
1

BENCHMARKING OF XILKERNEL, FREERTOS AND µC/OS-II ON THE SOFT
PROCESSOR PLATFORM MICROBLAZE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÖKHAN UĞUREL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JUNE 2012

Approval of the thesis:

BENCHMARKING OF XILKERNEL, FREERTOS AND µC/OS-II ON THE SOFT

PROCESSOR PLATFORM MICROBLAZE

submitted by GÖKHAN UĞUREL in partial fulfillment of the requirements for the degree of
Master of Science in Electrical and Electronics Engineering Department, Middle East
Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Cüneyt Bazlamaçcı
Supervisor, Electrical and Electronics Engineering Department

Examining Committee Members:

Prof. Dr. Semih Bilgen
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cüneyt Bazlamaçcı
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Ece Schmidt
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. İlkay Ulusoy
Electrical and Electronics Engineering Dept., METU

Dr. Atilla Özgit
Computer Engineering Dept., METU

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: GÖKHAN UĞUREL

Signature :

iii

ABSTRACT

BENCHMARKING OF XILKERNEL, FREERTOS AND µC/OS-II ON THE SOFT
PROCESSOR PLATFORM MICROBLAZE

Uğurel, Gökhan

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Cüneyt Bazlamaçcı

June 2012, 78 pages

In real time embedded systems, more and more developers are choosing the soft processor

option to save money, power and area on their boards. Reconfigurability concept of the soft

processor gives more options to the designer, also solving the problem of processor obsoles-

cence. Another increasing trend is using real time operating systems (RTOSs) for micropro-

cessors or microcontrollers. RTOSs help software developers to meet the critical deadlines

of the real time environment with their deterministic and predictable behaviour. Providing

service APIs and fast response times for task management, memory and interrupts; RTOSs

decrease the development time of on going, and also future, projects of software develop-

ers. Comparing RTOSs on RTOS-specific benchmark criteria, called RTOS benchmarking

in the literature, helps software developers to choose the appropriate RTOS for their require-

ments and provokes RTOS companies to strengthen their products on areas where they are

weak. This study will compare three popular RTOSs on Xilinx’s soft processor platform Mi-

croBlaze. Xilkernel, µC/OS-II and FreeRTOS are selected among nine available RTOSs for

MicroBlaze and are compared against critical RTOS benchmarking criteria, which are task

preemption time, task preemption time under load, get/release semaphore time, pass/receive

message time, get/release fixed sized dynamic memory time, UART RS-422 message inter-

iv

rupt serving time, RTOS initialization time and memory footprint data. Results are interpreted

using architectural concepts of the RTOSs considered.

Keywords: Soft Processors, Real Time Systems, RTOS Benchmarking, MicroBlaze

v

ÖZ

SANAL İŞLEMCİ MICROBLAZE ÜZERİNDE XILKERNEL, FREERTOS VE µC/OS-II
KARŞILAŞTIRMASI

Uğurel, Gökhan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Cüneyt Bazlamaçcı

Haziran 2012, 78 sayfa

Gerçek zamanlı gömülü sistemlerde, elektronik kartlar üzerinde maliyet, güç ve yer bakımın-

dan tasarruf etmek isteyen tasarımcılar sanal işlemcileri daha sık kullanmaya başladılar. Sanal

işlemcilerin tekrar tekrar biçimlendirilebilmesi ve yapılandırılabilmesi tasarımcılara daha fa-

zla seçenek sunmakta ve tasarımcıların işlemcilerin artık kullanılmaz olması gibi sorunlarla

karşılaşmalarını önlemektedir. Bir diğer yükselen eğilim de, işlemciler üzerinde gerçek za-

manlı işletim sistemi (GZİS) koşturmaktır. Bu tip işletim sistemleri, gerçek zamanlı bir or-

tamın getirdiği kritik zamanlama gereksinimlerini karşılamada kararlı ve tahmin edilebilir

bir davranış sergiler. Görev, bellek ve kesme yönetimi için sağladıkları komut kümeleri

ve hızlı tepki süreleri ile GZİS’ler projelerde yazılım geliştirme sürelerini önemli ölçüde

düşürmektedir. GZİS karşılaştırma çalışmaları, tasarımcıya gereksinimlerine uygun işletim

sistemini tercih etmesinde zaman kazandıracak, ayrıca GZİS firmalarını eksik olan alanlarında

uyararak tasarımcılar için daha yüksek performanslı işletim sistemlerinin geliştirilmesinde rol

oynayacaktır. Bu çalışma, Xilinx firmasının sanal işlemcisi MicroBlaze üzerinde üç popüler

GZİS’yi karşılaştırmaktadır. MicroBlaze desteği veren dokuz GZİS arasından seçilen Xilker-

nel, µC/OS-II ve FreeRTOS, görev değişimi zamanı, yüklü çalışmada görev değişimi zamanı,

semafor alma/bırakma zamanı, mesaj yollama/alma zamanı, sabit boyutlu dinamik bellek

vi

alma/bırakma zamanı, RS-422 seri mesaj kesme işleme zamanı, GZİS ilklendirme zamanı ve

bellek ayakizi verilerine göre karşılaştırılmış, sonuçlar işletim sistemlerinin mimari yapılarına

ve özelliklerine göre yorumlanmıştır.

Anahtar Kelimeler: Sanal İşlemciler, Gerçek Zamanlı Sistemler, Gerçek Zamanlı İşletim Sis-

temleri Karşılaştırmaları, MicroBlaze

vii

To My Family...

viii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my supervisor Assoc. Prof. Dr. Cüneyt

Bazlamaçcı for his guidance and support in my study. His inspiring suggestions and metic-

ulous feedback in every step of this thesis enabled me to write it and made it an invaluable

experience for me. It has been a pleasure to write this thesis under his guidance.

I would also wish to express my sincere gratitude to my thesis committee members Prof. Dr.

Semih Bilgen, Assoc.Prof.Dr. Ece Schmidt, Assoc.Prof.Dr. İlkay Ulusoy and Dr. Atilla Özgit

as they kindly accepted to share their invaluable comments and helpful suggestions with me.

I also thank to Emre Turgay and Murat Kalkan in ASELSAN who have contributed to improve

myself in embedded software and given me valuable advice in every step of my thesis work.

Also, my dear friend İlker Erçin, you were there with me during the hard and stressful days.

I deeply express my gratitude to Fatih İzciler who is the designer of the target platform that is

used on this study and I am also grateful to all my other colleagues for their encouragement

and support.

I express my dearest thanks to Burcu Uzun who did not leave me alone getting through the

hardest times. Her presence and her belief in me have been reassuring throughout this study.

I am deeply indebted to her for her understanding, patience, respect in what I am doing and

encouragement.

Last but not least, most special thanks and love go to my family, my mother Ayşe and my

sister Nilüfer, who have supported me in everything I have done in my life. It could have been

impossible to write this thesis without their love and support. They are the true possessors of

my success.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xiv

LIST OF FIGURES . xv

CHAPTERS

1 INTRODUCTION . 1

1.1 BACKGROUND . 1

1.2 APPROACH . 3

1.3 RELATED WORK . 4

1.4 OUTLINE . 5

2 SOFT PROCESSORS . 6

2.1 ADVANTAGES . 7

2.1.1 CONFIGURABILITY 7

2.1.2 LOW-COST . 7

2.1.3 HARDWARE SOLUTIONS TO SOFTWARE PROBLEMS 8

2.2 DISADVANTAGES . 8

2.2.1 DESIGN TOOLS . 8

2.2.2 JTAG CHAIN PROBLEMS 9

2.3 PROPRIETARY AND OPEN-SOURCE SOFT PROCESSORS . . . 9

2.3.1 PROPRIETARY SOFT PROCESSORS 9

2.3.2 OPEN-SOURCE SOFT PROCESSORS 10

2.4 SAMPLE APPLICATIONS USING SOFT PROCESSORS 10

x

3 REAL TIME OPERATING SYSTEMS . 11

3.1 ADVANTAGES . 13

3.1.1 RESOURCE MANAGEMENT 13

3.1.2 HARDWARE SUPPORT 14

3.1.3 TIME TO MARKET . 14

3.2 DISADVANTAGES . 14

3.2.1 PERFORMANCE OVERHEAD 14

3.3 EXAMPLE RTOSs AND SAMPLE APPLICATIONS 15

3.4 ARCHITECTURE OF AN RTOS 15

4 XILKERNEL . 17

4.1 FEATURES . 17

4.1.1 SCHEDULING . 17

4.1.2 SYSTEM APIs . 18

4.1.3 INTERRUPT HANDLING 19

4.2 LAUNCHING XILKERNEL . 20

5 µC/OS-II . 22

5.1 FEATURES . 22

5.1.1 SCHEDULING . 22

5.1.2 SYSTEM APIs . 23

5.1.3 INTERRUPT HANDLING 25

5.2 LAUNCHING µC/OS-II . 25

6 FREERTOS . 27

6.1 FEATURES . 27

6.1.1 SCHEDULING . 27

6.1.2 SYSTEM APIs . 28

6.1.3 INTERRUPT HANDLING 28

6.2 LAUNCHING FREERTOS . 30

7 TARGET PLATFORM AND CONFIGURATION OF SELECTED RTOSs . 32

7.1 REASONS FOR SELECTION OF XILKERNEL, µC/OS-II AND
FREERTOS . 32

7.2 A BRIEF COMPARISON OF THREE RTOSs 33

xi

7.3 TARGET PLATFORM . 35

7.4 CONFIGURATION OF SELECTED RTOSs 37

8 BENCHMARKING CRITERIA . 39

8.1 TASK PREEMPTION TIME . 40

8.2 TASK PREEMPTION TIME UNDER LOAD 42

8.3 GET/RELEASE SEMAPHORE TIME 43

8.4 PASS/RECEIVE MESSAGE TIME 44

8.5 GET/RELEASE FIXED SIZED DYNAMIC MEMORY TIME . . . 45

8.6 UART RS-422 MESSAGE INTERRUPT SERVING TIME 47

8.7 RTOS INITIALIZATION TIME 48

8.8 MEMORY FOOTPRINT . 49

9 RESULTS . 51

9.1 TASK PREEMPTION TIME . 52

9.2 TASK PREEMPTION TIME UNDER LOAD 52

9.3 GET/RELEASE SEMAPHORE TIME 54

9.4 PASS/RECEIVE MESSAGE TIME 55

9.5 GET/RELEASE FIXED SIZED DYNAMIC MEMORY TIME . . . 55

9.6 UART RS-422 MESSAGE INTERRUPT SERVING COUNT 56

9.7 RTOS INITIALIZATION TIME 57

9.8 MEMORY FOOTPRINT . 58

9.9 OVERALL . 58

10 CONCLUSION AND FUTURE WORK . 60

REFERENCES . 62

APPENDICES

A APPENDIX A . 65

A.1 XILKERNEL CODE SNIPPETS 65

A.1.1 GET/RELEASE SEMAPHORE TIME 65

A.1.2 PASS/RECEIVE MESSAGE TIME 66

A.1.3 GET/RELEASE FIXED SIZED MEMORY TIME 67

A.1.4 UART RS-422 MESSAGE INTERRUPT SERVING TIME 68

xii

A.1.5 RTOS INITIALIZATION TIME 68

B APPENDIX B . 69

B.1 µC/OS-II CODE SNIPPETS . 69

B.1.1 TASK PREEMPTION TIME 69

B.1.2 GET/RELEASE SEMAPHORE TIME 70

B.1.3 PASS/RECEIVE MESSAGE TIME 71

B.1.4 GET/RELEASE FIXED SIZED MEMORY TIME 72

B.1.5 UART RS-422 MESSAGE INTERRUPT SERVING TIME 73

B.1.6 RTOS INITIALIZATION TIME 73

C APPENDIX C . 74

C.1 FREERTOS CODE SNIPPETS . 74

C.1.1 TASK PREEMPTION TIME 74

C.1.2 GET/RELEASE SEMAPHORE TIME 75

C.1.3 PASS/RECEIVE MESSAGE TIME 76

C.1.4 GET/RELEASE FIXED SIZED MEMORY TIME 77

C.1.5 UART RS-422 MESSAGE INTERRUPT SERVING TIME 78

C.1.6 RTOS INITIALIZATION TIME 78

xiii

LIST OF TABLES

TABLES

Table 5.1 System Services of µC/OS-II . 24

Table 7.1 Available RTOSs on MicroBlaze . 32

Table 7.2 First Look on the Three RTOSs . 34

Table 8.1 Task Preemption Time Measurement Method 40

Table 8.2 API Calls for Task Preemption Time Measurement 41

Table 8.3 API Calls for Get/Release Semaphore Time Measurement 44

Table 8.4 API Calls for Pass/Receive Message Time Measurement 45

Table 8.5 API Calls for Get/Release Fixed Size Dynamic Memory Time Measurement 47

Table 8.6 UART RS-422 Message Interrupt Serving Time Method 48

Table 9.1 Benchmarking Results . 51

Table 9.2 RTOS Initialization Functions . 58

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 FPGA Designs With/Without Embedded Processors 2

Figure 3.1 Architecture of an Application Using an RTOS 12

Figure 3.2 RTOS Usage Statistics . 13

Figure 4.1 Xilkernel Architecture . 18

Figure 4.2 Scheduling Architecture of Xilkernel . 19

Figure 4.3 Interrupt Handling in Xilkernel . 20

Figure 4.4 Building Applications in Xilkernel with One Separate File Method 21

Figure 5.1 Architecture of µC/OS-II . 23

Figure 5.2 Interrupt Handling in µC/OS-II . 25

Figure 6.1 Scheduling Algorithm of FreeRTOS . 29

Figure 6.2 Interrupt Handling Algorithm in FreeRTOS 30

Figure 7.1 Target Board . 35

Figure 7.2 IP Cores Inside FPGA . 36

Figure 7.3 FPGA and External Chip Connections . 37

Figure 8.1 Measurement Method and the Drawback 42

Figure 8.2 Measurement Methods for Get/Release Semaphore Time 43

Figure 8.3 Measurement Methods for Pass/Receive Message Time 45

Figure 8.4 Measurement Methods for Get/Release Fixed Sized Dynamic Memory Time 46

Figure 8.5 Interrupt Serving Flow . 48

xv

Figure 8.6 RTOS Initialization Time Measurement 49

Figure 9.1 µC/OS-II’s OS Tick Code . 53

Figure 9.2 Task Preemption Count in 10 ms while Increasing Total Task Number . . . 54

Figure 9.3 Critical Region Concept . 57

xvi

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Nowadays, more and more embedded systems are using FPGAs (Field Programmable Gate

Arrays) to control and process data by making use of the parallelism and flexibility concepts

inherent in FPGAs. Designers using FPGAs can choose exact peripherals needed for the

requirements of the application, having also the freedom of changing them during the design

process. Assume that a system designer prepares the requirements of an incoming project

before the start of the design phase of the product as usual. The possibility of the change

of these requirements is very high after the design phase has started since the customers

can frequently change their minds. If system designers have planned using microprocessors

at the beginning of the project, software engineers may experience difficulties to fulfill the

incoming requirements because of the inflexible hardware architecture of the microprocessor.

