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ABSTRACT 
 

 
APPROACHES FOR SPECIAL MULTIOBJECTIVE COMBINATORIAL 

OPTIMIZATION PROBLEMS WITH SIDE CONSTRAINTS 
 
 

Akın, Banu 

M.Sc., Department of Industrial Engineering 

Supervisor: Prof. Dr. Murat Köksalan  

 

August 2012, 66 pages 

 

 

We propose a generic algorithm based on branch-and-bound to generate all efficient 

solutions of multiobjective combinatorial optimization (MOCO) problems. We 

present an algorithm specific to multiobjective 0-1 Knapsack Problem based on the 

generic algorithm. We test the performance of our algorithm on randomly generated 

sample problems against IBM ILOG CPLEX and we obtain better performance using 

a problem specific algorithm. We develop a heuristic algorithm by incorporating 

memory limitations at the expense of solution quality to overcome memory issues of 

the exact algorithm. 

 

 

Keywords: Multiobjective, combinatorial optimization, knapsack problems. 
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ÖZ 
 

 
EK KISITLARI OLAN ÖZEL ÇOK AMAÇLI KOMBİNATORYAL 
OPTİMİZASYON PROBLEMLERİNE YÖNELİK YAKLAŞIMLAR 

 
 
 

Akın, Banu 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Murat Köksalan 

 

Ağustos 2012, 66 sayfa 

 

 

Çok amaçlı kombinatoryal problemlerin tüm etkin çözümlerini bulan genel bir dal-

sınır algoritması geliştirdik. Bu genel algoritmayı baz alarak, çok amaçlı 0-1 sırt 

çantası problemleri için özel bir algoritma sunduk. Bu algoritmanın IBM ILOG 

CPLEX’le kıyasladığımız performansını ölçmek için rastgele oluşturduğumuz test 

problemlerini çözdük ve probleme özgü algoritma kullanarak küçük problemler için 

daha iyi sonuçlar aldığımızı gözlemledik. Büyük problemlerde gözlemlediğimiz 

hafıza sıkıntısının üstesinden gelmek için, hafıza imkanlarına bağlı olarak sonuç 

kalitesinden ödün verecek şekilde bir sezgisel yöntem geliştirdik. 

 

 

Anahtar Kelimeler: Çok amaçlı, kombinatoryal optimizasyon, sırt çantası 

problemleri. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

In the last decades, interest in multi-objective decision making research area has 

increased. As they represent the real life problems better than classical single-

objective models, they are harder to solve with the increasing complexity as a 

consequence. With Moore’s law in effect, improvements in computational capability 

of hardware have caused more researchers to dig into multi-objective decision 

making and gave courage to deal with more than 2 even 3 objectives.  

Among multiple criteria decision making problems (MCDM), multiple objective 

combinatorial optimization (MOCO) problems are widely studied since they 

represent many real life cases with integer decision variables like scheduling, 

assignment, budgeting, etc. As, single objective cases are already NP hard problems, 

finding the efficient frontier for MOCO versions is a difficult task. As we discuss in 

the literature review chapter, studies usually focus on problem specific exact 

algorithms aiming to find all efficient solutions or generic heuristic algorithms 

aiming at approximating the efficient frontier.  

We propose a generic exact branch-and-bound algorithm to find all non-dominated 

solutions based on Lokman and Köksalan (2012). In order to implement the 

algorithm, we select multi-objective 0/1 knapsack problem with single knapsack 

because many real life problems can be reduced to knapsack problems, such as bin-

packing, subset sum, etc. We compare the algorithm with Lokman and Köksalan 

(2012) and within the memory limitations of branch-and-bound, we observe 

improvement in terms of computational time. 
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As the computational complexity is an important issue for the exact algorithms, we 

also propose a heuristic approach by modifying the exact generic algorithm with a 

delta approach. We also use the same type of knapsack problems for computational 

experiments. Although we use a constant delta for computational experiments, with 

varying delta, one can grasp the sections of the solution space in which the decision 

maker is more interested. We use the hypervolume indicator suggested by Zitzler and 

Thiele (1998) to compare the performance of the heuristic algorithm relative to the 

efficient frontier. We observe good diversity and closeness of the solutions found as 

long as the memory limitations are not breached.  

We look at the literature in Chapter 2 to see the approaches used for multiobjective 

combinatorial optimization (MOCO) problems and single and multiobjective 

knapsack problems as a subset of MOCO. Lokman and Köksalan (2012) propose a 

method for finding all efficient solutions of MOCO problems which is discussed in 

Chapter 3. As their approach is generic, we propose a generic branch-and-bound 

procedure to complement their algorithm in Chapter 4 and develop a problem 

specific branch-and-bound procedure for knapsack problems. To overcome the 

limitations of the exact algorithm, we suggest a heuristic approach in Chapter 5. We 

present the experimental results for both of the algorithms on randomly generated 

knapsack problems in Chapter 7 and discuss their variations. We finally conclude our 

research in Chapter 8.  

 



3 

 

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

2.1 MULTIPLE-OBJECTIVE COMBINATORIAL OPTIMIZATION 

As the multiple-objective optimization gains popularity, variations of approaches 

studying MOCO increase as well. An extensive survey of MOCO is presented by 

Ehrgott and Gandibleux (2000). Some aim to find all efficient solutions to a given 

MOCO problem and prefer exact approaches despite of computational complexity 

and yet some others prefer approximation methods despite of loss of precision. Due 

to the complexity issues, exact algorithms usually are problem specific and deals 

with bi-objective or tri-objective problems. Ehrgott and Gandibleux (2000) state 

many exact approaches for MOCO are extensions of the single objective versions. 

However, Gavanelli (2002) and Lukasiewycz et al. (2007) develop generic exact 

multi-objective algorithms not based on single objective versions. 

Sylva and Crema (2004) propose a generic exact algorithm to find all efficient 

solutions by implementing iterative method for multiple objective integer linear 

programs. They utilize binary variables to add new constraints according to the 

results obtained by previous iterations. Later, Sylva and Crema (2007) studied larger 

problems by modifying their algorithm and discarding the aim for finding all 

efficient solutions. Lokman and Köksalan (2012) propose improvements on their 

model by reducing the complexity and utilizing efficient methods for keeping of 

information. Their algorithm is discussed in more detail in section 3.2.  
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Among the heuristic approaches, one of the most popular one is genetic algorithms. 

Evolutionary approaches used for multiobjective problems are extensively studied by 

Deb (2001). Very promising evolutionary algorithms (EAs) like PESA (Corne et al., 

2000), NSGA II (Deb et al., 2002) and SPEA2 (Zitzler et al., 2001) have gained 

popularity in the last decade.  

Due to the complexity of MOCO, some other approaches do not aim to find all 

efficient solutions but focus on decision maker’s (DM) preferences and tries to find a 

subset of efficient solutions the DM might be interested in such as Köksalan and 

Phelps (2007).  

Introduction of heuristic methods implies the need for a performance indicator in 

terms of closeness and diversity. Hypervolume metric suggested by Zitzler and 

Thiele (1998) is widely used for this purpose. A detailed description of the method is 

discussed in section 7.2.2.  

2.2 KNAPSACK PROBLEMS 

Being one of the basic problems in combinatorial optimization, both single-objective 

and multi-objective versions of the knapsack problem are widely studied. Martello 

and Toth have published a book named Knapsack Problems (KP), Algorithms and 

Computer Implementations in 1990 and it is practically the most cited book in this 

subject. They extensively study different variations of single-objective KP, including 

bin-packing, subset-sum, and multiple knapsack problems. They also study exact 

approaches like dynamic programming and branch-and-bound algorithms for 

different variations in addition to the approximate approaches like greedy and 

probabilistic algorithms. For the single-objective 0-1 KP they propose an improved 

branch-and-bound algorithm based on another branch-and-bound algorithm proposed 

by Horowitz and Sahni (1974).  

Similar to the single objective versions, multiobjective knapsack problems (MOKP) 

are favorite subjects for studying. Most of the studies are specifically developed for 

the biobjective case. Ulungu and Teghem (1994) propose two-phases methods for 

finding all efficient solutions and Visee et al. (1998) improves the method for 
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MOKP. Like many two-phases methods, they find the supported non-dominated 

solutions in the first phase and find the rest using information obtained from the first 

phase. Klamroth and Wiecek (2000) propose a dynamic programming approach 

while and Gandibleux and Freville (2000) utilize a tabu search approach for MOKP. 

In the recent years, the number of studies developed for two or more objective cases 

has increased. Ulungu et al. (1999) extend their research towards heuristic methods 

like MOSA using a simulated annealing approach. Although their method is generic 

for two or more objectives, they show the results for the biobjective case. Zitzler and 

Thiele (1999) propose an EA for MOCO. They present benchmark problems for 

multi-objective multiple knapsack problems with 2, 3 and 4 objectives. These 

problems are widely used on generic algorithms, e.g. NSGA-II, SPEA2, and PESA.  



