene expression data sets. However, for the second problem, the execution cost

of our approach is clearly much less than the plain POMDP method. The structure

of the decomposed problem in the second network is very similar to the first example

presented in Section 5.3.1.1. The problem is decomposed into two pieces; we could

completely omit one of the pieces, and this leads to a smaller single POMDP problem.

However, the first problem is decomposed into four pieces, which are closely related

to each other (thus forming loops in the subproblem dependency graph). Thus all the

subproblems are re-combined again and the performance is very similar to the original

problem. This result set clearly shows that applying our method could possibly lead

to significant gain in performance for problems with loosely coupled state variables.

For both control problems, 500 runs have been carried out, mainly for determining

the quality of the policies generated. The length of the simulations are also recorded
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in order to understand any performance gain or loss introduced by our approach.

Figure 5.4: Execution times for policy execution

Figure 5.4 presents the lengths of the simulations. For the first network, the lengths

Figure 5.5: Average Rewards

of the simulations are close; our approach is performing slightly worse. This slight de-

crease in performance is expected since similar policies are generated for this problem.

The difference in the performance can be explained by the overhead of our method,

which is not so significant compared to the simulation length. However for the sec-

ond network, the simulation time drastically decreased to 80%. The most important

reason behind this increase in performance is the fact that our approach generates a

smaller policy for the problem.

Figure 5.5 presents the average reward gained in these simulations. The amount of

reward gained by our method is nearly identical to the amount of reward gained by

the single POMDP problem. By examining these results, we can conclude that our
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Figure 5.6: Problem formulation module execution times for four different networks.

Figure 5.7: Execution times for policy generation

method is producing possibly smaller policies without any loss in the policy quality.

This characteristic of our approach leads to simpler and effective policies.

By combining all the results, we can conclude that our approach is successful in

achieving the performance goals we established beforehand for the synthetic data we

used. Our method produces structured problem formulations with little overhead.

These formulations can be solved in less time with standard POMDP solvers. The

optimality of the resulting policies could be classified as close to that of the generated

plain POMDP policies; however our approach has the capability of producing more

compact policies that can be executed more efficiently.
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Figure 5.8: Execution times for policy execution

Figure 5.9: Average Rewards
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5.3.1.4 Experiments on Real Biological Gene Expression Data

Figures 5.6 - 5.9 present the execution times for different stages of the control problem

and the average reward collected. The execution times for problem formulation module

are similar to the results of the previous subsection. There is a problem formulation

time around 5 seconds before attempting to solve the problem and the overhead of

decomposing the POMDP problem is small compared to the formulation overhead.

The execution times for policy generation clearly show the benefits of POMDP de-

composition as in the previous subsection. For all networks based on the gene profile

data, decomposing the POMDP problem helped in solving the problem faster. For the

sparse networks, using its full potential, our method generates a policy in around 10

to 20 seconds, even for a 10-genes GRN. Also the average rewards clearly shows that

the generated policies are still close to optimal, even closer than the plain POMDP

approach, for all cases. Finally, our method also succeeded in reducing the time neces-

sary for executing the generated policy. Especially for the sparse network of 10 genes,

our approach successfully reduces the simulation time by nearly 70%.
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CHAPTER 6

GENE EXPRESSION DATA ENRICHMENT

PROCESS

This chapter presents the gene expression data enrichment process we are proposing as

a potential preprocessing step for any computational method on gene expression data.

Motivation of this data enrichment process is solely to increase the number of samples

in a gene expression data set. This process should not be interpreted as an intelligent

method that finds new data points related to a data set. Our data enrichment approach

does not claim to broaden the data set or interpolate (or extrapolate) new data points

that are missing in the original data set.

This data enrichment approach targets to increase the number of samples in a data set

consistently. In order to consistently increase the samples, we defined some metrics

to be used in data enrichment process itself, and for evaluating the data produced.

These metrics are designed with a unique goal in mind: This data enrichment method

should introduce new samples that are correlated with the existing data set without

blindly replicating existing samples. We would like our data set to maintain its original

qualifications in order to consider this data enrichment process to be successful.

Data enrichment method we propose uses three computational models for modeling

gene expression data. Probabilistic Boolean Network model is used to model the GRN

structure that fits the gene expression data; Hierarchical Markov models are used to

formulate generative structures that fit gene expression data; and Genetic Algorithm

model is used to search for new samples by using evolutionary approach.

This chapter presents the data enrichment process in detail, introduce metrics used
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in the process and present the experiment result for evaluating the data enrichment

method introduced.

6.1 General Outline of the Sample Generation Process

Data enrichment process has five distinct steps:

1. Discretization

2. Model Building

3. Sample Generation

4. Producing Continuous Samples

5. Evaluation

6.1.1 Discretization

Since our method relies on computational models of gene expression, and most of

these models are discrete, we chose to carry on most of the steps on discrete data.

As a first step we apply a discretization. As a result, our method can work on any

continuous data set or any binary data set by skipping the discretization.

In this work we assumed all the data used are discretized into a binary alphabet.

The generative models also assume that the alphabet is binary. The PBN model

explicitly relies on the binary alphabet. The Hierarchical Markov model does not rely

on any restriction on the alphabet, so might work for different discrete data sets easily.

Genetic algorithm model uses a binary encoding for generating new samples, however

it is possible to formulate a different encoding schema to use different discrete data

sets.

6.1.2 Model Building

Using the discretized data, three models for the data are produced : Probabilistic

Boolean network, hierarchical Markov model and genetic algorithm. Background ma-
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terial related to these models are presented in Chapter 2. Details on how there models

are constructed is given in Section 6.2.

6.1.3 Sample Generation and Production of Continuous Samples

After constructing the generative models, each generative model is used to produce

new samples. The exact mechanism of sample generation is different for each genera-

tive model and discussed in Section 6.2 with model details.

In this work all generative models we used produce binary samples. Since our data

space is continuous we need to build continuous samples based on these discrete sam-

ples. It might be possible to use different generative models and this step can be

skipped if the model used generates continuous samples. However in this work we

generated continuous samples as a separate step.

