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ABSTRACT 

 

 

PERIODIC CRACK PROBLEM FOR AN FGM COATED HALF PLANE 

 

 

Ġnce, Ġsmet 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Suat Kadıoğlu 

 

May 2012, 123 pages 

 

An elastic FGM layer bonded to a semi-infinite linear elastic, isotropic, 

homogeneous half plane is considered. The half plane contains periodic cracks 

perpendicular to the interface. Mechanical loading is applied through crack surface 

pressure, resulting in a mode I crack problem. The plane elasticity problem described 

above is formulated by using Fourier transforms and Fourier series. A singular 

integral equation is obtained for the auxiliary variable, namely derivative of the crack 

surface displacement. Solution is obtained, and stress intensity factors are calculated 

for various values of crack period, crack length, crack location, layer thickness and 

material gradation. 

 

Keywords: Functionally Graded Material (FGM), Stress Intensity Factors, Periodic 

Cracks, Plane Elasticity Problem 
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ÖZ 

 

YARIM DÜZLEM ÜZERĠNE KAPLANAN FONKSĠYONEL OLARAK 

DERECELENMĠġ MALZEME ĠÇĠN PERĠYODĠK ÇATLAK PROBLEMĠ 

 

 

Ġnce, Ġsmet 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Suat Kadıoğlu 

 

Mayıs 2012, 123 sayfa 

 

Bu çalıĢmada, elastik, eĢyönlü, homojen, yarı-sonsuz düzlem üzerine bağlanan 

fonksiyonel olarak derecelenmiĢ elastik bir malzeme katmanı modellenmiĢtir. Yarı-

sonsuz düzlem, arayüze dik periyodik çatlaklar içermektedir. 1. mod çatlak 

problemine neden olan çatlak yüzey basıncı yoluyla mekanik yükleme 

uygulanmaktadır. Yukarıda ifade edilen düzlem elastisite problemi, Fourier 

dönüĢümleri ve serileri kullanılarak formüle edilmektedir. Yardımcı değiĢken, yani 

çatlak yüzey yer değiĢtirmesinin türevi için bir tekil integral denklemi elde 

edilmektedir. Çözüm bulunduktan sonra gerilme Ģiddeti faktörü, çeĢitli çatlak aralığı, 

çatlak uzunluğu, çatlak konumu, katman kalınlığı ve malzeme dereceleme değerleri 

için hesaplanmaktadır. 

 

Anahtar Kelimeler: Fonksiyonel Olarak DerecelenmiĢ Malzeme, Gerilme ġiddeti 

Çarpanı, Periyodik Çatlaklar, Düzlem Elastisite Problemi 
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CHAPTER 1 

INTRODUCTION 

FGMs are multifunctional materials exhibiting spatial variations in 

composition and microstructure. They are produced for their superior thermal, 

structural or functional proporties. Generally, they are a combination of ceramic and 

metallic materials as seen in Figure 1.1.  

 

 

 

 

 

b) Discretely graded microstructure 

 

 

 

 

a) Continuously graded microstructure  c) Multi-phase graded microstructure 

Figure 1.1: Different microstructures of an FGM (Aboudi et al., 2001) 
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Metal ceramic FGMs are first proposed as thermal barrier coatings. On one 

hand, metals have high toughness but a relatively low melting point and the strength 

of metal is reduced when it is in a high temperature environment. On the other hand, 

ceramic materials have excellent characteristics in strength and heat resistance but 

they have low toughness. To solve this problem, FGM coating was proposed in Japan 

around 1984-1985 during a space plane project. Thus, FGMs are created because of 

many advantages like high resistance to temperature gradients, high wear resistance 

and so on. There are a number of manufacturing processes to produce such materials 

such as physical and chemical vapor deposition methods. In today’s world, there are 

many applications of FGMs. For instance, rocket engine components, 

microelectronic applications, heat exchanger tubes, complex shaped automotive 

parts, nuclear reactor components etc. are produced from FGMs to withstand severe 

operating conditions (Ruys and Sun, 2006). 

 

1.1 Literature survey 

 

 There have been many research studies on cracking of FGMs since the late 

80's until very recently. Here, mostly periodic cracking problems and some single 

crack problems relevant to the problem considered in this thesis will be briefly 

reviewed.  

 In the following, studies about periodic crack problems for homogeneous and 

nonhomogeneous media are given first. In these studies both analytical and 

numerical methods have been employed. Periodic array of cracks in a homogeneous 

half plane subjected to arbitrary normal crack surface tractions was studied by using 

a hypersingular integral equation in Nied (1987a). In Bao and Wang (1995), multiple 

cracking of FGMs was analyzed under mechanical and thermal loading by finite 

element method. In Erdoğan and Öztürk (1995), a hypersingular integral equation 

was used for the antiplane problem of a homogeneous half space with an FGM 
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coating having periodic cracks perpendicular to the surface. In Choi (1997), 

considering mode I and mode II loading conditions, the periodic array of parallel 

cracks in an infinite FG medium was analyzed. A hypersingular integral equation 

was derived for each loading mode and SIFs were found as functions of crack 

surface displacements for different values of the material nonhomogeneity. In 

Schulze and Erdogan (1998), using Fourier series and Fourier transforms, periodic 

cracking of an elastic homogeneous coating bonded to a homogeneous substrate was 

considered. Apart from the findings on influence of length parameters on SIFs at the 

crack tips, strain energy released during periodic cracking was studied. Afsar and 

Sekine (2000) discussed the effect of crack spacing for a semi-infinite FGM plane 

having periodic edge cracks where material gradation is implemented by introducing 

an incompatible eigenstrain. Ueda (2002) studied graded layer bonded between a 

homogeneous substrate and a homogeneous coating. The graded layer contained 

parallel array of cracks perpendicular to the boundaries and the problem was 

examined by finite element method considering temperature and position dependent 

thermal and elastic properties for the materials. On the other hand, Rizk (2003) 

considered a transient thermal stres problem for a homogeneous half plane having 

periodic cracks and the problem was solved by using Cauchy type singular integral 

equation. Rizk (2005) also studied an infinitely long plate with periodic edge cracks 

under thermal loading. Using superposition technique, a hypersingular integral 

equation whose unkown is the crack surface displacement was obtained and solved. 

In Yıldırım et al. (2005), FGM having cracks bonded to a homogeneous substrate 

was examined. Surface cracks were assumed to be semi-elliptical and 3-D finite 

element method was used to solve thermal and structural problems. Wang and Mai 

(2005) investigated an infinite FGM plane containing periodic array of cracks under 

mechanical and/or thermal loading. Crack closure problem was considered. Singular 

integral equation was expressed with crack contact length as an unknown variable. 

Numerical results were obtained for SIFs and crack contact length as  functions of 

crack spacing. It was shown in this study that SIFs have a strong dependence on the 

non-homogeneity parameters in addition to loading conditions. Furthermore, the 
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same crack geometry was considered under transient loading in Wang and Mai 

(2006b). In this case, singular integral equation was derived by taking mode I and 

mode II loading conditions into account. Numerical results for mode I and mode II 

SIFs are presented and it is observed that in the case of multiple cracking, different 

loading modes exhibited different characteristics. Mode I SIF was decreased by 

multiple cracking but mode II SIF was increased. Wang and Mai (2006a) also 

considered periodic antiplane cracks in graded coatings under static or transient 

loadings. The results showed that stress and SIF can be decreased by increasing 

crack density. Chen (2006) studied FG coating on a substrate containing periodic 

array of parallel cracks. Hypersingular integral equations were obtained to solve the 

static and dynamic anti-plane problem by using Fourier transforms and series. In Dağ 

et al. (2008), a three dimensional finite element method was proposed to solve 

periodic surface cracking problem in a FG coating under thermal stresses. 

Temperature and displacement fields were calculated from finite element analysis 

and mode I SIFs were found by means of the displacement correlation technique. 

Ding and Li (2008) analysed an FGM coating on an elastic substrate, the coating 

containing either a single crack or an array of periodic interface cracks under 

antiplane shear loads. Cauchy type and Hilbert type singular kernels were used for 

the single and the periodic crack problems, respectively. Finally, SIFs were 

compared between single and periodic crack cases and results showed that the 

magnitude of the SIF decreased with an increase of material gradient, thickness of 

homogeneous substrate and coating. Jin and Feng (2008) develeoped a thermo-

fracture mechanics model for FG ceramics having multiple surface cracking to find 

the effect of cracking under thermal shock. In Jin and Feng (2009), parallel edge 

cracks with alternating lengths in an elastic plate under thermal shock are considered. 

Integral equations were derived by using Fourier transform method and numerical 

solution was carried out for thermal stress intensity factors. In these last two studies, 

materials are assumed to have variable thermal but uniform elastic properties. Two 

recent studies where a single crack in an FGM layer has been considered are as 

follows: El-Borgi et al. (2008) considered a surface crack of an FGM bonded to a 
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homogeneous material under thermal loading by using orthogonal Jacobi 

polynomials to calculate SIFs. In Noda and Guo (2008), by using perturbation 

method, fracture behavior of FGM containing a surface crack is studied. 

 From this literature survey, it is seen that, 

 periodic cracking problems are encountered in a number of important 

technological applications, especially those involving thermal shocks, 

 such problems can be dealt with analytical singular integral equation or 

numerical (finite element) methods, 

 to help predicting the fracture behavior, SIFs can be found as functions of 

geometric and material parameters, 

 and knowing the general trends for SIFs, coatings can be tailored to resist 

fracture better. 

 

1.2 Scope of the study 

 

As one can observe from the literature survey, existing studies mostly 

addressed the cracking of FGM coatings which is likely to occur during a cooling 

thermal shock. Such a situation arises during the manufacturing of FGM coatings 

while their temperature drops to room temperature from processing temperature. On 

the other hand, during a heating thermal shock the stress state in the coating becomes 

compressive and the stress state in the substrate becomes tensile as shown in Figure 

1.2. This might cause cracking of the substrate. Furthermore, crack closure might 

also occur at later stages of the surface heating. This type of problems involving sub-

surface cracking have received relatively less attention. There are a few examples 

such as Nied (1984) and Nied (1987b) for homogeneous materials, but to the best of 
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author's knowledge, the problem of periodic cracking underneath an FGM coating 

has not been addressed so far. 

In the current study, there is an FGM layer coated to homogeneous  semi-

infinite half plane having imbedded periodic cracks. Crack surface pressure is 

considered to be the only loading. This is opening mode so only mode-I problem is 

considered. For solving the problem, Fourier transform integral equation method is 

used. A cauchy type singular integral equation is formulated in terms of an auxiliary 

function (derivative of crack surface displacement) by using homogeneous and 

mixed boundary conditions. The main objective of the study is to examine the effect 

of crack period, crack length, crack location, layer thickness and material gradation 

on SIFs. Uniform, linear, quadratic and cubic variations of surface pressure is 

considered. By appropriately combining SIFs for these cases, one can obtain SIFs for 

different loading conditions such as thermal shock. This requires solution of 

conduction and thermal stress problems for the crack free medium which is beyond 

the scope of this thesis study. 
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Figure 1.2: Cooling and heating thermal shocks 
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CHAPTER 2 

ANALYSIS OF THE PROBLEM 

2.1 Formulation of the crack problem 

 

The geometry of the elasticity problem is shown in figure 1. Homogeneous 

subtrate containing periodic cracks is bonded to a FGM coating. It is assumed that a 

crack surface pressure is applied resulting in a mode-I crack problem. To solve the 

problem, the semi-infinite medium is separated into two parts. The first part is the 

homogeneous substrate containing the periodic cracks and the second part is the 

FGM coating. The shear modulus is assumed to be continuous at the interface. 
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Figure 2.1: Geometry of the problem 

 

For the first part as seen below, by using superposition technique, 

homogeneous substrate is examined in two parts. In the upper part, strip solution 

with symmetry boundary conditions containing a crack on the boundary and in the 

lower part, periodic half plane without any cracks are described. The elasticity 

solutions (i.e. stresses and displacements) for these domains which contain arbitrary 

functions can be found separately. After finding these distinct solutions, 

homogeneous substrate solution with periodic cracks can be obtained by superposing 

them. In this process, the arbitrary functions are determined such that the overall 

solution satisfies the required overall boundary conditions. 
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Figure 2.2: Superposition procedure 

 

Material properties are actually constant throughout the homogeneous part 

but in the FGM coating shear modulus is given as  

0( ) xx e 
  

for 0 ,x h 
                                (1)        

1 0( ) hh e   
  
for ,h x

           (2) 
 

where  is non-homogeneity constant.              

Kolosov constant is defined as 3 4    for plane strain and 
3

1










for 

plane stress. Here  is the Poisson ratio and it is taken as constant. 

 

 

2.2 Formulation of homogeneous halfplane containing periodic cracks 

According to Hooke’s law, stresses may be expressed in terms of the 

displacements as follows: 
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1( , ) ( ).xy

u v
x y

y x
 

 
 

 
                                           (5) 

Stresses given in equations ((3)-(5)) must satisfy equilibrium equations which 

are written below in the absence of body forces: 

0,
xyxx

x y

 
 

 
                                                                                                        (6) 

0.
xy yy

x y

  
 

 
                      (7) 

            Substituting (3), (4) and (5) into (6) and (7), one can obtain: 

2 2 2

2 2
( 1) ( 1) 2 0,

u u v

x y x y
 

  
    

   
                                                                         (8) 

2 2 2

2 2
( 1) ( 1) 2 0.

v v u

x y x y
 

  
    

   
                                                                         (9)    

A solution which has the capacity to satisfy equations (8) and (9) as well as 

the boundary conditions can be assumed in the following form (Schulze and 

Erdoğan, 1998). 

1 2

0

1
( , ) ( , ) ( , ) cos( ),

2

ix

n n

n

u x y U y e d U x y   


 




                                          (10)   

1 2

0

1
( , ) ( , ) ( , )sin( ),

2

ix

n n

n

v x y V y e d V x y   


 




                                             (11) 
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where 
c

n
n


   for n=0, 1, 2,...                  (12) 

 In (10) and (11), the Fourier integrals represent the strip solution and Fourier 

series represent the crack-free periodic half plane solution, which are shown in 

Figure 2.2. 

Substituting equations (10) and (11) into (8) and (9), one can obtain: 

2
2 1 1

1 2

2
22 2

22
0

1
{( 1)( ) ( 1) 2 }

2

{( 1) ( 1) 2 }cos( ) 0,

ix

n n n

n

U V
e U i d

y y

U V
U y

x x

     


    











 
     

 

 
    

 





                                        (13) 

2
2 1 1

1 2

2
22 2

22
0

1
{( 1)( ) ( 1) 2 }

2

{( 1) ( 1) 2 }sin( ) 0.

ix

n n n

n

V U
e V i d

y y

V U
V y

x x

     


    











 
     

 

 
    

 





                                         (14) 

From equations (13) and (14), one can obtain four differential equations: 

2
21 1

12
( 1) ( 1) 2 0,

U V
U i

y y
   

 
    

 
                                                                 (15) 

2
22 2

22
( 1) ( 1) 2 0,n n

U V
U

x x
   

 
    

 
                                                              (16) 

2
21 1

12
2 ( 1) ( 1) 0,

U V
i V

y y
   
 

     
 

                                                                (17) 

2
22 2

22
2 ( 1) ( 1) 0.n n

U V
V

x x
   

 
     

 
                                                              (18) 
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These ordinary differential equations are simplified by introducing operator, 

d
D

dy


 

and 
2

2

2

d
D

dy
 . Equations (15),  (17) and (16), (18) or two sets of ordinary 

differential equations and hence they are separately studied. For equations (15) and 

(17), 

2 2
1

2 2
1

2 0( 1) ( 1)
.

02 ( 1) ( 1)

i D UD

Vi D D

  

   

       
     

       
                                        (19) 

               Determining the determinant of the coefficient matrix, 1  

2 2 2 2

1 ( 1)( )D    
,
                                                                                           (20)  

               The equations for 1U and 1V can be uncoupled. Then, 

1 1( , ) 0,U y                                                                                                            (21) 

1 1( , ) 0.V y                                                                                                             (22) 

               Assuming a solution of the form 
nye , one obtains: 

1 ,n                                                                                                                       (23) 

2 .n                                                                                                                     (24) 

              There are double roots, therefore the solutions are as follows: 

1 1 2 3 4( , ) ( ) ( ) ( ) ( ) ,
y y y y

V y A e A ye A e A ye
   

    
 

                                    (25)  

1 1 2 3 4( , ) ( ) ( ) ( ) ( ) .
y y y y

U y B e B ye B e B ye
   

    
 

                                   (26) 

Alternatively, one can express 1( , )U y  as  

1 1 1 2 2 3 3 4 4( , ) ( ) ( ) ( ) ( ) .
y y y y

U y m A e m A ye m A e m A ye
   

    
 

      (27) 
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( )nA   and ( )nB   are unknown functions and they will be determined after  

boundary conditions are prescribed. On the other hand, 1m , 2m , 3m  and 4m can be 

determined by putting (25) and (27) into (15) or (17). And thus, 

2
1

1

,
A

m i i
A



 
                                                                                                     (28) 

2 sgn( ),m i                                                                                                             (29) 

4
3

3

,
A

m i i
A



 
                                                                                                     (30) 

4 sgn( ).m i                                                                                                           (31) 

Then, expressing ( )nA  and ( )nB   in terms of each other: 

2
1 1sgn( ) ,

A
B i i A 


                                                                                            (32) 

2 2sgn( ) ,B i A                                                                                                        (33) 

4
3 3sgn( ) ,

A
B i i A 


                                                                                            (34) 

4 4sgn( ) .B i A                                                                                                       (35) 

or, 

2
1 1sgn( ) ,

B
A i B i 


                                                                                         (36) 

2 2sgn( ) ,A i B                                                                                                       (37) 

4
3 3sgn( ) ,

B
A i B i 


                                                                                            (38) 
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4 4sgn( ) .A i B                                                                                                        (39) 

can be obtained. Now, expressing 1( , )U y  and 1( , )V y  in terms of ( )nB  one 

obtains 

1 1 2 3 4( , ) ,
y y y y

U y B e B ye B e B ye
   


 

                    (40) 

1 1 2 2

3 4 4

( , ) ( )

( ) ( ) .

y y

y y

V y i B i B e i B ye

i B i B e i B ye

 

 

 


  

 

  

 
  

    

                                                       (41) 

            

Similar procedure is employed for equations (16) and (18), 

2 2
2

2 2
2

2 0( 1) ( 1)
.

