MODELING AND CONTROL OF HIGH TEMPERATURE OVEN FOR LOW TEMPERATURE CO-FIRED CERAMIC (LTCC) DEVICE MANUFACTURING

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

ΒY

AYŞE TUĞÇE YÜCEL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CHEMICAL ENGINEERING

SEPTEMBER 2012

Approval of the thesis:

MODELING AND CONTROL OF HIGH TEMPERATURE OVEN FOR LOW TEMPERATURE CO-FIRED CERAMIC (LTCC) DEVICE MANUFACTURING

Submitted by **AYŞE TUĞÇE YÜCEL** in partial fulfillment of the requirements for the degree of **Master of Science in Chemical Engineering Department, Middle East Technical University** by,

Prof. Dr. Canan Özgen Dean, Graduate School of Natural and Applied Sciences	
Prof. Dr. Deniz Üner Head of Department, Chemical Engineering	
Asst. Dr. Serkan Kıncal Supervisor, Chemical Engineering Dept., METU	
Examining Committee Members:	
Prof. Dr. İnci Eroğlu Chemical Engineering Dept., METU	
Asst. Dr. Serkan Kıncal Chemical Engineering Dept., METU	
Prof. Dr. Rașit Turan Physics Dept., METU	
Assoc. Dr. Görkem Külah Chemical Engineering Dept., METU	
Eyüp Töngel, M.Sc. ASELSAN Inc.	

Date: September 05, 2012

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name : AYŞE TUĞÇE YÜCEL

Signature :

ABSTRACT

MODELING AND CONTROL OF HIGH TEMPERATURE OVEN FOR LOW TEMPERATURE CO-FIRED CERAMIC (LTCC) DEVICE MANUFACTURING

Yücel, Ayşe Tuğçe M.Sc., Department of Chemical Engineering Supervisor : Asst. Dr. Serkan Kıncal

September 2011, 165 pages

In the electronics the quality, reliability, operational speed, device density and cost of circuits are fundamentally determined by carriers. If it is necessary to use better material than plastic carrier, it has to be made of ceramics or glass-ceramics. This study dealt with the ceramic based carrier production system. The types of the raw ceramics fired at low temperature (below 1000°C) are called Low Temperature Co-Fired Ceramics (LTCC).

In this study, a comprehensive thermal model is described for the high temperature oven which belongs to a Low Temperature Co-fired Ceramic (LTCC) substance production line. The model includes detailed energy balances with conduction, convection and radiation heat transfer mechanisms, view factor derivations for the radiative terms, thermocouple balances, heating filaments and cooling mechanisms for the system.

iv

Research was conducted mainly on process development and production conditions along with the system modeling of oven. Temperature control was made in high temperature co-firing oven. Radiation View Factors for substrate and thermocouples are determined. View factors between substrate and top-bottom-sides of the oven are calculated, and then inserted into the energy balances. The same arrangement was made for 3 thermocouples at the bottom of the oven. Combination of both expressions gave the final model. Modeling studies were held with energy balance simulations on MATLAB. Data analysis and DOE study were held with JMP Software.

Keywords: LTCC, co-firing oven, view factor, radiation heat transfer.

DÜŞÜK SICAKLIKLI EŞ YANMALI SERAMİK (LTCC) MALZEME ÜRETİMİNDE KULLANILAN YÜKSEK SICAKLIK FIRINININ MODELLENMESİ VE KONTROLÜ

Ayşe Tuğçe Yücel Yüksek Lisans, Kimya Mühendisliği Bölümü Tez Yöneticisi : Yard. Doç. Dr. Serkan Kıncal

Eylül 2011, 165 sayfa

Elektronikte; kalite, dayanım, operasyon hızı, cihaz yoğunluğu ve devre maliyetleri temel olarak taşıyıcılar tarafından belirlenir. Eğer plastik taşıyıcılardan daha iyi bir malzeme kullanılması gerekliyse, bunlar seramik ya da cam-seramik bazlı olmalıdır. Bu çalışmada seramik bazlı taşıyıcıların üretim sistemleri incelenmiştir. Düşük sıcaklıklarda (1000°C altında) yanmaya giren ham seramik malzeme tipine, Düşük Sıcaklıklı Eşyanmalı Seramik (LTCC) adı verilir.

Bu çalışmada, Düşük Sıcaklıklı Eş-yanmalı Seramik (LTCC) malzemenin üretim hattına ait olan, yüksek sıcaklık fırını için detaylı bir ısıl model tanımlanmıştır. Model; iletim, taşınım ve ışınım yoluyla ısı aktarımı mekanizmalarını içeren detaylı enerji denkliklerini, radyoaktif terimlere ait görüş katsayılarının çıkarımını, ısıl çift denkliklerini, ısıtıcı filamentleri ve sistemin soğutma mekanizmasını içerir.

Araştırma temel olarak, fırının sistem modellemesinin yanı sıra proses geliştirme ve üretim koşulları üzerine gerçekleştirilmiştir. Yüksek sıcaklıklı yanma fırında sıcaklık kontrolü çalışılmıştır. Malzeme ve ısılçiftler için radyasyon görüş faktörleri belirlenmiştir. Fırının altı, üstü ve yanları ile malzeme arasındaki görüş faktörleri hesaplanmış ve enerji denkliklerine yerleştirilmiştir. Aynı düzenleme, fırının alt bölümünde yer alan 3 ısılçift için de yapılmıştır. İki ifadenin birleşimi son denkliği vermiştir. Modelleme çalışmaları ve enerji denkliği simülasyonları MATLAB ile, veri analizi ve deney tasarımı çalışmaları JMP yazılımı ile gerçekleştirilmiştir

Anahtar sözcükler: LTCC, eşyanma fırını, görüş faktörü, radyasyon ısı transferi

To my family

ACKNOWLEDGEMENTS

Through almost three years, I have been a part of this excited field of research. I owe my deepest gratitude to Dr. Serkan Kıncal. Due to the fact that I have performed this study without a study group, I have always turned to him for his guidance. His unlimited vision and supporting energy led me believe in a different perspective of how a true guidance must be.

I am grateful for the endless love and unconditional support of my family. I cannot express the gratitude and appreciation I have for my no-matter-what supporting father Burhan Yücel, my mother Havva Yücel, the most open minded person on earth and my sister Sibel Ezgi Yücel, whom I would be literally lost without.

I would like to thank Hande Kılıç for simply being her and standing beside me, Yasemin Sönmez and Oya Gökdoğan Aras for being in my life in different time periods. I have enjoyed many hours of study, many hours of laughter and unconditional support from them. And a great appreciation for my lovely friends; Seçil Atalay, Tuğçe Atasoy, Didem Tosun, brilliant Emre Yılmaz, my short term lab-mate Engin Özkol and my extraordinary cousin Dr. Gonca Erbaş.

I would like to acknowledge ASELSAN for providing the experimental setup for the study and the opportunity of the internship that drawn me into this field, years before the project.

TABLE OF CONTENTS

ABSTRACTiv
ÖZvi
ACKNOWLEDGEMENTSix
TABLE OF CONTENTS x
LIST OF TABLES xiv
LIST OF FIGURESxv
1. INTRODUCTION 1
2. MANUFACTURING OPERATIONS
2.1. PRODUCTION OF LTCC 6
2.1.1. Tape Casting
2.1.2. Tape Handling9
2.1.3. Via and Cavity Formation12
2.1.4. Laser Processing 12
2.1.5. Mechanical Punching13
2.1.6. Via Fill
2.1.7. Screen Printing17
2.1.8. Film Stacking 20
2.1.9. Lamination
2.1.10. Co-firing Oven 21
2.2. POST PROCESSING
2.3. CURRENT STUDIES OF LTCC
3. MODELING
3.1. Finite Element Solver Model – Complete Dynamics
3.2. MATLAB MODEL – SIMPLIFIED DYNAMICS

3.2.1. Conservation of Energy	33
3.2.2. View Factor Theory	42
3.2.2.1. View Factor between the Substrate and the Oven Filaments	44
3.2.2.2. View Factor between TCs and the Oven Filaments	46
3.3. EMPIRICAL MODELING – EXPERIMENTAL DESIGN	47
4. RESULTS AND DISCUSSION	51
4.1. EMPIRICAL MODELING – EXPERIMENTAL DESIGN	51
4.1.1. Summary of Oven Metrics	51
4.1.2. Thermocouple Temperatures	52
4.1.3. Filament Powers	53
4.1.4. Substrate Temperature Measurements	55
4.1.5. Summary of Oven Metrics	56
4.1.6. Analysis of Oven Doe Data	58
4.1.6.1. Repeatability	58
4.1.6.3. Air Flow Rate Analysis	68
4.2. FINITE ELEMENT SOLVER MODEL – COMPLETE DYNAMICS	70
4.2.1. Experimental Results Reproduction – System Identification	70
4.2.2. Substrate Temperature Distribution Dynamics	74
4.2.3. Right and Left Side Temperature Difference During Cool-Down	75
4.3. MATLAB MODEL – SIMPLIFIED DYNAMICS	77
4.3.1. View Factor Confirmations	77
4.3.2. Sensitivity Analysis	80
4.3.3. Experimental Results Reproduction – System Identification	82
5. CONCLUSIONS and FUTURE WORK	. 84
5.1. CONCLUSIONS	84

5.2. FUTURE WORK
6. RECOMMENDATIONS
REFERENCES
APPENDICES
APPENDIX A. MODEL DEVELOPMENT
APPENDIX B. CODING114
1. Substrate View Factor Coding114
1.1. Top.m
1.2. Sides.m114
1.3. Bottom.m114
2. Thermocouples View Factor Coding115
2.1. View Factors between Thermocouples and Front Surface of the
Oven (TC_front)115
2.1.1. TC_front_top.m115
2.1.2. TC_front_top_inner.m115
2.1.3. TC_front_bottom_inner.m116
2.2. View Factors between Thermocouples and Back Surface of the
Oven (TC_back)116
2.2.1. TC_back_top.m116
2.2.2. TC_back_bottom_inner.m116
2.3. View Factors between Thermocouples and Sides of the Oven
(TC_sides)117
2.3.1. TC_sides_top.m117
2.3.2. TC_sides_bottom.m117
2.4. Coding for sum of the View Factors between Thermocouples and
Oven117
APPENDIX C. SYSTEM DRAWINGS121

APPENDIX D. EXPERIMENTAL RESULTS1	125
Run 011	126
Run 021	127
Run 031	128
Run 041	129
Run 051	130
Run 061	131
Run 071	132
Run 081	133
Run 091	134
Run 101	135
Run 111	136
Run 121	137
Run 131	138
APPENDIX E1	139
ANSYS MODEL PREDICTIONS1	139

LIST OF TABLES

TABLES

Table 1-1 - Typical material combination of LTCC and HTCC [1]	5
Table 3-1 - Energy Balance by Grid Element Location	. 42
Table 3-2 - Experimental Design With Individual Variable Levels	. 49
Table 4-1 - Oven Thermocouple Related Parameters	. 56
Table 4-2 - Filament Power Related Parameters	. 57
Table 4-3 - Substrate Temperature Related Parameters	. 58
Table 4-4 - Material Properties and Default Values	. 70
Table 4-5 - Impact Estimates – Average Substrate Temperature	. 73
Table 4-6 - Impact estimates – Substrate Profile Flatness	. 73
Table 4-7 – View Factor Unity Results	. 78
Table 4-8 - Sensitivity Analysis Results	. 81

