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ABSTRACT

MULTISENSOR DEAD RECKONING NAVIGATION ON A TRACKED
VEHICLE USING KALMAN FILTER

Kirmmlioglu, Serdar
M.S., Department of Mechanical Engineering
Supervisor  : Asst. Prof. Dr. E. ilhan Konukseven
Co-Supervisor: Prof. Dr. M. Kemal Ozgéren

September 2012, 120 pages

The aim of this thesis is to write a multisensor navigation algorithm and to design
a test setup. After doing these, test the algorithm by using the test setup. In
navigation, dead reckoning is a procedure to calculate the position from initial
position with some measured inputs. These measurements do not include absolute
position data. Using only an inertial measurement unit is an example for dead
reckoning navigation. Calculating position and velocity with the inertial
measurement unit is highly erroneous because, this calculation requires integration
of acceleration data. Integration means accumulation of errors as time goes. For
example, a constant acceleration error of 0.1 m/s? on 1 m/s? of acceleration will
lead to 10% of position error in only 5 seconds. In addition to this, wrong
calculation of attitude is going to blow the accumulated position errors. However,
solving the navigation equations while knowing the initial position and the IMU
readings is possible, the IMU is not used solely in practice. In literature, there are
studies about this topic and in these studies; some other sensors aid the navigation

calculations. The aiding or fusion of sensors is accomplished via Kalman filter.
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In this thesis, a navigation algorithm and a sensor fusion algorithm were written.
The sensor fusion algorithm is based on estimation of IMU errors by use of a
Kalman filter. The design of Kalman filter is possible after deriving the

mathematical model of error propagation of mechanization equations.

For the sensor fusion, an IMU, two incremental encoders and a digital compass
were utilized. The digital compass outputs the orientation data directly (without
integration). In order to find the position, encoder data is calculated in dead
reckoning sense. The sensor triplet aids the IMU which calculates position data by
integrations. In order to mount these four sensors, an unmanned tracked vehicle

prototype was manufactured. For data acquisition, an xPC—Target system was set.

After planning the test procedure, the tests were performed. In the tests, different
paths for different sensor fusion algorithms were experimented. The results were
recorded in a computer and a number of figures were plotted in order to analyze
the results. The results illustrate the benefit of sensor fusion and how much

feedback sensor fusion is better than feed forward sensor fusion.

Keywords: Navigation, dead reckoning, inertial navigation system, Kalman filter,

sensor fusion, unmanned vehicle, tracked vehicle, mechanization equations
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KALMAN SUZGECI KULLANARAK BiR PALETLi ARAC UZERINDE
COK ALGILAYICILI KOR ADIMI SEYRUSEFER

Kirmmlioglu, Serdar
Yiiksek Lisans, Makine Miihendisligi Boliimii
Tez Yoneticisi : Yar. Dog. Dr. E. Ilhan Konukseven

Ortak Tez Yoneticisi: Prof. Dr. M. Kemal Ozgoren

Eyliil 2012, 120 sayfa

Bu tezde amag, cok algilayicili seyriisefer algoritmasi yazmak ve bu algoritmay1
test etmek icin bir test sistemi tertip etmektir. Seyriiseferde, 6lii adimi veya
havacilikta kullanilan adiyla 6lii ucusu, baz1 6l¢iimler yapmak kaydiyla ilk konum
verilerinden son konumu hesaplamaya yarayan bir yontemdir. Bu yontemde
mutlak konum girdileri kullanilmaz. Ataletsel olgiim birimi (AOB) kullanarak
pozisyon ve hiz hesabr yapmak kor adimina ornek olarak gosterilebilir. AOB
kullanilarak bu sekilde yapilan hesap, yiiksek miktarda hatayr beraberinde getirir.
Ciinkii hesap, ivme verilerinin integralini gerektirir. Integral almak, zamana bagh
olarak hata birikmesi demektir. Ornegin, 1 m/sn? ivme iizerindeki 0.1 m/sn?
sabit ivme hatasi 5 saniyede %10 konum hatasina sebebiyet verecektir. Bununla
beraber, yonelimin hatali hesaplanmasi, birikmis konum hatalarinin daha da
artmasina neden olacaktir. Her ne kadar, ilk konumun bilindigi varsayimiyla,
seyriisefer denklemlerinin ¢oziimii AOB ¢iktilarin1 kullanarak miimkiin olsa da,
AOB pratikte tek basina kullanilmaz. Literatiirde bu konuyla ilgili calismalar

mevcuttur ve bu calismalarda AOB’ye baska algilayicilarin destek oldugu
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goriilmektedir. Algilayict bilesimi Kalman stizgecini kullanarak miimkiin

olmaktadir.

Bu tezde bir seyriisefer algoritmasi ve bir algilayici bilesim algoritmasi yazilmagtir.
Algilayici bilesimi, Kalman siizgeci kullanarak AOB hatalarinin kestirimi temeline
dayanmaktadir. Kalman siizgecinin tasarimi sistemin hata biiylimesinin matematik

modelinin ¢ikarilmasi ile miimkiindiir.

Algilayict bilesimi igin bir AOB, 2 artirmsal enkoder ve bir sayisal pusula
kullanilmigtir. Sayisal pusula yonelim verisini dogrudan yani integral almadan
verebilmektedir. Konumu bulabilmek i¢in enkoder verileri 6lii adim metodu temel
almarak kullanilir. 3 algilayici, ¢ikti verileri integraller alinarak konuma ulasilan
AOB’ye destek olacak sekilde kullanilir. 4 algilayici bir insansiz paletli arag
prototipine monte edilmistir. Veri toplamak icin ise xPC-Target sistemi

kullanilmustir.

Test adimlarin1 planladiktan sonra testler icra edilmistir. Testlerde sensor bilesim
algoritmalar1 farkli hareket yoriingeleri i¢in denenmistir. Tiim ciktilar kayit altina
alimmis ve bu ¢iktilardan analizlere yardimer olacak bazi grafikler ¢izdirilmistir.
Sonuclarda algilayic1 bilesiminin faydasi incelenmistir ve ileri ile geri besleme

algilayic1 bilesimi yontemleri karsilastirilmistir.
Anahtar Kelimeler: Seyriisefer, 6lii adimi, ataletsel seyir sistemi, Kalman siizgeci,

algilayict bilesimi, algilayici kaynastirma, insansiz arag, paletli arac, seyriisefer
denklemleri
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CHAPTER 1

INTRODUCTION

1.1  Dead Reckoning

Navigation, which is as old as the human being, is a method or collection of
methods to find a way from one place to the other. The name is literally from the
Latin “navigare” meaning to conduct a ship [2]. In order to find the way, the most
crucial parameter is following a set of data or algorithm that describes that way. In
ancient times, this data was the landmarks. Using landmarks to navigate is a
practical and efficient method because landmarks indicate absolute position. This
means, for the person navigating, there is chance to compare his position with the

position of the landmark.

After the landmarks; coasts, mountains, shores seas etc. were noted and these
instructions formed the maps. However landmarks may not be permanent. Instead
of using landmarks, a global grid system to define the position of objects on Earth

was admitted.

An alternative approach to using landmarks, maps, GPS or global coordinates is
dead reckoning. According to [4], dead reckoning is the determination of present
position from the initial position and the measurements of velocity, acceleration

etc.



Dead reckoning is a method to appeal in navigation when the absolute position
measurement is not available. In order to understand dead reckoning, following

examples are supposed to be fancied.

Example 1:

Pedometer is a device that counts the footsteps. Footstep length can be stored in
this device so that it can output the distance travelled. Many athletes use this
device to calculate how much distance they run. For this application, the precision
of the distance calculation is not so important. However the athlete may not aware,
the calculation of the distance is highly related with the sensor (pedometer in this
case) used. Also in reality, footstep length is not constant. As a result, precise

calculation of the distance may not be possible with the pedometer.

