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ABSTRACT 
 

 

ARMA MODEL BASED CLUTTER ESTIMATION AND ITS EFFECT ON 
CLUTTER SUPRESSION ALGORITHMS 

 

 

Tanrıverdi, Güneş 

M.Sc., Department of Electrical & Electronics Engineering 

Supervisor   : Prof. Dr. Seyit Sencer Koç 

 

 

June 2012, 103 pages 

 

 

Radar signal processing techniques aim to suppress clutter to enable target 

detection. Many clutter suppression techniques have been developed to 

improve the detection performance in literature. Among these methods, the 

most widely known is MTI plus coherent integrator, which gives sufficient 

radar performance in various scenarios. However, when the correlation 

coefficient of clutter is small or the spectral separation between the target and 

clutter is small, classical approaches to clutter suppression fall short. 

In this study, we consider the ARMA spectral estimation performance in sea 

clutter modelled by compound K-distribution through Monte Carlo 

simulations.  The method is applied for varying conditions of clutter spikiness 

and auto correlation sequences (ACS) depending on the radar operation. The 

performance of clutter suppression using ARMA spectral estimator, which will 



vii 
 

be called ARMA-CS in this work, is analyzed under varying ARMA model 

orders. 

To compare the clutter suppression of ARMA-CS with that of conventional 

methods, we use improvement factor (IF) which is the ratio between the output 

Signal to Interference Ratio (SIR) and input SIR as performance measure.  In 

all cases, the performance of ARMA-CS method is better than conventional 

clutter suppression methods when the correlation among clutter samples is 

small or the spectral separation between target and clutter is small. 

 

Keywords: K-Distribution, Sea Clutter, Internal Clutter Motion (ICM), 

Autoregressive Moving Average (ARMA), Clutter Suppression, Improvement 

Factor   
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ÖZ 
 

 

ARMA MODEL TABANLI KARGAŞA TAHMİNİ VE KARGAŞA 
BASTIRMA ALGORİTMALARINA ETKİSİ 

 

 

Tanrıverdi, Güneş 

Yüksek Lisans, Elektrik & Elektronik Mühendisliği Bölümü 

Tez Yöneticisi   : Prof. Dr. Seyit Sencer Koç 

 

 

Haziran 2012, 103 sayfa 

 
 

Radar sinyal işleme teknikleri hedef tespitini mümkün kılmak için kargaşa 

sinyalini bastırmayı hedeflemektedir. Literatürde bulunan birçok kargaşa 

bastırma tekniği hedef tespit performansını arttırmak için geliştirilmiştir. Bu 

yöntemler arasında çeşitli senaryolar altında yeterli seviyede performans 

sağlayan MTI ardından eşevreli entegratör en bilinen yöntemdir. Fakat kargaşa 

sinyalleri arasındaki korelasyon az veya hedef ile kargaşa arasındaki spektral 

uzaklık küçük olduğu durumda, klasik kargaşa bastırma yaklaşımları yetersiz 

kalmaktadır. 

Bu çalışmada, Monte Carlo benzetimleri ile K-dağılımlı deniz kargaşasının 

ARMA spektral kestirim yöntemi ile modellenme performansı incelenmiştir. 

Yöntem radar çalışma ortamına bağlı olarak değişik kargaşa şekilsel yapılarına 

ve otokorelasyon dizilerine (ACS) için değerlendirilmiştir. Çalışma sırasında 
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ARMA-CS olarak adlandırılmış kargaşa bastırma amacıyla ARMA spektral 

kestirimini kullanan yöntemin performansı değişen ARMA model seviyelerine 

göre analiz edilmiştir. 

ARMA-CS yönteminin klasik yöntemlere göre kargaşa bastırma performansını 

karşılaştırmak için ölçü olarak çıkıştaki Sinyal ile Enterferans Oranı (SIR) ile 

girişteki SIR seviyesinin birbirlerine oranı olarak tanımlanan iyileştirme 

faktörü (IF) kullanılmıştır. Kargaşa sinyalleri arasındaki korelasyon az veya 

hedef ile kargaşa arasındaki spektral uzaklığın küçük olduğu durumlarda 

ARMA-CS yöntemi klasik yöntemlere göre daha yüksek başarım 

sağlamaktadır.   

 

Anahtar Kelimeler: K-Dağılımı, Deniz Kargaşası, ICM, ARMA, Kargaşa 

Bastırma, İyileştirme Faktörü 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

 

 

1.1. Radar Definition and Interference Suppression  

RADAR (RAdio Detection And Ranging) is a device that uses electromagnetic 

waves to remotely sense the position, velocity, angle and identifying 

characteristics of a target. Radar accomplishes this task by illuminating a 

volume of space with electromagnetic energy and sensing the returning echoes 

from environment.  

In the illuminated volume, not only the target but other objects causing 

interference are also present. Interference is defined as unwanted radar returns 

from environmental or manmade sources, such as noise, jamming and clutter.  

There are two sources of noise: the external noise and internal noise [1]. The 

external noise is received through the antenna of the radar and mainly caused 

by sun. The intrinsic noise which is also called thermal noise is the dominant 

noise component and is caused by conducting and semiconducting devices 

within the receiver. The noise in radar systems are modeled as a zero-mean, 

white, Gaussian process [1]. In literature, there are signal processing operations 

to increase the target signal level with respect to noise level; such as matched 

filtering [1]. 
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Jammers are man-made interference sources and can be separated into active 

jamming (noise transmitters) and passive jamming [1]. Jamming is used to 

degrade the ability of radar to detect targets. There are methods to suppress 

jamming signals in literature, such as adaptive beam forming [1].   

Clutter is defined as the electromagnetic returns caused by the environment. 

The source of clutter may be ground, weather or sea. It is a band-limited signal 

which has to be suppressed to increase the radar performance. 

Clutter filtering and Doppler processing are closely related techniques that are 

used to suppress the clutter signals [1]. Both techniques exploit the spectral 

separation of target and clutter, which is mainly caused by Doppler shift of 

moving echoes. The conceptual difference of the clutter filtering and Doppler 

processing is that the former implies the time domain, whereas the latter uses 

frequency domain [1]. 

Clutter filtering; mostly known as Moving Target Indication (MTI), is a high 

pass filtering technique used to suppress the constant components of the signal 

which is caused by stationary clutter. It is mostly implemented as a first order 

or a second order digital filter in time domain [1]. Depending on the radar 

platform and operation, different types of MTI filters are observed, such as 

airborne MTI (AMTI), ground MTI (GMTI) and combination of both types. 

Doppler processing generally implies the use of discrete Fourier transform 

(FFT) or some other spectral estimation techniques (correlogram, AR or 

ARMA… etc) to determine the spectrum of the radar return signal from a 

number of pulses [1]. The idea behind this technique is that the target signal 

and clutter signal are spectrally separated due to their Doppler shifts. 

Therefore, the clutter signal can be suppressed by the use of Doppler 

processing. 

In most pulsed radar systems, the clutter filtering and Doppler processing are 

implemented together [1]. 
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In order to suppress clutter, other spectral estimators can be used. By modeling 

the spectrum of clutter (or interference signal) with parametric spectral 

estimation methods (AR, MA or ARMA), the estimated spectrum can be 

obtained with model parameters. Modeling the spectrum with a parametric 

spectral estimator is equivalent to modeling the return signal as a parametric 

filter [1]. The clutter signal can be suppressed with the utilization of the 

parametric filter which is obtained by taking the inverse of parametric filter [1]. 

With the above idea, the ARMA spectral estimator, which requires small 

model order parameters than AR or MA methods for a certain signal, is used to 

develop a clutter suppressor, which is called as ARMA-CS, to suppress the 

interference signal in the thesis.     

1.2. Thesis Motivation 

In radar systems, many signal processing techniques have been developed to 

suppress the K-distributed clutter and increase the detection and estimation 

performance. For this purpose, the signal processing techniques mainly utilize 

the spectral separation between the target and clutter with Gaussian distributed 

clutter assumption. The performance of classical approaches fall short when 

the clutter distribution is changed, number of processed pulses is small, 

correlation among clutter samples is small or the spectral separation between 

the target and clutter is small.   

The main motivation of the work in the thesis is to investigate the performance 

of clutter suppression using ARMA spectral estimator, which will be called 

ARMA-CS in this work, in K-distributed clutter especially when the number of 

processed pulses, correlation among clutter samples and spectral separation 

between target and clutter are small. For generation of K-distributed clutter, sea 

clutter model which is well developed in literature is used. The sea clutter is 

assumed to have a K-distribution, since its shape parameter can be used to 

model different scenarios and experimental results confirm its applicability [2]. 
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The improvement factor obtained with ARMA-CS method is investigated and 

compared to those of the conventional techniques.  

1.3. Thesis Organization 

The main objectives of the thesis can be listed as follows: 

 Explaining the characteristics of K-distributed sea clutter 

 Analyzing the effects of antenna scanning modulation and internal 

clutter motion (ICM) on sea clutter 

 Examining the target signal and noise models 

 Investigating non-parametric and parametric spectral estimation 

techniques 

 Determining the RMS error to estimate the spectrum of K-distributed 

clutter signal with ARMA method for several model orders and clutter 

spikiness 

 Comparing the clutter suppression of ARMA-CS with that of 

conventional estimator with the measure of improvement factor 

There are totally 6 chapters in the thesis. Chapter 1 presents the radar 

terminology and interference suppression concepts and outlines the work done 

in the thesis. Chapter 2 explains the characteristics of K-distributed sea clutter, 

target signal and noise models. Chapter 3 covers the non-parametric and 

parametric spectral estimation techniques. Chapter 4 investigates the ARMA 

spectral estimation performance in modeling clutter PSD for different ARMA 

model orders. Chapter 5 gives the comparisons of ARMA-CS and conventional 

methods in clutter suppression via improvement factor (IF) as a performance 

measure. 
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CHAPTER 2 
 

 

BACKGROUND 

 

 

 

 

2.1. Problem Statement 

In this thesis, the main problem that is tried to be solved is to estimate the 

covariance matrix of the K-distributed clutter signal with autoregressive 

moving average (ARMA) spectral estimation method. Of course, the received 

signal is assumed to be contaminated by thermal noise. The covariance matrix 

estimate is then used in signal processing algorithms to suppress the clutter.  

For simulation purposes, K-distributed sea clutter signal and white Gaussian 

thermal noise, which is unavoidable in a practical radar system, are generated 

to see the ARMA spectral estimator performance in modeling sea clutter for 

different clutter parameters. The target echo is also generated to evaluate the 

effect of ARMA-CS method compared with several processors. For this 

purpose, in this chapter, first K-distributed sea clutter model, target echo model 

and noise signal models are introduced. 
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2.2. Sea Clutter 

Sea clutter is defined as the unwanted and unavoidable radar returns from the 

sea surface. For operational marine radar systems, the performance is limited 

by their ability to detect targets in the presence of sea clutter environment. 

Therefore, radar signal processing algorithms must be optimized for the level 

of conditions likely to be encountered in the sea environment. 

In modeling sea clutter, dynamics of sea and parameters of the radar system 

must be considered. The parameters affecting the measured backscatter from 

the sea surface are the carrier frequency, instantaneous bandwidth, antenna 

pattern and beam-width, thermal noise, pulse repetition frequency (PRF), 

polarization, angle of incidence and the range of the radar to the center of 

clutter. On the other hand, the dynamics of sea affecting the measured 

backscatter from the sea surface are the sea state, the speed, duration and 

direction of the wind, sea wave speed, the fetch and sea swell direction [2]. 

In the coarse level, sea clutter is characterized by the sea waves and sea state. 

Two kinds of waves are mostly encountered in the sea environment: the 

capillary waves and the gravity waves (swells). The capillary waves are mainly 

generated by the wind. This kind of waves is small in amplitude and very large 

in number, having short wavelengths (less than 2 centimeters). These waves 

have almost random motion and can be observed in the still weather. 

Moreover, the capillary waves do not have much impact energy [3].  

The capillary waves are superimposed on the gravity waves; which are 

accumulated by gravitational forces. At the beginning, these waves are 

generated by some meteorological phenomena (wind, storm… etc), but their 

properties are eventually determined by the sea state. Gravity waves have 

larger amplitudes and larger wavelength (more than 2 cm) than capillary 

waves. They are the main energy carrying factor of the sea clutter [3]. 
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The capillary waves superimposed on gravity waves and their interaction with 

the electromagnetic waves is illustrated in Figure 2-1. 

 

 

Figure 2-1: The Phenomenological Model of Sea Surface 

 

2.2.1. Characteristics of Sea Clutter 

In this section, sea clutter characteristics and modeling sea clutter are 

investigated. For this purpose, amplitude characteristics and correlation 

properties of sea clutter are first covered; then, numerical generation of sea 

clutter is discussed. 

2.2.1.1. Amplitude Characteristics 

Sea clutter returns are spatial and temporal stochastic processes which exhibit 

noise-like behavior [2]. Therefore, the characterization of amplitude behavior 

of sea clutter has utmost importance in optimum radar performance analysis.  