For producing continuous samples we used the ranges of the original data set and

applied the discretization process in reverse. The ranges used in the discretization

step for values 0 and 1 are our target ranges for generating continuous data. We build

a normal distribution on these ranges and sample from the appropriate range for each

gene.

Assume that the data range for genei is [l, h] and in the discretization step we fur-

ther divided this interval to [l,m] for values discretized to 0 and [m,h] for values

discretized to 1. Then the normal distribution we build is N(m,max(m− l, h−m)/2)

and it is truncated into interval [l,m] for values 0, [m,h] for values 1. These two

truncated normal distributions are used for sampling data points corresponding to

discrete components of the new samples.

6.1.4 Evaluation

The last step of our method is evaluating all the samples produced by generative

models, selecting the desired number of samples according to the evaluation results

and outputting the new samples together with the evaluation results. In order to

produce k new samples, we collect k samples from each generative model and evaluate
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all 3k candidate samples. Evaluation is very important in deciding the final output of

the method and quality of the output.

We’ve defined three criteria for evaluating the samples and there is an evaluation

metric for each criteria. The total evaluation score of the sample is calculated as

summation of these separate metrics. Each of these metrics are normalized before

summation.

Compatibility Newly generated samples should resemble the existing samples. This

metric measures ”how close a sample is, to the closest neighbor in the exist-

ing data set” We use Euclidean distance to measure the proximity here, and

the compatibility metric is the sum of Euclidean distances to closest sample in

original data set.

Diversity Although we desire the newly generated samples to resemble existing sam-

ples, we do not desire the new samples to be duplicates of existing ones. This

metric measure ”how different a sample is, from the data points in the existing

data set”. We use Minkowski distance with p = 1 to measure the difference be-

tween samples, and the compatibility metric is the sum of Minkowski distances

to all samples in original data set.

Coverage Newly generated samples should also cover the sample space as much as

possible. This metric measures ”how apart a sample is, from the other samples

created by our method” We use Euclidean distance to measure the distance

between sample points. For each new sample generated, the coverage metric is

the sum of Euclidean distances to all other new samples. If a single sample is

created, the value of the coverage metric is set to maximum of the normalization

interval.

The results of all metrics are normalized and added up to produce a single evaluation

result for each sample. Desired number of samples are output according to their

evaluation result. We also output the scores separately for the user since giving more

information is helpful to the user.
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6.2 Generative Models Used

The main component responsible for data generation is the array of generative models.

We used three generative models in this work:

1. Probabilistic Boolean Network model

2. Hierarchical Markov Model

3. Genetic Algorithm model

The details of these models are discussed in the following subsections.

The common idea behind all these models is using the existing data for building up

the model and using the model for data generation. So details of each model is mainly

consists in the method used for building the model and configuring the model as a

generative data source.

6.2.1 Probabilistic Boolean Network Model

Probabilistic Boolean networks are proposed for specifically modeling gene regulatory

networks. They are probabilistic versions of the Boolean networks. PBNs present

a first order Markovian view of the system they model. Each node in the network

is associated with multiple Boolean functions and a specific wiring diagram for each

function. The value of each node at time t + 1 is calculated by randomly selecting

one of the Boolean functions associated with it. The variables of the functions are

values of nodes at time t and the wiring diagram specifies the the node each variable

is associated with. Section 2.2 gives brief information about PBNs and on inferring a

PBN from gene expression data.

With this working principals, PBNs are suitable computational tools for modeling

gene regulatory networks. So, we chose the PBNs as one of our generative models. In

order to generate samples similar to the original sample set, a PBN that estimates the

original data set should be constructed. After constructing the PBN, it is sufficient to

run the PBN further and use the values of nodes as a binary vector of gene expression

data.
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In order to infer a PBN from the gene expression data, we use the coefficient of

determination method proposed in [30] and outlined in Section 2.2. To compute the

parameters of PBN, we first adjust the s existing samples as time series. We mark

samples [1, s − 1] as inputs of the PBN from t = 1 to t = s − 1, and mark samples

[2, s] as outputs of the PBN from t = 1 to t = s− 1. Thus we try to find a PBN that

approximately generates our existing samples as time series. Each sample of the data is

an input to the PBN and the next sample is the expected output. We’ve restricted the

Boolean estimators to have ternary functions and each gene to be estimated by three

estimators at most. Within these restrictions it is possible to evaluate all possible

estimators and find the probabilistic Boolean network that fits the gene expression

data at most.

Once the parameters of Probabilistic Boolean Network are computed, the network

can be used for generating new data. The approach we used for generating new data

is simply using the PBN for computing the continuation of the time series that the

existing data forms.

Remember that when computing the parameters of the PBN, we used the existing data

as time series from t = 1 to t = s−1. The PBN constructed is used for extending this

time series from t = s to t = s+ k − 1 assuming we are asked to generate k samples.

The nodes of the PBN are initialized as if PBN is at state t = s− 1. The last sample

of the existing data is used for this initialization. Then the PBN is run for k steps. At

each step, new values of the nodes of PBN are updated and new values are recorded.

Finally for each of the n nodes in the PBN, we have k values corresponding to k steps

of execution. These values are our generated k samples from the PBN generative

model, a n element vector for each sample.

Also in order to ascertain diversity in the data produced, we use perturbation. When

running the network, there is a small probability that the value of a node will change.

Perturbation ensures that even the PBN overlearns the existing data, we will still be

able to produce samples different from the exiting ones.
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0 1 1 1 1 0 0 0 1 1

A 1 1 0 0 . [A→ 011]

Figure 6.1: An example rule derivation step

1 0 1 1 1 0 0 0 1 1

A 1 0 . [A→ (1|0)011]

Figure 6.2: An example rule derivation step with an uncertain rule derived

6.2.2 Hierarchical Markov Model

The second generative model we used in our work is inspired from music generation.

There is a considerable amount of research on inferring parameters, structures and

models of the musical compositions and using them for recomposing new pieces with

similar characteristics.

