

APPROACHES FOR SPECIAL MULTIOBJECTIVE COMBINATORIAL
OPTIMIZATION PROBLEMS WITH SIDE CONSTRAINTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BANU AKIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

INDUSTRIAL ENGINEERING

AUGUST 2012

Approval of the thesis:

APPROACHES FOR SPECIAL MULTIOBJECTIVE COMBINATORIAL
OPTIMIZATION PROBLEMS WITH SIDE CONSTRAINTS

submitted by BANU AKIN in partial fulfillment of the requirements for the degree
of Master of Science in Industrial Engineering Department, Middle East
Technical University by,

Prof. Dr. Canan Özgen ___________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Sinan Kayalıgil ___________________
Head of Department, Industrial Engineering

Prof. Dr. Murat Köksalan ___________________
Supervisor, Industrial Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Meral Azizoğlu ___________________
Industrial Engineering Dept., METU

Prof. Dr. Murat Köksalan ___________________
Industrial Engineering Dept., METU

Assoc. Prof. Dr. Yasemin Serin ___________________
Industrial Engineering Dept., METU

Assist. Prof. Dr. Sinan Gürel ___________________
Industrial Engineering Dept., METU

Assist. Prof. Dr. Banu Lokman ___________________
Industrial Engineering Dept., TEDU

 Date:

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

 Name, Last Name: Banu AKIN

 Signature:

iv

ABSTRACT

APPROACHES FOR SPECIAL MULTIOBJECTIVE COMBINATORIAL

OPTIMIZATION PROBLEMS WITH SIDE CONSTRAINTS

Akın, Banu

M.Sc., Department of Industrial Engineering

Supervisor: Prof. Dr. Murat Köksalan

August 2012, 66 pages

We propose a generic algorithm based on branch-and-bound to generate all efficient

solutions of multiobjective combinatorial optimization (MOCO) problems. We

present an algorithm specific to multiobjective 0-1 Knapsack Problem based on the

generic algorithm. We test the performance of our algorithm on randomly generated

sample problems against IBM ILOG CPLEX and we obtain better performance using

a problem specific algorithm. We develop a heuristic algorithm by incorporating

memory limitations at the expense of solution quality to overcome memory issues of

the exact algorithm.

Keywords: Multiobjective, combinatorial optimization, knapsack problems.

v

ÖZ

EK KISITLARI OLAN ÖZEL ÇOK AMAÇLI KOMBİNATORYAL
OPTİMİZASYON PROBLEMLERİNE YÖNELİK YAKLAŞIMLAR

Akın, Banu

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Murat Köksalan

Ağustos 2012, 66 sayfa

Çok amaçlı kombinatoryal problemlerin tüm etkin çözümlerini bulan genel bir dal-

sınır algoritması geliştirdik. Bu genel algoritmayı baz alarak, çok amaçlı 0-1 sırt

çantası problemleri için özel bir algoritma sunduk. Bu algoritmanın IBM ILOG

CPLEX’le kıyasladığımız performansını ölçmek için rastgele oluşturduğumuz test

problemlerini çözdük ve probleme özgü algoritma kullanarak küçük problemler için

daha iyi sonuçlar aldığımızı gözlemledik. Büyük problemlerde gözlemlediğimiz

hafıza sıkıntısının üstesinden gelmek için, hafıza imkanlarına bağlı olarak sonuç

kalitesinden ödün verecek şekilde bir sezgisel yöntem geliştirdik.

Anahtar Kelimeler: Çok amaçlı, kombinatoryal optimizasyon, sırt çantası

problemleri.

vi

To My Family

vii

ACKNOWLEDGEMENTS

Since I cannot find any words other than thanks fitting better to convey my gratitude,

I would simply like to thank to Prof. Dr. Murat Köksalan, not only for giving me a

second and then a third chance to accomplish a Master of Science degree but also for

inspiring me to apply for this graduate program in the first place.

I know I am lucky to have an unofficial co-advisor like Banu Lokman who could

listen to you, cheer you up, and explain a thesis of 88 pages in less than 30 minutes.

As for logistics support and friendship, I am grateful to Murat Ilıman and Hakan

Köseoğlu. Without Hakan’s support and encouragement, I am sure to run the first

successful instance would take months longer.

I would like to thank my colleagues for their support throughout the thesis. I am

aware to have a working environment surrounded with friends is a rare chance and I

appreciate it.

Last but not least, I thank my mother and father for their upraising and for being

there whenever I need.

viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ .. v

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS .. viii

LIST OF FIGURES .. xi

CHAPTERS

1. INTRODUCTION .. 1

2. LITERATURE REVIEW .. 3

2.1 MULTIPLE-OBJECTIVE COMBINATORIAL OPTIMIZATION 3

2.2 KNAPSACK PROBLEMS .. 4

3. THEORETICAL BACKGROUND .. 6

3.1 DEFINITONS ... 6

3.2 LOKMAN AND KÖKSALAN’S (L&K) APPROACH 7

4. A GENERIC EXACT BRANCH-AND-BOUND ALGORITHM FOR MOCO

 .. 11

4.1 PROPOSED EXACT ALGORITHM .. 11

4.2 IMPLEMENTATION: 0-1 KNAPSACK PROBLEM 15

4.2.1 The Horowitz-Sahni (H&S) Algorithm .. 17

4.2.2 The Martello-Toth (M&T) Algorithm .. 18

4.2.3 Proposed Exact Algorithm .. 19

ix

5. A GENERIC HEURISTIC BRANCH-AND-BOUND ALGORITHM FOR

MOCO ... 27

5.1 PROPOSED HEURISTIC ALGORITHM .. 27

5.2 PROPOSED HEURISTIC ALGORITHM: IMPLEMENTATION 29

6. ILLUSTRATIVE EXAMPLES .. 31

6.1 AN ILLUSTRATIVE EXAMPLE FOR THE EXACT ALGORITM 31

6.2 AN ILLUSTRATIVE EXAMPLE FOR THE HEURISTIC ALGORITM ... 37

7. COMPUTATIONAL EXPERIMENTS ... 41

7.1 RANDOMLY GENERATED KNAPSACK PROBLEMS 41

7.2 COMPUTATIONAL RESULTS ... 42

7.2.1 Proposed Exact Algorithm ... 42

7.2.2 Proposed Heuristic Algorithm ... 45

7.2.3 Variations and Discussion ... 50

8. CONCLUSION AND FURTHER RESEARCH ... 55

REFERENCES ... 56

APPENDICES

A. GENERIC HEURISTIC ALGORITHM .. 59

B. HEURISTIC ALGORITHM – MOKP ... 62

x

LIST OF TABLES

TABLES

Table 1 Lower Bounds and Corresponding Non-Dominated Solutions to Problem P2

 .. 32

Table 2 Lower Bounds and Corresponding Solutions to Problem P2 (Δ=65) 37

Table 3 Comparison of Exact Algorithm (n=3) ... 43

Table 4 Comparison of Exact Algorithm (n=4) ... 44

Table 5 Comparison of Heuristic Algorithm (n=3) ... 48

Table 6 Comparison of Heuristic Algorithm (n=4) ... 49

Table 7 Computational Results for Altering Objective i ... 53

xi

LIST OF FIGURES

FIGURES

Figure 1 All alternative locations for the next non-dominated vector 8

Figure 2 Lower bound constraints for the sample vector set 9

Figure 3. Modified Branch-and-Bound Procedure... 15

Figure 4 Branch-and-Bound Tree for problem P2 (Exact) 34

Figure 5 Partial Tree to Solve Step 2.1 (Exact) .. 35

Figure 6 Branch-and-Bound Tree for problem P2 (Heuristic) 38

Figure 7 Partial Tree to Solve Step 2.1 (Heuristic) ... 39

Figure 8 Illustrative Biobjective Case: Hypervolume for Q 46

1

CHAPTER 1

INTRODUCTION

In the last decades, interest in multi-objective decision making research area has

increased. As they represent the real life problems better than classical single-

objective models, they are harder to solve with the increasing complexity as a

consequence. With Moore’s law in effect, improvements in computational capability

of hardware have caused more researchers to dig into multi-objective decision

making and gave courage to deal with more than 2 even 3 objectives.

Among multiple criteria decision making problems (MCDM), multiple objective

combinatorial optimization (MOCO) problems are widely studied since they

represent many real life cases with integer decision variables like scheduling,

assignment, budgeting, etc. As, single objective cases are already NP hard problems,

finding the efficient frontier for MOCO versions is a difficult task. As we discuss in

the literature review chapter, studies usually focus on problem specific exact

algorithms aiming to find all efficient solutions or generic heuristic algorithms

aiming at approximating the efficient frontier.

We propose a generic exact branch-and-bound algorithm to find all non-dominated

solutions based on Lokman and Köksalan (2012). In order to implement the

algorithm, we select multi-objective 0/1 knapsack problem with single knapsack

because many real life problems can be reduced to knapsack problems, such as bin-

packing, subset sum, etc. We compare the algorithm with Lokman and Köksalan

(2012) and within the memory limitations of branch-and-bound, we observe

improvement in terms of computational time.

2

As the computational complexity is an important issue for the exact algorithms, we

also propose a heuristic approach by modifying the exact generic algorithm with a

delta approach. We also use the same type of knapsack problems for computational

experiments. Although we use a constant delta for computational experiments, with

varying delta, one can grasp the sections of the solution space in which the decision

maker is more interested. We use the hypervolume indicator suggested by Zitzler and

Thiele (1998) to compare the performance of the heuristic algorithm relative to the

efficient frontier. We observe good diversity and closeness of the solutions found as

long as the memory limitations are not breached.

We look at the literature in Chapter 2 to see the approaches used for multiobjective

combinatorial optimization (MOCO) problems and single and multiobjective

knapsack problems as a subset of MOCO. Lokman and Köksalan (2012) propose a

method for finding all efficient solutions of MOCO problems which is discussed in

Chapter 3. As their approach is generic, we propose a generic branch-and-bound

procedure to complement their algorithm in Chapter 4 and develop a problem

specific branch-and-bound procedure for knapsack problems. To overcome the

limitations of the exact algorithm, we suggest a heuristic approach in Chapter 5. We

present the experimental results for both of the algorithms on randomly generated

knapsack problems in Chapter 7 and discuss their variations. We finally conclude our

research in Chapter 8.