The experimental data show that although sea clutter obeys central limit 

theorem, for high resolution and low grazing angle radars, the amplitude 

variances are significantly larger than those predicted by Rayleigh Probability 

Density Function [2]. Hence, more realistic models that agree with the 

experimental data are developed. In thesis, K-distribution is used to model the 

amplitude statistics of sea clutter returns. However, for the sake of 
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completeness the distribution models used to generate sea clutter amplitude 

statistics in literature are given along with their cumulative distribution 

function (CDF) and probability density function (PDF) in Table 2-1 [2]. In this 

table, α  is the amplitude return of the signal and is defined in the range 

∞≤≤ α0 . 

 

Table 2-1: Models for Sea Clutter Amplitude Distributions 

Model CDF PDF 

 

Rayleigh 
( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−=

2

R ω
αexp1αF  ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

2

2 exp2
ω
α

ω
ααf R  

 

Log-Normal 
( ) ⎟

⎠
⎞

⎜
⎝
⎛ −

Φ=
σ

μαα ln
LF

 
( ) ( )

⎥
⎦

⎤
⎢
⎣

⎡ −
−= 2

2

2
lnexp

2
1

σ
μα

σαπ
αLf

 

 

Weibull 
( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−=

γ

ω
αα expexp1WF

 
( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

− γγ

ω
α

ω
α

ω
γα exp

1

Wf
 

 

K-

Distribution 

( ) ( ) ( )caKcFK ν

να
ν

α ⎟
⎠
⎞

⎜
⎝
⎛

Γ
−=

2
21

 

( ) ( ) ( )caKccf K 12
2

−⎟
⎠
⎞

⎜
⎝
⎛

Γ
= ν

να
ν

α
 

 

In Table 2-1, ω  is the scale parameter for Rayleigh and Weibull distributions; 

( )zΓ  is the Gamma function; ( )αln  is Normally distributed with mean μ and 

variance 2σ for Log-Normal distribution; γ  is the shape parameter for Weibull 

distribution; c is the scale parameter and ν  is the shape parameter for K-

Distribution; ( )zKν  is the modified Bessel function of the second kind of order 

ν and ( ) dttz
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As mentioned before, among these amplitude distribution models given in 

Table 2-1, K-Distribution is a good description of the sea clutter amplitude 

statistics and is the most promising model of sea clutter. The reason for this 

behavior is that log-normal and Weibull amplitude distributions do not include 

the spatial and temporal correlation in the sea clutter returns [2]. Hence, K-

Distribution for the sea clutter model is investigated in more detail in the 

following sub-sections. 

2.2.1.1.1. K-Distributed Sea Clutter Model 

The compound K-Distributed amplitude distribution for sea clutter returns was 

first proposed by Ward in 1981 [4]. The sea clutter amplitude returns are 

represented by two components; the slowly varying component (texture) and 

the fast varying component (speckle) [2]. 

The first component, which is the slowly varying component, is an underlying 

mean level in generalized Chi-Distribution. It is caused by the gravity waves 

on the sea surface and has a long temporal decorrelation period (order of 

seconds). The slowly varying component exhibits spatial correlation which is 

coupled to the temporal correlation [2].  

A model probability density function of slowly varying component is given in 

equation (2.1).  

 

( ) ( ) ( )22
122

exp2 ydydyf −
Γ

=
−

ν

νν

.     (2.1) 

Here, ( )νΓ  is the Gamma function, ν is the shape parameter and d  is a scale 

parameter such that ( )2
2

yE
d ν

=  where ( )2yE  is the mean clutter power. 
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The fast varying component, which is also termed the ‘speckle’ component, 

has Rayleigh distributed amplitude fluctuations. It is mainly caused by the 

capillary waves on the sea surface and has a fast decorrelation time (order of 

milliseconds). Due to fast decorrelation time, the speckle component can be 

considered as noise-like clutter and has spatial correlation corresponding in 

pulse length. Unlike the slowly varying component of sea clutter returns, 

speckle component can be decorrelated by frequency agility [2]. 

A model probability density function of speckle component is given in 

equation (2.2). 

 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

2

2 4
exp

2
|

yy
yf πααπα .     (2.2) 

Here, y  is the underlying average level determined by (2.1). 

Overall amplitude distribution of sea clutter returns is K-Distributed and is 

given in (2.3). 

 

( ) ( ) ( ) ( ) ( )∫
∞

−⎟
⎠
⎞

⎜
⎝
⎛

Γ
==

0
12

2| αα
ν

αα ν

ν

cKccdyyfyff K .   (2.3) 

Here, ( )zKν  is a thν  order modified Bessel function of second kind and 

dc π=  is a scale parameter. 

The spikiness of sea clutter returns are determined by the shape parameter ν , 

the value of which falls in the range ∞<≤ ν0 . However, in practice, ν  can be 

varied between 0.1, corresponding to very spiky amplitude data and 20 

corresponding to Rayleigh distributed amplitude returns [2]. 
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The power characteristic of return signal is determined by the scale parameter 

c . When the scale parameter becomes smaller in value, the sea clutter returns 

become more powerful [2]. The scale parameter can be estimated by (2.4). 

 

 
CP

c ν42 = .      (2.4) 

where CP  is the mean clutter power value which is determined by the radar 

parameters, radar-clutter geometry and mean clutter reflectivity value 0σ . The 

mean clutter reflectivity value is determined by Sittrop (SIT), the Georgia 

Institute of Technology (GIT), the Technology Service Corporation (TSC), and 

the Dockery (HYB) models [2]. 

2.2.1.1.2. Empirical Models for Shape Parameter of K-Distribution 

The shape parameter ν  of K-distributed sea clutter is a very crucial since it 

gives information about the amplitude statistics of the returns (the spikiness) 

and some of the correlation properties among clutter samples. For this reason, 

empirical formulas are developed so as to estimate the shape parameter [2]. 

Although the formulas for the prediction of the shape parameter are developed 

in X-band, they still have valuable information for amplitude statistics. The 

model is illustrated in (2.5) 

 

( ) ( ) ( ) kl −++Φ= δν log
8
5log

3
2log .    (2.5) 

Here ν  is the shape parameter, l  is the cross-range resolution, Φ  is the grazing 

angle in degrees ( 00 101.0 <Φ< ),δ  is the aspect dependency where; 

 3
1−=δ  for up or down swell directions, 
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 3
1=δ for cross-swell directions and, 

 0=δ  for no swell conditions and intermediate swell directions. 

k  is a parameter that accounts for the polarization effects with 1=k  for vertical 

polarization and 7.1=k  for horizontal polarization. 

This empirical model was proposed by Ward [5]. In this model, the shape 

parameter is related to grazing angle, cross-range resolution, the sea swell 

direction and polarization. Since the model was derived from the experimental 

data obtained by a radar having 30 ns pulse length, the model does not take the 

range resolution into account.  

Another empirical model which can be used for any radar range resolution is 

developed by Ryan and Johnson [6]. This model is a modified version of (2.5) 

and the pulse length variable PULSEτ  is included into the formula as shown 

below: 

 

( ) ( ) ( ) ( ) 8.05.5log50log
30

loglog
8
5log

3
2log Φ⎟

⎠
⎞

⎜
⎝
⎛
Φ

⎟
⎠

⎞
⎜
⎝

⎛
+−++Φ= PULSEkl

τ
δν  .  (2.6) 

The parameters in (2.6) are the same as those in (2.5). 

2.2.1.2. Correlation Properties of Sea Clutter 

As mentioned earlier, sea clutter returns contain both temporal and spatial 

correlation properties due to the structure of sea waves. Therefore, in the 

following sub-sections, a full treatment of the temporal and spatial correlation 

properties of K-distributed sea clutter model is given. 
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2.2.1.2.1. Temporal Correlation 

Sea clutter signal coming from a single resolution cell are band limited and 

generally not independent in time. This correlation property within a resolution 

cell is defined as temporal correlation of sea clutter. 

The composite model for sea clutter can be used to describe structure of 

temporal correlation within resolution cells. In a short time period, Rayleigh-

distributed reflections are always observed within a resolution cell (speckle 

component) which has a Chi-distributed underlying mean level [2].  

Although the speckle component of sea clutter returns has a short temporal 

decorrelation time (a few milliseconds), underlying mean level has a long 

decorrelation time [2]. Hence, the temporal decorrelation function has a fast 

drop-off which is followed by a slower decay [2,7]. 

For operational situations, the radar coherent processing intervals are very 

short such that the return clutter signal strength from a resolution cell remains 

constant. As a result, the temporal fluctuations within radar dwell time are 

neglected and the correlation property of sea clutter return is dictated by 

rapidly varying component [2]. 

Therefore, when the sample of time series from a resolution cell is removed 

before correlation is performed, the autocorrelation function of speckle 

component can be found [2]: 

 

∑

∑
−

=

−

=

∗
+

= 1

0

*

1

0
N

n
nn

N

n
knn

k

xx

xx
ACF .     (2.7) 

where ( )*⋅  denotes the complex conjugate; nx  is the complex received signal; 
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( )nnn jax θexp= .     (2.8) 

22
qninn xxa += .     (2.9) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

qn

in
n x

x
arctanθ .     (2.10) 

Here, na  and nθ  are the envelope magnitude and phase of the quadrature 

components, respectively, and subscripts i  and q  denote the in-phase and out-

of-phase quadrature components. 

It is known that when the autocorrelation function is real and even, the 

spectrum would become symmetrical around the zero Doppler (y-axis in 

rectangular coordinate system) [8]. If there is a Doppler shift in the spectrum, 

the autocorrelation function is obtained by multiplying the real function from 

zero Doppler shift case by a complex exponential  ( )Tj dω±exp  where dω  is 

the angular Doppler frequency and T  is the time lag [2]. Hence, for a 

symmetrical sea clutter spectrum which is a Gaussian function the spectral 

width and Doppler shift can be determined from autocorrelation function [2]. 

2.2.1.2.2. Spatial Correlation 

The spatial correlation of sea clutter returns is defined as cross correlation 

between two patches of sea in radial dimension when the temporal 

decorrelation is negligibly small [2]. 

The spatial correlation of sea clutter returns are mainly related to the surface 

profile of the sea. Over the sea surface, the microwave signals are primarily 

scattered by capillary waves (speckle), but the gravity waves which are the 

main source of spatial correlation causes variations in the mean power 

scattered from a given patch (modulating process) [2]. It is logical to reason 

that the degree of correlation of the modulating process between resolution 

cells depends on the spatial correlation of the sea surface and the decorrelation 
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distance of the process is the same with the decorrelation distance of the sea 

[2].  

In the compound model of sea clutter, the speckle component is assumed to be 

entirely uncorrelated from one range cell to the next [2]. 

Hence, the spatial correlation function is defined as the summation of a spike at 

the origin and a scaled version of the spatial autocorrelation function of the 

modulating process. For analysis and modeling purposes, spatial 

autocorrelation of mean clutter reflectivity rather than spatial autocorrelation of 

modulating component is preferred [2]. Mean clutter reflectivity can be 

expressed as follows: 

2
2

4 i
i

i a
y

==
π

τ .     (2.11) 

where iτ  is the average clutter reflectivity, iy  is local mean level of the clutter 

and 
2
ia  is the squared amplitude of the reflected signal averaged over 

successive pulses from thi  range cell. 

2.2.1.3. Simulation of Sea Clutter Returns 

As mentioned earlier, sea clutter has a non-Gaussian distribution, and 

generating correlated non-Gaussian random variables requires jointly specified 

probability density function (PDF) and covariance matrix. In literature, non-

Gaussian clutter samples can be generated using zero memory nonlinear 

(ZMNL) transformations applied on a Gaussian sequence or applying the 

theory of spherically invariant random process (SIRP) [2].    

In this thesis, SIRP technique is used to model sea clutter returns since the 

mean vector, a covariance matrix and a characteristic first-order PDF of a 

vector generated by theory of SIRP are uniquely determined [2]. 
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In SIRP approach, the sea clutter amplitude returns are modeled by a 

multiplication of two independent processes; 

( ) ( ) ( )tvtytx =  .     (2.12) 

where ( )tx is the amplitude return of sea clutter, ( )tv  is a zero mean complex 

correlated Gaussian process and ( )ty  is a real, non-negative, stationary non-

Gaussian process [2]. In (2.12), ( )ty  is the modulating component and has a 

longer decorrelation time than ( )tv  which is generated by complex white 

Gaussian process filtered by a linear system [2]. By this way, the amplitude 

and correlation properties of sea clutter returns are independently controlled by 

first order PDF of ( )yf  of the modulating process ( )ty  and by the Gaussian 

process ( )tv , respectively. 

In [9], ( )yf  is given for K-distributed random process as follows (generalized 

Chi-PDF); 

 

( ) ( ) ( )212 exp2 vyy
v

vyf v
v

−
Γ

= − .     (2.13) 

Finally, when decorrelation time of modulating component ( )ty  is long 

compared to time periods, the sea clutter returns are modeled by the product of 

a Gaussian process ( )tv  and a modulating random variate y  rather than a 

modulating random process ( )ty : ( ) ( )tyvtx =  which is the SIRP [2]. 

The complex multivariate PDF of the SIRP ( )kx  is as follows [2]; 

 

( ) ( ) ( ) ( ) ( )dyyf
y

mxMmxyMxf
T

NN
x ∫

∞ −
−−−

⎥
⎦

⎤
⎢
⎣

⎡ −−−
=

0
2

1
22

1

2
exp2π .  (2.14) 
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where x  is a 2N dimensional vector whose elements are N samples from in 

phase and quadrature components, m  is the mean vector of x  and M  is the 

covariance matrix of x . 

