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ABSTRACT

SINEC: LARGE SCALE SIGNALING NETWORK TOPOLOGY RECONSTRUCTION USING
PROTEIN-PROTEIN INTERACTIONS AND RNAI DATA

Hashemikhabir, Seyedsasan

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Tolga Can

September 2012, 40 pages

Reconstructing the topology of a signaling network by means of RNA interference (RNAi)

technology is an underdetermined problem especially when a single gene in the network

is knocked down or observed. In addition, the exponential search space limits the existing

methods to small signaling networks of size 10-15 genes. In this thesis, we propose integrat-

ing RNAi data with a reference physical interaction network. We formulate the problem of

signaling network reconstruction as Vnding the minimum number of edit operations on a

given reference network. The edit operations transform the reference network to a net-

work that satisfy the RNAi observations. We show that using a reference network does not

simplify the computational complexity of the problem. Therefore, we propose an approach

that provides near optimal results and can scale well for reconstructing networks up to

hundreds of components. We validate the proposed method on synthetic and real datasets.

Comparison with the state of the art on real signaling networks shows that the proposed

methodology can scale better and generates biologically signiVcant results.

Keywords: signal transduction, RNAi, protein-protein interactions, network construction
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ÖZ

SINEC: PROTEİN-PROTEİN ETKİLEŞİM VE RNAI VERİLERİ KULLANARAK YÜKSEK
ÖLÇEKLİ SİNYALLEME YOLAK TOPOLOJİLERİNİN OLUŞTURULMASI

Hashemikhabir, Seyedsasan

Yüksek Lisans, Bilgisayar Müğendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Tolga Can

Eylül 2012, 40 sayfa

Biyolojik sinyalleme yolaklarının topolojilerinin RNA engelleme (RNAi) teknolojisi kul-

lanılarak tespit edilmesi problemi, özellikle yolaktaki tek bir gen susturulduğunda ya da

gözlemlendiğinde eksik belirtilmiş bir problemdir. Buna ek olarak, RNAi verisi ile tutarlı

yolak topolojilerinin uzayının gen sayısı ile üssel olarak artması da varolan yöntemleri an-

cak 10-15 genle sınırlamaktadır. Bu tezde, verilen bir RNAi verisini referans bir Vziksel

etkileşim ağı ile birleştirmeyi önermekteyiz. Sinyalleme yolağı oluşturma problemini ver-

ilen bir referans ağ üzerinde en az sayıda ekleme/silme operasyonu yaparak RNAi verisi

ile tutarlı hale getirme problemi olarak formalize etmekteyiz. Fakat bu formulasyonun da

problemi kolay bir hale getirmediğini ve oluşan problemin NP-complete sınıfında bir prob-

lem olduğunu ispatlıyoruz. Bu nedenle bu tezde bu yeni formulasyon için optimum sonuca

yakın sonuçlar üreten ve yüzlerce gen içeren yolaklar için çalışabilen bir yöntem önermek-

teyiz. Yöntemimizi sentetik ve gerçek veriler üzerinde doğrulamaktayız. Varolan yöntemler

ile kıyaslandığında önerdiğimiz yöntemin daha iyi ölçeklendiğini ve biyolojik olarak daha

doğru sonuçlar ürettiğini gösteriyoruz.
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CHAPTER 1

Introduction

Organisms respond to changes in their surrounding environment by producing chemical

or physical reactions. Humans are not an exception. Fear, anxiety, happiness are the well-

known sample reasons for a reaction in the human body. Faster heartbeat, production of

adrenaline hormone and changing in the color of skin are the reactions for the mentioned

agents respectively. In molecular biology, this cause-and-eUect relationship is studied in

cellular level as well. A cell detects a signal and responds accordingly. This process occurs

by participation of many components within the cell such as genes and the whole process

is referred as a signal transduction pathway. There are thousands of genes in the cell and

each genes performs a speciVc task by interacting with some of the other genes. The genes

and the interactions among them can be modeled as a network such that each node repre-

sents a gene in the network whereas an interaction between a pair of genes is shown as an

edge. Usually, the proteins, i.e., the gene products are the main functional elements in these

networks; hence. these networks are named as Protein-Protein Interaction (PPI) networks.

A signal is transferred through a cascade of genes known as signal transduction pathways

in the PPI network that results in the cell reaction to an external process. There are two

major problems in reconstructing the signaling networks from the network datasets. First

one is to identify the set of genes involved in the signaling network. Experimental tech-

niques often tackle this component using genetic screens. One such widely used genetic

screen is RNA interference (RNAi). RNAi is a gene silencing technology that removes a

speciVc gene and its interactions from the network. Each gene in the network is silenced

one by one and then it is checked whether the eUect of the signal can be observed in a

destination gene known as a reporter gene. After identiVcation of the genes involved in

the signaling network, the second task is to establish the topology of the interactions that
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connect these genes. With the advances in gene perturbation technology, the number of

screened potential genes participating in signaling mechanisms grows rapidly and this in-

creases the complexity level of studying and identifying the signaling network’s structure.

Solving this problem experimentally requires advanced and costly wet-lab trials. Hence,

even for many known signaling networks, a complete and accurate picture of the signaling

mechanism may not be available. In this thesis, we have suggested a number of heuristics

to infer the underlying signaling network topology by the use of RNAi screening data and

PPI networks together. The Vrst input for solving this problem is the PPI dataset. It is a

reference graph that the edges and vertices represent proteins and the interaction among

them. The PPI datasets are inaccurate and there are missing or extra edges in this graph.

The second input is the RNAi data. It is a binary array that each value in the array shows

that whether silencing a speciVc gene in the PPI network disrupts the signal transfer or not.

This binary array will be used to correct the reference PPI network by adding or removing

edges. These heuristics scale well into the large RNAi screening experiments with hundreds

of genes and constructs the signaling network topology in a reasonable amount of time.

1.1 Background Information

In this section, we review the key biological concepts frequently used in this thesis.

1.1.1 Protein-Protein Interaction Networks

Proteins are the indispensable part of a living organism and mainly responsible for the

cellular processes. Although, they rarely operate independently, binding of two or more

proteins execute a speciVc biological function. The binding between a pair of proteins is

usually interpreted as an interaction between the two proteins. Every organism has thou-

sands of proteins with tens of thousands of pairwise interactions which constitute a large

scale network of proteins. PPI networks have the properties of Scale-Free and Small-World

networks. In this type of networks, nodes are usually weakly connected and there are only

few nodes that are highly connected to the other ones known as hubs. Moreover, every node

in the network can be reached through a short chain of hub nodes. So, PPI networks are

sparse and the Sparse Graph data structure provides the most reasonable way to represent

2



Figure 1.1: Yeast PPI Network

them and it also facilitates the studying of their structural properties.

Each node in a PPI graph represents a protein and the pairwise interactions between the

proteins are deVned as the edges connecting the nodes. Simple undirected graphs are the

basic type for representing the PPI networks; however, with the availability of extra knowl-

edge (i.e. interaction directions, interactions weight values), the graph type can changed

into directed or weighted types respectively. A sample yeast (S. cerevisiae) PPI network is

shown in Figure 1.1.

1.1.2 Signal Transduction Pathways

Signaling pathways provide the main mechanism for cells to react to extracellular signals

such as hormones(Berg et al., 2002). Signal Transduction is a process in which a cell responds

to external signals by processing them and converting them to another form of the signals.