6 

 

CHAPTER 3 

 

 

THEORETICAL BACKGROUND 

 

 

 

We propose a branch-and-bound based approach using the algorithm proposed by 

Lokman and Köksalan (2012) for multi-objective combinatorial optimization 

problems. So, we define the basic concepts and models on which we base our 

proposed algorithm.  

3.1 DEFINITONS 

A generic MOCO problem can be defined as: 

 

m

n

Zx

ts

xfxfxf



..

)(),...,(),(max"" 21

               (1: MOCOP) 

where 

 )(xf j  is the jth objective function of a total number of n objective functions. 

 x represents the decision vector and is an element of decision space m . 

Maximization of the objective function is denoted in quotation marks due to the fact 

that MOCO problems generally do not have a unique best solution as the objectives 

usually conflict with each other.  

An objective function vector ))ˆ(),...,ˆ(),ˆ(( 21 xfxfxf n is dominated by 

))(),...,(),(( 21 xfxfxf n  if there exist two distinct solutions x  and x̂  satisfying 

jxfxf jj  )ˆ()( and Xxxfxf ii  ˆ)ˆ()(  for at least one i. 
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In this case, x̂  is defined as an inefficient solution. 

If no such solution vector x  exists, ))ˆ(),...,ˆ(),ˆ(( 21 xfxfxf n  is said to be 

nondominated and x̂  is an efficient solution.  

If there does not exist any solution x  satisfying )ˆ()( xfxf ii  , then x̂  is said to be 

weakly efficient. The set of weakly efficient solutions contains all efficient solutions 

and possibly some special inefficient solutions. 

3.2 LOKMAN AND KÖKSALAN’S (L&K) APPROACH 

Lokman and Köksalan (2012) develop a new approach to find all efficient solutions 

to any given MOCO problem. They improve the algorithm proposed by Sylva and 

Crema (2004) with two algorithms. We base our proposed approach on the second 

algorithm they develop. Hence, we use Lokman and Köksalan’s algorithm to denote 

Algorithm 2 they developed.  

The algorithm uses a systematical approach to find all the nondominated vectors by 

converting the multi-objective problem (MOCOP) to a single objective problem with 

side constraints. The feasible solution space of (MOCOP) is divided into several 

subspaces according to the information gathered by previous steps of the algorithm.  

So the MOCOP is modified to: 

ijlbxf

Zx

ts

xfxfz

jj

m

ij
ji




 


)(

...

)( )(max 

              (2: MOCOM) 

First, one of the objectives (objective i) is selected to be the major objective function 

in the single-objective case. Epsilon (ε) is a small enough number multiplied by the 

remaining objective functions to prevent the method yielding weakly efficient 

solutions. Then, MOCOM is solved at each step of the algorithm with different lower 

bounds on remaining objective functions. These lower bounds are determined 

according to the non-dominated objective vectors obtained in the previous steps. 
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In order to illustrate the approach, also assume we have already obtained 

nondominated objective vector set of {(150, 160, 190), (106, 210, 174), (218, 159, 

142)} so far for a 3-objective MOCOP as defined in section 3.1. Also, without loss 

of generality assume third objective is selected to be objective i. In this case, we can 

sort the vectors in the non-decreasing order according to one of the remaining 

objective values. We arbitrarily choose first objective and sort the non-dominated 

vectors accordingly as shown in Figure 1. If there exists at least one more non-

dominated vector, it should be placed in one of the locations indicated by arrows. 

Arrows show the potential locations for the next non-dominated vector according to 

its first objective value. Squares show which objective value should be used to 

determine the lower bound on the first objective. Similarly, dotted circles show the 

vectors to be considered for determination of the lower bound on the second 

objective. 

 
 

 

(106, 210, 174) 

(150, 160, 190) 

(218, 159, 142) 

 

(106, 210, 174) 

(150, 160, 190) 

(218, 159, 142) 

 

(106, 210, 174) 

(150, 160, 190) 

(218, 159, 142) 

 

(106, 210, 174) 

(150, 160, 190) 

(218, 159, 142) 

 
 

Figure 1 All alternative locations for the next non-dominated vector 
 

As it is already sorted in non-increasing order, only the last vector above of the arrow 

is considered for the first objective. Since squares guarantee the candidate not to be 
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dominated by the ones above the arrow, only vectors below the arrow are considered 

for the second objective.  

For each location, in order to hold the non-dominance requirements, one can 

determine the corresponding lower bounds in MOCOM. Since the vectors are 

already sorted in non-decreasing order for the first objective, first location indicates a 

better solution than the other vectors in terms of the second objective. If a vector in 

the second location exists, it should be better than the first vector in terms of the first 

objective and better than the rest of the list in terms of the second objective. Other 

cases can be analyzed similarly. 

Corresponding lower bound constraints in MOCOM form of the above problem are 

given in Figure 2. 

 

 

1)159,160,210max()(2 xf  

1106)(1 xf  

1)159,160max()(2 xf  

1150)(1 xf  

1159)(2 xf  

1218)(1 xf  

 

 
 

Figure 2 Lower bound constraints for the sample vector set 
 

Although the number of cases increases with the increasing size of the list, Lokman 

and Köksalan (2012) show that at most two new MOCOM models are needed to be 

solved at each step, regardless of the list size. Their algorithm starts with no lower 

bounds on any of the objectives and proceeds according to the solution obtained. By 

populating the list one by one, Lokman and Köksalan eliminate the lower bound 

combinations that are already solved. Also, keeping the lower bounds resulting in 

infeasible solutions, the same or tighter lower bounds can be eliminated without 

solving new MOCOM models. In order to solve the models, they use IBM ILOG 

CPLEX software.  
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An illustrative example is studied in section 6.1 and Table 1 shows the complete list 

of non-dominated vectors in the order they are obtained along with their 

corresponding lower bound values. 

This approach has been extended to four or more objectives. However, as the number 

of objectives increases, the complexity also increases and more than one sorted list 

should be kept. Details of the approach can be found in Lokman and Köksalan 

(2012).  
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CHAPTER 4 

 

 

A GENERIC EXACT BRANCH-AND-BOUND 
ALGORITHM FOR MOCO 

 

 

 

The main motivation behind the proposed approach is that problem specific models 

can improve the performance of the above mentioned Lokman and Köksalan’s 

approach for the multi-objective combinatorial optimization problems. Being one of 

the most studied approaches for single objective combinatorial problems, we picked 

the branch-and-bound algorithm to modify for multi-objective case using the L&K 

approach. In addition to being widely used and studied, the structure of the 

optimization model solved at each step of L&K approach leads branch-and-bound 

based problem specific algorithms to be easily modified to represent the additional 

constraints of L&K approach unlike problem specific dynamic programming 

algorithms, network simplex algorithms, etc.   

4.1 PROPOSED EXACT ALGORITHM 

A branch-and bound procedure for any given single objective combinatorial 

optimization problem can be described as follows: 

Without loss of generality assume the problem is a maximization problem over the 

feasible region of S. 

 1,0

...

)(max




kx

Sx

ts

xf

            (3) 
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Any given branch-and-bound procedure divides the set Zm into subsets or 

subproblems (branching) and computing the relevant upper bound and comparing 

with the best solution found so far (lower bound) to decide if each subset has a 

possibility to yield a better solution or not (bounding). After exhausting all the 

possible subproblems, best solution found so far is the optimal solution to the 

problem (3). The procedure can be represented as a tree and subproblems are 

represented as nodes. 

In order to solve the multi-objective combinatorial optimization problem using 

Lokman and Köksalan’s algorithm, we should solve the MOCOM model defined in 

section 3.2 in each step.  

As the structure of the objective function remains the same as the single-objective 

case, the feasible set now has side constraints (actually lower bounds) on remaining 

objective functions. We can remove the side constraints and keep the branching 

phase the same (divide set of m  into subsets) and add those constraints as 

additional lower bound requirements to the bounding phase. Due to the similar 

structure of side constraints to the objective function, same method for computing 

upper bounds on the single objective can be used. By definition Ujq, upper bound of 

zj for subset m
q , is greater than or equal to the best value of zj for subset m

q . As a 

requirement of the problem, any feasible solution, including the optimal solution, 

should satisfy the side constraints, i.e. should be greater than or equal to the relevant 

lbj values. Hence, any subset which does not satisfy all lower bound constraints of 

jjq lbU   cannot lead to a feasible solution. 

Regarding problem (4), for any subset m
q and for any objective j other than objective 

i, let }:)(max{* m
qjjq Zxxzz   

By definition, for all m
qZx : *

jqjq zU   

Also, for all feasible m
qZx : jjjq lbzz *  for all j. In other words, if m

qZx   

satisfies jj lbz   for all j, x  is feasible. Note that jj lbz   constraints are actually the 

side constraints of the modified problem MOCOM. 
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Thus, for all feasible m
qZx , jjq lbU   should also be satisfied.  