3

CHAPTER 2

LITERATURE REVIEW

2.1 MULTIPLE-OBJECTIVE COMBINATORIAL OPTIMIZATION

As the multiple-objective optimization gains popularity, variations of approaches

studying MOCO increase as well. An extensive survey of MOCO is presented by

Ehrgott and Gandibleux (2000). Some aim to find all efficient solutions to a given

MOCO problem and prefer exact approaches despite of computational complexity

and yet some others prefer approximation methods despite of loss of precision. Due

to the complexity issues, exact algorithms usually are problem specific and deals

with bi-objective or tri-objective problems. Ehrgott and Gandibleux (2000) state

many exact approaches for MOCO are extensions of the single objective versions.

However, Gavanelli (2002) and Lukasiewycz et al. (2007) develop generic exact

multi-objective algorithms not based on single objective versions.

Sylva and Crema (2004) propose a generic exact algorithm to find all efficient

solutions by implementing iterative method for multiple objective integer linear

programs. They utilize binary variables to add new constraints according to the

results obtained by previous iterations. Later, Sylva and Crema (2007) studied larger

problems by modifying their algorithm and discarding the aim for finding all

efficient solutions. Lokman and Köksalan (2012) propose improvements on their

model by reducing the complexity and utilizing efficient methods for keeping of

information. Their algorithm is discussed in more detail in section 3.2.

4

Among the heuristic approaches, one of the most popular one is genetic algorithms.

Evolutionary approaches used for multiobjective problems are extensively studied by

Deb (2001). Very promising evolutionary algorithms (EAs) like PESA (Corne et al.,

2000), NSGA II (Deb et al., 2002) and SPEA2 (Zitzler et al., 2001) have gained

popularity in the last decade.

Due to the complexity of MOCO, some other approaches do not aim to find all

efficient solutions but focus on decision maker’s (DM) preferences and tries to find a

subset of efficient solutions the DM might be interested in such as Köksalan and

Phelps (2007).

Introduction of heuristic methods implies the need for a performance indicator in

terms of closeness and diversity. Hypervolume metric suggested by Zitzler and

Thiele (1998) is widely used for this purpose. A detailed description of the method is

discussed in section 7.2.2.

2.2 KNAPSACK PROBLEMS

Being one of the basic problems in combinatorial optimization, both single-objective

and multi-objective versions of the knapsack problem are widely studied. Martello

and Toth have published a book named Knapsack Problems (KP), Algorithms and

Computer Implementations in 1990 and it is practically the most cited book in this

subject. They extensively study different variations of single-objective KP, including

bin-packing, subset-sum, and multiple knapsack problems. They also study exact

approaches like dynamic programming and branch-and-bound algorithms for

different variations in addition to the approximate approaches like greedy and

probabilistic algorithms. For the single-objective 0-1 KP they propose an improved

branch-and-bound algorithm based on another branch-and-bound algorithm proposed

by Horowitz and Sahni (1974).

Similar to the single objective versions, multiobjective knapsack problems (MOKP)

are favorite subjects for studying. Most of the studies are specifically developed for

the biobjective case. Ulungu and Teghem (1994) propose two-phases methods for

finding all efficient solutions and Visee et al. (1998) improves the method for

5

MOKP. Like many two-phases methods, they find the supported non-dominated

solutions in the first phase and find the rest using information obtained from the first

phase. Klamroth and Wiecek (2000) propose a dynamic programming approach

while and Gandibleux and Freville (2000) utilize a tabu search approach for MOKP.

In the recent years, the number of studies developed for two or more objective cases

has increased. Ulungu et al. (1999) extend their research towards heuristic methods

like MOSA using a simulated annealing approach. Although their method is generic

for two or more objectives, they show the results for the biobjective case. Zitzler and

Thiele (1999) propose an EA for MOCO. They present benchmark problems for

multi-objective multiple knapsack problems with 2, 3 and 4 objectives. These

problems are widely used on generic algorithms, e.g. NSGA-II, SPEA2, and PESA.

6

CHAPTER 3

THEORETICAL BACKGROUND

We propose a branch-and-bound based approach using the algorithm proposed by

Lokman and Köksalan (2012) for multi-objective combinatorial optimization

problems. So, we define the basic concepts and models on which we base our

proposed algorithm.

3.1 DEFINITONS

A generic MOCO problem can be defined as:

 

m

n

Zx

ts

xfxfxf



..

)(),...,(),(max"" 21

 (1: MOCOP)

where

)(xf j is the jth objective function of a total number of n objective functions.

 x represents the decision vector and is an element of decision space m .

Maximization of the objective function is denoted in quotation marks due to the fact

that MOCO problems generally do not have a unique best solution as the objectives

usually conflict with each other.

An objective function vector))ˆ(),...,ˆ(),ˆ((21 xfxfxf n is dominated by

))(),...,(),((21 xfxfxf n if there exist two distinct solutions x and x̂ satisfying

jxfxf jj )ˆ()(and Xxxfxf ii  ˆ)ˆ()(for at least one i.

7

In this case, x̂ is defined as an inefficient solution.

If no such solution vector x exists,))ˆ(),...,ˆ(),ˆ((21 xfxfxf n is said to be

nondominated and x̂ is an efficient solution.

If there does not exist any solution x satisfying)ˆ()(xfxf ii  , then x̂ is said to be

weakly efficient. The set of weakly efficient solutions contains all efficient solutions

and possibly some special inefficient solutions.

3.2 LOKMAN AND KÖKSALAN’S (L&K) APPROACH

Lokman and Köksalan (2012) develop a new approach to find all efficient solutions

to any given MOCO problem. They improve the algorithm proposed by Sylva and

Crema (2004) with two algorithms. We base our proposed approach on the second

algorithm they develop. Hence, we use Lokman and Köksalan’s algorithm to denote

Algorithm 2 they developed.

The algorithm uses a systematical approach to find all the nondominated vectors by

converting the multi-objective problem (MOCOP) to a single objective problem with

side constraints. The feasible solution space of (MOCOP) is divided into several

subspaces according to the information gathered by previous steps of the algorithm.

So the MOCOP is modified to:

ijlbxf

Zx

ts

xfxfz

jj

m

ij
ji




 


)(

...

)()(max 

 (2: MOCOM)

First, one of the objectives (objective i) is selected to be the major objective function

in the single-objective case. Epsilon (ε) is a small enough number multiplied by the

remaining objective functions to prevent the method yielding weakly efficient

solutions. Then, MOCOM is solved at each step of the algorithm with different lower

bounds on remaining objective functions. These lower bounds are determined

according to the non-dominated objective vectors obtained in the previous steps.

8

In order to illustrate the approach, also assume we have already obtained

nondominated objective vector set of {(150, 160, 190), (106, 210, 174), (218, 159,

142)} so far for a 3-objective MOCOP as defined in section 3.1. Also, without loss

of generality assume third objective is selected to be objective i. In this case, we can

sort the vectors in the non-decreasing order according to one of the remaining

objective values. We arbitrarily choose first objective and sort the non-dominated

vectors accordingly as shown in Figure 1. If there exists at least one more non-

dominated vector, it should be placed in one of the locations indicated by arrows.

Arrows show the potential locations for the next non-dominated vector according to

its first objective value. Squares show which objective value should be used to

determine the lower bound on the first objective. Similarly, dotted circles show the

vectors to be considered for determination of the lower bound on the second

objective.

(106, 210, 174)

(150, 160, 190)

(218, 159, 142)

(106, 210, 174)

(150, 160, 190)

(218, 159, 142)

(106, 210, 174)

(150, 160, 190)

(218, 159, 142)

(106, 210, 174)

(150, 160, 190)

(218, 159, 142)

Figure 1 All alternative locations for the next non-dominated vector

As it is already sorted in non-increasing order, only the last vector above of the arrow

is considered for the first objective. Since squares guarantee the candidate not to be

9

dominated by the ones above the arrow, only vectors below the arrow are considered

for the second objective.

For each location, in order to hold the non-dominance requirements, one can

determine the corresponding lower bounds in MOCOM. Since the vectors are

already sorted in non-decreasing order for the first objective, first location indicates a

better solution than the other vectors in terms of the second objective. If a vector in

the second location exists, it should be better than the first vector in terms of the first

objective and better than the rest of the list in terms of the second objective. Other

cases can be analyzed similarly.

Corresponding lower bound constraints in MOCOM form of the above problem are

given in Figure 2.

1)159,160,210max()(2 xf

1106)(1 xf

1)159,160max()(2 xf

1150)(1 xf

1159)(2 xf

1218)(1 xf

Figure 2 Lower bound constraints for the sample vector set

Although the number of cases increases with the increasing size of the list, Lokman

and Köksalan (2012) show that at most two new MOCOM models are needed to be

solved at each step, regardless of the list size. Their algorithm starts with no lower

bounds on any of the objectives and proceeds according to the solution obtained. By

populating the list one by one, Lokman and Köksalan eliminate the lower bound

combinations that are already solved. Also, keeping the lower bounds resulting in

infeasible solutions, the same or tighter lower bounds can be eliminated without

solving new MOCOM models. In order to solve the models, they use IBM ILOG

CPLEX software.

10

An illustrative example is studied in section 6.1 and Table 1 shows the complete list

of non-dominated vectors in the order they are obtained along with their

corresponding lower bound values.

This approach has been extended to four or more objectives. However, as the number

of objectives increases, the complexity also increases and more than one sorted list

should be kept. Details of the approach can be found in Lokman and Köksalan

(2012).