02 ( 1) ( 1)

nn

n n

D UD

VD D

  

   

       
     

       
                                   (42) 

by determining the determinant of the coefficient matrix, 2  

2 2 2 2

2 ( 1)( )nD    
,                                (43) 

One can uncouple the equations. Then,  

2 2 ( , ) 0,nU x  
                                                                                                       (44) 

2 2 ( , ) 0.nV x                                                                                                           (45) 

            There are again double roots and by definition 0n  :  

2 1 2 3 4( , ) ,n n n nx x x x

nU x C e C xe C e C xe
     

                                                        (46) 

2 1 2 3 4( , ) .n n n nx x x x

nV x D e D xe D e D xe
     

                                                     (47) 

            Expressing ( )n nC  and ( )n nD   in terms of each other: 



16 

 

1 1 2 ,
n

D C C



                                                                                                         (48) 

2 2 ,D C                                                                                                                     (49) 

3 3 4 ,
n

D C C



                                                                                                       (50) 

4 4.D C                                                                                                                   (51) 

             Hence, 

2 1 2 3 4( , ) ,n n n nx x x x

nU x C e C xe C e C xe
     

                                                        (52) 

2 1 2 2 3 4 4( , ) ( ) ( ) .n n n nx x x x

n

n n

V x C C e C xe C C e C xe
    


 

 
                           (53) 

             Since in our problem, as xdisplacements must be bounded, 

3 4( ) ( ) 0.n nC C    

Then, the displacements can be written as: 

2 1 2( , ) ,n nx x

nU x C e C xe
   

                                                                                   (54) 

2 1 2 2( , ) ( ) .nx

n

n

V x C C xC e






                                                                            (55) 

             Thus, the final form of displacements for the semi-infinite homogeneous 

medium are expressed as follows: 

1 2 3 4

1 2

0

1
( , ) ( ( ) ( ))

2

( ) cos( ),n

y yi x

x

n n n

n

u x y e e B B y e B B y d

e C xC y

 


















   

 





                                         (56)  
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1 2 2

3 4 4

1 2 2

0

1
( , ) ( ( )

2

                     ( ))

( )sin( ).n

yi x

y

x

n n n n

n n

i
v x y e e B B y B

e B B y B d

e C C xC y







  
 

   

















  



  

  





                                                (57)  

               After defining displacements ( , )u x y and ( , )v x y  in terms of unknowns 1B , 

2B , 3B , 4B , 1nC  and 2nC  stresses can be obtained by putting (56) and (57) into (3), 

(4) and (5) as follows: 

1
1 2

2 2

3 4

1 1 2

0

( 3)
( , ) [ ( )

2

( 3)
                        ( ) ]

2

[ 2 ( 1 2 )]cos( ),n

i x y

xx

y y

x

n n n n n

n

i
x y e B B y

B e B y e d

e C C x y

 

 



 
  

 


  



    











 
  




   



     




                                     (58)

 

1
1 2

2 2

3 4

1 1 2

0

( 1)
( , ) [ ( )

2

( 1)
                           ( ) ]

2

[2 ( 3 2 )]cos( ),n

i x y

yy

y y

x

n n n n n

n

i
x y e B B y

B e B y e d

e C C x y

 

 



 
  

 


  



    











 
   




   



    




               (59) 

 

1
1 2

2 2

3 4

1 1 2

0

(1 )
( , ) [ ( )

2

(1 )
                      ( ) ]

2

[ 2 (1 2 )]sin( ).n

i x y

xy

y y

x

n n n n n

n

x y e B B y

B e B y e d

e C C x y

 

 



 
  




  

    











 
   



 
   



    




                                        (60) 
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 In the expressions above, 1B , 2B , 3B , 4B , 1nC  and 2nC  are arbitrary 

constants which will be determined from boundary conditions. 

 

  

2.3 Application of boundary conditions for the homogeneous domain 

 

                 Since crack is on the symmetry axis, displacements and stresses satisfy the 

mixed boundary condition. 

( ,0) 0v x   for 0 x a   and ,b x                                                                     (61) 

( ,0) ( )yy x P x   for ,a x b                                                                                  (62) 

                 Due to symmetry, following conditions are prescribed: 

( ,0) 0xy x   for 0 ,x                                                                                         (63) 

( , ) 0v x c   for 0 ,x                                                                                            (64) 

( , ) 0xy x c   for 0 .x                                                                                        (65)                  

From (56)-(60), one can observe that the unknown constants iB , 1,..4i   can 

be expressed in terms of an auxiliary function by using the boundary conditions (61), 

(63), (64) and (65), without finding 1C and 2C . This can be done since the series 

terms in ( , )v x y and ( , )xy x y  vanish because of the sin( )n y term at 0y   or y c . 

 Now, the auxiliary function is defined for expressing unknowns as follows: 

( ,0)
( )

v x
g x

x





 for 0 .x                                                                                   (66) 

at 0y  , ( )g x  is expressed as follows: 
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1 2 3 4

1
( ) ( ( ,0)) ( ) .

2

i xg x v x e B B B B d
x

     







     
                               (67)  

taking inverse Fourier transform of (67), 

1 2 3 4( ) .

b

i x

a

e g x dx B B B B                                                                       (68) 

from (63), 

1 2 3 4

1 1
( ( ) ( )) 0.

2 2

i xe B B B B d  
  







 
                                               (69) 

taking inverse Fourier transform of (69), 

1 2 3 4

1 1
( ) ( ) 0.

2 2
B B B B

 
 

 
                                                                   (70) 

from (64), 

1 2 2 3 4 4

1
( ( ) ( )) 0.

2

c ci x i
e e B B c B e B B c B d

        
 






              (71)  

taking inverse Fourier transform of (71), 

1 2 3 4( ) ( ) 0.
c c c c

e B e c B e B e c B
   

     
 

                                   (72) 

 

from (65), 

1
1 2 3 4

1 1
( ( ) ( )) 0.

2 2

c c c ci xe B e B e c B e B e c d
     

    



 



 
          (73) 

taking inverse Fourier transform of (73), 
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1 2 3 4

1 1
( ) ( ) 0.

2 2

c c c c
B e B e c B e B e c

    
   

   
                     (74) 

Then, from (68), (70), (72) and (74) nB ’s are written in term of auxiliary 

variable, ( )g t :  

1 2

( ) ((1 )( ) 4 ))

,
( ) (1 )

b
c c c ci t

a

c c

e g t dt e e c e e

B
e e

   

 

 

 

 



  


 


                                          (75)  

2

2 ( )

,
( )(1 )

b
c i t

a

c c

e e g t dt

B
e e

 

 







 


                                                                                         (76) 

3 2

( ) ((1 )( ) 4 ))

,
( ) (1 )

b
c c c ci t

a

c c

e g t dt e e c e e

B
e e

   

 

 

 

 



  


 


                                          (77)  

4

2 ( )

.
( )(1 )

b
c i t

a

c c

e e g t dt

B
e e

 

 


 






 



                                                                                        (78)

  

              Thus, displacements and stresses can now be written in terms of this 

auxiliary function as follows: 

2

( )

2

2 2

2 22

2 2

1 2
( , ) ( ) [ (

2 (1 ) ( 1 )

(( 1 )( 1 ) 4 ) 2
                              ) (

( 1 ) ( 1 )

( ( 1 )( 1 ) 4
                              

b c
yi x t

c

a

c c

y

c c

c c

e y
u x y g t e e

e

e e c y
e

e e

e ce






 



 

 

 

 











 

  

    
 

   

     


 

2 2

1 2

0

)
)]

( 1 )

( )cos( ),n

c

x

n n n

n

d dt
e

e C xC y




















  

 

           (79) 



21 

 

22

( )

2 2

2 2

2 2

2 2

2/ 2
( , ) ( ) [ (

2 (1 ) ( 1 ) ( 1 )

(( 1 )( 1 ) 4 )
                           + )

( 1 )

22
                         (

( 1 ) ( 1 )

      

cb c
yi x t

c c

a

c c

c

y

c c

e yi e
v x y g t e e

e e

e e c

e

y
e

e e




 

 





 

 

 

 








  
    

    

 

  
   

 

2 2

2 2

1 2 2

0

( ( 1 )( 1 ) 4 )
                  )]

( 1 )

( )sin( ),n

c c

c

x

n n n n

n n

e ce
d dt

e

e C C xC y

 





 












     


 

  

                             (80)

  

  

( )1

2

2

2sgn( )( ) 2 ((2 ) )
( , ) ( ) [

(1 ) ( )

2sgn( )( ) 2 ((2 ) )
                                    ]

( )

b c c c c
y ci x t

xx c c

a

c c c c
y c

c c

i e e c y e ye
x y g t e e e

e e

e e c y e ye
e e d dt

e e

   
 

 

   
 

 

  


 

 


  






 




    
  

 

    
 

 

 

1 1 2

0

[ 2 ( 1 2 )]cos( ),nx

n n n n n

n

e C C x y
    








     
     (81)

 

( )( )1

2

( )

2

1 1

2 (sgn( ) )( ) 2 )
( , ) ( ) (

(1 ) ( )

(sgn( ) )( ) 2 )
                                  )

( )

[2n

b c c c
c yi x t

yy c c

a

c c c
y c

c c

x

n n

i y e e c e
x y g t e e

e e

y e e c e
e d dt

e e

e C

  


 

  


 



   


 

  


 

  













   
  

 

   
 

 



 

2

0

( 3 2 )]cos( ),n n n

n

C x y  




   

 (82) 



22 

 

( )1

2

2

1 1 2

2 ( )
( , ) ( ) [2

(1 ) ( )

2 ( )
                                 2 ]

( )

[ 2 (1 2 )]sin( )n

b c c c
y ci x t

xy c c

a

c c c
y c

c c

x

n n n n n

ce y e e
x y g t e e e

e e

ce y e e
e e d dt

e e

e C C x y

  
 

 

  
 

 




 

 

 

    

  













  
 

 

  
 

 

    

 

0

.
n






                 (83) 

The remaning unknowns 1C and 2C should be determined by using the 

boundary conditions at x=h. 

 

2.4 Formulation of FGM strip  

 

 Now, formulation of the FGM strip is implemented considering Figure 2.3. 

 

Figure 2.3: Geometry of FGM strip 
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For the functionally graded material with varying Young’s modulus and 

constant possion ratio, Hooke’s law can be written as: 

_

( )
( , ) (( 1) (3 ) ),

( 1)

f f

xx f

u vx
x y

x y


  



 
   

  
                 (84) 

_

( )
( , ) (( 1) (3 ) ),

( 1)

f f

yy f

v ux
x y

y x


  



 
   

  
                                                      (85) 

_ ( , ) ( )( ),
f f

xy f

u v
x y x

y x
 

 
 

 
                                                                                (86) 

where 0( ) xx e  .                                                                                                 (87) 

Equilibrium equations are as follows: 

_ _
0,

xx f xy f

x y

  
 

 
                     (88) 

_ _
0.

xy f yy f

x y

  
 

 
                                                                                               (89) 

              Substituting (84), (85) and (86) into (88) and (89), Navier equations for the 

displacements are obtained as: 

2 2 2

2 2
( 1) ( 1) 2 ( 1) (3 ) 0,

f f f f fu u v u v

x y x y x y
     

    
        

     
                    (90)  

2 2 2

2 2
( 1) ( 1) 2 ( 1) ( 1) 0.

f f f f fv v u u v

x y x y y x
     

    
        

                           

(91) 
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Then, the solution for displacements is assumed to be in the following form: 

0

( , ) ( , ) cos( ),f f n n

n

u x y U x y 




                                                                             (92)  

0

( , ) ( , ) sin( ),f f n n

n

v x y V x y 




                                                                               (93) 

where .n

n

c


 

                      (94)
 

Substituting (92) and (93) into (90) and (91), 

2

2

2
0

cos( )(( 1) ( 1) 2

( 1) (3 ) ) 0,

f f

n n f n

n

f

n f

U V
y U

x x

U
V

x

    

    





 
   

 


    




                                                (95) 

2

2

2
0

sin( )(( 1) ( 1) 2

( 1) ( 1) ) 0.

f f

n n f n

n

f

n f

V U
y V

x x

V
U

x

    

    





 
   

 


    




                                                 (96)  

 In order to satisfy (95) and (96) for arbitrary values of x  and y , each term in 

the series must be equal to zero. 

Then, the governing equations of the problem can be written as follows: 

 

 

2

2

2
( 1) ( 1) 2 ( 1) (3 ) 0

f f f

n f n n f

U V U
U V

x x x
        

  
        

  
              (97) 

2

2

2
( 1) ( 1) 2 ( 1) ( 1) 0

f f f

n f n n f

V U V
V U

x x x
        

  
        

  
              (98)
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            This system of two differential equations are solved by introducing operators, 

d
D

dy
  and 

2
2

2

d
D

dy
 . 

2 2

2 2

2 (3 ) 0( 1) ( 1) ( 1)
,

02 ( 1) ( 1) ( 1) ( 1)

fn nn

fn n n

UDD D

VD D D

       

        

          
    

                    (99) 

 The determinant of the matrix in (99) can be found as

 

2 4 3 2 2 2 2 4 2 2 3
( 1)( 2 ( 2 ) 2 ( )).

1
f n n n nD D D D


        




        


        (100) 

            Now, equations can be uncoupled since 0f f f fU V    .  

            By selecting 
pxe for the solution of fU or fV the characteristic equation is 

obtained.  

4 3 2 2 2 2 4 2 2 (3 )
( 2 ( 2 ) 2 ) 0.

(1 )

px

n n n np p p p e


       



      


                   (101) 

            Since 0pxe  , the multiplicative factor should be equal to zero.  

            Let this factor be ( )CE p and it is written in the following form 

2 2 2( ) ( )CE p p Cp D F                                                                                    (102) 

where C, D, F are constants to be determined. The corresponding coefficients in 

(101) and (102) must be equal to each other. Therefore, 

,C                                                                                                                    (103)  

2 ,nD                                                                                                                  (104) 

3
.

1
nF


 




 


                                                                                                  (105) 
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               Then by factorizing (102), the roots of the characteristic equation can be 

found as follows: 

2 2

1

1 3
4 4 ,

2 2 1
n np i

 
   




    


                                                              (106) 

2 2

2

1 3
4 4 ,

2 2 1
n np i

 
   




    


                     (107) 

2 2

3

1 3
4 4 ,

2 2 1
n np i

 
   




    


               (108) 

2 2

4

1 3
4 4 .

2 2 1
n np i

 
   




    


                  (109) 

           Thus, 

31 2 4

1 2 3 4( ) ( ) ( ) ( ) ,
p xp x p x p x

f n n n nU E e E e E e E e                                              (110) 

31 2 4

1 2 3 4( ) ( ) ( ) ( ) .
p xp x p x p x

f n n n nV F e F e F e F e                                                (111) 

Substituting (110) and (111) into (98), 

4
2 2

1

[ ( 2 ( 1) ) (( 1) ( 1) ( 1) )] 0.ip x

i n i n i i i n

i

e E p F p p        


               (112) 

           Then, 

2 2( 1)( ) ( 1)
,

2 ( 1)

i i n
i i

n i n

p p
E F

p

   

   

   


 
                                                                   (113) 

2 2( 1)( ) ( 1)
.

2 ( 1)

i i n
i

n i n

p p
q

p

   

   

   


 
                 (114) 
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,  ,  E  and Fi i i ip q  also depend on n  through n  but they are written with sole 

subscript i  rather than with two subscripts in  for brevity.  

              Hence, displacements and stresses for FGM layer are written as follows: 

4

0 1

( , ) cos( ),ip x

f i i n

n i

u x y q Fe y


 

 
  

 
                                                                       (115) 

4

0 1

( , ) sin( ),ip x

f i n

n i

v x y Fe y


 

 
  

 
                                                                           (116) 

4
0

_

0 1

( ( ( 1) (3 ) )cos( )),
1

i

x
p x

xx f i i i n n

n i

e
Fe q p y


    





 

   


                               (117) 

4
0

_

0 1

( ( ( 1) (3 ) )cos( )),
1

i

x
p x

yy f i n i i n

n i

e
Fe p q y


    





 

   



                              (118)

 

4

_ 0

0 1

( ( )sin( )).ip xx

xy f i n i i n

n i

e Fe q p y   


 

  

                                                  

(119) 

Note that this solution readily satisfies ( ,0) 0,  v x  ( , )=0, v x c ( ,0) 0,  xy x   

( , ) 0 x.xy x c   iF  should be determined from the boundary conditions. 

 

2.5 Application of remaining boundary conditions 

 

             At this point, homogeneous and FGM solutions which satisfy boundary 

conditions at 0y   and y c  are obtained. 

             Referring to Figure 2.1, there are 6 more boundary conditions for FGM 

coated homogeneous substrate. 
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Along x h , stresses in both materials, xx , _xx f  and xy , _xy f are 

continuous, respectively across the interface between FGM and homogeneous parts. 

Then, displacements, u and v are also continuous across the interface of FGM and 

homogeneous parts. 

_xx f xx   at ,x h                                                                                               (120) 

_xy f xy   at ,x h                                                                                               (121) 

fu u at ,x h                                                                                                       (122) 

fv v
 
at .x h                                                                                                       (123) 

Equations (120), (121), (122) and (123) give the continuity of diplacements 

and stresses, respectively. Furthermore, stresses, _xx f and _xy f are zero on the top 

of FGM strip. This gives the relations of stress free surface of the strip. 

_ 0xx f  at 0,x                                                                                                   (124) 

_ 0xy f  at 0.x                                                                                                    (125) 

 Now, ((120)-(125)) provide six equations for the six unknown functions 

( 1,.., 4)iF i   and ( 1,2)kC k   so that they can be expressed in terms of auxiliary 

function ( )g x . In the forthcoming sections, continuity and free surface conditions 

are implemented.  