The process consists of an ordered sequence of biochemical reactions that starts from a

sensory gene (e.g. cell-surface protein), advances through intermediates genes and Vnally

ends in a downstream target gene (e.g. transcription factors). The whole process can be

viewed as a biological circuit. The key components of these biological circuits are proteins

3



Figure 1.2: MAPK Signaling network

and a sequence of proteins that conduct a speciVc reaction is called, a Signal Transduction

Pathway. DeVciencies in signal transduction often lead to disorders such as cancer, diabetes,

and other genetic diseases. Signaling networks are often modeled as directed graphs where

each node represents a protein or a gene involved in the network and each edge represents

an eUect of a protein on another one, such as phosphorylation. The eUects are usually

modeled as binary operations such as activation or repression. To simplify the language,

we will refer to a node as “gene” rather than “protein” in the rest of the thesis unless it

is necessary to distinguish between the two terms. As an example, the MAPK signaling

network is depicted in Figure 1.2.

1.1.3 RNA Interference Screening

RNA Interference(RNAi) is a mechanism in living cells that regulate the gene translation

process, i.e., the process to synthesize proteins from genes (Zhang, 2011). This mechanism

in the cell plays an important role against the viruses and transposons. There are two types

of small RNA molecules in the RNAi Pathway. The Vrst type is known as small-interfering

RNA or silencing RNA (siRNA) and the other one is micro RNA or miRNA. Both types can

4



Figure 1.3: RNA Interference pathway

be attached to the speciVc RNAs that results in increasing or decreasing of their activities.

Silencing or knocking down a gene is conducted by decreasing the expression of a gene

using siRNA or miRNA that results in disruption of the gene’s functionality in the pathway.

RNA Interference (RNAi) Screening is a gene perturbation technology for observing the ef-

fects of the silenced gene(s) in a cell. Single gene knockdown is the most common way of

observing the eUect of the targeted gene on a reporter gene(Kaderali et al., 2009); however,

due to the possible errors that can occur during the experiments (e.g. oU-target eUects, mea-

suring faults), double or triple knocking down of genes are conducted simultaneously with

multiple reporter genes to boost the precision of the resulting measured values(Sahin et al.,

2009b). The structure of RNAi pathway is depicted in Figure 1.3; however, the biological

details of this pathway is not within the scope of this thesis.

1.1.4 The KEGG Database

KEGG(Kanehisa and Goto, 2000) is an integrated resource for bioinformatics, consisting

of three main data sources including the Gene Universe, the Chemical Universe, and the

Protein Networks. The Vrst two data source are conceptual and they present the struc-

tural similarity between genes and chemical association between the compounds respec-
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tively(Helms, 2008). Protein networks resource is the popular resource which includes a

PATHWAY database. KEGG uses graph objects for representing networks where each ver-

tex is a protein or other gene product and every edge represents a known interaction or

relation between two vertices. The PATHWAY database contains several types of biological

networks including Metabolic and Signaling networks for several species(Helms, 2008).

1.2 Problem DeVnition

Given a set G of genes known to participate in a signaling pathway and RNAi experiments

performed on these genes, the problem is to construct a graph where each gene in G is

a node in the graph, and the edge set E represents the signaling pathway topology. The

unknown in this problem is the edge set E and our goal is to Vnd E as biologically most

accurate as possible. One of the genes in set G is designated as the source gene which

initiates signaling and there is a separate reporter or target gene which is the Vnal destination

of the signal. These genes are known a priori and the connections between the intermediate

genes are sought. In an RNAi experiment, each intermediate gene is turned oU one by

one and the signal is observed at the reporter gene. The existence/absence of the signal at

the reporter genes gives us clues regarding the topology of the signaling network. As the

number of possible network topologies is exponential in the number of genes in G and the

number of RNAi experiments is linear in the number of genes, this is an ill deVned problem.

We tackle this problem by using additional data in the form of a reference PPI network. We

formulate the problem as performing minimum number of edit operations on a reference

PPI network so that the resulting network is consistent with the RNAi experiments.

1.3 Related Work

Protein-protein interactions (PPI) play an important role in signaling networks. High-

throughput interaction assays like yeast two-hybrid provide vast amount of interaction data

that can be tapped in for identiVcation of novel networks.

Scott et al. (2006) proposed several biologically motivated extensions for Color Coding tech-

nique to extract signaling pathways from the PPI networks. In their work, three main con-

straints on protein network data have been applied to extract signaling pathways. First
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they deVne a set of relevant proteins to be included in the pathways, then they classify

the proteins based on their functionality to order the occurrence of each protein type in

the pathway, and Vnally they extract the pathways based on a rooted tree structure. In

the last step, they evaluate the extracted pathways based on the reliability of their protein

interactions.

Vinayagam et al. (2011) applied Bayesian learning framework to infer directions of edges in

a PPI network and provide insights into the dynamics of known networks. However, the

noisy nature of PPI networks necessitates integration with additional biological informa-

tion.

Path Finder(Bebek and Yang, 2007) is another approach for determining the biologically

signiVcant pathways in PPI networks. They train a set of association rules based on the

properties of already known signaling pathways and then they recover signaling pathways

from PPI data using the trained rules.

In another study, SteUen et al. (2002) proposed NetSearch algorithm to Vnd the signaling

pathways by enumerating PPI networks and ranking the extracted results by clustering the

genes using k-means algorithm based on their expression data.

Wang et al. (2011) presented CASCADE_SCAN method based on customized steepest de-

scent method to predict signal transduction networks from high-throughput PPI data. In

their method, they extract the signaling network with no speciVc starting and ending pro-

teins. They identify seed nodes in the PPI data and try to expand through their neighbors

in order to shape the whole signaling network.

ResponseNet(Lan et al., 2011) integrates molecular interaction data with genetic screens and

transcriptomic proVling assays to identify a high-probability signaling subnetwork. This

method is implemented as a Network Flow optimization problem and aims to maximize the

Wow between the given source and sink nodes while minimizing the cost of the extracted

paths.

Ourfali et al. (2007) attacked the problem of annotating edges in a signaling network. Given

a directed PPI network, they assigned signs to each edge indicating whether it is an acti-

vation or suppression to obtain paths consistent with the knockout experiments. In this

approach they have formulated the problem as Integer programming optimization problem
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to maximize the expected number of cause-and-eUects pair in the extracted networks.

The study by hsiang Yeang et al. (2004) was one of the Vrst attempts to integrate PPI data

with RNAi data. Tu et al. (2009) used PPI networks with RNAi screens to identify a more

accurate set of genes involved in an expanded insulin signaling network. They used PPI

networks to reduce the false positives in RNAi screens, since a large number of genes were

targeted. They used functional enrichment to compare the identiVed genes to the genes in

the KEGG database (Kanehisa and Goto, 2000) and reported that they were able to Vnd a

more enriched set of core genes.

Kaderali et al. (2009) proposed a probabilistic boolean threshold network approach to con-

struct signaling networks by using data from single knock-down single reporter RNAi

screens only. They converted RNAi scores to boolean RNAi observations by statistically

postprocessing the data. These boolean RNAi observations are interpreted as constraints

on the network topology. We refer to these constraints as RNAi constraints throughout the

thesis. Kaderali et al. showed that without using additional biological knowledge, the prob-

lem is under-determined and the number of network topologies that are consistent with the

RNAi constraints grows exponentially with the network size. Their method identiVes the

most likely networks; however, is limited to networks of small size (less than 10 genes) due

to exponential increase of the search space.