This problem is very similar to our data generation problem. A musical piece is simply

a time series of notes and producing a similar musical piece is done by extending the

time series. The criteria for correctness in our work also resembles the criteria used

in music generation. In music generation, the piece produced should contain same

features with the original piece. However it is also important to produce an original

piece, thus the produced piece should divert from the original one to some extend.

The method we use for phrase hierarchy construction is a custom method that is

designed for offline processing and concentrates on formulating rules that increase

the information content of the representation. The idea behind our phrase structure

algorithm is iteratively inserting new rules and reducing the string to a simple rep-

resentation with non-terminal symbols. Two example rule derivations are shown in

Figures 6.1 and 6.2.
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In Figure 6.1 the substring 011 is replaced by a new unique non-terminal A. The reason

for choosing 011 is that its the longest repeating substring in the string 0111100011.

The string reduces to A1100A with this rule and the process is repeated.

In Figure 6.2 an uncertain rule is introduced by replacing both strings 1011 and 0011

by a new unique non-terminal A. The string reduces to A10A with this rule and the

process is repeated.

For simplicity, we assumed that uncertain rules only contain uncertain symbols at the

beginning of the rule body, at the end of the rule body or at both positions. Since we

work on binary alphabet, uncertain rules occur more frequently and we derive them

as much as we can, only with this limitation.

We also calculate the ratio of each uncertain symbol in the rule to the total occurrence

of uncertain symbols and store these probabilities with the rules. Using these probabil-

ities lead to application of rules in a more controlled way. For the rule A→ (1|0)011 at

Figure 6.2, the probabilities of both 0 and 1 would be 0.5, since both of these symbols

are observed once, as part of pattern (1|0)011 in the string 1011100011.

In theory, this phrase hierarchy derivation mechanism should be applied for each gene

and a separate hierarchical model should be constructed for each gene in the original

data set. However we estimated that this would have a very high computational cost if

we consider the number of genes can perfectly reach thousands. Thus we form clusters

of the original data w.r.t genes and we derive a single phrase structure for each cluster.

For clustering the data set for genes, Hamming distance is used for grouping more

similar genes together and a cut off value of 0.5 for used for building clusters. This

implies that, if two genes are in the same cluster, then for at least half of the samples

these two genes had same expression level in data set. For each cluster we use the

disjunction of all data sets related to this cluster and a phrase hierarchy is constructed

for it.

Algorithm 5 summarizes all the phases of constructing Hierarchical Markov Model.

After constructing a models for each of the clusters of original data, we can use these

models to generate new data samples. Each model generates m strings as new data
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Algorithm 5: Construction Hierarchical Markov Model

Input: n× s gene expression data matrix D (n genes, s samples)

Result: k Hierarchical Markov Models for the data M

Clusters←− clusterData ( D, hammingdistance, 0.5 )

k ←− number of clusters(Clusters)

foreach c in Clusters do

str ←−
∨

(c)

while |str| > 1 do

s ←− longest repeating substring in str

NT ←− a new non-terminal symbol

if s is not a prefix in str then

pre uncertain ←− occurrences of symbol 1 preceding s / occurrences

of s

else pre uncertain = nil

if s is not a suffix in str then

post uncertain ←− occurrences of symbol 1 following s / occurrences

of s

else post uncertain = nil

R←− rule(NT, s, pre uncertain, post uncertain)

add R to M(c)

end

add rule(S, str, nil, nil) to M(c)

end

samples, where m is the number of genes that belong to that cluster. These m strings

are randomly assigned to each gene in the cluster. Each of the strings generated has

k symbols, where k is the number of new samples to be produced. Thus we have n

strings, each of length k which constitute our new sample set.

One important thing in this process is deriving a fixed length string from the feature hi-

erarchies should be handled efficiently. Since the phase hierarchies we build introduce

brand new non-terminals at each step, there is no recursive rules involved. However

still there are multiple alternatives at each derivation step, since we have uncertain

rules. Thus generating a fixed length string involves applying a search algorithm.
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It is possible to use the length of shortest possible string that can be derived from

each non-terminal, as a heuristic value in this search. By knowing these values we can

prevent applying some of the derivation steps and we can generate a string without

going through all the search tree.

However this string is not guaranteed to have the desired length. Since our phrase

hierarchies do not have recursive or empty rules, there are limits on the length of the

derivable strings. As searching through the possible derivation, by using the heuristic

of shortest derivable string length, we try to generate a string with the closest possible

length to our target length value.

At the end of the search we come up with a string of length k′. There are three cases

to be considered here:

1. k = k′, then the derived string has the desired length;

2. k > k′, then the derived string is shorter than expected. In this case the deriva-

tion is repeated to derive a string of length k − k′ and two strings are concate-

nated;

3. k < k′, then the derived string is longer than expected. In this case the randomly

selected k′−k symbols of the string are deleted and the new string has the desired

length.

Algorithms 6 and 7 summarizes the generation of new samples from the phrase hier-

archies.

6.2.3 Genetic Algorithm Model

The third method we used for generating new samples is applying a genetic algo-

rithm. This method differs from the other two in the sense that the explicit model

is constructed. The existing samples we have are represented in the classical genetic

algorithm framework and new samples are generated by applying steps of selection

and mutation.

We present each step of applying genetic algorithm separately.
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Algorithm 6: Generating strings from Hierarchical Markov Model

Input: m clusters of original data C, m phrase hierarchies M , number of

samples to be produced k, number of genes n

Result: n× k sized new data set S

S ←− {}

foreach cluster c in C do

G ←− genes that belong to c

foreach gene g in G do

s←− generateString(M(c), k)

add(s, S)

end

end

Parent 1: 0 1 1 1 1 0 0 0 1 1

Parent 2: 1 0 0 1 1 1 1 0 1 0

Offspring 1: 01 11 02 11 12 12 12 02 11 11

Offspring 2: 12 02 11 12 12 01 01 01 12 02

Figure 6.3: An example crossover

6.2.3.1 Representation and Initialization

Since we use binary discretized data, the representation step of genetic algorithm

is trivial. Each sample of the existing data of length n is represented as a binary

chromosome as a member of the initial population.