 

 2.5.1 Continuity conditions 

 

             From (117) at x h , 
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1

2

3

4

( )

1 1 10
_ ( )

0 2 2 2

( )

3 3 3

( )

4 4 4

[ ( ( 1) (3 ) )

1 ( ( 1) (3 ) )

                          +F ( ( 1) (3 ) )

                         ( ( 1) (3 ) )]cos( ).

h p

n

xx f h p
n n

h p

n

h p

n n

Fe q p

F e q p

e q p

F e q p y









  


   

  

   










  


    

  

   



                        

(126) 

For the homogeneous part,
 1 0

he 
 
since there is no material gradation. 

At x h from (81); 

( )1

2

2

1

2sgn( )( ) 2 ((2 ) )
( ) [ ( )

(1 ) ( )

2sgn( )( ) 2 ((2 ) )
                                   ( )]

( )

(n

b c c c c
y ci t h

xx c c

a

c c c c
y c

c c

h

i e e c y e ye
g t e e e

e e

e e c y e ye
e e d dt

e e

e

   
 

 

   
 

 



  


 

 




  
 





 






   
 

 

   




 

 

1 2

0

2 ( 1 2 ))cos( ).n n n n n

n

C C h y   




   

     (127) 

              Then applying (120), for _xx f xx 
 

1 1 2 2 3 3 4 4 1 2

0

( )

2

( 2 ( 1 2 ) )cos( )

2sgn( )( ) 2 ((2 ) )
( ) [ ( )

(1 ) ( )

                                   

n nh h

n n n n n n n n n n n n n

n

b c c c c
y ci t h

c c

a

y

F G F G F G F G e C h e C y

i e e c y e ye
g t e e e

e e

e

 

   
 

 



   

 

 


 



  
 





        

   


 





 

2

2sgn( )( ) 2 ((2 ) )
( )]

( )

c c c c
c

c c

e e c y e ye
e d dt

e e

   


 

 


 




   



  (128)

 

where  

1

1 1
1

((3 ) (1 ) )
,

( 1)

hp

n
n

e p q
G

  



  



                                                                        (129) 

2

2 2
2

((3 ) (1 ) )
,

( 1)

hp

n
n

e p q
G

  



  



                                                                       (130) 

3

3 3
3

((3 ) (1 ) )
,

( 1)

hp

n
n

e p q
G

  



  



                                                                       (131) 
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4

4 4
4

((3 ) (1 ) )
.

( 1)

hp

n
n

e p q
G

  



  



                                                                       (132) 

Now, recall that n

n

c


   and m

m

c


   for m, n= 0, 1, 2, 3,...  

 By using orthogonality condition, 

0

, 0

cos( )cos( ) / 2, 0,

0,

c

n m

c n m

y y dy c n m

n m

 

 


  
 

                                                             (133) 

multiplying both sides of (128) with cos( )m y and integrating over  y from 0 to c, the 

following equation can be obtained. 

1 1 2 2 3 3 4 4 1 2

( )

2
0

2 ( 1 2 )

2sgn( )( ) 2 ((2 ) )
( ) [ ( )

(1 ) ( )

2sgn( )(
                                + (

n nh h

n n n n n n n n n n n n

b c c c c c
y ci t hn

c c

a

c
y

F G F G F G F G e C h e C

ik e e c y e ye
g t e e e

e e

e
e

 

   
 

 




  

 

 



 

  
 







        

   


 
  

2

) 2 ((2 ) )
)]

( )

                               cos( ) ,

c c c
c

c c

n

e c y e ye
e

e e

y dyd dt

  


 



 






   



           (134) 

where 

1
, 0

.
2

, 0

n

n
c

k

n
c




 
 


                  

Using the formulae A.9-A15 given in Appendix A, integration over y  can be 

performed leading to 

1 1 2 2 3 3 4 4 1 2

2 2
( )

2 2 2 2

2 ( 1 2 )

2
( ) ( (1 )) .

(1 )

n nh h

n n n n n n n n n n n n

b

i t hn n

n na

F G F G F G F G e C h e C

ik
g t e d dt

 



  

 


     

 



 



        




   
                             (135)
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            Next, from (119), at x h   

31 2

4

( )( ) ( )

_ 0 1 1 1 2 2 2 3 3 3

0

( )

4 4 4

[ ( ) ( ) ( )

                           F ( )]sin( ).

h ph p h p

xy f n n n

n

h p

n n

Fe p q F e p q F e p q

e p q y

 



    

 


 





      





(136) 

            at x h , from (83); 

( )1

2

2

1 1 2

2 ( )
( ) [2 ( )

(1 ) ( )

2 ( )
                         2 ( )]

( )

                      ( 2 (1 2 ))sin(n

b c c c
y ci t h

xy c c

a

c c c
y c

c c

h

n n n n

ce y e e
g t e e e

e e

ce y e e
e e d dt

e e

e C C h

  
 

 

  
 

 




 

 

 

   

  
 












 
 

 

 



    

 

0

).n

n

y





                   (137) 

             Then, applying (121) for _xy f xy 
 

1 1 2 2 3 3 4 4 1 2

0

( )

2

2

( 2 (1 2 ) )sin( )

1 2 ( )
( ) [2 ( )

(1 ) ( )

2 ( )
                2 ( )]

( )

n nh h

n n n n n n n n n n n n n

n

b c c c
y ci t h

c c

a

c c c
y c

c c

F H F H F H F H e C h e C y

ce y e e
g t e e e

e e

ce y e e
e e d

e e

 

  
 

 

  
 

 

   


 




 



  
 










       

 


 

 





 

,dt

(138) 

where  

1

1 1 1( ),hp

n nH e p q                                                                                               (139) 

2

2 2 2( ),hp

n nH e p q                                                                                              (140) 

3

3 3 3( ),
hp

n nH e p q                                                                                              (141) 

4

4 4 4( ).hp

n nH e p q                                                                                              (142) 
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 By using orthogonality condition, 

0

0, 0

sin( )sin( ) / 2, 0,

0,

c

n m

n m

y y dy c n m

n m

 

 


  
 

                                                               (143)                                                              

multiplying both sides of (138) with sin( )m y and integrating over  y from 0 to c, the 

following equation can be obtained and one can get; 

1 1 2 2 3 3 4 4 1 2

( )

2

0

2

2 (1 2 )

2 / 2 ( )
( ) [2 ( )

(1 ) ( )

2 ( )
                2 ( )]sin( )

( )

n nh h

n n n n n n n n n n n n

b c c c c
y ci t h

c c

a

c c c
y c

nc c

F H F H F H F H e C h e C

c ce y e e
g t e e e

e e

ce y e e
e e y dyd

e e

 

  
 

 

  
 

 

  


 

 

 

  
 










       

 


 

 



  

dt

          (144) 

Again, using the formulae A.9-A15 given in appendix A, the integral over y  

can be taken and it leads to 

1 1 2 2 3 3 4 4 1 2

2
( )

2 2 2

2 (1 2 )

42 /
( ) .

(1 ) ( )

n nh h

n n n n n n n n n n n n

b

i t h n

na

F H F H F H F H e C h e C

c
g t e d dt

 



  

 


   

 



 



       

  
 

   
 

          (145) 

             Displacement continuity equations are obtained in a similar way. Applying 

(122) along with (115) and (79) at x h  

31 2 4

1 1 2 2 3 3 4 4

0

( ) cos( )
hphp hp hp

f n

n

u Fe q F e q F e q F e q y




   
              (146) 
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2 22

( )

2 2 2

2 2

2 2 2

1 2

(( 1 )( 1 ) 4 )1 2
( ) [ ( )

2 (1 ) ( 1 ) ( 1 )

( ( 1 )( 1 ) 4 )2
                        + ( )]

( 1 ) ( 1 )

 + ( )cos( )n

c cb c
yi t h

c c

a

c c

y

c c

h

n n n

n

e e ce y
u g t e e

e e

e cey
e d dt

e e

e C hC y

 


 

 



 



 

  

 







 





    
  

    

     


   



 

0

.





   

(147) 

          Then, for fu u  

1 1 2 2 3 3 4 4 1 2

0

2 22

( )

2 2 2

2

2

( ) cos( )

(( 1 )( 1 ) 4 )1 2
( ) [ ( )

2 (1 ) ( 1 ) ( 1 )

( ( 1 )( 12
                  + (

( 1 )

n nh h

n n n n n n n n n n n

n

c cb c
yi t h

c c

a

c

y

c

F J F J F J F J C e he C y

e e ce y
g t e e

e e

ey
e

e

 

 


 









 

  


 




 



     

    
 

    

    


 



 

2

2 2

) 4 )
)] ,

( 1 )

c

c

ce
d dt

e





 






 
      (148)

 

where 

1

1 1,
hp

nJ e q                                                                                                             (149) 

2

2 2 ,hp

nJ e q                                                                                                            (150) 

3

3 3 ,
hp

nJ e q                                                                                                             (151) 

4

4 4.hp

nJ e q                                                                                                            (152) 

By using orthogonality relation (133), 

1 1 2 2 3 3 4 4 1 2

2 22

( )

2 2 2
0

2 2

2

(( 1 )( 1 ) 4 )2
( ) [ ( )

2 (1 ) ( 1 ) ( 1 )

( ( 1 )( 1 ) 4 )2
                 + (

( 1 ) (

n nh h

n n n n n n n n n n

c cb c c
yi t hn

c c

a

c c

y

c

F J F J F J F J C e he C

e e ck e y
g t e e

e e

e cey
e

e

 

 


 

 





 

  

 

 


 



     

    
 

    

     


 

  

2 2
)]cos( )

1 )
nc
y dyd dt

e


 
     (153) 
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Using the formulae A.9-A15 given in appendix A and taking the integral over 

y ,

  

1 1 2 2 3 3 4 4 1 2

2 2
( )

2 2 2 2 2

2( ) ( 1 )
( ) [ ] .

2 (1 ) ( )

n nh h

n n n n n n n n n n

b

i t hn n

n na

F J F J F J F J C e he C

k
g t e d dt

 

   


     

 



 



     

  
 

                 (154) 

 Finally, applying (123) along with (80) and (116), at x h  one obtains  

31 2 4

1 2 3 4

0

( )sin( ).
hphp hp hp

f n

n

v F e F e F e F e y




   
                         (155) 

 

for the FGM and 

22

( )

2 2

2 2

2 2 22

2

2/ 2
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2 (1 ) ( 1 ) ( 1 )

(( 1 )( 1 ) 4 ) 22
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( 1 ) ( 1 ) ( 1 )

( ( 1 )( 1
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cb c
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a

c c

y
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c

e yi e
v g t e e

e e

e e c y
e

e e e

e
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1 2
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) 4 )
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( 1 )

( ( ) )sin( ).n

c

c

h

n n n

n n

ce
d dt

e

e C h C y






















 

            (156)

 

           for the homogeneous half plane. Then, for fv v  
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               )] ,

( 1 )

y
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(157)

 

where  

1

1 ,hp

nL e                                                                                                                 (158) 

2

2 ,hp

nL e                                                                                                                (159) 

3

3 ,
hp

nL e                               (160) 

4

4 .hp

nL e                    (161) 

Applying orthogonality condition (143), after integrating from 0 to c with 

respect to y, one obtains; 

1 1 2 2 3 3 4 4 1 2
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e yi c e
g t e e
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e
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    (162)
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Using the formulae A.9-A15 given in appendix A to take the integral over y , 

one obtains;

  

1 1 2 2 3 3 4 4 1 2

2
( )

2 2 2 2

( )

(2 / ) 4
( ) ( )((1 ) ) .

2 (1 )

n nh h

n n n n n n n n n n

n

b

i t h n

n na

F L F L F L F L C e h e C

c i
g t e d dt

 







 
 

      

 



 



      


 

                (163) 

 At this point, the continuity conditions across the interface have been taken 

care of, so attention could be turned onto free surface conditions. 

 

2.5.2 Free surface conditions 

 

            Applying (124) along with (117), 

at 0x  , 

0
_ 1 1 1 2 2 2

0

3 3 3 4 4 4

( ((3 ) (1 ) ) ((3 ) (1 ) )
1

                           ((3 ) (1 ) ) ((3 ) (1 ) ))cos( ).

xx f n n

n

n n n

F p q F p q

F p q F p q y


      



      





        


      



    
(164) 

Then, for _ 0xx f 
 

1 1 2 2 3 3 4 4

0

( ) cos( ) 0,n n n n n n n n n

n

F M F M F M F M y




                  (165) 

where 

1 1
1

((3 ) (1 ) )
,

1

n
n

p q
M

  



  



                                                                             (166) 

2 2
2

((3 ) (1 ) )
,

1

n
n

p q
M

  



  



                                                                            (167) 



37 

 

3 3
3

((3 ) (1 ) )
,

1

n
n

p q
M

  



  



                                                                            (168) 

4 4
4

((3 ) (1 ) )
.

1

n
n

p q
M

  



  



                                                                            (169)  

Multiplying by cos( )my dy  and integrating with respect to y from 0 to c, 

1 1 2 2 3 3 4 4 0.n n n n n n n nF M F M F M F M                    (170) 

            Applying (125) along with (119) at 0x  , 

1 1 1 2 2 2

_ 0

0 3 3 3 4 4 4

[ ( ) ( )
.

( ) ( )]sin( )

n n

xy f

n n n n

F p q F p q

F p q F p q y

 
 

  





   


  


                         (171) 

Then, for _ 0xy f 
 

0 1 1 2 2 3 3 4 4

0

( )sin( ) 0,n

n

F R F R F R F R y 




   
              (172) 

where  

1 1 1( ),n nR p q                                                                                                      (173)  

2 2 2( ),n nR p q                    (174) 

3 3 3( ),n nR p q                    (175) 

4 4 4( ).n nR p q                    (176) 

Multiplying by sin( )my dy  and integrating with respect to y from 0 to c, 

1 1 2 2 3 3 4 4 0.n n n n n n n nF R F R F R F R   
                (177) 
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( , ).  

  2.5.3 Final form of boundary conditions 

 

Hence, equations (135), (145), (154), (163) , (170) and (177) are obtained 

from the prescribed boundary conditions. These 6 equations should be further 

simplified by making integrations on 

            After making all simplifications by using the formulae given in appendix A, 

the 6 by 6 system of linear equations for the unknowns inF ( 1, 2,3, 4)i  , 1nC and 

2nC can be written as follows; 

1 1 2 2 3 3 4 4 1 22 ( 1 2 )

4 /
( )( ( ))(sinh( ) cosh( )) ,

(1 )

n nh h

n n n n n n n n n n n n

b

n n n

a

F G F G F G F G e C h e C

c
g t t h h t h t dt

   

  


 
        

   
 

             (178)  

1 1 2 2 3 3 4 4 1 22 (1 2 )

4 /
( )(1 ( ))(cosh( ) sinh( )) ,

(1 )

n nh h

n n n n n n n n n n n n

b

n n n

a

F H F H F H F H e C h e C

c
g t h t h t h t dt

   

  


 
       

    
 

          (179)

 
1 1 2 2 3 3 4 4 1 2

1/ ( 1)
( )(2 )(cosh( ) sinh( )) ,

(1 )

n nh h

n n n n n n n n n n

b

n n

na

F J F J F J F J e C he C

c
g t h t h t h t dt

 


 

 

 
     


    

 
             (180)

 

1 1 2 2 3 3 4 4 1 2( )

1/ (1 )( )
( )(

(1 )

(1 )( )
(cosh( ) sinh( )(2( ) ))) ,

n nh h

n n n n n n n n n n

n

b

na

n n

n

F L F L F L F L C e h e C

c h t
g t

h t

h t
h t h t h t dt

h t

 





 


 



 
      

 

 

 
     




                        (181) 

1 1 2 2 3 3 4 4 0,n n n n n n n nF M F M F M F M   
                           (182)
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1 1 2 2 3 3 4 4 0.n n n n n n n nF R F R F R F R   
                (183) 

 

2.6 Derivation of singular integral equation 

 

If one writes this system of equations in matrix form, then the unknowns

 

1 2 3 4 1 2, , , ,  and F F F F C C can be found easily in terms of auxiliary function, ( )g t by 

inverting this matrix.
 
 

The matrix form of system of equations (178)-(183) is given as: 

1 2 3 4
1

1 2 3 4
2

1 2 3 4
3

1 2 3 4 4

1

1 2 3 4

2

1 2 3 4

2 ( 1 2 )

2 (1 2 )

( )

0 0

0 0

n n

n n

n n

n n

h h

n n n n n n
nh h

n n n n n n
nh h

n n n n
n

h h

n n n n n

n

n

n n n n

n

n n n n

G G G G e h e
F

H H H H e h e
F

J J J J e he
F

L L L L e h e F

C
M M M M

C
R R R R

 

 

 

 

  

  





 

 

 

 

    
 

    
  

 
  
 
 
 

 
 

1

2

3

4

( )

( )

,( )

( )

0

0

b

a

b

a

b

a

b

a

g t Z dt

g t Z dt

g t Z dt

g t Z dt

 
 
 
 


 


 


 

 
  
 

 
 

 
 

 
    
 
 
  









(184) 

where 

1

4 /
( )( ( ))(sinh( ) cosh( )),
1

n n n n

c
Z t h h t h t  


    

                                        
(185) 

2

4 /
( )(1 ( ))(cosh( ) sinh( )),
1

n n n n

c
Z h t h t h t  


     

                                  (186)
  

3

1/ ( 1)
( )(2 )(cosh( ) sinh( )),
1

n n n

n

c
Z h t h t h t


 

 


     


                          (187)
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4

1/ (1 )( )
(

(1 )

(1 )( )
(cosh( ) sinh( )(2( ) ))).

n

n

n n

n

c h t
Z

h t

h t
h t h t h t

h t



 


 



 


 

 
     


                                 (188)

  

One can solve for the unknowns by inverting the matrix, i.e., 

1 2 3 4
1

1 2 3 4
2

1 2 3 4
3

1 2 3 44

1

1 2 3 4

2

1 2 3 4

2 ( 1 )

2 (1 )

( )

0 0

0 0

n n

n n

n n

n n

h h

n n n n n
n h h

n n n n n
n h h

n n n n
n

h h

n n n nn

n

n

n n n n

n

n n n n

G G G G e e
F

H H H H e e
F

J J J J e he
F

L L L L e h eF

C
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C
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1

1

2

3

4

( )

( )

.( )

( )

0

0

b

a

b

a

b

a

b

a

g t Z dt

g t Z dt

g t Z dt

g t Z dt



 
 
 
 
 
 

  
  
  
  
  
  
  

 
 
  









     (189)  

For the problem considered in this thesis, it is sufficient to solve 1 2 and n nC C . 