Table A. 1 - Conductive Terms for the Grids 9	9	1
---	---	---

LIST OF FIGURES

FIGURES

Figure 2-1 - Production Process for Multilayered Ceramics [1]
Figure 2-2 - 6 inch (150 mm) square sheet of unfired LTCC attached to a film
carrier sheet [3]7
Figure 2-3 - Comparison of (a) Mechanically Punched and (b) Laser Cut Vias
[4]14
Figure 2-4 - Sputtering Metallization: Wet-Etch Process [1] 16
Figure 2-5 - Via Filling Process Success Criteria [1] 17
Figure 2-6 - Steps in the Screen Printing Process [1] 18
Figure 2-7 - A Typical Firing Sequence for an LTCC Stack [7] 23
Figure 3-1 – Flow Chart for the Dynamic Behaviour Solution 27
Figure 3-2 - The Oven Enclosed Inside The Insulator
Figure 3-3 - The Insulator Peeled Back At The Front And On The Sides 29
Figure 3-4 - Parts of the Quartz Tube Hidden from View to Reveal the Heated
Enclosure
Figure 3-5 - The Meched Coometry 31
Tigure 5-5 - The Mesheu Geofficury
Figure 3-6 - The Boundary Conditions
Figure 3-6 - The Boundary Conditions31Figure 3-7 - Placement in the Co-firing Oven34
Figure 3-5 - The Boundary Conditions31Figure 3-6 - The Boundary Conditions32Figure 3-7 - Placement in the Co-firing Oven34Figure 3-8 - The Finite Difference Method38
Figure 3-5 - The Meshed Geometry31Figure 3-6 - The Boundary Conditions32Figure 3-7 - Placement in the Co-firing Oven34Figure 3-8 - The Finite Difference Method38Figure 3-9 - The x-y Grid40
Figure 3-5 - The Meshed Geometry31Figure 3-6 - The Boundary Conditions32Figure 3-7 - Placement in the Co-firing Oven34Figure 3-8 - The Finite Difference Method38Figure 3-9 - The x-y Grid40Figure 3-10 - Nomenclatures for View Factor Definition [15]44
Figure 3-5 - The Meshed Geometry31Figure 3-6 - The Boundary Conditions32Figure 3-7 - Placement in the Co-firing Oven34Figure 3-8 - The Finite Difference Method38Figure 3-9 - The x-y Grid40Figure 3-10 - Nomenclatures for View Factor Definition [15]44Figure 3-11 - Heating Filaments Around the Oven45
Figure 3-5 - The Meshed Geometry31Figure 3-6 - The Boundary Conditions32Figure 3-7 - Placement in the Co-firing Oven34Figure 3-8 - The Finite Difference Method38Figure 3-9 - The x-y Grid40Figure 3-10 - Nomenclatures for View Factor Definition [15]44Figure 3-11 - Heating Filaments Around the Oven45Figure 3-12 - View Factor Definitions between Oven and TCs47
Figure 3-6 - The Meshed Geometry31Figure 3-6 - The Boundary Conditions32Figure 3-7 - Placement in the Co-firing Oven34Figure 3-8 - The Finite Difference Method38Figure 3-9 - The x-y Grid40Figure 3-10 - Nomenclatures for View Factor Definition [15]44Figure 3-11 - Heating Filaments Around the Oven45Figure 3-12 - View Factor Definitions between Oven and TCs47Figure 4-1 - Cooling Step for Run 353
Figure 3-6 - The Boundary Conditions32Figure 3-7 - Placement in the Co-firing Oven34Figure 3-8 - The Finite Difference Method38Figure 3-9 - The x-y Grid40Figure 3-10 - Nomenclatures for View Factor Definition [15]44Figure 3-11 - Heating Filaments Around the Oven45Figure 3-12 - View Factor Definitions between Oven and TCs47Figure 4-1 - Cooling Step for Run 353Figure 4-2 - Analysis for the Run 354

Figure 4-4 – Average Substrate and Oven Temperature 59
Figure 4-5 – Range and Main Power vs Time Trends
Figure 4-6 - The Firing Cycle – TCF, TCB, TCM
Figure 4-7 - The Firing Cycle – 1V, 1H, M, 2V, 2H 62
Figure 4-8 - The Two Range Parameters to be Modeled
Figure 4-9 - The Two Temperature Difference Parameters To Be Modeled . 63
Figure 4-10 - The Critical Parameters Modeled To Experimental Conditions 66
Figure 4-11 - The Non-Uniform Cooling On The Substrate
Figure 4-12 - The Within Substrate Range During Ramp-Up and Initial Soak
Figure 4-13 – The Within Substrate Range During The Initial Cool Down
Period 69
Figure 4-14 – Run 2 Experimental Substrate Temperature Profile 72
Figure 4-15 - ANSYS Model Predictions vs. Reality
Figure 4-16 - Blower Impact for Cool-Down
Figure 4-17 - Top (a) and Bottom (b) Surface View Factors
Figure 4-18 – TC _{front} – T _{front} Movement on Axial Line
Figure 4-19 - Summation of the View Factors 80
Figure 4-20 – Model Estimations vs Experimentation for Run 1 83
Figure A. 1 - Substrate Grid Division
Figure A. 2 - Thermocouple Placements on the Oven
Figure A. 3 - T _{front} Placement on the Oven
Figure A. 4 - T _{back} Placement on the Oven
Figure A. 5 - T _{side} Placement on the Oven100
Figure A. 6 - View Factor Definitions between Oven and TCs113
Figure C. 1. Co fining Quer Drawings 121
Figure C. 1 - CO-IIring Oven Drawings
Figure C. 2 - Filament Positioning
Figure C. 3 - Co-Tiring Oven (Inside)
Figure C. 4 – Assignment of the Oven Temperatures

Figure C. 5 – Assignment of the View Factors	124
Figure C. 6 – Representation of the Heating Filaments	124

Figure D. 1 - Trends for Run 01	126
Figure D. 2 - Trends for Run 02	127
Figure D. 3 – Trends for Run 03	128
Figure D. 4 – Trends for Run 04	129
Figure D. 5 – Trends for Run 05	130
Figure D. 6 – Trends for Run 06	131
Figure D. 7 - Trends for Run 07	132
Figure D. 8 – Trends for Run 08	133
Figure D. 9 – Trends for Run 09	134
Figure D. 10 – Trends for Run 10	135
Figure D. 11 – Trends for Run 11	136
Figure D. 12 - Trends for Run 12	137
Figure D. 13 - Trends for Run 13	138

CHAPTER 1

1. INTRODUCTION

Following thesis study is not only about the understanding and modeling a unique production line, but also introduces an important footstep for the process development concept of the circuit board manufacturing. The project is supported by ASELSAN, a company of Turkish Armed Forces Foundation, which focuses on research and development activities along with the advancement of the technology. By the support of the company, a tremendous profit was planned to be gained both on industry and on the academic field; a newly developed system to be installed, a trained personnel to continue the future plans, a viable source and an aid for similar academic studies. By this manner following study is held with joint work of the industry and of the university.

Through last decades, Low Temperature Co-fired Ceramics (LTCC) have become an attractive technology for electronic components and substrates which are compact, light, and offer high-speed and functionality for portable electronic devices such as the cellular phones, personal digital assistants (PDA) and personal computers (PC) used for wireless voice and data communication in rapidly expanding mobile network systems. For their wiring, these LTCCs use metals such as Cu, Ag, and Au with considerably small conductor loss and low electrical resistance at high frequencies, while the ceramics selected for LTCCs have lower dielectric loss than organic materials. This makes LTCCs especially suitable for the high frequency circuits required for high-speed data communications [1].

During the late 1980s, U.S. and Japanese manufacturers of computers and ceramic materials conducted extensive research and development of LTCC technology that is now crucial to present day and future communications technologies. At that time Fujitsu and IBM America produced a large, multilayer ceramic substrate (meeting Fujitsu's specifications of 254 x 254 mm with 60 layers) with a copper wire pattern for use in mainframe computers. The substrate was manufactured using very precise control of a host of manufacturing parameters [1]. This study mainly gives an account from the engineering perspective of the technology development for the mainframe computer substrate mentioned above.

The origin of multilayer ceramic substrate technology is said to lie in developments at RCA Corporation in the late 1950s, and the bases of current process technologies (green sheet fabrication technology, via forming technology, and multilayer laminate technology using the doctor blade method) were discovered at this time [2]. Afterwards, progress was made using these technologies with IBM taking the lead and the circuit board (board size: 9 cm², with 33 layers, and 100 flip chip bonded LSI components) for IBM's mainframe computer commercialized in the early 1980s was the inheritance [3]. Since this multilayer board was Co-fired at the high temperature of 1600°C with the alumina insulating material and conductor material (Mo, W, Mo/Mn), it is called High Temperature Co-fired Ceramic (HTCC) to distinguish it from the Low Temperature Co-fired Ceramics (LTCC) which developed later.

From the middle of the 1980s, efforts to increase the speed of mainframe computers accelerated, and as the key to increasing computer performance, further improvements were handled to multilayer ceramic substrates for high density mounting applications. By using better wiring in order to increase wiring density in circuit boards for high density mounting, the electrical

resistance of the wiring increases, and conspicuous attenuation of the signal occurs. Therefore it is necessary to use materials with low electrical resistance (such as Cu, Au) for the wiring. In addition, with the flip chip method of connecting bare Large Scale Integration (LSI) components directly, poor connection of the interconnects may result if the thermal expansion of the board is not close to that of the silicon components therefore an insulating material with low thermal expansion (ceramic) is desirable. Furthermore, to achieve high speed transmission of signals, it is necessary to ensure that the ceramic has a low dielectric constant.

By the early 1990s, most Japanese and American electronics and ceramics manufacturers had developed multilayer boards that met these requirements [4]. Among them, Fujitsu and IBM were the first to succeed with commercial applications of multilayer substrates using copper wiring material and low dielectric constant ceramics [5]. From the latter half of the 1990s to the present, the focus of applications has shifted to high frequency wireless for the electronic components, modules and so on used in mobile communication devices, primarily mobile phones. For the multilayer circuit board, the low thermal expansion of ceramics was its biggest merit for the purposes of high density mounting of LSI components. However, for high frequency communications applications, its low transmission loss is its key feature, and the low dielectric loss of ceramic gives it an advantage over other materials.

As its name suggests, LTCC is ceramic co fired with metal wiring at low temperature, and its constituent materials are metal and ceramic. The typical metals for LTCCs are those with high electric conductivity and as shown in Table 1-1, they all have a low melting point close to 1000°C. Since it is necessary to co-fire the ceramic material with these metals, extreme precision is required to keep temperatures below the melting point of the metal (900 to 1000°C). In order to ensure high sintered density with low

temperature firing, it is common to add amorphous glass, crystallized glass, low melting point oxides and so on to the system to enhance sintering. Besides this type, crystallized glass, composites of crystallized glass and ceramic, and liquid phase sintered ceramic are generally well known types.

The basic manufacturing process for multilayer ceramic substrates consists of several steps. Initially, the ceramic powder and organic binder are mixed to make milky slurry. The slurry is cast into tape using the doctor blade method, to obtain a raw ceramic sheet (green sheet) that before firing is flexible like paper. Vias for conduction between layers and wiring patterns are screen printed on the green sheet using conductive paste. Many layers of these printed green sheets are arranged in layers, and heat and pressure is applied to laminate them (the organic resin in the green sheets acts as glue for bonding the layers during lamination). By firing the conductor metal and ceramic together while driving off organic binder in them, a multilayer ceramic substrate can be obtained. The most important point to bear in mind in the manufacturing process is controlling variation in the dimensional precision and material quality of the finished product, and process conditions must be set so that the micro and macro structures of the work in progress are homogenous at every process step [6].

	Ceramics		Conductor	
	Material	Firing Temperature (°C)	Material	Melting Point (°C)
LTCC	Glass/Ceramic		Cu	1083
	composite Crystallized Glass Crystallized glass/Ceramic composite Liquid-phase sintered ceramics		Au	1063
			Ag	960
		900 to 1000	Ag-Pd	960 to 1555
			Ag-Pt	960 to 1186
нтсс	Alumina Ceramics	1600 to 1800	Мо	2610
			W	3410
			Mo-Mn	1246 to 1500

Table 1-1 - Typical material combination of LTCC and HTCC [1]

Furthermore, the technique of laminating and co-firing more than two types of ceramic sheet with different dielectric characteristics, and the process of forming a resistor by co-firing are also well known [7].

CHAPTER 2

2. MANUFACTURING OPERATIONS

In this chapter, the product LTCC and its characteristics are briefly described along with the main units of the manufacturing line. Although the co-firing is the main focus of the study, other units are also discussed in detail.