In short, any branch-and-bound algorithm for a single objective combinatorial 

optimization problem can be adjusted to find all the non-dominated solutions of the 

multiobjective version of the same problem. The modified algorithm is called for 

each lower bound pairs determined by L&K approach. Without loss of generality, 

assume that the model to be solved at each step is in the form of problem MOCOM 

with positive coefficients. Branching (forward move), bounding (upper bound 

calculation) and backtracking steps are the same as the branch-and-bound algorithm 

to be modified. So, for each iteration in L&K approach: 

Let A be the set of decision variables which are assigned to values. Let best solution 

so far is LBi and lower bounds obtained from L&K algorithm are LBj (j≠i).  

1. Lokman and Köksalan’s Algorithm: Calculate LBj according to L&K 

algorithm.  

If no further lower bounds are left to consider, STOP. 

2. Initialization: Initially no decision variables are set: A={} 

  Best solution LBi is set to 0.  

Create first node and calculate respective upper bounds jqU . 

3. If  jj LBU   for all j, 

go to step 4. 

 else 

  go to backtrack. 

4. If no more decision variables are left to decide (Ac={}), 

Update best solution as current solution and go to backtrack 

else 
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Forward move: Create new node according to the original 

algorithm’s set of rules. Update decision variable set A. Calculate 

upper bounds and go to step 3. 

5. Backtrack: Backtrack according to the original algorithm’s set of rules.  

6. If all possible subproblems are considered  

if best solution is greater than 0, 

return objective function values of the best solution 

(zj(best_solution)) and go to step 1. 

else 

 return infeasible and go to step 1. 

else 

 go to step 3. 

 

The general procedure can be represented as the flow chart shown in Figure 3. Bold 

lines indicate modifications to the original branch-and-bound procedure. Basically 

the modified one calculates upper bounds for all objectives and initiates a 

backtracking move whenever one or more lower bound constraints are not satisfied.  
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Figure 3 Modified Branch-and-Bound Procedure 
 

4.2 IMPLEMENTATION: 0-1 KNAPSACK PROBLEM 

In order to implement the model to a specific combinatorial optimization problem, 

we have chosen 0-1 Knapsack Problem (KP). It is a well studied problem with 

different variations such as subset-sum, change-making, bin-packing, etc. As 

indicated by Martello and Toth (1990), 0-1 KP represents many practical problems. 

Also, by being one of the simplest combinatorial optimization problems, it is often 

encountered as a subset while solving more complex problems. Due to these reasons, 

we studied the 0-1 KP which can be represented as: 
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 1,0

..

max







k

k
kk

k
kk

x

Cxw

ts

xp

                (4: KP) 

where pk denotes profit of item k,  

 wk denotes weight of item k,  

 C denotes capacity of the knapsack 

xk  is 1 if the item is selected and 0 otherwise. 

Without loss of generality one can assume  

i. pk, wk, and C are greater than 0. 

ii. items are ordered according to their profit value per unit weight: 
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1 ...  

iii. no item weighs more than the capacity: 

kwC k   

For each step in L&K algorithm the problem is transformed to the following form:  

 

kppp

where
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..
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         (5: KPM) 
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In this case, pjk denotes profit of item k for objective j. ikp denotes objective function 

coefficients of KPM modified to prevent weakly efficient solutions. Again we 

assume items are ordered according to their profit value ( ikp ) per unit weight (wk). 

4.2.1 The Horowitz-Sahni (H&S) Algorithm 

Horowitz and Sahni (1974) proposed a basic algorithm to solve single-objective 0-1 

knapsack problems. Considering the problem KP defined in (4.3), the Horowitz-

Sahni algorithm flows as follows: 

Forward Step: In this step items are inserted one by one in the ascending order as 

long as the capacity is not exceeded. Since the items are already sorted according to 

assumption (ii) in (4.3), this step represents a typical greedy move. Upper bound is 

compared to the best solution so far. If the upper bound indicates the possibility of a 

better solution, move forward. Else, perform backtracking. 

Backtracking Step: Remove the last item inserted. Perform forward move.  

When no items are left to be considered, the procedure is terminated. Best solution so 

far is the output and hence the solution of the problem. 

Upper Bound: The upper bound used by Horowitz and Sahni is obtained by the 

linear programming relaxation of the integer programming problem and also known 

as the Dantzig’s bound.  

In this case the problem KP becomes continuous knapsack problem (KPC):  

10

..

max







k

k
kk

k
kk

x

Cxw

ts

xp

              (6: KPC) 

 

The optimal solution to the continuous problem is proven to be: 
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,...,10
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        (7) 

The proof can be found in Martello and Toth (1990). 

Since the items are already sorted according to assumption (iii) in (4.2), item r is the 

first item that does not fit into the knapsack. This item is called the critical item. 

Since partial inclusions are permitted with LP relaxation, remaining capacity is 

partially filled with the critical item to find the optimal solution. 

As the LP relaxation is a natural upper bound for an IP problem, the upper bound 

used by Dantzig (1957) can be computed by finding the critical item with a 

complexity of O(n). As the profit and decision variables are integers for KP, largest 

integer not greater than the optimal solution value of KPC can be used as the upper 

bound of KP: 


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


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

 r

r
r

k
k

r

k
kk w

p
wCxpU

1

1

1

1

         (8) 

 

4.2.2 The Martello-Toth (M&T) Algorithm 

The algorithm proposed by Martello and Toth (1977) is an improvement on the H&S 

method. Basically they propose four improvements on upper bound, consecutive 

insertion of items, eliminating lower branches and parametric calculation of upper 

bounds.  

1. Upper Bound: Instead of Dantzig’s bound, they propose a tighter upper 

bound on KP using an inclusion and exclusion of the critical item.  
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    (9) 

Like the Dantzig’s bound in (4.3.1), item r is the critical item. U0 considers 

the case of excluding the critical item from the solution and fills the 

remaining capacity with the next item. On the other hand, U1 includes the 

critical item and removes a portion of the previous item proportional to the 

excess in the capacity. The greatest of these bounds is an upper bound for KP. 

Similar to Dantzig’s bound, complexity is O(n) for finding the critical item. 

The Dantzig’s bound U' is dominated by U'' and a detailed proof for bounds 

and domination can be found in Martello and Toth (1990). 

2. Consecutive Insertion: Instead of inserting the items one by one during the 

forward move, they propose to insert consecutive items building the upper 

bound at once. As the H&S algorithm is a deep first branch-and-bound 

algorithm, by eliminating mid nodes unnecessary branching and backtracking 

are prevented. 

3. Eliminating Lower Branches: Whenever the remaining capacity does not 

allow any more items to be inserted, forward move excludes all the remaining 

items. Thus, unnecessary branching and backtracking are again prevented. 

4. Parametric Calculation of U'': Using some extra variables, the upper bound 

computation effort for each node is improved with the information stored.  

4.2.3 Proposed Exact Algorithm 

Our main problem is KPM defined in (4.2). Similar to Martello-Toth algorithm, we 

propose an algorithm based on Horowitz-Sahni algorithm. Due to the different 

properties of KPM with respect to KP, our algorithm applies some improvements of 
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M&T and adds some modifications to fit the special properties of KPM. Main 

differences to M&T procedure can be listed as: 

1. Upper Bound: Dantzig’s bound is modified instead of the bound used in 

M&T algorithm. As the problem KPM defined in (4.2) does not have integer 

objective function coefficients ( ikp ), it is not possible to round the upper 

bound to an integer value. However, the upper bounds for extra constraints 

representing the other objective functions have integer profit coefficients. 

Thus, Dantzig’s bound is valid for objective functions represented as 

additional constraints.  

Calculation of bound Uj is given in (9). rj denotes the critical item of 

objective j. As the profit per weight is different for each objective, sequence 

of the non increasing profit per weight is different for each objective. Since 

the item having a greater 
k

ik

w

p
 value is more preferable for objective j, this 

sequence can be called a preference sequence. Preference sequence 

assumption (ii) in (4.3) only holds for the objective z of KPM. For all other 

objectives, the sequence should be calculated for once at the beginning and 

the critical rj is calculated according to these preference sequences at each 

subset. Since calculating the preferences is actually sorting in non-increasing 

order, the complexity is O(n). 
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    (10) 

Unlike M&T, for each node, not only the upper bound on objective z of 

KPM (Ui) is checked for violations but also the other objective functions are 

checked for upper bound violations using the Uj function( jj lbU  ). Even if 
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the best solution so far is not greater than Ui, in the case of violations of 

other bounds, backtracking step is applied. 

2. Consecutive Insertion: Instead of using consecutive insertion method of 

M&T, we add nodes one by one, similar to H&S. Since the Lokman and 

Köksalan’s algorithm searches the same solution space with different lower 

bound values obtained by non-dominated solutions found so far, the same 

branch-and-bound tree is searched for a different optimal solution in each 

step. Since there is only one optimal solution to KP, the consecutive insertion 

is an improvement for M&T procedure. However, we observed on sample 

problems, the nodes that are avoided to be created by consecutive insertion 

are eventually needed to be created in later steps.  