If FPGAs have been used on the other hand, software of the product will be protected and will

not be processor dependant, and the designers will not suffer from processor obsolescence.

Also, if performance is an issue, microprocessors run at clock rates roughly 4 or 5 times

faster than FPGAs. But, FPGAs can perform tens of thousands of operations at each clock

cycle because of their parallelism while microprocessors can perform 4 or 8 operations in one

clock cycle. Microprocessors are limited in the number of operations they can perform in

one cycle. If power is in question, FPGAs can perform 50 to 100 times the performance per

watt of power consumed than a microprocessor. The disadvantage of FPGAs is the limited

processing abilities needed for complicated algorithmic processes, which can alternatively be

satisfied with the use of a soft processor [1].

1

If the decision is to use FPGAs, designers can have more advantages by using embedded

processors in FPGAs. Using embedded processors in designs is an increasing trend among

developers (Figure 1.1). These embedded processors can be hard or soft. A soft processor

is an IP core, generated from the logic cells of FPGA however hard processors are already

fabricated inside FPGA, a dedicated part of the chip. Today’s embedded systems must be

power-efficient, sufficiently small and above all, cheap, to be commercially successful. If

a design uses an embedded processor, board area is saved by removing the microprocessor

from the board and the power consumption is also decreased. Using an embedded processor

Figure 1.1: FPGA Designs With/Without Embedded Processors [2]

on the other hand has some disadvantages. Because of the integration of the hardware and

software platform design, the design tools are more complex and relatively immature com-

pared to standard processor design tools. Also downloading and debugging the software on

the embedded processor can sometimes be tedious.

Running an RTOS on processors is a trend that designers increasingly follow due to RTOSs’

deterministic behaviour and efficient resource management characteristics. Creation of tasks

to handle and distribute huge sized codes, scheduling algorithms to manage the tasks, efficient

interrupt handling and faster memory allocation are some of the many advantages of using an

RTOS. API calls written specifically for the needs of real time systems simplify and accelerate

2

the design process of software engineers. Time to market value significantly decreases if

RTOSs are used. The software may be platform independent since RTOSs support many

processors. If the decision is to use an RTOS, it is highly probable that the software code will

not change at all, or slight changes will be needed, in case of a processor change.

RTOS comparison according to real time related benchmark criteria is useful for those who

want to use RTOSs on their systems but are not sure which one to use. Designers choose an

appropriate RTOS for their design by considering their requirements. For example, if memory

is critical for a designer, it is wise to choose an RTOS with the lowest memory footprint

specification. If interrupt handling times are critical, then the RTOS with the lowest interrupt

handling time should be a rational choice. RTOS comparison studies will also provoke RTOS

companies to improve their drawbacks and introduce better products. In literature, there are

various benchmarking criteria for RTOSs defined for various purposes but we believe that

there is not enough research done on porting these criteria to a specific processor and evaluate

the performance of RTOSs according to these criteria. If you are a soft processor user and

decide to use an RTOS on your processor, your chance of finding a survey including a detailed

comparison of RTOS products on soft processors is quite low.

In this study, three RTOS candidates (Xilkernel, µC/OS-II and FreeRTOS) which can be used

with MicroBlaze (soft processor of Xilinx) are compared according to their task preemp-

tion time, task preemption time under load, get/release semaphore time, pass/receive message

time, get/release fixed sized dynamic memory time, UART RS-422 message interrupt serving

time, RTOS initialization time and memory footprint data and then the results are interpreted.

First, the characteristics of Xilkernel, µC/OS-II and FreeRTOS are given, namely their ar-

chitectures, their scheduling infrastructure, system APIs and interrupt handling concepts are

investigated. In light of this information the best RTOS on each benchmarking criterion is

identified and the results are interpreted.

1.2 APPROACH

Xilkernel, µC/OS-II and FreeRTOS are selected from nine available RTOSs which are among

the most popular RTOSs ported to run on MicroBlaze. The reasons of this selection are given

in Section 7.1 in detailed. Three RTOSs will be configured to run on the target platform that

3

is described in Section 7.2. The benchmarking test procedures, which are designed according

to real time system developers’ needs, will be performed on these selected RTOSs and the

results will be interpreted using the detailed characteristics of RTOSs presented in Chapters

4, 5 and 6.

1.3 RELATED WORK

In [3], Xilkernel and FreeRTOS are used for developing a dynamic scheduling method for

Kahn Process Networks. Two MicroBlaze processors are used on a many-to-one mapping

approach, where the primary aim is to increase the efficiency of Embedded System-Level

Platform Synthesis and Application Mapping (ESPAM) tool. The secondary and minor aim

is to compare Xilkernel and FreeRTOS in terms of general concepts like performance, com-

plexity, kernel customization and memory footprint.

Ronnholm [4], compared Xilkernel, uClinux and Asterix on MicroBlaze platform. Although

the benchmark criteria are comprehensive and detailed according to [3], this study can be

regarded as ‘out-of-date’ in view of the RTOSs compared. uClinux is not rated as a ‘real time

operating system’ by the users of MicroBlaze because of its low timing performance and high

memory footprint need [5]. Also Asterix is used mostly for educational purposes and is not

popular among RTOS users.

In [6], RTOSs on small microcontrollers (microcontrollers with a maximum ROM of 128Kbytes

and maximum RAM of 4Kbytes) are benchmarked in terms of their features and detailed per-

formance criteria. Sixteen RTOSs are compared according to language support, tool com-

patibility, system service APIs, memory footprint (ROM and RAM usage), performance, de-

vice drivers, OS-aware debugging tools, technical support, source/object code distribution,

licensing scheme and company reputation and finally four of them are selected for future

performance benchmarking such as context switching, memory management calls and so on.

So, we believe that a renewed study on MicroBlaze is needed which should research the avail-

able RTOSs supporting MicroBlaze, compare them and eliminate some of them according to

numerous criteria and perform an in-depth comparison on the rest using the critical criteria

that real time system usage imposes. Preliminary results of the present work appeared in [7].

4

1.4 OUTLINE

The outline of this thesis is as follows. In Chapter 2, soft processor concept will be introduced.

Real time systems and characteristics of real time operating systems will be summarized in

Chapter 3. Chapters 4, 5 and 6 present brief overviews and key features of the RTOSs under

consideration within this study, namely Xilkernel, µC/OS-II and FreeRTOS. The reasons for

selecting Xilkernel, µC/OS-II and FreeRTOS, the target platform upon which the benchmark-

ing is performed and the configuration options for the selected RTOSs are given in Chapter

7. In Chapter 8, the benchmarking criteria and the methods used in the comparison tests are

detailed. The comparison results of our benchmarking tests are presented and interpreted in

Chapter 9. Finally, Chapter 10 concludes the study. In Appendix part, the code snippets that

are used in benchmarking tests are given for the three RTOSs.

5

CHAPTER 2

SOFT PROCESSORS

The demand for smaller devices in technology appears to be getting no slower. Mobile phone,

computer and other electronic device companies aim to present more compact solutions in

their areas. This argument is also valid for military applications. Light-weight, small, hand-

held devices are preferred by military officials. These compact devices should also be power-

efficient. For example, the features of today’s mobile phones are rapidly increasing. Internet

connection, GPS and other applications need more processor performance and hence more

battery usage. This situation is also valid for notebooks, tablet computers and so on. So,

power consumption in these devices should be minimal for a better design. Most importantly,

these devices should be cheap to be a desirable option in the market. If a company is capable

of providing the same service to its customers with a lower price, then surely their product is

designed successfully.

Developers working on these departments mentioned above can save area, power, money and

more by using an embedded processor inside FPGAs. Embedded processors can be hard or

soft according to their architectures. Hard processors are embedded in hardware as dedicated

silicon in either FPGAs or ASICs (Application Specific Integrated Circuit). However, soft

processors are designed in a hardware description language such as VHDL or Verilog and

then synthesized similar to all other FPGA blocks. They are simply VHDL codes. The fea-

tures of the processor are up to the developer, that is to say, soft processors are technology

independent. Reconfigurability is an important advantage, the designers can change the hard-

ware architecture of their soft processors only by changing and compiling the FPGA code.

Soft processors are used in areas like communication, advertising, defence industry, security-

authentication and so on [8]. Some application examples using soft processors will be given

in Section 2.4.

6

2.1 ADVANTAGES

2.1.1 CONFIGURABILITY

Soft processors are flexible. Based on the application, for example, one can change the num-

ber of UART controllers on the processor, add a CAN bus controller or an Ethernet infras-

tructure, select which memory controller to use and so on. The decision of which features

the processor will have, depends on the developer. Surely, the more features added to the soft

processor, the less performance you get from it. But looking from the perspective of config-

urability, being able to design the processor any time you want brings many advantages. First

of all, it’s a well-known phenomenon that the requirements of a project won’t stay the same in

the design phase. The customer will want an extra feature, system designers add this feature

to the requirements and hardware or software engineers must be able to add this feature to

the product even though their design phase have already started or maybe even finished. Let’s

assume that, we work at a company which is producing an air conditioner for an automotive

company and the automotive company uses CAN bus infrastructure in the design of their cars.

Requirements of the air conditioner are prepared by the system engineers and the decision is

to use a hard microprocessor that supports CAN bus infrastructure. Everything goes well and

the project is completed successfully. After a year, the automotive company changes its mind

and decides to use an Ethernet platform in their cars instead of the CAN bus platform. The

large amount of microprocessors stocked in the company are going to trash because micro-

processors at hand may have no support for Ethernet protocol. New microprocessors should

be bought, new electronic boards should be designed and the project cost may increase sig-

nificantly. If soft processors were selected in the first place, all one has to do is simply disable

the CAN bus support, enable the Ethernet support and compile the FPGA code again.

2.1.2 LOW-COST

If an FPGA is platform is already installed on the development board, then there is no extra

fee to use a soft processor embedded in FPGA. If one has a licence from an FPGA company

such as Xilinx or Altera for FPGA code development purposes, then the soft processor feature

comes as a part of this licence. Furthermore, one can decrease the cost more by reducing the

number of components on the board and minimizing the development board’s size with the

7

help of a soft processor. FPGA block RAMs and embedded Flash memory inside FPGAs

can be used for development instead of using an extra RAM and FLASH memory on the

board. But both type of memories inside an FPGA are limited in size (depending on the target

FPGA).

Processor obsolescence is not an issue on soft processors since the VHDL code of the new

released soft processors can always be purchased from the FPGA companies. For example, a

soft processor which is released one week ago by an FPGA company, can be purchased and

run on the FPGAs, which has been bought five years ago. Hence, development companies

will not pray that their good old processor will not be obsolete in the near future, when soft

processors are used in their designs.

2.1.3 HARDWARE SOLUTIONS TO SOFTWARE PROBLEMS

Possibly the most exciting reason to choose a soft processor is the freedom of developers in

solving their problems in many different ways. For example, some problematic software parts

of the project can be transferred and solved on the hardware part [9]. A custom VHDL core

that uses the parallelism concept of FPGAs can be designed for solving a software problem

which possibly can not easily be solved on the software part of the project. Also these FPGA

cores can communicate with soft processors through shared memories or GPIOs. In summary,

developers have more solution options to their problems if soft processors are used.

2.2 DISADVANTAGES

2.2.1 DESIGN TOOLS

Designing a soft processor based process includes enabling all the necessary features of

the processor, assigning their parameters carefully and adding and adjusting the peripher-

als needed for the processor. So, at first, such processes can be hard for a software developer

who is not competent in hardware design also. The design tools for soft processor based de-

velopment processes should be easily understandable, helpful, and rich in documentation for

the software developers. Since soft processor concept is a relatively new topic compared to

designing and working with a standard processor, FPGA companies continue to improve the

8

quality of their software design tools, which are used for generating a soft processor based

project [9].

2.2.2 JTAG CHAIN PROBLEMS

Software code that runs on soft processors is downloaded to the target board using JTAG

interface. In a complex system, when the components on the JTAG chain increases, debugging

the software code on the soft processor gets even more difficult. Debugging speed decreases,

making it hard to work efficiently. Also, if one of the components on the JTAG chain fails,

then it is impossible to renew and download the software code. In other words, some other

component in another board may affect code renewing process of a soft processor.

2.3 PROPRIETARY AND OPEN-SOURCE SOFT PROCESSORS

2.3.1 PROPRIETARY SOFT PROCESSORS

The most commonly used and well-known commercial soft cores are Xilinx’s MicroBlaze

and PicoBlaze, Altera’s NIOS 2 and Tensilica’s Xtensa. PicoBlaze is an embedded 8-bit

soft processor, which is specialized for simple applications. MicroBlaze is an embedded

32-bit soft processor, which is optimized for embedded applications and can be configured

according to requirements, namely, a fast processor or a size optimized processor can easily be

generated. Error correction codes, floating point unit, memory management unit, instruction

and data caches, branch optimization, hardware acceleration, hardware exception support,

hardware debugging, TCP/IP, UDP and CAN bus infrastructure are some of the features that

MicroBlaze supports [10]. NIOS 2 is a configurable embedded 32-bit soft processor for Altera

FPGAs. Economy, standard and fast core options are available for selection according to the

requirements at hand. Like MicroBlaze, NIOS 2 also has a rich instruction set optimized for

embedded applications. Tensilica’s Xtensa is not as popular as the soft processors mentioned

above but offers a very useful feature to developers, a user-customizable instruction set. The

four soft core processors mentioned above have similar design flows, so if a developer is

familiar with using one of them, then it is easy to learn and use another one.