Before finding them, some simplifications should be made. Therefore, the matrix 

equation (189) is rewritten for simplicity as shown in Appendix B. After many 

manipulations, 1 2 and n nC C  are written as follows ( 5k and 6k , 1,.., 4k   are given 

in appendix B); 

51 51 1 53 5 42 42 3( ) ( ) ( ) ( ) ,

b b b b

n

a a a a

C Z g t dt Z g t dt Z g t dt Z g t dt                               (190) 

61 62 1 63 6 42 42 3( ) ( ) ( ) ( ) .

b b b b

n

a a a a

C Z g t dt Z g t dt Z g t dt Z g t dt                               (191) 
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After obtaining  expressions of 1 2 and n nC C in terms of ( )g t , one can 

substitute them into boundary condition (62) and take the limit 
0

lim
y

( , )yy x y  to 

obtain a singular integral equation for ( ).g t  

Recalling (82) and doing the manipulations given in Appendix C; 

1

0

2

1 1 2

0

4 cosh( )
( , ) ( ) sin ( )(

(1 ) sinh

sinh( ) cosh
       )

sinh sinh

[2 ( 3 2 )]cos( ),n

b

yy

a

x

n n n n n

n

c y
x y g t x t

c

c y y
y c d dt

c c

e C C x y
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where 

^

11 ( ) ( , , , , , ),

b

nn n

a

C g t C t c h                                                                                 (193) 

^

22 ( ) ( , , , , , ).

b

nn n

a

C g t C t c h                                                                                (194) 

 Now, taking the limit 
0
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Using formulae A.17-A.20 given in appendix A and switching orders of 

series summation and integration; 
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1
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4
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Now, by adding 
1

t x
 into the integral term and substracting 

1

t x
 from it, Cauchy 

and Fredholm kernels can be found respectively; 

^ ^
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            (197) 

Recognizing the fact that ( ,0) ( )yy x P x   for a x b   , and using (197) 

1 2

1

1 1 (1 )
( )( ( , ) ( , )) ( ),

4

b

a

g t K x t K x t dt P x
t x
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where 

1
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                                           (199)  
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K x t e C x C
 

  







                                         (200) 

Hence, the singular integral equation is obtained. The Cauchy-kernel 
1

t x
is 

dominant part of the equation. 1( , )K x t  and 2 ( , )K x t  are bounded Fredholm kernels. 
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A series expansion-collocation method is used to solve this singular integral 

equation. The solution method is outlined in the next section. 

 

 

2.7 Numerical solution of singular integral equation 

 

In order to solve integral equation (198), it should be normalized first. Then 

defining, 

2 2

b a b a
t s

 
   for 1 1,s                                                                             (201) 

2 2

b a b a
x r

 
   for 1 1,r                                                                            (202) 

( ) ( ( )) ( ),g t g t s G s                                                                                               (203) 

^

1 1( ( ), ( )) ( , ),K x r t s K r s                                                                                          (204) 

^

2 2( ( ), ( ), ) ( , ),nK x r t s K r s                                                                                    (205) 

^

( ( )) ( ),P x r P r                                                                                                       (206) 

(198) becomes, 

1 ^ ^ ^

1 1

11

1 1 (1 )
( )( ( , ) ( , )) ( ).

2 2 4

b a b a
G s K r s K r s dr P r

r s



 





  
   

                         (207) 

(207) will be solved by using a series expansion method. Recognizing the 

singular behavior of imbedded crack at 1s   , the unknown function ( )G s  can be 

expressed as follows:  
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( ) ( )(1 ) (1 ) ,G s s s s                                                                                        (208) 

where 
1

,
2

                                                                                                     (209) 

( ) (1 ) (1 ) .W s s s                                                                                                (210) 

Now, one can express   in terms of a series of Jacobi Polynomials. 

( , )

0

( ) ( ).
N

k k

k

s a P s 


                                                                                              (211) 

In (211) ak are the unknown coefficients to be determined. Substituting (211) 

along with (208) into (207), the singular integral equation is expressed as follows: 

1 ^ ^ ^
( , )

1 2

0 11

1 ( ) (1 )
( )( ( ) ( , ) ( ) ( , )) ( ).

2 2 4

N

k k

k

W s b a b a
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(212) 

Switching the orders of integration  and summation the singular integral 

equation is finally expressed as follows: 

1 1( , ) ^ ^
( , )
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0 1 1
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         (213) 

where the dominant part of the integral equation
1 ( , )

1

( ) ( )1 kP s W s
ds

r s

 






  has a closed 

form formula for a given r  so that it can be calculated easily (Kaya, 1984) where as 

 
1 ^ ^

( , )

1 2

1

( )( ( , ) ( , )) ( )
2

k

b a
W s K r s K r s P s ds 










 

can be evaluated numerically by Gauss-

Jacobi quadrature. On the other hand, this integral equation has a single valuedness 

condition which is 
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 ( ) 0

b

a

g t dt  .                                                                                                          (214) 

 This condition ensures that the crack is closed at the tips. After normalization, 

this equation can be expressed as follows: 

1 1

1 1

( ) ( )(1 ) (1 ) 0.G s ds s s s ds 
 

 

    
                                                                  (215)

 

Substituting   in terms of a series of Jacobi Polynomials, one obtains 

1

( , )

01

( )(1 ) (1 ) 0.
N

k k

k

a P s s s ds   




  
                                                                                    (216) 

Switching the orders of integration  and summation again, 

1

( , )

0 1
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N

k k

k
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 From orthogonality relationships of Jacobi polynomials, one can observe that 

1

( , )

1

, 0
( )(1 ) (1 ) .

0, 0
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k
P s s s ds

k

   





  




                                                                              (218) 

Then, in the summation above, all the terms except a0 vanishes, giving 

0 0a  , therefore a0=0. 

Then, (213) can be written as  
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 In order to solve unknown coefficients (219) can be 

written for N collocation points by taking 

(2 1)
cos( )      ,  1,..,

2 2
i

i
r i N

N

 
 


                                                                           (220)  

and the resulting system of N*N linear equations can be solved. 

Once  are known, one can obtain; 

( 1/2, 1/2)

0

( 1) ( 1).
N

k k

k

a P  



  
                                                                                                   (221) 
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CHAPTER 3 

NUMERICAL RESULTS 

Solution was obtained for mode I crack problem and hence, stress intensity 

factors are obtained in this section for various values of crack periodicity, crack 

length, crack location, layer thickness and material gradation. 

The stress intensity factors can be found by using (219). After determining 

ka , the stress intensity factors are defined as follows; 

14
( ) lim 2( ) ( ,0) ( 1)

1 2
yy

x a

b a
k a a x x


 




   


                                               (222) 

14
( ) lim 2( ) ( ,0) ( 1)

1 2
yy

x a

b a
k b x b x


 




    


                                             (223) 

 

3.1. Uniform loading 

 

Remembering that the loading is applied through crack surface pressure. 

( ,0) ( )yy x P x  for ,a x b                                                                                  (224) 

for imbedded cracks, normalized SIFs can be expressed as; 
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0

( )
*( )

( ) / 2

k a
k a

b a



.                                                                                         (225) 

where 0  is the applied uniform crack surface load. 

Convergence analysis is made for obtaining accuracy of results. In 

convergence analysis, if stress intensity factors stay stable, while NP and NS are 

increased, the desired accuracy is achieved. Hence, when NP=44 and NS=20,  the 

results become stable as seen above Tables 3.1-2. On the other hand, computer 

program used in this study has a capacity of computing results for 0<h/a<1, 0< 

hβ<710, 0< l/(l+2c)<1 and 10
-5

<l/a<10
5
. 
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Table 3.1: Comparison of k*(a) and k*(b) for a thick FGM layer under uniform 

loading for different NP and NS numbers and for l/(l+2c)=0.5 and hβ=10
-3

. 

h/a=0.9 

 

NP=36 

NS=16 

 

NP=40 

NS=18 

 

NP=44 

NS=20 

 

 

 

NP=48 

NS=22 

l/a k*(a) k*(b) k*(a) k*(b) k*(a) k*(b) k*(a) k*(b) 

1 0.5702 0.5702 0.5702 0.5702 0.5702 0.5702 0.5702 0.5702 

10 0.5850 0.5712 0.5850 0.5712 0.5850 0.5712 0.5850 0.5712 

20 0.6122 0.5706 0.6122 0.5706 0.6121 0.5706 0.6121 0.5706 

30 0.6427 0.5701 0.6427 0.5701 0.6427 0.5701 0.6427 0.5701 

40 0.6715 0.5698 0.6715 0.5698 0.6715 0.5698 0.6714 0.5698 

50 0.6980 0.5695 0.6980 0.5695 0.6980 0.5695 0.6979 0.5695 

60 0.7225 0.5692 0.7225 0.5692 0.7225 0.5692 0.7224 0.5692 

70 0.7453 0.5690 0.7453 0.5690 0.7452 0.5691 0.7452 0.5691 

80 0.7666 0.5689 0.7666 0.5689 0.7665 0.5689 0.7665 0.5689 

90 0.7868 0.5688 0.7867 0.5688 0.7866 0.5688 0.7865 0.5688 

100 0.8059 0.5686 0.8057 0.5686 0.8056 0.5686 0.8055 0.5687 
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Table 3.2: Comparison of k*(a) and k*(b) for a thick FGM layer under uniform 

loading for different NP and NS numbers and for l/(l+2c)=0.5 and hβ=1. 

h/a=0.9 

 

NP=36 

NS=16 

 

NP=40 

NS=18 

 

NP=44 

NS=20 

 

 

 

NP=48 

NS=22 

l/a k*(a) k*(b) k*(a) k*(b) k*(a) k*(b) k*(a) k*(b) 

1 0.5720 0.5703 0.5720 0.5703 0.5720 0.5703 0.5720 0.5703 

10 0.6059 0.5709 0.6059 0.5709 0.6059 0.5709 0.6059 0.5709 

20 0.6527 0.5701 0.6527 0.5701 0.6526 0.5701 0.6526 0.5701 

30 0.6961 0.5696 0.6960 0.5696 0.6959 0.5696 0.6958 0.5696 

40 0.7347 0.5692 0.7344 0.5692 0.7343 0.5692 0.7342 0.5692 

50 0.7693 0.5690 0.7689 0.5690 0.7687 0.5690 0.7685 0.5690 

60 0.8008 0.5688 0.8004 0.5688 0.8001 0.5688 0.7998 0.5688 

70 0.8299 0.5686 0.8293 0.5686 0.8289 0.5686 0.8286 0.5686 

80 0.8570 0.5684 0.8563 0.5684 0.8558 0.5685 0.8554 0.5685 

90 0.8825 0.5683 0.8816 0.5683 0.8810 0.5683 0.8805 0.5683 

100 0.9066 0.5682 0.9054 0.5682 0.9047 0.5682 0.9042 0.5682 

 

Moreover, finite element analysis using Ansys computer program is carried 

out to verify (-) results on stress intensity factors. As the results are shown in Tables 

3.3-4, they are almost same with ones provided in this study. Therefore, one should 

notice that present study has very satisfactory accuracy with finite element method 

numerically. 
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Table 3.3: Comparison of k*(a)s provided by Ansys and current study for different 

nonhomogeneity parameters hβ and for a thick FGM layer under uniform loading 

h/a=0.9 

 

hβ=10
-3 

(almost 

homogeneous)  

hβ=0.5 

(μ1/μ0≈1.648)  

hβ=1 

(μ1/μ0≈2.718) 

 

 

 

l/a 

Current 

Study 

Obtained  

in Ansys 

Current 

Study 

Obtained  

in Ansys 

Current 

Study 

Obtained 

in Ansys 

1 1.0067 1.0075 1.0242 1.0249 1.0415 1.0422 

6 0.7609 0.7610 0.7786 0.7788 0.7960 0.7961 

14 0.4892 0.4893 0.4974 0.4975 0.5054 0.5056 

31 0.3280 0.3281 0.3335 0.3336 0.3389 0.3390 

50 0.2582 0.2587 0.2626 0.2630 0.2669 0.2673 
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Table 3.4: Comparison of k*(a)s provided by Ansys and current study for different 

nonhomogeneity parameters hβ and for a thick FGM layer under parabolic loading 

h/a=0.9 

 

hβ=10
-3 

(almost 

homogeneous)  

hβ=0.5 

(μ1/μ0≈1.648)  

hβ=1 

(μ1/μ0≈2.718) 

 

 

 

l/a 

Current 

Study 

Obtained  

in Ansys 

Current 

Study 

Obtained  

in Ansys 

Current 

Study 

Obtained 

in Ansys 

1 0.1263 0.1261 0.1305 0.1303 0.1346 0.1343 

6 0.0473 0.0474 0.0471 0.0472 0.0468 0.0469 

14 0.0012 0.0012 0.0002 0.0002 -0.0009 -0.0009 

31 0.0000 0.0000 -0.0001 -0.0001 -0.0003 -0.0003 

50 0.0000 0.0000 -0.0000 -0.0000 -0.0001 -0.0001 

 

In order to validate the formulation and numerical results, comparisons 

should be made with previously published results which are obtained for special 

cases of the problem considered here. For this purpose, two sets of benchmark results 

have been identified. First set of benchmark results (only *( )k a ) are given in 

(Murakami, 1987), for an array of imbedded periodic cracks in a homogeneous half-

plane. The second set of benchmark results come from (Rizk, 2003) but in an indirect 

manner. In (Rizk, 2003), a thermal stress problem has been solved for a 

homogeneous half plane containing periodic imbedded cracks so SIFs for uniform 

crack traction are not available. But, the kernels for homogeneous half plane problem 

were given. Therefore, those kernels are programmed as well to produce 

homogeneous half-plane results (both *( )k a and *( )k b ) for a wide range of 

geometric parameters. In other words, Rizk’s kernel is placed into our computer 
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program and results are tabulated in Tables 3.5-6 (Hypersingular integral equation 

D.1-D.3 for Rizk(2003) is given in Appendix D). These results obtained through 

Rizk’s kernels are shortly referred to as Rizk’s results for brevity. Uniform crack 

surface traction results are also available in (Nied, 1987) albeit in graphical form, 

thus lacking the desired accuracy for numerical comparisons. On the other hand, less 

accurate graphical comparisons can be made. 

For very small h  (   being the non-homogeneity parameter) values, the 

results are almost the same as benchmark results for different crack periodicities as 

seen in Tables 3.5 and 3.6.  

Table 3.5: Comparison of *( )k a for imbedded periodic cracks with Rizk (2003) and 

Murakami (1987), 
310h  and 0.5

h

a
  

(b-a)/(b+a) (b-a)/(4c) Rizk (2003) Current Study Murakami (1987) 

0.333 

0.05 1.0067 1.0067 Not available 

0.10 0.9609 0.9609 0.9608 

0.20 0.8528 0.8528 0.8528 

0.33 0.7012 0.7012 0.7015 

0.50 0.5702 0.5702 0.5729 

0.5 

0.05 1.0573 1.0573 Not available 

0.10 0.9888 0.9888 0.9888 

0.20 0.8594 0.8594 0.8594 

0.33 0.7087 0.7087 0.7089 

0.50 0.5729 0.5729 0.5735 
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Table 3.6: Comparison of *( )k b for imbedded periodic cracks with Rizk 

(2003),
310h  and 0.5

h

a
  

(b-a)/(b+a) (b-a)/(4c) Rizk (2003) Current Study 

0.333 

0.05 0.9987 0.9987 

0.10 0.9585 0.9585 

0.20 0.8501 0.8501 

0.33 0.7006 0.7006 

0.50 0.5702 0.5702 

0.5 

0.05 1.0226 1.0226 

0.10 0.9668 0.9668 

0.20 0.8545 0.8545 

0.33 0.7021 0.7021 

0.50 0.5703 0.5703 

 

From Tables 3.5-6, it can be observed that results are very satisfactory when 

functionally graded material is almost homogeneous for 
310h   and 0.5

h

a
 . 

On the one hand, variation of normalized SIFs are shown in Figures 3.1-2 

with respect to / ( 2 )l l c  for / 1,  10, 100l a   where l b a  . Results are also 

printed in Table 3.7. The parameter / ( 2 )l l c is a measure of crack period with 

respect to crack length. For very closely spaced cracks / ( 2 ) 1l l c   where as for 

widely spaced cracks (the limiting case being single crack) / ( 2 ) 0l l c  . 
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Table 3.7: Comparison of *( )k a  and *( )k b for 0.5
h

a
  

310h   / 1l a    / 10l a    

 

/ 100l a   

 

 

/ ( 2 )l l c  *( )k a  *( )k b  *( )k a  *( )k b  *( )k a  *( )k b  

1 0 0 0 0 0 0 

0.9434 0.1382 0.1382 0.1382 0.1382 0.1408 0.1382 

0.8333 0.2523 0.2523 0.2535 0.2523 0.2690 0.2523 

0.7143 0.3568 0.3568 0.3632 0.3568 0.4155 0.3568 

0.6250 0.4372 0.4372 0.4453 0.4372 0.5466 0.4372 

0.5000 0.5702 0.5702 0.5850 0.5712 0.8057 0.5686 

0.4386 0.6487 0.6485 0.6770 0.6511 0.9979 0.6453 

0.3333 0.7924 0.7904 0.8827 0.7958 1.4622 0.7929 

0.2000 0.9370 0.9354 1.1990 0.9782 2.2214 1.0331 

0.1111 0.9953 0.9889 1.3779 1.0973 2.6659 1.2068 

0 1.0345 1.0246 1.4637 1.1626 2.9129 1.2997 

 

The results obtained using this study are compared with those in Nied 

(1987)’s study which is a very similar crack problem. In our study, only difference is 

that an FGM layer is coated on top of the homogeneous surface. There is no FGM 

coating on the homogeneous half plane in Nied’s study. To compare the results FGM 

layer is again taken to be almost homogeneous 1

0

( 1)



 . 
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Figure 3.1: *( )k a  under uniform applied stress for 0.5
h

a
  and 

310h    

 

Figure 3.2: *( )k b  under uniform applied stress for 0.5
h

a
  and 

310h   
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Figures 3.1-2 agree very well with their counterparts found in Nied (1987). It 

is observed from figures and tables above that when the crack is near the free surface 

(
l

a
 increasing), normalized stress intensity factors become larger as crack period 

becomes larger. When a , results are very similar and the effect of crack length 

is minimized (periodic cracks in an infinite plane solution). For very large values of 

c  compared to l , the numerical solutions based on periodic crack formulations lose 

their accuracy. Because of that, the results at 0
2

l

l c



 are generated for single 

crack case for homogeneous material 1. For such spacing, periodic cracks behave 

practically like a single crack (integral equation D.4 for a single crack case is given 

in Appendix D). From this point of view, it is inferred that the numerical solution to 

periodic crack problem has some limitations when c approaches  .  