3. Eliminating Lower Branches: As this improvement is for the capacity 

constraint which is the same in KP and KPM, we also eliminate the lower 

branches when the remaining current capacity is less than the weight of any 

of the remaining items.  

Forward move and backtracking are the same as the M&T except for the above 

mentioned points. Optimal solution is found when backtracking is no more possible, 

i.e. no unconsidered node is left. This solution is one of the non-dominated solutions 

of the multi-objective KP. All objective functions (zj) are calculated according to the 

optimal solution and considered as part of determining the next set of lower bounds 

of lbj according to the Lokman and Köksalan’s algorithm. 

The general flow for the modified knapsack problem (KPM): 

pjk, ikp  , wk, C, lbj are as defined in KPM in (4.2). Uj is as defined in (4.2.3). 

Variable l (level) indicates which item is being considered to include or exclude 

from the knapsack. Variable t is used for finding the level which backtrack step 

will jump. best_x is the vector to save best solution so far, best_z is the vector 

used to calculate the output of the subroutine, and min_w is the vector used to 

eliminate lower branches. It is used to keep the minimum weight among the 

items outside of the current solution. cur_x and cur_z are used to keep track of 
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the current solution. cur_c is the residual capacity after inclusion of the items in 

the current solution. 
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1. Initialization I: These steps will be performed only once. 

1.1. Find preference sequence for each j other than i (prefjk: k
th position in the 

preference sequence of objective j). 

1.2. Find minimum weight for each level (  lkww kl  :minmin_ ). This 

information will be used for eliminating the lower bounds.  

1.3. Insert first node. Calculate and save Uj for all j. 

2. Lokman and Köksalan’s Algorithm: Calculate lbj according to L&K 

algorithm.  

If no further lower bounds are left to consider, STOP.  

3. Start Subroutine 

Initialization II: Following steps will be performed before the branch-and-

bound procedure for each step of L&K algorithm, i.e. for each set of lower 

bounds. 

3.1. Initialize variables 

0:

1:

:_

0:_

0:_

0:_

0:












t

l

Cccur

jzcur

kxcur

kxbest

lb

j

k

k

i

 

3.2. If jj lbU   for all j does not hold for at least one objective, go to 5.1 

(backtrack). 
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4. Forward Move 

4.1. while ( lwccur _  AND ijforlbU jj   ) 

do 

1:

_:_

 _:_

_:_

1:_










ll

pzcurzcur

ijforpzcurzcur

wccurccur

xcur

ilii

jljj

l

l

 

If not already created for current solution (cur_x), insert 

new node on level l, calculate and save Uj for all j 

If jj lbU   for all j does not hold for at least one objective, go to 6 

(backtrack). 

4.2. If lwccur min__  (no more insertions are possible) 

Kl :  

If not already created for current solution (cur_x), insert new node on 

level l, calculate and save Uj for all j 

4.3. If current level, which is critical item, is not the last item, exclude it from 

the knapsack 

If Kl   

If not already created for current solution (cur_x), insert new node on 

level l, calculate and save Uj for all j 

1:  ll  

If jj lbU   for all j does not hold for at least one objective, go to 6 

(backtrack). 

4.4. If current level (critical+1) is not the last item, repeat forward move. 

If Kl   go to 4 (forward move). 
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4.5. If Kl    

If lwccur _  (If the last item is small enough, include in the 

knapsack) 

ilii

jljj

l

l

pzcurzcur

ijforpzcurzcur

wccurccur

xcur








_:_

 _:_

_:_

1:_

 

If not already created for current solution (cur_x), insert 

new node on level l, calculate and save Uj for all j 

else (If the last item is not small enough, exclude from the 

knapsack) 

If not already created for current solution (cur_x), insert 

new node on level l, calculate and save Uj for all j 

5. Update Best Solution So Far 

5.1. If jj lbU   for all j 

kxcurxbest

zcurlb

kk

ii




_:_

_:
 

If 1:_ Kxcur  (If last item is included, throw it out before backtrack) 

 

iKii

jKjj

K

K

pzcurzcur

ijforpzcurzcur

wccurccur

xcur








_:_

 _:_

_:_

0:_
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6. Backtrack 

6.1. Find the item to throw out of the knapsack 

Find t, }1_:max{  kxcurlkt  

If 0t  

tl

pzcurzcur

ijforpzcurzcur

wccurccur

xcur

itii

jtjj

t

t










:

_:_

 _:_

_:_

0:_

  

If not already created for current solution (cur_x), insert new node 

on level l, calculate and save Uj for all j  

go to 4 (forward move). 

else 

go to 7 (subroutine return). 

7. Subroutine Return  

7.1. If kxbest k  0_  

No feasible solutions. return infeasible. 

else 

return  
k

kjkj jxbestpzbest __   

go to 2 
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CHAPTER 5 

 

 

A GENERIC HEURISTIC BRANCH-AND-BOUND 
ALGORITHM FOR MOCO 

 

 

 

As the number of objectives and number of variables increase, finding all of the 

efficient points gets harder. Also, decision maker might be interested in a specific 

region of the efficient frontier or might not be interested in solutions too close to 

each other. Because of these reasons, heuristic approaches are developed.  

To overcome the memory drawback of branch-and-bound due to increase in size, we 

propose a heuristic approach by modifying the exact algorithm. The memory 

problems are discussed more deeply in computational results section. 

5.1 PROPOSED HEURISTIC ALGORITHM  

Moving away from the purpose of finding the entire efficient frontier, we propose a 

delta approach to obtain a relatively well distributed set of vectors, hopefully very 

close to the efficient frontier.  

We modify the exact algorithm in two ways:  

1. Delta distance: We make use of the systematical method of Lokman and 

Köksalan’s approach for obtaining the efficient frontier. While finding the 

non-dominated vectors one by one, the bounds on the objectives are getting 

stricter, causing the feasible space for the problem MOCOM defined in 

section 3.2 to get smaller. Thus, the optimum solution of MOCOM found in 

the previous iteration can be also thought as a natural upper bound on the 

objective function of MOCOM for the current iteration. Using this 
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information, we propose to settle for the first feasible solution provided that it 

is at most delta units away from the previous solution. If the optimal solution 

to MOCOM at this iteration is even farther away than delta distance, the 

algorithm behaves like the original one as long as the second modification is 

not violated. 

2. Maximum number of nodes: Due to the reasons to be discussed deeper in 

computational results section, we try to limit the memory usage of the 

algorithm, i.e. the number of nodes. Instead of limiting it based on the size of 

the problem, we propose to limit the maximum number of nodes to be created 

by the availability of the memory resources. Memory availability is an input 

and as the size of a single node is known, maximum number of nodes can be 

set and the algorithm can be adjusted to immediately return the best solution 

found up to that point. If no such solution is found, it returns infeasible. After 

that point, each iteration is allowed to search the tree nodes already created or 

create new nodes up to a number. After that limit is reached, the iteration is 

terminated similar to the previous condition. 

These modifications are reflected to the algorithm defined in section 4.1 as follows: 

Let UB  be the value of the last feasible solution found by Lokman and Köksalan’s 

algorithm in the previous iterations. It will be set to a sufficiently large number 

initially. An additional delta condition is added to the step 4, where the best solution 

found so far is updated. When the condition ii LBUB   holds, the branch-and-

bound algorithm returns the current solution as the optimal solution to MOCOM.   

To limit the number of nodes, let flag be the binary variable indicating if the 

predetermined limit L1 is exceeded and let L2 be the limit for each iteration after the 

limit L1 is exceeded. In order to control those limits, we need two counters, count_all 

(for total number of nodes created) and count (for number of nodes created in the 

current iteration). Initially those variables are also 0. If the total number of nodes 

does not exceed L1 yet, backtracking step is modified to return the best solution so 

far when this limit is reached ( 1_ Lallcount  ). flag is set to 1 and iterations are 
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limited to L2 nodes at most from that point on. Similarly, the algorithm returns the 

best solution found so far when this limit is reached ( 2Lcount  ). 

The complete heuristic algorithm of MOKP is given in Appendix A. 

5.2 PROPOSED HEURISTIC ALGORITHM: IMPLEMENTATION  

These modifications are reflected to the proposed exact algorithm for the 

multiobjective 0-1 Knapsack Problem defined in section 4.2.3. Only the steps 

considered in the previous section (update best solution and backtracking) are 

affected. The algorithm returns the best solution so far as the optimal solution when 

it is delta away from UB. Until the limit L1 is reached, the backtracking step is the 

same as the exact algorithm. Once it is hit, the algorithm limits the number of new 

nodes to be created by L2. 

The complete heuristic algorithm of MOKP is given in Appendix B.  