9

2.3.2 OPEN-SOURCE SOFT PROCESSORS

Either by using the architecture of commercial soft processors or by creating one from scratch,

open source soft processors are also designed to fulfill the specialized needs of developers. Se-

cretBlaze [11] is one such example, designed for secure applications, namely for investigating

hardware and software solutions that are robust against cryptanalysis techniques. The other

most popular open source soft processors are OpenRISC 1200, LEON3, aeMB, OpenFire and

LatticeMico [8].

2.4 SAMPLE APPLICATIONS USING SOFT PROCESSORS

Soft processors can be used instead of hard processors in nearly all applications areas. For ex-

ample, MicroBlaze running on a Virtex-6 FPGA can achieve a running frequency of 307 MHz

in its performance-optimized configuration [10]. If an FPGA platform is already used on the

board, using a soft processor saves area on the board and decreases power consumption. At

ASELSAN Inc., MicroBlaze is used for example in hand-held thermal cameras where battery

life is important and portability is an issue. Advanced Electronic Design produced a LED sign

for JPMorgan which has nearly two million pixels, making it the highest resolution signage

application in the world in 2006 [8]. In this application, a thousand PicoBlaze processors

are communicating using Ethernet, sending and receiving data to different parts of the sign.

Another application example is CISCO Systems’ CISCO Carrier Routing System, in which

192 Xtensa cores are used in CISCO Silicon Packet Processor, which helps the scaling up

the routing system to 92 Terabits per second. Also Chelsio Communication is using Xtensa

processors for its next-generation 10 Gb Ethernet Terminator ASIC [12]. Altera’s Nios II

embedded soft processor is used in THALES’ safety critical avionics system. Altera’s Hard-

Copy ASIC which includes Nios II, is used instead of a custom ASIC solution to decrease

development time and manage system obsolescence [13].

10

CHAPTER 3

REAL TIME OPERATING SYSTEMS

A real time system is defined as an application which responds in a (timely) predictable way

to all individual unpredictable external stimuli arrivals [14]. Processing information and giv-

ing a response to outside world must be within a critical specified interval. The duration of

such intervals and the requirements of the application determine the type of the real time sys-

tem. A hard real time system’s unpredictable behaviour may cost lives or large amount of

money, namely, missing a deadline is unacceptable. For example, a brake-by-wire system in

an automobile is a real time system with hard constraints. Missing one critical deadline in the

electronic infrastructure may yield a late brake and afterwards an accident. In soft real time

systems, failing to meet the response time decreases the performance, but in general doesn’t

affect the way the system works. For example, GPS on a mobile phone can lose the connec-

tion for one or two seconds, eventually leading the user to miss new location information for

a while. When the connection recovers from the error, the user may not even be aware that

the connection has been lost, hence GPS on a mobile phone can be thought as a soft real time

system.

To meet the critical deadlines that the real time systems impose, real time operating systems

(RTOSs) are used. An RTOS is a piece of software with a set of APIs for users to develop

applications [6]. The most important function of an RTOS is to manage the system resources

such as memory and CPU efficiently. Multitasking, memory protection, various scheduling

techniques, hardware libraries such as TCP/IP, CAN or USB are some of the features of

RTOSs to help real time systems become more deterministic and predictable. In Figure 3.1,

RTOS functions within an embedded system architecture is visualized. Some people may

think that, using an RTOS is a waste of time and money, and necessary libraries or pieces

of codes can be written by the user instead of using an RTOS. Imagine a USB flash drive

11

company who wants to develop a USB interface protocol for a specific microcontroller used

on their boards. Starting from scratch and designing the protocol for this microcontroller

obviously takes time and requires a significant amount of person-hour. Assume that, the mi-

crocontroller that is used becomes obsolete some time later and the company chooses another

microcontroller company, which necessitates a new USB stack code development. Then the

amount of work that is done for the obsolete microcontroller is wasted. The codes of RTOS

companies are shipped and used by lots of developers, so bugs are continuously fixed and

workarounds are continuously found [15]. A USB protocol on a well-known RTOS option,

which is developed and used for many years, might possibly be the most efficient and pre-

dictable option for implementing a USB platform. According to VDC Research Group [17],

Figure 3.1: Architecture of an Application Using an RTOS [16]

using an RTOS is an increasing trend among system developers. The market for real time

operating systems is increasing at an annual rate of %7. Nearly %50 of current no-RTOS

users are thinking of using an RTOS for their future projects. In Figure 3.2, the results of

a RTOS usage survey performed by VDC Research Group is given. Commercially licensed

RTOS users are happy with their choices, so they will continue using commercially licensed

12

RTOSs. Open source RTOS usage is an increasing trend, since the percentage of using an

open source RTOS in future is bigger than the current open source RTOS usage. The interest

in using chip/vendor based RTOSs and in house developed RTOSs are decreasing. Also, in

[6] it is stated that RTOS usage in 16-bit and 8-bit processors are also increasing, although

there is a common belief that RTOSs are for powerful 32-bit processors.

Figure 3.2: RTOS Usage Statistics [17]

3.1 ADVANTAGES

3.1.1 RESOURCE MANAGEMENT

Real time embedded systems generally have more than one event to respond. In order to

handle these events in a time-predictable and deterministic fashion, all kinds of resources

on the system should be managed efficiently. Multitasking, task synchronization tools like

semaphores and mailboxes, memory protection, various scheduling techniques, faster inter-

rupt handling mechanisms are some of the features that RTOSs provide for resource man-

agement purposes. By using the rich set of APIs that RTOSs provide, deterministic latency

13

times are achieved, leading to more reliable systems. API functions of RTOSs can differ but

in fact they perform similar operations for the same mechanisms, like semaphores or task

scheduling.

3.1.2 HARDWARE SUPPORT

RTOSs support different kinds of processors, so any software that is developed for one type

of processor is portable to another [14]. This increases reusability and decreases the time that

is needed to start a new project.

3.1.3 TIME TO MARKET

Time to market significantly effects the overall cost of a project. EMF survey [18] states that,

the average number of software developers for a project is 25.7. If the average cost for one

engineer in USA is approximately $150,000 per year, then average cost of delay per month is

$321,250. The average estimation of project delay is 4.1 months, so the total loss caused by

this delay is calculated to be $1,317,125. These figures do not take into account the possible

loss caused by the business contracts because of the delay. Using RTOSs, products can be

designed faster, less lines of code can be written with the help of easily understandable API

calls and maintenance time of the project can be decreased. Bugs will be fewer since the

system calls of RTOSs have worked and been tested over years. In summary, RTOSs decrease

time to market and help to shorten the production time.

3.2 DISADVANTAGES

3.2.1 PERFORMANCE OVERHEAD

Using an RTOS more qualified than needed increases processor utilization so the system’s

power consumption increases. RTOS features running on background like scheduling can

decrease the processor utilization of the user code. Enabling more features on an RTOS

can increase the initialization time and memory footprint of an application. Also, RTOSs

with more features need more time to get familiar with. So, a developer should analyse

14

the requirements of project under consideration carefully and select the optimum RTOS for

his/her project.

3.3 EXAMPLE RTOSs AND SAMPLE APPLICATIONS

RTOSs support various types of processors. For example, µC/OS-II supports up to 60 pro-

cessors, hard or soft, 8-bit to 32-bit, etc. For a large scale like this, it is easy to guess that

RTOSs are used in various application areas. In ASELSAN Inc., PowerPC processors are

used with VxWorks and Integrity RTOSs. VxWorks company claims that VxWorks RTOSs

power more than 1 billion embedded devices on earth [19]. Green Hills company states that

Integrity RTOSs are used in areas like automotive, avionics, industrial safety, medical devices,

secure mobile devices, secure networking, software defined radio and wireless devices [20].

In summary, in many different applications, one can easily find an embedded device running

an RTOS in embedded systems area.

3.4 ARCHITECTURE OF AN RTOS

There are four application levels on a project that uses an RTOS. These are the hardware plat-

form, board support package, RTOS and the application code. RTOSs lie between the BSP

(Board Support Package) and the application code level which are all visualized in Figure 3.1.

On the lowest level, hardware platforms reside, which can be communicated with assembly

language. On top of that BSP level is available, which helps to communicate with the hard-

ware platform. BSP codes are processor specific, which means, if the processor changes on

the hardware platform level, then the BSP code should be updated. On top of the BSP level,

RTOS is running which has no idea about the hardware platform. If the processor changes,

there is no need to change the RTOS code, the API calls of RTOSs are hardware indepen-

dent. On top of the RTOS level lies the application code. This is the code that handles the

requirements of the project using RTOS API calls. Since RTOSs provide the user a portable

platform, in case of a processor change, there is no need to change the application code which

increases reusability.

If RTOS level is further investigated, we have to introduce the operating system tick concept

(OS tick). OS tick is the software interrupt that every RTOS needs for scheduling and kernel

15

specific operations. It can be thought as the heartbeat of an RTOS. On every OS tick, tasks

are checked whether a context switching needs to be performed and ready/blocked task lists

are updated. In summary user’s application code is interrupted by the OS tick at a frequency

defined on the configuration files of RTOSs. Multitasking in RTOSs is done with the help of

this architecture, but with the drawback of the increased processor usage.

OS tick period is typically 1 or 10 milliseconds. Increasing the frequency of the OS tick

decreases the performance of the kernel, the application code could spend all of it’s time

switching in and out of the kernel and the system response could be decreased [21].

16

CHAPTER 4

XILKERNEL

Xilkernel is Xilinx’s small and modular RTOS for Xilinx embedded processors MicroBlaze

and PowerPC. The most important difference of Xilkernel from other RTOSs ported to Mi-

croBlaze is that it is integrated with Xilinx design tools and no extra licence is needed if you

are already a MicroBlaze designer. POSIX API is used for real time support, which is easy to

use or get familiar with. It’s an advantage to use a worldwide standard interface since porting

the software code to another RTOS will be easy. Scalability, which is a critical issue for em-

bedded designers, is also covered in Xilkernel. Extra features can be added to the RTOS or

some features can be excluded from compiling, which effects the memory footprint value of

Xilkernel. In Figure 4.1, Xilkernel architecture is visualized. Modules seen on the figure can

be customized, i.e. removed or added again.

4.1 FEATURES

4.1.1 SCHEDULING

Xilkernel has two scheduling options, one of which should be selected before kernel starts to

run [22]. First one is preemptive scheduling (SCHED PRIO). The thread, which has higher

priority among other threads runs until the thread itself decides to leave the processor to other

threads or the defined time slice is over. If a lower priority thread is running and a higher

priority thread becomes ready to run, then lower priority thread is preempted and higher

priority thread starts to run. Second one is round-robin scheduling (SCHED RR). In this

technique, processes have no priority, instead processor control is being passed over between

processes in a cyclic manner. If the selection is SCHED PRIO, then a priority queue is used

17

Figure 4.1: Xilkernel Architecture [22]

for deciding which process should run next. This priority queue is formed from ready queues

which are as many as priority levels. The process which is at the top of the highest priority’s

ready queue is scheduled to run. If there are more than one process on the same priority ready

queue, then the scheduling is round-robin and time-sliced between that processes. If a priority

ready queue is empty, then the next priority queue is checked. Blocked processes are deleted

from the ready queues and wait on the wait queues. When blocked processes are ready again,

they enter the ready queues according to their priority. This type of architecture does not bring

any delay theoretically when running a system under load (with many tasks). The scheduling

architecture of Xilkernel can be seen on Figure 4.2.

4.1.2 SYSTEM APIs

Xilkernel supports a portion of the POSIX API standard, since the aim of this RTOS is to

be small and suitable for simple embedded applications. For thread management, Xilkernel

provides creating, exiting and joining options, also scheduling properties and variable stack

sizes of threads. Xilkernel semaphore interface supports classical semaphore functions like

posting and pending semaphores, and furthermore semaphores can be destroyed and their

18

Figure 4.2: Scheduling Architecture of Xilkernel [22]

values can be read. Message queue API functions can be used if semaphore and dynamic

memory modules are also enabled in the kernel. Sending or receiving messages and reading or

configuring the queue are the available API functions while using message queues. Dynamic

memory allocation is another module that Xilkernel supports. ‘Malloc’ and ‘Free’ functions

are provided but, a user should handle them with care for the sake of thread-safety issue.

Interrupts and context switching are advised to be disabled while handling dynamic memory

issues. Shared memory, mutexes and software timers are other modules that are supported

by Xilkernel. Locking, unlocking and configuring mutexes, returning the kernel clock ticks

elapsed and sleeping processes are some of the API functions these modules provide.

4.1.3 INTERRUPT HANDLING

Xilkernel needs a software timer to perform scheduling, such that, a timer interrupt is gen-

erated from the software timer at a predefined frequency and connected to the kernel before

run time (OS tick). Multiple external interrupts can be handled with the kernel code and the

interrupt controller core together. When an external interrupt is active, the execution stack

is switched to the separate kernel stack [22]. The advantage of this procedure is that, the

interrupt execution does not use the user application stack. Meanwhile, the drawback of the

19

method is that there will be a time overhead while serving the interrupts. After stack switch,

the kernel stack gives the control to the interrupt controller and hence interrupt handler of

that interrupt is called. Interrupt handler function should include minimum size of code as

possible and also no blocking system calls should be made from the handler which results in

an exception otherwise [22]. After the handler function is served, the scheduler of the kernel

is called if there is a need for rescheduling the threads. The whole process is summarized in

Figure 4.3.

Figure 4.3: Interrupt Handling in Xilkernel [22]

4.2 LAUNCHING XILKERNEL

Applications using Xilkernel can be formed in two ways. First way is linking Xilkernel library

file ‘libxilkernel.a’ with the software application file and generating one ‘.elf’ file. This end

file is the only file which is downloaded to the target platform. Having one ‘.elf’ file helps

the developer in debugging, downloading and bootloading [22]. The flow of this method is

depicted in Figure 4.4. The second way, which is a bit harder than the first one, is downloading

separate ‘.elf’ files to the target. All application files and the kernel image have separate ‘.elf’

files which are all downloaded to the target platform. Once the method of using Xilkernel

20

is chosen, changes should be done on the application to work with Xilkernel accordingly.

Customization of the kernel should be made, namely, by adding and removing the desired

features of the kernel. A timer interrupt should be connected to the kernel for scheduling

purposes. Static threads should be declared if desired and thread stack sizes should be defined.