6.2.3.2 Crossover Mechanism

The crossover strategy we use in the genetic algorithm model is the uniform crossover

[34, 52]. In the uniform crossover, for each position it is independently decided which

parent will contribute to the offspring chromosome for that position. Thus the chro-

mosomes of parents are mixed in the offspring chromosome. Figure 6.3 presents an

example crossover by applying uniform crossover strategy and mixing ratio of 0.5. In
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Algorithm 7: generateString(FH, l)

s←− S

while s contains non-terminals do

nt←− select a non-terminal in s

maxdl = l − Σ minimum derivation lengths of all non-terminals in s - # of

terminals in s

r ←− the rule in FH, such that r.lefthand = nt

r′ ←− resolve uncertainties in r randomly, provided |r′.righthand| −maxdl

is minimal and prefer |r′.righthand| ≥ maxdl on ties

s←− replace nt with r′.righthand in s

end

if |s| < l then

s←− s.generateString(FH, l − |s|)

else if |s| > l then

s←− delete |s| − l random symbols of s

end

return s

the figure, the subscripts indicate which parent’s chromosome is used for indicated

position. Approximately half of the positions in the chromosomes of each offspring

are filled from first parent and the remaining half is filled from the second parent.

6.2.3.3 Selection and Fitness Function

We apply the crossover step to chromosomes selected randomly from the population.

For selecting samples, and applying the crossover we use a selective aging policy. The

idea behind this selective aging process is to maintain a uniform age in the population.

This policy can be summarized as follows:

1. Each chromosome in the initial population is embedded with the generation

information 0th generation.

2. After each crossover, the generation of offspring is set to the generation of the

102



younger parent, incremented by one. For example if the parents are 5th and 7th

generations respectively, the offspring are 8th generation.

3. When a new generation is introduced first time, the eldest generation is removed

from the population. This process is done starting with the introduction of 4th

generation.

By employing this policy we allow the population to reach to kth generation, where

k is the number of samples we should produce. A single chromosome is selected from

each generation and this set of k binary strings becomes the new samples generated

by genetic algorithm model.

When selecting parents for applying crossover, we use a fitness function and a generic

selection procedure. Our fitness function is calculated for each chromosome in popula-

tion and a cumulative probability function is constructed. Sampling two points from

this function gives us two chromosomes to apply crossover.

Our fitness function is basically the first evaluation criteria, compatibility, we specified

in section 6.1.4. We believe that the dynamics of the genetic algorithm will also

improve the other two criteria, however in order to produce compatible new samples,

we need to use this criteria in our fitness function.

In section 6.1.4, it was suggested that we use Euclidean distance for measuring com-

patibility however it was appropriate to use it after converting the discrete data to

continuous samples. Here, since we are working with the binary discrete data we are

using the Hamming distance as fitness function. The fitness function for each chromo-

some is calculated as summation of the hamming distances between the chromosome

and all the 0th generation chromosomes (i.e. original samples).

6.2.3.4 Mutation

At each crossover, there is a chance that offspring chromosomes might change. The

PBN model we used also has a similar perturbation probability, such that the value

of each node might change at each time step. We used the same probability value

for mutation probability in genetic algorithm model, so that two models exhibit same
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random behavior.

6.3 Discussion on Three Models Used

Section 6.4 gives a quantitative analysis of the data generated by each model and

execution times. However we think it is appropriate to outline the characteristics of

each model before going into a quantitative analysis.

PBN model is specially developed for modeling genes, gene regulatory networks and

gene expression data. This model is proven to be a suitable model for gene expression

data. However there are a number of factors that affect how close is the PBN derived

from gene expression data to a perfect model for the data.

The most important factor is the number of existing samples. As any other model

constructed or estimated with any structural learning method, PBN rely heavily on the

data used to construct them. The reflection of this fact to our problem is, if we have

enough existing data that describes the actual behavior of the genes with little noise,

then we can expect that the PBN to successfully model the existing data and generate

new samples very similar to the existing ones. As we discussed in Section 6.2.1,

overlearning the data is a potential problem for generating different new samples,

however by using perturbation we are always certain that some different samples will

be generated randomly.

Another important factor that affects the PBN constructed is the PBN parameters.

The computational power of the PBN is determined by how strongly connected the

nodes are and how many Boolean functions are used for estimating each node. However

it is not possible to use large values for any of these parameters, because the compu-

tational cost of building the PBN is increases greatly when the number of Boolean

functions used increases and when the nodes are more strongly connected. We tried

to establish a balance for the computational cost and model richness as discussed in

Section 2.2 and analyzed in Section 6.4 quantitatively.

Hierarchical Markov Model is designed mainly for music generation. As long as gene

expression data for each gene behaves as a string of information with some pattern,

we are ascertain that HIMM constructed would be successful in modeling the string
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and producing variations of it.

We are processing the data as strings of samples and thus at first sight we do not

capture or use the relationship between genes. Our method treats each cluster of

genes independently. In this sense, it is clear that the HIMM can not model the gene

expression data as precisely as PBN alternative. However it is important to note

that we also generate the samples in the saw way and the generated samples should

reflect patterns observable on the gene expression data. Thus it is safe to say that

the samples we generate using HIMM would behave as if the dynamics effecting the

existing data are at work and similar samples are being produced. The uncertainties

in the feature hierarchies would provide random behavior and the samples produced

would meet our success criteria.

The works inspired us into using HIMM always try to maintain minimal representa-

tion, or fastest processing online or offline. Since our goal was not building persistent

models for the data we only focused on building models in a fast offline way. We do

not believe that this would affect the quality of the samples generated in any way.

Finally considering the computational power of HIMMs, the class of languages HIMMs

generate are subsets of regular languages (note that HIMMs we use do not even

have recursive rules, this means all possible strings are enumerable given the model)

This proved challenging when generating new samples, since we needed to run the

model multiple times or cut some of the data. However we believe that using a

computationally richer model (like regular or context free languages) would make the

construction of the model a real challenging task and would not be so appropriate.

We believe that, that’s the reason this model is preferred in music generation domain

and for the same reasons we applied this model here.