Example 2:

A person with a rowing boat leaves a quay and puts out to the sea. But suddenly
fog comes in. No landmark is visible. How can the boatman return to the quay?
However he does not have any idea about where the quay is, he can just “estimate”
the location. After estimating, he should also estimate the absolute orientation of
the boat. After processing the orientation and the location of the quay, the best
thing to do is rotating the boat 180° and to go straight to the estimated location of
the quay. When arrived to the shore, it can be seen that there is difference between
the arrived location and the quay. This is the “error”. Some of the important

sources of this error are:

1) Wrong estimation of quay location and orientation of the boat.
2) Effect of stream and wind

3) Impossibility of rowing along an exactly straight line.
Example 3:

Accelerometer is a device to measure the acceleration along its measurement axis.
If accelerometer is moved straight and stopped, how can the final location be

estimated? The answer is quite straight forward and easy for this “one dimensional



navigation” case. Collect the acceleration data and integrate twice. Add the initial

position to this displacement.

But in this example there was only one dimension. What about 3 dimensional
motion? For 3D case is it enough to measure 3 accelerometer readings? The
answer is “No”. This is because of the need of calculating orientation. There

should be many inputs to estimate the final position.

In this thesis, a dead reckoning algorithm was written and tested on an unmanned

tracked vehicle using a number of sensors (multisensor).

1.2 Multisensor Technology

Inertial navigation is a based on the fundamental laws of physics. The acceleration
is created by a force and this force can stretch a spring whose end is mounted on a
mass. Measuring the location of the mass will lead to measuring the acceleration.

This is the working principle of a mechanical accelerometer.

The problem of navigation arises in a rotating mass. Assume that a mass is rotating
on a table about a point. Attach an accelerometer to the body. The accelerometer
will output some acceleration data. How can one know that is this data is created
by a circular motion or rectilinear motion? It is impossible for this case. In order to
solve this problem, about 1950’s, gimbaled platforms were used. The
accelerometers were mounted on these platforms. These stable platforms were
isolating circular and rectilinear motions. In respect of [4], one of these platforms

was 5ft in diameter and 27001b.

Another solution to isolate rotation and linear motion is measuring the angular
velocity by gyroscopes. From angular velocity, the centripetal acceleration can be
subtracted from the acceleration readings and linear acceleration can be calculated.

The development in sensor and microprocessor technology led the sensors be very



small. As a consequence, accelerometers and gyroscopes can be packed into small
volumes. These kinds of systems are called strapdown systems.

According to [6], strap-down navigation systems are becoming increasingly
important for a variety of reasons:

1) Increasingly powerful, smaller, and less-expensive computational
equipment allow strap-down navigation algorithms to be implemented accurately
and inexpensively in a small package.

2) Microminiaturization of inertial instruments allows for a reliable, low-cost,
small-sized instrumentation package.

3) Global positioning technology and other aiding mechanisms allow on-line
calibration of navigation systems at a reasonable cost.

4) The desire for higher levels of autonomy in many products necessitates on-
board navigation.

5) The feasibility of navigation systems in some applications does not allow

the size or the cost of mechanized-platform approaches.

In this thesis, not only a strapdown inertial measurement unit is used but also a
digital compass and encoders aid to the navigation calculations. Navigation
equations’ solutions are redressed by the aiding sensors with Kalman filter

algorithm in real time.

1.3 Scope of the Thesis

In this thesis, the aim is to collect real time acceleration and angular velocity data
from an inertial measurement unit rigidly mounted on an unmanned tracked
vehicle prototype. The data is sent to navigation equation solver algorithm and
final position is calculated. Extra sensors improve the data by sensor fusion
techniques. A number of sensor fusion methods are applied. Kalman filter was
used in sensor fusion. As a result, an overall precise dead reckoning navigation

algorithm was written and a test system (both the vehicle prototype and data



acquisition system) was built. The results of the tests are discussed at the end of

the thesis.

14 Outline of the Thesis

The thesis is divided into 4 main parts. The sequence of parts is not only the
timeline of the study done but also it is in a pedagogic order. The subjects was

tried to be explained in an order so that, the reader can easily learn the matter.

In the first part of the thesis, a general topic is explained. For some main concepts
in the thesis, definitions are made. For some concepts that are important and
repeated through the thesis, quotation marks are used. Hereby, an interest was tried

to be created.

In chapter 2, formulation of navigation equations were given. Some well-known
theorems and equations were proved. In this section the core mathematical

background to build navigation solver algorithm is made cleared.

Next chapter introduces the sensors and error modeling related to them. In order to

understand the sensor fusion, the error models should be grasped.

The third section is all about the test setup built for this thesis. The unmanned
tracked vehicle prototype is explained. The data acquisition system is expressed. In

addition to these, the software form of algorithm in previous chapters is illustrated.

After the forth chapter where the test and test graphics were tabulated, comes the

conclusion that is the end of the thesis.



CHAPTER 2

NAVIGATION EQUATIONS

2.1 Reference Frames

In navigation, a reference frame is the fundamental aspect from which the motion

1s observed.

A reference frame is defined by its origin and its coordinate axes. A basis vector is
a unit vector whose direction is same as the direction of coordinate axes. The
coordinate axes of the reference frame are orthogonal, right handed and in unit

magnitude. Reference frame “a” having origin at A is expressed with its basis
vectors as: Ta(A ;L) E) Mathematically, the basis vectors of a reference frame

have the following properties:

1. Orthogonal: It means that each basis vector is orthogonal with respect to
the others.
I-j=j-k=k-i=0

2. Right handed: The basis vectors’ directions obey the right hand rule.
Ixj=k Jxk=1 kxi=J

3. Unit basis vectors: All the three basis vectors have unit magnitude.

-

[i=jj=k-k=1



2.2 Definitions of Reference Frames in Navigation

In order to write the navigation equations, a number of reference frames is
supposed to be defined. However, defining two reference frames is enough in
writing the navigation equations for frame transformations, in literature there are

intermediate frames to deal the calculations step by step.
2.2.1 Earth Centered and Inertial Reference Frame

This inertial frame is fixed to an inertial reference and its origin is Earth’s center.
A stationary point on with respect to ground has a velocity as much as the Earth’s
velocity with respect to the Earth centered and inertial reference frame. In this
thesis, it is assumed that Earth centered and inertial reference frame is fixed with
respect to any fixed point in space. Nonetheless, the Earth has a motion with
respect to the Sun and the Sun is also not fixed, these terrestrial motions cannot to

be sensed by the INS since they induce very little forces on the objects on Earth.

Figure 2.1 Earth Centered and Inertial Reference Frame and Earth Centered

and Fixed Reference Frame



2.2.2 Earth Centered and Fixed Reference Frame

Earth centered and fixed reference frame is fixed to the Earth’s origin and it rotates
with respect to Earth. This means; a point that is stationary with respect to ground

is also stationary with respect to Earth centered and fixed reference frame.
2.2.3 Navigation Reference Frame

Its orientation is dependent on the vehicle’s location, onto which the INS is rigidly
mounted, on Earth (latitude and longitude data). The frame’s origin is attached to

the vehicle on Earth. It points north, east and down directions by its basis vectors.

Figure 2.2 Navigation Reference Frame

2.24 Body Reference Frame

The body frame is rigidly attached to the vehicle carrying the INS. This frame has
a motion with respect to navigation frame as the motion changes its attitude. In this

thesis, attitude verbalizes that the orientation with respect to north east and down.



Figure 2.3 Body Reference Frame and Navigation Reference Frame

2.3 Reference Frame Transformations

2.3.1 Rodrigues Formula

Rodrigues formula is used in order to find the matrix representation of a vector

that is obtained by the rotation of another vector.

Let # = OB is obtained by 8 much rotation of # = 04 about 7.