After designing the kernel, the developer should include the header ‘xmk.h’ to all application

files. Finally, in main(), the developer should call xilkernel main() for starting off the kernel.

Figure 4.4: Building Applications in Xilkernel with One Separate File Method [22]

21

CHAPTER 5

µC/OS-II

µC/OS-II is Micrium’s portable, scalable, preemptive, real time deterministic kernel for mi-

croprocessors, microcontrollers and DSPs [23]. Supporting up to 60 different processors,

µC/OS-II is widely used in industry such as avionics systems that obey safety standard DO-

178B, medical equipments, automotive systems, etc. It is also popular among academic re-

searches, since source code can be used without license as long as it is not used for commercial

applications.

µC/OS-II can be scaled to only contain the features you need for your application and thus

provide a small footprint. Also, the execution times for most of the services provided by

µC/OS-II is claimed to be both constant and deterministic. Architecture of µC/OS-II is de-

picted in Figure 5.1. µC/OS-II port block is a processor specific code, which changes accord-

ing to different types of processors.

5.1 FEATURES

5.1.1 SCHEDULING

In µC/OS-II, each task has a unique priority level (meaning that a task cannot have a pri-

ority value equal to another one) so round-robin scheduling is not supported in the kernel.

Alternatively, µC/OS-II supports preemptive scheduling, always running the highest priority

task. Scheduling of tasks are handled by the kernel function OSSched(). Since the code in

OSSched() is considered to be a critical section, interrupts are disabled before task schedul-

ing process. Also, µC/OS-II claims that increasing task number does not decrease the task

22

Figure 5.1: Architecture of µC/OS-II [24]

scheduling performance. Tasks can have 64 priority levels and 56 different tasks can be cre-

ated in an application by the user [25]. Scheduling code of µC/OS-II is deterministic, that

means the number of tasks created in the application does not affect the context switching

time. More information about the scheduler and the prove of the above statement can be

found in [26]. However, the execution time of the OS tick function is directly proportional

to the number of tasks created in the application. So, one should be careful about the timing

requirements when working with many tasks.

5.1.2 SYSTEM APIs

µC/OS-II supports more than 65 system functions related to semaphores, mutexes, event

flags, mailboxes, message queues, memory management, task management, time manage-

ment, timer management and scheduling. In Table 5.1, the most commonly used system ser-

vices (some of which are also used in our benchmarking codes with Xilkernel and FreeRTOS)

are summarized.

23

Table 5.1: System Services of µC/OS-II

System APIs Description
Semaphores

OSSemCreate Creates a semaphore
OSSemDel Deletes a semaphore
OSSemPend Waits for a semaphore, if semaphore is not available
OSSemPost Increases semaphore value, lets semaphore waiting tasks to run

Mutual Exclusion Semaphores
OSMutexCreate Creates a mutex
OSMutexDel Deletes a mutex
OSMutexPend Waits for a mutex, if mutex is not available
OSMutexPost Posts mutex, lets mutex waiting tasks to run

Event Flags
OSFlagCreate Creates an event flag group
OSFlagDel Deletes an event flag group
OSFlagPend Waits for a combination of bits to be set in an event flag group
OSFlagPost Sets or clears bits in an event flag group

Message Queues
OSQCreate Creates a message queue
OSQDel Deletes a message queue
OSQFlush Cleans the contents of a message queue
OSQPend Pends for a message
OSQPost Posts a message to the queue

Memory Management
OSMemCreate Creates a memory partition
OSMemGet Obtains a memory block from the partition
OSMemPut Returns a memory block to a partition

Task Management
OSTaskChangePrio Changes the priority of a task
OSTaskCreate Creates a task
OSTaskDel Deletes a task
OSTaskResume Resumes a task
OSTaskSuspend Suspends a task

Time Management
OSTimeDly Delays a task for a number of clock ticks
OSTimeGet Gets the system clock in terms of clock ticks
OSTimeSet Sets the system clock in terms of clock ticks
OSTimeTick Processes the clock tick

Timer Management
OSTmrCreate Creates a timer
OSTmrDel Deletes a timer
OSTmrStart Starts timer
OSTmrStop Stops timer

Miscellaneous
OSInit Initializes µC/OS-II variables and data structures
OSStart Starts multitasking
OSVersion Returns the version of µC/OS-II

24

5.1.3 INTERRUPT HANDLING

Interrupt handling in µC/OS-II is simply as follows. When a task is interrupted, execution of

the task is suspended and ISR takes control of the CPU. The first duty of ISR is to save the

registers of the task to the task’s stack area. This saving takes approximately 300 nanoseconds

on a MicroBlaze processor running at 150MHz [27]. Since µC/OS-II allows the usage of

nested interrupts, second duty of ISR code is to control if this interrupt is a nested one or

not. After this, user code of the corresponding interrupt’s handler is executed. When the user

code finishes its execution, the next running task is decided in the service call OSIntExit()

function and context switching of tasks is performed if necessary. Finally, the registers of the

completed task are restored and handling of the interrupt is finished. The interrupt handling

process is summarized in Figure 5.2.

Figure 5.2: Interrupt Handling in µC/OS-II [24]

5.2 LAUNCHING µC/OS-II

For running µC/OS-II on an arbitrary processor smoothly, all the architecture blocks (appli-

cation software, processor independent code, configuration, processor specific code, CPU,

timer) which are defined on Figure 5.1 should be accurate. Since CPU and timer is assumed

25

to be available on the hardware and processor independent code is provided by µC/OS-II

website, a designer has to configure the rest of the blocks, i.e. processor specific code, con-

figuration and application software. Board support packages, which will ease the process of

writing processor specific code, are available for up to 60 processors on µC/OS-II website.

For example, MicroBlaze BSP that is used in our hardware platform is downloaded from

µC/OS-II website. If a processor is not supported on the website, a designer should change

and modify the BSP code of a randomly selected processor. According to Jean J. Labrosse,

this process consists of writing or changing 50 to 300 lines of code [25]. The rest of the

blocks, application software and configuration, are provided by the designer according to the

design requirements.

26

CHAPTER 6

FREERTOS

FreeRTOS is an open source RTOS while Xilkernel and µC/OS-II are propriety ones. This real

time mini kernel receives 77500 downloads per year and is one of the most popular kernels

among embedded system designers. According to 2011 EETimes Embedded Market Survey,

FreeRTOS is the most frequently used kernel and also became the leading kernel, which is

being considered currently as the next RTOS candidate to be used among embedded system

users [28]. Increasing demand of RTOSs for small microcontrollers and the idea of having an

RTOS with no license fee at all helped FreeRTOS to be popular among other RTOSs.

Using FreeRTOS instead of another commercial RTOS has two major advantages. First of

all, it is a free and open source RTOS that means a designer can download the code and

start developing with absolutely no cost. The other advantage is that a designer can create a

working prototype of a product quite fast. Supported nearly for 60 different processors and 17

toolchains and having only three .c files for the core of the kernel are among the main reasons

for this ‘reduced time to market’ value.

6.1 FEATURES

6.1.1 SCHEDULING

FreeRTOS has two modes of scheduling algorithms, cooperative and preemptive. In both

modes, any number of tasks can have the same priority value, including the idle task. Un-

like µC/OS-II, the user can create any number of tasks desired, the only restriction being the

memory. In cooperative scheduling, a task runs until it voluntarily gives control to another

27

task. It’s more difficult to implement cooperative scheduling in a design, but when succeeded,

a more reliable and deterministic system may be achieved. The other mode is preemptive

scheduling, which was explained in earlier chapters. The scheduling code of FreeRTOS runs

at every OS tick of the system. The algorithm controls the configuration attribute ‘confi-

gUSE PREEMPTION’, and then decides which scheduling algorithm to use. According to

this selection, necessary context switching operations are performed or not, and the timer tick

is increased. The whole scheduling process is summarized in Figure 6.1. If the selection is

to use preemption then the context switching times are critical for the user. The scheduler

architecture is similar to the architecture that is used in Xilkernel. Ready queues, which are as

many as priority levels on the system, contain the ready tasks. The scheduler runs the highest

priority task that is available on the application by examining the ready queues. Blocked pro-

cesses wait on the wait queues for their initiative interrupt. This architecture does not bring

any extra delays when the system is under load.

6.1.2 SYSTEM APIs

Like Xilkernel and µC/OS-II, FreeRTOS has various system APIs for use. For task and

scheduling purposes, FreeRTOS provides functions such as creating, delaying or yielding

a task, entering and exiting critical regions inside a task and disabling or enabling interrupts.

Also, scheduler statistics can be traced with system APIs ‘vTaskStartTrace’ and ‘vTaskEnd-

Trace’. Like many other RTOSs, queue and semaphore architectures are supported with sim-

ple system APIs. Software timer, which is a necessary RTOS property is also supported with

12 system APIs.

6.1.3 INTERRUPT HANDLING

FreeRTOS handles interrupts with the help of two RTOS configuration parameters; ‘configK-

ERNEL INTERRUPT PRIORITY’ and ‘configMAX SYSCALL INTERRUPT PRIORITY’.

First one, ‘configKERNEL INTERRUPT PRIORITY’ is the OS tick’s interrupt priority. This

should be set to the lowest interrupt priority level that the hardware platform supports. The

other configuration parameter, ‘configMAX SYSCALL INTERRUPT PRIORITY’, shows

the highest interrupt priority level that interrupt safe system APIs can be called inside the

interrupt handler. If an interrupt has an interrupt priority level higher than this constant, then

28

Figure 6.1: Scheduling Algorithm of FreeRTOS

29

no system APIs can be called from that interrupt’s ISR handler, namely this interrupt will

never be delayed because of the FreeRTOS kernel activity [28]. If an interrupt has no sys-

tem calls inside the ISR handler, then that interrupt can have all the interrupt priority levels,

namely, no restrictions come from the two configuration constants. Assuming an example

microcontroller with 8 interrupt priority levels (0 being the lowest, 7 being the highest), the

interrupt handling mechanism of this case can be visualized as in Figure 6.2. In summary,

FreeRTOS serves interrupts with minimum timing overhead if configuration constants are ar-

ranged properly. Even the critical sections of the kernel can be interrupted, if the interrupt

priority level is above ‘configMAX SYSCALL INTERRUPT PRIORITY’.

Figure 6.2: Interrupt Handling Algorithm in FreeRTOS

6.2 LAUNCHING FREERTOS

Launching FreeRTOS is a similar process to launching µC/OS-II. Application software, pro-

cessor independent code, configuration, processor specific code, CPU and a timer is needed

for running FreeRTOS smoothly on a hardware platform. CPU and the timer interrupt are

assumed to be available on the hardware platform. Like all other RTOSs, FreeRTOS needs

a timer interrupt for the kernel scheduling code. Processor independent code is available for

download on FreeRTOS website which contains only three .c files (four if co-routines are

used). Processor specific code may be the one with the heaviest workload above if porting

30

to a specific processor is not supported on the FreeRTOS website. If a designer uses a pro-

cessor that is already supported, all that’s need to be done is to download the board support

package files from FreeRTOS website and change some platform specific constants. Else, the

designer should follow the instructions on FreeRTOS website and create the porting codes of

the unsupported processor. The rest of the items, application software and configuration, are

provided by the designer according to the design requirements at hand.

31

CHAPTER 7

TARGET PLATFORM AND CONFIGURATION OF

SELECTED RTOSs

7.1 REASONS FOR SELECTION OF XILKERNEL, µC/OS-II AND FREER-

TOS

There are many RTOSs supporting MicroBlaze on the market. The leading ones and the

companies distributing these RTOSs are listed in Table 7.1.

Table 7.1: Available RTOSs on MicroBlaze

Company RTOS

FreeRTOS Team FreeRTOS

Micrium µC/OS-II

Mentor Graphics ESD Nucleus Plus

Petalogix uClinux

eSol Co. Ltd PrKernel

Express Logic ThreadX

MiSPO NORTi

Xilinx Xilkernel

eCosCentric eCos

FreeRTOS is open source and very popular among above mentioned RTOSs according to

2011 EETimes Embedded Market Survey [28]. The survey also states that embedded sys-

tem users selected FreeRTOS as their first choice for their future projects. So, FreeRTOS

should definitely be on the comparison list. PrKernel and NORTi use µITRON architecture

32

for standardization of API calls and software portability. Both RTOSs are poor in terms of

documentation and support, and are not popular among MicroBlaze users. Even that, NORTi

has a website that does not have language support for English. So PrKernel and NORTi are

eliminated. uClinux stands for MicroController Linux, and is used by developers who are

familiar with the Linux environment. However, µClinux is criticized as being ‘not a real time

OS’ by embedded system users [5]. In [4], uClinux has 10 times worse interrupt latency times

than Xilkernel and memory footprint values of uClinux are very high compared to Xilkernel.

Also, a designer needs a Linux host to download and build the kernel, so µClinux is also elim-

inated. eCos needs a bootloader called Redboot to load program from the ROM to the RAM

[6]. This brings up extra RAM and ROM space necessity, which is not suitable for a real time

MicroBlaze system so eCos will not be on our comparison list. Xilkernel is highly integrated

with the design tools of Xilinx and is using POSIX thread architecture. Every designer who

uses MicroBlaze can use Xilkernel with no extra fee and can easily get familiar with that

RTOS so comparison results of Xilkernel concern majority of the MicroBlaze community.

We believe that an RTOS using the global POSIX API architecture should definitely be on the

comparison list hence Xilkernel is in. Nucleus Plus supports the design tool of MicroBlaze

(EDK) up to version 9.1. EDK version 12.4 will be used when comparing RTOSs on MicroB-

laze so Nucleus Plus is eliminated. ThreadX also has the same problem. An example design

of MicroBlaze is given on the website supporting EDK 11.4. Also, the design is given as a

library, so the comparison will not be reasonable since the RTOSs to be compared should be

compiled with the same compiler. The website does not give information about the MicroB-

laze port for EDK 12.1 so ThreadX is eliminated. µC/OS-II is popular among MicroBlaze

users and MicroBlaze port for EDK 12.4 is available on the website. Another advantage is

that, µC/OS-II is free for educational purposes so µC/OS-II is on our comparison list.