2.1. PRODUCTION OF LTCC

Low Temperature Co-fired Ceramic manufacturing process is basically a parallel process which individual layers are to be produced separately. This single layer manufacturing is advantageous in the sense of being able to detect any sort of defects prior to firing them together. Production flow sheet is given in Figure 2-1.

Figure 2-1 - Production Process for Multilayered Ceramics [1]

Each single layer goes through a series of operation individually -such as tape casting, via formation, filling and screen printing. Later on these green sheets stack together for lamination and co-firing oven. After these steps, substrates go through shaping and plating operations due to the demand.

The raw material for the substrate is generally made off of green sheets and ceramic materials in a polymer matrix. This material is tape cast and supplied to the manufacturing operation in the form of rolls or sheets (Figure 2-2). All depends on the application but most of the times; substrate is cut into varying shapes.

Figure 2-2 - 6 inch (150 mm) square sheet of unfired LTCC attached to a film carrier sheet [3]

Each individual layer is first processed to form holes or vias that will act as connectors between the subsequent layers. These holes may be introduced onto the sheets by mechanical punching or laser-cutting. Next these holes are filled with conductive ink. After this via filling process, each layer is subjected to a screen printing process by which the electrical components are transferred onto the substrate. After the successful generation of the individual layers, they are aligned and stacked onto each other. The process of lamination bonds the polymer components in the tape layers together, forming a semi-permanent bond between the layers. Isostatic lamination is generally the process of choice here although it is possible to achieve the same effect with rollers – with lamination providing superior uniformity. The material at this point is still a flexible sheet. This flexible sheet becomes the hardened final product by a two-step firing process. The first step, carried out under relatively lower temperatures of $300-400^{\circ}$ C burns off the polymeric matrix, leaving behind the ceramic and the interconnect material. The final and relatively high temperature ($800 - 900^{\circ}$ C) firing step, sinters the ceramic and the interconnect material bringing it final electrical properties to the desired levels while forming a perfectly sealed end product

In the scope of this study, three main operations are focused on. Among them, co-firing oven applications are detailed.

2.1.1. Tape Casting

Although the tape is purchased in ready form from a supplier, it is necessary to understand the underlying manufacturing processes in order to develop the correct handling procedures and appreciate the significance of the impact of the processing steps on the tape properties. The tape used in LTCC manufacturing (or multilayer ceramic manufacturing in general) involves the casting of a thin ceramic-organic layer into a flexible sheet. The key parameters involved in this casting process are the composition, selection of the powders, types of polymers and additives, mixing and milling and finally casting. Of course as for any other manufacturing operation inspection and quality control as well as tape handling and storage significantly impacts the final product quality and repeatability. The resulting tape generally contains a mixture of crystalline and noncrystalline phases, depending on the types of materials used, the particular composition and the specific operating conditions. Controlled purity, homogeneity, surface and bulk chemistry, particle size distribution and surface area morphology are all critical parameters that need to be accurately monitored and controlled during the tape casting process.

In tape casting of commercial quantities – the process involves large volumes of ceramic powders, large ball mills and multiple banks of tape casters. The process begins with the loading of the ceramic powders, solvent and dispersant into the ball mill. The dispersant in this step prevents the agglomeration of the powders and the stabilization of the de-agglomerated particles that are produced during the milling process. This mixture is generally mixed for a period of 12-24 hours until the desired degree of dispersion is achieved as monitored by the viscosity.

2.1.2. Tape Handling

Due to their fragile nature, it is important to be aware of special handling requirements while the tape is in the green or unfired state. The films are also somewhat flexible through the use of the polymer matrix. A further complication of the polymeric matrix is that it can absorb moisture in the unfired state, expanding and contracting as a function of environmental variables such as temperature and humidity. The five areas of critical control are

- 1. Humidity control
- 2. Temperature control
- 3. Particulate contamination
- 4. Static control

5. Physical support of fragile green tape layers during handling and manufacturing [1].

Particulate control is maintained by traditional clean-room techniques such as controlled access with proper clothing, laminar air flow and air filtration with the level of cleanliness required driven by the minimum feature size on the product. Higher levels of cleanliness come at a cost but would be an unavoidable consequence based on the minimum feature size.

Temperature and humidity control is somewhat a more contained problem to solve in that its effects are not immediate. That is the environment control may be more robust process then particulate control in the sense that it can tolerate variations during the limited time it takes to prepare the individual layers – whereas even momentary exposure to high levels of particulate contamination will cause product failure. However control and stability of the storage environment is the key as the material is subject to these conditions for long time periods.

Static control is also important even though the tape materials themselves are not static sensitive – unlike many semiconductor devices. Static however will cause undesired bonding of the individual tape layers and the plastic carrier layers. Although it is generally achieved through humidity control, ionizing equipment and proper equipment grounding may be required at times [1].

Since the layers are fragile and flexible in the green state and most of the processing operations take place under this condition. This is a unique requirement to layered ceramics processing. Two preferred methods to deal with this issue is either the use of plastic backing tape or metal frames. Both methods not only provide adequate physical support to the green tape but

also provide a mechanism to prevent expansion and contraction during the manufacturing process.

The main difference between plastic backing and metal frames is that, the use of metal plates requires additional processing steps of bonding and separation of the green tape to and from the metal frame. In the use of plastic backing, the green tape simply sits on top of a plastic film to provide physical support while the friction on the surface between the two layers prevents the expansion and contraction of the film to a large extent [1].

The metal frames constrain the green tape by the edges and provide for superior protection against expansion and contraction. The films can be much more easily handled by the edges of the frame. Furthermore the frames may contain alignment marks for the subsequent processing steps. This alignment in the case of plastic backing material is achieved by the drilling of alignment holes onto the tape itself. Of course optical alignment to alignment marks printed on the tape can be used in either case to increase the reliability of alignment.

In the case of metal frames, loss of the edge of the tape is an unavoidable consequence of the nature of the process. There is also time lost to the additional steps. For plastic backing, loss of edge material is also present when holes are used for alignment but with optical alignment features, there is the possibility of eliminating loss of edge material.

Obviously the specific choice of handling will be driven by the competing requirements of process quality and cost reduction objectives [4].

2.1.3. Via and Cavity Formation

Once each tape has been cut to the appropriate size, the next step is the creation of holes through the vertical axis to allow for electrical connections between the subsequent layers and/or the generation of cavities or channels for unique electrical or mechanical features such as embedding integrated circuits such that in the final product the IC is flush with the surface of the top layer. Embedding external components within the device has both mechanical and electrical advantages compared to placing it on the very top layer.

The two predominant methods off forming holes or cavities are laser cutting and mechanical punching. Mechanical punching tends to be more preferred in via formation whereas laser cutting has an obvious edge in forming channels or cavities as it can be programmed to cut arbitrary shapes. These two methods will now be described in further detail.

2.1.4. Laser Processing

In laser processing, the relative location of the green tape and a laser source is changed where the movement and the exposure to the laser through a shutter mechanism is controlled to transfer the desired pattern into the sheet. The movement can be done by moving the sheet relative to a fixed laser source or movement of the laser beam can be modulated through the use of optics. The laser source itself is stationary due to the difficulty in moving such a large system component.

The laser essentially ablates the exposed material, forming the desired cavity or hole. The main benefit of the laser processing is that it can carve out very complex shapes with rounded or curved edges. To achieve the same effect by mechanical punching, multiple punching operations need to be carried out on a CNC (computer numerical control) puncher until the edges of the desired shape are completely covered with holes such that it can be removed. This is a time consuming process.

The laser processing is fundamentally deficient in individual via formation for two main reasons. First it ablates out material which gets re-distributed on the surface as defects. The edges of the laser produced via tend to be nonuniform and also there is partial firing of the material in the immediate vicinity of the via as exposure to the laser causes local heating effects.

2.1.5. Mechanical Punching

The mechanical punching process, as the name implies, is the process of mechanically removing the green sheet material where the via needs to be through the use of mechanical force – identical in principle to the punchers used to make holes in paper.

The advantage of mechanical punching over laser cutting in via formation is illustrated in Figure 2-3 where the top 3 SEM images show holes cut by mechanical punchers and the lower images show equivalent vias created by laser processing. The quality of the mechanically punched holes will depend on the sharpness of the puncher – which generally gets dull with usage. This will cause imperfect holes or chips around the hole but this is easily overcome by properly monitoring the age of the puncher and changing it at regular intervals just like any other consumable in a manufacturing process.

Figure 2-3 - Comparison of (a) Mechanically Punched and (b) Laser Cut Vias [4]

Mechanical punchers can be sub-classified into hard tooling and soft tooling. The tooling here refers to the hole configuration. Hard tooling refers to the mode of operation where multiple holes are punched out in a single action because the tool consists of a dedicated die. This kind of a puncher has a very high throughput but is limited in terms of flexibility as a new die is required for each different layer that needs to be punched. Soft tooling, on the other hand, operates with a single puncher that is located according to the pattern that needs to be transferred to the green sheet. Therefore multiple punches are required to punch in the pattern for the entire layer however multiple layers can be processed using the same piece of hardware. Hard tooling is more suitable for volume production and soft tooling is better suited for pilot scale or prototype production.

2.1.6. Via Fill

This next operation in the sequence is required to enable the holes to act as connectors between the multiple layers. The holes created need to be filled properly with a conductive ink so that they can server their purpose. The process is done by stencil/screen printing or bladder filling. Care must be taken in designing the process as the ink used in this process is more viscous than that used for screen printing on a flat surface. This is because the ink needs to fill in a hole of appreciable diameter and not sag or run prior to drying. Upon firing and loss of the solvent, the hole must remain completely filled in order to ensure a low resistance interconnection.

Stencil or screen printing processes are nearly identical. Both use a shear force created by the movement of a squeegee through a metal mask in stencil printing and a mesh for the screen printing process. The main difference is that in the case of stencil printing, the metal mask is in intimate contact with the green tape, providing a zero snap off distance [1].

Bladder filling is similar to the stencil printing in the sense that it also passes the ink through a metal mask. However the process is fundamentally different in the way it forces the ink through the mask openings and into the holes – it uses a pressurized bladder to apply force to the ink spread over the stencil.

2. Sputter metal layer.

3. Apply and pattern photo resist mask.

4. Wet etch the metal layer.

5. Strip the photo resist mask.

Figure 2-4 - Sputtering Metallization: Wet-Etch Process [1]

In any case, the success of via filling process is judged by the degree of filling. Figure 2-5 illustrates 3 different cases where a proper fill is compared to overfill and misaligned fill. Overfill will cause smearing of the conductive paste around via, possibly causing shorts between adjacent lines.

Under fill would cause improper contact resistance between the layers since the entire area designed for the connection would not be filled with the ink. Misaligned holes will cause both smearing in undesired locations as well as inadequate contact between adjacent sheet layers.

Figure 2-5 - Via Filling Process Success Criteria [1]

2.1.7. Screen Printing

This is perhaps the most challenging and difficult to control and maintain steps in LTCC manufacturing. This is essentially where interconnects are defined on the surface of the individual layers. Screen printing techniques draw upon 50+ years of experience of printing onto pre-fired substrates such as alumina – with some unique modification required in substrate handling such that the fragile green sheets can be accommodated.

The basic steps and critical components of the screen printing process is shown in Figure 2-6. The substrate must be held in with the right amount of force such that it does not move while the pattern is being transferred and yet gentle enough that it does not break the fragile green tape. This is usually achieved by a porous stone chuck which uses many small holes to apply vacuum to the green tape and distribute the force very uniformly across the surface.

Figure 2-6 - Steps in the Screen Printing Process [1]

The screen is constructed from a thin stainless steel wires mesh. The diameter of the wires usually varies between 0.9 and 1.2 mm. Around 200 to 400 wires per inch are used to form the mesh, with 325 being a more common choice. The mesh may be at 45° or 90° angles with respect to the

movement direction of the squeegee. Under identical conditions, a 45° mesh is going to provide superior line quality since it is easier to push the ink through the openings. In general, higher mesh counts and thinner wires result in finer resolution. The screen is held in place by a frame.