The genetic algorithm model, this model is the most general purpose one in three.

When using the genetic algorithm model we do not get an explicit model of the data

in any way, however we use the existing data to produce new samples.

Considering the three criteria we established before, we believe that genetic algorithm

model would produce successful samples as the other two methods. The diversity and

coverage criteria are met in the way the genetic algorithm works. We apply crossovers
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that produce offspring different from its parents. Mutations also act in favor of di-

versity. Applying both these concepts in iteration after a small number of iterations

we also cover different parts of the sample space. The last criteria compatibility is

explicitly favored by our fitness function and the new generations are produced from

applying crossover to more compatible parents.

If we consider our choice of uniform crossover method here, we will see that this

method is the most appropriate one since the order of the values on a chromosome is

not significant in any way and just depends on the order of genes in the sample. So

applying a fixed point or two point crossover would not have any different effect on

the crossover process.

Finally, if we consider all three models together, we can safely say that each of them

exhibit some features that don’t exist at the other models. By implementing these

three different models, the limitations of each model can be overcome by the other

models and we can guarantee that the new samples always meet the success criteria

we defined.

6.4 Experimental Evaluation of Gene Expression Data Enrichment

Process

In this chapter we present experimental results of the gene expression data enrichment

process proposed. In order to quantitatively measure the performance and quality of

our method, we performed sample generation experiments with some real life biological

data. The data we used is the gene expression profile of metastatic melanoma cells

[8]. The data originally contains around 8000 genes and 31 samples.

We implemented our sample generation system on Matlab. We used PBN toolbox for

PBN generative model. Other models do not use any toolbox. The platform we run

our experiments has an Intel Core2Duo E4600 2.4Ghz processor with 4GB of memory.

In the experiments we generated new samples by using our biological data in different

settings. Our comparison criteria are the evaluation metrics defined before. We used

these criteria to measure the quality of the new data samples generated.

106



For each experiment setting, each generative model generates required number of new

samples, i.e. if k new samples are to be produced, each of the three generative models

we used produce k new samples for a total of 3k. All these 3k samples are evaluated

by our criteria and select best k ones among. These k samples are the final output of

sample generation process. These evaluation results of these k samples are reported

with the samples, so that the quality of the new samples are reported to the user.

For each setting, we also analyzed the execution times of the all runs to have an

idea on the factors that affect the performance of our method. The effect of experi-

ments settings to the execution time are analyzed so that we can identify the factors

dominating the execution of our sample generation methods.

The details of the evaluation criteria are discussed in Section 6.1.4. The results are

presented without normalization in order to observe the similarities between the eval-

uation criteria. The higher values of diversity and coverage are desirable, while the

lower values of compatibility and execution time are desirable.

Each step of each experiment is repeated 10 times to decrease the effects of highly

randomization nature of our method. The reported metrics are the average values

over repetions and the reported execution times are the total execution time.

6.4.1 Experiments on Number of Genes

The goal of our first experiment is to analyze the effect of number of genes (i.e. dimen-

sion) of the data to our method. For this purpose we randomly selected 10,20,30,40

and 50 genes among the 8000 genes of the original data and generated new samples by

using the expression profiles of the selected genes only. 5 new samples are generated

on each run.

The reason we did not explore the whole 8000 gene range is the probabilistic Boolean

network model we have used has practical restrictions. The PBN toolbox can work

on arbitrarily large PBNs. However the PBN construction method is restricted to

around 50 genes.

The compatibility, diversity,coverage values and execution times are shown in Figures
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6.4 and 6.5.

Figure 6.4: Compatibility and diversity values with different number of genes

In this experiment the evaluation metrics of all methods behave very similarly for

all cases, except the 50 gene case. The 50 gene part of the input used clearly exhibit

different characteristics than the other cases. In this case the diversity and the coverage

values definitely increased for all methods. We can safely say that all of the methods

we used were more focused on coverage and diversity for the 50 input case and thus

sacrificed from compatibility.

However for less genes, the average compatibility metric of the samples we generated

is very small. This lead to the conclusion that the 10,20,30 and 40 gene data sets

were successfully modeled, even overlearned by our method. Thus the new samples

generated for these cases were very close to existing ones (low compatibility, low

diversity and coverage). For the 50 gene input the opposite was true. Our methods,

especially the HIMM method generated new samples that divert from the existing

Figure 6.5: Coverage and execution times for different number of genes
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ones highly.

If we consider the dynamics of the HIMM method, it is easy to see the reason behind

its failing to generate more compatible samples. HIMM models are constructed for

each sample in the original data set. As the number of genes increase, the length

of each sample vector increases. HIMM treats each sample vector as a string and

builds a phrase hierarchy on it. As the string size increases more uncertain rules are

introduced. When there are a lot of uncertain rules in phrase hierarchy, the strings

derived from the models gets more diverted from the original string.

Genetic algorithm and PBN methods are not much effected by the increase in the

number of genes. The number of genes affect the size of the PBN network constructed

linearly, however since we do not allow the PBN parameters (arity and number of

Boolean functions for each node) increase likewise, the general performance of the

network is not affected. For genetic algorithm, the increase in the size of the chromo-

some only affects the likelihood of mutations, slightly. Since mutations are rare, there

is no significant change in the evolution of our solution population.

For the 50 gene case, coverage and diversity increased with a little increase in com-

patibility, for genetic algorithm and HIMM. These two methods continued to perform

well for this case, since the number of genes is not so critical for them.

The combined results of the three methods is close to the average of the methods in

all cases except the 50 gene case. In this case since the samples generated by the

HIMM model show high diversity and coverage, these samples are ranked high in

overall evaluation and selected in the combined results.

Finally if we analyze the execution time of the experiment the execution time grows

like an exponential curve. The main reason behind this fast growth is the computa-

tional complexity of constructing the PBN network. Constructing the PBN involves

evaluating the estimators for all possible Boolean functions over nodes of network.