11

CHAPTER 4

A GENERIC EXACT BRANCH-AND-BOUND
ALGORITHM FOR MOCO

The main motivation behind the proposed approach is that problem specific models

can improve the performance of the above mentioned Lokman and Köksalan’s

approach for the multi-objective combinatorial optimization problems. Being one of

the most studied approaches for single objective combinatorial problems, we picked

the branch-and-bound algorithm to modify for multi-objective case using the L&K

approach. In addition to being widely used and studied, the structure of the

optimization model solved at each step of L&K approach leads branch-and-bound

based problem specific algorithms to be easily modified to represent the additional

constraints of L&K approach unlike problem specific dynamic programming

algorithms, network simplex algorithms, etc.

4.1 PROPOSED EXACT ALGORITHM

A branch-and bound procedure for any given single objective combinatorial

optimization problem can be described as follows:

Without loss of generality assume the problem is a maximization problem over the

feasible region of S.

 1,0

...

)(max




kx

Sx

ts

xf

 (3)

12

Any given branch-and-bound procedure divides the set Zm into subsets or

subproblems (branching) and computing the relevant upper bound and comparing

with the best solution found so far (lower bound) to decide if each subset has a

possibility to yield a better solution or not (bounding). After exhausting all the

possible subproblems, best solution found so far is the optimal solution to the

problem (3). The procedure can be represented as a tree and subproblems are

represented as nodes.

In order to solve the multi-objective combinatorial optimization problem using

Lokman and Köksalan’s algorithm, we should solve the MOCOM model defined in

section 3.2 in each step.

As the structure of the objective function remains the same as the single-objective

case, the feasible set now has side constraints (actually lower bounds) on remaining

objective functions. We can remove the side constraints and keep the branching

phase the same (divide set of m into subsets) and add those constraints as

additional lower bound requirements to the bounding phase. Due to the similar

structure of side constraints to the objective function, same method for computing

upper bounds on the single objective can be used. By definition Ujq, upper bound of

zj for subset m
q , is greater than or equal to the best value of zj for subset m

q . As a

requirement of the problem, any feasible solution, including the optimal solution,

should satisfy the side constraints, i.e. should be greater than or equal to the relevant

lbj values. Hence, any subset which does not satisfy all lower bound constraints of

jjq lbU  cannot lead to a feasible solution.

Regarding problem (4), for any subset m
q and for any objective j other than objective

i, let }:)(max{* m
qjjq Zxxzz 

By definition, for all m
qZx : *

jqjq zU 

Also, for all feasible m
qZx : jjjq lbzz * for all j. In other words, if m

qZx 

satisfies jj lbz  for all j, x is feasible. Note that jj lbz  constraints are actually the

side constraints of the modified problem MOCOM.

13

Thus, for all feasible m
qZx , jjq lbU  should also be satisfied.

In short, any branch-and-bound algorithm for a single objective combinatorial

optimization problem can be adjusted to find all the non-dominated solutions of the

multiobjective version of the same problem. The modified algorithm is called for

each lower bound pairs determined by L&K approach. Without loss of generality,

assume that the model to be solved at each step is in the form of problem MOCOM

with positive coefficients. Branching (forward move), bounding (upper bound

calculation) and backtracking steps are the same as the branch-and-bound algorithm

to be modified. So, for each iteration in L&K approach:

Let A be the set of decision variables which are assigned to values. Let best solution

so far is LBi and lower bounds obtained from L&K algorithm are LBj (j≠i).

1. Lokman and Köksalan’s Algorithm: Calculate LBj according to L&K

algorithm.

If no further lower bounds are left to consider, STOP.

2. Initialization: Initially no decision variables are set: A={}

 Best solution LBi is set to 0.

Create first node and calculate respective upper bounds jqU .

3. If jj LBU  for all j,

go to step 4.

 else

 go to backtrack.

4. If no more decision variables are left to decide (Ac={}),

Update best solution as current solution and go to backtrack

else

14

Forward move: Create new node according to the original

algorithm’s set of rules. Update decision variable set A. Calculate

upper bounds and go to step 3.

5. Backtrack: Backtrack according to the original algorithm’s set of rules.

6. If all possible subproblems are considered

if best solution is greater than 0,

return objective function values of the best solution

(zj(best_solution)) and go to step 1.

else

 return infeasible and go to step 1.

else

 go to step 3.

The general procedure can be represented as the flow chart shown in Figure 3. Bold

lines indicate modifications to the original branch-and-bound procedure. Basically

the modified one calculates upper bounds for all objectives and initiates a

backtracking move whenever one or more lower bound constraints are not satisfied.

15

Figure 3 Modified Branch-and-Bound Procedure

4.2 IMPLEMENTATION: 0-1 KNAPSACK PROBLEM

In order to implement the model to a specific combinatorial optimization problem,

we have chosen 0-1 Knapsack Problem (KP). It is a well studied problem with

different variations such as subset-sum, change-making, bin-packing, etc. As

indicated by Martello and Toth (1990), 0-1 KP represents many practical problems.

Also, by being one of the simplest combinatorial optimization problems, it is often

encountered as a subset while solving more complex problems. Due to these reasons,

we studied the 0-1 KP which can be represented as:

16

 1,0

..

max







k

k
kk

k
kk

x

Cxw

ts

xp

 (4: KP)

where pk denotes profit of item k,

 wk denotes weight of item k,

 C denotes capacity of the knapsack

xk is 1 if the item is selected and 0 otherwise.

Without loss of generality one can assume

i. pk, wk, and C are greater than 0.

ii. items are ordered according to their profit value per unit weight:

K

K

K

K

w

p

w

p

w

p

w

p






1

1

2

2

1

1 ...

iii. no item weighs more than the capacity:

kwC k 

For each step in L&K algorithm the problem is transformed to the following form:

 

kppp

where

x

ijlbxp

Cxw

ts

xpz

ij
jkikik

k

k
jkjk

k
kk

k
kik























1,0

..

max

 (5: KPM)

17

In this case, pjk denotes profit of item k for objective j. ikp denotes objective function

coefficients of KPM modified to prevent weakly efficient solutions. Again we

assume items are ordered according to their profit value (ikp) per unit weight (wk).

4.2.1 The Horowitz-Sahni (H&S) Algorithm

Horowitz and Sahni (1974) proposed a basic algorithm to solve single-objective 0-1

knapsack problems. Considering the problem KP defined in (4.3), the Horowitz-

Sahni algorithm flows as follows:

Forward Step: In this step items are inserted one by one in the ascending order as

long as the capacity is not exceeded. Since the items are already sorted according to

assumption (ii) in (4.3), this step represents a typical greedy move. Upper bound is

compared to the best solution so far. If the upper bound indicates the possibility of a

better solution, move forward. Else, perform backtracking.

Backtracking Step: Remove the last item inserted. Perform forward move.

When no items are left to be considered, the procedure is terminated. Best solution so

far is the output and hence the solution of the problem.

Upper Bound: The upper bound used by Horowitz and Sahni is obtained by the

linear programming relaxation of the integer programming problem and also known

as the Dantzig’s bound.

In this case the problem KP becomes continuous knapsack problem (KPC):

10

..

max







k

k
kk

k
kk

x

Cxw

ts

xp

 (6: KPC)

The optimal solution to the continuous problem is proven to be:

18





























k

j
j

r

k
k

r
r

k

k

Cwkr

wCC

where

w

C
x

Krkforx

rkforx

1

1

1

:min

,...,10

1,...,11

 (7)

The proof can be found in Martello and Toth (1990).

Since the items are already sorted according to assumption (iii) in (4.2), item r is the

first item that does not fit into the knapsack. This item is called the critical item.

Since partial inclusions are permitted with LP relaxation, remaining capacity is

partially filled with the critical item to find the optimal solution.

As the LP relaxation is a natural upper bound for an IP problem, the upper bound

used by Dantzig (1957) can be computed by finding the critical item with a

complexity of O(n). As the profit and decision variables are integers for KP, largest

integer not greater than the optimal solution value of KPC can be used as the upper

bound of KP:

















 







 r

r
r

k
k

r

k
kk w

p
wCxpU

1

1

1

1

 (8)

4.2.2 The Martello-Toth (M&T) Algorithm

The algorithm proposed by Martello and Toth (1977) is an improvement on the H&S

method. Basically they propose four improvements on upper bound, consecutive

insertion of items, eliminating lower branches and parametric calculation of upper

bounds.

1. Upper Bound: Instead of Dantzig’s bound, they propose a tighter upper

bound on KP using an inclusion and exclusion of the critical item.

19

 


















































 

 


 








 






1

1 1

1
1

1

1

1

1 1

1
1

1

0

10 ,max

r

k r

r
r

k
krrk

r

k r

r
r

k
kk

w

p
wCwppU

w

p
wCpU

where

UUU

 (9)

Like the Dantzig’s bound in (4.3.1), item r is the critical item. U0 considers

the case of excluding the critical item from the solution and fills the

remaining capacity with the next item. On the other hand, U1 includes the

critical item and removes a portion of the previous item proportional to the

excess in the capacity. The greatest of these bounds is an upper bound for KP.

Similar to Dantzig’s bound, complexity is O(n) for finding the critical item.

The Dantzig’s bound U' is dominated by U'' and a detailed proof for bounds

and domination can be found in Martello and Toth (1990).

2. Consecutive Insertion: Instead of inserting the items one by one during the

forward move, they propose to insert consecutive items building the upper

bound at once. As the H&S algorithm is a deep first branch-and-bound

algorithm, by eliminating mid nodes unnecessary branching and backtracking

are prevented.

3. Eliminating Lower Branches: Whenever the remaining capacity does not

allow any more items to be inserted, forward move excludes all the remaining

items. Thus, unnecessary branching and backtracking are again prevented.

4. Parametric Calculation of U'': Using some extra variables, the upper bound

computation effort for each node is improved with the information stored.