Ruths et al. (2007) integrated gene knockout experiments with PPI data. They provided a

solution to add new edges for repairing incomplete networks that are not consistent with

the gene knockout experiments. In this method, they run the k-shortest path algorithm over

the PPI data for every inconsistent knockout pair and evaluated the resulting paths based

on their edge values. Finally, they included the paths with the score higher than a speciVed

threshold to the current signaling network. However, they do not deal with false positive

interactions in PPI networks.

InWuenceFlow combined PPI data with RNAi data to construct signaling networks as trees (Singh,

2011). InWuenceFlow uses RNAi scores to impose an order on the genes by assuming the

inWuence Wows from the genes with low RNAi scores to those with high RNAi scores. How-

ever, the tree topology allows for only the integration of a signal Wow at the target gene and

is not capable of modeling the distribution of the signal to multiple genes.

8



1.4 Contributions

In this thesis, we address the signaling network reconstruction problem and deal with the

problem of inferring the network structure. We assume that the set of genes in the network

is known a priori. We assume that a reference network (a PPI network or a signaling net-

work from another organism) and RNAi experiment results speciVc to the studied signaling

network are provided. We use the reference network as the starting topology and the RNAi

constraints as the guide to the target network that needs to be constructed. We perform

edit operations on the reference network, where each edit operation is an edge addition

or deletion, to make it consistent with RNAi constraints. We construct a network in the

simplest way, to conform RNAi data with minimum number of edge insertions/deletions

on the reference network. The main intuition behind this parsimonious approach is that

the reference network may not reWect the actual signaling network, but it provides a good

skeleton structure to build a network upon. The inconsistency between RNAi constraints

and the corresponding PPI network may be due to errors in the RNAi experiments, errors

in high-throughput PPI screening, or due to a disease that alters the signaling network. The

solution we develop, provides the simplest explanation for such inconsistencies.

It is important to note that, although signaling networks are directed, our formulation is

able to use undirected PPI networks as the reference network. We do this by using two

directed edges to represent an undirected edge. Deletion of one of these edges during edit

operations, in eUect, assigns a direction to this interaction.

We show that the signaling network reconstruction problem is NP-complete under our par-

simonious formulation. We develop a robust method that guarantees to construct a net-

work. It however has an exponential worst case time complexity. In our experiments, we

observe that the proposed method produce results very close to the optimal one. Also, de-

spite the theoretical exponential worst case complexity, in practice, our method can scale up

to networks with hundreds of genes easily. Our results also show that the method produce

biologically signiVcant networks.
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CHAPTER 2

Methods

In this chapter, we Vrst give a formal problem deVnition and show that the problem we

tackle is NP-complete. We then propose a heuristic, named SiNeC, for solving the deVned

problem. We analyze the running time and optimality of SiNeC. Finally, we propose a couple

of extensions for increasing the running time performance of SiNeC.

2.1 Problem Formulation and NP-Completeness Proof

We start by deVning the characteristics of RNAi data we consider in this thesis. We focus

on single source, single reporter, and single knock-down RNAi screens. Although there are

techniques to observe multiple reporter genes, for large scale RNAi screens, typically a sin-

gle reporter is used. Also, due to combinatorial complexity, only single gene knock-downs

are feasible in a large scale experiment. Single source, single reporter, and single knock-

down RNAi screens are characterized by three features. The Vrst one is the receptor gene

which receives the extracellular signal and propagates this signal to others genes in the cell.

Sometimes signaling proteins like epidermal growth factor (EGF) appear as the Vrst gene of

a network before the receptor gene. The second feature is the reporter gene whose expres-

sion is measured. This is typically the gene at the downstream of the receptor gene. We

denote these two genes with vs and vt respectively. The third feature is deVned by each of

the remaining genes. After knocking down each gene, signiVcant changes at the expression

level of vt implies that the knock-down aUects vt greatly. We call such genes as critical for

receptor and reporter gene pair of that network. The following deVnitions formalize the

concept of critical genes and establish its connection with the network topology.
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DeVnition 2.1.1. (Simple path) Given a directed graph G = (V, E) (V and E refer to vertex

and edge set), a simple path from u to v (u, v ∈ V) is an ordering < v1, v2, . . . , vk >, of a subset

of the vertices of G such that v1 = u, vk = v, (vi, vi+1) ∈ E and no vertex vi is repeated ∀i,

1 ≤ i < k in this ordering.

DeVnition 2.1.2. (Critical and non-critical genes) Given a network denoted by the di-

rected graph G = (V, E), a gene v ∈ V is a critical gene in G if there is no simple path from vs

to vt in G that does not contain v. Otherwise, it is a non-critical gene.

Notice that knocking down a critical gene disrupts all possible paths from vs to vt and thus

can aUect the expression level of vt. That of a non-critical gene, however has less eUect on

vt as there will be alternative routes to propagate the signal from vs to vt. Although the

eUects of a gene knock-down on vt is measured in a continuous real domain, following the

simpliVcation by other studies (Kaderali et al., 2009), we model these eUects as binary values

1 and 0, i.e., aUecting and non-aUecting, if vt’s relative expression change exceeds or does

not exceed a threshold respectively after the knock-down.

DeVnition 2.1.3. (Consistency of a network) Assume that we are given a network denoted

by the directed graph G = (V, E) with n genes. Also, let us denote the constraints on the genes in

V with an instantiation of the vector of binary variables X = [b1
0, b

2
0, . . . , b

n
0] (i.e., ∀i, bi

0 ∈ {0, 1}.

G is consistent with X if vi is a critical gene when bi
0 = 1 and non-critical otherwise.

DeVnition 2.1.4. (Distance between two networks) Assume that we are given two net-

works built on the same set of genes, denoted by the directed graphs G1 = (V, E1) and G2 =

(V, E2). Let us denote the set diUerence with the “−” operator. We deVne the distance between

G1 and G2 as

dist(G1,G2) = |E1 − E2| + |E2 − E1|.

Figure 2.1 shows an example signaling network. In this example, vs is type I IFN (gene name:

IFNA2) and vt is luciferase. Luciferase is not a native member of the signaling network; but

used as a reporter whose production increases with the disruption of the signaling network.

Some nodes in the network are molecular complexes and the interactions forming these

complexes are modeled implicitly within the nodes. In this example, IFNAR, STAT1, JAK1

and TYK2 are critical genes whereas STAT2 and IRF9 are not.

Now, we formally deVne the signaling network reconstruction problem. Assume that we
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Figure 2.1: Type I IFN stimulated JAK/STAT network (Platanias, 2005).

are given a directed reference interaction network denoted by the directed graph, GR =

(VR, ER), with n genes and designated vs and vt as receptor and reporter genes. Also, we are

provided with a vector of constraints X = [b1
0, b

2
0, . . . , b

n
0] that deVne the critical genes from

RNAi experiments. Here, bi
0 is the indicator variable with bi

0 = 1 if the gene vi ∈ VR is a

critical gene in the network to be constructed. The problem is to Vnd a network G = (VR, E),

which is consistent with the constraints X and the diUerence dist(GR, G) is minimum. It is

worth noting that if the reference network GR is consistent with X, then G = GR is a trivial

solution to this problem. As we discuss later, the problem quickly gets challenging when

GR fails to satisfy a subset of the constraints. To establish the complexity of our problem

we Vrst deVne the decision version of the signaling network reconstruction problem and

give the deVnition of an existing NP-complete problem that is used in the NP-completeness

proof. The proof follows the deVnitions.