Because of the structure of x , the covariance matrix M  has the following form 

[2]; 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

SSSC

CSCC

MM
MM

M .      (2.15) 

Here, CCM  and SSM  are covariance matrices of in-phase and quadrature 

components; CSM  and SCM  are cross-covariance matrices. 

In [10], the conditions for a SIRP satisfied are given in detail and sea clutter 

returns obey these conditions.  

Sea clutter returns are generated by following a list of steps. With this method, 

a complex N-dimensional vector whose modulating component is assumed to 

be constant in a range cell but varies from cell to cell according to the PDF of 

the modulating component is obtained [2]. 

i. The modulating component y  is generated from equation (2.13); 

ii. An N-dimensional complex zero-mean white Gaussian random vector 

W  which has identity covariance matrix is generated; 

iii. N-dimensional spherically invariant complex random vector (SIRV) 

V  with the desired covariance matrix is generated using the linear 

transformation 

 

GWV = .     (2.16) 
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where 

2
1

EDG = .      (2.17) 

Here, E  is the matrix of normalized eigenvectors of covariance 

matrix    M and D  is the diagonal matrix of eigenvalues of M . 

iv. The envelope of N-dimensional vector V  is the Rayleigh distributed 

N-dimensional vector U  and the phase of N-dimensional vector V  is 

uniformly distributed. Finally, N-dimensional K-distributed amplitude 

return of sea clutter A  and N-dimensional complex sea clutter return 

X  are generated as:  

  

VyA = .      (2.18) 

yVX = .     (2.19) 

2.2.2. Clutter Autocorrelation Model 

In this section, the clutter covariance matrix is considered. The clutter 

covariance matrix determines the power spectral density of the clutter; and 

hence it also determines the performances of different processors. The clutter 

covariance matrix is mainly determined by two factors: the antenna scanning 

modulation, and the internal clutter motion. Depending on the parameters of 

the radar, either of the two factors may be the dominant cause of clutter 

covariance matrix. However, in some cases, both of the factors affect the 

clutter return signal received by the radar.   

2.2.2.1. Antenna Scanning Modulation 

In a mechanically scanned radar system, the decorrelation of clutter signal is 

mainly caused by the angular motion of the antenna. Due to the rotation, the 
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radar receives echoes from different patches of the scattering surface during a 

coherent integration interval (CPI), which causes a loss of correlation. 

By approximating a two way antenna pattern as a Gaussian function, which is 

mostly valid for 3-dB beam-width, the effects of antenna scanning can be 

analyzed. In (2.19), the two-way Gaussian pattern is given. 

 

 ( ) ( )2
2

2
0 2/exp θσθθ −= GG .     (2.19) 

where 2θσ  is the equivalent two-way standard deviation of the antenna power 

pattern (radians) and 0G  is the on-axis antenna power gain factor. As the 

antenna scans the patch of reflectors, the voltage of the echo signal from 

elemental reflector would have a Gaussian function. The time-variation of 

voltage signal from each individual elemental scatterer can be written as: 

 

( ) ( )22 2/exp σtKtE −= .      (2.20) 

where σ  may be termed the “standard deviation” of the time function and K  is 

a scale factor. σ  can be written as 

 

α
σ

σ θ 22
= .      (2.21) 

where α  is the rotation rate of the antenna in rad/sec. 

The echo received from the clutter is a combination of all individual scattered 

signals, which is deterministic except for their random scale factors, K . These 

scattered signals are superimposed since each have the same form. Hence, the 
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resulting clutter echo can be considered as a random process with the same 

time variation. The autocorrelation of clutter is the  

 

( ) ( )22 2/exp σtAtRc −= .     (2.22) 

The power spectral density of the clutter is obtained by taking the squared 

magnitude of the Fourier transform of (2.22), which is 

 

( ) ( )22
0 2/exp ωσωω −= CSc .     (2.23) 

where ωσ  is the standard deviation of the spectrum in rad/sec, and ω  is the 

radian frequency variable. We can relate ωσ  (rad/sec) to physical parameters of 

the radar as, 

 

22 θ
ω σ

ασ = .      (2.24) 

The standard deviation of the antenna pattern θ2σ  may be expressed in terms of 

the two-way half-power azimuth beam-width B2θ , which for a Gaussian pattern 

is: 

 

22 2ln8 θσθ =B .     (2.25) 

When the transmit and receive antennas are identical, the two-way half-power 

azimuth beam-width B2θ , can be expressed in terms of the transmit antenna 

half power azimuth beam-width Bθ  as 
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22
B

B
θ

θ = .      (2.26) 

Finally, with these results the spectrum width sσ  induced by antenna scanning 

(in Hz) can be determined as 

 

BB
s θ

α
πθ

α
π

σ 2ln
4

2ln8

2

== .    (2.26) 

The resulting covariance function of clutter will have the following structure; 
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2.2.2.2. Internal Clutter Motion 

Clutter is typically modeled as a delta function at zero Doppler velocity. 

However, because of motions of objects (e.g., trees, vegetation, etc) within a 

clutter cell, the clutter would have a non-zero bandwidth [11]. This 

phenomenon is termed internal clutter motion (ICM) and results in pulse to 

pulse decorrelation of clutter returns. 

For land clutter, mathematical model for the spectrum of moving clutter that 

fits well to the experimental data is given by 
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In this equation f  is the clutter Doppler shift (in Hz), λ  is the radar 

wavelength, ( ).δ  is the Dirac delta function and β  is the shape parameter 

which is invariant with carrier frequency and which depends on wind 

conditions. A table of values for β  can be found in [12]. The spectrum given 

in (2.28) has a stationary (DC) term plus a noise (AC) term having exponential 

distribution. In (2.28), the spectrum is normalized so that 

 

 ∫
∞

∞−

=1)( dffPc .       (2.29) 

The ratio r  between the DC and AC components of the ground scatter was 

shown to be a function of the carrier frequency and wind speed [11]; 

 

2.63log1.12log5.15log10 +−−= cfwr .    (2.30) 

where w  is the wind speed in miles per hour (mph),  cf  is the carrier 

frequency in MHz.  

By taking the inverse Fourier transform we can get the correlation function 

 

22
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r
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r

rrc .    (2.31) 

In literature, the power spectral density (PSD) of internal clutter motion (ICM) 

shows an exponential decay of the spectral shapes [12]. In this thesis, auto 
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correlation function (ACF) resulted from ICM is exponential. Therefore, the 

resulting covariance function of clutter will have the following structure: 
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where ρ  is the correlation coefficient. 

The ICM is effective in clutter echo when the radar is not rotating or when 

ICM is dominant over antenna scanning modulation. In this thesis, it is 

assumed that the internal clutter motion (ICM) of sea clutter is caused by 

winds; hence, sea clutter echo would have an exponential covariance structure 

like land clutter.  

2.2.2.3. Effect of Internal Clutter Motion on the Clutter Covariance 

When both the antenna scanning modulation and internal clutter motion are 

effective in clutter returns, the covariance matrix would be tapered. That is, the 

decorrelation effect of ICM results in an increase in the rank of clutter 

covariance matrix caused by antenna scanning modulation [11]. 

Since ICM is a temporal decorrelation and has an autocorrelation function, this 

decorrelation can be modeled as a covariance matrix taper in temporal 

covariance matrix caused by antenna scanning modulation.  

 

))(( Pcik TkirT −= .      (2.33) 

Here in (2.33), ijT is the thij −  entry of temporal covariance matrix and pT  is 

the pulse repetition interval.  
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Therefore, covariance matrix for the clutter echo with internal clutter motion is 

obtained from the Hadamard product of CR , which is the covariance matrix 

caused by antenna scanning modulation, with T  matrix for one antenna system 

[11]: 

 

TRR C o= .      (2.34) 

2.3. Target Echo Model 

A model for the target signal is required to calculate the improvement factor of 

different processors and ARMA-CS processor.  

In this section, firstly general information about the target signal distributions 

is given. Afterwards, the algorithm to generate target signals is described. 

2.3.1. Complex Target Distributions 

When an electromagnetic wave is incident upon a scattering object (or a 

target), some of the incident wave energy is absorbed by the object, and the 

rest is scattered in various directions. In fact, some of the incident energy is 

scattered back towards the radar. It can be assumed that the target collects all 

of the energy on the area σ  square meter and reradiates it isotropically [1]. The 

quantity σ  is called radar cross section (RCS) and it is a measure of the energy 

reradiated from the target. 

RCS is a measure of the reflectivity of a radar target. The notation used for 

RCS is RCS σ  and evaluated from: 

 

Q
P

=σ .      (2.35) 
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where P  is the power scattered back towards the radar and Q  is total power 

incident on the target.  

The RCS of simple geometric shapes can be determined easily by 

electromagnetic calculations. However, due to complex shapes of real radar 

targets (aircrafts, ships, etc.) it is not easy to determine the RCS by using 

electromagnetic solutions. The most common procedure is to break the 

complex target into simple component parts and combine the determined RCS 

values accordingly. This approach is mainly used to determine the mean RCS 

over an aspect angle of the target [13]. Since in an operational situation, the 

aspect angle of a target to the radar is unknown, RCS is best described by 

statistical models.   

In this thesis, Marcum (or Swerling 0) target model is used in simulations. 

However, for the sake of completeness, the models that are used in literature 

used for target statistics are given in Table 2-2 [13]. Moreover, in the following 

sub-sections, brief information about the target statistical models are also 

given. 
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Table 2-2: Statistical Models of Target Radar Cross Sections 

Model Density Function of RCS Applicability 

Marcum  One Possible Value. 

(Deterministic) 

Perfectly steady 

reflector 

 

 

 

 

Chi-square of 

degree 2m 
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. 
The distribution 

encompasses a class of 

target distributions. 

Degree becomes higher 

as coherent component 

of target becomes 

greater [1]. 

 

 

 

Swerling cases 1 

and 2 
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⎟
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exp1  for 0≥x . 

Random scatterers, no 

single one is dominant. 

Applies to complex 

targets having 

numerous scatterers. 
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 for 0≥x . 
Random scatterers, one 
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Applies to complex 

targets having 

numerous scatterers. 
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Table 2-3: continued 
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the sum of the rest. 
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xx
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Found to apply to many 

targets which have 

large mean-to-median 

ratios. 

 

In Table 2-2, x  is the RCS, m2  is the degree of freedom, x  is mean RCS, 2a  

is ratio of RCS of large reflection to the sum of the small, 0J  is the modified 

Bessel function, i  is 1− , s  is standard deviation of xln , 
−

xln  is mean 

distribution with xln  as the variable and ( )mΓ  is gamma function with 

argument m . 

In the subsections of this section, the applicability of these models is described 

[13]. 

2.3.1.1. Marcum Model 

In Marcum model, the target signal is assumed to have no fluctuation in time. 

However, this is not a realistic situation for radars and is only analyzed to see 

the detection performance of a receiver. 

2.3.1.2. Chi Square Distribution of Degree 2M 

Large class of targets can be modeled in chi-square distribution. In Table 2-2, 

the distribution given for chi-square model is written for m2  degrees of 
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freedom. It is known that as m  goes to infinity, the RCS fluctuations of target 

returns become more constrained and steady-target case is observed. 

2.3.1.3. Swerling Cases 1 and 3 

In Swerling 1 and 2 models, the target is assumed to be compose of many 

randomly distributed scatterers. These are often referred to as Rayleigh or 

exponential distributions in literature.  

The difference of the Swerling 1 and Swerling 2 RCS models is the correlation 

of signals during radar pulses. In Swerling 1, the statistics apply when the 

target signals are correlated within a pulse group; however, in case 2, the RCS 

pulse samples are independent on a pulse-to-pulse basis. In fact, due to narrow 

Doppler spectra of radar pulses, the Swerling 1 assumption is valid for most of 

the radar targets, unless the radar uses frequency diversity in pulse-to-pulse 

basis. In the latter case, Swerling 2 target RCS assumption is valid. 

2.3.1.4. Swerling Cases 2 and 4 

Swerling 3 and 4 cases are the approximation to the case of many small scatters 

and one dominant scatterer. When there is pulse-to-pulse independence case 4 

statistics is used; when scan-to-scan independence (dependence among several 

pulses) exists, case 2 statistics is used. 

2.3.1.5. Rice Distribution 

Rice distribution is used to model the RCS returns of small scatterers including 

a large reflector whose return is significant compared to the sum of all other 

small reflectors. In Table 2-2, the parameter 2a  is the ratio of the power from 

the large scatterers to the power of the rest. When 2a  converges to ∞ , steady 

target reflection occurs; when it converges to 0 , the distribution becomes 

Rayleigh. 
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2.3.1.6. Log-Normal Distribution 

Some of the target RCS distributions do not conform to any chi-square 

member. Some of the targets; such as satellites, missiles, ships, exhibit large 

values of RCS far more frequently than any other chi-square class. The RCS 

distributions of such targets are modeled as log-normal density functions which 

arise when the logarithm of a variate is normally-distributed. By using log-

normal distribution which has high tails of density function, large specular 

returns of the class of targets can be modeled. 