4.2.3 Proposed Exact Algorithm

Our main problem is KPM defined in (4.2). Similar to Martello-Toth algorithm, we

propose an algorithm based on Horowitz-Sahni algorithm. Due to the different

properties of KPM with respect to KP, our algorithm applies some improvements of

20

M&T and adds some modifications to fit the special properties of KPM. Main

differences to M&T procedure can be listed as:

1. Upper Bound: Dantzig’s bound is modified instead of the bound used in

M&T algorithm. As the problem KPM defined in (4.2) does not have integer

objective function coefficients (ikp), it is not possible to round the upper

bound to an integer value. However, the upper bounds for extra constraints

representing the other objective functions have integer profit coefficients.

Thus, Dantzig’s bound is valid for objective functions represented as

additional constraints.

Calculation of bound Uj is given in (9). rj denotes the critical item of

objective j. As the profit per weight is different for each objective, sequence

of the non increasing profit per weight is different for each objective. Since

the item having a greater
k

ik

w

p
 value is more preferable for objective j, this

sequence can be called a preference sequence. Preference sequence

assumption (ii) in (4.3) only holds for the objective z of KPM. For all other

objectives, the sequence should be calculated for once at the beginning and

the critical rj is calculated according to these preference sequences at each

subset. Since calculating the preferences is actually sorting in non-increasing

order, the complexity is O(n).

ijfor

ijfor

w

p
wCxp

w

p
wCxp

U

r

jr
r

k
k

r

k
kjk

r

jr
r

k
k

r

k
kjk

j

j
jj

j
jj








































































1

1

1

1

1

1

1

1

 (10)

Unlike M&T, for each node, not only the upper bound on objective z of

KPM (Ui) is checked for violations but also the other objective functions are

checked for upper bound violations using the Uj function(jj lbU ). Even if

21

the best solution so far is not greater than Ui, in the case of violations of

other bounds, backtracking step is applied.

2. Consecutive Insertion: Instead of using consecutive insertion method of

M&T, we add nodes one by one, similar to H&S. Since the Lokman and

Köksalan’s algorithm searches the same solution space with different lower

bound values obtained by non-dominated solutions found so far, the same

branch-and-bound tree is searched for a different optimal solution in each

step. Since there is only one optimal solution to KP, the consecutive insertion

is an improvement for M&T procedure. However, we observed on sample

problems, the nodes that are avoided to be created by consecutive insertion

are eventually needed to be created in later steps.

3. Eliminating Lower Branches: As this improvement is for the capacity

constraint which is the same in KP and KPM, we also eliminate the lower

branches when the remaining current capacity is less than the weight of any

of the remaining items.

Forward move and backtracking are the same as the M&T except for the above

mentioned points. Optimal solution is found when backtracking is no more possible,

i.e. no unconsidered node is left. This solution is one of the non-dominated solutions

of the multi-objective KP. All objective functions (zj) are calculated according to the

optimal solution and considered as part of determining the next set of lower bounds

of lbj according to the Lokman and Köksalan’s algorithm.

The general flow for the modified knapsack problem (KPM):

pjk, ikp , wk, C, lbj are as defined in KPM in (4.2). Uj is as defined in (4.2.3).

Variable l (level) indicates which item is being considered to include or exclude

from the knapsack. Variable t is used for finding the level which backtrack step

will jump. best_x is the vector to save best solution so far, best_z is the vector

used to calculate the output of the subroutine, and min_w is the vector used to

eliminate lower branches. It is used to keep the minimum weight among the

items outside of the current solution. cur_x and cur_z are used to keep track of

22

the current solution. cur_c is the residual capacity after inclusion of the items in

the current solution.

23

1. Initialization I: These steps will be performed only once.

1.1. Find preference sequence for each j other than i (prefjk: k
th position in the

preference sequence of objective j).

1.2. Find minimum weight for each level ( lkww kl  :minmin_). This

information will be used for eliminating the lower bounds.

1.3. Insert first node. Calculate and save Uj for all j.

2. Lokman and Köksalan’s Algorithm: Calculate lbj according to L&K

algorithm.

If no further lower bounds are left to consider, STOP.

3. Start Subroutine

Initialization II: Following steps will be performed before the branch-and-

bound procedure for each step of L&K algorithm, i.e. for each set of lower

bounds.

3.1. Initialize variables

0:

1:

:_

0:_

0:_

0:_

0:












t

l

Cccur

jzcur

kxcur

kxbest

lb

j

k

k

i

3.2. If jj lbU  for all j does not hold for at least one objective, go to 5.1

(backtrack).

24

4. Forward Move

4.1. while (lwccur _ AND ijforlbU jj )

do

1:

:

 :

:

1:_










ll

pzcurzcur

ijforpzcurzcur

wccurccur

xcur

ilii

jljj

l

l

If not already created for current solution (cur_x), insert

new node on level l, calculate and save Uj for all j

If jj lbU  for all j does not hold for at least one objective, go to 6

(backtrack).

4.2. If lwccur min__  (no more insertions are possible)

Kl :

If not already created for current solution (cur_x), insert new node on

level l, calculate and save Uj for all j

4.3. If current level, which is critical item, is not the last item, exclude it from

the knapsack

If Kl 

If not already created for current solution (cur_x), insert new node on

level l, calculate and save Uj for all j

1:  ll

If jj lbU  for all j does not hold for at least one objective, go to 6

(backtrack).

4.4. If current level (critical+1) is not the last item, repeat forward move.

If Kl  go to 4 (forward move).

25

4.5. If Kl 

If lwccur _ (If the last item is small enough, include in the

knapsack)

ilii

jljj

l

l

pzcurzcur

ijforpzcurzcur

wccurccur

xcur








:

 :

:

1:_

If not already created for current solution (cur_x), insert

new node on level l, calculate and save Uj for all j

else (If the last item is not small enough, exclude from the

knapsack)

If not already created for current solution (cur_x), insert

new node on level l, calculate and save Uj for all j

5. Update Best Solution So Far

5.1. If jj lbU  for all j

kxcurxbest

zcurlb

kk

ii




:

_:

If 1:_ Kxcur (If last item is included, throw it out before backtrack)

iKii

jKjj

K

K

pzcurzcur

ijforpzcurzcur

wccurccur

xcur








:

 :

:

0:_

26

6. Backtrack

6.1. Find the item to throw out of the knapsack

Find t, }1_:max{  kxcurlkt

If 0t

tl

pzcurzcur

ijforpzcurzcur

wccurccur

xcur

itii

jtjj

t

t










:

:

 :

:

0:_

If not already created for current solution (cur_x), insert new node

on level l, calculate and save Uj for all j

go to 4 (forward move).

else

go to 7 (subroutine return).

7. Subroutine Return

7.1. If kxbest k  0_

No feasible solutions. return infeasible.

else

return  
k

kjkj jxbestpzbest __

go to 2

27

CHAPTER 5

A GENERIC HEURISTIC BRANCH-AND-BOUND
ALGORITHM FOR MOCO

As the number of objectives and number of variables increase, finding all of the

efficient points gets harder. Also, decision maker might be interested in a specific

region of the efficient frontier or might not be interested in solutions too close to

each other. Because of these reasons, heuristic approaches are developed.

To overcome the memory drawback of branch-and-bound due to increase in size, we

propose a heuristic approach by modifying the exact algorithm. The memory

problems are discussed more deeply in computational results section.

5.1 PROPOSED HEURISTIC ALGORITHM

Moving away from the purpose of finding the entire efficient frontier, we propose a

delta approach to obtain a relatively well distributed set of vectors, hopefully very

close to the efficient frontier.

We modify the exact algorithm in two ways:

1. Delta distance: We make use of the systematical method of Lokman and

Köksalan’s approach for obtaining the efficient frontier. While finding the

non-dominated vectors one by one, the bounds on the objectives are getting

stricter, causing the feasible space for the problem MOCOM defined in

section 3.2 to get smaller. Thus, the optimum solution of MOCOM found in

the previous iteration can be also thought as a natural upper bound on the

objective function of MOCOM for the current iteration. Using this

28

information, we propose to settle for the first feasible solution provided that it

is at most delta units away from the previous solution. If the optimal solution

to MOCOM at this iteration is even farther away than delta distance, the

algorithm behaves like the original one as long as the second modification is

not violated.

2. Maximum number of nodes: Due to the reasons to be discussed deeper in

computational results section, we try to limit the memory usage of the

algorithm, i.e. the number of nodes. Instead of limiting it based on the size of

the problem, we propose to limit the maximum number of nodes to be created

by the availability of the memory resources. Memory availability is an input

and as the size of a single node is known, maximum number of nodes can be

set and the algorithm can be adjusted to immediately return the best solution

found up to that point. If no such solution is found, it returns infeasible. After

that point, each iteration is allowed to search the tree nodes already created or

create new nodes up to a number. After that limit is reached, the iteration is

terminated similar to the previous condition.

These modifications are reflected to the algorithm defined in section 4.1 as follows:

Let UB be the value of the last feasible solution found by Lokman and Köksalan’s

algorithm in the previous iterations. It will be set to a sufficiently large number

initially. An additional delta condition is added to the step 4, where the best solution

found so far is updated. When the condition ii LBUB  holds, the branch-and-

bound algorithm returns the current solution as the optimal solution to MOCOM.

To limit the number of nodes, let flag be the binary variable indicating if the

predetermined limit L1 is exceeded and let L2 be the limit for each iteration after the

limit L1 is exceeded. In order to control those limits, we need two counters, count_all

(for total number of nodes created) and count (for number of nodes created in the

current iteration). Initially those variables are also 0. If the total number of nodes

does not exceed L1 yet, backtracking step is modified to return the best solution so

far when this limit is reached (1_ Lallcount ). flag is set to 1 and iterations are

29

limited to L2 nodes at most from that point on. Similarly, the algorithm returns the

best solution found so far when this limit is reached (2Lcount ).

The complete heuristic algorithm of MOKP is given in Appendix A.

5.2 PROPOSED HEURISTIC ALGORITHM: IMPLEMENTATION

These modifications are reflected to the proposed exact algorithm for the

multiobjective 0-1 Knapsack Problem defined in section 4.2.3. Only the steps

considered in the previous section (update best solution and backtracking) are

affected. The algorithm returns the best solution so far as the optimal solution when

it is delta away from UB. Until the limit L1 is reached, the backtracking step is the

same as the exact algorithm. Once it is hit, the algorithm limits the number of new

nodes to be created by L2.