7.2 A BRIEF COMPARISON OF THREE RTOSs

On Chapter 4, 5 and 6, we have given the features of Xilkernel, µC/OS-II and FreeRTOS

but before we move further and compare them according to RTOS concepts we believe it

is important to compare them according to general concepts like scheduling, licence type

and documentation. This comparison will give a basic idea of that RTOS and will help us to

understand the further detailed comparisons’ results. For example, an open source RTOS may

33

be thought of having a minimal implementation at first or an RTOS with a licence fee may be

expected to have a better performance, but of course these are all reasonable predictions. Our

general comparison criteria are given below.

• Processor Support: RTOSs support different processor architectures. Supporting more

processors means that RTOS is more generic and better-designed, also applicable to real

time systems with a wider range of complexity.

• Licence Type: RTOSs are provided according to different licence standards; free for

all purposes, free for educational purposes only or fee-based for all purposes. This

criterion may give an idea about the development status of an RTOS, whether that

RTOS is a robust and mature RTOS or it is still progressing.

• Documentation: Being well-documented increases the understandability of the RTOS

APIs which leads to more reliable systems and it decreases the learning period of an

RTOS. This criterion will detail the documentation resources of RTOSs.

• Language Support: This criterion will give the programming languages supported

by that RTOS. Supporting more languages means that RTOS is more advanced and

applicable to more developers.

• Scheduling Support: Scheduling algorithms of the RTOSs will be given, whether

preemptive, cooperative, round-robin and other scheduling techniques are supported.

The result of the comparison according to the criteria listed above is given in Table 7.2.

Table 7.2: First Look on the Three RTOSs

Xilkernel µC/OS-II FreeRTOS

Processor Support Only MicroBlaze Up to 60 Up to 60

and PowerPC

Licence Type Fee-based Free For Educational Free

Purposes Only

Documentation Online Book and Online Online

Language Support C/C++ C/C++ C/C++

Scheduling Support Preemptive and Preemptive Preemptive and

Round-Robin Cooperative

34

7.3 TARGET PLATFORM

The target platform that the benchmarking tests will be performed is an electronic board de-

signed for controlling the Tank Driver Surveillance System in ASELSAN Inc., and this board

consists of an FPGA, an external SRAM, Parallel Flash, serial communication chips, and a

JTAG connection.

The requirements of the project impose the use of a MicroBlaze as the microprocessor and

Figure 7.1: Target Board

no hard microprocessor component is placed on the control board. The board is built around

Xilinx Spartan XC3S1400AN FPGA. Inside this FPGA, MicroBlaze is configured to run at a

frequency of 80MHz. External Parallel Flash on the board is not used on the benchmarking

tests since benchmarking codes are downloaded to the external SRAM on the board, in other

words no ROM memory is used. Namely, benchmarking test codes and RTOS codes are lo-

cated on the external SRAM. This external SRAM is 1Mbit, a size that is more than enough

for both test and RTOS codes. So, no memory problems should be encountered on our bench-

marking process. The FPGA code is compiled with the necessary configuration options so

on the benchmarking process; there is no need to download the FPGA code again and again.

Since FPGA code is located on internal FPGA Flash memory of the FPGA, only the output

file of the compiled benchmarking codes should be downloaded to SRAM when the system

is powered on. The target board can be seen in Figure 7.1. In order to explain the target plat-

35

Figure 7.2: IP Cores Inside FPGA

form more detailed, the block diagram showing the IP cores (Intellectual Property) that are

present on the FPGA system design are given in Figure 7.2. Our soft processor MicroBlaze

is connected to the local memory through instruction and data local memory buses. Using

the debug module, MicroBlaze can be debugged via JTAG connection outside from FPGA.

The PLB (Processor Local Bus), provides separate 32-bit address and 64-bit data buses for

the instruction and data parts. This architecture supports read and write data transfers be-

tween master and slave devices which have a PLB bus interface and connected through PLB

signals. Supporting multiple master and slave devices, user can connect various IP cores to

MicroBlaze using the PLB. As shown on the Figure 7.2, external SRAM and flash memory

36

controllers, timer controller, interrupt controller and UART interface are connected to Mi-

croBlaze with the PLB. Using the SRAM and flash memory controller interfaces, we can

communicate with the external SRAM and parallel flash on our target board. Finally, clock

generator generates the necessary clock signals that are needed for the IP cores and processor

reset module generates the reset signal of the system.

To visualize the connections of FPGA and the external chips on the board, another block

diagram is given on Figure 7.3. In Figure 7.2 the inner IP cores of FPGA are given, but in

Figure 7.3, the bigger picture is given, which shows the chips reside on the electronic board.

Figure 7.3: FPGA and External Chip Connections

7.4 CONFIGURATION OF SELECTED RTOSs

RTOS configuration options related with the selected benchmark criterion should be same

on all RTOSs for reliable benchmarking results. GNU-based compiler tool-chain and GNU

debugger (GDB) are used on the EDK environment (MicroBlaze code development environ-

ment) and the compiler version is GCC-4.1.2. The configuration features that are handled on

RTOSs are listed below.

37

• The OS tick, which is the software interrupt given to RTOSs for kernel specific opera-

tions (such as scheduling) is generated every 1 ms.

• The compiler settings are default.

• Task stack size is configured as 2 KB.

• Stack and heap sizes of the program are both selected as 64 KB.

• Xilkernel Options: Xilkernel version 5.0.a is used for our benchmarking tests. The code

of the Xilkernel comes with the licence of the code development environment.

• µC/OS-II Options: µC/OS-II version 2.90.a with a MicroBlaze port is used for our

benchmarking tests. Full source code is downloaded from the website of Micrium and

compiled with GCC-4.1.2.

• FreeRTOS Options: FreeRTOS version 7.0 with a MicroBlaze port is used for our

benchmarking tests. Full source code is downloaded from the website of FreeRTOS

and compiled with GCC-4.1.2.

• On each benchmarking test, unused RTOS features are disabled before compiling the

RTOS.

38

CHAPTER 8

BENCHMARKING CRITERIA

RTOS benchmarking studies are useful for embedded designers, since selection of an RTOS

at the beginning of the project can significantly effect the time to market duration of a prod-

uct. Of course, the designers desire to select the most appropriate RTOS according to their

requirements, so they research the available RTOSs on the market at first. They examine the

web-sites, read the data sheets and they think they have all the technical information needed

to decide which RTOS to use. However, the performance data of RTOSs on data sheets and

web-sites are generally optimistic, namely, that performance will not be verified by the de-

signers on their applications. If the selection is wrong, the designers most probably will not

understand that they had the wrong RTOS choice, since all of the RTOSs have a learning

period before using them efficiently.

Studies which compare the available RTOSs on a specific processor can help the designers

who plan to run an RTOS on that processor for their projects. These studies should include all

of the real time specific criteria for the sake of completeness. Not only designers make use of

these studies, the RTOS companies will also have the chance to see the underperforming parts

of their RTOSs. Valuable data from the application field can provoke the RTOS companies to

improve the codes of their RTOSs and provide better RTOS products to designers.

Now, the benchmarking criteria will be detailed. Appendix A,B and C provide the code

snippets that further detail the benchmarking criteria given below. Benchmarking codes are

enriched with comments to increase understandability. To set an example, RTOS API calls are

clearly stated with comments. Also, critical variables and constants are defined and explained.

39

8.1 TASK PREEMPTION TIME

Task preemption time is defined here as the time spent by the RTOS to save the context of

a currently running low-priority task and switch the execution to a higher-priority task. Task

switching time is defined as the time taken by the RTOS to save the context of a task and

switch to another task which have equal priorities. Task switching time can not be taken

as a benchmark criteria in this study, since tasks can not have equal priorities in µC/OS-II.

Task preemption time is crucial on multitasking embedded systems which have strict timing

requirements, so an RTOS should be switching tasks rapidly to give more execution time to

user code.

On MicroBlaze platform, task preemption time performance of Xilkernel, µC/OS-II and

FreeRTOS will be compared using the measurement method in Table 8.1. For 10 mil-

Table 8.1: Task Preemption Time Measurement Method

Task1 (Higher Priority) Task2 (Lower Priority)

Running Sleeping

Switch control to Task2 Sleeping

Sleeping Running

Sleeping When Task2 starts to run, switch control back to Task1

Running Sleeping

liseconds, this measurement algorithm will run for each of the RTOSs on MicroBlaze and

the number of task preemption operations will be counted separately. On µC/OS-II, ‘OS-

TaskSuspend’ and ‘OSTaskResume’ system calls are used for the purpose of switching tasks.

On Xilkernel, which uses POSIX thread architecture, there is no system call to suspend and

resume a task. The available commands for task management are ‘yield’,‘pthread join’ and

‘pthread exit’. The function ‘yield’ suspends the running task, changing the state of a task

from ‘running’ to ‘ready’. If this function is called from a higher priority task, the scheduler

again gives the execution to the same task since that task is ready and waiting for execution

[3]. In summary, ‘yield’ function is designed for round-robin scheduling, it is not suitable

for our task preemption benchmark criterion. The function ‘pthread exit’ terminates a task,

and that task is deleted from the scheduling queues forever until that task is created again.

Also, ‘pthread join’ function keeps a task in a suspended state until another desired task is

40

terminated. Since no tasks will be terminated in our benchmark test, this function is also not

suitable for use. Semaphores, mutexes and conditional variables can be used for scheduling

tasks, but using these features will cause comparing different types of architectures for task

preemption criterion so Xilkernel will not be benchmarked on this criterion. For designers,

who want to use Xilkernel to perform task preemptions, we performed a task preemption

scenario with semaphores just to give an idea. The results of this test will be given on the

results section. On FreeRTOS, similar to µC/OS-II, system calls of suspending and resum-

ing tasks are used. These are ‘vTaskSuspend’ and ‘vTaskResume’. The API calls that are

used by RTOSs are summarized in Table 8.2. To criticise the measurement algorithm, one

Table 8.2: API Calls for Task Preemption Time Measurement

Xilkernel µC/OS-II FreeRTOS

Sleep Task - OSTaskSuspend vTaskSuspend

Resume Task - OSTaskResume vTaskResume

can argue that measuring the exact preemption time would give more reliable benchmarking

results. First of all, software timers of RTOSs that will measure the exact preemption time

have low time resolution. Time is measured in terms of ‘OS ticks’ so the time resolution is

in the order of milliseconds because of the restrictions on the OS tick frequencies of RTOSs

[21]. Task preemption time for RTOSs is on the order of microseconds so software timers

are not suitable for measurement purposes. One can ask why the standalone software timer

of MicroBlaze is not used for measurement purposes because this timer’s resolution is on the

order of nanoseconds (depending on the running frequency of MicroBlaze). But this method

is also not suitable since RTOS companies strongly advice that standalone service calls of Mi-

croBlaze should not be used when an RTOS is running on MicroBlaze because of reliability

issues. So, our measurement method does not aim to give the exact task preemption times,

but our aim is to give the count of task preemption times performed in 10 milliseconds and

find the best RTOS with respect to this criterion instead.

When comparing task preemption times, our measurement is affected from the variable con-

text switching times that is caused by switching from the higher priority task to lower priority

task. This can be seen as the drawback of our method which is visualized in Figure 8.1. How-

ever, context switching time is mostly affected from the number of registers that should be

saved while switching tasks [25]. Our tasks which are used on the preemption test are simple

41

tasks with no functions and furthermore their stack sizes are equal. So, we can safely assume

that the time passed between switching from a high priority task to a low priority task and

vice versa are equal. To conclude, we believe this drawback will not effect the results of our

task preemption time comparison.

Figure 8.1: Measurement Method and the Drawback

8.2 TASK PREEMPTION TIME UNDER LOAD

The term ‘real time’ does not mean ‘as fast as possible’ but rather ‘real time’ demands con-

sistent, repeatable, known timing performance [29]. Real time operating systems should be

deterministic, that means they should offer load-independent performance. Timings should

not change when the number of tasks, semaphores and other operating system related archi-

tectures increase on the application. Especially the scheduling performance of RTOSs should

not be affected when the load increases. As we have seen on Chapter 4, 5 and 6; bench-

marked RTOSs claim deterministic task preemption times. On this benchmarking criteria, we

will repeat the previous task preemption time test, but with more tasks available on RTOSs.

Xilkernel will not be on the comparison list, due to the reasoning on Section 8.1. RTOSs will

have five, ten and fifteen tasks statically created at the start of the application, and we will

examine the effects of these tasks by comparing the results of this benchmarking test with the

previous two task case. The extra tasks will have lower priorities than the two tasks which

perform context switching, so they won’t take control of the scheduler. They will conserve

their ‘ready’ states during the benchmark test.

For 10 milliseconds the same algorithm on the ‘Task Preemption Time’ test will run for each

of the RTOSs on MicroBlaze and the number of task preemption operations will be counted

42

separately. This benchmark criterion will be performed for five, ten and fifteen total number

of tasks. Finding out which RTOS is faster on multitasking and understanding the effect of

increasing total task number are aimed in this experiment. The service calls that will be used

to resume and suspend the tasks on RTOSs will be same as given in Table 8.2.

8.3 GET/RELEASE SEMAPHORE TIME

Semaphores are widely used in today’s embedded systems for the purpose of synchronization

of resources and signalling events. Getting semaphore time is defined as the time required

for an RTOS to take an available semaphore with the service call defined for that purpose.

Releasing semaphore time is the time required for an RTOS to release the semaphore with the

service call defined for that purpose.

On MicroBlaze platform, get/release semaphore time performance of Xilkernel, µC/OS-II

and FreeRTOS will be compared using the measurement methods in Figure 8.2. For 10

Figure 8.2: Measurement Methods for Get/Release Semaphore Time

milliseconds, ‘get semaphore’ method will run for each of the RTOSs on MicroBlaze and the

number of ‘get semaphore’ operations will be counted separately. Another 10 milliseconds,

‘release semaphore’ algorithm will run for each of the RTOSs on MicroBlaze and the number

of ‘release semaphore’ operations will be counted. For both tests, only one task is enough,

which runs in an endless loop, only handling the functions of getting or releasing semaphores.

For getting semaphore test, a counting semaphore will be created before Task1 starts to run

and after 10 milliseconds of executing ‘get semaphore’ service call, the value of the counting

semaphore will be investigated. Then, the number of executed ‘get semaphore’ calls will be

43

found. Similar approach will be followed for releasing semaphore test. The API calls that are

used by RTOSs are given in Table 8.3.