Problem DeVnition 2.1.1. (Reference Network Editing For RNAi Compliance (RNERC))

Given a reference interaction network denoted by GR = (VR, ER) with designated vs and vt. A

vector of RNAi constraints for genes are provided as X = [b1
0, b

2
0, . . . , b

n
0].

QUESTION: Given a non-negative integer m, is there a G = (VR, E) with dist(GR, G) ≤ m that

is consistent with X?

12



Theorem 2.1.1. RNERC is NP-Complete.

In the RNERC problem, the aim is to construct a graph G′ that satisVes a set of constraints

X, if for ∀bi
0 ∈ X, 1 ≤ i ≤ n, vi is a critical gene in G′ for bi

0 = 1 and it is a non-critical gene

in G′ if bi
0 = 0.

NP-Completeness Proof. To show the NP-Completeness of RNERC problem, we Vrst prove

that RNERC is NP. To prove RNERC is NP, it is suXcient to show that a nondeterministic

algorithm needs only guess E′ and in polynomial time we can check whether G′ = (VR, E′)

satisVes X and |ER − E′| + |E′ − ER| ≤ m. The second part of checking whether |ER − E′| +

|E′ − ER| ≤ m is a simple set operation and can be done in O(|E′| + |ER|). In order to check

whether G′ = (VR, E′) satisVes X, we run a Depth First Search (DFS) traversal of G′i for

every constraint bi
0 ∈ X, starting from vs until we Vnd a simple path to vt or all the edges

e ∈ E′ − ERvi
are visited. Since each edge e ∈ E′ − Evi is visited only once during DFS, the

complexity of this check is O(|E′ − ERvi
|) for each bi

0 ∈ X and O(|V ||E′|) in total, which is a

polynomial time complexity. Hence RNERC is NP.

Second, we need to show that there is a polynomial time transformation from an NP-

complete problem to RNERC. For this, we pick the NP-complete problem HPTP (Garey

and Johnson, 1979) and show HPTP ∝ RNERC.

Problem DeVnition 2.1.2. Hamiltonian Path Between Two Points (HPTP)

Instance: A directed graph G = (V, E) and vertices vs, vt ∈ V .

Question: Does G contain a Hamiltonian path beginning with vs and ending with vt? That

is, does G contain an ordering < vπ(1), vπ(2), ..., vπ(k) >, k = |V |, of the vertices of G such that

vπ(1) = vs, vπ(k) = vt, and (vπ(i), vπ(i+1)) ∈ E for all i, 1 ≤ i < k.

We Vrst deVne a polynomial time transformation function f : HPT P −→ RNERC, for all

instances of HPTP, then prove that this is indeed a transformation by showing that for all

instances of HPTP there is a Hamiltonian path from vs to vt if and only if there is a G′ which

satisVes X and |ER − E′| + |E′ − ER| ≤ m.

Transformation function f is deVned as follows. Given a graph G = (V, E) and vertices

vs, vt ∈ V is an arbitrary instance of HPTP. We construct an instance of RNERC as follows.

Step 1: Remove edges (vi, vs),∀vi , vs ∈ V from E
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vqvs vp vr vt

e

Figure 2.2: Edge e cannot exist in G.

Step 2: Remove edges (vt, vi),∀vi , vt ∈ V from E

Let the reduced edge set be Er. The RNERC instance is GR = (VR, ER),VR = V and ER =

Er, source gene is vs and the target gene is vt and X = {1, 1, ....., 1}, |X| = |V | − 2 and

m = |Er | − |V | + 1. In other words, we set all the RNAi constraints to 1 meaning that all

regular genes are critical genes and limit the number of diUerences between ER and E′ to

|ER| − |VR| + 1. This transformation has time complexity O(|V |) due to Steps 1 and 2, hence

it is polynomial time.

To prove that this is a transformation, we need to show that there is an E′ with |ER − E′| +

|E′ − ER| ≤ |ER| − |VR| + 1 that satisVes X if and only if G has a Hamiltonian path between

vs and vt.

It is easy to see that a graph G′ = (VR, E′) satisVes X if and only if the graph is solely a

linear path, i.e., an ordering, of vertices in VR where each consecutive pair of vertices is

connected by an edge. Any other additional edge e will cause G′ not to satisfy X, because

removal of a node, such as vq in Figure S2.2, will not aUect the existence of a path from

vs to vt. A connection will be possible through the edge e between vp and vr. Therefore e

cannot exist and E′ deVnes a Hamiltonian path from vs to vt with no additional edges and

|E′| = |VR| − 1. If E′ ⊆ ER, in other words if ER contains a Hamiltonian path between vs

and vt we only need to remove m = |ER| − |VR| + 1 edges from ER to get E′. If there is no

such path in ER, then in addition to removing |ER| − |V | + 1 edges from ER, we need to add

some edges to complete the linear path in E′. Hence the diUerence will be greater than m

and the answer to the RNERC problem will be “No”. It is also easy to see that the graph

GR = (VR, ER) contains a Hamiltonian path if and only if the graph G = (V, E) contains

a Hamiltonian path, since the only diUerence between the two graphs are the additional

incoming edges to vs in E and the additional outgoing edges from vt in E which will not

appear in a Hamiltonian path from vs to vt in G. Therefore, the RNERC problem instance
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has a “Yes” answer if and only if G has a Hamiltonian path from vs to vt. �

Next, we describe the method we have developed to tackle the signaling network recon-

struction problem.

2.2 Signaling Network Constructor (SiNeC)

In a signaling network, a signal is transferred from a receptor gene vs to a reporter gene vt

through a combination of critical and non-critical genes in at least one simple path. From

the deVnition of critical genes, we know that all the critical genes are on all of these paths.

Moreover, the critical genes in all of these paths are visited in the same order. This can be

proven by contradiction. If two alternative orderings of two critical genes exist, then there

exists a simple path from vs to vt that does not visit at least one of them. This is because

the other gene appears before that one in one ordering and after in the other ordering. By

combining appropriate parts of these two orderings, we can skip one of the two genes and

arrive at vt.

Our proposed method, named Signaling Network Constructor (SiNeC), exploits the above

observations. It works in three steps: (i) We Vrst estimate the approximate ordering of the

critical genes in the reference network. (ii) We then delete those edges that are in conWict

with that order from the reference network. (iii) Finally, we insert the missing edges that

are necessary to ensure the Wow between consecutive critical genes and the consistency of

the remaining (i.e., non-critical) genes in the reference network. The resulting network is

guaranteed to be consistent with all the RNAi constraints. We elaborate on each step below.

2.2.1 Step 1: Ordering of the Critical Genes

At this step, SiNeC estimates the order in which a signal that is received at vs is propagated

among the critical genes. SiNeC uses this ordering to create the backbone of the signaling

network that it constructs. This problem, in principle, is similar to the topological sorting

of the nodes of a graph, which is a well known problem in graph theory. However, the

topological sorting problem is deVned on directed acyclic graphs; hence, it is not directly

applicable for a cyclic undirected PPI network. Signaling networks are often sparse net-
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works. Therefore, techniques that work on sparse graphs are promising to order the critical

genes. Numerous methods for sparse graph traversal exist in the literature (see George and

Liu (1990)). Sloan (1986) proposed a greedy algorithm in which all the nodes between prede-

Vned start and end nodes are assigned a priority value. This algorithm initially determines

the priority of each gene using its degree and its distance to the end node. Priority of each

gene is a weighted average of its degree and its distance to the end node. The algorithm

then removes the node with highest priority in the list and updates the rest of the node

priorities by recomputing the priority of each gene in the reduced graph. It continues this

process iteratively to Vnd the next node with the highest priority until there is no node left.