The squeegee is simply a piece of rubber or plastic that provides shear force to the ink as it moves horizontally across the screen while applying pressure perpendicular to the screen. This shear force causes the viscosity of the non-Newtonian ink to decrease and easily flow through the openings in the mesh – transferring the image on the stencil onto the substrate. Once the sheer force is gone, viscosity increases again, ensuring that the ink on the surface does not flow freely but keeps its pre-defined shape. During this process, the mesh stays slightly above the substrate by an amount called the snap-off distance – this causes minimal contact with the substrate, the screen only briefly contacts the substrate where the ink is being transferred thus avoiding smearing while the screen is being lifted away from the substrate at the end of the process.

The critical variables that must be tuned and/or maintained for screen printing are

- 1. Screen to substrate distance snap off distance
- 2. Squeegee down-force pressure
- 3. Squeegee horizontal movement speed
- 4. Screen to substrate parallelism must be parallel
- 5. Screen properties such as mesh size, angle of attack and wire diameter

Where the particular values of these parameters are largely dictated by the specific paste/ink being used as each ink or paste has its own material properties.
After the processes, it follows the inspection stage – which may be dispersed through critical operations of the process – refers to optical inspection of individual layers to ensure quality prior to stacking and lamination. Depending on the degree of resolution required and throughput desires – these steps might be as simple as an operator manually inspecting green sheets under a microscope to fully automated inspection systems with optical alignment and automatic defect identification.

Electrical testing of the finished product is also possible prior to post processing steps for early detection of possible problems.

2.1.8. Film Stacking

This is the final step in the process where the green sheets will exist by themselves for the last time. Here the individual sheets are aligned and placed on top of each other. Similar to the inspection process, this operation may be fully automated with optical alignment features or completely manual through the use of alignment holes. The accuracy and throughput requirements dictate what type of specific strategy to pick as highly automated and accurate systems will come with an associated price tag.

2.1.9. Lamination

Simply overlaying individual layers does not provide adequate levels of surface to surface contact required during the co-firing process. Lamination ensures this surface to surface contact by applying pressure to the stacked layers. Once the stacked films are laminated – it is very difficult to remove them. The particular process conditions applied do depend on the specific

20

materials used in production but values of 3000 psi, 70°C and 10 min are pretty typical settings [7].

There are two types of lamination processes – distinguished by the way they apply the pressure. These are isostatic lamination and uniaxial lamination. Uniaxial lamination uses two heated, parallel plates. The stack is sandwiched in between the heated plates. This process has the advantages of speed and simplicity of equipment but the disadvantage is maintaining a uniform pressure across the entire surface of the plate. A non-uniform pressure applied will result in variability in the density of the material which will eventually cause non-uniform shrinkage during co-firing and possible undesired results.

Isostatic lamination uses a water filled pressure vessel to ensure pressure uniformity across the entire substrate. The substrate must be sealed in some kind of water tight packaging prior to being immersed into the pressure vessel to avoid the unfired ceramic coming into contact with water. Multiple stacks may be laminated in one batch operation to increase throughput – limited by the size of the pressure vessel. Metal backing and cover plates may be used if desired and would help to improve pressure uniformity. Disadvantages of the isostatic lamination process over uniaxial lamination are lower throughput and more complicated equipment [7].

2.1.10. Co-firing Oven

After the individual films have been laminated, they need to be fired to create the dense ceramic material desired for operation. This process takes place in a batch mode in box furnaces for low volume production or continuous belt operation for higher throughput applications. In either case, the substrate must be placed on setters as many of the materials will conform to the surface they are sitting on during the firing process. The

21

setter must be very clean as irregularities on their surface will directly transfer to the substrate. The choice of setter material is also critical such that heat must be uniformly transferred across the surface area and adhesion to the setter must be avoided.

The box furnace operation has the advantages of better control of temperature profiles and smaller, cheaper equipment. However the box furnace is inherently very restrictive in terms of throughput. Larger and larger furnaces may not be practical because maintaining temperature uniformity on identical substrates placed in different locations would get more difficult as multiple substrates are loaded to increase throughput.

In Figure 2-7, there is a typical firing sequence for a LTCC stack. The ramp rates are critical in maintaining spatial temperature uniformity across the substrate. The first plateau in the process, often referred to as the Ash step, is where the volatile components are being driven off the substrate – these include the solvents in the green tape and the various pastes and inks as well as the polymer matrix itself. What should remain pose the ash step is the ceramic material only along with the conductor materials of the inks and pastes.

The substrate at this point is extremely fragile since the polymeric material that was giving it the flexibility has been removed. This material is then heated to higher temperature and held for a certain period of time to allow for the ceramic material to pack closely and sinter forming the mechanically very strong final product that also provides the desired electrical properties [7].

Figure 2-7 - A Typical Firing Sequence for an LTCC Stack [7]

What is of importance during the co-firing process is maintaining a uniform temperature gradient through the entire cycle, making sure the ash and sinter dwell times are long enough to drive all transformations to completion and thereby controlling the amount of shrinkage that happens during the entire cycle. This is critical since variable shrinkage will cause the final dimensions to be different (assuming uniform incoming patter quality) causing eventual differences in electrical properties.

2.2. POST PROCESSING

Once the co-fired stack is manufactured, additional processing steps might need to be carried out depending on the specifics of the application. External connections may need to be made or patterns may need to be printed on the top or bottom surface. If the final design contains embedded IC's, these must be placed inside the appropriate cavity carved into the stack. These operations will be left outside the scope of this project and report due to the inherent variability in their combination.

2.3. CURRENT STUDIES OF LTCC

The material on focus LTCC does not have a large number of producers. One of the most yielding manufacturers is DuPont. They have a supply of final product LTCC, other than different sources of green tapes for co-fired and post-fired. Co-fired materials have gold and silver/palladium conductors, both externally and internally placed. Green tape post-fired materials are produced with again silver and gold conductors, with glass and glass free encapsulates and post-fired resistors.

Also LTCC is a strong entry for the various production processes. One of the recent studies of Shina et al [12] deals with the production of micro-fuel processor which integrates steam reformer and partial oxidation reactor using LTCCs. Park et al [13] studied a fully integrated micro-channel fuel processor system consisting of vaporizer, steam reformer, heat exchanger and preferential CO oxidation which also developed using LTCCs. The performance is measured at varying conditions such as ratio of the feed flow rate, ratio of H_2O/CH_3OH , CO clean-up system, and operating temperature of the reactor [13].

There are several experimental studies of the molding types for the material in the point of view of attachment LTCC based micro-electromechanical systems (MEMS) or micro system technology (MST) devices. Khanna et al dealt with the test structures which are fabricated by molding single layer green tapes into cylindrical form in order to investigate the penetration of the

24

cracks and the bonding of LTCC modules to metal parts with a dissimilar coefficient of thermal expansion [14].

CHAPTER 3

3. MODELING

This study takes a 3 prong approach to the characterization of the dynamics of the firing oven for the purpose of understanding the mechanisms leading to temperature non-uniformities on the substrate. We begin with a comprehensive model built using commercial finite element solver software, namely ANSYS 13 of ANSYS Inc. This model is going to be described in the next section, 3.1.

Although having the capability of accurately describing and modeling the physical system, the approach of using commercial finite element solvers is hindered by the fact that the solution of the modeling equations take a long time, making it impossible to be used for real time control applications that require faster than real time solution to these modeling equations. Furthermore the results of such commercial packages cannot be easily incorporated into actual control applications due to the high cost of license for such software packages.

This is where the second approach of building a simplified dynamic model becomes relevant. In this case, we use a simplified approach to modeling the dynamics using MATLAB of MathWORKS in order to implement a real time solution to the temperature dynamics inside the oven that can effortlessly be incorporated into actual control applications. The simplifications that enable the real time solution capability for this second modeling approach are derived from and justified by the more complex modeling approach of the finite element solver. This is going to be the topic of section 3.2.

Finally, no modeling effort is complete unless they are confirmed by actual experimental results. In fact even the most complex modeling approach will require some level of tuning of the physical constants that are involved in the system behavior which cannot be measured accurately. The experimental plan based on fundamental concepts of experimental design will be outlined in section 3.3.

Figure 3-1 – Flow Chart for the Dynamic Behaviour Solution

3.1. Finite Element Solver Model – Complete Dynamics

The finite element solver package provides a solution to the equations of conservation of energy once the proper geometry, material system are defined along with the appropriate boundary conditions. The details of the equations will not be listed here as they are the same ones upon which the simplified model, described in section 3.2, is based. Instead a brief outline of

the model built into ANSYS will be described here. The detailed report as produced by ANSYS is included as part of Appendix A.

The geometry of the oven is defined into ANSYS using the graphical user interface with all dimensions and material descriptions based on the system's user manual. Figure 3-2 shows a snapshot of the very outside of the model geometry – which shows the entire oven contents (quartz tube, filaments, substrate and thermocouples) enclosed inside a cylinder of insulation. Figure 3-3 is showing the system with part of the insulation hidden from view in order to reveal the quartz tube that houses the heated enclosure. Figure 3-4 further hides parts of the quartz tube so that the inside of the oven can be seen clearly. This figure shows the 12 main filaments situated around the substrate, the front and back filaments installed for better temperature uniformity and the substrate. What is not very clearly visible here are the thermocouple beads as they are very small. These are located right under the substrate and at the front and the back of the oven at the same vertical position.

Figure 3-2 - The Oven Enclosed Inside The Insulator

Figure 3-3 - The Insulator Peeled Back At The Front And On The Sides

Figure 3-4 - Parts of the Quartz Tube Hidden from View to Reveal the Heated Enclosure

Once the geometry is defined, the mesh needs to be defined over which the equations of energy conservation will be solved. The default mesh options of the software create too many nodes and elements – which introduces an unnecessary amount of computational burden.

The desired level of accuracy can be achieved using the optimized mesh as shown in Figure 3-5. Here several simplifications are made. For instance since the filaments are made of a highly thermally conductive material, the temperature distribution within the filament will be very small thus no elements need to be defined in the radial dimension. This approach reduces the number of elements to approximately 2500 as compared to the approximately 37000 by the default approach. A sensitivity analysis will be summarized in the results section that justifies this reduction of elements.

Figure 3-5 - The Meshed Geometry

Figure 3-6 - The Boundary Conditions

The final step in defining the model is the specification of appropriate boundary conditions for the entire geometry. Starting from the very outside, the exposed surfaces of the insulation are in contact with stagnant room air – for which convective heat transfer for a horizontal cylinder with stagnant air is appropriate. So the convective heat transfer coefficient as a function of temperature is defined. The filaments are resistive heating elements rated at 1600W each. This is converted to an internal rate of heat generation through the volume of the filaments and defined independently for each filament. The power outputs of the filaments are set-up to be defined as time dependent functions.

Within the oven enclosure, the important mode of heat transfer is radiation and this is defined by including the interior surface of the quartz tube, the filaments and the substrate which are enclosed inside the quartz tube. The solids that are in thermal contact with each other exchange energy through conduction. Conductive heat transfer also takes place within each solid material. Two more modes of convection are defined. First one is over the substrate to simulate the possibility of blowing nitrogen over the substrate during the soak cycle. The other one simulates the behavior of the fan that is turned on during the cooling cycle to be able to control the rate of cooling. This is defined only on the left side of the oven as that is the way the oven is configured. Once the fan is turned on, the convection is turned on by proportionally increasing the convective heat transfer coefficient as a function of blower speed. This coefficient is defined as zero otherwise when the blower is switched off.

3.2. MATLAB MODEL – SIMPLIFIED DYNAMICS

In this section, energy balances were conducted including conduction, convection and radiation heat transfer mechanisms. For the substrate finite difference method was applied. Among the heat transfer mechanisms, radiative term consists of view factor coefficients which were derived for substrate and thermocouples.