Thus as the number of genes increase the number of possible Boolean functions in-

creases nearly in factorial rate. Thus more that 50 genes limit the construction of

PBN. However even for the limit case, a single run of our approach only took around

20 sec., which is appropriate.
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6.4.2 Experiments on Number of Samples

The goal of the second experiment is to analyze the effect of the existing sample size

to our method. For this purpose we randomly selected 10,20 and 30 samples out of

our data set. In all cases the data contained 20 genes and 5 samples are produced.

The compatibility, diversity,coverage values and execution times are shown in figures

6.6 and 6.7.

Figure 6.6: Compatibility and diversity values with different sample sizes

In this experiment the evaluation metrics and the execution time is not disturbed at all

by the changes in the original sample size. The evaluation metrics of all methods and

combined samples are very close to each other and the execution time only increases

slightly with the increase in the sample size.

Note that this is perfectly expected if we consider the genetic algorithm and HIMM.

These success of these two models are not related to the number of samples at all.

Figure 6.7: Coverage and execution times for different sample sizes
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For the genetic algorithm method, the number of samples increases the initial popula-

tion size. The size of the initial population has an impact on the coverage and diversity

of the solution space. However since we measure coverage and diversity measures by

calculating distances of new samples to the original sample set and since the changes

in the original sample set are reflected in the new samples, the diversity and coverage

values does not change drastically.

For the HIMM method, each original sample is treated as a separate string and the

number of samples only affect the number of models produced. Since the uncertainty

of each model are independent of the other models, the new samples are not much

affected by the increase in the number of models.

However it is possible for the PBN model to build unsuccessful models with little

number of samples. With little number of initial samples it might not be possible to

properly derive the network parameters and the PBN network constructed might not

model the gene expression data properly. Then the new samples produced might not

be compatible with the original sample space at all. However this was not observed

at the experiment. The compatibility values of the produced samples are reasonable.

We can conclude that even with 10 samples, PBN parameters are successfully learned

and PBN model correctly reflected the original sample space.

The execution time of the sample generation increases slightly with the increasing

number of original samples. The slight increase in the execution time is expected

since the number of samples is only a multiplier factor at most for the complexity of

each method. The PBN construction method iterates over the original samples, so

increasing the number of samples increases the execution time linearly. For HIMM

models, construction of each model only depends on the number of genes. The number

of samples affect the number of HIMM models constructed and this contributes to

the execution time linearly. For genetic algorithm, the original population size only

effects parent selection procedure slightly at the initial generations and does not have

an important effect on the execution time at all.

Note that in this experiment the combined samples produced performs close to the

average of each method for each three evaluation metrics, even slightly better than

the individual methods. We can say that this experiment clearly shows the success of
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using a multi-model approach.

6.4.3 Experiments on Number of Samples Produced

For the next experiment our goal is to analyze how our method performs when it is

producing different number of samples. For this purpose by using a 30 sample, 20

gene data subset of our data set, we run our method multiple times. In the runs we

generated 5, 15, 30, 45 and 60 new samples.

The compatibility, diversity,coverage values and execution times are shown in figures

6.8 and 6.9.

Figure 6.8: Compatibility and diversity values with different number of samples pro-

duced

In this experiment the results are similar to the previous one. We see that the evalua-

tion metrics are slightly disturbed when we generate more samples. When the number

Figure 6.9: Coverage and execution times for different number of samples produced
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of samples produced is 60, all evaluation metrics increase. We can conclude that when

more samples are produced, they cover the whole sample space more successfully and

are diverse, with a slight decrease in compatibility.

The model construction phases of PBN and HIMM methods are completely indepen-

dent of samples to be produced. Thus the model quality is not affected by number

of samples to be produced at all. Our genetic algorithm approach produces as many

generation as the number of samples to be produced. In this sense, the number of

samples to be produced has an impact on the method. However the compatibility,

diversity and coverage values are not significantly affected in this experiment. We can

conclude that the crossover and mutation mechanisms used has a more significance

impact on these metrics than the number of generations. Thus even the number of

generations increase, the quality of the new samples do not change much accordingly.

The execution times again rise slightly, however faster than the previous experiment.

We can conclude that the number of samples produced is a larger multiplier than the

original sample size. However even this increase is slow. When 10 times more samples

are produced, the execution only increases 5 times.

The number of samples to be produced only affects the sample generation phases of

PBN and HIMM methods. However genetic algorithm method does not have a dis-

tinction of model construction and sample generation, so when the number of new

samples to be produced increases, the execution time of the model increases linearly.

The evaluation and selection of the final samples are also have computational complex-

ity linear in terms of number of samples to be produced. Thus the overall execution

time curve increases linearly with the increase in the number of new samples.

Also note that the combined samples has a better diversity and coverage than each

model at each run. The compatibility of the combined samples is close to the average

compatibility of each model too.

6.4.4 Crosschecking the Partitions of the Original Sample Space

As a last experiment, we tried to design an experiment that will crosscheck whether

our method can predict some of the missing samples in a data set. We prepared a 30
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sample, 20 gene subset of our original data. We split this 30 samples into 10 groups.

We executed 10 runs which involves producing 3 samples from 9 of the 10 groups of

the data set. After each run we evaluated the produced samples by comparing them

with the omitted group.

Only compatibility values for the combined data is reported for this experiment. The

coverage and diversity metrics are not beneficial for evaluating our method in this

prediction task.

The compatibility values of each run is shown in figure 6.10.

Figure 6.10: Compatibility values for crosscheck experiment

The compatibility values of each run is consistent. However the values are higher

than the compatibility values from the previous experiments. The main reason is our

method is not specially designed for predicting missing data points. All the models

we use try to produce samples similar to the original sample space. Since samples of

the gene expression data are not close to each other generally the compatibility values

of our approach are higher than the previous results.

However we want to note that these compatibility values are slightly lower than the

average distance between two 20-dimension random vectors.

The consistency in the compatibility values clearly shows that our method does not

responds to slight changes in the original data. If that were the case we could see

significantly higher and lower compatibility values than the average trend. But all

the instances of the experiment produce similar compatibility values. Thus we can

conclude that our approach is robust enough.
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6.4.5 Evaluating the Generated Data via Biomarker Analysis

In this subsection we are presenting an alternative approach for evaluating our data

generation method. For this evaluation we use a clustering based biomarker method

[8]. Our goal is to analyze whether extending a dataset with out data generation

method effects the success of biomarker analysis positively or negatively.