As long as the limit L1 is not reached, the heuristic algorithm’s complexity is 

exponential similar to the exact approach. When the limit is reached we simply 

prematurely terminate the branch-and-bound search. This limit is a given constant 

and it is independent from the number of nodes.  

The heuristic algorithm is sensitive to the value of delta. In the case when we do not 

limit the heuristic algorithm, as delta gets smaller, the heuristic algorithm is expected 

to behave like the exact algorithm since it will not be able to find any feasible 

solutions delta units away from UB. When delta gets larger, the heuristic algorithm 

settles for poorer feasible solutions and we expect to miss a good portion of the non-

dominated solutions and obtain dominated solutions far away from the efficient 

frontier. Delta can be thought of as a way of determining the decision maker’s 

interest in the solution space, i.e. which distance (in objective i) between the 

solutions is sufficient for her to represent the solution space. With the introduction of 

dynamic delta altering in each iteration, different portions of the solution space can 

be searched more intensely than others, depending on the decision maker’s 

preferences. In computational experiments, section 7.2.2, an approach to determine a 

constant delta is suggested. 
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At each iteration, the solution obtained might be the actual non-dominated solution 

of the corresponding L&K lower bounds, might be another non-dominated solution 

at most delta units away from the previous one, or might be a dominated solution. 

Thus, there is no guaranteed performance for the heuristic algorithm. Even without 

the limits in force, one can get delta units away in objective i from the efficient 

frontier. As the UB, objective i value of the solution obtained from the previous 

iteration, might be a dominated solution itself, the algorithm might actually be 

getting delta units away from the efficient frontier at each iteration in the worst case. 

Since the algorithm only checks the feasibility condition on other objectives, 

assessing a performance measure on those is not possible either. 
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CHAPTER 6 

 

 

ILLUSTRATIVE EXAMPLES 

 

 

 

6.1 AN ILLUSTRATIVE EXAMPLE FOR THE EXACT ALGORITM 

In order to illustrate the model more clearly, we consider the following 3 objective 0-

1 knapsack problem (P1) with 6 items: 

 

6543213

6543212

6543211

654321
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 454937974053

174482458332z

   889615286359z

1,0

112  525124562021

..

},z, {max""

xxxxxxz

xxxxxx

xxxxxxwhere
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xxxxxx

ts

zz

k










         (11: P1) 

According to Lokman and Köksalan’s algorithm, we take z3 as the primary objective 

to be maximized while satisfying lower bounds on z1 and z2. Also we take epsilon (ε) 

as 0.0001 to prevent the method yielding weakly efficient solutions. So the model to 

be solved in each step becomes: 
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      (12: P2) 

where the lower bounds and corresponding solutions are given at Table 1.  

According to Lokman and Köksalan’s algorithm, steps which are previously 

calculated (3.3, 4.1, 4.2, 5.1, 5.4, 5.5, 6.1 and 6.6) are obviously not solved again. 

Also, step 6.3 and 6.4 suggest a stricter lower bound on z1 than step 6.2. Since step 

6.2 yielded an infeasible solution, stricter lower bounds cannot lead a feasible 

solution. Thus, they are not solved either. 

Table 1 Lower Bounds and Corresponding Non-Dominated Solutions to Problem P2 

 

Step lb1 lb2 Solution (z1, z2, z3) 

1.1 0 0 (150, 160, 190) 

2.1 0 161 (106, 210, 174) 

2.2 151 0 (218, 159, 142) 

3.1 0 211 Infeasible 

3.2 107 161 (137, 197, 130) 

3.3 151 0 Same as step 2.2 

4.1 0 211 Same as step 3.1 

4.2 107 161 Same as step 3.2 

4.3 151 160 (174, 209, 126) 

4.4 219 0 Infeasible 

5.1 0 211 Same as step 3.1 

5.2 107 198 (174, 209, 126) 

5.3 138 161 (174, 209, 126) 

5.4 151 160 Same as step 4.3 
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Table 1 (cont’d) 

Step lb1 lb2 Solution (z1, z2, z3) 

5.5 219 0 Same as step 4.4 

6.1 0 211 Same as step 3.1 

6.2 107 210 Infeasible 

6.3 138 210 Infeasible (since 6.2 is infeasible) 

6.4 151 210 Infeasible (since 6.2 is infeasible) 

6.5 175 160 Infeasible 

6.6 219 0 Same as step 4.4 

 

Figure 4 shows the complete branch-and-bound tree used to solve problem P1 with 

the suggested method. P1 is converted to P2 according to Lokman and Köksalan’s 

algorithm. Nodes are numbered according to their creation sequence. Different line 

styles show in which step the nodes are created: 10 new nodes in step 1.1 including 

the initial node, 21 new nodes in step 2.1, 2 new nodes in 2.2 and 5 new nodes in step 

3.1. All other steps are calculated without creation of new nodes. Upper bounds on 

objectives z1, z2 and z of P2 are shown as (U1, U2, U3) near the nodes. In order to 

save space, only the integer part of the upper bound on z is shown unless it is at the 

last level.  

Since the procedure starts with no lower bounds on the objectives z1 and z2, in step 

1.1 lb1 and lb2 are equal to 0. In order to demonstrate the procedure more clearly, we 

consider step 2.1 in Figure 5. Similar to Figure 4, line styles shows in which step the 

nodes are created and decimal part of U3 is not shown for partial solutions. However, 

this time node numbers indicate the sequence the nodes are visited. If a node violates 

an upper bound constraint, the constraint violated is shown under the upper bound 

information. The model to be solved in step 2.1 is: 
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The lower bound on z2 is 0 in this step and since all coefficients of our binary 

variables are positive, this constraint is redundant.  

In this regard, nodes 4, 10, 11, 16, 20, 21, 22, 28 and 30 are eliminated due to the fact 

that upper bound values on z2 are lower than the lower bound value of 161. First 

feasible solution to the problem P2 is found at node 7. At node 27, a better feasible 

solution is found and the best solution so far is updated. Node 30 represents the 

partial solution of x1=x2=0 (the rest is yet to be decided) and it does not meet U2 

constraint and there are no items left to exclude from the knapsack in this partial 

solution. Thus, the search is terminated and the best solution so far is the solution 

represented by node 27 (only items 2, 3 and 4 are included in the knapsack). 

Corresponding non-dominated objective vector is (106, 210, 174). 
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6.2 AN ILLUSTRATIVE EXAMPLE FOR THE HEURISTIC ALGORITM 

To illustrate the heuristic algorithm, problem P2 defined in section 6.1 is selected. As 

the heuristic algorithm is actually developed to overcome memory issues, item size 6 

is relatively too small for the delta approach. For illustrative purposes, we choose 

delta as 65, which is an extremely large value for the size of the problem. Selection 

method of delta is discussed along with computational results in section 7.2. As the 

application of limits L1 and L2 is straightforward and they are not applied when the 

problem size is small enough to be handled, we do not illustrate it with this example. 

Table 2 Lower Bounds and Corresponding Solutions to Problem P2 (Δ=65) 
 

Step lb1 lb2 Solution (z1, z2, z3) 

1.1 0 0 (150, 160, 190) 

2.1 0 161 (137, 197, 130) 

2.2 151 0 (218, 159, 142) 

3.1 151 160 (174, 209, 126) 

3.2 219 0 Infeasible 

3.3 0 198 (106, 210, 174) 

3.4 138 161 (174, 209, 126) 

4.1 0 211 Infeasible 

4.2 107 198 (174, 209, 126) 

4.3 107 210 Infeasible 

4.4 175 160 Infeasible 

 

In Table 2, similar to Table 1, lower bounds found by Lokman and Köksalan’s 

algorithm are shown. However, with delta being 65, same bounds do not correspond 

to the same solutions. As there does not exist any previous solution at the beginning 

of the algorithm, first run will always return the first non-dominated vector same as 

the exact version. So, we guarantee at least one non-dominated solution with this 

heuristic algorithm as long as the limits are not breached. Since the z3 value of the 

first solution is 190 and delta is 65, the algorithm settles for the first feasible solution 
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having a z3 value of at least 125.Thus, step 2.1 with a lower bound 161 on second 

objective corresponds to the vector (137, 197, 130). Now the algorithm will settle for 

the first solution having a z3 value of at least 65. In step 2.2, algorithm returns the 

vector (218, 159, 142). If it did not find such a solution, it would behave like the 

exact algorithm and finds the best feasible solution. Even though the algorithm does 

not guarantee finding all non-dominated vectors, all of them are found with delta 

being 65 since the problem size is small and number of feasible solutions is limited.  

Complete branch-and-bound tree and step 2.1 are shown in Figures 6 and 7. Similar 

to Figures 4 and 5, line styles shows in which step the nodes are created and numbers 

shows the creation sequence for Figure 6 and visiting sequence for Figure 7. In 

Figure 7, nodes created previously but not visited during this step are shown without 

numbering. 
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CHAPTER 7 

 

 

COMPUTATIONAL EXPERIMENTS 
 

 

 

In order to compare our algorithms, we use Lokman and Köksalan’s algorithm using 

IBM ILOG CPLEX optimization software (V12.3) on randomly generated sample 

problems of multi-objective 0-1 knapsack problems. To the best of our knowledge 

there are no other studies that present computational experiments on the type of 

problems we work on. Many of the studies only consider two criteria (Visee et al. 