2.3.2. Target Signal Generation Algorithm 

Marcum, Swerling 1 and 2 target signals are generated by following a list of 

steps. In the simulations two assumptions are accepted. Firstly, it is assumed 

that any target is contained in one range cell. Secondly, targets are assumed to 

have constant velocity (constant Doppler phase). 

i. The Doppler shift is determined according to target velocity; 

 

λ
R

D
V

f
2

= .     (2.36) 

 where RV  denotes the radial velocity between radar and the target and 

λ  is the wavelength of the radar signal. 

ii. The target Doppler shift vector, P ,  is written for number of pulses in a 

coherent integration interval; 
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 where kT  denotes the pulse repetition interval (PRI). 
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iii. Temporal correlation of target signal is adjusted by the parameter ρ . 

For Marcum ρ  is 1, for Swerling 1 targets, ρ  is close to 1, and for 

Swerling 2 targets, ρ  is 0. 

iv. The target signal covariance matrix, M ,  is formed using correlation 

coefficient; 
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v. Doppler shift is added into the covariance matrix of target signal; 

 

)( H
T PPMM o= .     (2.39) 

where TM  is the target signal covariance matrix with Doppler shift, , 

and o  denotes element wise multiplication (Hadamard product). 

vi. A N-dimensional complex zero-mean white Gaussian random vector w  

which has identity covariance matrix is generated; 

vii. N-dimensional complex target signal vector x  with the desired 

covariance matrix is generated using the linear transformation 

 

Gwx = .     (2.40) 

where 

2
1

EDG = .      (2.41) 

Here, E  is the matrix of normalized eigenvectors of covariance matrix 

TM and D  is the diagonal matrix of eigenvalues of TM . 
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viii. Finally, the x  is multiplied with the square root of target signal power 

which is obtained from the target RCS.  

2.4. Noise Model 

The thermal noise in the system is assumed to be independent and identically 

distributed (i.i.d.) complex white Gaussian random vector.  

The noise signal with length N  in the system can be written by the following 

equations; 

 

QI jnnn += .       (2.42) 

{ } NxNn
H InnE 2σ= .      (2.43) 

Here, n  is a complex noise vector with length N , In  which is a zero-mean 

Gaussian random vector is the in-phase component of complex noise signal, Qn  

which is a zero-mean Gaussian random vector is the quadrature component of 

complex noise signal, 2
nσ  is the noise variance and NxNI  is an identity matrix of 

size NxN . 
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CHAPTER 3 
 

 

SPECTRAL ESTIMATION CONCEPTS 
 

 

 

 

3.1. Purpose of Spectral Estimation 

In radars, together with the thermal noise, clutter signals are the interference 

signal that limits the target detection and estimation performance. In spectral 

estimation problem, total power distribution over frequency of a signal is 

estimated from finite set of stationary data [14]. Spectral estimation techniques 

can be applied on radar signals in order to estimate clutter spectrum which is 

required to suppress the clutter returns. A good estimate of clutter spectrum can 

improve the radar performance substantially.  

3.2. Spectral Estimation 

The signals in radar applications have random nature, whose future values 

cannot be determined exactly. At this point, the random signals are assumed to 

be Wide Sense Stationary (WSS) which means that 1st and 2nd moments of the 

signal do not change in time (or in space as the case may be). Moreover, to 

estimate the autocorrelation function of the clutter random process, the 

assumption that it is ergodic is made to permit the substitution of time averages 

by ensemble averages. 
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In radar applications, the discrete-time signals ( ){ }K,2,1,0; ±±=ttx  (clutter 

signal, noise signal, target signal…etc) are random variables which are 

typically zero mean. The covariance function (autocovariance sequence) of 

( )tx  is defined as; 

 

( ) ( ) ( ){ }ktxtxEkr −= ∗ .      (3.1) 

The first definition of Power Spectral Density of a random sequence is the 

DTFT of the covariance sequence given by, 

 

( ) ( )∑
∞

−∞=
−=

k
kωjekrωφ .     (3.2) 

The inverse transform, which recovers ( )kr  from given ( )ωφ  is; 
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1 .     (3.3) 

From equation (3.1), it is seen that for 0=k , ( ) ( ){ }2txE0r =  which is the 

average signal power over frequencies is determined. This proves that ( )ωφ  can 

indeed be named as PSD.  

The second definition of Power Spectral Density ( )ωφ  is as follows; 

 

( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ∑
=

−

∞→

2

1

1lim
N

t

tωj

N
etx

N
Eωφ .    (3.4) 



34 
 

The second PSD definition is equivalent to the first assumption under the mild 

assumption that the covariance sequence is ( )kr  decays sufficiently rapidly that 

[14] 

 

( )∑
−=

∞→
=

N

NkN
kkr

N
01lim .      (3.5) 

As stated earlier, in spectral estimation the main problem is finite amount of 

data available. With this finite data, it is desirable to obtain a good estimate 

( )ωφ
∧

 to ( )ωφ . The method used for this purpose can be classified as: 

i. Non-parametric methods 

ii. Parametric methods 

3.2.1. Non-Parametric Spectral Estimation 

In this thesis, parametric spectral estimation techniques are used to suppress the 

clutter returns. However, for the sake of completeness, basic non-parametric 

spectral estimation techniques are briefly covered.  

Non-parametric spectral estimation methods, which are also known as classical 

spectrum estimation, are based on the Fourier transform of the data or its 

correlation function. It is named accordingly since the methods are applied 

directly to the observed data sequence and when the data sequence is long the 

spectral estimation performance of non-parametric methods are sufficient. 

There are two non-parametric methods that are commonly used: 

i. Periodogram, 

ii. Correlogram. 

During the development of spectral estimation techniques, these two methods 

are further developed to decrease the high variance at a cost of reduced 
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resolution of the estimates [14]. The most popular methods can be listed as 

follows; 

i. Blackman-Tukey Method 

ii. Bartlett Method 

iii. Welch Method 

In sub-sections of this section, basic information for these listed methods are 

given. Although all of the methods are very important and used widely in 

literature, more attention are given to periodogram and correlogram non-

parametric spectral estimation methods. 

 

3.2.1.1. Periodogram 

The periodogram spectral estimation method relies on the second definition of 

PSD given in equation (3.4). In the formula, since finite amount of data is used, 

the expectation and limiting operations cannot be performed.  

For finite amount of observations, ( ){ }N
ttx 1= , the periodogram method is used by 

the following formula; 

 

( ) ( )
2

1

1 ∑
=

−
∧

=
N

t

tωjetx
N

ωφ .     (3.6) 

The periodogram name comes from the fact that hidden periodicities are 

revealed [14]. In practical radar systems, the periodogram method is used for 

classical Doppler processing in the FFT blocks. 

In the thesis, to compare the spectral estimation performance of parametric 

methods with the non-parametric ones, periodogram is used to estimate the 

spectral analysis of the signal. 
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3.2.1.2. Correlogram 

The correlogram spectral estimation method is based on the first definition of 

PSD given in equation (3.2). However, since there exists finite amount of data 

and the covariance is unknown, the sum operation is taken within the finite set 

and estimation of covariance lag is used. The correlogram spectral estimator is 

shown in equation (3.7). 
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kωjekrωφ .      (3.7) 

In (3.7), ( )kr
∧

 is found from the finite set of observations ( ){ }N
ttx 1= . There are two 

common ways to estimate the covariance of the signal which are standard 

unbiased ACS estimator or standard biased ACS estimator, and the expressions 

of these estimators are given in equation (3.8) and equation (3.9), respectively. 
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*1   10 −≤≤ Nk .  (3.9) 

Since ( ) ( )krkr
∧∧

=− * , the negative lags are easily obtained from equations (3.8) 

and (3.9). In order to guarantee the positive semi-definiteness of covariance 

matrix and to decrease the variance at the cost of increasing the bias of the 

estimation, standard biased ACS estimator is preferred among the two [14]. 
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3.2.1.3. Blackman-Tukey Method 

Blackman-Tukey spectral estimator merely corresponds to weighted average of 

the periodogram [14]. It is developed to reduce the statistical variability of 

periodogram method. 

In (3.10), the formula for Blackman-Tukey method is shown; 
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Mk

kωjekrkωωφ .     (3.10) 

Here, ( )kw  is used to represent the windowing function which is even and zero 

outside the summation operation. Since ( )kw  weights the lags of the sample 

covariance sequence, it is also called a lag window. One of the facts for 

Blackman-Tukey spectral estimation is that if the lag window is positive semi-

definite, the estimated spectrum becomes positive for all frequencies [14]. 

Some of the common lag windows used for Blackman-Tukey spectral 

estimator method is shown in Table 3-1 [14]. 

 

Table 3-1: Common Windows used in Blackman-Tukey Method 

Window Name Equation Sidelobe 

Level (dB) 

Rectangular ( ) 1=kw . -13 

Bartlett ( ) ( )
M

kMkw −= . -25 

Hanning ( ) ( )M
kkw πcos5.05.0 += . -31 
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Table 3-2: continued 

Hamming ( ) ( )⎟⎠
⎞⎜

⎝
⎛

−+= 1cos46.054.0 M
kkw π . -41 

Blackman ( ) ( )

( )⎟⎠
⎞⎜

⎝
⎛

−+

⎟
⎠
⎞⎜

⎝
⎛

−+=

1
2cos08.0

1cos5.042.0

M
kπ

M
kπkw

. 
-57 

 

Blackman-Tukey method smoothes the high variances in periodogram spectral 

estimation method but at the cost of reducing resolution. 

3.2.1.4. Bartlett Method 

Like Blackman-Tukey algorithm, the Bartlett method seeks to reduce the 

variance of periodogram estimator by splitting up the available sample of N  

observations into MNL /=  subsamples of M  observations and average the 

individual periodograms. The sample splitting method is illustrated below. 
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The mathematical representation of the Bartlett method is as follows; 

 

( ) ( )( )tMjxtx j +−= 1   
Lj
Mt
,,1
,,1

K

K

=
= .   (3.11) 

denote the observation of j-th individual observation. Periodogram spectral 

estimation, which is shown in equation (3.12) is applied on this individual 

observation. 
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The Bartlett spectral estimation is finally given by 

 

( ) ( )∑
=

∧∧

=
L

j
j w

L
w

1

1 φφ .      (3.13) 

Since the Bartlett method is applied on data segments of length LNM /= , the 

resolution that can be reached is reduced by a factor L ; in other words, the 

resolution afforded should be on the order of M
1 . In return, the Bartlett 

method has a reduced variance than the periodogram method. 

3.2.1.5. Welch Method 

Like Blackman-Tukey and Bartlett methods, the Welch method is used to 

reduce the variance in periodogram spectral estimation method at the cost of 

reducing resolution. For this purpose, in Welch method, first the observation 

data segments which are allowed to overlap are generated like Bartlett method. 

Then, each data segment is windowed prior to computing the periodogram. For 

these reasons, the Welch method can be considered as a refined form of 

Bartlett method. The overlapping windows for Welch method is shown below. 
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The Welch method can be described by the following mathematical equations; 

( ) ( )( )tKjxtx j +−= 1   
Sj
Mt
,,1
,,1

K

K

=
= .    (3.14) 

where j  denotes the jth data segment. If MK = , the sequences do not overlap 

and the sample splitting of Bartlett method is obtained. If 2MK = , 50 % 

overlapping (or 75 % overlapping) which is commonly preferred [14] is 

obtained.  

The windowed periodogram corresponding to ( )tx j  is expressed in equation 

(3.15). 
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Here, P  which is required for the periodogram estimate to become 

asymptotically unbiased, denotes the power of temporal windows, ( ){ }tv  and is 

obtained as follows; 
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Finally, the Welch spectral estimate is found by averaging individual 

periodograms of sample segments. 
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The modifications in Bartlett method to obtain the Welch method are apparent. 

By allowing the overlap between the data segments more periodograms are 

determined; hence, the variance of spectral estimation is reduced. Moreover, 

the window in the periodogram computation gives more control over the bias 

property of spectral estimation. Furthermore, by arranging the weights of the 

temporal window (i.e. giving less weights to ends of the sample sequence), less 

correlation among overlapped sequences are made and the variance in spectral 

estimation is reduced [14]. 

3.2.2. Parametric Spectral Estimation 

In non-parametric spectral estimation methods covered previously, except 

stationarity of signals that are studied, no assumptions are made for its power 

spectral density. However, in parametric methods it is assumed that the power 

spectral density of the signal under study satisfies a certain functional form and 

the spectral estimation is carried out to determine parameters in the signal 

model. That is why parametric methods are also regarded as model-based 

methods. 

The parametric methods which are covered in this section are; 

• Autoregressive Moving Average (ARMA) 

• Autoregressive (AR) 

• Moving Average (MA) 

spectral estimation methods. Among these parametric estimation methods, it is 

appropriate to model spectra with sharp peak as AR model (i.e. narrowband 

signal), spectra with deep valleys as MA model (i.e. wideband signal) and a 

spectra with deep valleys and sharp peaks with ARMA model [15].   

Before giving basic information on these parametric spectral estimation 

methods, it is appropriate to define the rational transfer function of signals. 
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It is known that the PSD of many discrete-time random processes encountered 

in practice are well approximated by a rational transfer function model [15]. A 

rational PSD function of ωje−  is given in equation (3.18). 
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where *
kk γγ =−  and *

kk ρρ =− . It is assured in The Weierstrass Theorem from 

calculus that if m  and n  are chosen sufficiently large, any continuous PSD 

(and some discontinuous PSD) can be approximated by a rational PSD. That is, 

the rational PSDs form a dense set in the class of continuous spectra [14].  