L, A,
p r
no
p 7
p 7 0
Figure 2.4 Top view

Figure 2.5 Front view

S+ p and 7 = 5 + 7' Here, § is the vector component of p on 7.
"=p'cosO + q'sinb
p'=p— S5 wheres = (p-n)n

p'=p— (p-n)nand



G =Axp—(p-A)A XA where s X =0
+ 7 = (p-n)n+ p'cosd + q'sind
=@ DA+ @ — @ -BR)cosd + (# xp— B R x i)sind

If above equation is simplified:

7 = pcosO + (1 X p)sind + (p - n)n (1 — cosH) (2.1)

If an observation frame is chosen and the vector expressions are expressed as
matrix expressions in that reference frame:
7 = pcosO + fipsind + A(ATp)(1 — cosh) where i is the skew symmetric matrix

of m:

q1

Ifg= qZ] ; then its skew symmetric will be
a3
0

—q3 Q2 2.2)
qd=14s 0 —q
—q2 1 0

If Rodrigues formula is divided by p, the rotation matrix can be obtained as:

R(n, 0) = IcosB + fisind + an’ (1 — cos6) (2.3)

A vector rotation about a vector can be expressed as a single matrix. This matrix is
called rotation matrix i.e. R(n,0). Successive rotations can be expressed as a
unique rotation that is going to be the multiplication of each individual rotation.
By the same way, a rotation matrix can be decomposed into at most 3 rotations
about the basis vectors of a reference frame. This technique simplifies the use of
Rodrigues formula. The 3 basic rotation matrices about basis vectors can be

obtained as follows.

10



Rotation matrix about first axis or ﬁgo) (0 is the name of the reference frame in

which all the vectors are expressed and 1 denotes the first axis.):

ﬁ(ﬁf’% 1/)) = [cosy + fisinyp + i’ (1 — cosyp) (2.4)
1 0 0 0 0 O
=|0 1 Ofcosp+]|1 0 -—1|siny
0 0 1 0 0 O
[1 1 0 0
+ O] [1 0 0]J(1—cosy)= [0 cosy —sim/)]
10 0 siny cosy
Rotation matrix about 2" axis or ﬁgo):
ﬁ(ﬁgo), 9) = [cos@ + fisin + an’ (1 — cos6) (2.5)
(1 0 O 0 0 -1
=10 1 O0Of|cos@+|0 0 O [sind
0 0 1 1 0 O
[0 cosf 0 sind
+[1([0 1 0](1—cos®)=| 0 1 0
10 —sin@ 0 cos6
Rotation matrix about 3" axis or i?go):
ﬁ(ﬁg"), <;b) = [cos¢ + fising + nn’ (1 — cos¢) (2.6)
(1 0 0 0 -1 0
=|0 1 Ofcos¢p+|0 0 O0]sing
0 0 1 0 1 0
[0 cosp —sing 0
+ 0] [0 0 1](1—cos¢p) = [sinqb cos¢ O]
11 0 0 1

The most general rotation, meaning that, rotation at all three axes is the result of

three basic rotations respectively. As a result, the general rotatio
obtained as:

(@, )R(@, 0)R (. 9)

~

n matrix can be

os¢psinpsind
cos6

Rl{u;~,
cosycosl  cospsiny + cosypsingsing  singsiny — cos¢pcosysinf
= |—sinycosl cos¢pcosy — sinPsingsind singcosy + ¢
sinf —cosOsing cosg

11



2.7)
2.3.2 Rotation Matrices (DCMs) between Reference Frames

The rotation matrix between the navigation frame and the Earth centered and fixed
frame can be calculated by the latitude and longitude angles. Any point on the
surface of Earth (at the sea level) can be located by latitude and longitude. In fact,
these are the two rotations with respect the basis vectors of the Earth centered and
fixed frame. Therefore the general rotation matrix can be rearranged to obtain the
corresponding direction cosine matrix. Evaluating for ¢y = 0 leads to:

cosf  —singsind cos¢psind (2.8)
R(n,—0)R(n, ) =C™N =| 0 cos¢ sing
—sinf —cosOsing cospcoso

In equation (2.8), 8 is the latitude in radians (The sign convention of latitude is
inverse of Earth centered and fixed frame hence it is negative.), i is the longitude

in radians.

The rotation matrix between Earth centered and inertial frame and the Earth
centered and fixed frame can be calculated by considering the Earth rotation rate.

The rotation is about the 3" axis only.

cos¢p —sing O T (2.9)
R™(n,¢) = Ce/eD) = [sinqb cos¢ O]
0 0 1
1 0 0
= [O cos(Qt) sin(Qt)
0 —sin(Qt) cos(Qt)

Here t is the time. It can be thought as time of the day. This term is going to

vanish by taking differentiations in the next sections.

12



2.3.3 Attitude Formulation

From INS, angular rate data from the gyroscope of INS is fed into the system. This
data is used to calculate the attitude of the vehicle together with the accelerometer

data.

By the definition of the orthonormality of the direction cosine matrix,

CTC =

~y

Differentiating this equation by applying product rule:

Ay erdlO _dD)

dt at - ar 0

d(eT) . i A ATY T
GOV ICaY
dt dt dt

. d(CT) . . . . .
This shows that % C is a skew symmetric matrix. Skew symmetric matrices of

3 X 3 that have only 3 nonzero elements [9]. These elements can be gathered
together in a 3 X 1 column matrix. Let @ be that column matrix and @ is a skew
symmetric matrix formed by using the elements of this column matrix.
Symbolically this operation is illustrated through the thesis as:

SSF(w)=®

This can be applied to the reference frame rotation by defining ¢ = C(*?). Hence,

CT = DD g and b denote the reference frames.

. d(C . d(C@b 2.10
CT—C(lt):C(b'a)i( P ):@,/a e

As a result, above equation illustrates the relation between the angular velocity

vector of a frame with respect to another frame and the corresponding direction

cosine matrix.

13



2.3.4 Coriolis Theorem

The coriolis or transport theorem relates the differentiation of position vectors with
respect to two different frames by using the knowledge of the angular velocity of

one frame with respect to the other.

Let 7 is a position vector that is desired to be defined in two reference frames
named as F, and F,. {F}(® or 7@ is the numeric column matrix representation of
7 which is expressed in F,.

(3@ = C(ab){p}(b) (2.11)

Taking time derivative of above equation leads:

- (a) A(a,b) N (b)
d{;}; = %[é(a.b){?}(b)] _ dac {F1® 4 é(a_b)% (2.12)
- (a) A(a,b) N (b)
a7y = (ab) |fba) dc F® + a{r} (2.13)
dt dt —
aP@ A{R® o)
frd ( ,b) ~(b) = (b)
dt ¢ wb/a{r} + R

Converting all matrix representations to vectorial expressions turns the equation
into coriolis theorem statement:

2.3.5 Acceleration Vector Expression in Another Frame:

Assume that F,(A) is a fixed frame and the relation between acceleration of point

X with respect to F, and Fis desired to be known.

Tx/a =Tx/p + To/a (2.16)
Taking double time derivative of both sides:

D&ty 4 = Gx/z,a)y = D&Tx/p + DiTpa

dx /7, = Davx/p + DiTg/a
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Ax/raca) = Da(DaTx/p) + dpyry(a

Applying the coriolis theorem:

Ax /7o) = Da(Tx/py(8) + Boja X x/8) + Apsr, )

Ax /7o) = DaVx/7,() + Da(@pa X Tx/p) + /r,(a)

Ay /7 (a) = Ax/7,8) T Obja X Ux/7,(B) T Apja X Tx/p + Bp/q
X (Tx/r,(8) + @pa X Txyp) + p/raa)

Ax /7,4 = 5}(/?,,(3) + @pjq X 17X/gr,,()se) + Ap/q X Ty + Dpja X 17X/gr,,()se) + Wpq
X (Bp/a X Tx/5) + dp/Faca)
Ax/Fa(a) = Ax/F,B) T 20p/a X Vx5, 8) + Apja X Txyp + Wpjq X (W (2.17)

X Tx/p) + dp/7,(4)

In this expression some terms have special names that are named as:

2Wyp/q X Vx /7, (B) : Coriolis acceleration term

Wpyq X (Wp/q X Tx/p) : Centripetal acceleration term

2.4 Position Formulation

Solution of navigation equations that is named as strapdown system mechanization
can be accomplished by converting system components from one reference frame

to the other.