The running time of the Sloan algorithm is linear in the size of the graph. This makes it

an appropriate solution particularly for graphs with large number of nodes. We use this

method on the reference network GR to create a putative ordering of critical genes. The

resulting ordering imposes that every path between vs and vt should traverse through the

critical genes in that order.

Notice that the ordering found at this step may be violated in GR. In the following steps, we

modify GR to ensure that this ordering holds for all the critical genes.

2.2.2 Step 2: Edge Deletions

Our goal in this step is to determine the minimum number of edges whose deletion makes

the reference network consistent with the ordering of the critical genes found at the Vrst

step. In other words, we would like to ensure that, for all critical gene pairs (u, v), the signal

reaches u before v, if u appears before v in the ordering imposed in Step 1.

Let u and v be two non-consecutive critical genes according to the ordering we impose (with

u ordered before v). A network with c critical genes contains
∑c−2

k=1 k such critical gene pairs.

For each such pair (u,v), we Vrst generate all the possible simple paths from u to v through

non-critical genes. The number of such paths is exponential in the number of edges. These

paths are undesirable as even the presence of one of them is in contrast with the RNAi

constraints and the ordering found in Step 1. So, we need to eliminate all of these paths.

Notice that deleting a single edge on a simple path suXces to eliminate that path. Also,

notice that an edge can appear on multiple simple paths. Following from these observa-
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tions, we insert the edges on these paths into a priority queue according to their number

of appearances in all the simple paths (i.e., number of simple paths that are eliminated by

the removal of that node). Once all the paths are considered, we greedily delete the edge

with the highest priority from the queue and the reference network. Notice that, if multiple

edges have the same priority, we delete the edge from the queue that does not make any

non-critical gene a critical one. If all the candidate edges have the same property, we break

the ties randomly. We remove the paths that contain this edge from the path pool and up-

date the priority queue for the edges that are aUected by the path removal. We delete all the

edges with a priority of zero from the queue. We repeat this selection and update procedure

until no edges are left in the priority queue.

At the end of this step, the resulting network has no inconsistency with the ordering of the

critical genes.

2.2.3 Step 3: Edge Insertions.

The Vnal step inserts the missing edges in the reference network to guarantee that a signal

can propagate from vs to vt by visiting the critical genes in the same order as deVned in our

Vrst step. It also ensures that the resulting network is consistent with all the constraints

related to non-critical genes.

Let us denote two consecutive critical genes with u and v, with u appearing before v in the

generated ordering. For every such u and v, there must be at least one path from u to v. We

insert an edge from u to v if at least one of the following two conditions hold. (i) No path

exists between from u to v, or (ii) There is at least one non-critical gene which appears on all

the paths between from u to v. The Vrst condition above ensures that the signal can travel

from one critical gene to the next. The second one guarantees that there are no critical

genes between two consecutive critical genes in the resulting network. Thus, the resulting

network is guaranteed to be consistent with all the RNAi constraints.

Throughout its process, SiNeC deletes the smallest number of edges to ensure ordering of

critical genes and inserts the smallest number of edges to ensure that the resulting network

is consistent with the constraints. Thus, it ensures that the resulting network has smallest

possible distance to the reference network with the restriction that critical genes are ordered
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as in Step 1. The worst case time complexity of SiNeC is exponential in the number of nodes

particularly for dense reference networks. This is because Step 2 generates all simple paths

between critical gene pairs. However, in practice we do not observe this most of the time as

biological networks are sparse (see Section 3.4).

2.3 Analysis of the SiNeC Method

Here, we answer two critical questions. Recall that our goal is to Vnd the network whose

topology is closest to the reference network. The Vrst question we answer is how well

does SiNeC achieve this goal. Every time we insert/delete an edge to/from the reference

network we increase the distance between the reference network and the resulting network

by one. Thus, we ideally need to apply the smallest number of edge insertions/deletions.

Lemma 2.3.1 states the optimality of SiNeC when the order of the critical genes is Vxed.

Second question we discuss is the performance of the SiNeC method. Finding all the paths

between pairs of non-consecutive critical genes (Step 2) dominates the overall running time

and space complexity. This is because, in the worst scenario, the number of paths between

two genes can grow exponentially with the number of edges in the network. The growth

rate increases with the density of the edges in the reference network. That said, it is worth

mentioning that signaling networks are often sparse and thus the practical performance we

observe on real datasets is much better.

2.3.1 Optimality of the SiNeC Method

Lemma 2.3.1. Given a reference network, RNAi constraints, and a putative critical gene or-

dering,

1. SiNeC deletes the smallest number of edges to ensure ordering of critical genes.

2. SiNeC inserts the smallest number of edges to ensure that the resulting network is consis-

tent with the constraints.

SiNeC Optimality Proof. In order to satisfy the RNAi constraints, two stages of deletion and

insertion operations are applied. In the deletion stage, we eliminate the edges that are on
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the paths between two non-consecutive critical genes. According to the heuristic, an edge

with the highest number of occurrences in the inconsistent paths is removed from the queue

and the occurrences of the other edges are updated. This process iterates until there is no

edge left in the queue. We claim that this greedy approach always results in the minimum

number of edge deletions. We convert this problem into the “Activity Selection Problem”.

Each activity in this problem, has a starting and a Vnishing time and the activities which do

not overlap, are said to be non-conWicting. The greedy method tries to Vnd a maximal set of

non-conWicting activities. It selects an activity with the earliest Vnishing time that does not

overlap with the previously chosen activities and it iterates until no non-conWicting activity

is left. In the conversion process, we consider every edge as an activity and its number of

occurrences as the Vnishing time of the activity. Since we have no starting time for the

activities, we assume that all the starting times are set in a way that does not conWict with

the other ones. In every iteration of the method, in order to Vnd the minimal solution set,

we choose an activity with latest Vnishing time and then, updating the Vnishing time of

the other activities and resetting their starting time to keep them non-conWicting with the

already chosen ones. The greedy approach to the “Activity Selection Problem” is proved to

be optimal and so the deletion stage of the heuristic is also optimal. In the Insertion stage

of the heuristic, for every two consecutive pair of critical genes with k paths between them,

a non-critical gene should appear in, at most k − 1 of the paths. If not, a single edge is

inserted between the critical genes pair. The same strategy applies when k = 0. A single

addition/deletion is a minimum operation that can change a given network.

Every deleted edge in the Vrst step, has the highest number of occurrences on the undesired

paths between every two non-consecutive critical genes pairs. The same edge can also be on

a path between two consecutive critical genes that ensure the function of non-critical genes

between the regarding consecutive critical genes. So the deleted edge will enforce one edge

insert operation for retaining the non-critical genes properties. In order to overcome this

extra addition, we might choose another edge with less priority that results in non-optimal

number of delete operations which at least is one more operation than the optimal case.

This proves that, although, the deletion and insertion operations are applied separately,

the overall distance, between the reference network and the constructed network is the

smallest. �
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2.4 Analysis of Time Complexity and Extensions

SiNeC algorithm has a worst-case exponential running time in the number of nodes and

with the increase in the size of the network, the performance of the algorithm decreases

signiVcantly. This problem occurs in the edge deletion step of our algorithm when we Vnd

all the available paths between two non-consecutive critical genes. In each unit of time, a

single process explores the paths between a given pair sequentially while other pairs wait

in the operating system queue to be processed in succession of the previous one. In this

section, we propose extensions to improve the performance of the original approach.