Table 8.3: API Calls for Get/Release Semaphore Time Measurement

Xilkernel µC/OS-II FreeRTOS

Get Semaphore sem wait OSSemPend xSemaphoreTake

Release Semaphore sem post OSSemPost xSemaphoreGive

8.4 PASS/RECEIVE MESSAGE TIME

Message passing is a popular synchronization and communication infrastructure between

tasks. Tasks can send and receive bytes, data structures, pointers and code segments to each

other via message passing API calls that RTOSs support. For example, 10 bytes of critical

information may be received from outside world via an external interrupt inside TaskA, which

should be processed by TaskB immediately after reception. This 10 byte information can be

passed to the internal RTOS queues from TaskA to TaskB, which is waiting for the message

to run. Message passing is a similar synchronization tool to semaphore passing, but including

information exchange between users.

RTOSs provide message passing API functions for handling message passing operation. These

functions, like most functions of RTOSs, should be deterministic in time. Any unexpected de-

lay can cause failures on the system whose extent depends on the requirements of the system.

On MicroBlaze platform, pass/receive message time performance of Xilkernel, µC/OS-II and

FreeRTOS will be compared using the measurement methods in Figure 8.3. For 10 millisec-

onds ‘pass message’ method will run on each of the RTOSs on MicroBlaze and the number of

‘pass message’ operations will be counted separately for each RTOS using a global variable.

Same method will be repeated for releasing message test. For both tests, only one task is

enough, which will run in an endless loop, only handling the functions of getting or releas-

ing fixed sized messages. Since µC/OS-II and Xilkernel allow only message pointer passing

mechanism, which means passing 32-bit address value between tasks, our algorithm should

pass 32-bit values in all of the three RTOSs. In Xilkernel and µC/OS-II, a pointer which points

to a 32-bit integer will be sent and in FreeRTOS 32-bit integer will be directly sent, through

the queue generated inside the kernel. So, basicly all three RTOSs will send and receive the

44

Figure 8.3: Measurement Methods for Pass/Receive Message Time

same amount of data. Since all of the RTOSs have a heap size of 64kB, ‘pass message’ test

should not last until the heap memory is full. The precautions for the danger of filling the

heap memory with messages should be taken and handled in our algorithm. So, a period of

10 milliseconds is verified to be enough for a safe heap memory usage. For 10 milliseconds,

at maximum, only one fifth of the heap memory is filled by examining the number of ‘pass

message’ operations. The API calls that are used by RTOSs are given in Table 8.4.

Table 8.4: API Calls for Pass/Receive Message Time Measurement

Xilkernel µC/OS-II FreeRTOS

Get Dynamic Memory bufmalloc OSMemGet pvPortMalloc

Release Dynamic Memory buffree OSMemPut vPortFree

8.5 GET/RELEASE FIXED SIZED DYNAMIC MEMORY TIME

When writing a software application and memory is needed during run-time, dynamic mem-

ory allocation libraries are used for allocating and deallocating memory. If variables on the

software code are created statically, then these variables are created on stack memory when

the code starts to run and are released when the code exits. But if dynamic memory usage is

needed, memory is created on heap dynamically using the allocation functions and freed un-

der the control of the user, again using the library functions. So, one should be careful while

dealing with dynamic memory, since not freed memories can lead to memory exhaustion

problems in long term. Usage of dynamic memory is advantageous since pieces of memory

45

can be reused by the application, but it should be handled with care.

RTOSs provide dynamic memory allocation functions to simplify dynamic memory manage-

ment. These functions must be deterministic in time like most of the functions of RTOSs to

fulfill the critical timing requirements of real time systems. Selected RTOSs will be compared

according to ‘get/release fixed sized dynamic memory’ functions with the methods given in

Figure 8.4. For 10 milliseconds ‘get fixed size memory’ method will run for each of the

Figure 8.4: Measurement Methods for Get/Release Fixed Sized Dynamic Memory Time

RTOSs on MicroBlaze and the number of ‘get fixed size memory’ operations will be counted

separately for each RTOS. Same method will be repeated for ‘release fixed size memory’

operations. For both tests, only one task is enough, which will run in an endless loop, only

handling the functions of getting or releasing fixed sized memories. The fixed size memory

mentioned is decided to be 128 bytes. For ‘get fixed sized memory’ test, the application will

allocate 128 bytes of dynamic memory in every loop, and using a global variable, the number

of ‘get fixed sized memory’ calls will be counted. For ‘release fixed sized memory’ test, the

application will free 128 bytes of dynamic memory in every loop, and using a global variable,

the number of ‘release fixed sized memory’ calls will be counted. Since all of the RTOSs

have a heap size of 64kB, ‘get fixed sized memory’ test should not last until the heap memory

is full. So, a period of 10 milliseconds is tested to be enough for a safe heap memory usage.

In µC/OS-II and Xilkernel, dynamic memory partitions should be created before the kernel

starts to run, but in FreeRTOS, using the memory allocation functions, dynamic memory is

allocated directly from the heap (heap 3.c is used as memory management source for FreeR-

TOS). The API calls that are used by RTOSs are given in Table 8.5.

46

Table 8.5: API Calls for Get/Release Fixed Size Dynamic Memory Time Measurement

Xilkernel µC/OS-II FreeRTOS

Receive Message msgrcv OSQPend xQueueReceive

Post Message msgsnd OSQPost xQueueSend

8.6 UART RS-422 MESSAGE INTERRUPT SERVING TIME

When working with real time embedded systems, serving external interrupts in a fast and

deterministic fashion is very crucial. According to the requirements of the application, real

time systems have to respond to outside events within a critical specified interval. Serving

interrupts faster is not enough for a good RTOS, also the serving times should be predictable.

In this benchmark criterion, all of the RTOSs will be compared against their UART RS-422

message interrupt serving time. UARTs are pieces of integrated circuits that are used for serial

communication realizing the standards RS-232, RS-422, RS-485 and so on. A UART RS-422

message interrupt will be generated in this benchmark test. The time needed to serve that

interrupt and return the execution of the program to where it is interrupted will be measured

(Figure 8.5). Note that, this criterion is highly dependant on the hardware architecture of the

processor, but RTOSs can effect the serving time by introducing extra delays because of their

usage of the processor. So, instead of measuring the exact time of serving an interrupt, we

will run the processor for 10 milliseconds and count how many interrupt servings are done on

each RTOS. By this way, we will take into account the inner architecture of the RTOS, which

is the timer tick code that runs for scheduling purposes. The algorithm of the UART RS-422

message interrupt serving time criterion will be as follows (Table 8.6).

• There will be one task on all of the RTOSs.

• This task will run on an endless loop fashion.

• The duty of the task is to send an RS-422 message (1 byte long) from a UART channel

on the hardware platform.

• When a message is sent from UART RS-422 channel, an interrupt is generated inside

MicroBlaze which leads the flow of the program to the handler function of this interrupt.

47

Figure 8.5: Interrupt Serving Flow

• Inside the handler function, a global boolean attribute will be set to ’true’ which helps

us to understand that the interrupt is served.

• Then, the flow of the program will be returned to the task again and the same RS-422

serial message will be sent via UART RS-422 channel if the global boolean attribute is

set on the handler.

• This loop will continue for 10 milliseconds, and how many interrupts are served on all

of the RTOSs will be compared.

Table 8.6: UART RS-422 Message Interrupt Serving Time Method

Task1 Interrupt Handler

1. Running Waiting for the interrupt

2. UART RS-422 message sent Waiting for the interrupt

3. Interrupt generated when message sent Waiting for the interrupt

4. Not Running Program comes to this handler

5. Not Running Bool attribute set

6. Running Waiting for the interrupt

7. If Bool attribute set, return to step 2 Waiting for the interrupt

8.7 RTOS INITIALIZATION TIME

After the power-up of the system, RTOSs have to initialize their architecture and the hardware

platform before making any RTOS API calls. Initialization of the global variables, creation of

48

the idle thread, user static threads and any other system threads are some of the duties RTOSs

have to perform before scheduling starts. Also, initialization of the hardware units on the

board has to be performed, namely memory controllers and processor specific initializations

should be handled by the RTOS. The initialization process finishes when a jump is made to

the scheduler to start running the highest priority thread [30]. This RTOS initialization time is

surely important for developers who need a fast start-up on their systems. Our benchmarking

test will measure the time between the power-up of the system and the first instruction of the

first task and find the fastest RTOS on this criterion. The measurement method is visualized

in Figure 8.6.

Figure 8.6: RTOS Initialization Time Measurement

8.8 MEMORY FOOTPRINT

Memory footprint is the RAM usage of the RTOS codes. Memory restrictions are critical for

real time systems, so if an RTOS is decided to be used on a real time system, a developer

expects a low memory footprint from that RTOS. The memory usage of an RTOS depends on

the applications it supports so it is expected that an RTOS with more features enabled, needs

more memory. We will compare the memory footprint needs of all RTOSs by comparing the

text section memory of the application under the load of one task running on a forever loop.

Text section of the application contains the executable instructions generated from the source

codes of RTOSs whose size gives the best idea about the memory footprint of an RTOS.

All the unused features of all RTOSs should be disabled for a meaningful comparison. As

FreeRTOS is not reconfigurable, it needs all the source files to be compiled for any application,

49

so FreeRTOS will not be on the memory footprint comparison. µC/OS-II and Xilkernel will

be compared, and having the lowest memory footprint RTOS will be found.

50

CHAPTER 9

RESULTS

In this chapter, the results of benchmarking tests will be given. The RTOSs will be compared

against the criteria defined in Chapter 8, the winner of each criterion will be identified, and the

results will be interpreted using the information of RTOS features given in Chapter 4, 5 and 6.

Total results are summarized in Table 9.1. All the tests except memory footprint comparison

are iterated for a number of times to ensure a confidence level. The number of iterations have

been selected to achieve a confidence level of %99 with a gap of %1 (∆ < 0.01) [31].

Table 9.1: Benchmarking Results

Xilkernel µC/OS-II FreeRTOS

Task Preemption Count in 10 ms - 59 30

Task Preemption Count Under Load in 10 ms - 57/55/50 30/30/30

(5/10/15 tasks)

Get Semaphore Count in 10 ms 131 302 156

Release Semaphore Count in 10 ms 132 280 180

Pass Message Count in 10 ms 63 308 125

Receive Message Count in 10 ms 47 312 112

Get Fixed Sized Dynamic Memory Count 243 438 86

in 10 ms

Release Fixed Sized Dynamic Memory Count 89 407 104

in 10 ms

UART RS-422 Message Interrupt Serving

Count in 10 ms 75 54 53

Initialization Time in ms 1,64 7,81 5,96

Memory Footprint in bytes 16490 17086 -

51

9.1 TASK PREEMPTION TIME

‘Task preemption time’ comparison gives the number of task preemptions performed by each

RTOS in 10 milliseconds. µC/OS-II performs more task preemptions than FreeRTOS if results

are interpreted. The result is expected if the section includes the brief comparison of RTOSs

is examined carefully (Section 7.2) since µC/OS-II supports only priority scheduling, the

context switching code of µC/OS-II does not need to control other scheduling techniques

when switching tasks. However, FreeRTOS support priority and round-robin scheduling, so

when switching tasks, extra conditional statements and code is written for controlling both

scheduling techniques. Both RTOSs enter critical region (disabling interrupts on MicroBlaze)

when performing context switching operation to prevent from setting the ready bit of one

or more tasks accidently. Also, both RTOSs use assembly language functions to save and

restore task’s contexts, which are the state registers of MicroBlaze. Since enabling/disabling

interrupts and reading/writing state registers of MicroBlaze are port specific functions, a major

timing difference is not expected arising from those code snippets.

As stated on Section 8.1, we performed task preemption time benchmark test on Xilkernel us-

ing semaphore architecture just to give an idea although it should not be compared with other

RTOSs directly. The number of task preemptions performed by Xilkernel using semaphore

architecture is 26.

9.2 TASK PREEMPTION TIME UNDER LOAD

Results show that, FreeRTOS is not affected by the increase of the load that is caused by

incremented number of tasks however µC/OS-II’s performance drops by % 3.51 when total

number of tasks are five, % 7.02 when total number of tasks are ten, and % 12.28 when total

number of tasks are fifteen if we compare the results with the previous benchmarking criterion

(Figure 9.2). Namely, increasing the total number of tasks on the system decreases the task

preemption performance of µC/OS-II, which decreases the determinism of µC/OS-II. In spite

of its high performance, µC/OS-II is not deterministic on this criterion.

We know from Chapter 4, 5 and 6 that theoretically the scheduler of all the RTOSs are deter-

ministic, so there must not be any performance degradation if the number of tasks increase.

52

However, our benchmarking test does not measure the exact task preemption time, our aim

is to find out which RTOS is better on run-time on a specific timing period. Apart from the

scheduling codes, the OS tick function also affects the performance on this criterion. As we

have explained on Chapter 5, the execution time of µC/OS-II’s timer tick function is directly

proportional to the number of tasks on the application. Delayed task control mechanism on

the scheduler of µC/OS-II brings extra delay while examining all the tasks available on the

application (Figure 9.1). When the execution time of the timer tick function increases, the

count of the total task preemptions decrease as expected. However FreeRTOS does not

void OSTimeTick(void)

{

OS_TCB *ptcb;

OSTimeTickHook();

ptcb = OSTCBList;

while (ptcb->OSTCBPrio != OS_IDLE_PRIO)

{

OS_ENTER_CRITICAL();

if (ptcb->OSTCBDly != 0)

{

if (--ptcb->OSTCBDly == 0)

{

if (!(ptcb->OSTCBStat &

OS_STAT_SUSPEND))

{

OSRdyGrp |= ptcb->OSTCBBitY;

OSRdyTbl[ptcb->OSTCBY]

|= ptcb->OSTCBBitX;

}

else

{

ptcb->OSTCBDly = 1;

}

}

}

ptcb = ptcb->OSTCBNext;

OS_EXIT_CRITICAL();

}

OS_ENTER_CRITICAL();

OSTime++;

OS_EXIT_CRITICAL();

}

Figure 9.1: µC/OS-II’s OS Tick Code [25]

53

spend time on controlling other tasks (which are defined statically on the system) on timer

tick function, that makes it deterministic on this criterion. There is no time loss on enter-

ing critical region for all static tasks available on the system. Besides being deterministic,

FreeRTOS still slower than µC/OS-II on this criterion. In conclusion, µC/OS-II is faster than

FreeRTOS on the task preemption time under load benchmarking criterion however when the

number of tasks defined on the system increases, the task preemption performance of µC/OS-

II decreases.