Since power spectral density is a positive function, ( ) 0≥wφ , the factorization 

of the PSD can be used. 
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where 2σ  is a positive scalar, ( )wA  and ( )wB  are the polynomials; 
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Hence, expressing equations in (3.19) and (3.20) in z-domain and using 

spectral factorization theorem (the fact that the poles and zeros are in 

symmetric pairs about the unit circle), it can be shown that any signal having a 
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rational PSD can be obtained by filtering white noise of power 2σ  through the 

rational transfer function ( ) ( )
( )ωA

ωBωH = . 

 

( )→te     ( )ty→     (3.21) 

Or alternatively; 

 

( ) ( ) ( ) ( )teqBtyqA = .      (3.22) 

Here, ( )ty  is the filter output, ( )te  is the white noise with variance 2σ  and q  is 

the unit delay operator. With this PSD model, the spectral estimation is turned 

into a signal modeling problem. For different values of m  and n  given in 

(3.20), the name of the modeling changes. That is for 0=m  the model is AR, 

for 0=n  the model is MA and if m  and n  are both non-zero the signal model 

is called as ARMA. 

Hence, the PSD in normalized frequency and corresponding difference 

equations for ARMA, AR and MA processes are given in equations below. 
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Here, ( )fA  denotes ( )fjeA π2  and ( )fB  denotes ( )fjeB π2 . 

In the next subsections, the basic characteristics and of the ARMA signals, AR 

signals and MA signals are covered. 

( ) ( )
( )ω
ωω

A
BH =
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3.2.2.1. Autoregressive Moving Average Signals 

The ARMA process is generated by filtering white noise with a filter which has 

m  zeros and n  poles discussed in previous section. Since in the PSD of 

ARMA process the zeros and poles appear in symmetric pairs, there exists m2  

zeros and n2  poles. The ARMA filter shown in equation (3.21) can be 

expressed in z-domain as follows; 
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where 10 =a . The power spectrum density of ( )zφ  in z-domain can be written 

by assuming the power spectrum of white noise is 2σ . 
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Equation (3.25) can be expressed as follows; 
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1 σφ zB
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( ) ( ) ( ) ( ) 2* 1 σφ zBzHzAz = .     (3.27) 

By taking the inverse z-transform of both sides, the following relations are 

obtained. 
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( ) ( ){ } ( ) ( ){ }2*11 1 σφ zBzHFzAzF −− = .    (3.28) 
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It is already known that the filter ( )zH  is causal and stable, which means 

( ) 0=kh  for 0<k . Hence, the result of ARMA process becomes as follows; 
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which in matrix form becomes as follows; 
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 (3.31)  

After finding the autoregressive parameters ka  from p  linear equations in 

(3.31), the moving average parameters kb  can be determined from ka  values. 

Let kc  be the convolution between kb  and ( )kh −* . 

( )khbc kk −⊗= * .      (3.32) 



46 
 

Since 0=kc  for mk > , the sequence is known for all 0≥k . The causal part 

of kc  may be written by ( )[ ]+zC , 

 

( )[ ] ∑
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0k

k
k zczC .      (3.33) 

Similarly, the anticausal part of kc  is ( )[ ]−zC , 
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We know that kc  is the convolution of  kb  and ( )kh −* . Thus, 
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Multipliying ( )zC  with ( )zA 1* , we obtain the power spectrum of MA process. 

 

( ) ( ) ( ) ( ) ( )zBzBzAzCzP 11 ** == .    (3.36) 

Since ka  is zero for 0<k , ( )zA 1*  contains only positive powers of z . 

Therefore, 

 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( )zAzCzAzCzAzCzP 111 ***
−+ +== .  (3.37)  
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Since both ( )[ ]−zC  and ( )zA 1*  are polynomials that contain only positive 

powers of z , the causal part of ( )zP  is equal to; 

 

( )[ ] ( )[ ] ( )[ ]+++ = zAzCzP 1*      (3.38) 

Hence, although kc  is unknown for 0<k , the causal part of ( )zP  may be 

computed from the causal part of kc  and ka . Finally, using conjugate 

symmetry of ( )zP , we may determine ( )zP , i.e. the spectrum of MA process, 

for all z . 

3.2.2.2. Autoregressive Signals 

Autoregressive process is a type of ARMA process when the filter ( )zH  has n  

poles and no zeros. The estimation of parameters in AR signal can be found by 

solving a set of linear equations, which is called Yule-Walker equation set.  

For AR signals, the filter response becomes as follows; 

 

( ) ( )
( ) ∑

=

−+
== n

k

k
k za

b
zA
zBzH

1

0

1
.      (3.39) 

The output AR signal has the power spectrum as follows; 

 

( ) ( ) ( ) ( )
2

*

2
022

1
σσφ

zAzA
b

zHz == .    (3.40) 

The linear Yule-Walker equation set is obtained by solving equation (3.30) for 

0=m .  
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In matrix form, the Yule-Walker linear equation set can be written in 

augmented form as follows; 
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n
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As mentioned earlier, the AR estimation which is used extensively during 

parametric spectral estimation methods is conducted using a set of linear 

equations. The algorithm steps for determining the AR spectral estimation is as 

follows; 

i. Using the signal data vector ( )tx  and standard biased ACS estimator, 

the ACS ( )kr
∧

 is determined. 

 

( ) ( ) ( )∑
+=

−=
N

kt
ktxtx

N
kr

1

*1 .     (3.43) 

ii. The AR filter coefficients [ ]naaa L21=θ  are estimated from the 

set of equations 0=+ θnn Rr , which is written in matrix form as 

follows; 
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iii. Estimate the noise variance 2σ  from the estimated ACS and AR filter 

parameters. 

 

( ) ( )∑
=

=−+
n

k
k krar

1

20 σ .     (3.45) 

3.2.2.3. Moving Average Signals 

Moving Average process is a type of ARMA process when the filter ( )zH  has 

m  zeros and no poles. Like AR signals, MA signals are obtained by filtering 

white noise with FIR filter, shown in equation (3.46). 

 

( ) ( ) ∑
=

−==
m

k

k
k zbzBzH

0
.     (3.46) 

Thus, the power spectrum of MA signals become as follows; 

 

( ) ( ) ( ) ( )zBzBzHz 1*222 σσφ == .    (3.47) 

Here, 2σ  is the input noise variance. Although unlike the AR parameter 

estimation, MA parameter estimation is a non-linear one, the Yule-Walker 

equations can be written by writing 0=ka  and ( ) kbkh =  for any k  into 

equation (3.31). 

 



50 
 

( ) ∑
−

=
+=

km

l
lkl bbkr

1

*2σ .      (3.48) 

where ACS ( )kr  can be determined from standard biased ACS estimator given 

in equation (3.9). 

3.2.3. Model Order Selection Criteria 

The model order selection is one of the most important aspects of using 

parametric spectral estimation methods. As a general rule, if the order of the 

parametric method is too low, a highly smoothed spectrum having low 

resolution is obtained. On the other hand, if the order is too high, the estimation 

performance would degrade due to spurious low-level peaks in the spectrum 

and cause general statistical instability [16]. 

The performance of parametric spectral estimators can be determined by mean 

square error (MSE) of the residual error. The residual errors can vary with the 

order selection is done by minimizing the AIC (with respect to p,q, or both) 

given in equations (3.43), (3.44), and (3.45) for AR, MA and ARMA models, 

respectively. Accordingly, by investigating the residual errors for different 

orders, the model order can be selected. However, this approach may be 

imprecise and ill defined [16]. Hence, for AR, MA and ARMA spectral 

estimators, different methods are investigated in literature. 

For selecting model order criterion, two well known approaches have been 

proposed Akaike (1969, 1974). These approaches are: Final Prediction Error 

(FPE) Criterion and Akaike Information Criterion (AIC). 

These two approaches are originally developed for AR spectral estimator but 

AIC  can be developed for MA and ARMA spectral estimators. 

For an AR(p) spectral estimator where p is the model order, in FPE  the order is 

selected to minimize the performance index given as [16]: 
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1
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pN
pNpFPE wpσ .     (3.49) 

where N  is the input signal length, and 2
wpσ  is the estimated variance of the 

linear prediction error. The basic idea in performance index is to minimize the 

mean square error (MSE) for a one step predictor [16]. 

In AIC, for AR(p), MA(q) and ARMA(p,q) parametric spectral estimators, the 

minimization for selected order is based on the following relation for AR(p), 

MA(q) and ARMA(p,q) estimators given in equations (3.50), (3.51) and (3.52) 

respectively: 

 

( )
N
ppAIC wp

2ln 2 += σ .     (3.50) 

( )
N
qqAIC wp

2ln 2 += σ .     (3.51) 

( ) ( )
N

qpqpAIC wp
+

+=
2ln, 2σ .    (3.52) 

In all criteria, it can easily be seen that the term 2
wpσ  decreases, as the model 

orders increases. However, as the model order increases beyond a certain 

value, the 2nd terms in the equations become dominant and AIC increases. 

Hence, the optimum model order for a spectral estimator is obtained by 

searching for minimum AIC values. 

Finally, for AR spectral estimator, two more criteria for choosing model order 

can be found in literature: the minimization of description length (MDL) and 

the criterion autoregressive transfer (CAT) [16]. However, since these 

methods are not commonly used, they are not covered in this report.  
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CHAPTER 4 
 

 

SIMULATION RESULTS 
 

 

 

 

4.1. Simulation Assumptions 

 

In this chapter, the modeling performance of ARMA spectral estimator for 

different clutter parameters and ARMA model orders are investigated. In the 

simulations, the clutter parameters and ARMA model orders are varied to 

better examine the performances. In this section, the assumptions taken are 

given briefly. 

First of all, the simulations are presented in three sub-sections for different 

clutter covariance matrix types. These are exponential covariance matrix, 

Gaussian covariance matrix, and Gaussian covariance matrix tapered with 

internal clutter motion (hence the resulting covariance matrix is neither 

exponential nor Gaussian). 

An exponential ACF arises from internal clutter motion, [12], and the 

corresponding covariance matrix is defined by the single parameter, Eρ , which 

is called the correlation coefficient for exponential clutter. Since the internal 

clutter motion depends mainly on the environmental and radar parameters 

(carrier frequency, wind velocity, etc), Eρ  is varied between 0.9 and 0.99 in 

the simulations whenever internal clutter motion is dominant. For a radar 
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operating with 10GHz carrier frequency, the correlation coefficient 0.9 and 

0.99 corresponds to wind velocities of 10.3 miles per hour (mph) and 9.65 

mph, respectively [11]. 

A Gaussian ACF arises from the antenna scanning modulation, as mentioned in 

previous chapters. To generate Gaussian covariance matrix, the radar 

parameters are set as follows: 30 rpm antenna angular rotation speed, 5 kHz 

pulse repetition frequency (PRF) and a 3-dB antenna beam-width of 2°. The 

covariance matrix resulting from these radar parameters are determined using 

equations given in Chapter 2. The correlation coefficient resulting from these 

radar parameters equals to 0.99. 

The K-distributed clutter shape parameter is also varied in the simulations. 

That is, the shape parameter is varied between 0.1, corresponding to a spiky 

clutter and 10 corresponding to a non-spiky clutter.  

Finally, the CNR and number of processed pulses are varied to see its effect on 

the performance. The values of CNR and number of processed pulses used in 

the simulations are 20 dB and 64, respectively.  Moreover, the pole and zero 

orders of the ARMA model are taken as the same. 

4.2. Simulations for ARMA Model Order Selection 

As given in Chapter 2, clutter contains a lot of parameters that affect the 

estimation performance. For this purpose, we investigate the ARMA spectral 

estimation performance in modeling K-distributed clutter in the presence of 

thermal noise.  

To evaluate the performance of ARMA estimators with different orders, the 

root mean squared (RMS) error in estimations is determined. The RMS error is 

defined as: 
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( ) ( )( )∑
−=

Φ−Φ=
5.0

5.0

21
f

CLUTARMArms ff
N

E .    (4.1) 

where rmsE  is the RMS error over Monte Carlo runs, ARMAΦ  is the estimated 

PSD with ARMA method, CLUTΦ  is the original clutter PSD, N  is the number 

of Monte Carlo runs and f  is the normalized frequency point with respect to 

the PRF which can be written as PRFff d /=  where df  is the Doppler 

frequency in Hz and PRF  is the radar pulse repetition frequency in Hz. 

In the next sub-section, we investigate the performance of spectral estimators 

for clutter with exponential covariance matrix. 

• Clutter Signal Having Exponential ACS 

The exponential covariance matrix resulting from the internal clutter motion 

(ICM) has the structure given in equation (2.32). However, the correlation 

coefficient depends mainly on environmental conditions with stationary radar 

antenna assumption.  

Before conducting the simulations, the PSD of an exponential signal is 

investigated. Let ( )tx  be an exponential autocorrelation function (ACF) which 

can be written as follows: 

  ( ) ,tetx α−=  ∞<<∞− t , 0>α     (4.2) 

It is well known that the Fourier Transform of this signal gives the power 

spectral density (PSD) of an exponential ACF. 