2.4.1 P-SiNeC

The waiting time for completion of edge removals increases the running time of the whole

algorithm while we do consume all the available resources. Recent advance in multi-core

processor technology brings the possibility for executing several tasks concurrently. This

results in a shorter running time and unleashing the full power of multi-core CPUs. We have

developed a new concurrent variant of the SiNeC algorithm named P-SiNeC (Parallel SiNeC).

In this method, every pair of non-consecutive critical genes is assigned a separate process

that explores the paths simultaneously. Each process updates the number of visited edges

in the discovered paths concurrently in the priority queue. This extension to the original

algorithm achieved faster running times on the semi-synthetic datasets (See Chapter 3 for

details of the datasets). The experiments are conducted using Microsoft .NET Parallel library

in a 64-bit Quad Core Intel CPU, clocked at 2.8 GHz with four gigabytes of RAM. Degree

of concurrency is set to four. Figure 2.4 shows that P-SiNeC improved the running time for

the semi-synthetic networks signiVcantly (i.e. nearly three times faster). However, due to

having a similar asymptotic running time with the original SiNeC, it cannot Vnd results for

networks with few hundreds of nodes.

2.4.2 L-SiNeC

P-SiNeC improves the running time of the basic SiNeC algorithm drastically, but it still

cannot solve the large networks with over 300 genes in a reasonable amount of time due to

its exponential running time. Note that SiNeC cannot construct a solution for any instance
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Figure 2.3: Distance from the reference network for SiNeC and L-SiNeC

of the HSA2 network (See Section 3.4). In this customized version of the SiNeC algorithm

named L-SiNeC (Linear SiNeC), we replaced the exhaustive search in edge deletion step

by a polynomial running time heuristic. In the new method, Vrst we Vnd the shortest

path between a pair of non-consecutive critical genes then we add the visited edges of the

explored path to a HashSet which holds the number of time that an edge is visited. We

greedily select an edge with the highest number of occurrences from the HashSet and in

case of equality, a random edge is selected. We disrupt the undesired shortest path by

removing the selected edge from the HashSet. We continue this procedure by searching

for the next shortest path and omitting it using the same method until there is no path

left between the given pairs. The worst-case running time of L-SiNeC occurs when the all

paths between a pair of nodes are disjoint, in this case, the running time equals the basic

SiNeC method. Although the basic SiNeC approach is proved to provide an optimal number

of additions and deletions for a given order of the critical genes, the new heuristic shows

promising results over the semi-synthetic data without sacriVcing the minimality in number

of operations noticeably (See Figure 2.3). The average distance from the reference networks

in VEGF, VMAW and Synthetic datasets are slightly higher than the SiNeC method. It also

improved the running time of HSA drastically and found the results for HSA2 networks in
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a reasonable amount of time (See Figure 2.4).

2.4.3 PL-SiNeC

Pl-SiNeC(Parallel Linear SiNeC) is a composition of both P-SiNeC and L-SiNeC methods.

We added a concurrency layer to the L-SiNeC method to further improve the running time

for a given network. In the deletion step of the algorithm, similar to the P-SiNeC method,

every two pairs of the non-consecutive critical genes are assigned independent processes

but in this extension, every process gets its own copy of shared HashSet for the visited edge

counts and after the process Vnishes execution it updates the shared HashSet for later access

by the upcoming processes. Moreover, each process puts a lock on the edge proceeding to

be deleted. If another process is waiting for the same speciVc edge, since the edge is deleted,

it will again run the shortest path algorithm to extract the possible next shortest path.
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CHAPTER 3

Results

In this chapter, we evaluate the performance and reliability of our method and compare it

with the state of the art.

3.1 Datasets

In this section, we describe the datasets we use to evaluate the signaling network recon-

struction methods.

3.1.1 Synthetic Datasets

We randomly generated 1,000 reference networks each with nine genes. Each edge in a

network is an outcome of a Bernoulli trial with probability 0.5. We also randomly generated

RNAi constraints for each of the seven regular genes in the network with p(b0
i = 1) = 0.5.

3.1.2 Semi-synthetic Datasets

We have generated seven datasets (described in Table 3.1) using the signaling networks

of human (Homo sapiens) in the KEGG database (Kanehisa and Goto, 2000). Each dataset

contains 200 reference networks, each obtained from the actual signaling network using

degree preserving edge shuYing method (Milo et al., 2003) with a given mutation rate. We

used mutation rates of 0.05, 0.1, 0.2, 0.4 and generated equal number networks for each

mutation rate. A mutation rate of r means that r × |E| edges are toggled to generate a

random network.
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Table 3.1: Semi-synthetic datasets generated from KEGG human signaling networks. |V |
and |E| denote the number of nodes (genes) and edges (interactions). (1Oocyte meiosis, Cell
cycle, P53, TGF-beta, Calcium) (2MTor, Phosphatidylinositol). Each dataset contains 200
reference networks with varying mutation rates.

DataSet Description |V | |E|
VEGF VEGF signaling network 28 32
APOP Apoptosis signaling network 54 56
WNT WNT signaling network 60 70
MAPK MAPK signaling network 127 171
VMAW Union of VEGF, APOP, WNT and MAPK 212 307
HSA Union of VMAW and 5 networks1 357 505
HSA2 Union of HSA and 2 networks2 388 615

3.1.3 Real Dataset

We use the two signaling networks: the type I IFN stimulated JAK/STAT network (Platanias,

2005) and ERBB receptor-regulated G1/S transition network (Sahin et al., 2009a).

3.2 Ability to Minimize Edge Insertion/Deletions

Recall that our aim is to transform the reference network into a new network that is consis-

tent with the RNAi constraints and that the distance to the reference network is minimum.

In this experiment, we evaluated how far our proposed method is from the optimal solutions

in that regard. To Vnd the true minimum distance, we used an Integer Linear Programming

(ILP) formulation that exhaustively searches the search space (Eren and Can, 2012). ILP

formulation can provide solutions for small networks with up to nine genes on a standard

desktop. It fails to run on larger networks due to exponential growth of the linear con-

straints.

Figure 3.1 reports the average number of edge insertions/deletions (i.e., distance to the refer-

ence network) for the solution reported by the ILP formulation and our method with varying

number of critical genes. Several important observations follow from these results. The dis-

tance value for SiNeC is close to that for the optimal method, particularly when the number

of critical genes is small. This indicates, SiNeC tends to perform better for smaller number

of critical genes. This is intuitive as the success of SiNeC depends greatly on the ordering

of critical genes. With increasing number of critical genes, the chances of making a mistake
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Figure 3.1: Average distance of the constructed network from the reference network increas-
ing diUerent number of critical genes in the reference networks in the synthetic dataset. ILP
solver Vnds the optimal solution.

in their ordering will possibly increase. Finally, the number of edge insertion/deletions are

large for such a small dataset. This is because the references in this dataset are very distant

from a solution as they are created randomly.

Next, we take a closer look into how our method perform on semi-synthetic datasets. The

main goal of this analysis is to answer the following two questions: (i) Most signaling

networks are larger than the ones in the synthetic dataset. How does SiNeC perform on

larger networks? (ii) Real networks have unique topological characteristics such as degree

distributions. The semi-synthetic datasets preserve these characteristics. What is the eUect

of network topology on the results?

We ran SiNeC on the semi-synthetic datasets, described in Table 3.1. Thus, the networks in

this experiment have the same size (same set of genes and same number of interactions) and

degree distributions as those provided in KEGG human signaling networks. Furthermore,

we know the gap between each reference network and the actual network that it is derived

from. This allows us to evaluate the performance of our methods precisely as a function

of this gap. We measured the distance between the reference and the constructed network.