Furthermore, variation of normalized SIFs are shown in Figures 3.3-6 with 

respect to / ( 2 )l l c  for / 1,  10, 100l a  , 0.5h   and 0.5h   . Results are also 

printed in Tables 3.8-9. As it seen from those figures and tables, results are very 

similar to ones provided in Table 3.7 and Figures 3.1-2. Therefore, when 

nonhomogeneity of FGM varies, there is only slight variation in normalized SIFs.  

 

 

 

 

 

                                                           
1
  By solving the integral equation, 

2

2 3

1 1 6 4 1
( ) ( ) ( ),   a

( ) ( ) 4

b

a

x x
g t dt P x x b

t x t x t x t x
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Table 3.8: Comparison of *( )k a  and *( )k b for 0.5
h

a
  

0.5h   / 1l a    / 10l a    

 

/ 100l a   

 

 

/ ( 2 )l l c  *( )k a  *( )k b  *( )k a  *( )k b  *( )k a  *( )k b  

1 0 0 0 0 0 0 

0.9434 0.1382 0.1382 0.1382 0.1382 0.1409 0.1382 

0.8333 0.2523 0.2523 0.2539 0.2523 0.2722 0.2523 

0.7143 0.3568 0.3568 0.3632 0.3568 0.4236 0.3568 

0.6250 0.4372 0.4372 0.4455 0.4372 0.5592 0.4372 

0.5000 0.5703 0.5702 0.5878 0.5711 0.8277 0.5685 

0.4386 0.6490 0.6485 0.6829 0.6509 1.0272 0.6451 

0.3333 0.7932 0.7907 0.8975 0.7956 1.5099 0.7928 

0.2000 0.9381 0.9357 1.2289 0.9815 2.3017 1.0349 

0.1111 1.0000 0.9910 1.4160 1.1038 2.7664 1.2106 

0.0610 1.0274 1.0152 1.4794 1.1505 2.9233 1.2774 
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Figure 3.3: *( )k a  under uniform applied stress for 0.5
h

a
  and 0.5h    

 

Figure 3.4: *( )k b  under uniform applied stress for 0.5
h

a
  and 0.5h   
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Table 3.9: Comparison of *( )k a  and *( )k b for 0.5
h

a
  

0.5h    / 1l a    / 10l a    

 

/ 100l a   

 

 

/ ( 2 )l l c  *( )k a  *( )k b  *( )k a  *( )k b  *( )k a  *( )k b  

1 0 0 0 0 0 0 

0.9434 0.1382 0.1382 0.1382 0.1382 0.1407 0.1382 

0.8333 0.2523 0.2523 0.2531 0.2523 0.2653 0.2523 

0.7143 0.3568 0.3568 0.3631 0.3568 0.4060 0.3568 

0.6250 0.4372 0.4372 0.4452 0.4372 0.5316 0.4372 

0.5000 0.5701 0.5702 0.5821 0.5713 0.7792 0.5688 

0.4386 0.6484 0.6485 0.6704 0.6514 0.9626 0.6456 

0.3333 0.7916 0.7901 0.8654 0.7961 1.4045 0.7930 

0.2000 0.9358 0.9350 1.1637 0.9741 2.1248 1.0307 

0.1111 0.9903 0.9866 1.3328 1.0893 2.5449 1.2018 

0.0610 1.0145 1.0080 1.3904 1.1336 2.6889 1.2667 
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Figure 3.5: *( )k a  under uniform applied stress for 0.5
h

a
  and 0.5h     

 

Figure 3.6: *( )k b  under uniform applied stress for 0.5
h

a
  and 0.5h    

 

The influence of hβ on normalized stress intensity factors is shown in Tables 3.10-13 

and Figures 3.7-14. It is seen that for constant l/(l+2c) and h/a, as crack length, l/a is 
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increased, normalized stress intensity factor, k*(a) becomes larger. Moreover, if 

stiffness in FGM is decreased, normalized stress intensity factor, k*(a) increases for 

constant l/(l+2c) and h/a. On the other hand, one can see from Figures 3.8, 3.10, 3.12 

and 3.14, there is almost no change on normalized stress intensity factor, k*(b) while 

crack length is increased. 

Table 3.10: Comparison of k*(a) and k*(b) for a thick FGM layer under uniform 

loading for different nonhomogeneity parameters, hβ and for l/(l+2c)=0.5. 

h/a=0.9 

 

 

hβ=-0.5 

(μ1/μ0≈0.606)  

hβ=10
-3 

(almost 

homogeneous)  

hβ=0.5 

(μ1/μ0≈1.648) 

 

 

 

l/a k*(a) k*(b) k*(a) k*(b) k*(a) k*(b) 

1 0.5693 0.5702 0.5703 0.5702 0.5711 0.5702 

10 0.5745 0.5713 0.5850 0.5712 0.5955 0.5710 

20 0.5907 0.5709 0.6121 0.5706 0.6329 0.5704 

30 0.6140 0.5705 0.6427 0.5701 0.6702 0.5699 

40 0.6372 0.5701 0.6715 0.5698 0.7040 0.5695 

50 0.6592 0.5698 0.6980 0.5695 0.7347 0.5692 

60 0.6798 0.5695 0.7225 0.5692 0.7627 0.5690 

70 0.6991 0.5693 0.7452 0.5691 0.7887 0.5688 

80 0.7174 0.5692 0.7665 0.5689 0.8129 0.5687 

90 0.7346 0.5690 0.7866 0.5688 0.8356 0.5685 

100 0.7510 0.5689 0.8056 0.5686 0.8571 0.5684 
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Figure 3.7: *( )k a  under uniform applied stress for 0.9
h

a
  and l/(l+2c)=0.5  

 

Figure 3.8: *( )k b  under uniform applied stress for 0.9
h

a
  and l/(l+2c)=0.5   
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Table 3.11: Comparison of k*(a) and k*(b) for a thick FGM layer under uniform 

loading for different nonhomogeneity parameters, hβ and for l/(l+2c)=0.8. 

h/a=0.9 

 

 

hβ=-0.5 

(μ1/μ0≈0.606)  

hβ=10
-3 

(almost 

homogeneous)  

hβ=0.5 

(μ1/μ0≈1.648) 

 

 

 

l/a k*(a) k*(b) k*(a) k*(b) k*(a) k*(b) 

1 0.2821 0.2821 0.2821 0.2821 0.2821 0.2821 

10 0.2834 0.2821 0.2848 0.2821 0.2859 0.2821 

20 0.2855 0.2821 0.2874 0.2821 0.2890 0.2821 

30 0.2842 0.2821 0.2875 0.2821 0.2907 0.2821 

40 0.2839 0.2821 0.2887 0.2821 0.2936 0.2821 

50 0.2846 0.2821 0.2910 0.2821 0.2974 0.2821 

60 0.2861 0.2821 0.2940 0.2821 0.3017 0.2821 

70 0.2881 0.2821 0.2973 0.2821 0.3062 0.2821 

80 0.2905 0.2821 0.3007 0.2821 0.3107 0.2821 

90 0.2930 0.2821 0.3043 0.2821 0.3152 0.2821 

100 0.2956 0.2821 0.3079 0.2821 0.3197 0.2821 
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Figure 3.9: *( )k a  under uniform applied stress for 0.9
h

a
  and l/(l+2c)=0.8  

 

Figure 3.10: *( )k b  under uniform applied stress for 0.9
h

a
  and l/(l+2c)=0.8   
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Table 3.12: Comparison of k*(a) and k*(b) for a thin FGM layer under uniform 

loading for different nonhomogeneity parameters, hβ and for l/(l+2c)=0.5. 

h/a=0.5 

 

 

hβ=-0.5 

(μ1/μ0≈0.606)  

hβ=10
-3 

(almost 

homogeneous)  

hβ=0.5 

(μ1/μ0≈1.648) 

 

 

 

l/a k*(a) k*(b) k*(a) k*(b) k*(a) k*(b) 

1 0.5702 0.5702 0.5702 0.5702 0.5703 0.5702 

10 0.5834 0.5712 0.5850 0.5712 0.5866 0.5712 

20 0.6073 0.5707 0.6122 0.5706 0.6166 0.5706 

30 0.6358 0.5702 0.6428 0.5701 0.6491 0.5701 

40 0.6630 0.5699 0.6715 0.5698 0.6792 0.5697 

50 0.6882 0.5696 0.6980 0.5695 0.7069 0.5694 

60 0.7117 0.5693 0.7225 0.5692 0.7323 0.5692 

70 0.7335 0.5691 0.7453 0.5691 0.7559 0.5690 

80 0.7540 0.5690 0.7666 0.5689 0.7780 0.5688 

90 0.7733 0.5688 0.7867 0.5688 0.7988 0.5687 

100 0.7915 0.5687 0.8057 0.5686 0.8184 0.5686 
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Figure 3.11: *( )k a  under uniform applied stress for 0.5
h

a
  and l/(l+2c)=0.5   

 

Figure 3.12: *( )k b  under uniform applied stress for 0.5
h

a
  and l/(l+2c)=0.5   
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Table 3.13: Comparison of k*(a) and k*(b) for a thin FGM layer under uniform 

loading for different nonhomogeneity parameters, hβ and for l/(l+2c)=0.8. 

h/a=0.5 

 

 

hβ=-0.5 

(μ1/μ0≈0.606)  

hβ=10
-3 

(almost 

homogeneous)  

hβ=0.5 

(μ1/μ0≈1.648) 

 

 

 

l/a k*(a) k*(b) k*(a) k*(b) k*(a) k*(b) 

1 0.2821 0.2821 0.2821 0.2821 0.2821 0.2821 

10 0.2845 0.2821 0.2848 0.2821 0.2850 0.2821 

20 0.2874 0.2821 0.2874 0.2821 0.2874 0.2821 

30 0.2872 0.2821 0.2875 0.2821 0.2877 0.2821 

40 0.2880 0.2821 0.2887 0.2821 0.2894 0.2821 

50 0.2899 0.2821 0.2911 0.2821 0.2921 0.2821 

60 0.2924 0.2821 0.2940 0.2821 0.2954 0.2821 

70 0.2954 0.2821 0.2973 0.2821 0.2991 0.2821 

80 0.2985 0.2821 0.3008 0.2821 0.3028 0.2821 

90 0.3018 0.2821 0.3043 0.2821 0.3066 0.2821 

100 0.3051 0.2821 0.3079 0.2821 0.3105 0.2821 
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Figure 3.13: *( )k a  under uniform applied stress for 0.5
h

a
  and l/(l+2c)=0.8  

 

Figure 3.14: *( )k b  under uniform applied stress for 0.5
h

a
  and l/(l+2c)=0.8   



70 

 

Normalized stress intensity factors are presented in Table 3.14. It is seen that 

while crack length, l is getting larger, normalized stress intensity factors become 

smaller for constant crack period, 2c and normalized stress intensity factors are 

decreasing as stiffness in FGM increased. The values presented in Table 3.14 are 

graphically represented in Figures 3.15-16. 

 

Table 3.14: Comparison of k*(a) and k*(b) for different nonhomogeneity parameters 

hβ and for a thick FGM layer under uniform loading. 

h/a=0.9 

 

 

hβ=-1 

(μ1/μ0≈0.368)  

hβ=10
-3 

(almost 

homogeneous)  

hβ=1 

(μ1/μ0≈2.718) 

 

 

 

l/a k*(a) k*(b) k*(a) k*(b) k*(a) k*(b) 

1 0.9726 0.9843 1.0067 0.9987 1.0415 1.0131 

2 0.9381 0.9548 0.9888 0.9668 1.0405 0.9787 

3 0.8912 0.9096 0.9435 0.9153 0.9966 0.9210 

4 0.8365 0.8550 0.8840 0.8565 0.9320 0.8579 

5 0.7800 0.7971 0.8210 0.7967 0.8623 0.7963 

6 0.7260 0.7408 0.7609 0.7400 0.7960 0.7391 

7 0.6770 0.6894 0.7068 0.6886 0.7368 0.6877 

8 0.6339 0.6441 0.6598 0.6435 0.6858 0.6428 

9 0.5965 0.6050 0.6194 0.6045 0.6425 0.6040 

10 0.5643 0.5715 0.5850 0.5712 0.6059 0.5709 

11 0.5365 0.5428 0.5556 0.5426 0.5749 0.5424 
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12 0.5124 0.5182 0.5304 0.518 0.5483 0.5179 

13 0.4914 0.4967 0.5084 0.4967 0.5255 0.4966 

14 0.4729 0.4779 0.4892 0.4779 0.5054 0.4778 

15 0.4565 0.4613 0.4721 0.4612 0.4878 0.4612 

16 0.4417 0.4463 0.4568 0.4463 0.4719 0.4463 

17 0.4284 0.4328 0.4430 0.4328 0.4577 0.4328 

18 0.4162 0.4206 0.4305 0.4206 0.4447 0.4206 

19 0.4051 0.4093 0.4189 0.4093 0.4328 0.4093 

20 0.3948 0.3989 0.4083 0.3989 0.4218 0.3989 

21 0.3853 0.3893 0.3985 0.3893 0.4117 0.3893 

22 0.3764 0.3804 0.3893 0.3804 0.4022 0.3804 

23 0.3681 0.3720 0.3807 0.3720 0.3934 0.3720 

24 0.3604 0.3642 0.3727 0.3642 0.3851 0.3642 

25 0.3531 0.3568 0.3652 0.3568 0.3773 0.3568 

26 0.3463 0.3499 0.3581 0.3499 0.3700 0.3499 

27 0.3398 0.3434 0.3514 0.3434 0.3631 0.3434 

28 0.3337 0.3372 0.3451 0.3372 0.3566 0.3372 

29 0.3278 0.3313 0.3391 0.3313 0.3504 0.3313 

30 0.3223 0.3257 0.3334 0.3257 0.3445 0.3258 

31 0.3171 0.3205 0.3280 0.3205 0.3389 0.3205 

32 0.3121 0.3154 0.3228 0.3154 0.3335 0.3154 

33 0.3073 0.3106 0.3179 0.3106 0.3285 0.3106 

34 0.3028 0.3060 0.3132 0.3060 0.3236 0.3060 
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35 0.2984 0.3016 0.3087 0.3016 0.3189 0.3016 

36 0.2942 0.2974 0.3043 0.2974 0.3145 0.2974 

37 0.2902 0.2933 0.3002 0.2933 0.3102 0.2933 

38 0.2864 0.2894 0.2962 0.2894 0.3061 0.2894 

39 0.2827 0.2857 0.2924 0.2857 0.3022 0.2857 

40 0.2791 0.2821 0.2887 0.2821 0.2984 0.2821 

41 0.2757 0.2786 0.2852 0.2786 0.2947 0.2786 

42 0.2724 0.2753 0.2818 0.2753 0.2912 0.2753 

43 0.2692 0.2721 0.2785 0.2721 0.2878 0.2721 

44 0.2661 0.2690 0.2753 0.2690 0.2845 0.2690 

45 0.2631 0.2660 0.2722 0.2660 0.2813 0.2660 

46 0.2602 0.2631 0.2692 0.2631 0.2783 0.2631 

47 0.2574 0.2603 0.2664 0.2603 0.2753 0.2603 

48 0.2547 0.2575 0.2636 0.2575 0.2724 0.2575 

49 0.2521 0.2549 0.2609 0.2549 0.2696 0.2549 

50 0.2496 0.2523 0.2582 0.2523 0.2669 0.2523 

51 0.2471 0.2498 0.2557 0.2498 0.2643 0.2498 

52 0.2447 0.2474 0.2532 0.2474 0.2618 0.2474 

53 0.2424 0.2451 0.2508 0.2451 0.2593 0.2451 

54 0.2401 0.2428 0.2485 0.2428 0.2569 0.2428 

55 0.2379 0.2406 0.2462 0.2406 0.2545 0.2406 

56 0.2358 0.2384 0.2440 0.2384 0.2523 0.2384 

57 0.2337 0.2363 0.2419 0.2363 0.2500 0.2363 
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58 0.2317 0.2343 0.2398 0.2343 0.2479 0.2343 