 

( ) ∫
∞

∞−

−−= dteeX tjt ωαω .    (4.3) 
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∞

−−

∞−

− +=
0

0

dteedteeX jwtttjt αωαω .    (4.4) 

By taking the above integral, the following relation for Fourier Transform of 

exponential signal is obtained. 

 

( ) 22

211
ωα

α
ωαωα

ω
+

=
+

+
−

=
jj

X .   (4.5) 

From equation (4.5), it is observed that exponential signals can be modeled 

well by an AR(1) process.  

In order to see the modeling performance of signal with exponential ACS with 

AR(1) process, the PSD of a signal with exponential ACF is obtained with a 

correlation coefficient equal to 0.99. As given previously, for a radar operating 

at 10 GHz carrier frequency, this correlation coefficient corresponds to a wind 

velocity of 9.65 mph. The PSD is obtained by taking the forward FFT of the 

first row of the covariance matrix and is shown in Figure 4-1 for FFT length of 

1024 points and 64 coherent radar pulses.  
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Figure 4-1: Clutter PSD for Signal with Exponential ACS 

 

In order to see the PSD of a signal with exponentially decaying ACS, the figure 

is zoomed in Figure 4-2 around DC frequencies where most of the power is 

confined. 
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Figure 4-2: Clutter PSD for Signal with Exponential ACS, Zoomed Version 

In (4.7), we see that AR(1) process can be model the signal with an exponential 

decaying ACS. In Figure 4-3, the PSD obtained by AR(1) process and PSD of 

a signal having exponential ACS are plotted together. In this figure, the ripples 

observed in the PSD of the signal having exponential ACS is the results of the 

finite number of pulses, which is 64 in our case, used in the simulation. 

However, we observe that AR(1) process well models the signals with 

exponentially decaying  ACS. 
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Figure 4-3: Clutter PSD for Signal with Exponential ACS and AR(1) Process 

Modeling 

After the analytical investigation of a signal with exponential ACF, simulations 

are performed to see the ARMA modeling performance on signals having 

exponential ACF. Firstly, by making the number of processed pulses and the 

CNR values constant, we investigate the performance of the ARMA spectral 

estimator by varying the shape parameter from 0.1 to 10 for the K-distributed 

clutter. In the analysis, the CNR value is taken as 20dB, the number of 

processed pulses is 64, and the number of Monte Carlo runs is 1000. Moreover, 

the correlation coefficient for exponential clutter covariance matrix is taken as 

0.95, which corresponds to a wind velocity of 9.9 mph for a radar with 10 GHz 

carrier frequency. 
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Figure 4-4: ARMA Spectral Estimator Performance for Different Values of 

the Shape Parameters ( ν ) 

 

As seen from Figure 4-4, the RMS errors in modeling the spectrum of K-

distributed clutter changes for different clutter shape parameters. We can make 

two observations from Figure 4-4. Firstly, we see that the RMS error decreases 

with increasing clutter shape parameter. From [2], we know that when the 

shape parameter is small, the clutter signal is spiky and is not characterized by 

Gaussian distribution but with K-distribution. As the shape parameter 

increases, the clutter signal can be characterized by Gaussian distribution. 

Although ARMA model does not depend on the input signal distribution, we 

see that the ARMA spectral estimator performs better for Gaussian distributed 

signals. This is because the standard biased ACS equation given in (3.8) is 

optimum for signals having Gaussian distribution. This result is also related to 

the problem of having finite amount of data. Therefore, we can conclude that 
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although the ARMA spectral estimator is independent from the distribution of 

an input signal, due to the ACS estimation conducted by equation (3.8), 

ARMA spectral estimator performs better for Gaussian distributed signals.  

The second observation from Figure 4-4 is that as the ARMA model order 

increases, the RMS errors increase with ARMA model order for large shape 

parameters, whereas decrease for small shape parameters. We observe that the 

increase in the order of ARMA estimator performs differently for different 

shape parameters of signals having exponential ACS. When the shape 

parameter is small; i.e. when the signal is spiky and is not characterized by 

Gaussian distribution but with K-distribution, as the order of ARMA increases, 

the RMS error in the estimation decreases. This result can be interpreted as 

follows: since the standard ACS estimator is optimum for Gaussian distributed 

signals; the performance of the estimator is improved with increasing model 

order, due to the more accurate spectral estimation. However, when the shape 

parameter is large; i.e. the signal is Gaussian distributed, the RMS error 

increases with increasing ARMA model orders. This is due to the 

computational errors done in estimation with large ARMA model orders. 

After observing the ARMA spectral estimator performance on signal having 

exponential ACS with different shape parameters, the ARMA spectral 

estimator performance is investigated for changing environmental conditions. 

Therefore, for spiky clutter signal having shape parameter 0.1 and Gaussian 

distributed clutter having shape parameter 10, the correlation coefficient of 

exponential ACS is varied. That is, the correlation coefficient is taken as 0.9, 

0.95 and 0.99 corresponding to wind velocities of 10.3 mph, 9.9 mph and 9.65 

mph for a radar with 10 GHz carrier frequency. In Figure 4-5, the RMS errors 

for different orders of ARMA obtained at two different K-distributed clutter 

shape parameters for several correlation coefficients are illustrated. In the 

simulation, the number of processed pulses is 64 and number of Monte Carlo 

runs is 1000. 
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Figure 4-5: ARMA Spectral Estimator Performance for Different Correlation 

Coefficients at Clutter Shape Parameters ( ν ) 0.1 and 10 

 

The results in Figure 4-5 show that, as the correlation coefficient increases, the 

ARMA performance increases independently from the distribution of the 

signal. This is due to the fact that the estimation performance increases as the 

correlation among signal samples increases since the estimation of ACS from 

correlated data becomes better.  

In the next sub-section, we examine the performance of the ARMA estimator 

in the presence of clutter with a Gaussian ACS. 
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• Clutter Signal Having Gaussian ACS 

The covariance matrix caused by Gaussian ACS results from the rotation of 

radar antenna and has the structure given in equation (2.27). It is well known 

that the power spectral density (PSD) of the clutter return within one range cell 

is determined by the corresponding covariance matrix. The original clutter PSD 

can be obtained by taking the inverse FFT of the first row of the covariance 

matrix. The original clutter PSD (normalized) is illustrated for 64 pulses and 

FFT length of 1024 in Figure 4-6. Moreover, the correlation coefficient of ACS 

is obtained from the radar parameters mentioned previously. The 

corresponding correlation coefficient equals to 0.99. 
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Figure 4-6: Clutter PSD for Signal with Gaussian ACS 
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In order to see PSD resulted from a Gaussian sequence, the figure is zoomed in 

Figure 4-7 around zero frequency (DC frequencies) where most of the power is 

confined. 
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Figure 4-7: Clutter PSD for Signal with Gaussian ACS, Zoomed Version 

 

Before going into the simulations, the analytical examination of a clutter signal 

having Gaussian ACS should be made. Let ( )tx  be an Gaussian or bell-shaped 

autocorrelation function (ACF) which can be written as follows: 

  ( ) ,
2tπetx −=  ∞<<∞− t .    (4.6) 

The Fourier Transform of this signal gives the power spectral density (PSD) of 

an Gaussian ACF. 
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( ) ∫
∞

∞−

−−= dteeX tjt ωπω
2

.    (4.7) 

( ) ( ) ( ) ( )[ ]∫∫
∞

∞−

++−
∞

∞−

+− == dteedtefX jfftjtjfftjt 2222 22 πππ .   (4.8) 

By taking the above integral, the following relation for Fourier Transform of 

exponential signal is obtained. 

( ) ( ) ( ) 222 fjftf ejftdeefX πππ −
∞

∞−

+−− =+= ∫ .   (4.9) 

From equation (4.9), we observe that the PSD of a signal with Gaussian ACS is 

also Gaussian and does not have any poles or zeros. Therefore, unlike the 

signals with exponential ACS, an exact representation of Gaussian signal PSD 

with an ARMA model cannot be made. However, using Pade approximation, 

which is the best approximation of a function by a rational function, the PSD of 

a signal with Gaussian ACS can be modeled. In fact, ARMA(∞ ,∞ ) can model 

the PSD of a signal with Gaussian ACS.  

After mentioning the analytical behavior of a signal with Gaussian ACS, 

firstly, by making the number of processed pulses and CNR values constant, 

we examined the ARMA spectral estimator with different orders for different 

K-distributed clutter shape parameters. In the analysis, the CNR value is 20dB, 

the number of processed pulses is 64, and the number of Monte Carlo runs is 

1000. 
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Figure 4-8: ARMA Spectral Estimator Performance for Different Values of 

the Shape Parameters ( ν ) 

 

The results observed in Figure 4-8 is consistent with results obtained in 

exponential ACS. The RMS error in modeling the spectrum of K-distributed 

clutter changes for different clutter shape parameters. There are basically two 

observations from these results. Firstly, it is seen that RMS error decreases 

with increasing clutter shape parameter. Although no distribution information 

is required in ARMA spectral estimation, the ARMA spectral estimator 

performs better with Gaussian distributed clutter signals. This is due to the fact 

that the correlation sequence is estimated according to equation (3.8), which is 

the standard biased ACS estimator. This estimator is optimum for Gaussian 

signals; hence, the estimator performs better with input signals with Gaussian 

distribution. This is also related to the problem of having finite amount of data. 

Thus, we can conclude that although the ARMA spectral estimator is 
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independent from the distribution of an input signal, due to the ACS estimation 

conducted by equation (3.8), ARMA spectral estimator performs better for 

clutter signals having Gaussian ACS.  

The other observation that we can make from Figure 4-8 is that as the ARMA 

model order increases, the RMS errors increase with ARMA model order for 

large shape parameters, whereas decrease for small shape parameters. The 

reason for this phenomenon is the same as discussed for clutter signals having 

exponential ACS. As the order of ARMA increases, the RMS error in the 

estimation decreases, when the shape parameter is small. This is because 

standard ACS estimator is optimum for Gaussian signals; as the order 

increases, the performance of the estimator is improved due to the more 

accurate estimation of higher order terms caused by spiky clutter signal. 

However, when the shape parameter is large, the RMS error increases with 

increasing ARMA model orders due to computational errors dominate in 

estimation of large ARMA orders and the use of less data to estimate the ACS 

for higher orders. 

The performance of ARMA spectral estimator is also investigated for different 

CNR values. For this purpose, two shape parameters that yield K- and 

Gaussian-distributed clutter are considered. In Figure 4-9, the RMS error for 

different ARMA model orders obtained at two different clutter shape 

parameters for several CNR values are illustrated. In the simulation, the 

number of processed pulses is 64 and number of Monte Carlo runs is 1000. 
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Figure 4-9: ARMA Spectral Estimator Performance for Different CNR Values 

at Clutter Shape Parameters ( ν ) 0.1 and 10 

 

From above results, it is easily observed that for K-distributed clutter, as the 

clutter to noise ratio (CNR) increases, the effect of white Gaussian thermal 

noise decreases. As a result, the ARMA spectral estimation performance is 

improved with increasing CNR values. For spiky clutter signal, as the ARMA 

model order increases, the RMS error decreases since estimator is improved 

due to the more accurate estimation of higher order terms caused by spiky 

clutter signal. However, when the shape parameter is large; i.e. clutter signal is 

Gaussian distributed, as ARMA model order increases, the RMS error 

increases. The computational errors dominate in estimation of large ARMA 

orders and the use of less data to estimate the ACS for higher orders are the 

main reasons for this kind of behavior. 
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In the next sub-section, the ARMA estimator performance under clutter having 

Gaussian ACS tapered with internal clutter motion (ICM) is considered. 

 

• Clutter Signal Having Gaussian ACS tapered with ICM 

As mentioned previously, the signal having Gaussian ACS is resulted from 

antenna scanning modulation. In addition to this phenomenon, when the 

internal clutter motion affects the ACS, the resulting covariance matrix is 

tapered with ICM and is obtained by equation (2.34). 

In the simulations, the radar parameters (3-dB beam-width, PRF, rpm) which 

are defined previously are kept fixed and the corresponding correlation 

coefficient is 0.99. However, the correlation coefficient resulted from ICM is 

varied in the simulations in order to observe different environmental 

conditions.  

The original clutter PSD is obtained by taking the inverse FFT of the first row 

of covariance matrix, as done before. The original clutter PSD (normalized) is 

illustrated for 64 pulses and FFT length of 1024 in Figure 4-10. The correlation 

coefficient from ICM is taken as 0.99 and the correlation coefficient of 

Gaussian ACS equals to 0.99 in the simulation.  
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Figure 4-10: Clutter PSD for Gaussian Covariance Matrix tapered with ICM 

 

In order to see the details of resulting PSD, the figure is zoomed in Figure 4-11 

around zero frequency (DC frequencies) where most of the power is confined. 
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Figure 4-11: Clutter PSD for Gaussian Covariance Matrix tapered with ICM, 

Zoomed Version 

 

Firstly, by making the number of processed pulses and CNR values constant, 

we investigate the ARMA spectral estimator of different orders for different K-

distributed clutter shape parameter. In the analysis, the CNR value is taken as 

20dB, the number of processed pulses is 64, and the number of Monte Carlo 

runs is 1000, and the correlation coefficient for exponential ACS due to ICM is 

taken as 0.95 corresponding to 9.9 mph wind velocity for a 10 GHz radar 

system. 
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Figure 4-12: ARMA Spectral Estimator Performance for Different Values of 

the Shape Parameter ( ν ) 

 

The results observed in Figure 4-12 is consistent with results obtained in 

previous simulations. There are again two observations that we can be derived 

from these results. First, we see that the RMS error decreases with increasing 

clutter shape parameter; that is, the ARMA spectral estimator performs better 

with Gaussian distributed clutter signals. From previous results, this 

observation is expected since the correlation sequence is estimated according to 

equation (3.8), which is the standard biased ACS estimator. It is obvious that 

estimator is optimum for Gaussian signals; thus, the estimator performs better 

with Gaussian distributed input signals. This result is also related to the 

problem of having finite amount of data. Therefore, it can be concluded that 

although the ARMA spectral estimator is independent from the distribution of 

an input signal, due to the ACS estimation conducted by equation (3.8), 



72 
 

ARMA spectral estimator performs better for clutter signals having Gaussian 

probability density function (PDF).  