Figure 3.2 reports the average distance obtained by SiNeC for reference networks created at
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Figure 3.2: Average distance of the constructed network from the reference network for
diUerent mutation rates on the semi-synthetic dataset.

diUerent mutation rates.

Our results demonstrate that our method can construct real sized signaling networks from

several tens to several hundreds of genes using only a few edge insertions/deletions for all

mutation rates (even when mutation rate is 40%). This is very promising as it demonstrates

that our methods can construct signaling networks even when small amount of information

on the network topology is available.

3.3 Ability to Reconstruct the Network Correctly

The purpose of network construction is to produce the true signaling network topology.

Towards this goal, our methods minimize the number of network manipulations on the

reference networks. This suggests that the success of our methods depend on the similarity

of the topologies of the reference and actual networks. In this section, we evaluate the

extent of this dependency.

We ran SiNeC on each of the semi-synthetic datasets and measured their accuracies using

precision and recall metrics. Let us denote the actual and constructed networks using G and
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Gc.

• (Precision) This measure reports the ratio of the number of interactions common to

G and Gc to that of Gc.

• (Recall) This measure reports the ratio of the number of interactions common to G

and Gc to that of G.

Clearly, high precision and recall values are preferable. For a given precision and recall

value pair, there can be multiple ways to construct the network with that precision and

accuracy. One way to distinguish such results, which can also help in identifying the bio-

logical relevance of the result, is to take a closer look at where the two networks G and Gc

overlap. To do that, we classify each interaction into one of the following three categories.

• Hot: An edge (i.e., interaction) is hot if both of the genes deVning that edge are on at

least one path from vs to vt.

• Cold: An edge is cold if (i) at least one of the genes deVning that edge cannot be

reached from vs and (ii) vt cannot be reached from that gene.

• Warm: We deVne the remaining edges as warm.

In summary, hot interactions are the most important ones for the receptor and reporter

genes used as they deVne the relation between them. Cold interactions are the least critical

ones. We computed precision and recall for the interactions for each of these categories.

Results are reported for hot and cold edges in Figure 3.3 and for hot and warm edges in

Figure 3.4 respectively. Each point in Figure 3.3 corresponds to one constructed network.

There are totally 585 networks constructed for this Vgure.

Figure 3.3 shows that most of the constructed networks have high precision and recall val-

ues for both hot and cold edges (75% of the overall networks have precision and recall

values greater than 0.7). This suggests that SiNeC attains high accuracy most of the time

even when the reference network deviates as high as 40% from the actual network. Also,

we observe that for the same recall value, SiNeC has higher precision values for hot edges

(the most important interactions) compared to cold edges. Moreover, the relative precision

values for hot edges are greater than that of cold edges (88% of the overall networks have
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Figure 3.3: Precision and recall values for SiNeC on hot and cold edges

high precision values for hot edges than for cold edges). We observe similar results for the

recall values.

3.4 Running Time Performance

A network construction method is practical if it can scale to large networks. In this section,

we evaluate the running time performance of the proposed method on synthetic datasets of

various sizes. The running times of SiNeC is given in Figure 3.5.

Figure 3.5 shows that SiNeC is very fast for networks with up to around 200 genes. This

is a signiVcant contribution as the ILP solution to the network construction problem does

not scale beyond nine genes (see Section 3.2). As the network size and density increases,

the running time of both methods increase. Recall that SiNeC has exponential running

time complexity in the worst case. Our results suggest that we do not observe this for

sparse networks even when the network contains few hundreds of genes. On the largest

dataset (i.e., HSA2) however SiNeC fails to Vnd a solution in one hour for a single network.

This is because this dataset has dense subnetworks which quickly increase the number of

simple paths that are considered by this method. We conclude that SiNeC scales well to the

networks with large sizes.
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Figure 3.4: Precision versus recall for SiNeC on hot and warm edges

3.5 SigniVcance of Constructed Networks

In this section, we evaluate the biological signiVcance of the constructed networks. One

criteria commonly used for understanding the biological relevance of a collection of pro-

teins is the uniformity of the functions of the proteins. Uniformity, here, indicates that the

resulting subnetwork collectively performs the same biological function. One measure com-

monly used to evaluate this is the functional enrichment of the resulting network (Shlomi

et al., 2006). Computing this quantity relies on the terms annotated to each protein in the

network by the Gene Ontology (GO) database (Consortium, 2008).

BrieWy, the enrichment reports the minus log likelihood of observing common terms in a

set of genes. Thus larger values of this measure mean better enrichment (See (Shlomi et al.,

2006) for details on computation of the functional enrichment).

Recall from Section 3.3 that the hot edges are the most important interactions that deVne

the signaling process between the receptor and the reporter genes. We focus on the genes

that participate in these interactions and computed their functional enrichment. We limited

ourselves to the functions of the reporter gene. In other words, we tested how much this
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Figure 3.5: Running time for SiNeC. The time measurements are in seconds. SiNeC cannot
Vnd a solution in one hour for a single network in the largest dataset (HSA2).

path is enriched in the functions of the reporter gene. We tested this on the semi-synthetic

dataset.

The functional enrichment values for the original network in semi-synthetic datasets and

the networks constructed by SiNeC (according to various mutation rates and datasets) are

given in Table 3.2. We observe that the constructed networks have similar functional en-

richment values as those of the original network. In other words, if the same set of genes

in the original network is functionally enriched, those in the constructed networks are also

functionally enriched, and vice versa. Additionally, for the enriched networks (WNT and

VMWA) 100% and in the overall 80% of the constructed networks have enrichment values

within one standard deviation of the enrichment of the original network. This implies that

the enrichment results of SiNeC are stable and does not change greatly as the reference

network changes.
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Table 3.2: Functional enrichment of SiNeC on KEGG datasets. The numbers when mutation
rate = 0 refer to the functional enrichment value of the original network.

Mutation rate
Dataset 0 0.05 0.1 0.2 0.4
VEGF 1.02 1.45 1.39 1.81 1.84
APOP 0.94 0.79 0.74 0.69 0.68
WNT 2.59 2.51 3.09 3.18 3.47
MAPK 1.42 1.71 2.71 3.42 3.50
VMAW 8.98 8.52 8.79 9.46 8.71

Table 3.3: Precision and recall values of the four signaling networks constructed using
SiNeC and Ruths et al. (2007).

Dataset SiNeC Ruths et al. (2007)
Precision Recall Precision Recall

VEGF 0.82 0.93 0.75 1
APOP 0.96 1 1 1
WNT 0.96 1 0.90 1
MAPK 0.99 1 0.97 1

3.6 Comparison with the State of the Art

In this section, we compare SiNeC with various state of the art network construction algo-

rithms.

In our Vrst experiment, we compare SiNeC with Ruths et al. (2007) as this is the closest

method to ours in spirit. Recall that this method alters a given network to make it consistent

with the RNAi constraints. However, unlike our method, it only allows insertion of new

interactions to alter the network topology. We ran both methods to construct four signaling

networks, namely VEGF, APOP, WNT and MAPK. We used the corresponding signaling

networks in KEGG as the gold standard for the network to be constructed. We obtained the

reference networks from the PPI networks of the String database (Szklarczyk et al., 2011).