(1998), Klamroth and Wiecek (2000)), some use multiple knapsack (Zitzler and 

Thiele (1999), Deb et al., (2000), (Corne et al., 2000). Thus, we compare the exact 

algorithm with L&K in terms of CPU seconds and we use hypervolume indicator for 

the heuristic algorithm, as we know the efficient frontiers of the sample problems. 

7.1 RANDOMLY GENERATED KNAPSACK PROBLEMS 

Sample problems with n objectives and m items are generated in the following form: 

 1,0
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,...,,max"" 21
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knk
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k
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x

Cxw

ts

xpxpxp

      (14) 

where kx is the binary variable indicating whether the item k is included in the 

knapsack (1) or not (0). 

jkp is the profit of item k regarding objective j 
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 kw is the weight of item k 

 C  is the capacity of the knapsack and 
a

w
C

m

k
k

  

 a is an integer to modify the size of the knapsack.  

Uniformly distributed integers in the interval [10-100] are used for weight and profit 

coefficients. Capacity of the knapsack is a portion of total weight of the items and 

determined using the constant a.  

All the computations are performed on a computer with 2.10GHz processor and 3.00 

GB memory (RAM) of which only 1.50 GB is available for computations due to 

operation system’s RAM requirements. As the number of variables increase, so does 

the number of nodes needed in the branch-and-bound tree of the algorithm. This 

causes an increase in the memory requirement. In order to be able to compare larger 

problem instances with the exact algorithm, we modify the knapsack capacity and 

make the comparison accordingly. For the heuristic version, no such modification is 

needed. 

7.2 COMPUTATIONAL RESULTS 

7.2.1 Proposed Exact Algorithm 

We have tested our proposed exact algorithm (A&K) for several variables with 

number of objectives (n) being 3. As the approach is an exact method, we used CPU 

time in seconds as a performance measure. Also, average CPU time per models 

solved is examined. The comparison results can be seen in Table 3.  



43 

 

Table 3 Comparison of Exact Algorithm (n=3) 
 

no. of 

items (m) 

Capacity 

modifier 

(a) 

Random 

Problem 

no. of 

models 

solved 

no. of 

nondomina

ted vectors

CPU Time Spent for 

Solution (sec) 

A&K L&K 

25 2 1 93 43 0.02 2.69 

50 2 

1 574 269 4.2 23.92 

2 659 295 2.53 30.69 

3 1050 519 9.3 74.34 

4 677 313 1.11 30.93 

5 734 348 1.48 36.07 

75 4 
2 1430 670 206.46 319.87 

3 1552 778 152.82 191.06 

100 10 

1 830 374 21.42 55.77 

2 1333 605 9.78 86.36 

3 1053 467 12.53 69.17 

4 1456 668 46.05 109.89 

5 986 450 5.16 66.33 

 

As it is expected, as the number of variables increases, we observe an increase in the 

computational time to solve the problems for the same structure of capacity. 

Considering the randomly generated knapsack model (15), feasible space of a given 

problem can be reduced by setting lower capacity, i.e. increasing the capacity 

modifier a. Due to memory issues we experience, we used this property of the model 

to experiment on higher number of variables.  

Similarly, we tested the exact algorithm for 4 objectives. Introducing a new objective 

leads each node keeping one more upper bound information and thus increasing the 

size of a node. Consequently, with a given memory size, the exact algorithm can 

solve smaller problems before the memory issues take effect. However, the total 
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number of nodes for a given number of items is a constant and having extra upper 

bounds on the nodes contributes to the elimination of subproblems represented by 

that node. This effect can also be observed in Table 4 results where n=4. Run time of 

the algorithm does not increase as much as the run time of L&K.  

 

Table 4 Comparison of Exact Algorithm (n=4) 
 

no. of 

items (m) 

Capacity 

modifier 

(a) 

Random 

Problem 

no. of 

models 

solved 

no. of 

nondomina

ted vectors

CPU Time Spent for 

Solution (sec) 

A&K L&K 

25 2 

1 282 54 0.01 44.07 

2 2176 268 0.72 526.58 

3 1095 145 0.13 151.72 

4 1526 172 0.23 174.83 

5 3543 429 1.78 359.38 

50 6 

1 2090 284 0.99 306.71 

2 2138 302 1.09 277.68 

3 236 46 0.03 19.83 

4 3505 475 2.48 530.68 

5 2740 333 2.40 349.08 

100 20 

1 3430 447 3.67 625.56 

2 3230 460 2.41 748.21 

3 7026 789 18.47 1924.54 

4 4823 628 7.79 1063.98 

5 4690 557 6.20 1323.30 

 
In general, proposed exact algorithm solves the problems quicker. However, it is 

hard to observe a pattern since we try to benefit from some special cases like lower 

branch elimination and some of the randomly generated problems possessing 

features in favor of our algorithm can be solved very quickly compared to L&K. 
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7.2.2 Proposed Heuristic Algorithm 

Proposed heuristic algorithm is also tested using the randomly generated knapsack 

problems defined in 7.1.  

Parametric variables defined in section 5.2 are Δ, L1 and L2. These variables are 

determined as follows: 

Determining the value of Δ actually determines how distant we want our solutions to 

be in objective i. Since it is relatively easy to find the extreme points of the efficient 

frontier, we solve the model KPC with lbj values being 0. In other words, we solve 

the KPC without any side constraints and we solve it selecting each objective as 

objective i one by one. We construct the payoff table and obtain maximum and 

minimum values of the original objective i. Difference between these values are 

divided by 100 to obtain the value of Δ. Payoff table does not guarantee obtaining the 

actual minimum value of objective i. On the other hand, we compared this method to 

using actual nadir point on sample problems and observed the difference is relatively 

small and the algorithm is not sensitive to changes in that scale. Instead of the payoff 

table, actual nadir point can also be used. Similarly, a dynamic approach can be 

incorporated and the value of Δ can be changed according to the non-dominated 

solutions found as the algorithm proceeds.  

We take limit L1 as the memory allocated divided by the size of a single node. After 

this limit is reached, limit L2 is simply N. For the problems shown in Table 5 and 6, 

memory allocated was 0.65 GB of RAM.  

We compared the algorithm to the exact method by using the hypervolume indicator 

suggested by Zitzler and Thiele (1998). Deb (2001) states that this indicator can be 

used to evaluate both closeness and diversity. Let Q be the vector set of the solutions 

and R be the reference point in the objective space which might be obtained by 

choosing the worst value for each objective function. Then, for each element of Q 

individual hypervolumes are calculated by taking the reference point’s objective 

values as the diagonal corner of a hypercube. Union of these hypervolumes is the 

calculated hypervolume for a given set of solutions.  
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In order to formally give a definition, Zitzler et al. (2007) define an attainment 

function for an objective vector set Q. Without loss of generalization, they define a 

multiobjective maximization problem as:  

 

Xx

ts

xfxfxf n


..

)(),...,(),(max"" 21

        (15) 

and the objective space as Z=(0,1)n. So, Ω is the set of all possible objective vectors 

and Q . Attainment function of Q ( Q ) is: 
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        (16) 

“ ” indicates the weakly dominance relationship. So the hypervolume of Q with 

respect to reference vector 0 can be defined as: 


)1,...,1(

)0,...,0(
 )(:)( dzzQHV Q       (17) 

For example, for a biobjective problem with Q={q1,q2,q3}, hypervolume with respect 

to (0,0) is the union of shaded areas as shown in Figure 8. 

 

Figure 8 Illustrative Biobjective Case: Hypervolume for Q 
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For the case where set of pareto optimal solutions (P) is known, dividing 

hypervolume of obtained solutions (HVR(Q)) by hypervolume of pareto optimal 

solutions (HVR(P)) gives a coverage percentage which we used for comparing the 

heuristic algorithm. As this indicator is prone to scaling, all objective values are 

scaled beforehand. Obviously a better coverage is obtained by values closer to 1 and 

in the case of finding all solutions of efficient frontier, the coverage indicator will be 

100%. 

As it can be seen in Table 5, with 99% coverage of the volume covered by the 

efficient frontier, the heuristic algorithm performs very well when it does not breach 

memory limits for problem sizes 25 and 50 items and 3 objectives. However, there is 

a pay off between limiting the algorithm and solution quality as it may be observed 

in the case of 100 items. On average, solution time is improved by 10 times 

compared to the suggested exact algorithm and 100 times compared to using L&K. 

For 25 items, the heuristic algorithm solves the problems in less than a 100th of a 

CPU second. Therefore, for a more meaningful comparison we chose the problems 

with 100 items.  