59 0.2297 0.2323 0.2377 0.2323 0.2458 0.2323 

60 0.2278 0.2303 0.2357 0.2303 0.2437 0.2303 

61 0.2259 0.2284 0.2338 0.2284 0.2417 0.2284 

62 0.2241 0.2266 0.2319 0.2266 0.2398 0.2266 

63 0.2223 0.2248 0.2301 0.2248 0.2379 0.2248 

64 0.2205 0.2230 0.2283 0.2230 0.2360 0.2230 

65 0.2188 0.2213 0.2265 0.2213 0.2342 0.2213 

66 0.2172 0.2196 0.2248 0.2196 0.2324 0.2196 

67 0.2155 0.2180 0.2231 0.2180 0.2307 0.2180 

68 0.2139 0.2164 0.2214 0.2164 0.2290 0.2164 

69 0.2124 0.2148 0.2198 0.2148 0.2273 0.2148 

70 0.2108 0.2133 0.2183 0.2133 0.2257 0.2133 

71 0.2093 0.2118 0.2167 0.2118 0.2241 0.2118 

72 0.2079 0.2103 0.2152 0.2103 0.2226 0.2103 

73 0.2065 0.2088 0.2137 0.2088 0.2210 0.2088 

74 0.2050 0.2074 0.2123 0.2074 0.2195 0.2074 

75 0.2037 0.2060 0.2109 0.2060 0.2181 0.2060 

76 0.2023 0.2047 0.2095 0.2047 0.2167 0.2047 

77 0.2010 0.2033 0.2081 0.2033 0.2152 0.2033 

78 0.1997 0.2020 0.2068 0.2020 0.2139 0.2020 

79 0.1984 0.2007 0.2055 0.2007 0.2125 0.2007 

80 0.1972 0.1995 0.2042 0.1995 0.2112 0.1995 
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81 0.1960 0.1983 0.2029 0.1983 0.2099 0.1983 

82 0.1948 0.1970 0.2017 0.1970 0.2086 0.1970 

83 0.1936 0.1958 0.2004 0.1958 0.2074 0.1958 

84 0.1924 0.1947 0.1992 0.1947 0.2061 0.1947 

85 0.1913 0.1935 0.1981 0.1935 0.2049 0.1935 

86 0.1902 0.1924 0.1969 0.1924 0.2037 0.1924 

87 0.1891 0.1913 0.1958 0.1913 0.2026 0.1913 

88 0.1880 0.1902 0.1947 0.1902 0.2014 0.1902 

89 0.1869 0.1891 0.1936 0.1891 0.2003 0.1891 

90 0.1859 0.1881 0.1925 0.1881 0.1992 0.1881 

91 0.1848 0.1870 0.1914 0.1870 0.1981 0.1870 

92 0.1838 0.1860 0.1904 0.1860 0.1970 0.1860 

93 0.1828 0.1850 0.1894 0.1850 0.1960 0.1850 

94 0.1819 0.1840 0.1884 0.1840 0.1949 0.1840 

95 0.1809 0.1831 0.1874 0.1831 0.1939 0.1831 

96 0.1799 0.1821 0.1864 0.1821 0.1929 0.1821 

97 0.1790 0.1812 0.1854 0.1812 0.1919 0.1812 

98 0.1781 0.1802 0.1845 0.1802 0.1909 0.1802 

99 0.1772 0.1793 0.1836 0.1793 0.1900 0.1793 

100 0.1763 0.1784 0.1826 0.1784 0.1890 0.1784 
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Figure 3.15: *( )k a  under uniform applied stress for 0.9
h

a
  

 

Figure 3.16: *( )k b  under uniform applied stress for 0.9
h

a
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Furthermore, when nonhomogeneity parameter and FGM thickness are 

varied, stress intensity factors may change. In Table 3.15 and 3.16, solutions for a 

relatively thin FGM layer coated to the homogeneous material are given. The results 

are tabulated for different nonhomogeneity parameters. It is observed from the 

results that increasing period has little effect on normalized stress intensity factors 

for various h  values. It should be noted that in Table 3.15 and 3.16 when c  

or at 0
2

l

l c



, the result for 

310h   is obtained from single crack case since it is 

supposed that the cracks in that range behave like single crack and coating is almost 

homogeneous as it is mentioned above. Besides, another important point is that 

tendencies are regularly changing according material gradation. In other words, 

normalized stress intensity factors are increasing when h  is increased (increasing 

h  means homogeneous plane becomes stiffer compared to FGM). Tabulated 

results are graphically represented in Figures 3.17-3.20. Since the values are very 

close, only one data set is shown while plotting. 
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Table 3.15: Comparison of k*(a) and k*(b) for different nonhomogeneity parameters 

hβ and for a very thin FGM layer.
 2

 

h/a=0.1 

l/a=1 

 

hβ=-0.5 

(μ1/μ0≈0.606)  

hβ=10
-3 

(almost 

homogeneous)  

hβ=0.5 

(μ1/μ0≈1.648) 

 

 

 

l/(l+2c) k*(a) k*(b) k*(a) k*(b) k*(a) k*(b) 

1 0 0 0 0 0 0 

0.9434 0.1382 0.1382 0.1382 0.1382 0.1382 0.1382 

0.8333 0.2523 0.2523 0.2523 0.2523 0.2523 0.2523 

0.7143 0.3568 0.3568 0.3568 0.3568 0.3568 0.3568 

0.6250 0.4372 0.4372 0.4372 0.4372 0.4372 0.4372 

0.5000 0.5702 0.5702 0.5702 0.5702 0.5702 0.5702 

0.4386 0.6487 0.6485 0.6487 0.6485 0.6487 0.6485 

0.3333 0.7922 0.7903 0.7924 0.7904 0.7926 0.7905 

0.2000 0.9368 0.9353 0.9370 0.9354 0.9371 0.9355 

0.1111 0.9944 0.9884 0.9953 0.9889 0.9961 0.9892 

0 1.0330(*) 1.0236(*) 1.0344 1.0244 1.0355(*) 1.0251(*) 

 

 

                                                           
2 (*) In the last row of Tables 3.15, 3.17 and 3.19, *( )k a and *( )k b are calculated  for 

/ ( 2 ) 0.0065l l c  . Since it is not possible to find SIFs for the case of nonhomogeneous 

material combination at exactly / ( 2 ) 0l l c  . 
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Table 3.16: Comparison of k*(a) and k*(b) for different nonhomogeneity parameters 

hβ and for a very thin FGM layer. 

h/a=0.1 

l/a=1 

hβ=-2 

1

0

( 0.135)



  

 

hβ=-1 

1

0

( 0.368)



  

 

hβ=1 

( 1

0

2.718



 ) 

 

 

 

hβ=2 

( 1

0

7.389



 ) 

l/(l+2c) k*(a) k*(b) k*(a) k*(b) k*(a) k*(b) k*(a) k*(b) 

1 0 0 0 0 0 0 0 0 

0.9434 0.1382 0.1382 0.1382 0.1382 0.1382 0.1382 0.1382 0.1382 

0.8333 0.2523 0.2523 0.2523 0.2523 0.2523 0.2523 0.2523 0.2523 

0.7143 0.3568 0.3568 0.3568 0.3568 0.3568 0.3568 0.3568 0.3568 

0.6250 0.4372 0.4372 0.4372 0.4372 0.4372 0.4372 0.4372 0.4372 

0.5000 0.5702 0.5702 0.5702 0.5702 0.5702 0.5702 0.5702 0.5702 

0.4386 0.6486 0.6485 0.6486 0.6485 0.6488 0.6485 0.6488 0.6485 

0.3333 0.7915 0.7901 0.7920 0.7903 0.7928 0.7905 0.7930 0.7906 

0.2000 0.9364 0.9350 0.9367 0.9352 0.9372 0.9355 0.9374 0.9356 

0.1111 0.9901 0.9864 0.9932 0.9879 0.9967 0.9895 0.9975 0.9899 

0.0065 1.0259 1.0192 1.0311 1.0224 1.0363 1.0256 1.0375 1.0263 
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Figure 3.17: *( )k a for / 0.1h a   and / 1l a   

 

Figure 3.18: *( )k b for / 0.1h a   and / 1l a   
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Figure 3.19: *( )k a for / 0.1h a   and / 1l a   

 

Figure 3.20: *( )k b for / 0.1h a   and / 1l a   
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In Tables 3.17-18, a thin FGM coating on a homogeneous material is 

considered for different nonhomogeneity parameters. As discussed in Tables 3.15-

16, the results are very close for various h  values. For this reason, one data set is 

also shown in Figures 3.21-24. 

Table 3.17: Comparison of *( )k a  and *( )k b for different nonhomogeneity 

parameters h  and for a thin FGM layer. 

/ 0.5h a   

/ 1l a   

 

0.5h    

1

0

( 0.606)



  

 

310h   

(almost 

homogeneous)  

0.5h   

1

0

( 1.648)



  

 

 

/ ( 2 )l l c  *( )k a  *( )k b  *( )k a  *( )k b  *( )k a  *( )k b  

1 0 0 0 0 0 0 

0.9434 0.1382 0.1382 0.1382 0.1382 0.1382 0.1382 

0.8333 0.2523 0.2523 0.2523 0.2523 0.2523 0.2523 

0.7143 0.3568 0.3568 0.3568 0.3568 0.3568 0.3568 

0.6250 0.4372 0.4372 0.4372 0.4372 0.4372 0.4372 

0.5000 0.5701 0.5702 0.5702 0.5702 0.5703 0.5702 

0.4386 0.6484 0.6485 0.6487 0.6485 0.6490 0.6485 

0.3333 0.7916 0.7901 0.7924 0.7904 0.7932 0.7907 

0.2000 0.9358 0.9350 0.9370 0.9354 0.9381 0.9357 

0.1111 0.9903 0.9866 0.9953 0.9889 1.0000 0.9910 

0 1.0272(*) 1.0203(*) 1.0344 1.0244 1.0408(*) 1.0281(*) 
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Table 3.18: Comparison of k*(a) and k*(b) for different nonhomogeneity parameters 

hβ and for a thin FGM layer. 

h/a=0.5 

l/a=1 

hβ=-2 

1

0

( 0,135)



  

 

hβ=-1 

1

0

( 0,368)



  

 

hβ=1 

( 1

0

2,718



 ) 

 

 

 

hβ=2 

( 1

0

7,389



 ) 

l/(l+2c) k*(a) k*(b) k*(a) k*(b) k*(a) k*(b) k*(a) k*(b) 

1 0 0 0 0 0 0 0 0 

0.9434 0.1382 0.1382 0.1382 0.1382 0.1382 0.1382 0.1382 0.1382 

0.8333 0.2523 0.2523 0.2523 0.2523 0.2523 0.2523 0.2523 0.2523 

0.7143 0.3568 0.3568 0.3568 0.3568 0.3568 0.3568 0.3568 0.3568 

0.6250 0.4372 0.4372 0.4372 0.4372 0.4372 0.4372 0.4372 0.4372 

0.5000 0.5698 0.5702 0.5700 0.5702 0.5704 0.5702 0.5707 0.5702 

0.4386 0.6475 0.6484 0.6481 0.6484 0.6494 0.6485 0.6500 0.6486 

0.3333 0.7889 0.7891 0.7907 0.7897 0.7940 0.7911 0.7953 0.7917 

0.2000 0.9323 0.9337 0.9347 0.9346 0.9392 0.9361 0.9413 0.9366 

0.1111 0.9754 0.9798 0.9852 0.9843 1.0043 0.9929 1.0114 0.9961 

0.0065 1.0028 1.0054 1.0194 1.0156 1.0465 1.0313 1.0557 1.0362 
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Figure 3.21: *( )k a  for / 0.5h a   and / 1l a   

 

Figure 3.22: *( )k b for / 0.5h a   and / 1l a   
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Figure 3.23: *( )k a  for / 0.5h a   and / 1l a   

 

Figure 3.24: *( )k b for / 0.5h a   and / 1l a   
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Finally, the case of a thick FGM layer bonded to a homogeneous material is 

examined in Tables 3.19-20. The results are graphically shown in Figures 3.25-28. 

While FGM is getting thicker if it is stiffer than the homogeneous material 

1

0

( 0.606)



 , 1

0

( 0.368)



  and 1

0

( 0.135)



 , the decrease in the normalized stress 

intensity factors compared to 1

0

7.389



 , 1

0

2.718



 , 1

0

1.648



  and 1

0

1



  cases 

becomes more significant as it is seen in Tables 3.15-20.  
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Table 3.19: Comparison of *( )k a  and *( )k b for different nonhomogeneity 

parameters h  and for a thick FGM layer. 

/ 0.9h a   

/ 1l a   

 

0.5h    

1

0

( 0.606)



  

 

310h   

(almost 

homogeneous)  

0.5h   

1

0

( 1.648)



  

 

 

/ ( 2 )l l c  *( )k a  *( )k b  *( )k a  *( )k b  *( )k a  *( )k b  

1 0 0 0 0 0 0 

0.9434 0.1382 0.1382 0.1382 0.1382 0.1382 0.1382 

0.8333 0.2523 0.2523 0.2523 0.2523 0.2523 0.2523 

0.7143 0.3567 0.3568 0.3567 0.3568 0.3569 0.3568 

0.6250 0.4369 0.4372 0.4372 0.4372 0.4375 0.4372 

0.5000 0.5693 0.5702 0.5701 0.5702 0.5711 0.5702 

0.4386 0.6471 0.6483 0.6489 0.6485 0.6502 0.6487 

0.3333 0.7890 0.7896 0.7924 0.7904 0.7956 0.7912 

0.2000 0.9288 0.9336 0.9371 0.9354 0.9452 0.9372 

0.1111 0.9796 0.9828 0.9954 0.9889 1.0113 0.9950 

0 1.0146 (*) 1.0150(*) 1.0353 1.0244 1.0550(*) 1.0336(*) 
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Table 3.20: Comparison of k*(a) and k*(b) for different nonhomogeneity parameters 

hβ and for a thick FGM layer 

h/a=0.9 

l/a=1 

hβ=-2 

1

0

( 0.135)



  

 

hβ=-1 

1

0

( 0.368)



  

 

hβ=1 

( 1

0

2.718



 ) 

 

 

 

hβ=2 

( 1

0

7.389



 ) 

l/(l+2c) k*(a) k*(b) k*(a) k*(b) k*(a) k*(b) k*(a) k*(b) 

1 0 0 0 0 0 0 0 0 

0.9434 0.1382 0.1382 0.1382 0.1382 0.1382 0.1382 0.1382 0.1382 

0.8333 0.2523 0.2523 0.2523 0.2523 0.2523 0.2523 0.2523 0.2523 

0.7143 0.3564 0.3568 0.3566 0.3568 0.3570 0.3568 0.3572 0.3568 

0.6250 0.4361 0.4372 0.4366 0.4372 0.4378 0.4372 0.4383 0.4372 

0.5000 0.5665 0.5701 0.5684 0.5701 0.5720 0.5703 0.5736 0.5704 

0.4386 0.6423 0.6478 0.6455 0.6481 0.6516 0.6488 0.6542 0.6492 

0.3333 0.7776 0.7872 0.7854 0.7888 0.7985 0.7919 0.8036 0.7931 

0.2000 0.9048 0.9274 0.9208 0.9316 0.9535 0.9389 0.9699 0.9421 

0.1111 0.9366 0.9665 0.9644 0.9770 1.0273 1.0010 1.0580 1.0124 

0.0065 0.9582 0.9871 0.9955 1.0055 1.0731 1.0422 1.1093 1.0577 
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Figure 3.25: *( )k a for / 0.9h a   and / 1l a   

 

Figure 3.26: *( )k b for / 0.9h a   and / 1l a   
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Figure 3.27: *( )k a for / 0.9h a   and / 1l a   

 

Figure 3.28: *( )k b for / 0.9h a   and / 1l a   
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For this crack problem, loadings are also taken as proportional to powers of 

x ; 

0( ) ( ) ,  k=0, 1, 2, 3..kx a
P x

l



                           (226) 

Using the expression in (226), normalized SIFs are found and they are given 

in Tables 3.21-28. Such results can be used to construct solutions to more practical 

problems by using superposition. A sample geometry of problem for the linear crack 

surface traction is shown in Figure 3.29. In general, normalized SIFs at crack tip, b  

are greater than the ones at crack tip, a . (By appropriately combining these results, 

SIFs for more realistic loading cases, such as thermal loading can be obtained.) 