3.2.1. Conservation of Energy

Governing temperature distribution of the substrate is constructed as follows:

Figure 3-7 - Placement in the Co-firing Oven

$$(Conduction in x - direction)_{in} - (Conduction in x - direction)_{out} + (Conduction in y - direction)_{in} - (Conduction in y - direction)_{out} + (Radiation on top⊥)_{in} - (Radiation on top⊥)_{out} + (Convection on top)_{in} - (Convection on top)_{out} = Accumulation (3.1)$$

$$\begin{aligned} \left[q_{x}\right]_{x} \Delta y \Delta z \Delta t - \left.q_{x}\right]_{x+\Delta x} \Delta y \Delta z \Delta t + \left.q_{y}\right]_{y} \Delta x \Delta z \Delta t - \left.q_{y}\right]_{y+\Delta y} \Delta x \Delta z \Delta t \right]_{cond} \\ &+ \left[q_{z}\right]_{z} \Delta x \Delta y \Delta t - \left.q_{z}\right]_{z+\Delta z} \Delta x \Delta y \Delta t \right]_{conv} \\ &+ \left[q_{z}\right]_{z} \Delta x \Delta y \Delta t - \left.q_{z}\right]_{z+\Delta z} \Delta x \Delta y \Delta t \right]_{radn} \\ &= \Delta x \Delta y \Delta z \left[\rho C_{p} (T|_{t+\Delta t} - T|_{t})\right] \end{aligned}$$
(3.2)

Dividing both sides with $(\Delta x \Delta y \Delta z) \Delta t$;

$$\left[\frac{q_x|_x - q_x|_{x+\Delta x}}{\Delta x} + \frac{q_y|_y - q_y|_{y+\Delta y}}{\Delta y}\right]_{cond} + \left[\frac{q_z|_z - q_z|_{z+\Delta z}}{\Delta z}\right]_{conv} + \left[\frac{q_z|_z - q_z|_{z+\Delta z}}{\Delta z}\right]_{radn} = \rho C_p \left[\frac{T|_{t+\Delta t} - T|_t}{\Delta t}\right]$$
(3.3)

Taking the limit as $\Delta x \rightarrow 0$, $\Delta y \rightarrow 0$, $\Delta z \rightarrow 0$ and $\Delta t \rightarrow 0$;

$$\left[-\frac{\partial}{\partial x}(q_x) - \frac{\partial}{\partial y}(q_y)\right]_{cond} - \left[\frac{\partial}{\partial z}(q_z)\right]_{conv} - \left[\frac{\partial}{\partial z}(q_z)\right]_{radn} = \frac{\partial}{\partial t}(\rho C_p T)$$
(3.4)

Where conduction heat transfer terms are represented with;

$$q_x = -kA\frac{\partial T}{\partial x} \tag{3.5a}$$

$$q_y = -kA\frac{\partial T}{\partial y} \tag{3.5b}$$

Convection heat transfer term is represented with;

$$[q_z]_{conv} = hA(T - T_a)$$
(3.6)

Radiation heat transfer term is represented with;

$$[q_z]_{radn} = AF_{ij}(E_{b,i} - E_{b,j}) = AF_{ij}\sigma(T^4 - T_s^4)$$
(3.7)

Combining these equations;

$$-\frac{\partial}{\partial x}\left[-kA\frac{\partial T}{\partial x}\right] - \frac{\partial}{\partial y}\left[-kA\frac{\partial T}{\partial y}\right] - \frac{\partial}{\partial z}\left[hA(T - T_a)\right] - \frac{\partial}{\partial z}\left[F_{ij}A\sigma(T^4 - T_s^4)\right]$$
$$= \frac{\partial}{\partial t}\left(\rho C_p T\right)$$
(3.8)

The terms k, ρ, C_p, σ are assumed to be constant;

$$k \left[\frac{\partial^{2}T}{\partial x^{2}} + \frac{\partial^{2}T}{\partial y^{2}} \right] - h \frac{\partial}{\partial z} (T - T_{a}) - F_{ij} \sigma \frac{\partial}{\partial z} (T^{4} - T_{s}^{4}) = \rho C_{p} \frac{\partial T}{\partial t}$$
(3.9)
$$q|_{x} \Delta y b - q|_{x + \Delta x} \Delta y b + q|_{y + \Delta y} \Delta x b - q|_{y} \Delta x b - 2\Delta x \Delta y \sigma (\epsilon T^{4} - \alpha T_{s}^{4}) F_{ij}$$
$$- \Delta x \Delta y h (T - T_{a}) = \Delta y \Delta x b C_{p} \rho \frac{\Delta T}{\Delta t}$$
(3.10)

With this basic description and the simplifying assumptions, the generic equation governing the temperature distribution within the substrate is a partial differential equation of the form

$$V\rho C_p \frac{\partial T}{\partial t} = -k \frac{\partial^2 T}{\partial x^2} - k \frac{\partial^2 T}{\partial y^2} + \dot{Q}_{radiation} + \dot{Q}_{convection}$$
(3.11)

where the assumptions of temperature and position independence of physical parameters has allowed them to be taken out of the partial derivative terms. The model also ignores the possibility of heat generation or consumption while the green sheet material undergoes a phase change in the firing process. The radiation term can be expressed as:

$$\dot{Q}_{radiation} = F_{s-f} A \sigma \left(\varepsilon T^4 - \alpha T_f^4 \right) + F_{s-t} A \sigma \left(\varepsilon T^4 - \alpha T_t^4 \right) + F_{s-b} A \sigma \left(\varepsilon T^4 - \alpha T_b^4 \right)$$
(3.12)

where F_{s-f_r} , F_{s-t} and F_{s-b} refer to the geometric view-factor between the substrate and the main filaments, the top surface of the oven and the bottom surface of the oven respectively. *A* is the surface area of the substrate, σ is the Stefan-Boltzmann constant, *a* is the absorptivity of the substrate surface, ε emissivity of the substrate surface. Finally the

temperature variables T_{f_r} T_t and T_b denote the temperatures of the filaments, the top surface and the bottom surface respectively.

The form of the convective term is simpler where the rate of convective heat transfer depends on the temperature difference between the substrate surface temperature and the ambient air temperature, Ta, with a proportionality constant h.

$$\dot{Q}_{convection} = Ah(T - T_a) \tag{3.13}$$

The substrate is initially uniformly at the room temperature and the appropriate boundary conditions on the edges of the substrate need to be defined. There will be total of 4 boundary conditions to be able to solve this problem – one at each extreme edge of the substrate. Different boundary conditions to will be considered in the solution ranging from an assumption of no heat transfer at the edges due to very small thickness to radiative and convective mode of heat transfer for these edges just like the larger surfaces.

According to the form of equation, it is apparent that there is not an analytic solution to this system. So the approach to this problem will be to numerically solve the system using a finite difference method. The basis of the finite difference method is outlined with the aid of following figure:

Figure 3-8 - The Finite Difference Method

The substrate is divided into cells of size Δx and Δy along the *x* and *y* directions. No discretization is required in the z-direction since the substrate has been assumed to be thin enough. Then an energy balance can be written for any arbitrary element whose temperature is given by $T_{i,j}$ – where the equation has now become a system of ordinary differential equation due to the fact that the substrate has been broken down into a network of *n* by *m* cells where n is the number of cells in the *x* direction and *m* the number of cells in the y direction – which depend on the resolution of the discretization as defined by the values of Δx and Δy .

$$V\rho C_p \frac{dT_{i,j}}{dt} = q_{x-dx/2}'' + q_{y-dy/2}'' - q_{x+dx/2}'' - q_{x+dx/2}'' + \dot{Q}_{radiation} + \dot{Q}_{convection}$$
(3.14)

The individual heat fluxes can be approximated by the local gradient of the temperature at each surface as:

$$q_{x-dx/2}'' = -k\Delta y d \frac{T_{i,j} - T_{i-1,j}}{\Delta x}$$
(3.15a)

$$q_{y-dy/2}'' = -k\Delta x d \frac{T_{i,j} - T_{i-1,j}}{\Delta y}$$
 (3.15b)

$$q_{x+dx/2}'' = -k\Delta y d \frac{T_{i,j} - T_{i-1,j}}{\Delta x}$$
(3.15c)

$$q_{x+dx/2}'' = -k\Delta x d \frac{T_{i,j} - T_{i-1,j}}{\Delta y}$$
(3.15d)

Where d is the thickness of the substrate. If one chooses the same mesh size in the x and y directions, that is $\Delta x = \Delta y$, the 4 expressions above can be simplified and substituted into the original energy balance as

$$V\rho C_p \frac{dT_{i,j}}{dt} = kd(T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{1,j-1} - 4T_{i,j}) + \dot{Q}_{radiation} + \dot{Q}_{convection}$$
(3.16)

At this point, the model will also be discretized in the time domain as well, that is

$$\frac{dT_{i,j}}{dt} = \frac{T_{i,j}^{k+1} - T_{i,j}^{k}}{\Delta t}$$
(3.17)

where the superscript denotes the time dimension. With this definition, the present time temperature values, denoted by the superscript k, can be isolated into one side of the expression

$$T_{i,j}^{k+1} = T_{i,j}^{k} + \frac{\Delta t}{\Delta x x \cdot \Delta y y \cdot \rho \cdot C_{p}} \left[k(T_{i+1,j}^{k} + T_{i-1,j}^{k} + T_{i,j+1}^{k} + T_{i,j-1}^{k} - 4T_{i,j}^{k}) + \frac{1}{d} \dot{Q}_{radiation} + \frac{1}{d} \dot{Q}_{convection} \right]$$
(3.18)

Where the volume of the element has been replaced by

$$V = \Delta x \cdot \Delta y \cdot d \tag{3.19}$$

which allows for the direct calculation of the temperatures for the next instance in time based on the knowledge of only the present values of temperature. In the same context, the radiative and convective terms become

$$\dot{Q}_{radiation} = \Delta x \cdot \Delta y \cdot \sigma \left[F_{i,j-f} \left(\varepsilon T_{i,j}^{k^4} - \alpha T_f^4 \right) + F_{i,j-t} \left(\varepsilon T_{i,j}^{k^4} - \alpha T_t^4 \right) + F_{i,j-b} \left(\varepsilon T_{i,j}^{k^4} - \alpha T_b^4 \right) \right]$$
(3.20)

$$\dot{Q}_{convection} = \Delta x \cdot \Delta y \cdot h(T_{i,j}^k - T_a)$$
(3.21)

Systems boundary and initial conditions form a specific nature. The initial condition is incorporated into the finite difference form of the energy balance by letting

$$T_{i,j}^0 = T_0 (3.22)$$

in the simplest form. One is also free to define any temperature profile by assigning a specific temperature for each of the $n \times m$ elements of the matrix $T_{i,j}$ at k=0 if desired. The boundary conditions are accounted for slightly modifying the energy balance depending on the specific location of the grid element.

1	2	2	2	2	2	1
2	3	3	3	3	3	2
2	3	3	3	3	3	2
2	3	3	3	3	3	2
2	3	3	3	3	3	2
2	3	3	3	3	3	2
1	2	2	2	2	2	1

Figure 3-9 - The x-y Grid

Figure 3-9 shows an arbitrary 7 by 7 grid. The number in each grid refers to the condition of the grid element in terms of the neighboring grid elements. The most abundant type is "9" where all four edges are covered by grid elements, thus the energy balance developed above holds for these types of grid elements. For the remaining grid elements, the heat fluxes need to be modified. For instance for a type "6" cell, there is conduction through the top and right surfaces only. The bottom and left surfaces are open to the oven, where the heat flux needs to be modified in accordance with the specific boundary conditions.

For the simplest case when one assumes no heat transfer through this surface (which justified by the fact that the substrate is very thin compared to the exposed surface area), the energy balance simplifies to

$$T_{i,j}^{k+1} = T_{i,j}^{k} + \frac{\Delta t}{\Delta x x \cdot \Delta y y \cdot \rho \cdot C_p} \Big[k (T_{i+1,j}^{k} + T_{i,j+1}^{k} - 2T_{i,j}^{k}) + \frac{1}{d} \dot{Q}_{radiation} + \frac{1}{d} \dot{Q}_{convection} \Big]$$

$$(3.23)$$

Which is derived by eliminating the temperature gradients for the edge exposed surfaces. Similar equations can be derived for the remaining nodes. The conductive heat transfer terms for the 9 different grid locations as summarized in Figure 3-9 written for the no heat transfer at the edge boundary condition are given in Table 3-1.