Figure 9.2: Task Preemption Count in 10 ms while Increasing Total Task Number

9.3 GET/RELEASE SEMAPHORE TIME

‘Get/release semaphore time’ comparison gives the number of ‘get semaphore’ and ‘release

semaphore’ operations performed on each RTOS in 10 milliseconds. The reasons of low

performance of Xilkernel can be the extra validity control of the semaphore when starting

semaphore operations. FreeRTOS and µC/OS-II assume that the semaphore is initialized

correctly. FreeRTOS semaphores use queues as their underlying mechanism. The queue

architecture brings extra delays when performing semaphore operations.

54

9.4 PASS/RECEIVE MESSAGE TIME

‘Pass/receive message time’ results will compare the number of ‘pass message’ and ‘receive

message’ operations performed on each RTOS in 10 milliseconds. Receiving a message from

a queue should be faster than passing a message to a queue in µC/OS-II according to the exe-

cution time table in [25]. So, our results for ‘pass/receive message time’ test in µC/OS-II are

reasonable. Xilkernel makes extra control operations before starting to pass/receive message

if the related code segment of Xilkernel is examined. Also, even if no tasks are waiting for a

message, the tasks are signalled with the information of the new message. This drops the per-

formance of Xilkernel. FreeRTOS uses the same queue infrastructure as for semaphores and

also suspends all tasks when before performing queue operations, then resumes them after

operations have been completed. These are the reasons of the slow performance of FreeRTOS

on this criterion.

9.5 GET/RELEASE FIXED SIZED DYNAMIC MEMORY TIME

‘Get/release fixed sized dynamic memory time’ results will compare the number of ‘get dy-

namic memory’ and ‘release dynamic memory’ operations performed on each RTOS in 10

milliseconds. FreeRTOS uses wrapper functions for the ‘malloc’ and ‘free’ implementations

of the target compiler, while Xilkernel and µC/OS-II have specialized memory API functions

designed for better performance and safety. So, a low performance on FreeRTOS is expected

on this criterion from the start. Also, Xilkernel and µC/OS-II can get and release fixed sized

dynamic memory partitions that are defined initially while creating the dynamic memory par-

tition, however FreeRTOS can get and release variable sized dynamic memory partitions. For

example in Xilkernel and µC/OS-II, if a dynamic memory partition is created having the num-

ber of blocks option is 1000 and the size of each block is 32 bytes, the user can only get/release

32 bytes of memory partitions. However, FreeRTOS uses the whole heap memory; if 20 bytes

of memory partition is taken from the memory, the user can release 10 bytes of that memory

partition. This algorithm of FreeRTOS can cause memory fragmentation problems and can

decrease the performance.

Another reason of the low performance of FreeRTOS on this benchmark criterion can be the

suspending/resuming operation of all tasks when get/release memory operation command is

55

given. µC/OS-II enters critical region (disabling all the interrupts that may harm the memory

operations) and Xilkernel has no protection while performing get/release functions. If the

performance data of µC/OS-II is further investigated, we see that getting memory partition

operation is faster than releasing it. This claim can be supported with the given execution

times of API functions in [25]. To explain the performance difference of Xilkernel and µC/OS-

II, we can argue that the function codes of both RTOSs are very similar however Xilkernel

checks the memory partition’s validity every time the get/release command is issued. µC/OS-

II assumes that the dynamic memory created initially is not null and valid.

9.6 UART RS-422 MESSAGE INTERRUPT SERVING COUNT

Interrupt serving results will compare the number of interrupt servings performed on each

RTOS in 10 milliseconds. Xilkernel is the fastest RTOS on UART RS-422 message interrupt

serving time criterion, while µC/OS-II and FreeRTOS are comparable. On every OS tick, all

of the RTOSs control the interrupt controller core for a pending interrupt. When the interrupt

is available, the context of the active task is saved and the handler of the interrupt is activated.

After the user interrupt code is handled, rescheduling is done and the context of the currently

selected task is restored. Since the interrupt handling codes of all RTOSs are practically

similar and they are mostly dependant on the hardware architecture of MicroBlaze, the results

are actually close. However there is a difference in stack handling concept; FreeRTOS uses

a separate interrupt handler stack however the other RTOSs use the kernel stack for interrupt

handling process. But since all the RTOSs do not use the running task’s stack, this architecture

diversity will not bring any performance difference. Interrupt handler code of FreeRTOS uses

more hardware specific interrupt controller functions of MicroBlaze than Xilkernel, so this

brings extra delay. Note that, if the external UART RS-422 message interrupt occurs when

an RTOS is in critical section, the serving time of that interrupt can increase. Critical regions

are the code parts, that must not be interrupted for safety of the kernel. So, before entering a

critical region, RTOSs disable interrupts and after handling the critical code, the interrupts are

enabled again. There is a trade-off between system responsiveness and reliability in critical

region handling. So, a kernel with more critical regions inside, decreases the responsiveness

of the application. µC/OS-II enters critical region on every OS tick, so if the external interrupt

comes during this region, serving time of that interrupt will be delayed. The possibility of an

extra delay caused by the critical region concept in µC/OS-II is visualized in Figure 9.3.

56

Figure 9.3: Critical Region Concept

9.7 RTOS INITIALIZATION TIME

Xilkernel initialized faster than the other RTOSs on RTOS initialization criterion, while FreeR-

TOS is the second and µC/OS-II is the slowest one. As we have explained, RTOS initializa-

tion time is directly proportional to the complexity of the architecture of an RTOS. A longer

initialization time is expected on µC/OS-II since µC/OS-II is rather complicated and more

suitable for large-scale projects. To set an example, µC/OS-I has DO-178B certificate which

is an avionics certificate related to the safety and quality of the software. This means having

more complicated architectures and initializing more functions and global variables. If we

examine the codes of µC/OS-II deeper, it is seen that event control blocks (ECB) are used for

semaphore, queue and mailbox operations. This ECB architecture is typical to µC/OS-II only,

and provides safer background to the user. In summary, having more reliable and complex

architectures on the RTOS background increases the initialization time as expected.

Xilkernel is the simplest kernel, which is suitable for small-scale applications, so the initial-

ization time of Xilkernel is faster than the other RTOSs as expected. If we examine the codes

of FreeRTOS, we see that a separate interrupt stack is used for interrupt handling operations,

so this stack should be initialized and allocated at start-up. This increases the initialization

57

time of FreeRTOS. The functions that are called by RTOSs during initialization are shown on

Table 9.2.

Table 9.2: RTOS Initialization Functions

FreeRTOS µC/OS-II Xilkernel

1. Idle Task Create Disable Interrupts Setup Scheduler

2. Disable Interrupts Global Variables Initialization Idle Task Create

3. Setup Scheduler Setup Scheduler Start First Task

4. Setup Interrupt Handler Stack ECB Initialization

5. Start First Task Idle Task Create

6. Start First Task

9.8 MEMORY FOOTPRINT

Xilkernel and µC/OS-II are comparable on the memory footprint criterion. The results have

been obtained under same configuration options with no optimization flag on compiler. Both

RTOSs have task management and scheduling codes available, which are required for hav-

ing one task running on an endless loop. Unused configuration options are disabled, which

decreases the source code size of RTOSs. These are semaphore, queue, memory and timer

management functions and other unused features of RTOSs. If enabled features increase, the

code size of RTOSs increase to an extent which is still suitable for small-scale applications so

we can conclude that both RTOSs are not limited on memory footprint criterion.

9.9 OVERALL

µC/OS-II has performed better than Xilkernel and FreeRTOS on nearly all of the benchmark-

ing criteria. However Xilkernel is the best on interrupt serving, initialization time and memory

footprint comparisons.

If the requirements of a project impose faster response on any of these benchmarking criteria

except UART RS-422 message interrupt serving and RTOS initialization time then the se-

lection of RTOS should be µC/OS-II. As far as documentation is concerned, µC/OS-II offers

more comprehensive and apparent documentation than the other two RTOSs. Service calls

58

are easily understandable, which simplify designers’ work and save their time.

The only disadvantage is that, µC/OS-II has a licence fee. If users want to have that perfor-

mance on their systems, they have to pay the price.

FreeRTOS came second in overall, only performed worst on acquiring fixed-sized dynamic

memory test and UART RS-422 message interrupt serving test. Since it is open-source and

free, if money is a critical requirement but also you want to have the advantages of having an

RTOS on your system, you can choose FreeRTOS.

Finally, Xilkernel came last in overall. But Xilkernel came top on UART RS-422 message

interrupt serving time, RTOS initialization time and memory footprint benchmark tests. This

result proves that Xilkernel is a small-scale RTOS and it is highly integrated with the MicroB-

laze hardware. If the timing requirements of your project is not strict and you do not want to

pay a licence fee, you can use Xilkernel on your system.

59

CHAPTER 10

CONCLUSION AND FUTURE WORK

Nowadays, designers working on embedded systems are considering using soft processor op-

tion more frequently since based on the application, designers feel free to add or remove

peripherals according to the requirements of their projects. Also processor performance can

be adjusted according to the needs, components on the board can be reduced and processor

obsolescence problem can be eliminated. If the requirements force the designer to manage

hard timing constraints on their applications and to have precise latencies in terms of context

switching, memory handling and interrupts, designers are heading to the RTOS solution in-

creasingly. Selecting an RTOS that most suits the requirements of the project should not be

difficult for the designer, which means, no time should be wasted by the designer for research-

ing all of the available RTOSs. A comparison of available RTOSs using the benchmark criteria

that fulfill designers’ need will accelerate designers’ work and provoke RTOS companies to

strengthen their products on areas where they are weak.

In this study, three important RTOS products on MicroBlaze are compared according to criti-

cal benchmark criteria, i.e. task preemption time, task preemption time under load, get/release

semaphore time, pass/receive message time, get/release fixed sized dynamic memory time,

UART RS-422 message interrupt serving time, RTOS initialization time and memory foot-

print data. µC/OS-II is the clear winner of the comparison, since in eight of the eleven bench-

marking criteria, µC/OS-II outperformed the other RTOSs. Also, µC/OS-II has the most

detailed and easily understandable documentation.

Only drawbacks of µC/OS-II are the low UART RS-422 message interrupt serving and RTOS

initialization time performance and licence fee.

FreeRTOS came second overall. With satisfactory real-time performance and being open-

60

source and free, FreeRTOS can be the selection of embedded designers if the advantages of

RTOSs are needed on a project.

Xilkernel came last if performance is in question, although it is proved that it is suitable for

small-scale applications and it is highly integrated with the hardware architecture and the

design tools of MicroBlaze.

For future work, we plan to increase the number of benchmark criteria. Although, all of the

crucial benchmarking criteria for real time operating systems are covered in this study, there

can be additions to the benchmarking list. Also, these benchmarking criteria can be evaluated

on another soft processor platform and the results can be compared with the results obtained

in this study.

61

REFERENCES

[1] Edwards, S., “Microprocessors or FPGAs?: Making the Right Choice,” RTC Magazine,
pp. 22–25, 2011.

[2] Lattice, “Open and Easy Microprocessor Designs Using the LatticeMico32,” Online:
http://www.latticesemi.com/corporate/newscenter/newsletters/newsjanuary2007/mico-
32trendschallenges.cfm, last visited on 09.05.2012.

[3] Cannella, E., “Performance Evaluation of Multi-threading Operating Systems in MP-
SoCs Generated by ESPAM,” Master’s thesis, University of Udine, Italy, 2008.

[4] Rönnholm, A., “Evaluation of Real-Time Operating Systems for Xilinx MicroBlaze
CPU,” Master’s thesis, Malardalens University, Sweden, 2006.

[5] R. Klenke, “Experiences Using the Xilinx Microblaze Softcore Processor and Uclinux
in Computer Engineering Capstone Senior Design Projects,” in Microelectronic Systems
Education (MSE’07), IEEE International Conference on, pp. 123–124, IEEE, 2007.

[6] Anh, T.N.B. and Tan, S.L., “Real-Time Operating Systems for Small Microcontrollers,”
Micro, IEEE, vol. 29, no. 5, pp. 30–45, 2009.

[7] Ugurel, G. and Bazlamacci, CF, “Context Switching Time and Memory Footprint Com-
parison of Xilkernel and µC/OS-II on MicroBlaze,” in Electrical and Electronics Engi-
neering (ELECO), 7th International Conference on, pp. II–62, IEEE, 2011.

[8] Tong, J.G. and Anderson, I.D.L. and Khalid, M.A.S., “Soft-Core Processors for Em-
bedded Systems,” in Microelectronics, 2006. ICM’06. International Conference on,
pp. 170–173, IEEE, 2006.

[9] Fletcher, B.H., “FPGA Embedded Processors-Revealing True System Performance,” in
Embedded Systems Conference, pp. 1–18, 2005.

[10] Xilinx, “MicroBlaze Soft Processor Core,” Online:
http://www.xilinx.com/tools/microblaze.htm, last visited on 10.12.2011.

[11] L. Barthe, L. Cargnini, P. Benoit, and L. Torres, “The Secretblaze: A Configurable and
Cost-Effective Open-Source Soft-Core Processor,” in Parallel and Distributed Process-
ing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on,
pp. 310–313, IEEE, 2011.

[12] Tensilica, “Tensilica’s HiFi Audio DSP First IP Core to Support
SRS’ Advanced StudioSound HD Audio Suite for HDTVs,” Online:
http://www.tensilica.com/news/340/330/Tensilica-s-HiFi-Audio-DSP-First-IP-Core-to-
Support-SRS-Advanced-StudioSound-HD-Audio-Suite-for-HDTVs.htm, last visited on
10.12.2011.

62

[13] Altera, “Altera’s DO-254/ED-80 Certifiable Nios II Processor Leveraged
in Thales Safety-Critical Avionics System Certified by EASA,” Online:
http://www.altera.com/corporate/news room/releases/2010/products/nr-do-254.html,
last visited on 10.12.2011.

[14] D. Timmerman and L. Perneel, “RTOS State of the Art,” Dedicated Systems, vol. 9,
pp. 1–24, 2009.