Secondly, from Figure 4-8, we see that as the ARMA model order increases, 

the RMS errors increase with ARMA model order for large shape parameters, 

whereas decrease for small shape parameters. As the order of ARMA 

increases, the RMS error in the estimation decreases when the shape parameter 

is small. The explanation is again the same at this point. The standard ACS 

estimator is optimum for Gaussian signals; as the order increases, the 

performance of the estimator is improved due to the more accurate estimation 

of higher order terms caused by spiky clutter signal. However, when the shape 

parameter is large, the RMS error increases with increasing ARMA model 

orders due to computational errors done in estimation of large ARMA orders 

and the use of less data to estimate the ACS for higher orders. 

In addition to the previous simulation, the performance results for different 

correlation coefficient of ACS resulted from ICM is investigated for spiky and 

Gaussian clutter signals. That is, we investigate the ARMA spectral estimator 

performance for K- and Gaussian-distributed clutter returns; i.e. for shape 

parameters of 0.1 and 10, respectively, and we took the correlation coefficient 

as 0.9, 0.95 and 0.99.  In Figure 4-13, the RMS error for different orders of 

ARMA obtained at two different clutter shape parameters for several 

correlation coefficients are illustrated. In the simulation, the number of 

processed pulses is 64 and number of Monte Carlo runs are 1000. 
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Figure 4-13: ARMA Spectral Estimator Performance for Different Correlation 

Coefficients at Clutter Shape Parameters ( ν ) 0.1 and 10 

 

From above results, as in the case of exponential ACS structure, we observe 

that the ARMA modeling performance is improved with increasing the 

correlation coefficient, Eρ . This is an expected result since as the correlation 

among signal samples increases, the estimation performance increases.  

From simulation results, we observe that the ARMA spectral estimator 

performs differently under different models for the clutter covariance. In fact, 

unless there is prior information regarding the environmental conditions and 

radar parameters, such as 3-dB beam-width and PRF, one cannot determine the 

type of covariance matrix. Moreover, the clutter shape parameter cannot be 

known in advance. Therefore, in this thesis, a suitable ARMA model order is 

chosen for comparison purposes. From the simulation results, we selected 

ARMA(5,5) model as it gives desirable results for spiky (i.e., small shape 
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parameter) K-distributed clutter without degrading the performance 

significantly for the Gaussian case. 
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CHAPTER 5 
 

 

PERFORMANCE COMPARISON 
 

 

 

 

5.1. Method of Comparison 

In this chapter, the performance of clutter suppression using ARMA spectral 

estimator, which is called ARMA-CS, and conventional methods (such as MTI 

processor with coherent integrator and optimum filter) are compared. For this 

purpose, we simulate a set of N  coherent radar pulses consisting of a target 

signal, clutter signal and thermal noise, with predefined signal powers. The 

clutter signal is suppressed using the techniques mentioned above. 

First, we obtain the filters described by N  complex weights ( )K,, 21 ww  for 

each technique. The filters used in the comparison are: 

• MTI filter cascaded with coherent integrator 

• The optimum filter (in the expected mean squared error (MSE) sense) 

obtained from known interference covariance matrix 

• ARMA-CS filter obtained from ARMA spectral estimation method 

applied to N  returned pulses consisting of target, clutter and noise 

signal 
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• SMI (Sample Matrix Inversion) filter obtained from estimated 

covariance matrix that is obtained by standard biased ACS method 

given in equation (3.9) applied on N  pulse returns 

The details regarding the determination of filter coefficients are given in the 

next section. In this section, we define the figure of merit used to assess the 

clutter rejection performance of these filters are. 

The method of comparison is the improvement factor (IF) that is commonly 

used to describe the performance of linear filters in suppressing clutter. IF is 

defined as follows [17]: 

 

( )
( )I

O

SCNR
SCNRIF = .     (5.1) 

where ( )ISCNR  and ( )OSCNR  denote the signal to clutter plus noise 

(interference) power ratio at the input and at the output of the linear filter, 

respectively. 

In order to determine ( )ISCNR  , the clutter plus noise and target signal powers 

are required. That is, let TP , CP  and NP  denote the target, clutter and thermal 

noise powers, the ( )ISCNR  can be determined from equation (5.2), [17]. 

 

( )
NC

T
I PP

PSCNR
+

= .     (5.2) 

The expression for ( )OSCNR  is as follows [17]: 
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( ) { }
Mww

wssEwSCNR H

HH

O = .    (5.3) 

Here,  w  is the transversal filter coefficients, s  is the 1Nx  complex target 

signal vector which is accepted as Swerling-0 (Marcum) in the simulations, M  

is NxN  interference (clutter plus noise) covariance matrix. Moreover, in (5.3) 

( )H⋅  indicates Hermitian (transpose conjugate) operation, and {}⋅E  denotes 

statistical average operation. 

In fact, the target return for the ith pulse can be determined as follows: 

 

( )( )DTi fijPs 12exp −−= π   Ni ,...,2,1= .   (5.4) 

where Df  denotes the normalized target Doppler frequency, which is obtained 

by dividing the target Doppler frequency with PRF. The interference 

covariance matrix is: 

 

IR
P
P

M C
N

C += .      (5.5) 

where CP  and NP  denotes the input power of clutter and noise, respectively. 

Here, CR  is NxN  clutter covariance matrix and I  is the identity matrix to 

represent white Gaussian thermal noise covariance matrix. 

5.2. Transversal Filter Coefficients for Processors  

As seen from equation (5.3), the transversal filter coefficients, w , are required 

to determine ( )OSCNR  for each processors. In what follows we describe the 
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methods to determine the transversal filter coefficients for processors are 

given. 

 

• MTI and Coherent Integrator Processor (CI) 

In this processor, the weights of transversal filter, w , are evaluated by 

cascading an MTI filter and a coherent integrator (CI). Let us denote the MTI 

filter coefficients by MTIw  and coherent integrator weights by CIw . The 

transversal filter weights are determined from equation (5.6) 

 

CIMTI www ⊗= .      (5.6) 

where ⊗  denotes convolution operation. In the simulations, for MTI filter 

double delay line canceller is considered. Furthermore, since the target Doppler 

frequency is assumed to be known, the coherent integrator is set to that 

frequency. 

For convolution operation the resulting filter has a number N  samples equal 

to: 

 

1−+= CIMTI NNN .      (5.7) 

where MTIN  and CIN  are samples of corresponding filters. The weights MTIw  

and CIw  are given as: 

 

( )1,2,1 −=MTIw .      (5.8) 

( )( )12exp −−= ifjw DCI π  2,...,1,0 −= Ni .   (5.9) 
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• Optimum Processor 

The clutter is characterized well as K-distributed random processes [1]; 

therefore, conventional filtering approaches, such as MTI and coherent 

integration, are not utilized as optimum processing [18]. However, with the 

optimum filter for Gaussian interference approach [17] and GLRT detector for 

perfectly known signal (Swerling-0) approach [18], an optimum processor can 

be designed in the mean squared error sense.  

The optimum transversal filter weights for a target with known Doppler 

velocity, which is the case in our simulations, is given by: 

 

*1sMw −= .      (5.10) 

where 1−M  is the inverse of the interference (clutter plus noise) covariance 

matrix. 

• ARMA-CS Processor 

The ARMA-CS processor uses the ARMA spectral estimation method to 

determine the transversal filter coefficients for a certain ARMA model order. 

To estimate the transversal filter coefficients, the ARMA method is applied on 

the interference signal where no target signal exists. That is, to estimate the 

ARMA-CS transversal filter coefficients, we assume that there is no target 

present in the range cell under consideration. 

Using the ARMA spectral estimation method, the power spectral density (PSD) 

of the interference (clutter plus noise) signal is initially estimated for 

predetermined ARMA pole and zero orders (in our case, pole and zero orders 

are 5). That is, ( )fA  and ( )fB , which are the polynomials with predetermined 

orders, must be determined from ARMA method. The structure of ( )fA  and 

( )fB  are shown in equation (5.11). 
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Using (5.11), the PSD of the interference (clutter plus noise) signal is obtained. 

 

( ) ( )
( )

2
2

fA
fBfARMA σφ =   2

1
2

1 ≤≤− f .   (5.12) 

The inverse FFT of the PSD yields the ACS, i.e., the first row of the ARMA 

covariance matrix so that the following Fourier transform relationship is valid. 

 

( ) ARMA

FFT

ARMA kr φ↔      (5.13) 

The covariance matrix of ARMA process, ARMAR , can easily be obtained from 

the ARMAr  vector. 
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L
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.   (5.14) 

Finally, the ARMA-CS processor transversal filter coefficients can be obtained 

as follows: 

 

*1 sRw ARMA
−= .      (5.15) 
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• SMI (Sample Matrix Inversion) Processor 

In the two preceding sub-sections, the covariance matrix of interference is used 

exactly and estimated via ARMA spectral estimation method. In this type of 

processor, which is called as SMI processor, the interference covariance matrix 

is estimated using the interference data directly. That is, for estimation 

purposes, it is assumed that the range bin does not contain any target signal. It 

only contains the interference signals, clutter and noise.  

First, the ACS is estimated using equation (3.9): 

 

( ) ( ) ( )∑
+=

−=
N

kt
SMI ktxtx

N
kr

1

*1ˆ   10 −≤≤ Nk .  (5.16) 

The corresponding covariance matrix, SMIR , can easily be obtained from SMIr̂  

vector. 
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Finally, the SMI processor transversal filter coefficients can be obtained with 

the optimum filter approach in the mean square error sense. 

 

*1 sRw SMI
−= .      (5.18) 
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5.3. Results 

For comparison, we evaluate the improvement factor (IF) for each processor 

under varying conditions. The assumptions regarding the simulation setting are 

as follows: 

i. In a dwell time, the PRF remains constant; i.e. the pulse train is 

uniformly spaced in time. 

ii. The target Doppler frequency is known and does not change during 

the dwell time. 

iii. For ARMA-CS processor and SMI processor, Monte Carlo 

simulations are carried out to estimate the corresponding IF. In the 

simulations, the number of Monte Carlo runs is 500. 

iv. The coherent integrator is tuned to the target Doppler frequency. 

Moreover, the shaping losses observed in practical radars are 

neglected. 

v. The transversal filter length N  is the same for all processors. 

vi. The radar parameters, such as PRF, antenna beam-width and angular 

rotation speed, remain the same in the simulations except for the 

number of processed pulses. 

vii. The exponential correlation factor, Eρ , determining the covariance 

matrix varies between simulations except for the Gaussian case, for 

which it depends on the constant radar parameters. 

As seen in Chapter 4, the modeling performance of the ARMA spectral 

estimator depends on the shape parameter of the K-distribution. This is also the 

case for the SMI processor that uses the interference signal to estimate the 

clutter covariance matrix. However, the performance of the MTI plus coherent 

integrator processor and that of the optimum processor do not depend on the 
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shape parameter for the calculation of the IF. Therefore, in order to see the 

effect of the shape parameter on the IF obtained by the ARMA-CS processor 

and the SMI processor, two shape parameters, 0.1 and 10, are used to have K-

distributed and Gaussian clutter signals, respectively. For both conditions, we 

assume there is no prior information regarding the environmental conditions, 

and the ARMA model order is taken as (5,5). 

In determination of the IF values, we observe that the signal power is not 

relevant since it is cancelled in taking the ratio of input and output powers. 

However, it is obvious that the IF values changes with respect to varying 

number of pulses, CNR values and target Doppler frequencies. Therefore, the 

IF values are obtained accordingly for all types of clutter covariance matrices. 

The IF figures obtained by processors are shown below for different clutter 

covariance matrices with respect to the number of pulses. In all of the 

simulations, the CNR is taken as 25 dB, the normalized target Doppler 

frequency is 0.2, which is outside the region where the most of the clutter 

power is contained in the PSD. 

In Figure 5-1, the IF of processors for different shape parameters is illustrated 

for covariance matrix which has Gaussian ACS structure. 
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Figure 5-1: Improvement Factor of Processors versus the number of processed 

pulses for Gaussian ACS.   

 

For Gaussian clutter covariance matrix, we observe that the MTI plus coherent 

integrator performs slightly worse (about 1 dB) compared with the optimum 

processor. For the ARMA-CS and SMI processors, when the clutter shape 

parameter is small, the IF figures are small because of the degradation in the 

estimation performance of the biased ACS, as explained in Chapter 4. For 

higher values of the shape parameter, IF values are higher, but still smaller than 

that of MTI plus coherent integrator. However, except for the cases with 

smaller number of pulses, ARMA-CS processor is worse than the SMI 

processor due to the computational errors in the estimation of ARMA 

parameters. For small number of pulses, IF values obtained from the ARMA-

CS processor is better than that of the SMI processor and close to that of MTI 
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plus coherent integrator due to less significant errors made in determining the 

ARMA parameters. 