Node	Conductive Term
1	$k(T_{i+1,j}^{k} + T_{i,j+1}^{k} - 2T_{i,j}^{k})$
2	$k(T_{i+1,j}^{k} + T_{i-1,j}^{k} + T_{i,j+1}^{k} - 3T_{i,j}^{k})$
3	$k(T_{i-1,j}^{k} + T_{i,j+1}^{k} - 2T_{i,j}^{k})$
4	$k(T_{i+1,j}^{k} + T_{i,j+1}^{k} + T_{i,j-1}^{k} - 3T_{i,j}^{k})$
5	$k(T_{i+1,j}^{k} + T_{i,j+1}^{k} + T_{i,j-1}^{k} - 3T_{i,j}^{k})$
6	$k(T_{i+1,j}^{k} + T_{i,j+1}^{k} - 2T_{i,j}^{k})$
7	$k(T_{i+1,j}^{k} + T_{i-1,j}^{k} + T_{i,j+1}^{k} - 3T_{i,j}^{k})$
8	$k(T_{i-1,j}^{k} + T_{i,j+1}^{k} - 2T_{i,j}^{k})$
9	$k(T_{i+1,j}^{k} + T_{i-1,j}^{k} + T_{i,j+1}^{k} + T_{i,j-1}^{k} - 4T_{i,j}^{k})$

Table 3-1 - Energy Balance by Grid Element Location

3.2.2. View Factor Theory

The radiation heat transfer mechanism consists of coefficients such as emissivity, absorptivity and radiative view factors. Among these, view factor is a bit more complicated due to the fact that is depends on the positioning of radiative units. Through the system, the agents of the focus are in fact placed in several positions and in every line of the computation, view factor component changes rather than staying the same as of the emissivity and absorptivity. Following step of the study simply states the computation of view factors between any given positions on the assumed coordinate system [15].

Now that each node has a relevant energy balance equation, the only remaining unknowns, apart from the material properties, are the view factors in the radiative transfer term, referenced in Equation 3.20. The view factors quantify the ratio of the radiation leaving one surface that lands on the other surface based on the relative position of the different surfaces involved in the radiative heat exchange. In general, the view factor between to generic surfaces 1 and 2 is given by

$$F_{1-2} = \frac{1}{|S_1|} \iint_{S_1} dS_1 \iint_{S_2} \frac{\cos\beta_1 \cdot \cos\beta_2}{\pi \cdot r^2} dS_2$$
(3.24)

where the nomenclature is- given in Figure 3-8. In this form, this is a quadruple integral – taken across both surfaces. In finite difference model being developed for this work, the surface S_I is small enough compared to the rest of the geometry such that the view factor is constant across it. This allows for the independent evaluation of the outer surface integral, simplifying the view factor expression into

$$F_{1-2} = \iint_{S_2} \frac{\cos\beta_1 \cdot \cos\beta_2}{\pi \cdot r^2} dS_2$$
(3.25)

In evaluating the angles appearing in the expression above, it is convenient to use the dot product of the unit normal to each surface with the vector connecting the two surfaces. Then we can define the two points in space in the parametric form as

$$P_1 = \langle x_1, y_1, z_1 \rangle \tag{3.26a}$$

$$P_2 = \langle x_2, y_2, z_2 \rangle \tag{3.26b}$$

From which the vector connecting the two points can be directly calculated as

$$S = \langle x_1 - x_2, y_1 - y_2, z_1 - z_2 \rangle$$
(3.27)

Then once the unit normal vectors are also defined as \hat{n}_1 and \hat{n}_2 , the view factor expression can be written as

$$F_{1-2} = \frac{1}{\pi} \iint_{S_2} \frac{(\hat{n}_1 \cdot S)(\hat{n}_2 \cdot S)}{(S \cdot S)^2} dS_2$$
(3.28)

Figure 3-10 - Nomenclatures for View Factor Definition [15]

The final step in determining the exact values of the various view factors is the correct definition of the geometry that will fix the values of the vectors and the limits of the integration. This needs to be done separately for the 3 different types of view factors appearing in the radiative heat transfer terms.

3.2.2.1. View Factor between the Substrate and the Oven Filaments

View factor calculations of the substrate with respect to oven filaments were calculated with the division into 3 parts of the oven, which are between (1)

substrate and filaments, (2) substrate and front lid and (3) substrate and back lid.

Figure 3-11 – Heating Filaments Around the Oven

Twelve filaments were numbered in the following fashion and angle in Figure 3-11. General expression for the view factors are usually defined as follows:

$$F_{s-f} = \iint \frac{|\hat{n}_{s}.s|.|\hat{n}_{f}.s|}{|s.s|^2} dx dy$$
(3.29)

After the integration, dF_{s-f} values were defined depending on the integral limitations. When the number of filament, *k*, less equal than 7 or ant other words, upper case filaments represented with the view factor of

$$dF_{s-f} = \frac{(Rsint).(xcost - R)}{[R^2 + x^2 - 2xRcost + (z - y)^2]^2} Rdtdz$$
(3.30)

And by the same manner, when the number of filament, *k*, greater equal than 7 or ant other words, lower case filaments represented with the view factor of

$$dF_{s-f} = -\frac{(Rsint).(xcost - R)}{[R^2 + x^2 - 2xRcost + (z - y)^2]^2} Rdtdz$$
(3.31)

For both cases, axial variable z has the limits of $z \rightarrow -\frac{L}{2}, \frac{L}{2}$ for both of them and the angle, t has the limits of $t \rightarrow 0, \pi$ and $t \rightarrow \pi, 2\pi$ respectively for upper and lower cases.

View factor expression for the front and the back lid were defined with the angle t and radius r, instead of angle t and axial variable z. Expressions for view factor between the substrate and the front lid and the substrate and the back lid are;

$$dF_{s-t} = \frac{R . (Rsint). (-A - y)}{[R^2 + x^2 - 2xRcost + (-A - y)^2]^2} Rdtdr$$

$$dF_{s-b} = -\frac{R . (Rsint). (+A - y)}{[R^2 + x^2 - 2xRcost + (+A - y)^2]^2} Rdtdr$$
(3.32b)

With the limitations of $t \to 0, \pi$ and $r \to 0, R$.

3.2.2.2. View Factor between TCs and the Oven Filaments

Thermocouples are placed inside a tube at the bottom of the co-firing oven. They are called as the front thermocouple (TC_{front}), central thermocouple (TC_{center}) and the back thermocouple (TC_{back}). View factor calculations for the three TCs were made with 2 different surfaces, which are upper and lower surfaces of TCs and with respect to three different cases, which are for the front lid of the oven, back lid of the oven and filaments around the oven (defined as 'sides').

Figure 3-12 – View Factor Definitions between Oven and TCs

3.3. EMPIRICAL MODELING – EXPERIMENTAL DESIGN

In extracting empirical information from a system, the resolution of the information acquired is inversely proportional to the amount of time and cost invested to carry out the experiments. The concepts and approaches of design of experiments (DOE) enable the extraction of the required information with minimal effort. For putting together an effective

experimental design, one must be competent not only in the statistical tools and techniques involved but also have a good idea of the physics behind the system under study.

The ideal method to carry out identification experiments for model building purposes is to execute experiments in an open loop fashion, where by the variables that impact the outputs are modulated directly and their effects recorded. However the software installed on the oven does not allow for this mode of an operation for safety reasons. Therefore the experiments had to be designed under a closed loop setting, where the temperature set-points are specified and the equipment adjusts the power of the various filaments according to un-published internal control algorithms. The fact that the details of the control algorithms are not released by the equipment manufacturer further complicates the analysis as these algorithms cannot be directly de-convolved from the results – revealing the true dynamics of the system.

The critical operating variables impacting the substrate temperature were determined to be the heat-up and cool-down rates and the temperature of set-point of the soak step. A secondary variable is the amount of air flow over the substrate during the soak step. Since radiation is the dominating mode of heat transfer and is a non-linear function of temperature – a simple 2 level experimental design is not going to yield enough information about the system. To capture the non-linear characteristics at least 3 levels are required for each critical variable. For 3 critical variables, that makes a total of 27 experiments. Some exploratory experiments showed that only a single experiment can be performed in one day since the oven takes a long time to cool back down to room temperature for the start of the next experiment. Reserving 27 days for experimentation on manufacturing equipment is not a possible proposal so the design needs to be simplified.

48

When one considers the experimental sequence, it becomes apparent that the heats-up and cool-down rates are independent variables, since they are separated by a long soak step which takes the temperature distributions to equilibrium. Thus the same non-linear information can be extracted using a sequence of 9 experiments. On top of this, we make the assumption that the convection over the substrate is an independent variable and the decision is made to study its impact at some constant value of the other variables.

Run No Ramp-u		Ramp-down	SP Temperature	Comment
1	30	30	600	Main DOE
2	20	30	900	Main DOE
3	20	20	600	Main DOE
4	10	10	600	Main DOE
5	10	30	300	Main DOE
6	30	10	900	Main DOE
7	20	10	300	Main DOE
8	10	20	900	Main DOE
9	20	20	300	Main DOE
10	20	30	900	Run 2 Repeat
11	20	30	900	Run 2 – 15.8slm
12	20	30	900	Run 2 – 31.6 slm
13	20	20	600	Run 3 – 15.8 slm

Table 3-2 - Experimental Design With Individual Variable Levels

The detailed experimental conditions are listed above in Table 3-2 where runs 1-9 are the actual design, run 10 is a repeat experiment for confirming

repeatability and reproducibility. Runs 11-13 are checking the impact of air flow over the substrate during the experiment.

CHAPTER 4

4. RESULTS AND DISCUSSION

This chapter is parallel to the previous one where the modeling approach was outlined in the sense that there will be 3 distinct sections, going over the results and findings for the 3 different modeling approaches. There will be a minor change in which the models are covered in terms of findings in order to improve the flow of findings. The modeling section ended with the experimental plan, this analysis section will begin with the results of the experiments since these findings will be referred to in the results and analysis of the two modeling studies.

4.1. EMPIRICAL MODELING – EXPERIMENTAL DESIGN

4.1.1. Summary of Oven Metrics

The data collected in each experiment is a time trend of the various parameters that are collected during the course of the experiment. These include the temperatures collected by the 3 TC's installed inside the oven for temperature control purposes, the power supplied to the three sets of filaments used to maintain the temperature inside the oven and the readings of the 5 TC's installed on the temperature collection substrate. These data are collected every second during the entire ramp-up, soak and cool-down cycle as well as for some time after the end of the cool-down step – tracking the final characteristics of oven and substrate cool-down. As such, each

dataset is contains 8000 to 20000 data-points depending on the duration of the experiment. Such large sets of data cannot be analyzed effectively in their raw state. They must be summarized in some key metrics which can then be interpreted for understanding the oven characteristics. The upcoming sections, prior to the analysis summary, outline these summary metrics along with some justification as to why the particular ones are picked.

4.1.2. Thermocouple Temperatures

A few typical time - temperature overlay plots for the three thermocouples recording the temperature inside the oven for control purposes is shown below. Identical plots for the entire set of experimental runs appear inside Appendix D.

The first plot here focuses in on the main firing step – for which the constant set-point temperature is regulated. One can see here that the center thermocouple (denoted by the red color and identified by the acronym TCC) shows the best tracking performance, followed by the front thermocouple (denoted by the green color and the acronym TCF). The back thermocouple (denoted by the blue color and identified by the acronym TCB) follows the other two by a slight offset. Parameters of steady state analysis for this processing step have been decided as the average value of each TC and the off-set between each TC pair at the steady state point (occurring approximately after a time of ~4500s for this particular example along with the amount of variation of the temperature value throughout the step (to be characterized by the range metric).

Next we look at the cooling step of the firing sequence. Again Run 03 is provided here as the typical example with the rest appearing in Appendix D.

The parameters that might be of interest here are again the temperature values and the offset between each TC pair at the end of the step. It does not make sense to consider the variation here as the variation is almost always the same, correlated to the ramp-down rate. The reasons for the lack of variation as compared to the previous step will become apparent during the analysis of the power input to the filaments.