Before going into the navigation equations, the acceleration sensed by the INS is
supposed to be explained. The acceleration is measured absolutely in INS. In other
words, acceleration data is sent in a fixed frame. Since Earth centered and inertial
reference is assumed to be fixed in this thesis, measured acceleration is composed
into two parts:

dx/F,,(0) = measured acceleration = h+ g (2.18)

h : Acceleration vector caused by the motion of vehicle.

g : Acceleration vector caused by Earth at the vehicle’s location.
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The g term also composed of two parts. The first one is the gravitational
acceleration and the second part is centripetal acceleration caused by the rotation

of Earth. For this reason, ¢ term is known as plumb bob gravity [4].

& Geijef

aei/ef X (aei/ef X 1_?)0)

Figure 2.6 Plumb bob gravity vector and its components on Earth's surface

Gi =G — Beijer X (Beijer * Ro) (2.19)
dﬁei/ef (2.20)

dt =h — @eijef X Veiser + G

el

Velocity of point X which is the location of the INS should be differentiated in

Earth centered and fixed reference frame:

DnﬁX/?ef(O) = &X/Tef(o) + Wepm X ﬁX/fef(o) (2.21)

Decomposing dx /Fop(0) term according to equation (2.15):
Ax/Fop(0) = Ax/F0i(0) F 2Weisef X Vx/Foy0) T Aeijer X Txjo + Beifer (2.22)

X (@eijer X Txs0) + Go/r,.(0)
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Since Earth’s angular rate is constant, @,; Jef = 0. This simplifies the equation to

Ax/Fop(0) = Gx/Fo(0) T 2Weier X Vx/Foy0) T Deiser X (@eijer X Txjo)

+ do/F,.0)

Inserting equation (2.23) to equation (2.21):
DyVx/F,p(0) = Gx/Fi0) T 2@eijer X Vx/y(0) + Beijer X (Weiser

X Tx/0) + C_iO/Tef(O) + Wef/m X 17X/?—"ef(o)

By using the definitions in (2.18):
DyVx/F,p0) = h+ G + 28eijer X Ux/ry0) + G — G + GosF,p0)

+ Wep/n X Vx/7,0(0)

The coriolis acceleration term is equal to:

2@eijef X VUx/Foi(0) = 2@eijef X Ux/Fop(0)

Equation (2.26) can be rewritten as:
DyVx/r,p(0) = M+ 28Beijer X Vxsryp0) + G+ GosFepco) T Befn
X UX/Fr(0)

DyVx /.00 = h — (2@ ef/ei + Bnyer) X Ux/Fop(0) T G

2.5 Navigation Equations in North-East-Down Velocity Form

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

In equation (2.28), the vectorial expressions have to be converted into numeric

matrix forms:

- n 'R —_ — = n —

(2.29)

In order to go into the solution of equation (2.29), the terms should be written

numerically. h? is the acceleration data from INS in body frame. That is directly
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equal to the accelerometer readings of INS that will be symbolized by a,, a, and
a5. The subscripts express the axis number:

h" = CPWRb gnd h? = [a1 a; a3]T; pt = [ay ag ap]T (2.30)

The velocity terms’ matrix expressions are:

> n > n 2.31
{UX/Tef(O)} = [UN Vg 17D]T and {DHUX/Tef(O)} ( 3 )
= [1'7N Vg 1'7D]T

By using equations (2.8) and (2.10) following matrix forms can be written:

_ _ . dcerm (2.32)
Onjef = Wpjef = SSF~1 [C(”""f) P ]

0 —¢cosd -0 dcoso (2.33)
@y oy = SSF~' | —sind 0 psind|=| —f

6 ¢cosh 0 —¢sind

The latitude and longitude rates can be written in velocity form as follows. Here,
north and east radii of curvature are different because of the ellipsoidal shape of
the Earth. This subject is explained in “Earth Reference Model”.

i VE ; YN (2.34)
=— %  gndf=—>2—
?= Re +ycose 0 T @y + )

Inserting equation (2.34) into (2.33) leads

—n [ Vg —Uy vptand 17 (2.35)
w =
n/ef (Re+y) (Ry+y) (Ry+y)

By using equations (2.8) and (2.10) following matrix forms can be written:

R A Ao oy ACEHED (2.36)
@ypje; = CPBp o = CEPMSSF [C(ef'eﬂ T]

cosf  —singsind cosgpsinf1[Q Qcosf 2.37)
Wefei = [ 0 cosg sing 0= 0

—sinf —cosOsing cos¢pcosf110 —Qsinf
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According to definition in (2.19) local gravity vector can be written in navigation

frame as:
gr={g- Weifef X (5ei/ef X ﬁo)}n (2.38)

g = g" — Bgi/er@aifer[0 0 —Ro—y]"

0 0 Qsind 0 7? 0 sin26 (2.39)
ar =|0]—|-Qsind 0 QcosO 0 = 0
g 0 Qcosf 0 —Ry—y 1+ cos26

Inserting all equations from (2.30) to (2.39) into (2.29) gives navigation equations

set.
(Ry + y)Q2sin26 , vitan + vyvp (2.40)

Uy = > — 2Qugsing + ay — Ryt
vy = 2(vpcosf + vysind)Q + ag + RZEj—Dy U;?ia;g (241)
' (1 + cos20)(R, + y)O? vZ vZ (2.42)
vp = > —ZQUECOSQ+aD—RE+y—RN+y

ay @ (2.43)
el

ap as

2.6 Earth Reference Model

2.6.1 The Gravity

By solving the navigation equations, detection of gravity vector is crucial. This is
because the gravity can be calculated as the part of acceleration causing motion.
This results in high errors in position calculations. Therefore, a constant gravity

assumption may not be enough for precise calculations.

Gravity is created due to the molten metals in the core of the Earth. The
distribution of these metals may not be uniform at some levels and this causes little
deflections in Earth’s gravitation field. These deflections are so little; according to

[14], a low cost INS cannot sense them.
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The major variation of gravity in magnitude is due to latitude and altitude (height

above sea level).

According to [13], the gravity as a function of latitude is formulated as:

Jy=0 = 9.780318(1 + 0.0053024sin?0 — 5.9 x 10~°sin?20) (2.44)

In this formula, gravity is written for sea level. However, the gravity is also
affected by distance to the Earth’s center. The gravity at some height above sea
level can be written from the law of universal gravitation as:

__ Yy=0 (2.45)

2.6.2 Shape of the Earth

According to [1], the sphere is a close approximation of the true figure of the Earth
and satisfactory for many purposes, precise measurements require that an

ellipsoidal shape should be fit to the Earth’s surface.

In this thesis, the Earth is assumed to be in the shape of an ellipsoid. This ellipsoid
can be defined as a closed surface which is formed as the rotation of an ellipse

180° around its minor axis.

The eccentricity of an ellipsoid can be explained as the ratio of the distances
between two foci (singular: focus) for a point X on that ellipse. Eccentricity is a

constant for an ellipse.

By modeling the Earth in accordance with a reference ellipsoid as defined here, a
meridian radius of curvature (Ry) and a transverse radius of curvature (Ry) can be
derived in accordance with the following equations [4]:

Ry(1—e?) (2.46)

Ry =
N7 (1 — e2sin29)1s
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Ry (2.47)

1
1
1
1
1
1
1
1
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1
1

Figure 2.7 Meridian and transverse radius of curvature in side and top view of

the Earth

The eccentricity of the Earth, the Earth’s rotation rate, minor and major axes are
taken from WGS-84 model. WGS-84 model is published by World Geodetic
System Committee in 1984 [5].

Table 2.1 The WGS-84 model data used in this thesis

Length of semi major axis R, 6378137.0m
Length of semi minor axis r 6356752.3m
Flattening of the ellipsoid f 1 / 298.257
Eccentricity of the ellipsoid e 0.0818191908426
Earth’s rate Q 7.292115 % 107> rad/s
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Inserting (2.46) and (2.47) into the navigation equations leads to the detailed

navigation equations.