The complete heuristic algorithm of MOKP is given in Appendix B.

As long as the limit L1 is not reached, the heuristic algorithm’s complexity is

exponential similar to the exact approach. When the limit is reached we simply

prematurely terminate the branch-and-bound search. This limit is a given constant

and it is independent from the number of nodes.

The heuristic algorithm is sensitive to the value of delta. In the case when we do not

limit the heuristic algorithm, as delta gets smaller, the heuristic algorithm is expected

to behave like the exact algorithm since it will not be able to find any feasible

solutions delta units away from UB. When delta gets larger, the heuristic algorithm

settles for poorer feasible solutions and we expect to miss a good portion of the non-

dominated solutions and obtain dominated solutions far away from the efficient

frontier. Delta can be thought of as a way of determining the decision maker’s

interest in the solution space, i.e. which distance (in objective i) between the

solutions is sufficient for her to represent the solution space. With the introduction of

dynamic delta altering in each iteration, different portions of the solution space can

be searched more intensely than others, depending on the decision maker’s

preferences. In computational experiments, section 7.2.2, an approach to determine a

constant delta is suggested.

30

At each iteration, the solution obtained might be the actual non-dominated solution

of the corresponding L&K lower bounds, might be another non-dominated solution

at most delta units away from the previous one, or might be a dominated solution.

Thus, there is no guaranteed performance for the heuristic algorithm. Even without

the limits in force, one can get delta units away in objective i from the efficient

frontier. As the UB, objective i value of the solution obtained from the previous

iteration, might be a dominated solution itself, the algorithm might actually be

getting delta units away from the efficient frontier at each iteration in the worst case.

Since the algorithm only checks the feasibility condition on other objectives,

assessing a performance measure on those is not possible either.

31

CHAPTER 6

ILLUSTRATIVE EXAMPLES

6.1 AN ILLUSTRATIVE EXAMPLE FOR THE EXACT ALGORITM

In order to illustrate the model more clearly, we consider the following 3 objective 0-

1 knapsack problem (P1) with 6 items:

 

6543213

6543212

6543211

654321

321

 454937974053

174482458332z

 889615286359z

1,0

112 525124562021

..

},z, {max""

xxxxxxz

xxxxxx

xxxxxxwhere

x

xxxxxx

ts

zz

k










 (11: P1)

According to Lokman and Köksalan’s algorithm, we take z3 as the primary objective

to be maximized while satisfying lower bounds on z1 and z2. Also we take epsilon (ε)

as 0.0001 to prevent the method yielding weakly efficient solutions. So the model to

be solved in each step becomes:

32

 1,0

174482458332

 889615286359

112 525124562021

..

 45.0105

49.01437.009797.007340.014653.0091z
max

2654321

1654321

654321

6

54321












kx

lbxxxxxx

lbxxxxxx

xxxxxx

ts

x

xxxxx

 (12: P2)

where the lower bounds and corresponding solutions are given at Table 1.

According to Lokman and Köksalan’s algorithm, steps which are previously

calculated (3.3, 4.1, 4.2, 5.1, 5.4, 5.5, 6.1 and 6.6) are obviously not solved again.

Also, step 6.3 and 6.4 suggest a stricter lower bound on z1 than step 6.2. Since step

6.2 yielded an infeasible solution, stricter lower bounds cannot lead a feasible

solution. Thus, they are not solved either.

Table 1 Lower Bounds and Corresponding Non-Dominated Solutions to Problem P2

Step lb1 lb2 Solution (z1, z2, z3)

1.1 0 0 (150, 160, 190)

2.1 0 161 (106, 210, 174)

2.2 151 0 (218, 159, 142)

3.1 0 211 Infeasible

3.2 107 161 (137, 197, 130)

3.3 151 0 Same as step 2.2

4.1 0 211 Same as step 3.1

4.2 107 161 Same as step 3.2

4.3 151 160 (174, 209, 126)

4.4 219 0 Infeasible

5.1 0 211 Same as step 3.1

5.2 107 198 (174, 209, 126)

5.3 138 161 (174, 209, 126)

5.4 151 160 Same as step 4.3

33

Table 1 (cont’d)

Step lb1 lb2 Solution (z1, z2, z3)

5.5 219 0 Same as step 4.4

6.1 0 211 Same as step 3.1

6.2 107 210 Infeasible

6.3 138 210 Infeasible (since 6.2 is infeasible)

6.4 151 210 Infeasible (since 6.2 is infeasible)

6.5 175 160 Infeasible

6.6 219 0 Same as step 4.4

Figure 4 shows the complete branch-and-bound tree used to solve problem P1 with

the suggested method. P1 is converted to P2 according to Lokman and Köksalan’s

algorithm. Nodes are numbered according to their creation sequence. Different line

styles show in which step the nodes are created: 10 new nodes in step 1.1 including

the initial node, 21 new nodes in step 2.1, 2 new nodes in 2.2 and 5 new nodes in step

3.1. All other steps are calculated without creation of new nodes. Upper bounds on

objectives z1, z2 and z of P2 are shown as (U1, U2, U3) near the nodes. In order to

save space, only the integer part of the upper bound on z is shown unless it is at the

last level.

Since the procedure starts with no lower bounds on the objectives z1 and z2, in step

1.1 lb1 and lb2 are equal to 0. In order to demonstrate the procedure more clearly, we

consider step 2.1 in Figure 5. Similar to Figure 4, line styles shows in which step the

nodes are created and decimal part of U3 is not shown for partial solutions. However,

this time node numbers indicate the sequence the nodes are visited. If a node violates

an upper bound constraint, the constraint violated is shown under the upper bound

information. The model to be solved in step 2.1 is:

34

 1,0

161174482458332

0 889615286359

112 525124562021

..

 45.0105

49.01437.009797.007340.014653.0091z
max

654321

654321

654321

6

54321












kx

xxxxxx

xxxxxx

xxxxxx

ts

x

xxxxx

 (13)

The lower bound on z2 is 0 in this step and since all coefficients of our binary

variables are positive, this constraint is redundant.

In this regard, nodes 4, 10, 11, 16, 20, 21, 22, 28 and 30 are eliminated due to the fact

that upper bound values on z2 are lower than the lower bound value of 161. First

feasible solution to the problem P2 is found at node 7. At node 27, a better feasible

solution is found and the best solution so far is updated. Node 30 represents the

partial solution of x1=x2=0 (the rest is yet to be decided) and it does not meet U2

constraint and there are no items left to exclude from the knapsack in this partial

solution. Thus, the search is terminated and the best solution so far is the solution

represented by node 27 (only items 2, 3 and 4 are included in the knapsack).

Corresponding non-dominated objective vector is (106, 210, 174).

35

 F
ig

u
re

 4
 B

ra
n

ch
-a

n
d-

B
ou

n
d

 T
re

e
fo

r
p

ro
b

le
m

 P
2

(E
xa

ct
)

36

z

 F
ig

u
re

 5
 P

ar
ti

al
 T

re
e

to
 S

ol
ve

 S
te

p
 2

.1
 (

E
xa

ct
)

37

6.2 AN ILLUSTRATIVE EXAMPLE FOR THE HEURISTIC ALGORITM

To illustrate the heuristic algorithm, problem P2 defined in section 6.1 is selected. As

the heuristic algorithm is actually developed to overcome memory issues, item size 6

is relatively too small for the delta approach. For illustrative purposes, we choose

delta as 65, which is an extremely large value for the size of the problem. Selection

method of delta is discussed along with computational results in section 7.2. As the

application of limits L1 and L2 is straightforward and they are not applied when the

problem size is small enough to be handled, we do not illustrate it with this example.

Table 2 Lower Bounds and Corresponding Solutions to Problem P2 (Δ=65)

Step lb1 lb2 Solution (z1, z2, z3)

1.1 0 0 (150, 160, 190)

2.1 0 161 (137, 197, 130)

2.2 151 0 (218, 159, 142)

3.1 151 160 (174, 209, 126)

3.2 219 0 Infeasible

3.3 0 198 (106, 210, 174)

3.4 138 161 (174, 209, 126)

4.1 0 211 Infeasible

4.2 107 198 (174, 209, 126)

4.3 107 210 Infeasible

4.4 175 160 Infeasible

In Table 2, similar to Table 1, lower bounds found by Lokman and Köksalan’s

algorithm are shown. However, with delta being 65, same bounds do not correspond

to the same solutions. As there does not exist any previous solution at the beginning

of the algorithm, first run will always return the first non-dominated vector same as

the exact version. So, we guarantee at least one non-dominated solution with this

heuristic algorithm as long as the limits are not breached. Since the z3 value of the

first solution is 190 and delta is 65, the algorithm settles for the first feasible solution

38

having a z3 value of at least 125.Thus, step 2.1 with a lower bound 161 on second

objective corresponds to the vector (137, 197, 130). Now the algorithm will settle for

the first solution having a z3 value of at least 65. In step 2.2, algorithm returns the

vector (218, 159, 142). If it did not find such a solution, it would behave like the

exact algorithm and finds the best feasible solution. Even though the algorithm does

not guarantee finding all non-dominated vectors, all of them are found with delta

being 65 since the problem size is small and number of feasible solutions is limited.

Complete branch-and-bound tree and step 2.1 are shown in Figures 6 and 7. Similar

to Figures 4 and 5, line styles shows in which step the nodes are created and numbers

shows the creation sequence for Figure 6 and visiting sequence for Figure 7. In

Figure 7, nodes created previously but not visited during this step are shown without

numbering.