Moreover, as seen from Tables 3.23-24, 3.27-28, normalized SIFs have negative 

signs for some combinations of parameters. This means that at that specific location 

a compressive loading is applied and crack is closed. Such results are meaningful 

only if they are used as part of a superposition where overall SIF is positive. It is 

understood from Tables 3.21-28 that the effect of loading condition is much more 

significant when crack spacing is larger. 
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Figure 3.29: The geometry of plane when linear crack surface traction applied 
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Table 3.21: Comparison of *( )k a  and *( )k b under uniform crack surface traction 

0  for 0.5h   

 

/ 0.9h a   / 1l a    / 10l a    

 

/ 100l a   

 

 

/ ( 2 )l l c  *( )k a  *( )k b  *( )k a  *( )k b  *( )k a  *( )k b  

1 0 0 0 0 0 0 

0.9434 0.1382 0.1382 0.1382 0.1382 0.1420 0.1382 

0.8333 0.2523 0.2523 0.2545 0.2523 0.2780 0.2523 

0.7143 0.3569 0.3568 0.3648 0.3568 0.4355 0.3568 

0.6250 0.4375 0.4372 0.4488 0.4372 0.5769 0.4371 

0.5000 0.5711 0.5702 0.5955 0.5710 0.8571 0.5684 

0.4386 0.6502 0.6487 0.6945 0.6507 1.0656 0.6449 

0.3333 0.7956 0.7912 0.9194 0.7955 1.5708 0.7928 

0.2000 0.9452 0.9372 1.2677 0.9847 2.4016 1.0366 

0.1111 1.0113 0.9950 1.4643 1.1099 2.8879 1.2142 

0.0610 1.0401 1.0203 1.5377 1.1577 3.0463 1.2816 
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Table 3.22: Comparison of *( )k a  and *( )k b under linear crack surface traction 

0 ( )
x a

l



 for 0.5h   

 

/ 0.9h a   / 1l a    / 10l a    

 

/ 100l a   

 

 

/ ( 2 )l l c  *( )k a  *( )k b  *( )k a  *( )k b  *( )k a  *( )k b  

1 0 0 0 0 0 0 

0.9434 0.0007 0.1375 0.0007 0.1375 0.0007 0.1375 

0.8333 0.0045 0.2478 0.0046 0.2478 0.0031 0.2478 

0.7143 0.0126 0.3442 0.0132 0.3442 0.0065 0.3442 

0.6250 0.0235 0.4138 0.0234 0.4138 0.0099 0.4138 

0.5000 0.0571 0.5133 0.0534 0.5139 0.0406 0.5140 

0.4386 0.0863 0.5627 0.0839 0.5644 0.0936 0.5640 

0.3333 0.1498 0.6426 0.1711 0.6461 0.2752 0.6458 

0.2000 0.2215 0.7182 0.3270 0.7382 0.6288 0.7568 

0.1111 0.2536 0.7470 0.4198 0.7975 0.8470 0.8363 

0.0610 0.2678 0.7595 0.4542 0.8204 0.9204 0.8669 
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Table 3.23: Comparison of *( )k a  and *( )k b under parabolic crack surface traction 

2

0 ( )
x a

l



for 0.5h   

 

/ 0.9h a   / 1l a    / 10l a    

 

/ 100l a   

 

 

/ ( 2 )l l c  *( )k a  *( )k b  *( )k a  *( )k b  *( )k a  *( )k b  

1 0 0 0 0 0 0 

0.9434 0.0000 0.1357 0.0000 0.1367 0.0000 0.1367 

0.8333 0.0001 0.2435 0.0001 0.2435 -0.0002 0.2435 

0.7143 0.0004 0.3320 0.0005 0.3320 -0.0025 0.3320 

0.6250 0.0014 0.3918 0.0010 0.3918 -0.0089 0.3918 

0.5000 0.0127 0.4691 0.0083 0.4694 -0.0146 0.4696 

0.4386 0.0272 0.5039 0.0214 0.5050 0.0037 0.5053 

0.3333 0.0634 0.5569 0.0673 0.5593 0.0953 0.5593 

0.2000 0.1069 0.6050 0.1583 0.6162 0.2975 0.6259 

0.1111 0.1266 0.6229 0.2145 0.6521 0.4268 0.6729 

0.0610 0.1354 0.6307 0.2352 0.6660 0.4709 0.6912 
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Table 3.24: Comparison of *( )k a  and *( )k b under cubic crack surface traction 

3

0 ( )
x a

l



for 0.5h   

 

/ 0.9h a   / 1l a    / 10l a    

 

/ 100l a   

 

 

/ ( 2 )l l c  *( )k a  *( )k b  *( )k a  *( )k b  *( )k a  *( )k b  

1 0 0 0 0 0 0 

0.9434 0.0000 0.1360 0.0000 0.1360 0.0000 0.1360 

0.8333 0.0000 0.2392 0.0000 0.2392 -0.0001 0.2392 

0.7143 -0.0003 0.3205 -0.0003 0.3205 -0.0013 0.3205 

0.6250 -0.0010 0.3722 -0.0013 0.3722 -0.0066 0.3722 

0.5000 0.0033 0.4341 0.0000 0.4343 -0.0181 0.4345 

0.4386 0.0119 0.4604 0.0068 0.4611 -0.0110 0.4614 

0.3333 0.0355 0.4988 0.0352 0.5005 0.0441 0.5006 

0.2000 0.0653 0.5328 0.0960 0.5401 0.1778 0.5461 

0.1111 0.0790 0.5453 0.1345 0.5647 0.2655 0.5780 

0.0610 0.0851 0.5507 0.1488 0.5743 0.2956 0.5905 
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Table 3.25: Comparison of *( )k a  and *( )k b under uniform crack surface traction 

0  for 0.5h   . 

 

/ 0.9h a   / 1l a    / 10l a    

 

/ 100l a   

 

 

/ ( 2 )l l c  *( )k a  *( )k b  *( )k a  *( )k b  *( )k a  *( )k b  

1 0 0 0 0 0 0 

0.9434 0.1382 0.1382 0.1381 0.1382 0.1395 0.1382 

0.8333 0.2523 0.2523 0.2525 0.2523 0.2597 0.2523 

0.7143 0.3567 0.3568 0.3613 0.3568 0.3945 0.3568 

0.6250 0.4369 0.4372 0.4418 0.4372 0.5146 0.4372 

0.5000 0.5693 0.5702 0.5745 0.5713 0.7510 0.5689 

0.4386 0.6471 0.6483 0.6593 0.6516 0.9258 0.6459 

0.3333 0.7890 0.7896 0.8447 0.7961 1.3464 0.7931 

0.2000 0.9288 0.9336 1.1269 0.9708 2.0300 1.0288 

0.1111 0.9796 0.9828 1.2872 1.0828 2.4300 1.1979 

0.0610 1.0023 1.0031 1.3419 1.1261 2.5715 1.2620 
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Table 3.26: Comparison of *( )k a  and *( )k b under linear crack surface traction 

0 ( )
x a

l



 for 0.5h   . 

 

/ 0.9h a   / 1l a    / 10l a    

 

/ 100l a   

 

 

/ ( 2 )l l c  *( )k a  *( )k b  *( )k a  *( )k b  *( )k a  *( )k b  

1 0 0 0 0 0 0 

0.9434 0.0007 0.1375 0.0007 0.1375 0.0008 0.1375 

0.8333 0.0045 0.2478 0.0045 0.2478 0.0035 0.2478 

0.7143 0.0126 0.3442 0.0136 0.3442 0.0073 0.3442 

0.6250 0.0234 0.4138 0.0249 0.4138 0.0113 0.4138 

0.5000 0.0567 0.5133 0.0559 0.5138 0.0392 0.5140 

0.4386 0.0855 0.5626 0.0838 0.5644 0.0846 0.5641 

0.3333 0.1478 0.6419 0.1574 0.6461 0.2377 0.6458 

0.2000 0.2155 0.7166 0.2848 0.7327 0.5315 0.7544 

0.1111 0.2404 0.7415 0.3612 0.7863 0.7121 0.8308 

0.0610 0.2516 0.7515 0.3877 0.8073 0.7761 0.8601 
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Table 3.27: Comparison of *( )k a  and *( )k b under parabolic crack surface traction 

2

0 ( )
x a

l



for 0.5h    

 

/ 0.9h a   / 1l a    / 10l a    

 

/ 100l a   

 

 

/ ( 2 )l l c  *( )k a  *( )k b  *( )k a  *( )k b  *( )k a  *( )k b  

1 0 0 0 0 0 0 

0.9434 0.0000 0.1367 0.0000 0.1367 0.0000 0.1367 

0.8333 0.0001 0.2435 0.0001 0.2435 -0.0001 0.2435 

0.7143 0.0004 0.3320 0.0007 0.3320 -0.0018 0.3320 

0.6250 0.0014 0.3918 0.0019 0.3918 -0.0067 0.3918 

0.5000 0.0125 0.4691 0.0115 0.4693 -0.0102 0.4696 

0.4386 0.0269 0.5038 0.0242 0.5049 0.0058 0.5052 

0.3333 0.0625 0.5565 0.0636 0.5593 0.0835 0.5593 

0.2000 0.1038 0.6041 0.1383 0.6132 0.2521 0.6246 

0.1111 0.1192 0.6197 0.1847 0.6458 0.3593 0.6700 

0.0610 0.1261 0.6259 0.2010 0.6587 0.3976 0.6876 
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Table 3.28: Comparison of *( )k a  and *( )k b under cubic crack surface traction 

3

0 ( )
x a

l



for 0.5h    

 

/ 0.9h a   / 1l a    / 10l a    

 

/ 100l a   

 

 

/ ( 2 )l l c  *( )k a  *( )k b  *( )k a  *( )k b  *( )k a  *( )k b  

1 0 0 0 0 0 0 

0.9434 0.0000 0.1360 0.0000 0.1360 0.0000 0.1360 

0.8333 0.0000 0.2392 0.0000 0.2392 0.0000 0.2392 

0.7143 -0.0003 0.3205 -0.0002 0.3205 -0.0010 0.3205 

0.6250 -0.0010 0.3722 -0.0007 0.3722 -0.0053 0.3722 

0.5000 0.0033 0.4341 0.0024 0.4343 -0.0142 0.4345 

0.4386 0.0117 0.4603 0.0094 0.4611 -0.0077 0.4614 

0.3333 0.0350 0.4985 0.0341 0.5005 0.0391 0.5006 

0.2000 0.0634 0.5322 0.0841 0.5382 0.1509 0.5453 

0.1111 0.0741 0.5432 0.1160 0.5606 0.2237 0.5762 

0.0610 0.0790 0.5475 0.1273 0.5695 0.2498 0.5882 
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CHAPTER 4 

DISCUSSION 

In Chapter 3, calculations are made under uniform loading and different 

surface tractions by using the singular integral equation obtained in Chapter 2 and 

results are shown graphically and in tabular form. First of all, numerical results in 

literature for normalized SIFs are compared with studies similar to the current study. 

For this reason, results and figures are compared to those in Murakami (1987) and 

Nied (1987a). FGM coating is the only difference between these studies and, it is 

seen in Figures 3.1-2 and Tables 3.5-7 that there is a close agreement between these 

studies. It is understood that when the nonhomogeneity parameter is taken small 

enough, problem is reduced to that of a homogeneous layer containing periodic 

cracks. Because of this, comparison with literature is made easily. Furthermore, a 

numerical comparison using Ansys computer program is also made (Yıldırım, 2012) 

and it is seen that the results found in Ansys are very close to the ones provided in 

this study. It is also noted that crack period has a very significant effect on SIFs. 

When crack period approaches to 0, normalized stress intensity factors tend to 0. 

While crack period is increasing, normalized SIFs are increasing significantly. When 

c goes to  , the crack problem should be treated as a coated homogeneous half plane 

containing single crack. For an uncoated homogeneous half plane, solution can be 

easily obtained and those results are shown in all tables by setting 
310h  . The 

influence of hβ on normalized stress intensity factors in Tables 3.10-13 and Figures 

3.7-14 shows that as crack length, l/a is increased and stiffness in FGM is decreased, 

normalized stress intensity factor, k*(a) becomes larger for constant l/(l+2c) and h/a. 
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In Figures 3.8, 3.10, 3.12 and 3.14, there is almost no change on normalized stress 

intensity factor, k*(b) while crack length is increased. It can be observed that crack 

tip, a is more critical than crack tip, b since it is closer to free surface. It is also seen 

in Table 3.14 and Figures 3.15-16 that while crack length, l is getting larger, 

normalized stress intensity factors become smaller for constant crack period, 2c and 

normalized stress intensity factors are decreasing as stiffness in FGM increased. 

Therefore, one can point out that the effect of crack period is decreased while crack 

length is getting larger. Another important point is that when the crack location is 

closer to FGM boundary, normalized SIFs are decreasing for a constant crack period, 

2c as seen in Figures 3.15-16 and Table 3.14. Then, calculations are carried out for 

different FGM thicknesses and nonhomogenities. These are tabulated in Tables 3.15-

20 and graphically shown in Figures 3.17-28. In the results, one observes that there is 

little difference on normalized SIFs while FGM thicknesses and nonhomogenities are 

varying. Yet, it is observed that while normalized SIFs are changing, they exhibit 

very clear trends according to the material gradation. To remember, periodic cracks 

are in homogeneous material and therefore it is the more critical part. That is to say, 

while homogeneous part is more rigid compared to the FGM coating, normalized 

SIFs are higher. When these two materials have the same properties, there is almost 

no difference from the above mentioned  studies in literature. The calculations are 

also carried out for crack surface pressures changing along x- direction. It is seen 

from Tables 3.22-24 and 3.26-28 that normalized SIFs are much more significant at 

the crack tip, b  since the crack surface pressure increases as x  gets larger. This can 

also be understood from Figure 3.29 that the pressure applied at crack tip, b  is 

considerably greater. On the other hand, for some cases there are negative SIF results 

at crack tip a  as one can see in Tables 3.23-24 and 3.27-28. This means that the tips 

of periodic array of cracks near the FGM layer and the free surface are under 

compressive loading although the applied loading seems to be opening the crack. 

This can be explained by considering the constraint on displacements in y direction. 

The symmetry line between two adjacent cracks behaves like a boundary fixed in y 

direction. As a result the layer of material lying between the crack and the symmetry 
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line is predominantly in a state of compressive stress. In other words material is 

being squeezed. Then, the interaction of this compressive stress with the constraining 

FGM coating, combined with the very weak opening action near crack tip a, (which 

is actually exactly zero at a) gives rise to some very small negative SIFs at a. Such 

negative stress intensity factors are not meaningful by themselves, but they can be 

used as a part of a superposition procedure. 
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CHAPTER 5 

CONCLUSION 

In this thesis, an FGM coated homogeneous half plane containing periodic 

cracks was considered. The problem’s importance, its place in literature and similar 

studies made up to now are mentioned in Introduction. In Formulation, the physical 

crack problem was modelled mathematically. By using Fourier transforms and 

Fourier series, first homogeneous part and then FGM coating were considered. The 

equations for stresses and displacements were derived and boundary conditions are 

applied in this section. The two sets of elasticity solutions were combined and 

singular integral equation was derived to solve the periodic crack problem.  After the 

integral equation was obtained, a computer program was created in fortran language. 

Then, numerical calculations were made for various values of crack period (2c), 

crack length (l), crack location (a), FGM layer thickness (h) and material gradation 

(β). Under uniform loading, some discussions were made and the highlights of the 

results can be listed as follows; 

 Under uniform loading, if nonhomogeneity is taken as sufficiently small 

(close to 0), crack problem reduces to homogeneous half plane containing 

periodic cracks, 

 While crack period increases, normalized SIFs increase under uniform 

loading for all h  values, 
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 As crack location is getting closer to FGM layer (
l

a
 increasing), normalized 

SIFs decrease significantly under uniform loading, 

 When FGM layer thickness and nonhomogeneity of FGM vary (
h

a
 and h  

varying, 
l

a
 constant), there is only a slight variation in normalized SIFs under 

uniform loading, 

 Under uniform loading, normalized SIFs are increasing as FGM becomes 

more compliant compared to homogeneous half plane, 

 Under linear, parabolic and cubic surface tractions, while crack spacing is 

getting larger ( 2c  increasing), normalized SIFs are increasing. 

To sum up, this study is similar in many respects to earlier studies in 

literature for instance, Nied (1987a). Even the numerical results do not differ much 

from those obtained for an uncoated half plane. In fact, the problem under 

consideration can be regarded as a transition between the two limiting cases, namely 

periodic crack problem in a homogeneous half plane with free surface and periodic 

crack problem in a homogeneous half plane with fixed surface as shown in Figure 

5.1. As 0h  , the results for free surface problem are recovered. As h   , 

FGM layer becomes stiffer compared to homogeneous half plane and SIFs decrease 

as one would expect in fixed surface problem (Solution to this problem is not found 

in literature). This thesis provides quantitative results for SIFs in this transition. 

Nevertheless, the work in this thesis lays foundation for future studies. For example, 

an FGM coated homogenoues half plane with imbedded periodic cracks under 

thermal loading can be studied by solving the conduction and thermal stress 

problems for the crack-free medium. 
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Figure 5.1: Geometry of periodic crack problem when homogeneous half plane with 

free surface (left) and with fixed surface (right) 
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APPENDIX A 

REQUIRED INTEGRALS  

By using Mathematica tool, following integrals can be taken: 

1 2 2

0

(1 ( 1) )
cos( ) ,

cnc
y

n

n

e
I e y dy



 


 



  
 

                                                            

(A.1)                                          

2 2 2 22 2

2 2 2 2 2 2 2

0

( ( ))( 1)
cos( ) ,

( ) ( )

cnc
y n nn

n

n n

c e
I ye y dy



      


   



    
  

 
     

(A.2)                                         

 

3 2 2

0

(1 ( 1) )
cos( ) ,

cnc
y

n

n

e
I e y dy



 


 

  
 

                                                            

(A.3)                                                                                       

2 2 2 22 2

4 2 2 2 2 2 2

0

( ( ))( 1)
cos( ) ,

( ) ( )

cnc
y n nn

n

n n

c e
I ye y dy



      


   

   
  

       (A.4)                                         

  

1 2 2

0

(1 ( 1) )
sin( ) ,

c cn
y n

n

n

e
II e y dy


 


 


  

 


                                              

(A.5)                                    

         

 

2 2

2 2 2 2 2 2 2

0

2 ( )( 1)
sin( ) (1 ( 1) ) ,

( ) ( )

c cn
y cn n n n

n

n n

c e
II ye y dy e


     


   


   

    
 

       

(A.6)                                          
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3 2 2

0

(1 ( 1) )
sin( ) ,

c cn
y n

n

n

e
II e y dy


 


 

 
 

                                                             (A.7)                                                                                              

2 2

4 2 2 2 2 2 2

0

2 ( )( 1)
sin( ) (1 ( 1) ) ,

( ) ( )

c cn
y cn n n n

n

n n

c e
II ye y dy e


     


   

 
     

 
   

(A.8)                                          

0 2 2

1
(cosh( ) sinh( )),i t

n n

n n

CI e d h t h t 
  

  







    


               

(A.9)                                         

            

( )

1 2 2
sgn( )(cosh( ) sinh( )),i t h

n n

n

CI e d i h t h t h t 
   

 



 



     
      (A.10)                                             

 

( )

2 2 2 2
(cosh( ) sinh( )),

( ) 2

i t h

n n

n n

i h t
CI e d h t h t 

  
  



 




    


     

(A.11)                                         

    

2
( )

3 2 2 2
(1 )(cosh( ) sinh( )),

( ) 2

i t h

n n n

n n

CI e d h t h t h t  
   

  



 



      


     

(A.12)                                          

3
( )

4 2 2 2( )

( 2 )sgn( )(sinh( ) cosh( )),
2

i t h

n

n n n

CI e d

i
h t h t h t h t

 


 


  



 



 


       


                                  (A.13)                                                               

( )

5 2 2 2

1 ( )
(1 cosh( ) sinh( )),

( )

i t h

n n

n n

i h t
CI e d h t h t

h t

 
  

   



 




     

       (A.14)                                          

( )

6 2 2 2

2

1

( )

1
( )(cosh( ) sinh( )),

2

i t h

n

n n

n n

CI e d

h t h t h t

 
 


 

 



 



 


    


                                (A.15)                                                 

                        

where cos( ) sin( ),i te t i t                                                                          (A.16)                                                               
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1

0

sin[ ( )]cosh[ ( )]

sinh( )

(coth[ ( )] coth[ ( )]
2 2 ,

4

x t c y
III d

c

t x iy t x iy
c c

c

 




 



 

 

    




                                                    (A.17)                                                                                        

2

0

2 2 2

2

sin[ ( )]cosh[ ( )]

sinh( )

(cs h[ ( )] csch[ ( )]
2 2 ,

8

x t c y
III y d

c

i y c t x iy t x iy
c c

c

 
 



 



 

 

    



                                                  

(A.18)                                         

                                     

 

3 2

0

sin[ ( )]cosh( )
,

sinh ( )

x t y
III c d

c

 
 






                                                                    (A.19)                                                                                 

4 2

2 2

2

( 2coth[ ( )] 2 coth[ ( )]
2 2

8

[( )(cs h[ ( )] ( ) csch[ ( )] ]
2 2 ,

8

t x iy c t x iy
c cIII

c

t x iy c t x iy t x iy t x iy
c c

c

 


 


     



        



            (A.20)                                          
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APPENDIX B 

SOLUTION OF THE RESULTING MATRIX 

11 12 13 14 15 16 11

21 22 23 24 25 26 22

31 32 33 34 35 36 33

41 42 43 44 45 46 44

51 52 53 54 1

61 62 63 64 2

.