2.7 Discretization of Navigation Equations

The matrix form of navigation equations was derived in (2.29) as

{Dn”X/Tef(O)} = h" — SSF(28041 /o1 + @ yer) {”X/fef(m} +4r

If this is integrated following equation is obtained:

{ﬁx/fef(O)}n _ fof;‘ln dt — fof [SSF(zagf/ei + @) {ﬁX/Tef(o)}n] it (2.48)

t
[
0

In this equation set, t represents the step time. Step time is the time elapsed
between two data points. In order to integrate between two data points there are a
number of numerical integration techniques. These techniques are explained in
Appendix XX.

The initial conditions of equation (2.48) are known. Therefore solution is straight
forward; at each time step, integrations are calculated and added to the initial
condition. The result of each time step calculation is the initial condition of the

next time step.

On the other hand, attitude of INS is supposed be calculated by the formula:
}_ln — é(b,n) }_lb

In this formulation, € ®™ is updated at each time step and the updated term can be

calculated by the angular rate data from gyros of IMU.
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From equation (2.10),
d(é(b.n)) (2.49)

COM =g

This is a first order linear differential equation [7] and its solution is:

cm , = comn |0 exp fot @pmdt where t is the step time. (2.50)

Expanding exp [ Ot @p/mdt in Taylor Series leads to:

exp ftab/ndt iy (fot 5b/ndt)2 . (fot @,/ndtf N (fof @)/ndt)“‘ (2.51)
0

2! 3! 4!

This expression is collected as: (See Appendix XX for details.)

£ . sing (t_ (1—cosp) ([t _ 2 (2.52)
expf Opmdt =1+ f Opmdt + ————— f Dpjndt
0 ¢ Jo % 0

2.53
Q= /a)f+a)§+w§ (2.53)

Inserting equation (2.52) into (2.50):

R . . sing (¢ 1 — cos t z (2.54)
com| = C(b'”)|0 [1+ (pf 6b/ndt+(q)—2¢)<f @,/ndt) ]
0 0

4

In order to solve this attitude formulation, initial condition (initial attitude of INS)
is required. Like the position formulation, at each time step, integrations are
calculated and added to the initial condition. The result of each time step

calculation is the initial condition of the next time step.

2.8 Direction Cosine Matrix Corrections

The rows of the direction cosine matrix represent the projection of unit vectors
which lie along each axis of the orthogonal reference coordinate in the body frame

[4]. In computer because of some calculation errors, the orthogonality and
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normality of direction cosine matrix may deteriorate. In order to solve this, DCM

is corrected by two processes.
2.8.1 Orthogonalization by Gram-Schmidt Algorithm

An orthogonal matrix is a square matrix that its rows are orthonormal with respect
to each other. This means, if the rows of direction cosine matrix are defined as
vectors, these vectors have 90° angle between. According to [10],
orthogonalization can be accomplished by Gram-Schmidt algorithm. Let the DCM

has the following rows:

4

After orthogonalization the DCM takes the following form:
_ R, .

oy Xy

N ~ 12

Cort = ||R1||
PP PP

~ R3R; . R3Rypi o -

R3_ ~ 2T 4 2
|4 [ Rore.l

ort,2

2.8.2 Normalization

In normalization the magnitudes of the rows of the DCM (these rows are thought

to be like vectors) is equated to one.

Rort,l

||Rort,1 ||
e ||Rort,2 ||
Rort,3

1 Rore sl

Normalization is necessary in discrete calculations of differential equations. In

[N

these calculations the DCM deforms and it requires orthogonalization and

normalization procedures respectively.
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CHAPTER 3

INERTIAL NAVIGATION SYSTEMS

3.1 Inertial Measurement Unit

An inertial navigation system is composed of three single axis gyroscopes and
three single axis accelerometers and a computation facility, namely a computer, or

a microprocessor where navigation equations are solved.

The gyroscopes and accelerometers are mounted in a casing so that they form a
right handed triad at the body frame attached to this casing. The casing also
includes electronic parts such as analog to digital converter and data transmission
module etc. The 6 inertial sensors and the electronics make up the strapdown

inertial measurement unit.

In 1950’s IMU with stable platforms were in use. However these systems suffer
from having high weights and occupying high volumes. They are still being used
in ships. Strapdown IMU’s became popular when sensors were manufactured as
chips. This made the way for compacting 3 accelerometers and 3 gyroscopes in

small volumes.
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Figure 3.1 A gimbaled IMU schematic on the left and a photograph
of strapdown modern IMU on the right [30, 31]

The gyroscopes and accelerometers of the IMU is mounted so that they form right

handed triad. Thus, the angular rate and acceleration in all 3 axes are available. In

order to read true angular velocities, IMU should be mounted on the mass center of

the vehicle. If it is not possible, meaning that there is offset between the mass

venter of vehicle and the IMU, the offset vector should be added into navigation

equations as a corrector.

Figure 3.2 The representative orientation of sensors in an IMU. The

cylinders are gyroscopes, the prisms are accelerometers
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In order to understand the IMU, the accelerometers and the gyroscopes should be

studied.

3.2  Gyroscope Technology

A gyroscope is a device to measure the angular velocity around a defined axis.
There is also some other type of gyroscope that measures the angular
displacement. In this thesis, the IMU includes gyroscopes for measuring the

angular velocity.

According to [4], gyroscopes have variety of roles in:
¢ Stabilization
¢ Autopilot feedback
e Navigation

¢ Flight path sensor

YY' Tiur Axis

.
.
.
. XX* SPIN AXIS
.
"
z ZZ' VeeEr AXIS

Figure 3.3 Simple mechanical gyroscope [29]
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There are numerous types of gyroscopes designed to be used for specific reasons.
Some important types of these gyroscopes are as follows:

e Rate integrated gyroscope

e Dynamically tuned gyroscope

e Silicon sensors

e Ring laser gyroscope

e Fiber optic gyroscope

In this decade, silicon low cost chips, ring laser and fiber optic gyroscopes are

widely used.

The principle operation of a mechanical single axis gyroscope is as follows.

Figure 3.4 The simple single axis gyroscope; the disc on the

gyroscope is slewed at constant velocity during operation

Assume that a disc is mounted with its gimbal into a case and it is free to rotate

around axis OC. It has a constant angular velocity of @ and therefore an angular
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momentum of H. A torque T(t) is applied on the disc by the casing and the disc

rotates é(t) much. This angular deflection is called precession. The change in

angular momentum of the disc in t,,,4 much time is:

d= dz_= dH—= — )
—H =—0 X H+—0C where OC is an unit vector.
dt dt dt

According to Newton’s second law, the rate of change of angular momentum is

equal to torque applied to the disc.

P=Lgxiiv
T dt dt

e (3.1)

. dH .
Assume that gyroscope design is such that 8 extremely small and therefore

negligible and @ is still being kept constant. Neglecting this component leads to

the law of gyroscopes:

— d - — .

T=—0XH (3-2)
dt

Integrate from ¢, to t,,4 and obtain angular impulse:

I=6xH (3.3)

By measuring the precession angle 6 by means of a spring with a very small spring
constant k, total impulse can be calculated because H is known and constant. Since

all inertial quantities are known from I , the angular velocity can be calculated.
After all these mathematical processing, the gyroscope outputs the angular

velocity.

3.3  Accelerometer Technology

In order to solve the navigation equations, integration of accelerometer readings is

required to reach translational velocity and position.
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Accelerometers are used in:
e Navigation
® Vibration measurement
e Mechanical shock detection

¢ Gravity vector determination

For most of the applications, a 2" order system model is enough for the study. In
addition to that, a higher order mathematical model is going to need more

information than the one presented in its datasheet.

A second order mathematical model can be developed by considering the

accelerometer as a mechanical sensor as shown below.

Figure 3.5 Simple mechanical one axis accelerometer

If a force F is exerted on the massless case of the accelerometer in, the equation of

motion of the mass will be:

F=md+cb+kiandZ=17+7 (34)

Writing in Laplace domain leads to:

F =ms?X(s) + csX(s) + kX(s) (3.5)
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According to the calculation steps in [15],

Cc

2vVkm ’

The natural frequency of accelerometer is \/% and the damping ratio is The

natural frequency of an accelerometer is important for vibration readings. This
quantity determines the frequency of mechanical oscillation that the accelerometer

can read.