39

 F
ig

u
re

 6
 B

ra
n

ch
-a

n
d

-B
ou

n
d

 T
re

e
fo

r
p

ro
b

le
m

 P
2

(H
eu

ri
st

ic
)

40

 F
ig

u
re

 7
 P

ar
ti

al
 T

re
e

to
 S

ol
ve

 S
te

p
 2

.1
 (

H
eu

ri
st

ic
)

41

CHAPTER 7

COMPUTATIONAL EXPERIMENTS

In order to compare our algorithms, we use Lokman and Köksalan’s algorithm using

IBM ILOG CPLEX optimization software (V12.3) on randomly generated sample

problems of multi-objective 0-1 knapsack problems. To the best of our knowledge

there are no other studies that present computational experiments on the type of

problems we work on. Many of the studies only consider two criteria (Visee et al.

(1998), Klamroth and Wiecek (2000)), some use multiple knapsack (Zitzler and

Thiele (1999), Deb et al., (2000), (Corne et al., 2000). Thus, we compare the exact

algorithm with L&K in terms of CPU seconds and we use hypervolume indicator for

the heuristic algorithm, as we know the efficient frontiers of the sample problems.

7.1 RANDOMLY GENERATED KNAPSACK PROBLEMS

Sample problems with n objectives and m items are generated in the following form:

 1,0

..

,...,,max"" 21















 

k

m

k
kk

m

k

m

k
knk

m

k
kkkk

x

Cxw

ts

xpxpxp

 (14)

where kx is the binary variable indicating whether the item k is included in the

knapsack (1) or not (0).

jkp is the profit of item k regarding objective j

42

 kw is the weight of item k

 C is the capacity of the knapsack and
a

w
C

m

k
k



 a is an integer to modify the size of the knapsack.

Uniformly distributed integers in the interval [10-100] are used for weight and profit

coefficients. Capacity of the knapsack is a portion of total weight of the items and

determined using the constant a.

All the computations are performed on a computer with 2.10GHz processor and 3.00

GB memory (RAM) of which only 1.50 GB is available for computations due to

operation system’s RAM requirements. As the number of variables increase, so does

the number of nodes needed in the branch-and-bound tree of the algorithm. This

causes an increase in the memory requirement. In order to be able to compare larger

problem instances with the exact algorithm, we modify the knapsack capacity and

make the comparison accordingly. For the heuristic version, no such modification is

needed.

7.2 COMPUTATIONAL RESULTS

7.2.1 Proposed Exact Algorithm

We have tested our proposed exact algorithm (A&K) for several variables with

number of objectives (n) being 3. As the approach is an exact method, we used CPU

time in seconds as a performance measure. Also, average CPU time per models

solved is examined. The comparison results can be seen in Table 3.

43

Table 3 Comparison of Exact Algorithm (n=3)

no. of

items (m)

Capacity

modifier

(a)

Random

Problem

no. of

models

solved

no. of

nondomina

ted vectors

CPU Time Spent for

Solution (sec)

A&K L&K

25 2 1 93 43 0.02 2.69

50 2

1 574 269 4.2 23.92

2 659 295 2.53 30.69

3 1050 519 9.3 74.34

4 677 313 1.11 30.93

5 734 348 1.48 36.07

75 4
2 1430 670 206.46 319.87

3 1552 778 152.82 191.06

100 10

1 830 374 21.42 55.77

2 1333 605 9.78 86.36

3 1053 467 12.53 69.17

4 1456 668 46.05 109.89

5 986 450 5.16 66.33

As it is expected, as the number of variables increases, we observe an increase in the

computational time to solve the problems for the same structure of capacity.

Considering the randomly generated knapsack model (15), feasible space of a given

problem can be reduced by setting lower capacity, i.e. increasing the capacity

modifier a. Due to memory issues we experience, we used this property of the model

to experiment on higher number of variables.

Similarly, we tested the exact algorithm for 4 objectives. Introducing a new objective

leads each node keeping one more upper bound information and thus increasing the

size of a node. Consequently, with a given memory size, the exact algorithm can

solve smaller problems before the memory issues take effect. However, the total

44

number of nodes for a given number of items is a constant and having extra upper

bounds on the nodes contributes to the elimination of subproblems represented by

that node. This effect can also be observed in Table 4 results where n=4. Run time of

the algorithm does not increase as much as the run time of L&K.

Table 4 Comparison of Exact Algorithm (n=4)

no. of

items (m)

Capacity

modifier

(a)

Random

Problem

no. of

models

solved

no. of

nondomina

ted vectors

CPU Time Spent for

Solution (sec)

A&K L&K

25 2

1 282 54 0.01 44.07

2 2176 268 0.72 526.58

3 1095 145 0.13 151.72

4 1526 172 0.23 174.83

5 3543 429 1.78 359.38

50 6

1 2090 284 0.99 306.71

2 2138 302 1.09 277.68

3 236 46 0.03 19.83

4 3505 475 2.48 530.68

5 2740 333 2.40 349.08

100 20

1 3430 447 3.67 625.56

2 3230 460 2.41 748.21

3 7026 789 18.47 1924.54

4 4823 628 7.79 1063.98

5 4690 557 6.20 1323.30

In general, proposed exact algorithm solves the problems quicker. However, it is

hard to observe a pattern since we try to benefit from some special cases like lower

branch elimination and some of the randomly generated problems possessing

features in favor of our algorithm can be solved very quickly compared to L&K.

45

7.2.2 Proposed Heuristic Algorithm

Proposed heuristic algorithm is also tested using the randomly generated knapsack

problems defined in 7.1.

Parametric variables defined in section 5.2 are Δ, L1 and L2. These variables are

determined as follows:

Determining the value of Δ actually determines how distant we want our solutions to

be in objective i. Since it is relatively easy to find the extreme points of the efficient

frontier, we solve the model KPC with lbj values being 0. In other words, we solve

the KPC without any side constraints and we solve it selecting each objective as

objective i one by one. We construct the payoff table and obtain maximum and

minimum values of the original objective i. Difference between these values are

divided by 100 to obtain the value of Δ. Payoff table does not guarantee obtaining the

actual minimum value of objective i. On the other hand, we compared this method to

using actual nadir point on sample problems and observed the difference is relatively

small and the algorithm is not sensitive to changes in that scale. Instead of the payoff

table, actual nadir point can also be used. Similarly, a dynamic approach can be

incorporated and the value of Δ can be changed according to the non-dominated

solutions found as the algorithm proceeds.

We take limit L1 as the memory allocated divided by the size of a single node. After

this limit is reached, limit L2 is simply N. For the problems shown in Table 5 and 6,

memory allocated was 0.65 GB of RAM.

We compared the algorithm to the exact method by using the hypervolume indicator

suggested by Zitzler and Thiele (1998). Deb (2001) states that this indicator can be

used to evaluate both closeness and diversity. Let Q be the vector set of the solutions

and R be the reference point in the objective space which might be obtained by

choosing the worst value for each objective function. Then, for each element of Q

individual hypervolumes are calculated by taking the reference point’s objective

values as the diagonal corner of a hypercube. Union of these hypervolumes is the

calculated hypervolume for a given set of solutions.

46

In order to formally give a definition, Zitzler et al. (2007) define an attainment

function for an objective vector set Q. Without loss of generalization, they define a

multiobjective maximization problem as:

 

Xx

ts

xfxfxf n


..

)(),...,(),(max"" 21

 (15)

and the objective space as Z=(0,1)n. So, Ω is the set of all possible objective vectors

and Q . Attainment function of Q (Q) is:

   
 

Zz

Qif
zQ

n
Q










else

z

0

1
:)(

1,01,0:






 (16)

“ ” indicates the weakly dominance relationship. So the hypervolume of Q with

respect to reference vector 0 can be defined as:


)1,...,1(

)0,...,0(
)(:)(dzzQHV Q (17)

For example, for a biobjective problem with Q={q1,q2,q3}, hypervolume with respect

to (0,0) is the union of shaded areas as shown in Figure 8.

Figure 8 Illustrative Biobjective Case: Hypervolume for Q

47

For the case where set of pareto optimal solutions (P) is known, dividing

hypervolume of obtained solutions (HVR(Q)) by hypervolume of pareto optimal

solutions (HVR(P)) gives a coverage percentage which we used for comparing the

heuristic algorithm. As this indicator is prone to scaling, all objective values are

scaled beforehand. Obviously a better coverage is obtained by values closer to 1 and

in the case of finding all solutions of efficient frontier, the coverage indicator will be

100%.

As it can be seen in Table 5, with 99% coverage of the volume covered by the

efficient frontier, the heuristic algorithm performs very well when it does not breach

memory limits for problem sizes 25 and 50 items and 3 objectives. However, there is

a pay off between limiting the algorithm and solution quality as it may be observed

in the case of 100 items. On average, solution time is improved by 10 times

compared to the suggested exact algorithm and 100 times compared to using L&K.

For 25 items, the heuristic algorithm solves the problems in less than a 100th of a

CPU second. Therefore, for a more meaningful comparison we chose the problems

with 100 items.

Number of non-dominated vectors found is not necessarily correlated to the

hypervolume covered by the algorithm. We are not only interested in maximizing the

number of non-dominated vectors found but also the spread and closeness of the

solutions obtained relative to the efficient frontier. Depending on the decision

maker’s preferences, a high number of non-dominated vectors accumulated in a

restricted portion of the efficient frontier may be less desirable than a good spread of

dominated vectors close to the efficient frontier. Also, if the pareto optimal solutions

are denser at some areas, algorithms may tend to get stuck at those areas. One may

argue a non-dominated solution found in a sparse area is better than many non-

dominated solutions found in dense areas. So, we consider better hypervolume

coverage as the main performance measure rather than the number of non-dominated

solution vectors found. It can also be observed for the 100 items case in Table 5. In

one case, only 1 of the actual non-dominated vectors is found. However, covered

volume is 5% better than a similar case with 33 non-dominated vectors found.