[15] R. Moore, “Selecting an Embedded RTOS,” Online: http://www.eg3.com, last visited
on 08.07.2012.

[16] Your Electronics Open Source, “RTOS for Embedded Systems,” Online:
http://dev.emcelettronica.com/rtos-embedded-systems, last visited on 08.07.2012.

[17] S. Balacco, “VDC Research Webcasts, Embedded/Real-time Operating Systems,” On-
line: http://www.vdcresearch.com/market research/embedded software/freeresearch.
aspx, last visited on 10.12.2011.

[18] J. Krasner, “RTOS Selection and Its Impact on Enhancing Time-To-Market and On-
Time Design Outcomes.” Online: http://www.embeddedforecast.com, last visited on
08.07.2012.

[19] VxWorks, “The RTOS That Powers More Than 1 Billion Embedded Systems Around
the Globe.” Online: http://www.windriver.com/products/vxworks, last visited on July
2012.

[20] Green Hills Software, “Real-Time Operating System.” Online:
http://www.ghs.com/products/rtos/integrity.html, last visited on 08.07.2012.

[21] Microchip, “RTOS Selection Guide,” Online: http://www.microchip.com, last visited
on 22.04.2012.

[22] Xilinx, “Xilkernel Documentation,” Online: http://forums.xilinx.com/xlnx/attachments
/xlnx/EMBEDDED/4789/1/xilkernel v5 00 a.pdf, last visited on 10.12.2011.

[23] Micrium, “µC/OS-II brochure,” Online: http://micrium.com/newmicrium/uploads/file/
datasheets/ucosii datasheet.pdf, last visited on 10.12.2011.

[24] Holenderski, M., “µC/OS-II,” Online: www.win.tue.nl/∼mholende/ooti/ooti rt co-
urse ucos.pdf, last visited on 10.12.2011.

[25] Labrosse, J.J., MicroC/OS-II: The Real-Time Kernel. Newnes, 2002.

[26] M.-J. Jung, M.-H. Cho, Y.-H. Kim, and C.-H. Lee, “Generalized Deterministic Task
Scheduling Algorithm for Embedded Real-Time Operating Systems,” in ESA Confer-
ence, pp. 79–82, 2006.

[27] Labrosse, J.J., “Use an RTOS on Your Next MicroBlaze-Based Product,” Xcell Journal,
no. 48, pp. 35–37, 2004.

[28] FreeRTOS, “The FreeRTOS Project,” Online: www.freertos.org, last visited on
08.07.2012.

[29] Kalinsky, D., “Basic Concepts of Real-Time Operating Systems,” Online:
http://www.kalinskyassociates.com/Wpaper1.html, last visited on 08.07.2012.

63

[30] Penumuchu, C.V., Simple RTOS: A Kernel Inside View for a Beginner. Trafford, 2007.

[31] Bilgen, S., “Confidence of Simulation Results.” Unpublished Lecture Note, 1986.

64

APPENDIX A

APPENDIX A

A.1 XILKERNEL CODE SNIPPETS

A.1.1 GET/RELEASE SEMAPHORE TIME

void* first_thread(void *arg)

{

while(1)

{

//wait code

time1 = xget_clock_ticks();

if(time1 > TIME_A)

//(TIME_B - TIME_A) is defined as 10ms

{

sem_wait(&sem1);

//Xilkernel API call

}

if(time1 > TIME_B)

{

sem_getvalue(&sem1,&SemValue);

//Xilkernel API call

}

//post code

time1 = xget_clock_ticks();

if(time1 > TIME_A)

{

sem_post(&sem1);

//Xilkernel API call

}

if(time1 > TIME_B)

{

sem_getvalue(&sem1,&SemValue);

}

}

}

65

A.1.2 PASS/RECEIVE MESSAGE TIME

void* first_thread(void *arg)

{

while(1)

{

if(!StartRelease)

{

time1 = xget_clock_ticks();

if(time1 > TIME_A)

//test starts after a predefined TIME_A

{

var = msgsnd(q1, &QueueVariable,

sizeof(QueueVariable), 0);

//Xilkernel API call

if (var == 0)

{

SendCount++;

if(time2 > TIME_B)

//(TIME_B - TIME_A)

//is defined as 10ms

StartRelease = 1;

//Start releasing

//messages

}

}

}

else

{

time1 = xget_clock_ticks();

if(time1 > TIME_C)

{

var = msgrcv(q1, &RecvVariable,

sizeof(RecvVariable), 0, 1);

//Xilkernel API call

if (var == 0)

{

ReceiveCount++;

if(time2 > TIME_D)

//(TIME_D - TIME_C) is

//defined as 10ms

TestEnd = 1;

}

}

}

}

}

66

A.1.3 GET/RELEASE FIXED SIZED MEMORY TIME

void* first_thread(void *arg)

{

while(1)

{

if(!StartRelease)

{

time1 = xget_clock_ticks();

if(time1 > TIME_A)

{

msg = bufmalloc(mbuft,128);

//Xilkernel API call

if (msg != (void *)0)

{

GetCount++;

if(time1 > TIME_B)

//(TIME_B - TIME_A)

//is defined as 10ms

StartRelease = 1;

//Start Releasing

//Memory

}

}

}

else

{

time1 = xget_clock_ticks();

if(time1 > TIME_C)

{

buffree(mbuft,msg);

//Xilkernel API call

ReleaseCount++;

if(time1 > TIME_D)

//(TIME_D - TIME_C)

//is defined as 10ms

EndTest = 1;

}

}

}

}

67

A.1.4 UART RS-422 MESSAGE INTERRUPT SERVING TIME

void* first_thread(void *arg)

{

while(1)

{

time1 = xget_clock_ticks();

if(time1 > TIME_A)

{

if(SendMessage)

{

XUartLite_Send(&RS422TestChannel,

TestArray, SendCount);

SendMessage = false;

}

if(time1 > TIME_B)

//(TIME_B - TIME_A) is defined as 10ms

TestEnd = 1;

}

}

}

void TestHandler()

{

InterruptCounter++;

SendMessage = true;

}

A.1.5 RTOS INITIALIZATION TIME

void* first_thread(void *arg)

{

while(1)

{

if(Initialized)

{

XUartLite_Send(&RS422TestChannel,

TestArray, SendCount);

Initialized = 0;

}

}

}

68

APPENDIX B

APPENDIX B

B.1 µC/OS-II CODE SNIPPETS

B.1.1 TASK PREEMPTION TIME

static void FirstTask(void *p_arg)

{

while(1)

{

time1 = OSTimeGet();

if(time1 > TIME_A)

{

TaskPreemptionCount++;

OSTaskSuspend(TASK1_PRIO);

//RTOS API call

}

if(time1 > TIME_B)

//(TIME_B - TIME_A) is defined as 10ms

{

TestEnd = 1;

}

}

}

static void SecondTask(void *p_arg)

{

while(1)

{

OSTaskResume(TASK1_PRIO);

//RTOS API call

}

}

69

B.1.2 GET/RELEASE SEMAPHORE TIME

static void FirstTask(void *p_arg)

{

while(1)

{

//wait code

time1 = OSTimeGet();

if(time1 > TIME_A)

{

OSSemPend(SharedDataSem, 0, &err2);

//RTOS API call

}

if(time1 > TIME_B)

//(TIME_B - TIME_A) is defined as 10ms

{

OSSemQuery(SharedDataSem, &sem_data);

//RTOS API call

SemCount = sem_data.OSCnt;

}

//post code

time1 = OSTimeGet();

if(time1 > TIME_A)

{

OSSemPost(SharedDataSem);

//RTOS API call

}

if(time1 > TIME_B)

//(TIME_B - TIME_A) is defined as 10ms

{

OSSemQuery(SharedDataSem, &sem_data);

//RTOS API call

SemCount = sem_data.OSCnt;

}

}

}

70

B.1.3 PASS/RECEIVE MESSAGE TIME

static void FirstTask(void *p_arg)

{

while(1)

{

if(!StartRelease)

{

time1 = OSTimeGet();

if(time1 > TIME_A)

{

err = OSQPost(CommQ,

(void *)&QueueValue);

//RTOS API call

if (err == 0)

{

SendCount++;

if(time1 > TIME_B)

//(TIME_B - TIME_A)

//is defined as 10ms

StartRelease = 1;

//Start releasing

//messages

}

}

}

else

{

time1 = OSTimeGet();

if(time1 > TIME_C)

{

msg = OSQPend(CommQ, 0, &err);

//RTOS API call

if(err == 0)

{

ReceiveCount++;

if(time1 > TIME_D)

//(TIME_D - TIME_C)

//is defined as 10ms

TestEnd = 1;

}

}

}

}

}

71

B.1.4 GET/RELEASE FIXED SIZED MEMORY TIME

static void FirstTask(void *p_arg)

{

while(1)

{

if(!StartRelease)

{

time1 = OSTimeGet();

if(time1 > TIME_A)

{

msg = OSMemGet(CommMem, &err);

//RTOS API call

if (msg != (INT8U *)0)

{

GetCount++;

if(time1 > TIME_B)

//(TIME_B - TIME_A) is

//defined as 10ms

StartRelease = 1;

//Start releasing

//memory

}

}

}

else

{

time1 = OSTimeGet();

if(time1 > TIME_C)

{

OSMemPut(CommMem, (void *)msg);

//RTOS API call

ReleaseCount++;

if(time1 > TIME_D)

//(TIME_D - TIME_C) is

//defined as 10ms

EndTest = 1;

}

}

}

}

72

B.1.5 UART RS-422 MESSAGE INTERRUPT SERVING TIME

static void FirstTask(void *p_arg)

{

while(1)

{

time1 = OSTimeGet();

if(time1 > TIME_A)

{

if(SendMessage == 1)

{

XUartLite_Send(&RS422TestChannel,

TestArray, SendCount);

SendMessage = 0;

}

if(time1 > TIME_B)

//(TIME_B - TIME_A) is defined as 10ms

EndTest = 1;

}

}

}

void TestHandler()

{

InterruptCounter++;

SendMessage = true;

}

B.1.6 RTOS INITIALIZATION TIME

static void FirstTask(void *p_arg)

{

while (1)

{

if(Initialized)

{

XUartLite_Send(&RS422TestChannel,

TestArray, SendCount);

Initialized = 0;

}

}

}

73

APPENDIX C

APPENDIX C

C.1 FREERTOS CODE SNIPPETS

C.1.1 TASK PREEMPTION TIME

static void prvTaskA(void* pvParameters)

{

while(1)

{

vTaskResume(TaskB);

//FreeRTOS API call

}

}

static void prvTaskB(void* pvParameters)

{

while(1)

{

time1 = (unsigned int)xTaskGetTickCount();

if(time1 > TIME_A)

{

TaskPreemptionCount++;

vTaskSuspend(TaskB);

//FreeRTOS API call

}

if(time1 > TIME_B)

//(TIME_B - TIME_A) is defined as 10ms

{

TestEnd = 1;

}

}

}

74

C.1.2 GET/RELEASE SEMAPHORE TIME

static void prvTaskA(void* pvParameters)

{

while(1)

{

//post code

time1 = (unsigned int)xTaskGetTickCount();

if(time1 > TIME_A)

{

if(xSemaphoreGive(SemaphoreA) == pdFALSE)

//FreeRTOS API call

{

time2 = (unsigned int)

xTaskGetTickCount();

}

}

//wait code

time1 = (unsigned int)xTaskGetTickCount();

if(time1 > TIME_B)

//(TIME_B - TIME_A) is defined as 10ms

{

if(xSemaphoreTake(SemaphoreA,

(portTickType)0) == pdFALSE)

//FreeRTOS API call

{

time2 = (unsigned int)

xTaskGetTickCount();

}

}

}

}

75

C.1.3 PASS/RECEIVE MESSAGE TIME

static void prvTaskA(void* pvParameters)

{

while(1)

{

if(!StartRelease == 1)

{

time1 = (unsigned int)xTaskGetTickCount();

if(time1 > TIME_A)

{

noerr = xQueueSend(xQueue1,

(void *) &QueueSendData,0);

//FreeRTOS API call

if (noerr == 1)

{

SendCount++;

if(time1 > TIME_B)

//(TIME_B - TIME_A) is

//defined as 10ms

StartRelease = 1;

}

}

}

else

{

time1 = (unsigned int)xTaskGetTickCount();

if(time1 > TIME_C)

{

noerr = xQueueReceive(xQueue1,

&QueueReceiveData,0);

//FreeRTOS API call

if (noerr == 1)

{

ReceiveCount++;

if(time1 > TIME_D)

//(TIME_D - TIME_C) is

//defined as 10ms

TestEnd = 1;

}

}

}

}

}

76

C.1.4 GET/RELEASE FIXED SIZED MEMORY TIME

static void prvTaskA(void* pvParameters)

{

while(1)

{

if(!StartRelease == 1)

{

time1 = (unsigned int)xTaskGetTickCount();

if(time1 > TIME_A)

{

msg = pvPortMalloc(128);

//FreeRTOS API call

if (msg != (void *)0)

{

GetCount++;

if(time1 > TIME_B)

//(TIME_B - TIME_A) is

//defined as 10ms

StartRelease = 1;

}

}

}

else

{

time1 = (unsigned int)xTaskGetTickCount();

if(time1 > TIME_C)

{

vPortFree(msg);

//FreeRTOS API call

ReleaseCount++;

if(time1 > TIME_D)

//(TIME_D - TIME_C)

//is defined as 10ms

EndTest = 1;

}

}

}

77

C.1.5 UART RS-422 MESSAGE INTERRUPT SERVING TIME

static void prvTaskA(void* pvParameters)

{

while(1)

{

time1 = (unsigned int)xTaskGetTickCount();

if(time1 > TIME_A)

{

if(SendMessage == 1)

{

XUartLite_Send(&RS422TestChannel,

TestArray, SendCount);

SendMessage = 0;

}

if(time1 > TIME_B)

//(TIME_B - TIME_A) is

//defined as 10ms

EndTest = 1;

}

}

}

void TestHandler()

{

InterruptCounter++;

SendMessage = true;

}

C.1.6 RTOS INITIALIZATION TIME

static void prvTaskA(void* pvParameters)

{

while(1)

{

if(Initialized)

{

XUartLite_Send(&RS422TestChannel,

TestArray, SendCount);

Initialized = 0;

}

}

}

78