Number of non-dominated vectors found is not necessarily correlated to the 

hypervolume covered by the algorithm. We are not only interested in maximizing the 

number of non-dominated vectors found but also the spread and closeness of the 

solutions obtained relative to the efficient frontier. Depending on the decision 

maker’s preferences, a high number of non-dominated vectors accumulated in a 

restricted portion of the efficient frontier may be less desirable than a good spread of 

dominated vectors close to the efficient frontier. Also, if the pareto optimal solutions 

are denser at some areas, algorithms may tend to get stuck at those areas. One may 

argue a non-dominated solution found in a sparse area is better than many non-

dominated solutions found in dense areas. So, we consider better hypervolume 

coverage as the main performance measure rather than the number of non-dominated 

solution vectors found. It can also be observed for the 100 items case in Table 5. In 

one case, only 1 of the actual non-dominated vectors is found. However, covered 

volume is 5% better than a similar case with 33 non-dominated vectors found.  
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Table 5 Comparison of Heuristic Algorithm (n=3) 
 

no. of 

items (m) 

Capacity 

modifier 

(a) 

Random 

Problem 

no. of 

nondomina

ted vectors

no. of 

vectors 

founds 

no. of 

nondomina

ted vectors 

found 

% of 

hypervolume 

covered 

25 2 

1 50 48 41 99% 

2 109 100 99 99% 

3 76 69 53 99% 

4 21 19 18 99% 

5 50 49 40 99% 

50 2 

1 269 232 183 99% 

2 295 234 204 99% 

3 519 430 307 99% 

4 170 127 121 99% 

5 405 371 326 99% 

100 4 

1 3837 247 9 50% 

2 2470 247 1 63% 

3 3100 308 41 55% 

4 2317 247 33 58% 

5 2004 466 36 78% 

 

We also compared the algorithm for 4 objectives and listed the results in Table 6. 

Selected objective i is taken as the 4th objective. Similar to the exact case, to reduce 

the size of the feasible space we used the knapsack capacity modifier a. For 100 

items, the duration for L&K ranged from 625 to 1923 CPU seconds, whereas 

heuristic algorithm’s run time ranged from 1.28 to 17.97 CPU seconds. The heuristic 

algorithm runs much faster than L&K with a loss of 1% in hypervolume coverage. 

Distribution of non-dominated vectors found by the algorithm tends to have larger 4th 

objective values, i.e. as the algorithm proceeds towards stricter lower bounds of 
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Lokman and Köksalan’s algorithm, the heuristic algorithm tends to return premature 

infeasible results to limit the search. One way to overcome this disadvantage may be 

to alter the objective i between the objectives and re-run the algorithm. By 

combining the outputs of these re-runs, a better convergence and representation of 

the efficient frontier is possible. 

 

Table 6 Comparison of Heuristic Algorithm (n=4) 
 

no. of 

items (m) 

Capacity 

modifier 

(a) 

Random 

Problem 

no. of 

nondomina

ted vectors

no. of 

vectors 

founds 

no. of 

nondomina

ted vectors 

found 

% of 

hypervolume 

covered 

25 2 

1 429 316 297 99% 

2 172 151 139 99% 

3 145 124 112 99% 

4 268 233 218 99% 

5 54 51 43 99% 

50 6 

1 284 198 195 98% 

2 302 289 288 99% 

3 46 47 42 99% 

4 475 469 466 99% 

5 333 236 227 99% 

100 20 

1 447 355 326 99% 

2 460 442 440 99% 

3 789 759 745 99% 

4 628 409 396 97% 

5 557 459 447 98% 
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7.2.3 Variations and Discussion 

As we develop the algorithm, both exact and heuristic, we tried different variations 

hoping to improve the algorithms. Algorithms defined in sections 4 and 5 are the 

final versions, yet we discuss some variations. We used the same randomly generated 

knapsack problems for these variations. 

For the exact algorithm, main problem we encountered is the memory used by the 

branch-and-bound tree. Performances of these variations are compared using 

randomly generated knapsack problems with 50 items. 

1. Keeping Previous Information vs. Recalculating: The proposed algorithm 

keeps all of the nodes created by previous iterations. One way to overcome 

this memory issue may be recreating the entire branch-and-bound tree each 

time without keeping any previous information. The lower bounds implied by 

Lokman and Köksalan’s algorithm are not strict at the beginning of the 

algorithm. We observed this property leads creating nodes (allocating 

memory) and saving information costs more in CPU time compared to just 

calculating only the current node’s upper bound information without saving. 

On the other hand, as the Lokman and Köksalan’s algorithm progresses and 

challenges the model with stricter lower bounds, the search process of 

branch-and-bound gets longer and longer since it has to recalculate all of the 

information. At the end of the runs, keeping the previous nodes outperformed 

not keeping by 2342% on average in terms of CPU time. 

2. Keeping Level Information or Recalculating: When the residual knapsack 

capacity cannot accept any of the items left, we jump to the lowest node 

without further branching. This causes a problem for the backtracking step 

because the algorithm needs to know which level it is backtracking to. We 

can overcome this problem with either keeping the information of level on the 

node itself or recalculating it using the parent-child relationship and counting 

the number of nodes beginning from the root node. Although the latter needs 

less memory, computational results showed that keeping the level information 
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on the node saves CPU time by 53% on average compared to recalculating 

this information each time the algorithm backtracks.  

3. Eliminating vs. Keeping Lower Branches: Another obvious variation is 

deciding whether to keep the property of elimination of lower branches as 

described in section 4.2.3. If no lower branch is eliminated, keeping or 

recalculating the level information is not needed since the algorithm will 

jump one node at a time during both forward and backtracking moves. We 

compared the method described above to the method of creating these lower 

nodes. Keeping level information and eliminating the lower branches as 

described above outperformed keeping the lower branches by 5% on average. 

4. Deleting Nodes: We also tried to delete the nodes up to a level when a 

certain limit is exceeded. Obviously, deleting is an additional operation and 

consumes extra CPU time. However, keeping some of the information from 

the deleted nodes might help the search process and save time. To test this we 

updated the upper bound information of a node from bottom up by taking the 

maximum of upper bounds of its children. Since at the lowest level, when no 

other variable is left to include or exclude from the knapsack, the upper 

bound is actually the objective value of that decision set. So, this method 

replaces the calculated upper bounds with stricter ones whenever the 

subbranches of that node reach the bottom of the tree. Unfortunately, better 

upper bound information did not compensate for the time spent for deleting 

nodes and updating information. 

5. Feeding the Lokman and Köksalan’s algorithm with known non-

dominated vectors: As finding supported non-dominated vectors is relatively 

easy, some or all of that kind of vectors might be included to the list of non-

dominated vectors kept by Lokman and Köksalan’s algorithm to determine 

the next iteration’s lower bounds. This might reduce the number of models to 

be solved in total. However, it requires a major change in Lokman and 

Köksalan’s algorithm and we did not apply the change in the scope of this 

thesis.   
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For the heuristic algorithm, main motivation is handling the memory problem of the 

exact version while maintaining a reasonable distance from the efficient frontier. 

Similar to the exact algorithm, performances are tested on randomly generated 

knapsack problems with 3 objectives and 50 items except for the third variation. 

1. Delta Distance: We tried the delta distance approach as a separator between 

the non-dominated objective vectors in terms of the ith objective as defined in 

section 4.1. In this version, the algorithm is the same as the one defined in 5.2 

except ii lbUB   is used to decide on early termination of the subroutine 

and no limitations on the number of nodes are used. Settling for the first 

solution which is at least delta far away from the previous solution obviously 

caused the algorithm perform worse. Moreover, the memory usage showed no 

significant improvement in exchange of the solution quality. We observed the 

main memory absorber is the case when no feasible solution exists. The 

algorithm cannot find any ilb  and thus, it exhausts the tree by creating new 

nodes until absence of a feasible solution is proved. This case is more likely 

to happen with stricter lower bounds determined by Lokman and Köksalan’s 

algorithm as they limit the feasible space progressively with the introduction 

of new non-dominated solution vectors. 

2. Modifying lower bounds: In order to overcome the memory issues of 

infeasible solutions, we tried to foresee infeasibility by looking at the 

difference between the upper and lower bounds of the node. If they are too 

close, one might argue that the possibility of that node yielding a feasible 

solution is dim and the node can be fathomed by risking losing a potential 

feasible solution. However, assessing a value to “too close” is not so easy. 

We used delta value and its multiples and obtained delta similar to the 

method discussed in section 6.2. Unfortunately, the memory problem 

persisted for small values and getting the difference larger just caused 

eliminating feasible solutions. Eventually, we chose to limit the number of 

nodes created rather than modifying the lower bounds.  
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3. Altering objective i: No matter which objective is selected as the objective i 

as defined in model (4) in section 4.1, Lokman and Köksalan’s algorithm 

finds all non-dominated vectors for the exact case. However, for the heuristic 

case, experimental computations show “harder” problems tend to exceed 

memory limits and tend to prematurely return infeasible. A problem gets 

“harder” with capacity modifier a getting closer to 2, increasing number of 

items and objectives as well as stricter lower bounds imposed by Lokman and 

Köksalan’s algorithm. This memory limitation causes gaps in the 

approximation of the efficient frontier when the objective i value gets smaller. 