0 00

0 00

a a a a a a bz

a a a a a a bz

a a a a a a bz

a a a a a a bz

a a a a c

a a a a c

    
    
    
    

     
    
    
    

                                                                

(B.1)                                         

  

                                        

 

Firstly, solution for 3 4 and b b is made in terms of 1 2 and b b . 

51 1 52 2 53 3 54 4 0,a b a b a b a b                                                                                   (B.2)                                                                                                                

61 1 62 2 63 3 64 4 0,a b a b a b a b                                                                                   (B.3)                                                                                                                  

  

54 61 51 64 1 54 62 52 64 2
3

54 63 53 64 54 63 53 64

( ) ( )
,

a a a a b a a a a b
b

a a a a a a a a

 
  

 
                                                        (B.4)                                                                                           

or, 

3 331 1 332 2 ,b a b a b                                                                                                    (B.5)                                                                                                                                                          

where 

54 61 51 64
331

54 63 53 64

,
a a a a

a
a a a a





                                                                                            (B.6)                                                                                                                                                            
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54 62 52 64
332

54 63 53 64

,
a a a a

a
a a a a





                                                                                            (B.7)                                                                                                                                                                

and, 

53 61 51 63 1 53 62 52 63 2

54 63 53 64 54 63 5

4

3 64

( ) ( )
,

a a a a b a a a a b

a a a a a
b

a a a






 
 

 
                                                     (B.8)                                                                                                                                            

or, 

4 441 1 442 2 ,b a b a b                                                                                                    (B.9)                                                                                                                                                                                             

where 

53 61 51 63
441

54 63 53 64

,
a a a a

a
a a a a



 
                                                                                        (B.10)                                                                                                                                                                                   

53 62 52 63
442

54 63 53 64

.
a a a a

a
a a a a

 



                                                                                        (B.11)                                                                                                                                                                                   

Now, one can find 1 2 and c c in terms of 1 2 and b b . 

11 1 12 2 13 3 1 15 1 164 2 14 ,a c aa b a b a b za b c                                                             (B.12)                                                                                                                                               

21 1 22 2 23 3 2 25 1 264 2 24 .a c aa b a b a b za b c                                                             

(B.13)                                                                                                                                           

Substituting 3b  and 4b  into above equations, 

11 1 12 2 13 331 1 332 2 14 441 1 442 2 15 16 21 1,( ) ( )a b a b a a b a b a a b a b a c za c                     (B.14)                                                                                                    

21 1 22 2 23 331 1 332 2 24 441 1 4 1 242 5 26 22 2 .( ) ( )a b a b a a b a b a a b a b a c c za                   (B.15)                                                                                                  

Now, solving for 5 6 and b b , 

551 1 552 2 553 1 5541 2 ,c a b a b a z a z                                                                            (B.16)                                                                                                                                                         
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2 661 1 662 2 663 1 664 2 ,c a b a b a z a z                                                                           (B.17)                                                                                                                                                              

where 

16 21 11 26 16 23 331 13 26 331 16 24 441 14 26 441

16 25

5 1

5

5

1 26

( )
,

a a a a a a a a a a a a a a a a

a a
a

a a

    



                (B.18)                                                                                                  

16 22 12 26 16 23 332 13 26 332 16 24 442 14 26 442

16 25

5 2

5

5

1 26

( )
,

a a a a a a a a a a a a a a a a

a a
a

a a

    



              (B.19)                                                                                                   

26

16 25

53

1 6

5

5 2

,
a

a
a a a a




                                                                                         (B.20)                                                                                                                                                                                      

16

16 25 15

55

26

4 ,
a

a a a a
a


                                                                                             (B.21)                                                                                                                                                                                        

15 21 11 25 15 23 331 13 25 331 15 24 441 14 25 441

16 2

6

5 6

61

15 2

( )
,

a a a a a a a a a a a a a a a a

a a a a
a 

     



            (B.22)                                                                                                   

15 22 12 25 15 23 332 13 25 332 15 24 442 14 25 442

16 2

6

5 6

62

15 2

( )
,

a a a a a a a a a a a a a a a a

a a a a
a 

 




   
           (B.23)                                                                                                   

25

16 25 15

66

26

3 ,
a

a a a a
a




                  

(B.24)                                                                                          

                                                                                               

15

16 25

64

1 6

6

5 2

.
a

a
a a a a




                                                                                          (B.25)                                                                                                                                                                                      

Then, solution for 1 2 and b b is made, 

31 1 32 2 33 3 3 35 1 364 2 34 ,a c aa b a b a b za b c                                                            (B.26)                                                                                                                                                   

41 1 42 2 43 3 4 45 1 464 2 44 .a c aa b a b a b za b c                                           (B.27)                                                                                     

Substituting 3b , 4b , 5b  and 6b  into above equations, 
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31 1 32 2 33 331 1 332 2 34 441 1 442 2

35 551 1 552 2 553 1 554 2 36 661 1 662 2 663 1 664 2 3,

( ) ( )

( ) ( )

a b a b a a b a b a a b a b

a a b a b a z a z a a b a b a z a z z

     

       
       (B.28)                                                                                           

41 1 42 2 43 331 1 332 2 44 441 1 442 2

45 551 1 552 2 553 1 554 2 46 661 1 662 2 663 1 664 2 4.

( ) ( )

( ) ( )

a b a b a a b a b a a b a b

a a b a b a z a z a a b a b a z a z z

     

       
       (B.29)                                                                                           

Now, solving for 1 2 and ,b b
 

1 2 3 41 11 12 13 14 ,b z z z z                                                                                 (B.30)                                                                                                                                                              

1 2 3 42 21 22 23 24 ,b z z z z                                                                               (B.31)                                                                                                                                                                

where 

42 43 332 44 442 45 552 46 662 35 553 36 663

32 33 332 34 442 35 552 36 662 45 553 46 663

41 43 331 44 441 45 551 46 661 32 33 332 34 442 35 552 36 662

3

1

1

1

3

( ( )( )

( )( ))

(( )( )

(

a a a a a a a a a a a a a

a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a

a a



      

     

        





3 331 34 441 35 551 36 661 42 43 332 44 442 45 552 46 662

,

)( ))a a a a a a a a a a a a a a a a      

  (B.32)                                                                                           

42 43 332 44 442 45 552 46 662 35 554 36 664

32 33 332 34 442 35 552 36 662 45 554 46 664

41 43 331 44 441 45 551 46 661 32 33 332 34 442 35 552 36 662

3

1

1

2

3

( ( )( )

( )( ))

(( )( )

(

a a a a a a a a a a a a a

a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a

a a



      

     

        





3 331 34 441 35 551 36 661 42 43 332 44 442 45 552 46 662

,

)( ))a a a a a a a a a a a a a a a a      

(B.33)                                                                                           

42 43 332 44 442 45 552 46 662

41 43 331 44 441 45 551 46 661 32 33 332 34 442 35 552 36 662

31 33 331 34 441 35 551 36 661 42 43 332 44 442 45 552 4 6 2

13

6 6

( )
,

(( )( )

( )( ))

a a a a a a a a a

a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a


    

        

      





(B.34)                                                                                           

32 33 332 34 442 35 552 36 662

41 43 331 44 441 45 551 46 661 32 33 332 34 442 35 552 36 662

31 33 331 34 441 35 551 36 661 42 43 332 44 442 45 552 46 662

14

( )
,

(( )( )

( )( ))

a a a a a a a a a

a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a


   

       




       

  (B.35)                                                                                           
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35 553 36 663

32 33 332 34 442 35 552 36 662

31 33 331 34 441 35 551 36 661 42 43 332 44 442 45 552 46 662

35 553 36 663

32 33 332 34 442 35 552 36 662 45 553

1

46

2

(( )(( )

( )

( )(

a a a a

a a a a a a a a a

a a a a a a a a a a a a a a a a a a

a a a a

a a a a a a a a a a a a




 
   

        



     



663

32 33 332 34 442 35 552 36 662 41 43 331 44 441 45 551 46 661

32 33 332 34 442 35 552 36 662 31 33 331 34 441 35 551 36 661

42 43 332 44 442 45 552 46 662

)))
,

(( )(( )

( ) ( )

( )))

a

a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a

a a a a a a a a a

       

        

   

(B.36)                                                                                           

35 554 36 664

32 33 332 34 442 35 552 36 662

31 33 331 34 441 35 551 36 661 42 43 332 44 442 45 552 46 662

35 554 36 664

32 33 332 34 442 35 552 36 662 45 554

2

46

2

(( )(( )

( )

( )(

a a a a

a a a a a a a a a

a a a a a a a a a a a a a a a a a a

a a a a

a a a a a a a a a a a a




 
   

        

 

    



664

32 33 332 34 442 35 552 36 662

41 43 331 44 441 45 551 46 661 32 33 332 34 442 35 552 36 662

31 33 331 34 441 35 551 36 661 42 43 332 44 442 45 552 46 662

)))
,

(( )

(( )( )

( )( )))

a

a a a a a a a a a

a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a

   

        

       
 

(B.37)                                                                                           

32 33 332 34 442 35 552 36 662

31 33 331 34 441 35 551 36 661 42 43 332 44 442 45 552 46 662

32 33 332 34 442 35 552 36 662

41 43 331 44 441 45 551 46 661

23

32 3

1

(( )( ))

(( )

(( )(

a a a a a a a a a

a a a a a a a a a a a a a a a a a a

a a a a a a a a a

a a a a a a a a a a a

 
   

       

   

    



3 332 34 442 35 552 36 662

31 33 331 34 441 35 551 36 661 42 43 332 44 442 45 552 46 662

,

)

( )( )))

a a a a a a a

a a a a a a a a a a a a a a a a a a

   

       

(B.38)                                                                                           

31 33 331 34 441 35 551 36 661 32 33 332 34 442 35 552 36 662

32 33 332 34 442 35 552 36 662

41 43 331 44 441 45 551 46 661 32 33 332 34 442 35 552 36 662

31

24

(( )( ))

(( )

(( )( )

(

a a a a a a a a a a a a a a a a a a

a a a a a a a a a

a a a a a a a a a a a a a a a a a a

a


        

   

      



 

 33 331 34 441 35 551 36 661 42 43 332 44 442 45 552 46 662

.

)( )))a a a a a a a a a a a a a a a a a      

(B.39)                                                                                           

Solving for 3b  and 4b ; 

31 1 32 2 33 3 4 43 3 ,b z z z z                                                                               (B.40)                                                                                                                                   
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41 1 42 2 43 3 4 44 4 ,b z z z z                                                                               (B.41)                                                                                                                             

where 

31 111 331 221 332 ,a a a a                                                                                            (B.42)                                                                                                                                                                                      

32 112 331 222 332 ,a a a a                                                                                            (B.43)                                                                                                                                                                                     

33 113 331 223 332 ,a a a a                                                                                            (B.44)                                                                                                                                                                                     

34 114 331 224 332 ,a a a a                                                                                            (B.45)                                                                                                                                                                                     

41 111 441 221 442 ,a a a a                                                                                            (B.46)                                                                                                                                                                                  

42 112 441 222 442 ,a a a a                                                                                            (B.47)                                                                                                                                                                                

43 113 441 223 442 ,a a a a                                                                                            (B.48)                                                                                                                                                                                   

44 114 441 224 442.a a a a                                                                                            (B.49)                                                                                                                                                                                   

And, 1 2 and c c can also be expressed as 

51 1 52 2 53 3 4 41 5 ,c z z z z                                                                                (B.50)                                                                                                                                                                      

61 1 62 2 63 3 4 42 6 ,c z z z z                                                                               (B.51)                                                                                                                                                                    

where 

51 111 551 221 552 553,a a a a a                                                                                   (B.52)                                                                                                                                                                         

52 112 551 222 552 554 ,a a a a a                                                                                  (B.53)                                                                                                                                                                           

53 113 551 223 552 ,a a a a                                                                                            (B.54)                                                                                                                                                                                     

54 114 551 224 552 ,a a a a                                                                                            (B.55)                                                                                                                                                                                     
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61 111 661 221 662 663,a a a a a                                                                                   (B.56)                                                                                                                                                                            

62 112 661 222 662 664 ,a a a a a                                                                                  (B.57)                                                                                                                                                                            

63 113 661 223 662 ,a a a a                                                                                            (B.58)                                                                                                                                                                                     

64 114 661 224 662.a a a a                                                                                            (B.59)                                                                                                                                                                                     

Remembering, 

1 1( ) ,

b

a

z g t Z dt                                                                                                       (B.60)                                                                                                                                                                                                  

2 2( ) ,

b

a

z g t Z dt                                                                                                       (B.61)                                                                                                                                                                                                 

3 3( ) ,

b

a

z g t Z dt                                                                                                       (B.62)                                                                                                                                                                                                 

4 1( ) .

b

a

z g t Z dt                                                                                                       (B.63)                                                                                                                                                                                                  
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APPENDIX C 

DERIVATION OF SINGULAR INTEGRAL EQUATION 

( )( )1

2

( )

2

1 1

2 (sgn( ) )( ) 2 )
( , ) ( ) (

(1 ) ( )

(sgn( ) )( ) 2 )
                                  )

( )

[2n

b c c c
c yi x t

yy c c

a

c c c
y c

c c

x

n n

i y e e c e
x y g t e e

e e

y e e c e
e d dt

e e

e C

  


 

  


 



   


 

  


 

  













   
  

 

   
 

 



 

2

0

( 3 2 )]cos( ),n n n

n

C x y  




   

(C.1)                                                                                           

( )( )1
1 2

( )

2

2 (sgn( ) )( ) 2 )
( , ) ( ) (

(1 ) ( )

(sgn( ) )( ) 2 )
                                  ) ,

( )

b c c c
c yi x t

yy c c

a

c c c
y c

c c

i y e e c e
x y g t e e

e e

y e e c e
e d dt

e e

  


 

  


 

   


 

  


  











   
  

 

   
 

 

 
(C.2)                                                                              

Considering the inner integral and let it be A ; 

( )( )

2

( )

2

(sgn( ) )( ) 2 )
(

( )

(sgn( ) )( ) 2 )
)

( )

c c c
c yi x t

c c

c c c
y c

c c

y e e c e
A e e

e e

y e e c e
e d

e e

  


 

  


 

  

  


  











  
 



  





                                         

(C.3)                                                                                           

Splitting up A  as 

0



 and 
0



 and also observing    in 

0
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0

( ) ( )

2

( )

2

( ) ( )

2

0

( )

((2sinh )( 1 ) 2 )
(

( 2sinh )

((2sinh )( 1 ) 2 ))

( 2sinh )

(( 2sinh )(1 ) 2 )
(

( 2sinh )

(( 2sinh )(1 ) 2 ))

(

c
i x t c y

c
y c

c
i x t c y

c
y c

c y c e
A e e

c

c y c e
e d

c

c y c e
e e

c

c y c e
e


 





 




  



  




  



  

  




 

 
 



  
 



  



  
 



  





22sinh )
d

c



                                                    

(C.4)                                                                                     

Consider first integral in A  as 1A  and letting    ; 

( ) ( )

1 2

0

( )

2

((2sinh )(1 ) 2 )
(

4sinh

((2sinh )(1 ) 2 ))

4sinh

c
i x t c y

c
y c

c y c e
A e e

c

c y c e
e d

c


 




  



  




 
  



 
 

 



                                                      

(C.5)                                                                                           

 

( ) ( )

2 2

0

( )

2

(( 2sinh )(1 ) 2 )
(

4sinh

(( 2sinh )(1 ) 2 ))

4sinh

c
i x t c y

c
y c

c y c e
A e e

c

c y c e
e d

c


 




  



  




 
 



  
 

  



                                                     

(C.6)                                                                                           

Combining 1A  and 2A ; 

( ) ( ) ( )

2

0

( ) ( ) ( )

1
( ((2sinh )(1 ) 2 )( )

4sinh

((2sinh )(1 ) 2 ))( ))

c y c i x t i x t

y c c i x t i x t

A e c y c e e e
c

e c y c e e e d

   

   

  


   



    

   

   

   



                     

(C.7)                                                                                           

note that 

2 sini ie e i       
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( ) ( )

2

0

( ) ( )

sin ( )
(sinh ( )

sinh

     ( )sinh ( ))

c y y c

c y y c y y

x t
A i c e e

c

y e e c c e e d

 

   






   



 

  


  

   



                                                       

(C.8)                                                                                           

where 

( ) ( ) 2cosh( )c y y ce e c y                                                                                   (C.9)                                                                                           

( ) ( ) 2sinh( )c y y ce e c y                                                                                  (C.10)                                                                                           

2coshy ye e y                                                                                               (C.11)                                                                                           

Then, 

2

0

sin ( )
2 (sinh cosh( )

sinh

       sinh sinh( ) cosh )

x t
A i c c y

c

y c c y c y d
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Thus,  
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Final form can expressed as; 
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APPENDIX D 

MANIPULATIONS ON RIZK’S SINGULAR INTEGRAL 

EQUATION 

Rizk’s singular integral equation, 

1 2
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Integral equation for homogeneous half plane containing single crack, 

                  (D.4) 
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