48

Table 5 Comparison of Heuristic Algorithm (n=3)

no. of

items (m)

Capacity

modifier

(a)

Random

Problem

no. of

nondomina

ted vectors

no. of

vectors

founds

no. of

nondomina

ted vectors

found

% of

hypervolume

covered

25 2

1 50 48 41 99%

2 109 100 99 99%

3 76 69 53 99%

4 21 19 18 99%

5 50 49 40 99%

50 2

1 269 232 183 99%

2 295 234 204 99%

3 519 430 307 99%

4 170 127 121 99%

5 405 371 326 99%

100 4

1 3837 247 9 50%

2 2470 247 1 63%

3 3100 308 41 55%

4 2317 247 33 58%

5 2004 466 36 78%

We also compared the algorithm for 4 objectives and listed the results in Table 6.

Selected objective i is taken as the 4th objective. Similar to the exact case, to reduce

the size of the feasible space we used the knapsack capacity modifier a. For 100

items, the duration for L&K ranged from 625 to 1923 CPU seconds, whereas

heuristic algorithm’s run time ranged from 1.28 to 17.97 CPU seconds. The heuristic

algorithm runs much faster than L&K with a loss of 1% in hypervolume coverage.

Distribution of non-dominated vectors found by the algorithm tends to have larger 4th

objective values, i.e. as the algorithm proceeds towards stricter lower bounds of

49

Lokman and Köksalan’s algorithm, the heuristic algorithm tends to return premature

infeasible results to limit the search. One way to overcome this disadvantage may be

to alter the objective i between the objectives and re-run the algorithm. By

combining the outputs of these re-runs, a better convergence and representation of

the efficient frontier is possible.

Table 6 Comparison of Heuristic Algorithm (n=4)

no. of

items (m)

Capacity

modifier

(a)

Random

Problem

no. of

nondomina

ted vectors

no. of

vectors

founds

no. of

nondomina

ted vectors

found

% of

hypervolume

covered

25 2

1 429 316 297 99%

2 172 151 139 99%

3 145 124 112 99%

4 268 233 218 99%

5 54 51 43 99%

50 6

1 284 198 195 98%

2 302 289 288 99%

3 46 47 42 99%

4 475 469 466 99%

5 333 236 227 99%

100 20

1 447 355 326 99%

2 460 442 440 99%

3 789 759 745 99%

4 628 409 396 97%

5 557 459 447 98%

50

7.2.3 Variations and Discussion

As we develop the algorithm, both exact and heuristic, we tried different variations

hoping to improve the algorithms. Algorithms defined in sections 4 and 5 are the

final versions, yet we discuss some variations. We used the same randomly generated

knapsack problems for these variations.

For the exact algorithm, main problem we encountered is the memory used by the

branch-and-bound tree. Performances of these variations are compared using

randomly generated knapsack problems with 50 items.

1. Keeping Previous Information vs. Recalculating: The proposed algorithm

keeps all of the nodes created by previous iterations. One way to overcome

this memory issue may be recreating the entire branch-and-bound tree each

time without keeping any previous information. The lower bounds implied by

Lokman and Köksalan’s algorithm are not strict at the beginning of the

algorithm. We observed this property leads creating nodes (allocating

memory) and saving information costs more in CPU time compared to just

calculating only the current node’s upper bound information without saving.

On the other hand, as the Lokman and Köksalan’s algorithm progresses and

challenges the model with stricter lower bounds, the search process of

branch-and-bound gets longer and longer since it has to recalculate all of the

information. At the end of the runs, keeping the previous nodes outperformed

not keeping by 2342% on average in terms of CPU time.

2. Keeping Level Information or Recalculating: When the residual knapsack

capacity cannot accept any of the items left, we jump to the lowest node

without further branching. This causes a problem for the backtracking step

because the algorithm needs to know which level it is backtracking to. We

can overcome this problem with either keeping the information of level on the

node itself or recalculating it using the parent-child relationship and counting

the number of nodes beginning from the root node. Although the latter needs

less memory, computational results showed that keeping the level information

51

on the node saves CPU time by 53% on average compared to recalculating

this information each time the algorithm backtracks.

3. Eliminating vs. Keeping Lower Branches: Another obvious variation is

deciding whether to keep the property of elimination of lower branches as

described in section 4.2.3. If no lower branch is eliminated, keeping or

recalculating the level information is not needed since the algorithm will

jump one node at a time during both forward and backtracking moves. We

compared the method described above to the method of creating these lower

nodes. Keeping level information and eliminating the lower branches as

described above outperformed keeping the lower branches by 5% on average.

4. Deleting Nodes: We also tried to delete the nodes up to a level when a

certain limit is exceeded. Obviously, deleting is an additional operation and

consumes extra CPU time. However, keeping some of the information from

the deleted nodes might help the search process and save time. To test this we

updated the upper bound information of a node from bottom up by taking the

maximum of upper bounds of its children. Since at the lowest level, when no

other variable is left to include or exclude from the knapsack, the upper

bound is actually the objective value of that decision set. So, this method

replaces the calculated upper bounds with stricter ones whenever the

subbranches of that node reach the bottom of the tree. Unfortunately, better

upper bound information did not compensate for the time spent for deleting

nodes and updating information.

5. Feeding the Lokman and Köksalan’s algorithm with known non-

dominated vectors: As finding supported non-dominated vectors is relatively

easy, some or all of that kind of vectors might be included to the list of non-

dominated vectors kept by Lokman and Köksalan’s algorithm to determine

the next iteration’s lower bounds. This might reduce the number of models to

be solved in total. However, it requires a major change in Lokman and

Köksalan’s algorithm and we did not apply the change in the scope of this

thesis.

52

For the heuristic algorithm, main motivation is handling the memory problem of the

exact version while maintaining a reasonable distance from the efficient frontier.

Similar to the exact algorithm, performances are tested on randomly generated

knapsack problems with 3 objectives and 50 items except for the third variation.

1. Delta Distance: We tried the delta distance approach as a separator between

the non-dominated objective vectors in terms of the ith objective as defined in

section 4.1. In this version, the algorithm is the same as the one defined in 5.2

except ii lbUB  is used to decide on early termination of the subroutine

and no limitations on the number of nodes are used. Settling for the first

solution which is at least delta far away from the previous solution obviously

caused the algorithm perform worse. Moreover, the memory usage showed no

significant improvement in exchange of the solution quality. We observed the

main memory absorber is the case when no feasible solution exists. The

algorithm cannot find any ilb and thus, it exhausts the tree by creating new

nodes until absence of a feasible solution is proved. This case is more likely

to happen with stricter lower bounds determined by Lokman and Köksalan’s

algorithm as they limit the feasible space progressively with the introduction

of new non-dominated solution vectors.

2. Modifying lower bounds: In order to overcome the memory issues of

infeasible solutions, we tried to foresee infeasibility by looking at the

difference between the upper and lower bounds of the node. If they are too

close, one might argue that the possibility of that node yielding a feasible

solution is dim and the node can be fathomed by risking losing a potential

feasible solution. However, assessing a value to “too close” is not so easy.

We used delta value and its multiples and obtained delta similar to the

method discussed in section 6.2. Unfortunately, the memory problem

persisted for small values and getting the difference larger just caused

eliminating feasible solutions. Eventually, we chose to limit the number of

nodes created rather than modifying the lower bounds.

53

3. Altering objective i: No matter which objective is selected as the objective i

as defined in model (4) in section 4.1, Lokman and Köksalan’s algorithm

finds all non-dominated vectors for the exact case. However, for the heuristic

case, experimental computations show “harder” problems tend to exceed

memory limits and tend to prematurely return infeasible. A problem gets

“harder” with capacity modifier a getting closer to 2, increasing number of

items and objectives as well as stricter lower bounds imposed by Lokman and

Köksalan’s algorithm. This memory limitation causes gaps in the

approximation of the efficient frontier when the objective i value gets smaller.

On the other hand, selecting another objective as objective i means smaller

values of the same objective is obtained by imposing smaller lower bounds

which are imposed at the beginning of Lokman and Köksalan’s algorithm. As

the computational time consumed by heuristic approach is relatively much

smaller than the L&K, re-running the same algorithm by altering objective i

is less costly. We tested this variation on a randomly generated problem with

100 items, 3 objectives and a=2. Each objective’s performance as well as

their combined performance is shown in Table 7.

Table 7 Computational Results for Altering Objective i

Instance
no. of

nondominated

vectors

no. of

vectors

founds

no. of

nondominated

vectors found

% of

hypervolume

covered

1 2751 209 47 58%

2 2751 134 57 67%

3 2751 275 85 50%

Combined 2751 489 102 82%

54

Obviously solution sets found by different instances are not distinct. Both

some dominated and non-dominated solutions exist in more than one

instance. However, when combined, we observed not only a better coverage

of the hypervolume but also a better spread of the vectors.

55

CHAPTER 8

CONCLUSION AND FURTHER RESEARCH

In order to find all efficient solutions of any given MOCO problem, we developed a

generic branch-and-bound procedure using Lokman and Köksalan’s approach

(2012). We proposed an exact branch-and-bound algorithm for multi-objective 0-1

KP and computational results showed that problem specific algorithms using

previous iterations’ information can outperform a very reliable and fast commercial

tool like IBM ILOG CPLEX. However, we also observed saving information costs

memory because MOCO problems are NP-hard and as the number of variables

increase, memory need for the tree also increases. In order to be able to solve larger

instances benefiting previous information, some two-phase approaches can be

incorporated like variation 5 we discussed in section 7.2.3. It may be promising as it

may reduce the effort to generate supported solutions as well as unsupported ones.

However, as discussed, this variation requires a major change in the lower bound

generation method of Lokman and Köksalan’s algorithm.

We also proposed a heuristic branch-and-bound algorithm for MOCO. We developed

a specific heuristic algorithm for MOKP by modifying the proposed exact algorithm.

We observed delta approach yields a good spread of solutions with a good coverage

with respect to efficient frontier when the memory limits are not breached. However,

we observed memory limitation reduces the solution quality significantly for larger

problems. Among the variations for heuristic algorithm, last approach is the most

promising as it combines the algorithm results for all objectives as objective i.