There are various types of accelerometers. Some accelerometer types are:
e Surface acoustic wave accelerometer
e MEMS accelerometer
¢ Fiber optic accelerometers

e Optical accelerometers

Further information about the types of accelerometers can be read from reference

[4].

In this thesis, the IMU includes three axes of MEMS accelerometers. These
sensors are based rugged, field proven silicon bulk micromachining technology.
Each sensor is individually factory calibrated for temperature and non-linearity
effects during Crossbow’s manufacturing and test process using automated thermal

chambers and rate tables [16].

34 Error model of IMU

In respect of [18], there are many error sources of an IMU. If gyroscope model in
section 3.2 is considered, the case of the gyroscope can be mounted with an offset
angle. This causes measurement of an amount of full angular velocity. There may
be a problem in the reading of the length of the spring or there may be an electrical
noise source making the outputs noisy or there may be problem in all etc. For an
accelerometer, the reading may have offset that is used to find the location of

accelerometer mass. There are many other error sensors. Reference [20] describes
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more than ten error cases. The important principle to put the errors in mathematics
is not grouping the error sources but finding some coefficients in error equation.
Two error terms dominate the error quantity. One of them is the bias and the other
is the constant linear coefficient. The same thing is valid for other sensors. That is
to say, the error model of accelerometers and gyroscopes is assumed to be linear in

this thesis as in the literature [4], [14] and [20].

Calibration is a process to relate the erroneous measurements with the reliable
ones. In factories, the calibration is done for sensors and gauges. For precise
measurement linear calibration is enough. In Roketsan, torque sensors, gyros,
potentiometers etc. is linearly calibrated. The error equation can be thought to be

same as calibration equation:

The error equation for the IMU is:
Sy=b+w (3.6)

3.4.1 Attitude Errors

Let estimated value of €™ be ¢ (el;:l )and the relation between estimated direction

cosine matrix and the true is expressed as:

0 -8y 6B
COM = [1 —r]C®™ whereI' = | 6y 0 —6“]
-0 b« 0

In this equation, da, 6 and &y are the misalignment errors.

The equation can be rearranged as:

r=1-¢om [é(b,n)]T (3.7)

Differentiate this equation:

d d . o T A d . T
_ (bmn) , (bmn) = ,
E[‘ - _a esLTL [C(bn)] _CesLTL dt [C(bn)]

(3.8)
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Solving this equation as in reference [4] leads to:

d N - - A - A T 39
%F = T'@gim — Weiynl” + 6@ m — C(b'n)5wgi/b[c(b'n)]
Remember that:
. [ Vg —vy vytand 1" - chsg
W = and @y /e; =
n/ef (Re+y) (Ry+y) (Ry+y) ef /et —Qsing
Therefore;
@5 m = SSF (=00 /01 — @y er)
Vg Un
0 ————+ QcosO —_—
(Rg +y) (Ry + )
vgtan Qsing 0 —vgtand + (sing
=|—=———=—Qsin —_— sin
(Ry +) (Ry +)
] " Qcosd 0
—_— ————Qcos
(Ry +) (Rg + )
3.4.2 Position and Velocity Errors
The velocity equation is:
n n
> 7 — — > - 1
{DnUX/Tef(O)} = h" — SSF(280 je; + @y /er) {UX/Tef(O)} +4r (3.10)
The estimated velocity equation form of it is:
(3.11)

{Dn 1_7)X/9E'ef (O),est}n

— 5 n
= hnest - SSF(Zwa/ei,est + wZ/ef,est) {UX/Tef(O),est}

=N
+ g Lest

Difference these two equations:

n

6 {DnﬁX/Tef(O),est}n = {DnﬁX/Tef(O),est} - {DnﬁX/Tef(O)}n
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Ignoring coriolis terms and changes in gravity vector reduces the difference

equation to [4]:

n _ n —
8 {Dux/z,p(rese] =R+ COMER?

Position can be obtained by simply taking the integral of the velocity term:

8P = 6Vx/7,,(0)

3.4.3 State Space Form of Error Propagation

Position, velocity and attitude error equations can be collected in a single equation:

6x = Féx + Gu (3.12)

In this equation;
6x =[6a 6B Oy bvy Ovyg Svp 80 Y Sy]T
u=[fw; 6w, Sw; dSa; Sa, Saz 0 0 0]

If one combines the attitude and the position, velocity error equations matrices F

and G are obtained. Writing the equations in this form is crucial to build the

Kalman filter.
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3.5 Digital Compass Technology

Digital compasses measure magnetic field by its 3 axis magnetometers and
measures the gravity by 3 axis accelerometers. Blending the data of gravity vector
and the magnetic field strength, it calculates the angles between the vector pointing
the magnetic north and its own axes. The three angles all together give the

orientation of the digital compass.

Figure 3.6 Digital compass’ axes and the Magnetic North

In the figure, body reference frame is illustrated. Point X is the center of the

compass. Point M is the Magnetic North of the Earth. The digital compass outputs

three angles between the body frame and the frame formed bym and gravity

vector g. These angles are called heading, roll and pitch.

Because the compass always changes its orientation with the vehicle; meaning that
the vehicle is assumed to be rigid, the mounting location of the compass is not
important. The location does not bring errors to the calculations. However,
mounting location is important in some other aspect. There are some factors that

disrupt or offset Earth’ magnetic field. According to [17], these factors are ferrous
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metal, electric currents and magnets. Distance from the sensor is critical to the
compass’ ability to keep an accurate heading.

A disturbed magnetic field is demonstrated in fig. The magnetic field lines are
deformed by the ferrous materials and magnets inside the missile. For this missile,
the best location to place the compass is the tip section of the missile since the

lines are not deformed so much there.

Figure 3.7 The deformation of Earth's magnetic field around a

missile [17]

In the manufacturing and assembling of the unmanned tracked vehicle prototype,
ferrous metal usage was avoided insofar as one is able. For this reason, the

magnetic field disturbance is lessened.

The electric motors are the biggest source of disturbance in the prototype.
According to [17], moving the compass more than 10 inches from magnets,
removes all of the significant error introduced in the reading. As a consequence, in

the design of the unmanned vehicle prototype, the location of the compass is kept
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distant to the motors as much as possible. The compass’ mounting location is

illustrated in fig

3.6  Error Model of Digital Compass

The digital compasses, like all compasses, suffer from declination. According to
[21], Magnetic declination, sometimes called magnetic variation, is the angle
between magnetic north and true north. Declination is considered positive east of
true north and negative when west. Magnetic declination is a function of the

location of on Earth.

True North Magnetic North
{geographic)  (compass)
|

. .
e tD

|

|
N

|

/

A /
7,
,’13~

1

Figure 3.8 Magnetic declination on compass [32]

On the other hand, magnetic inclination which is also a function of the location is
the angle between the needle of the compass and the Earth’s surface. In order to
calculate magnetic declination and inclination angles, there should be a function or
a data set that relates the location with the geomagnetic field of the Earth. This
data set is the “International Geomagnetic Reference Field” [21]. The model is

updated 5 yearly intervals.
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Luckily, this model is found in MATLAB/SIMULINK in aerospace block set as a
block. This block is used in this thesis in order to find the magnetic inclination and
declination angles of the digital compass which seen in navigation algorithm as

digital compass bias errors.

h (m) Magnetic Field (nT) p
Declination (deg) p
u (deg)
Inclination (deg) p
I (deg) Total Intensity (nT) p

World Magnetic Model 2010

Figure 3.9 MATLAB World Magnetic Model block

3.7  Encoder Technology

Encoder is a device that converts angular displacement to electrical signals (ticks).
Counting these signals and multiplying by tick per angle coefficient gives the
angular displacement. Absolute encoders output the absolute position. On the other
hand, incremental encoders measure the angular displacement from powering the
encoder. This means an encoder defines the position as “zero” at the time instant

of turning on the power. The encoders used in this thesis are of incremental type.
Encoders output the electrical signals in square wave form in fig. “Lines” or

“ticks” per revolution of encoder is the number of period of square wave cycles in

360° of rotation. Resolution of an encoder is the minimum angle it can measure.
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Some encoders have 2 electrical signal outputs. One of the square waves is
delayed 90°. In this manner, the resolution of the encoder is increased 4 times. In

fig, 2 delayed outputs of square waves are shown.