Figure 4-1 – Cooling Step for Run 3

4.1.3. Filament Powers

As mentioned at the beginning of this section, filament powers are adjusted through unpublished internal algorithms of the oven software. The time trend of power supplied to the filaments in Run 03 are provided again for demonstration purposes. In the plot below, the color coding refers to the step number where red is the warm-up, green is the steady-state temperature bake and blue is the ramp-down. Note that the main power also takes on negative values; this is during the phase of the cooling cycle where the fan has been turned on. The majority of the heat supplied to the oven comes from the 12 main filaments. The front and main power are auxiliary filaments that provide supplemental power at the positions where the main filaments are not present to provide for better edge temperature uniformity.

Important note on the units of power – is that they are not explicitly stated by the equipment manufacturer. Although each filament has a maximum rated power, the recorded values do not even correspond to percentages of these maximum ratings – as evidenced by the 0 mean power provided by the main filament for the 300C set-point experiments. Therefore these recorded values will need to be calibrated to measured temperatures during the modeling efforts. Here we will include the final steady-state values of each filament during the constant temperature bake step (denoted by the green color as mentioned above) and the amount of variation that the filament encounters during the same step – in the hopes that this will correlate to the temperature variations of the 3 thermocouples.

Note here that as soon as the firing cycle enters the cool-down phase, all filaments are essentially shut down and the blower is turned on relatively quickly. This is the reason why the temperature fluctuations at this step are minimal – there essentially no active closed loop control.

Figure 4-2 – Analysis for the Run 3

4.1.4. Substrate Temperature Measurements

A close investigation of the substrate temperature measurements show that there are very slight variations of the within substrate temperatures during the constant temperature bake step. The final steady state temperature of each substrate temperature will be included in the analysis. More interesting things happen in the cool-down phase as shown in the plot on the left below. The dynamic range between each substrate point can be as high as 25-30C.

This within substrate temperature range is better visualized on a range versus time plot as shown in the figure below. The analysis will include the maximum temperature ranges demonstrated during the ramp-up and rampdown phases along with the final steady-state temperature range on the substrate towards the end of the constant temperature bake step. Another set of parameters of interest.

Figure 4-3 – Overlay Plots for Run 3
4.1.5. Summary of Oven Metrics

As per the brief explanations provided above, the experimental parameters of ramp-up and ramp-down rates, the steady state soak temperature will be correlated to the following variables:

Run	Soa	ak Step	SS	Soak Step Variation		Soak Step Ramp Down Fina			Final	
No	тсс	TCF	ТСВ	TCC	TCF	ТСВ	SS Range	TCC	TCF	ТСВ
1	600	600	596	5.8	22.4	14.5	4	225	261	216
2	900	900	896	5.7	6.8	3.3	4	253	299	248
3	600	600	596	5.8	9	5.6	4	161	196	154
4	600	600	596	5.0	2.6	2.5	4	98	123	94
5	300	300	296	8.8	9.8	6.6	4	181	197	177
6	900	900	896	6.0	15.4	6.1	4	103	130	101
7	300	300	296	10.3	10.2	15.9	4	86	103	81
8	900	900	896	4.2	3.8	3.1	4	180	221	175
9	300	300	296	8.8	20.3	26.1	4	141	160	135
10	900	900	896	7.9	11.1	4.0	4	248	304	237
11	900	900	896	7.7	14.5	5.4	4	248	302	239
12	900	900	896	8.0	14.6	3.9	4	239	287	243
13	600	600	596	6.9	6.6	6.7	4	160	202	150

 Table 4-1
 Oven Thermocouple Related Parameters

Run No		Soak Step S	S	Soak Step Variation			
	Main	Front	Back	Main	Front	Back	
1	2.3	26.0	17.1	1.0	4.0	7.3	
2	6.2	63.6	34.4	2.0	7.2	6.1	
3	2.3	25.2	16.7	1.0	2.6	4.8	
4	2.0	24.4	16.2	1.0	3.1	5.0	
5	0.0	11.1	6.7	0.0	12.1	4.8	
6	6.2	65.3	36.1	2.0	10.7	5.6	
7	0.0	10.7	6.7	1.0	16.0	4.8	
8	6.0	62.8	32.2	2.0	4.1	4.7	
9	0.0	11.6	6.4	0.0	15.3	4.9	
10	6.8	59.4	33.4	2.0	6.4	5.3	
11	7.2	72.1	30.0	2.0	7.0	4.3	
12	7.9	99.9	23.1	2.0	2.2	3.8	
13	2.9	31.3	13.3	2.0	2.7	4.8	

Table 4-2 - Filament Power Related Parameters

	Soak Step SS Values					Soak	Ramp-up		Ramp-
Run						Step SS	Max	Ramp-up	down
No	1V	2V	М	2H	1H	Range	Range	Min Range	Order
1	610	610	610	608	608	2.0	16.1	28.7	
2	910	910	910	908	908	2.2	11.0	38.0	
3	609	610	609	608	608	2.0	10.9	27.5	
4	610	610	609	608	608	2.0	5.6	23.5	
5	312	312	312	311	311	0.7	5.4	11.4	1V
6	910	910	909	908	908	2.4	16.8	26.9	М
7	312	312	312	311	312	0.9	9.7	11.1	1H
8	911	911	910	909	909	2.2	5.8	34.8	2V
9	312	312	312	311	311	0.8	13.2	11.3	2H
10	907	907	907	906	905	1.8	18.9	59.8	
11	903	904	904	904	903	1.2	18.6	58.0	
12	902	903	904	904	903	2.0	20.7	56.0	
13	604	604	604	603	603	0.6	19.3	38.7	

Table 4-3 - Substrate Temperature Related Parameters

4.1.6. Analysis of Oven Doe Data

4.1.6.1. Repeatability

As summarized in the DOE table, Run #2 was repeated twice – once at the start of the experiment runs and another time at the end of the experiment runs to monitor and justify the stability of the oven operation and the repeatability of the measurements. One may question the fact that only two repeat experiments were done, however this is justified in this case as each experiment does not result in a single data point but rather a sequence of ~10000 data points. Furthermore we are monitoring the stability of industrial

class manufacturing equipment that is operated under closed loop control. These two aspects of this work can be stated to justify this otherwise somewhat limited repeatability analysis.

Repeatability and operational stability is analyzed based on the time trends of the relevant operational parameters. When one compares the average temperature measurements on the substrate (5 locations) and the oven (3 locations), one sees that the difference at any given time is less than 3C for identical times in the processing sequence.

Figure 4-4 – Average Substrate and Oven Temperature

The individual temperature measurements show more of a variability, particularly in the cool-down step. This is best demonstrated by looking at the time trend of the substrate temperature range. The red and blue trends in the plot correspond to the within substrate temperature range recorded over runs 02 and 10 respectively. The shape of these trends are identical for both cases, however the temperature range is far greater for run 10 then run 02, in particular for the cool-down phase. If one looks further into the reason for this difference, it is noted that the active cooling for the two runs are significantly different. In Run 10, the cooling fan is turned on at a greater

rate compared to the more gentle and gradual rate of Run 02. The mechanism for this observation will be explained in greater detail through the rest of the analysis and modeling sections. However to summarize this has to do with the fact that the fan blows air on one side of the oven only, thereby cooling that side more effectively than the other side. The temperature range is driven by this imbalance during the cooling cycle. Thus for Run 10, where the fan is turned on more aggressively, more temperature gradient builds-up on the substrate.

Figure 4-5 – Range and Main Power vs Time Trends

The fundamental reason behind this mis-match between two identical experiments is the power sequence that was applied to the filaments and later to the blower. As demonstrated in the Main Power vs Time trend, Run 10 has the fan turned on more aggressively – resulting in a higher temperature difference between the right and left side of the furnace during the cooling cycle thereby producing a higher temperature gradient on the substrate.

4.1.6.2. Heating, Cooling Rates and Set Point Temperature Analysis

A typical experimental sequence is shown in Figure 4-6. The SP temperature refers to the constant temperature that the oven is held at for 60 minutes in the middle of the sequence. The ramp-up and ramp down rates refer to the slope of the temperature SP profile on either side of the soak step where the temperature is held constant at the SP temperature.

On the other hand, Figure 4-6 shows the actual temperature recorded on the substrate during the experiment. A close inspection of the two plots will reveal that there are different dynamics governing the monitoring TC's and the actual substrate temperature. The first obvious difference is the initial overshoot of the substrate temperature – which is due to the significantly higher thermal mass of the substrate as compared to the monitoring TC. After the cool-down phase is started, one can also see that the substrate temperatures settle less rapidly, again due to the difference in thermal mass. It will not be practical to separately analyze the 10 different profiles therefore some appropriate metrics need to be defined – which can then be modeled based on operating conditions. The temperature range that exists within the substrate at any given time, particularly during heat-up phase where the film stack is still not solidified, is critical otherwise mechanical stress build-up within the substrate may cause non-uniform shrinkage or even breakage. Another critical parameter would be the off-set between the measured, specified and actual substrate temperatures.

In the following Figures 4-6; TCF, TCB and TCM refer to the thermocouples located at the front, back and the middle of the oven, respectively. The heaters are controlled to track TCM. In Figure 4-7, 1V, 1H, M, 2V and 2H refer to the thermocouples located inside the special temperature monitoring substrate shown in Figure 4-6.

61

Figure 4-6 - The Firing Cycle – TCF, TCB, TCM

Figure 4-7 - The Firing Cycle – 1V, 1H, M, 2V, 2H

Figure 4-8 - The Two Range Parameters to be Modeled

Figure 4-9 - The Two Temperature Difference Parameters To Be Modeled

The time progression of the within substrate range and the difference between the substrate temperature and SP temperature are given in Figure 4-6 and Figure 4-7. Note that there is a huge difference between the SP and substrate temperatures during the cool-down phase as indicated by the blue color in Figure 4-6. This is due to the fact that the oven is not designed to control the cool-down phase very precisely – the rate of SP temperature ramp-down is simply faster than the cooling capacity of the oven. Although this is not as critical for the process performance as the SP tracking while the LTCC sheets are still soft, it is not preferable to cool-down the substrate in an uncontrolled fashion. Therefore the final temperature difference is included for monitoring how well the cool down temperature is controlled.

Out of the two range parameters defined, the first one is likely to be more critical to process performance. This is because the substrate is subjected to this temperature range while the sheets are still in the soft, uncured state. Thus the reactions and phase changes may occur in a non-uniform fashion, leading to shrinkage dependence on position as well as film breakage due to internal mechanical stress.

Figure 4-10 shows the prediction profiles of the critical parameters defined above to the operational characteristics of the oven for the ramp rate and SP temperature DOE as outlined in Table 3-1. The general statement to be made for the four models is that the interactions or quadratic terms are not important. All observations are accurately modeled with only the individual factors; the correlation coefficients of all models are above 0.95.

Furthermore, not all the factors are important for every output. Particularly the within substrate range parameters are completely driven by a single factor which is the ramp-rate for the initial heating phase and the SP temperature for the cool-down phase. In terms of process control, it would

64

be possible to maintain a 5-6°C temperature range within the substrate if the ramp-up rate is restricted to less than 10 °C/min.

The within substrate range during the cool down can be as high as 35°C at the SP of 900°C and is quite independent of the cool-down rate. This is in part due to the physical limitation of the oven for during the cool-down phase. This can be best illustrated by the aid of the overlay plot in Figure 3.6. Note in this figure that as soon as the cooling phase begins, the oven TC through which the PLC is controlling the system begins to decrease fairly rapidly - pretty close to the rate of SP decrease (at least in the initial phases). However the substrate, with its very large thermal mass as compared to that of the oven TC has to radiate out a lot more heat and thus begins to cool down quite slowly. Furthermore, the side of the substrate on which the 2H and 2V TC's are installed becomes colder than the rest of the substrate – this location difference is consistent across all experiments carried out. The reason for this is that this side of the substrate is exposed to the open side of the oven (shown in Figure 4-6). It is this open side of the oven through which the ambient air is drawn for providing the cooling action. Since the ambient air at the low temperature sees this side of the oven first, the walls on this side become cooler, allowing for the adjacent side of the substrate to radiate more heat and build in the temperature profile. This effect will also be validated through the modeling work in the latter sections. There is no way that this range can be overcome without a major design modification to the cooling mechanism of the oven. The flow of air within the oven itself will also be considered in the proceeding sections but the convective heat transfer mechanism is driven by the first power of the temperature difference while the radiative mechanism that causes the temperature difference on the substrate is driven by the fourth power of the temperature difference. So overcoming this difference by providing more cooling action through convective heat transfer likely will not be possible.