56

REFERENCES

Corne, D. W., Knowles J. D., and Oates, M. J. The pareto envelope-based selection

algorithm for multiobjective optimisation. In M. S. et al. (Ed.), Parallel Problem

Solving from Nature – PPSN VI, Berlin, pages 839–848, Springer, 2000.

Dantzig G., Discrete variable extremum problems, Operations Research, 5, pages

226–77, 1957.

Deb K., Multi-Objective Optimization using Evolutionary Algorithms, Wiley-

Interscience Series in Systems and Optimization. John Wiley & Sons, Chichester,

2001.

Deb K., Agrawal S., Pratap A., Meyarivan T., A Fast and Elitist multi-objective

Genetic Algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation

(IEEE-TEC), 6 (2), pages 182-197, 2002.

Ehrgott M. and Gandibleux X., A survey and annoted bibliography of multiobjective

combinatorial optimization, OR Spektrum, 22, pages 425–460, 2000.

Gandibleux, X. and Freville, A., Tabu search based procedure for solving the 0–1

multiobjective knapsack problem: the two objective case, Journal of Heuristics, 6,

pages 361–383, 2000.

Gavanelli M., An algorithm for Multi-Criteria Optimization in CSPs, In Frank van

Harmelen, editor, Proc. 15thEuropean Conference on Artificial Intelligence, Lyon,

France, IOS Press, 2002.

Horowitz E., Sahni S., Computing partitions with applications to the knapsack

problem, Journal of ACM 21, pages 277-292, 1974.

Klamroth, K., and Wiecek, M., Dynamic programming approaches to the multiple

criteria knapsack problem, Naval Research Logistics, 47, pages 57–76, 2000.

57

Köksalan, M. and Phelps S., An Evolutionary Metaheuristic for Approximating

Preference-Non-dominated Solutions. INFORMS Journal on Computing 19 (2),

pages 291-301, 2007.

Lokman, B. and Köksalan, M., Finding all nondominated points of multi-objective

integer programs, Journal of Global Optimization, DOI 10.1007/s10898-012-9955-7,

2012, forthcoming

Lukasiewycz M., Glass M., Haubelt C., and Teich J., Solving multiobjective pseudo-

boolean problems, In Proc. SAT, pages 56–69, Lisbon, Portugal, 2007.

Martello S. and Toth P., Knapsack Problems: Algorithms and Computer

Implementations, John Wiley & Sons, Chichester–New York, 1990

Sylva J. and Crema A., A method for finding the set of non-dominated vectors for

multiple objective integer linear programs, European Journal of Operational

Research, 158(1), pages 46-55, 2004.

Sylva J. and Crema A., A method for finding well-dispersed subsets of non-

dominated vectors for multiple objective mixed integer linear programs, European

Journal of Operational Research, 180(3), pages 1011-1027, 2007

Ulungu E.L. and Teghem J., Application of the two phases method to solve the

biobjective knapsack problem, Technical report, Faculte Polytechnique de Mons,

Belgium. 1994.

Ulungu E.L., Teghem J., Fortemps P. and Tuyttens D., MOSA method: a tool for

solving multiobjective combinatorial optimization problems, Journal of Multi-

Criteria Decision Analysis, 8(4), pages 221-236, 1999.

Visee M., Teghem J., Pirlot M. and Ulungu E.L., Two-phases method and branch

and bound procedures to solve the bi-objective knapsack problem, Journal of Global

Optimization, 12, pages 139–155, 1998.

Zitzler E., Brockhoff D., and Thiele L., The Hypervolume Indicator Revisited: On

the Design of Pareto-compliant Indicators Via Weighted Integration, In S. Obayashi

et al., editors, Conference on Evolutionary Multi-Criterion Optimization (EMO

2007), volume 4403 of LNCS, pages 862–876, Springer, Berlin, 2007

58

Zitzler E., Laumanns M., and Thiele L., SPEA2: Improving the Strength Pareto

Evolutionary Algorithm for Multiobjective Optimization, Technical Report in

Evolutionary Methods for Design, Optimization and Control, Barcelona, 2001.

Zitzler E. and Thiele L. Multiobjective Optimization Using Evolutionary Algorithms

- A Comparative Case Study, In Conference on Parallel Problem Solving from

Nature (PPSN V), pages 292–301, Amsterdam, 1998.

Zitzler E. and Thiele L., Multiobjective Evolutionary Algorithms: A Comparative

Case Study and the Strength Pareto Evolutionary Algorithm, IEEE Transactions on

Evolutionary Computation, 3(4), pages 257-271, 1999.

59

APPENDIX A

GENERIC HEURISTIC ALGORITHM

In addition to the variables defined in the previous section, let flag be the binary

variable indicating if the predetermined limit L1 is exceeded.

1. Lokman and Köksalan’s Algorithm: Calculate LBj according to L&K

algorithm.

 Previous solution UB is set to a sufficiently large number M.

If no further lower bounds are left to consider, STOP.

2. Initialization: Initially no decision variables are set: A={}

 Best solution LBi is set to 0.

Create first node and calculate respective upper bounds jqU .

3. If jjq LBU  for all j,

go to step 4.

 else

 go to backtrack.

4. If no more decision variables are left to decide (Ac={}),

Update best solution as current solution

If iLBUB 

return objective function values of the best solution

60

(zj(best_solution))

else

go to backtrack

else

Forward move: Create new node according to the original

algorithm’s set of rules. Update decision variable set A. Calculate

upper bounds and go to step 3.

5. Backtrack: If (1_ Lallcount  AND NOT(flag))

1:flag

if best solution is greater than 0,

return objective function values of the best solution

(zj(best_solution)) and go to step 1.

else

return infeasible and go to step 1.

 If (2Lcount  AND flag)

if best solution is greater than 0,

return objective function values of the best solution

(zj(best_solution)) and go to step 1.

else

return infeasible and go to step 1.

else

Backtrack according to the original algorithm’s set of rules.

6. If all possible subproblems are considered

if best solution is greater than 0,

return objective function values of the best solution

(zj(best_solution)) and go to step 1.

61

else

 return infeasible and go to step 1.

else

 go to step 3.

62

APPENDIX B

HEURISTIC ALGORITHM – MOKP

Similar to Appendix A, flag is the binary variable indicating if the predetermined

limit L1 is exceeded.

1. Initialization I: These steps will be performed only once.

1.1. Find preference sequence for each j other than i (prefjk: k
th position in the

preference sequence of objective j).

1.2. Find minimum weight for each level ( lkww kl  :minmin_). This

information will be used for eliminating the lower bounds.

1.3. Insert first node. Calculate and save Uj for all j.

1.4. Previous solution UB is set to 
k

kp

1.5. 0:_ allcount

2. Lokman and Köksalan’s Algorithm: Calculate lbj according to L&K algorithm.

If no further lower bounds are left to consider, STOP.

3. Start Subroutine

Initialization II: Following steps will be performed before the branch-and-

bound procedure for each step of L&K algorithm, i.e. for each set of lower

bounds.

3.1. Initialize variables

63

1:

:_

0:_

0:_

0:_

0:










l

Cccur

jzcur

kxcur

kxbest

lb

j

k

k

i

0:

0:




count

t

3.2. If jj lbU  for all j does not hold for at least one objective, go to 5.1

(backtrack).

4. Forward Move

4.1. while (lwccur _ AND ijforlbU jj )

do

1:

:

 :

:

1:_










ll

pzcurzcur

ijforpzcurzcur

wccurccur

xcur

ilii

jljj

l

l

If not already created for current solution (cur_x), insert

new node on level l, calculate and save Uj for all j

1_:_

1:




allcountallcount

countcount

If jj lbU  for all j does not hold for at least one objective, go to 6

(backtrack).

4.2. If lwccur min__  (no more insertions are possible)

Kl :

If not already created for current solution (cur_x), insert new node on

level l, calculate and save Uj for all j

64

1_:_

1:




allcountallcount

countcount

4.3. If current level, which is critical item, is not the last item, exclude it from

the knapsack

If Kl 

If not already created for current solution (cur_x), insert new node on

level l, calculate and save Uj for all j

1_:_

1:




allcountallcount

countcount

1:  ll

If jj lbU  for all j does not hold for at least one objective, go to 6

(backtrack).

4.4. If current level (critical+1) is not the last item, repeat forward move.

If Kl  go to 4 (forward move).

4.5. If Kl 

If lwccur _ (If the last item is small enough, include in the

knapsack)

ilii

jljj

l

l

pzcurzcur

ijforpzcurzcur

wccurccur

xcur








:

 :

:

1:_

If not already created for current solution (cur_x), insert

new node on level l, calculate and save Uj for all j

1_:_

1:




allcountallcount

countcount

else (If the last item is not small enough, exclude from the

knapsack)

65

If not already created for current solution (cur_x), insert

new node on level l, calculate and save Uj for all j

1_:_

1:




allcountallcount

countcount

5. Update Best Solution So Far

5.1. If jj lbU  for all j

kxcurxbest

zcurlb

kk

ii




:

_:

If ii lbUB  (If this feasible solution is close enough)

 go to 7 (subroutine return)

If 1:_ Kxcur (If last item is included, throw it out before backtrack)

iKii

jKjj

K

K

pzcurzcur

ijforpzcurzcur

wccurccur

xcur








:

 :

:

0:_

6. Backtrack

6.0 If (Lallcount _ AND NOT(flag))

1:flag

 go to 7 (subroutine return)

If (Ncount  AND flag)

 go to 7 (subroutine return)

6.1. Find the item to throw out of the knapsack

Find t, }1_:max{  kxcurlkt

If 0t

66

tl

pzcurzcur

ijforpzcurzcur

wccurccur

xcur

itii

jtjj

t

t










:

:

 :

:

0:_

If not already created for current solution (cur_x), insert new node

on level l, calculate and save Uj for all j

1_:_

1:




allcountallcount

countcount

go to 4 (forward move).

else

go to 7 (subroutine return).

7. Subroutine Return

7.1. If kxbest k  0_

No feasible solutions. return infeasible.

else

return  
k

kjkj jxbestpzbest __

go to 2