For covariance matrix generated from exponentially decaying correlation 

coefficient resulting from internal clutter motion (ICM), the IF values of 

different processors versus number of processed pulses are shown in Figure 

5-2, where the simulation parameters are the same as in the Gaussian case. In 

addition, the correlation factor of exponential ACS is taken as 0.99, which 

corresponds to a wind velocity of 9.65 mph for a radar with 10 GHz carrier 

frequency. 
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Figure 5-2: Improvement Factor of Processors versus the number of processed 

pulses for Exponential ACS.  
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From Figure 5-2, it is seen that the SMI processor gives poor results for spiky 

clutter since the biased ACS performs worse for K-distributed interference 

signals. However, the ARMA-CS processor results in higher IF values for 

spiky clutter. For the Gaussian distributed clutter, both SMI and ARMA-CS 

processor performances are better. The MTI plus coherent integrator is very 

close to optimum processor and still performs better than both processors. 

The IF figures are also obtained for Gaussian clutter covariance matrix tapered 

with ICM in Figure 5-3. The results are illustrated for the same radar 

parameters, normalized frequency, and CNR. The correlation factor for ICM is 

taken as 0.99.   
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Figure 5-3: Improvement Factor of Processors versus the number of processed 

pulses for Gaussian ACS tapered ICM.   
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The results are nearly the same as the exponential clutter covariance, except 

that the SMI processor performs slightly better due to the effect of Gaussian 

covariance matrix caused by antenna scanning modulation. However, for all of 

the clutter covariance types, it is seen that for small number of processed 

pulses, ARMA-CS performs better than SMI processor but worse than MTI 

plus coherent integrator. 

The IF values of processors are evaluated for different clutter covariance 

structures as a function of CNR values. In the simulations, in order to satisfy 

spectral distance between clutter and target, target normalized frequency is 

again taken as 0.2. Moreover, the correlation factors which are caused by 

antenna scanning modulation for Gaussian clutter and internal clutter motion 

for exponential clutter are the same as in previous simulations. Finally, the 

number of pulses is taken as 32 in the simulations. 

The IF values of processors for clutter covariance matrix from Gaussian ACS 

are shown in Figure 5-4. 
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Figure 5-4: Improvement Factor of Processors versus CNR for Gaussian ACS.   

We observe that, due to the poor estimation of ACS in SMI and ARMA-CS 

processors, the IF figures are less than those of Gaussian clutter signal (with a 

larger shape parameter). For all of the CNR values, MTI plus coherent 

integrator has nearly the same IF values obtained by the optimum processor. 

However, it is well observed that for low CNR values, the ARMA-CS 

processor and MTI plus coherent integrator has the same performance. But 

with increasing CNR, we always expect to see an increase performance of 

ARMA-CS processor because the information extracted from clutter signal 

increases. For small CNR values, the ARMA-CS processor performance 

increases with increasing CNR as expected. However, for high CNR values, 

the performance improvement in ARMA-CS processor degrades due to the 

computational errors and use of less data in computation of higher ARMA 

orders. Since these kinds of computational problems are not seen in other 

processors, their performances improve with increasing CNR.  
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We conducted the same simulations for exponential and Gaussian ACS tapered 

with ICM structures. In addition to the parameters used for Gaussian 

covariance matrix simulations, the correlation factor due to ICM is taken as 

0.99. The exponential clutter covariance matrix simulation results are shown in 

Figure 5-5. 
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Figure 5-5: Improvement Factor of Processors versus CNR for Exponential 

ACS.  

 

For all of the processors considered, we do not see a linear increase with 

respect to CNR that is observed for Gaussian ACS structure for different CNR 

values. Nevertheless, the general behavior is the same except that the SMI 

processor IF values are smaller than those of the ARMA-CS processor for 

spiky clutter with exponential ACS structures. Again for small CNR values, 
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ARMA-CS processor has nearly the same IF values obtained for MTI plus 

coherent integrator. 

The simulation results for Gaussian covariance matrix tapered with ICM are 

shown Figure 5-6. In this case, the simulation parameters are the same as those 

used for the case with exponential ACS structure. 
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Figure 5-6: Improvement Factor of Processors versus CNR for Gaussian 

clutter ACS tapered with ICM.   

 

The results obtained in clutter with Gaussian covariance matrix tapered with 

ICM have the same behavior observed in exponential clutter covariance case. 

However, we see that due to Gaussian covariance matrix caused by antenna 

scanning modulation, the IF figures decrease for ARMA-CS and SMI 
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processors with respect to exponential clutter covariance matrix caused by ICM 

alone. 

From all of the above results, we can conclude that for small CNR values (less 

than 5dB), ARMA-CS processor gives at least the same performance obtained 

in MTI plus coherent integrator. 

In order to examine the effect of the spectral distance between target and 

clutter, the IF figures of processors are obtained for various normalized target 

Doppler frequencies. The number of pulses is taken as 32 and CNR value is set 

to 25 dB in the simulations. Moreover, the correlation coefficient due to 

antenna scanning modulation is obtained using the same radar parameters and 

the correlation coefficient resulting from internal clutter motion (ICM) is taken 

as 0.99. 

The IF figures of processors with respect to normalized target Doppler 

frequencies are illustrated for Gaussian ACS in Figure 5-7. 
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Figure 5-7: Improvement Factor of Processors versus Normalized Signal 

Doppler Frequency for Gaussian ACS.   

 

From Figure 5-7, we observe that for low target Doppler frequencies in which 

the spectral separation of clutter and target are weak, the ARMA-CS processor 

performs better than the MTI plus coherent integrator since the MTI filters the 

target signal along with the clutter at low Doppler frequencies. In addition, 

except for higher Doppler frequencies, the ARMA-CS processor and the SMI 

processor have nearly the same IF values. 

As the normalized target Doppler frequency increases, MTI plus coherent 

integrator has nearly the same IF value as that of the optimum processor. For 

the ARMA-CS processor and SMI processor, the IF figures obtained for spiky 

clutter and Gaussian distributed clutter coincide with the previous simulation 

results. 
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For exponential ACS structure obtained from ICM, we performed the same 

simulations with a correlation factor of 0.99. The results are shown in Figure 

5-8. 
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Figure 5-8: Improvement Factor of Processors versus Normalized Signal 

Doppler Frequency for Exponential ACS.  

 

For exponential ACS structure, the performance of the ARMA-CS processor is 

better than the Gaussian case. Moreover, ARMA-CS processor gives better IF 

values compared with MTI plus coherent integrator for lower target Doppler 

frequencies. Since the clutter PSD actually stems from an exponential ACS 

structure, the ARMA-CS processor also has a better performance; similar to the 

case where the SMI processor has better performance for Gaussian signals. 
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For higher target Doppler frequencies, MTI plus coherent integrator converge 

to the optimum processor. For the ARMA-CS and the SMI processors, the 

results coincide with the previous results obtained with different clutter ACS 

structures, such as Gaussian and exponential. 

For Gaussian ACS structure resulting from antenna scanning modulation 

tapered with internal clutter motion (ICM), the effect of spectral separation of 

target and clutter is illustrated in Figure 5-9, for the same radar and clutter 

parameters used to generate antenna scanning modulation and ICM. 
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Figure 5-9: Improvement Factor of Processors versus Normalized Signal 

Doppler Frequency for Gaussian ACS tapered with ICM.  
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Obviously, when the Gaussian clutter covariance matrix is tapered with ICM, 

the performance behavior of the techniques is similar to that of the exponential 

ACS structure resulting from ICM alone. However, the ARMA-CS and SMI 

processor IF figures are degraded with respect to Gaussian ACS structure case. 

Finally, some simulations are performed in order to see the effect of correlation 

coefficient on IF figures with respect to number of processed pulses. In the 

simulations, the exponential ACS is used since exponential ACS is mainly 

caused by the environmental conditions and the desired correlation coefficient 

can easily be chosen. 

The IF figures obtained for different processors are investigated for correlation 

coefficients equal to 0.7 and 0.5, corresponding to wind velocities of 12.1 mph 

and 15.0 mph for a radar with 10 GHz carrier frequencies. Moreover, in all of 

the cases, the number CNR is taken as 25 dB and normalized target Doppler 

frequency is taken as 0.2. Furthermore, the simulations are performed clutter 

shape  

In Figure 5-10, the IF figures with respect to number of processed pulses for 

exponential ACS with correlation factor equals to 0.7 are illustrated.  
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Figure 5-10: Improvement Factor of Processors versus Number of Processed 

Pulses for Exponential ACS with 7.0=Eρ .  

 

In Figure 5-11, the IF figures with respect to number of processed pulses for 

exponential ACS with correlation factor equals to 0.5 is shown.  
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Figure 5-11: Improvement Factor of Processors versus Number of Processed 

Pulses for Exponential ACS with 5.0=Eρ .  

 

From the previous two results, we see that as the correlation among clutter 

samples decreases, the ARMA-CS processor gives better IF values compared 

with MTI plus coherent integrator. This is because MTI plus coherent 

integrator filter performs better for highly correlated radar pulses. As the 

correlation among received radar pulses decreases, the performance of all 

processors decrease but IF figures obtained from MTI plus coherent integrator 

deteriorate more than ARMA-CS processor. Moreover, since the correlation 

among samples decreases, the SMI processor gives the worst IF values. 

From these results, we can conclude that the ARMA-CS processor performs 

better than MTI plus coherent integrator in two cases. The first case is when 

the target signal and clutter signal are in the same Doppler frequency band, i.e., 
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when the spectral separation of clutter and target is low. However, compared 

with the SMI processor, the performance depends on the ACS structure (type 

of covariance matrix) of the clutter for lower target Doppler frequencies.  The 

second case is when the correlation among clutter samples decreases; i.e., the 

correlation coefficient of clutter decreases, the ARMA-CS processor gives 

better IF values than MTI plus coherent integrator processor. For the SMI 

processor, as the correlation among clutter samples decreases, the IF values 

obtained become the worst results among the IF values obtained from the other 

processors   
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CHAPTER 6 
 

 

CONCLUSION 

 
 

 

 

6.1. Summary 

 

The main objective of the thesis was investigating the performance of ARMA-

CS, using ARMA spectral estimation method, in K-distributed clutter 

suppression for various clutter shape parameters and ACS structures. 

For this purpose, clutter which is generated according to SIRV approach 

having K-distribution and clutter covariance matrix structures are introduced. 

After giving information about the target and noise models, the basic spectral 

estimation concepts are discussed by giving the non-parametric and parametric 

spectral estimation techniques. 

In order to determine the ARMA model order effect on estimation of clutter, 

RMS errors are calculated for different clutter shape parameters and clutter 

ACS structures.  From the results, it is observed that the RMS error has same 

type of behavior for different clutter ACS structures. However, for different 

shape parameters, the behaviors of RMS errors change. In fact, for a spiky 

clutter (where shape parameter is small), RMS error was decreasing with 

increasing model order. For clutter whose distribution is approximated by 
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Gaussian distribution (where shape parameter is large), RMS error increases 

with in increasing model order, due to computational errors. Accordingly, a 

suitable ARMA model order has been selected with no a priori knowledge 

about clutter shape parameter. 

The clutter suppression of ARMA-CS with selected ARMA model order is 

compared with conventional estimators, such as MTI plus coherent integrator. 

Improvement factor (IF) is used as a performance measure. For this purpose, 

the transversal filter coefficients for ARMA-CS and conventional methods are 

determined. The transversal filter coefficients of processors then applied on IF 

equation consisting of target signal model for comparison. From the results it 

was observed that the ARMA-CS gives better results for K-distributed clutter 

approximated as Gaussian distributed signal (large shape parameter). However, 

ARMA-CS does not give much benefit compared with MTI plus coherent 

integrator when the spectral separation of clutter and target signal or number of 

processed pulses is large. Nonetheless, when the spectral separation of clutter 

and target signals or correlation among clutter samples are small, the ARMA-

CS gave sufficient IF values compared with conventional methods. 

6.2. Future Work 

There are some topics regarding clutter suppression subject to further 

developed with parametric methods. These topics are as follows: 

i. The clutter distribution can be changed to see the performance of 

ARMA-CS method. 

ii. Different spectral estimation methods, such as non-parametric Welch 

method or parametric AR clutter suppressor utilizing AR technique, 

may be compared with conventional clutter suppression methods. 

iii. In calculation of parameters of parametric spectral estimator, biased 

ACF equation which is optimized for Gaussian signals is used. For 
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other types of distributions, such as K-distributed or Weibull 

distributed, the ACS of clutter signals can be estimated with 

equations optimized for those distribution types. 

iv. Clutter shape parameter and ACS structure may be estimated from 

the clutter data prior to clutter suppression to find the optimum model 

orders of ARMA spectral estimator. 

v. The ACS of clutter caused by ICM is accepted as exponential. 

However, other models which cannot be modeled by an exact 

parametric model exist in literature [1]. Those models of ICM may be 

used to see the performance change of processors. 
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