In the unmanned tracked vehicle prototype, 2 encoders are mounted at the end of
wheel shafts. By this way, the linear motion of vehicle is measured.

Theoretically encoders do not give sensor noise.

3.8 Kalman Filter

Reference [19] defines the Kalman filter as an estimator for what is called the
linear quadratic problem, which is the problem of estimating the instantaneous
state of a linear dynamic system perturbed by white noise. The estimator designed
for this problem is statistically optimal with respect to any quadratic function of
estimation error. The output of a dynamic system has noise on it; because of
sensors. However the output should be cleared from these noises. If the noise

characteristics and the system model are known a Kalman filter can be deigned.
3.8.1 Impression of Kalman Filter on Technology

Kalman filtering is one of the greatest achievements in estimation theory of the
twentieth century proposed by Rudolf Emil Kalman in 1960 [19]. In literature,
there are many applications where Kalman filter plays a role in. According to [19],
the efficient and precise spacecraft navigation is available with this. In
international Space Station and in many missile navigation system algorithms, this
filter is utilized. The principle uses of Kalman filtering have been in modern
control systems, in the tracking and navigation of all sorts of vehicles and in
predictive design of estimation and control systems. Although there are many
filtering methods, Kalman filtering has some advantages:

1) The Kalman filter does not require deterministic dynamics and

measurements.
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2) Kalman filter is available and can easily be applied to digital systems. Not
only the filter can be designed as software, but also it operates as an
iterative discrete system.

3) It provides the availability of utilizing multiple sensors (multisensor) in

order to correct an output.
3.8.2 Kalman Filter Theory

The probability calculation of a dice or a coin is quite straight forward. This kind
of probability calculation is discrete. The set of total number of outcomes has
finite elements. However think of the possibility of making score putting the ball
through the basket in basketball. There are infinitely many possible outcomes. This
kind of event is continuous event. For continuous random variables, the probability
of any single discrete event is zero. Therefore talking about intervals rather than
discrete points is the case. New definitions are supposed to be made for continuous

events [22].

Cumulative distribution function: This function represents the cumulative
probability of the continuous random variable a for all (uncountable) events up to

and including.

Fy(a) = p(—o0,q]

Probability density function: In order to define the probability of continuous
events an assistant function. The visualization of this function on graph gives

information about the distribution.

d
f2(@) = = Fa(@)

The probability for an interval can be written as:

y
palx,y] :f fala) da
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The expected value of a random variable:

E(A) :f af,(a) da

Variance and standard deviation:

Variance = E(A?) — E(A)? and o, = VVariance
3.8.3 Discrete Kalman Filter Algorithm

Kalman filter estimates the states of a linear system. In this thesis, the system is
perturbation of errors. The states are the errors. State equation, in other words,
process model for a discrete Kalman filter is:

Xk+1 :Axk+Buk+Wk (313)

The output equation or the measurement model is:

Yk :CXR+Zk (314)

k is the time index, A is the state transition matrix, B is the control input, x is the
state vector, w is the process noise, C is the output matrix and z is the
measurement noise.

In section 3.4.3, the error propagation equation was illustrated as:

6x = Féx + Gu (3.15)
Solve the differential equation and write in discrete form as:
6xk+1 = ¢k5xk + Wy (316)

where @y = exp[F (ty41 — ti)]

The state transition matrix for the mechanization equations becomes:

A = exp[F (tysr — ti)] (3.17)
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The state transition matrix is going to be updated at each time step in navigation

equations solver algorithm. The system matrices are used in Kalman filter

equations as:

Prediction session algorithm:

X, = AX;_, + Buy

Py =Q+AP,_ AT +Q

Measurement correction session algorithm:
K, = PLHT(HP;HT + R)™!
55]( = 55]: + Kk(Zk - H),C\}:)

P = (1— K H)P;

(3.18)
(3.19)

(3.20)
(3.21)
(3.22)

The time update projects the current state estimate ahead in time. The

measurement update renews the projected estimate by sensor measurements [22].

Measurements

— Real system

h Kalman gains

Inputs

>

— Model

>

Predictions

Figure 3.10 Kalman filter signal flow diagram
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39 Sensor Fusion

In order to understand the sensor fusion, phenomenon combination of independent

estimates is supposed to be comprehended.

Suppose that a dimension s is going to be measured by two different methods. The
measurements by the methods are s; and s,, on the other hand, the variances are
o? and 0. It is desired to unite the two measurements so that the variance of the
resultant estimate will be minimum. The resultant estimate will be:

X = W151 + WZSZ (323)

The expected value comes out as:

E(Q,C\) = WIE(SI) + WzE(Sz) (324)

Variance of x can be written as

0-2 = E[{W151 + WZSZ - WIE(SI) - WzE(Sz)} 2] (325)

Since s; and s, are independent and s; — E(s;) and s, — E(s,) are uncorrelated,
E{(51 - E(51))(52 —E(sy) )} = 0.
n ot =Wiel + Wios (3.26)

W is the weighting coefficient. Therefore, W; = 1 — W,.
c?=(1-W)*cf +W?a? (3.27)

Differentiate the equation above and equate to zero in order to solve for the
minimum variance.
2 ola? (3.28)

-2 2
o +o,
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As a result, it is obvious that, the resultant variance of fusion is smaller than any of
the variance of the measurements. This means in sensor fusion the resultant

measurement is more accurate than any of the measurements.

3.9.1 Sensor Fusion Algorithms

3.9.1.1 Feed Forward Sensor Fusion

In this method, Kalman filter estimations (Kalman outputs) are subtracted from the
IMU mechanization equation outputs. This is because Kalman filter system

equations are based on IMU error model.

For error accumulation of integrals of the mechanization equations, nothing is
done. Since sensor data sent rates are different and the highest data sent frequency
is the IMU’s when there is no data change in compass and encoders, IMU
navigation is done. When there is new data from compass and encoders, the

Kalman filter is activated and sensor fusion is implemented at those time steps.

9 IMU q Mechanization ) ;

equations

+
Tracked Kalman
vehicle P Compass filter
prototype T
Mechanization )

equations

—>
—>

=> Encoders

Figure 3.11 Kalman filter in feed forward sensor fusion
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3.9.1.2 Feedback Sensor Fusion

For error accumulation of integrals of the mechanization equations, previous state
variables are updated. Since sensor data sent rates are different and the highest
data sent frequency is the IMU’s when there is no data change in compass and
encoders, IMU navigation is done. When there is new data from compass and

encoders, the Kalman filter is activated and sensor fusion is implemented at those

time steps.
q Mechanizati ;
echanization
é IMU equations
+
EZS;:S S| ¢ Kalman
ompass filter
prototype é _
Mechanization ¢
equations
q
=21 Encoders

Figure 3.12 Kalman filter in feedback sensor fusion
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CHAPTER 4

NAVIGATION EQUATIONS SOLVER

4.1 Simulation Model

Navigation equations solver is the simulation used for solving the dead reckoning
navigation equations if IMU data is entered into simulation. The solver is a

MATLAB/SIMULINK model and it is direct implementation of “discretization of

navigation equations”.

4.2 Test of the Simulation

The test of the simulation can be done by giving inputs by hand. This means, the
data not from an IMU but a synthetic one is fed into the simulation. By this way

the outputs of the simulation can be compared with the calculated ones.

4.3  The Synthetic Inputs

The first synthetic input to the simulation is constant acceleration on a single axis.

The code for the input is below:

omegax = 0; % [rad/s]
omegay = 0; % [rad/s]
omegaz = 0; % [rad/s]
fx = 0.1; % [m/s"2]

fy = 0; % [m/s"2]

fz = -9.7987; % [m/s"2]
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The simulation was run for 5 seconds and the simulation sampling frequency is
1000 Hz. Simply, the expected output is
Ax = 0.5f,t?> = 1.25m and Ay = 0.