On the other hand, selecting another objective as objective i means smaller 

values of the same objective is obtained by imposing smaller lower bounds 

which are imposed at the beginning of Lokman and Köksalan’s algorithm. As 

the computational time consumed by heuristic approach is relatively much 

smaller than the L&K, re-running the same algorithm by altering objective i 

is less costly. We tested this variation on a randomly generated problem with 

100 items, 3 objectives and a=2. Each objective’s performance as well as 

their combined performance is shown in Table 7. 

Table 7 Computational Results for Altering Objective i  
 

Instance 
no. of 

nondominated 

vectors 

no. of 

vectors 

founds

no. of 

nondominated 

vectors found

% of 

hypervolume 

covered 

1 2751 209 47 58% 

2 2751 134 57 67% 

3 2751 275 85 50% 

Combined 2751 489 102 82% 
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Obviously solution sets found by different instances are not distinct. Both 

some dominated and non-dominated solutions exist in more than one 

instance. However, when combined, we observed not only a better coverage 

of the hypervolume but also a better spread of the vectors.  
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CHAPTER 8 

 

 

CONCLUSION AND FURTHER RESEARCH 
 

 

 

In order to find all efficient solutions of any given MOCO problem, we developed a 

generic branch-and-bound procedure using Lokman and Köksalan’s approach 

(2012). We proposed an exact branch-and-bound algorithm for multi-objective 0-1 

KP and computational results showed that problem specific algorithms using 

previous iterations’ information can outperform a very reliable and fast commercial 

tool like IBM ILOG CPLEX. However, we also observed saving information costs 

memory because MOCO problems are NP-hard and as the number of variables 

increase, memory need for the tree also increases. In order to be able to solve larger 

instances benefiting previous information, some two-phase approaches can be 

incorporated like variation 5 we discussed in section 7.2.3. It may be promising as it 

may reduce the effort to generate supported solutions as well as unsupported ones. 

However, as discussed, this variation requires a major change in the lower bound 

generation method of Lokman and Köksalan’s algorithm.  

We also proposed a heuristic branch-and-bound algorithm for MOCO. We developed 

a specific heuristic algorithm for MOKP by modifying the proposed exact algorithm. 

We observed delta approach yields a good spread of solutions with a good coverage 

with respect to efficient frontier when the memory limits are not breached. However, 

we observed memory limitation reduces the solution quality significantly for larger 

problems. Among the variations for heuristic algorithm, last approach is the most 

promising as it combines the algorithm results for all objectives as objective i. 
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APPENDIX A 

 

 

GENERIC HEURISTIC ALGORITHM 
 

 

 

In addition to the variables defined in the previous section, let flag be the binary 

variable indicating if the predetermined limit L1 is exceeded. 

1. Lokman and Köksalan’s Algorithm: Calculate LBj according to L&K 

algorithm.  

 Previous solution UB is set to a sufficiently large number M.  

If no further lower bounds are left to consider, STOP. 

2. Initialization: Initially no decision variables are set: A={} 

  Best solution LBi is set to 0.  

Create first node and calculate respective upper bounds jqU . 

3. If jjq LBU   for all j, 

go to step 4. 

 else 

  go to backtrack. 

4. If no more decision variables are left to decide (Ac={}), 

Update best solution as current solution  

If iLBUB   

return objective function values of the best solution 
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(zj(best_solution)) 

else 

go to backtrack 

else 

Forward move: Create new node according to the original 

algorithm’s set of rules. Update decision variable set A. Calculate 

upper bounds and go to step 3. 

5. Backtrack: If ( 1_ Lallcount   AND NOT(flag))  

1:flag  

if best solution is greater than 0, 

return objective function values of the best solution 

(zj(best_solution)) and go to step 1. 

else 

return infeasible and go to step 1. 

  If ( 2Lcount   AND flag) 

if best solution is greater than 0, 

return objective function values of the best solution 

(zj(best_solution)) and go to step 1. 

else 

return infeasible and go to step 1. 

else 

Backtrack according to the original algorithm’s set of rules.  

6. If all possible subproblems are considered  

if best solution is greater than 0, 

return objective function values of the best solution 

(zj(best_solution)) and go to step 1. 
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else 

 return infeasible and go to step 1. 

else 

 go to step 3. 
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APPENDIX B 

 

 

HEURISTIC ALGORITHM – MOKP 
 

 

 

Similar to Appendix A, flag is the binary variable indicating if the predetermined 

limit L1 is exceeded. 

1. Initialization I: These steps will be performed only once. 

1.1. Find preference sequence for each j other than i (prefjk: k
th position in the 

preference sequence of objective j). 

1.2. Find minimum weight for each level (  lkww kl  :minmin_ ). This 

information will be used for eliminating the lower bounds.  

1.3. Insert first node. Calculate and save Uj for all j. 

1.4. Previous solution UB is set to 
k

kp  

1.5. 0:_ allcount  

2. Lokman and Köksalan’s Algorithm: Calculate lbj according to L&K algorithm.  

If no further lower bounds are left to consider, STOP.  

3. Start Subroutine 

Initialization II: Following steps will be performed before the branch-and-

bound procedure for each step of L&K algorithm, i.e. for each set of lower 

bounds. 

3.1. Initialize variables 
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1:

:_

0:_

0:_

0:_

0:










l

Cccur

jzcur

kxcur

kxbest

lb

j

k

k

i

 

0:

0:




count

t
 

3.2. If jj lbU   for all j does not hold for at least one objective, go to 5.1 

(backtrack). 

4. Forward Move 

4.1. while ( lwccur _  AND ijforlbU jj   ) 

do 

1:

_:_

 _:_

_:_

1:_










ll

pzcurzcur

ijforpzcurzcur

wccurccur

xcur

ilii

jljj

l

l

 

If not already created for current solution (cur_x), insert 

new node on level l, calculate and save Uj for all j 

1_:_

1:




allcountallcount

countcount
 

If jj lbU   for all j does not hold for at least one objective, go to 6 

(backtrack). 

4.2. If lwccur min__  (no more insertions are possible) 

Kl :  

If not already created for current solution (cur_x), insert new node on 

level l, calculate and save Uj for all j 
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1_:_

1:




allcountallcount

countcount
 

4.3. If current level, which is critical item, is not the last item, exclude it from 

the knapsack 

If Kl   

If not already created for current solution (cur_x), insert new node on 

level l, calculate and save Uj for all j 

1_:_

1:




allcountallcount

countcount
 

1:  ll  

If jj lbU   for all j does not hold for at least one objective, go to 6 

(backtrack). 

4.4. If current level (critical+1) is not the last item, repeat forward move. 

If Kl   go to 4 (forward move). 

4.5. If Kl    

If lwccur _  (If the last item is small enough, include in the 

knapsack) 

ilii

jljj

l

l

pzcurzcur

ijforpzcurzcur

wccurccur

xcur








_:_

 _:_

_:_

1:_

 

If not already created for current solution (cur_x), insert 

new node on level l, calculate and save Uj for all j 

1_:_

1:




allcountallcount

countcount
 

else (If the last item is not small enough, exclude from the 

knapsack) 
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If not already created for current solution (cur_x), insert 

new node on level l, calculate and save Uj for all j 

1_:_

1:




allcountallcount

countcount
 

5. Update Best Solution So Far 

5.1. If jj lbU   for all j 

kxcurxbest

zcurlb

kk

ii




_:_

_:
 

If ii lbUB   (If this feasible solution is close enough) 

  go to 7 (subroutine return)  

If 1:_ Kxcur  (If last item is included, throw it out before backtrack) 

 

iKii

jKjj

K

K

pzcurzcur

ijforpzcurzcur

wccurccur

xcur








_:_

 _:_

_:_

0:_

 

6. Backtrack 

6.0  If ( Lallcount _  AND NOT(flag)) 

1:flag  

  go to 7 (subroutine return) 

If ( Ncount  AND flag) 

  go to 7 (subroutine return) 

 

6.1. Find the item to throw out of the knapsack 

Find t, }1_:max{  kxcurlkt  

If 0t  
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tl

pzcurzcur

ijforpzcurzcur

wccurccur

xcur

itii

jtjj

t

t










:

_:_

 _:_

_:_

0:_

  

If not already created for current solution (cur_x), insert new node 

on level l, calculate and save Uj for all j  

1_:_

1:




allcountallcount

countcount
 

go to 4 (forward move). 

else 

go to 7 (subroutine return). 

7. Subroutine Return  

7.1. If kxbest k  0_  

No feasible solutions. return infeasible. 

else 

return  
k

kjkj jxbestpzbest __   

go to 2 

 