We constructed each signaling network from its reference network using both methods

independently. We then computed their precision and recall values. Table 3.3 summarizes

the results. We observe that both methods have high precision and recall values. In three

out of four datasets SiNeC has higher precision. In only one dataset Ruths et al. has higher

recall. Even in that case SiNeC has near perfect recall. The high recall values of Ruths et

al. is a natural outcome of the fact that their method never removed an interaction. This

feature however has the drawback of reduced precision values which we observe in our
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Figure 3.6: The results of the compared methods on the construction of the type I IFN
stimulated JAK/STAT network

experiments. Thus, the results suggest that SiNeC performs near perfect in terms of both

precision and recall.

Next, we compare SiNeC with InWuenceFlow (Singh, 2011) and Kaderali et al.’s method (Kader-

ali et al., 2009) on two real datasets (JAK/STAT and the ERBB networks) described at the

beginning of Section 3.1.

The JAK/STAT network is a nine node network including the signaling protein Interferon

alpha-2 (encoded by the IFNA2 gene) and the reporter protein luciferase. Luciferase is not

a native member of the signaling network; but used as a reporter gene whose production

increases with the disruption of the signaling network. According to the RNAi screens

performed by Kaderali et al. (2009), six of the regular genes are critical genes (IFNAR1, IF-

NAR2, JAK1, TYK2, STAT2, and IRF9) and the gene STAT1 is a non-critical gene. Figure 1

in their paper shows the true signaling network as given by Platanias (2005). We retrieved

protein-protein interactions involving these genes from the EBI IntAct database (Kerrien

et al., 2012). For running InWuenceFlow, we retrieved the raw RNAi scores from Lars Kader-

ali and we included the STAT1, STAT2, and IRF9 genes in the core cascade of the JAK/STAT

network. For Kaderali et al.’s method we used the highest probability network reported in

their paper.
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Figure 3.6 shows the results of each method. Since STAT1 and JAK2 are not RNAi hits,

InWuenceFlow does not include these genes in the resulting network. In addition, JAK1

and TYK2 are not included in the resulting network because there are no interactions in

IntAct that connect these genes to the other genes in the network. InWuenceFlow cannot

account for missing edges; hence, excludes such genes from the resulting network. Edges

of the original network are pruned further, in order to give a spanning tree as the output.

Kaderali et al. combines some of the nodes to single nodes as complexes in order to reduce

the complexity of the problem. For comparison purposes, we report these complexes as

separate nodes in Figure 3.6. Kaderali et al. use a likelihood function to search the space of

all possible topologies. The most probable topology provided by Kaderali et al. misplaces

JAK1 and TYK2 as the immediate genes before the reporter, although these are the genes

that interact with the type I IFN receptors. SiNeC could discover some of the key parts of

the topology correctly. For instance, it identiVes JAK1, TYK, IFNAR1 and IFNAR2 as critical

genes although their relative positions are switched with that given by Platanias (2005). Our

results show that SiNeC and Kaderali et al.’s method could both reconstruct some of the key

parts of the topology correctly, while InWuenceFlow failed to include some critical genes

such as JAK1 and TYK2 in the Vnal results due to incompleteness of the reference network.

Finally, we compare the results of the methods on the ERBB receptor-regulated G1/S tran-

sition network (Sahin et al., 2009a). ERBB network contains 17 genes and the three EGF

receptors ERBB1, ERBB2, and ERBB3 form three heterodimer complexes which can be in-

serted into the network as additional nodes (ERBB1_2, ERBB1_3, and ERBB2_3). We ran

InWuenceFlow and SiNeC on the PPI network collected from the literature by Sahin et al.

(2009a). We ignored the directions of the edges. Kaderali et al.’s method did not produce

a result for this network in 24 hours. We used pRB, CDK4, CDK6, and CDK2 as the core

cascade for InWuenceFlow. The critical genes as reported by the RNAi screens are ERBB1,

ERBB1_2, IGF1R, ER-alpha, c-MYC, CyclinD1, CyclinE1, CDK4, and CDK6. For running

InWuenceFlow, we used the RNAi scores provided by Sahin et al.. Both SiNeC and InWuence-

Flow reconstructed the ERRB signaling network within a second. The results are depicted

in Figure 3.7.

Figure 3.7 shows that only 7 out of 20 genes are included in the InWuenceFlow result. In-

WuenceFlow excluded the genes that are not RNAi hits and the genes with no paths to the

target gene. Furthermore, the highly interconnected and parallel nature of the network can-
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Figure 3.7: The results of InWuenceFlow and SiNeC on the ERBB receptor-regulated G1/S
transition network

not be eUectively modeled by a tree. While SiNeC was able to provide directions for some of

the PPI network edges, single knock-down RNAi constraints are not suXcient to uniquely

determine the whole network. However, we can conclude that SiNeC is able to provide a

better coverage of the true ERBB signaling network compared to InWuenceFlow.

34



CHAPTER 4

Discussion and Conclusions

In this thesis, we formulated the problem of signaling network inference as a reference net-

work editing problem by integrating molecular interaction data with RNAi data. We show

that this formulation is NP-complete and proposed SiNeC for construction of signaling net-

works involving hundreds of genes with minimum sacriVce in optimality. In this approach,

Vrst we estimated the order of the critical genes in the pathway by investigating the topo-

logical structure of the reference network using Sloan’s algorithm. This ordering is crucial

in our problem formulation since there should be no path between non-consecutive critical

genes. In the next step, we determined and removed the edges that are in conWict with the

given order of the critical genes and we proved that the count of the deleted genes is min-

imum for a given order. In the Vnal step of this approach, we inserted the missing edges

between consecutive critical genes in order to ensure the existing a path between them. This

method is examined on semi-synthetic networks with a couple of hundred nodes and it gen-

erated the modiVed networks that are compatible with RNAi hits in a reasonable amount

of time. We also proposed three new variants of the SiNeC algorithm for boosting perfor-

mance of the method on larger networks. P-SiNeC parallelizes the exhaustive deletion stage

of the algorithm by exploring the paths concurrently. L-SiNeC introduces a linear average

case running time heuristic in determining the candidate edges for deletion and Vnally PL-

SiNeC applies a concurrency layer to the L-SiNeC method. Although the precision and the

accuracy of the resulting networks are signiVcantly high, it would be beneVcial to discuss

the restrictions of our problem deVnition and the future improvements of our method. Sig-

naling networks usually have multiple receptor and readout genes. Although, considering

the single receptor and readout genes is a valid biological assumption, the future research

should be focused on integration of all the input and readout genes into the problem deVni-
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tion. Moreover, binary identiVcation of the critical genes imposes the presence of them in

all the paths from the receptor to the readout gene. However, due to the inaccuracy of the

RNAi knockdown experiments, the hit list of critical genes can be erroneous. Therefore, a

more Wexible deVnition of critical genes and their role in signaling networks can be a future

research direction.

The PPI networks in our problem deVnition are un-weighted graphs and every edge has an

equal chance to be added to or removed from the reference network. However, some PPI

datasets contain conVdence weighted edges indicating the likelihood of the occurrence of

an interaction between the given pair of the genes. Integrating these edge scores would

improve the edge deletion phase of this method and would results in more biologically

accurate networks.

Finally, we use the Sloan’s algorithm, a graph topological approach, for ordering the critical

genes in the network. This method determines this order by simply looking at the structure

of the physical network without considering their biological functionality. However, the

order of the critical genes aUects the quality of resulting networks signiVcantly and diUer-

ent orderings can produce completely diUerent networks. As the future work, biological

knowledge such as the known functions of the genes can be integrated into determination

of this ordering to make the resulting network more biologically meaningful.
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