The biomarker method we used as a reference [8] analyses gene expression data and

tries to classify tissue samples as cancerous and healthy. Authors used a classical

clustering method to divide the samples according to their gene expression values.

We applied the same clustering method in three datasets:

1. Original dataset

2. Original dataset + Data generated with our method

3. Set (2) divided into two groups (3a and 3b)

For each setting we used three methods for clustering dataset:

1. Clustering based on Pearson distance, using average as a linkage method and a

fixed threshold for cut off.

2. Clustering based on Euclidean distance and producing 2 classes.

3. Clustering based on Pearson distance, using average as a linkage method and

producing 2 classes.

First clustering method we used is the exact clustering method used in [8]. Other two

methods were introduced to observe the effects of different clustering parameters to

our approach.

The results of the clustering process are class labels for each of the samples. We try

to measure how much does the distribution of these labels change for sets 2, 3a and

3b compared to original dataset 1. To measure the change in clusters we carry on

a simple analysis over means of clusters and number of points in each cluster. We
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try to match the clusters of each dataset by using a greedy approximation algorithm.

After matching the clusters and sorting values for number of points in each cluster

accordingly, we have a distribution vector for each dataset. Normalized distance

between these vectors is used as a similarity metric.

We applied this cluster similarity analysis to metastatic melanoma data we used in

the previous subsections. Figure 6.11 presents the results of the analysis. Most of the

results are in 80%-100% boundary, which means that data enriched by our approach

lead to clusters similarity to the original data. The results are especially successful

for the original clustering method proposed in [8], however for the variations of the

clustering method, data generated by our method leads to clusters deviating from

the original. This deviation is only observed in the first result set. Other result sets

that show the cluster similarities for combined data and its partitions report similar

clusters though.

Figure 6.11: Cluster Similarities for original approach

In this experimental setting we also applied two approaches for reducing the random-

ness in our approach. In order to produce more stable results we

1. produced excessive amounts data and report averages

2. produced excessive amounts of candidate data from each data generation method

These results match the previous figure. For the clustering method proposed in [8]

clustering similarity is still near 100%. For 2-class clustering variation, first stabi-

lization method increases the cluster similarity drastically. For the last variation
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Figure 6.12: Cluster Similarities for stable approach 1

Figure 6.13: Cluster Similarities for stable approach 2

stabilization methods does not effect the cluster similarity values of combined data,

however cluster similarity of generated data to original data drops for that variation

as we force stability.

As a result of this analysis, we can conclude that our data generation approach has

the ability to enrich the data without changing the general behavior of data sets with

respect to the biomarker based clustering method we used and its variations. This

supports that our method produces new data samples that are compatible with the

original dataset.
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CHAPTER 7

DISCUSSION, CONCLUSION AND FUTURE WORK

This research focuses on different aspects of gene regulatory network control problem.

By controlling regulation of genes, our eventual goal is to control certain biological

processes and activities in human cell. With detailed exploration of human genome

and recent advances in bioinformatics, today we are much closer to this goal than ever.

It’s everyone’s hope that in the near future biology and medical sciences will make

vast progress on understanding and controlling genome based activities in humans.

For example this would make personalized drugs possible. It is not hard to see that

such advances would change medical science, biology and human society drastically.

Today, there is a research community actively working on analyzing, examining and

modeling the dynamics of genome and gene expression. Progress in this area is a

result of joint work of subject matter experts and computational methods of the

bioinformatics. However, it is not wrong to say that most of the research in this

area is directed to understanding whole dynamics of gene expression. Bits and pieces

learned from studies in this wide area of research are put into practical applications

as much as possible and we are still far away from revealing all the secrets of DNA.

Since the puzzle is far from complete, computational efforts on gene expression mech-

anism focus on incomplete and maybe incorrect views on genes and specifics of gene

regulation mechanism. Due to our incomplete and inaccurate knowledge it is very

hard to capture the overall gene regulation apply computational methods successfully.

GRN control problem is an important research problem in this picture. With little

information of gene regulation dynamics, the control problem is overly simple. Tradi-

tionally gene regulation has been explained by gene pathways that provide a simple
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view of dependencies between genes. With this approach, understanding the depen-

dency between two genes also provides a simple control mechanism. Today we have

scarce knowledge about the actual interaction between genes, so it is not a challenging

task to devise control mechanisms out of this limited knowledge. In the future, with

our improved knowledge on interactions between genes, simple views will not yield

satisfying results for control tasks and we will find ourselves trying to solve real life

control problems similar to ones being solved by computer science for decades.

This work aims to provide a contribution in the concrete realization of gene regula-

tion control problem. Partially observability is an inherent feature of the GRN control

problem. However, it is ignored mostly in the research community, due to challenges

introduced by partially observability. It’s been the goal of the research in this field

to devise simple policies appropriate for our limited knowledge and intervention capa-

bilities. Thus, generally a fully observed version of the problem is solved in relevant

literature. Numerous works have correctly solved the problem in partially observable

setting, but their formulation was simple and the solutions they are able to produce

were only appropriate for a limited horizon setting.

In this work we presented an infinite horizon, partially observable formulation of the

GRN control problem. To the best of our knowledge, our formulation is the most

realistic formulation of this control problem presented in the literature. Moreover

our method aims to establish first real connection between real partially observable

problem domain and GRN control research by using POMDP model as a tool.

In our study, we’ve shown that GRN control problem can be formulated as a POMDP.

We made use of some classical problem formulation approaches together with gene ex-

pression data analysis method we’ve introduced. By using this data analysis method

we tried to establish a bond between the control problem formulation and gene ex-

pression data. Considering gene expression data is our primary source of information

in the realistic case, we believe that this approach has its merits.