The simulation outputs are as follows:

0.8 ———-—j-—---H-----q----—f--—--

0.6 -----

04—~

02H-----

y [m]

0 Y-

o4t

-06-----

-08+-----

X [m]

Figure 4.1 The navigation equation solver output for synthetic input 1

The second input to the system can be thought as a mission for the unmanned
vehicle prototype. This mission requires going straight to point A with constant
acceleration and start to turn about point O for 10 times. The result will be
combination of inputs. This input tests the direction cosine matrix update, the
orthogonalization and normalization algorithms. If there is something wrong about
these algorithms the test result mapping is going to heavily diverge from the

expected one.

Point A is located at ;

Ay = 0.5f,t? =0.5xm x 1 =1.5708m
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The mission requires to turn about point O which is 1m distant to point A on

horizontal with a turn rate of % rad/s. While doing this rotation, the orientation of

the vehicle is always tangent to the path and the vehicle’s front is on the velocity

direction. The exact solution to the input where the vehicle arrives is point B

located at (O, g)

The code for the input is below:

omegax = 0; % [rad/s]
omegay = 0; % [rad/s]
omegaz = 0; % [rad/s]

fx = pi; $ [m/s"2]
fy = 0; % [m/s"2]
if clock > 1
fx = 0; % [m/s"2]

o

fy = pi”2; % [m/s"2]

omegaz = pi; % [rad/s]
end
fz = -9.7987; % [m/s"2]

The simulation outputs are as follows:

y [m]

Figure 4.2 The navigation equation solver output for synthetic input 2
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A mixture of inputs to the system is much more probable in an unmanned vehicle

mission. For this reason, a mixed input is fed to the system. The input code is

below:

omegax = 0; % [rad/s]
omegay = 0; % [rad/s]
omegaz = 0; % [rad/s]

fx = pi; $ [m/s"2]
fy = 0; % [m/s"2]
if clock > 1
fx = 0; % [m/s"2]

o

fy = pi”2; % [m/s"2]

omegaz = pi; % [rad/s]
end
fz = -9.7987; % [m/s"2]
omegax = 0; % [rad/s]
omegay = 0; % [rad/s]
omegaz = 0; % [rad/s]

fx = pi; $ [m/s"2]

fy = 0; % [m/s"2]

fz -9.7987; % [m/s"2]

if clock > 1
omegaz = pi; % [rad/s]
fx = 0; % [m/s"2]
fy = pi*2; $ [m/s"2]

end

if clock > 1.5
omegaz = 0; % [rad/s]
fy = 0; % [m/s"2]

end
if clock > 2.5
omegaz = pi; % [rad/s]
fy = pi*2; $ [m/s"2]
end
if clock > 3
omegaz = 0; % [rad/s]

fy = 0; % [m/s"2]
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[rad/s]

[m/s"2]
[rad/s]

[m/s"2]

o

o

-pi;

fy = -pi"2;
0;

omegaz
omegaz

ty = 0;
The simulation output is:

end
if clock > 4
if clock > 4.5

end
end

X [m]
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1=2.5708m

A

2

Figure 4.3 The navigation equation solver output for synthetic input 3
Ay=3X14+15xnm=7.7124m

The exact solution is:

Ax =



44 Discussion of Results

The simulation outputs and the exact solutions are very close to each other in each
case .In the first and the third case; the results nearly cannot be distinguished from
the exact. However for the second synthetic input, the error is larger. This is
because the simulation is not continuous in time but discrete. If sample frequency
of the simulation is increased to 10000Hz, then the error becomes smaller. As a
result, the navigation equations solver works and finds the mechanization
equations’ solution. However, like all discrete simulations, the sampling frequency

is supposed to be maximized as much as possible.
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CHAPTER 5

TEST SETUP AND SYSTEM MODEL

5.1  MATLAB/SIMULINK Model

5.1.1 [Initialization Model

Before the test, a special designed simulation is run and the sensor outputs are
stored in the computer. Because of mounting misalignments, the IMU has some
bias values. For example, when the compass says that the vehicle is parallel to
ground, from two accelerometers there should be zero readings, from the third
accelerometer, there should be plumb bob gravity only. In practice this not the
case. Because the compass’ and IMU’s orientation may not be the same. There
may be small angular misalignments. Therefore this misalignment is supposed to

be calculated and subtracted from the calculations as test continuous.
5.1.2 Real Time Simulation Model

The real time simulation model is the top level simulation model and there are
some sub simulations in this model. The xPC to Target block is responsible for
data acquisition. The encoders + compass block solves the mechanization
equations for the outputs of compass and encoders. In Kalman block, the algorithm
for the Kalman filter exists. Navigation equations solver includes the
mechanization equations explained in previous chapters. Finally, after finding the

errors, these errors are subtracted from the NES outputs as the corrected outputs.
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Figure 5.1 Real time simulation model

5.1.3 Data Acquisition

In this thesis, real time data acquisition and simulation run is accomplished. For
this, MATLAB’s xPC Target is utilized. [25] xPC Target is a solution for
prototyping, testing, and deploying real-time systems using standard PC hardware.
It is an environment that uses a target PC, separate from a host PC, for running

real-time applications.

Real time windows target is another application of MATLAB utilized for similar
purpose. Since this application uses, one computer that has an operating system,
the simulation does not run real time. In addition to this, simulations consuming
high computer performance cannot be run. Therefore RTWT is not applicable for

this task.

In xPC Target application there is a target computer where the simulation is built
in and booted with a boot disc. Since there is no operating system working on the
background, the target computer can use most of its performance on running built

in MATLAB simulations.
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The host computer is capable of writing the codes for the simulation. After the
simulation is written, it should be loaded to the target computer. In this thesis, host
and target communicate with TCP/IP network connection. For host computer,
standard mother board network card, for the target, Edimax EN-9130TX network

card was used.

Host PC Target PC
network network
card card
| S ——
TCP/IP

network connection

Figure 5.2 Host and target computers communicating with network

cable [25]

The digital compass and the IMU send the measurement data by RS232
communication. The compass outputs the ticks as square waves. There is no
communicating output. Therefore an encoder reading module and a RS232
communication module was designed. These two tasks were accomplished by
DSPic. As a result, all sensors send their data by RS232 communication. The data

is read with Quatech QSC100 serial card in target computer.
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Figure 5.3 The overall test system

5.2  Unmanned Tracked Vehicle Prototype

The unmanned vehicle prototype is capable of carrying the sensors and its tracks
angular velocity can be controlled by a manual controller. It allows manual control

of DC motor voltage and its polarity by an H bridge.

The power unit is used for supplying the voltages to the vehicle .There are an
electronic card on the vehicle. This card takes the sensor outputs and converts
them into RS232 communication protocol signals. There is also a regulator to

supply 5V to the dsPIC’s on the electronic card.

The functioning of the electronic card, control unit and power unit are all

illustrated in figure 5.9.
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Figure 5.5 3D isometric view of the unmanned tracked vehicle

prototype

Electronic Compass

card

Encoders

motors

Power:
and'data
cables;

Figure 5.6 Tracked vehicle prototype in test
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53 Sensors

5.3.1 Encoders

A 2 channel magnetic encoder was used in this thesis. The encoder is Faulhaber
IE2-512. Its resolution is 2048ticks/rev in quadrature mode. Total of 2 encoders
measuring the displacements of each tracks were mounted on the rear wheels.

Further information is given in appendix.
53.2 IMU

A strapdown IMU was used in this thesis. The IMU used is Crossbow 440
including 6 DOF MEMS inertial sensor cluster. Further information is given in

appendix.

Figure 5.7 The IMU and the body frame attached to it [16]
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5.3.3 Compass

A digital compass was used in this thesis. The compass used is Ocean Server
0S5000. This is a digital compass including 3 magnetometers and 3
accelerometers and a 24 bit analog to digital converter. Accelerometers aid
magnetometers to obtain precise measurements. The compass is powered by 4.5V

and sends the data by RS232 interface. Further information is given in appendix.

Figure 5.8 The Compass [17]
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