Our experimental studies has shown that POMDP based formulation of GRN control

problem is as successful as the other similar partially observable formulations. In a

finite horizon comparison setting, our POMDP based formulation managed to col-

lect comparable amounts of reward. However the computational cost of solving our
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POMDP formulation is shown to be much less than the alternative methods. The

use of infinite horizon and POMDP framework in our formulation not only provided

a more realistic formulation but made whole POMDP solution methods available and

by careful selection of an approximation algorithm it is possible to solve the control

problem much more efficiently. Alternative partially observable finite horizon formu-

lations of GRN control problem solve the problem by iterating over horizon. Since

each of these iterations over horizon have nearly exponential cost that increases with

horizon, these methods all fail to produce any solution when horizon exceeds even

small values.

Our formulation clearly outperforms alternative formulations in solution cost. There

are different alternative formulations for POMDP model elements, and some of them

are very apparent. In order to provide a richer model these alternative formulations

should be studied. Most significant research topics on these alternative formulations

would be using a richer action and observation model, exploring effects of alternative

reward mechanism to our formulation and most importantly comparing the robustness

of our data analysis based formulation of transition function with the alternatives.

In our POMDP formulation we’ve assumed that both gene regulatory network and

gene expression data are available, however in reality the source of our information

is mostly gene expression data and gene regulatory network is inferred from gene

expression data via analysis by an expert or computational methods. There are im-

portant problems about the abundance of gene expression data and in this work we’ve

also proposed a data enrichment process to increase the number of samples in a gene

expression data set.

Our data enrichment process uses different models and combine data generated by

them. The goal of using a hybrid approach is to prevent one model to dominate

the data generated and to have an enrichment process that is independent of any

property of any specific model used. The data is evaluated and selected according to

some statistical metrics we presented. Our objective in formulating these statistical

metrics is to provide simple means to measure statistical similarities of the original

data set and generated data.

In our experiments on data enrichment process, we analyzed the statistical properties
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of data generated in different settings. Assuming that the statistical metrics are able to

represent our objective in enriching the data precisely, this study guides us on how to

use the process presented to achieve better results. We also presented an independent

study that applies a biomarker analysis on the generated data. This study aims to

show that enriched data exhibits similar results with the original data with respect to

the biomarker analysis carried out.

The data enrichment process we proposed has huge potential since the scarcity of

data is a common problem for computational and clinic methods. Providing a trusted

process for enriching the biological datasets is an invaluable asset the gene expression

research. However, in order to fulfill this role, success of the data enrichment should be

validated further. It is important to improve the process by introducing more relevant

models to gene expression profiles, so that data generated would fit the gene expression

data better. Also, in order to validate the process further it is important to define

more convincing metrics and also provide a mechanism to express the objectives of the

data enrichment process. Thus, an improved version of the data fusion and evaluation

mechanism can be introduced. In fact this task is a recent research problem our group

working on.

Finally this work also aims to solve the POMDP formulation of the GRN control

problem more efficiently. Thus, we also contribute to the POMDP solving phase of

the method by introducing the decomposition process. Despite the fact that they are

an important problem class, difficulty in solving POMDP problems is notorious and

emphasized in this work. One of the trending views in research community is that

our flat and unstructured view of problems leads to poor solution performance. more

efficiently and in order to scale the state spaces sizes of solvable

In this work we used a decomposition method that tries to explore weak dependencies

between groups of states in the factored representation form. These weak dependen-

cies are explored by the gene expression data analysis method. By directly using

the gene expression data to explore the dependencies between genes we are able to

evaluate the strength of dependencies without the effect of any model built on data.

Since our POMDP formulation also depends on gene expression data analysis, we can

consistently identify the problem parts that have weak linkage.
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These weak dependencies allow us to decompose the problem into subproblems and

our method ensures that in significant amount of the cases this decomposition leads to

either discovery of components unrelated to the solution of the problem, or formulation

of smaller subproblems that can be solved more efficiently or both.

The experimental results we presented for our decomposition method shows that de-

composition of the problem has little overhead to the problem formulation we intro-

duced. Most expensive phase of the method is the gene expression data analysis we

performed and this analysis is essential for both POMDP formulation and decom-

position. Aside from the gene expression data analysis, the decomposition costs a

little overhead to the POMDP formulation cost. Our experiments showed that when

decomposed subproblems were solved independently or some of the subproblems are

eliminated the solution cost of the whole method can drop significantly. And more

importantly, this decrease in solution cost does not cause any significant drop in the

reward collected.

The experimental results shows promising results for the decomposition method we

produced. However, it is vital to assess the actual success of the method in differ-

ent real and synthetic problem settings. This way we can improve and fine tune the

decomposition method to better utilize the problem structure. For this purposes an

improved prototype of the decomposed policy generator is to be completed soon. This

improved policy generator will allow us for rapid and precise application of decom-

position process. It would be an important contribution to POMDP framework to

improve this decomposition tool further and evolve it into a general purpose decom-

posed POMDP solver tool.

An important point to note is that possible improvements on POMDP formulation

and POMDP decomposition shall proceed side by side. An improved and semantically

richer formulation of POMDP problem would possibly yield higher chances to discover

weak dependencies in the problem and similarly if we are able to improve the POMDP

decomposition method and we can gain maximum benefit from the structural prop-

erties of the problem, we can explore problem formulations that would exploit the

benefit of decomposition.
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[30] H. Lähdesmäki, I. Shmulevich, and O. Yli-Harja. On learning gene regulatory
networks under the boolean network model. Machine Learning, 52(1):147–167,
2003.

[31] E. Lander, L. Linton, B. Birren, C. Nusbaum, M. Zody, J. Baldwin, K. Devon,
K. Dewar, M. Doyle, W. FitzHugh, et al. Initial sequencing and analysis of the
human genome. Nature, 409(6822):860–921, 2001.

[32] M. Lee and G. Whitmore. Power and sample size for DNA microarray studies.
Statistics in Medicine, 21(23):3543–3570, 2002.

[33] M. L. Littman, T. L. Dean, and L. P. Kaelbling. On the complexity of solv-
ing markov decision problems. In Proceedings of the Eleventh Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI–95), pages 394–402, Montreal,
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