65

Figure 4-10 - The Critical Parameters Modeled To Experimental Conditions

The mean temperature difference between the substrate and the oven TC can be reduced significantly by keeping the ramp-up rate under control – the impact direction is same to that of the within temperature range so by

reducing the ramp-up rate, one can minimize all three variables under evaluation.

The ΔT_{final} parameter that was mentioned at the beginning of this section was not accurately modeled by any of the operating parameters meaning that the cool down process is essentially an uncontrolled process under the range of variables studied. Once again due to the differences in the thermal mass of the substrate and that of the oven TC, this cannot be brought under control unless a model based predictive control algorithm is used along with a state estimation technique. Fortunately temperature control and temperature non-uniformities are far less critical during the cool down phase where all the reactions have taken place and the film stack has been completely cured and solidified.

Figure 4-11 - The Non-Uniform Cooling On The Substrate

4.1.6.3. Air Flow Rate Analysis

The impact of air flow rate will be summarized through the plots in Figure 4-12 and Figure 4-13. These plots show a very effective impact during the ramp-up and initial soak phases. One could realize more than a 50% improvement in within substrate range by flowing 31.6 slm of ambient air through the oven and also obtain very good settling times as the substrate begins its constant temperature soak phase.

As effective as the improvement is during the ramp-up phase, the impact is equally ineffective during the cool-down phase. There is a trending improvement with increasing air flow – however the magnitude of the impact is on the order of 2-3%. This is because the cooling is dominated by the uncontrolled radiative mechanism outlined in the previous section. Once again the only way of improving this non-uniformity is by providing uniform cooling to the quartz tube walls, just like uniform heating is applied through accurate control of the heater filaments.

Figure 4-12 - The Within Substrate Range During Ramp-Up and Initial Soak

Figure 4-13 – The Within Substrate Range During The Initial Cool Down Period

4.2. FINITE ELEMENT SOLVER MODEL – COMPLETE DYNAMICS

4.2.1. Experimental Results Reproduction – System Identification

The finite element model coded into ANSYS is very well defined in terms of geometrical dimensions and accurately represents the actual oven. However in terms of material properties, some tuning needs to be done in order to match model predictions to actual oven behavior. For this purpose, a two on experimental design is executed, using the simulations as a platform. Objective is to identify the parameters of critical importance among the many material properties involved.

Table 4-4 lists all of the material properties involved that are likely to have an impact on the thermal behavior of the system.

Material	<u>Cp (J.kg⁻¹.ºC⁻¹)</u>	<u>K (W.m⁻¹.ºC⁻¹)</u>
Quartz (oven tube)	964	1.38
Insulation	680	0.02
Substrate (alumina)	930	22
Filaments (Kanthal®)	420	30

Table 4-4 - Material Properties and Default Values

The initial exploratory experimental design considers the first order impact of each of these parameters. For the sake of computational simplicity, a representative oven condition is picked, namely Run 2 – taking place at a soak temperature of 600°C. Figure 4-14 below shows the temperature profile of this particular run and indicate the two metrics that will be used to match the modeling results. The first one is the mean substrate temperature and the second one is the slope of the temperature profile during the stabilized soak phase. Note that the set-point temperature needs to be as close to 600 °C as possible while the slope of the temperature profile must be as close to zero as possible, perhaps slightly negative. These will be quantified by the temperature measurements at 2500s, 3500s and 4500s respectively.

Figure 4-14 – Run 2 Experimental Substrate Temperature Profile

Next, each parameter was varied by an order of magnitude around their default values as stated in Table 4-4. This resulted in a total of 18 simulations. The critical values were derived from the average substrate temperature at 3500s, 4500s and 5500s.

Stabilized Substrate Temperature - Impact Estimates							
Term	Estimate	Std Error	t Ratio		Prob> t		
P29 - Cp Quartz	-0.035614	0.011309	-3.15		0.0040*		
P31 - Cp Substrate	-0.029597	0.012156	-2.43		0.0218*		
P34 - Cp Filament	-0.060749	0.026918	-2.26		0.0323*		
P28 - Cp Insulation	-0.019974	0.016477	-1.21		0.2359		
P27 - k insulation	-65.53162	58.24954	-1.13		0.2705		
P30 - k Quartz	-8.806508	7.991823	-1.10		0.2802		
P33 - k Filament	-0.247394	0.376847	-0.66		0.5171		
P32 - k Substrate	-0.332309	0.513882	-0.65		0.5233		

 Table 4-5 - Impact Estimates – Average Substrate Temperature

Table 4-6 - Impact estimates – Substrate Profile Flatness

Substrate Profile Flatness - Impact Estimates							
Term	Estimate	Std Error	t Ratio		Prob> t		
P27 - k insulation	-0.047119	0.007035	-6.70		<.0001*		
P29 - Cp Quartz	-2.66e-6	1.366e-6	-1.95		0.0619		
P30 - k Quartz	0.0010238	0.000965	1.06		0.2982		
P28 - Cp Insulation	-2.015e-6	1.99e-6	-1.01		0.3202		
P34 - Cp Filament	3.2476e-6	3.251e-6	1.00		0.3267		
P31 - Cp Substrate	1.0551e-6	1.468e-6	0.72		0.4785		
P33 - k Filament	1.6176e-5	4.551e-5	0.36		0.7251		
P32 - k Substrate	1.8728e-5	0.000062	0.30		0.7652		

The results in Tables 4-5 and 4-6 indicate that the most significant driver for the average substrate temperature are the heat capacities of the substrate, quartz and filament. This parameter directly impacts the temperature of these materials and thereby determines the amount of radiative heat exchange between them. The insulator is not included in this picture as it does not participate in radiative heat transfer, only conduction with the quartz tube. The insulator comes into the picture when the rate of stabilization of temperature is concerned. This is because the insulator is the rate limiting step in the loss of heat to the surroundings – thereby its thermal conductivity determining the characteristics of substrate temperature stabilization.

Based on the findings of the above variation study, the results of the experimental Run 01 were reproduced, using the filament powers as the input to the simulations.

4.2.2. Substrate Temperature Distribution Dynamics

Figure 4-15 below shows the comparison of the predicted vs actual representation of temperature dynamics. Note that there is a constant off-set between the steady-state temperatures – which can be remedied with further fine tuning of the experimentally determined thermal characteristics of the system.

The trend of the substrate range is within reasonable agreement as far as the shape is concerned. There is again some further fine tuning to be done – particularly with the convective heat transfer coefficient of the blower side during the ramp-down cycle to make the magnitudes match. It appears that the simulation blower introduces more heat losses than reality at these current settings.

Finally the thermal conductivity of the substrate needs to be fine-tuned to match the initial warm-up rate as well as the slightly higher observed within substrate range during soak.

Figure 4-15 - ANSYS Model Predictions vs. Reality

4.2.3. Right and Left Side Temperature Difference During Cool-Down

The experimentally observed within substrate temperature difference is explained by the uneven cooling between the blower (left) and natural convection (right) sides of the oven. Figure 4-16 shows the temperature distribution on the quartz tube during warm-up, soak and cool-down respectively. Note that the initial distribution shows the impact of the filaments, with hot-spots located near the filaments. Then during soak the temperature has time to equalize and achieve a steady state, constant value. Finally as the blower forces air on the left side, a temperature gradient builds-up between the two sides – causing the un-even temperature distribution on the substrate.

Figure 4-16 - Blower Impact for Cool-Down

4.3. MATLAB MODEL – SIMPLIFIED DYNAMICS

4.3.1. View Factor Confirmations

As outlined before, the definition of view factors involves many operations whose results must be confirmed by some means to ensure accuracy. The oven-substrate system is special in the sense that the substrate is completely contained within the quartz tube. Thus the summation of all view factors must be equal to unity.

For this confirmation study, the oven dimensions given in the Appendix D are used. Namely the quartz tube length L is 331 mm, radius at which the filaments are located, R is 164 mm. The first filament makes an angle of 15° with the horizontal line and each filament is located at 30° intervals after that. The substrate under study is 200mm by 200mm, that is A = 200mm. For demonstration purposes, Δx and Δy will be fixed at 10mm.

Figure 4-17 - Top (a) and Bottom (b) Surface View Factors

Another approach for the verification of the thermocouple view factors were detailed with the analysis for the view factors with respect to locations. The values *a* and *b* represent the horizontal and vertical coordinates of the thermocouples, respectively. The view factor theory indicates the fact that, in an enclosed system, summation of the factors must be equal to unity. Considering the thermocouples were assumed to be cylindrical volumes and view factors were estimated for upper and lower halves, separately; there were 2 different results, both equal to unity. Thus following graph has a y-axis with close numerical values to 2 as in Table 4-7.

Table 4-7 – View Factor Unity Results

	Oven Front		Oven	Back	Oven	Σ	
TC_f	Upper	Lower	Upper	Lower	Upper	Lower	2.000
TC_c	0.2774	0.0137	0.0414	0.0003	0.6812	0.9860	2.000
TC_b	0.1015	0.0011	0.1015	0.0011	0.7969	0.9978	2.000

Since the thermocouples were aligned inside a tube right at the bottom of the co-firing oven, the abovementioned study was held with basic axial movement. Thermocouples were hypothetically moved from a=0 (both on the front and back lid of the oven) to a=16.5 cm (central line of the oven).

Following assessment was made with the movement of the front thermocouple, along the axial line. As the front thermocouple got more away from the front lid of the oven, view factor value ($F_{f_{-}f}$) was increased dramatically, because the possible area for the TC_{front} to cover was increased.

In Figure 4-18, front thermocouple view factors with respect to front lid of the oven were represented, while the other thermocouples

Figure 4-18 – TC_{front} – T_{front} Movement on Axial Line

Other than the placement study, all the view factor summation for the oven gave the unity with a maximum deviation on the order of 10^{-5} as in Figure 4-19.

Figure 4-19 - Summation of the View Factors

4.3.2. Sensitivity Analysis

Before proceeding any further toward the correlation of the model predictions with the experimental results, the 3 mesh sizes appearing in the model need to be optimized with respect to computational burden and solution stability. This can be done by executing a set of designed experiments where the factors are Δx , Δy and Δt . The final time will be fixed such that the system reaches a steady state from a set of initial conditions.

As expected the computational burden for calculating the view factors (F_{ij}) increases linearly with the number of cells the grid is divided into – which grows with the square of decreasing mesh size. This is not a very significant problem since the view factors are to be calculated once, determined by the geometrical arrangement. The smallest grid size for which the 20cm

substrate is broken into 1mm by 1mm squares, the CPU time used is less than 1hr. If one wants further resolution, there is also the possibility of interpolating between the calculated view factors at a higher resolution. The F_{ij} calculation time per cell remains relatively constant throughout the range studied at less than 0.08s per cell.

The more critical mesh size is in the time domain as this would be expected to impact the stability of the algorithm. The sensitivity analysis indicates an exponential relationship between the mesh size in the time domain and CPU time – as expected. The critical issue here at what point does the algorithm lose stability and whether this point is a very small mesh size, requiring excessively long simulation times.

This measure of stability is a more elusive parameter to define. So far the simulations carried out at a Δt of 0.2 (larger than the largest value that was reported in Table 4-8) shows reasonable stability performance. Under these stable conditions, an 8hr run takes approximately 35 minutes to simulate – which is a reasonable time period.

				Fij CPU Time	Tij CPU Time	Fij CPU time
delx (cm)	dely (cm)	delt (s)	Cells	(s)	(s)	per Cell
1	1	0.1	400	31	35	0.077
0.5	0.5	0.1	1600	122	93	0.076
0.2	0.2	0.1	10000	744	226	0.074
0.4	0.4	0.1	2500	186	79	0.075
0.1	0.1	0.1	40000	3130	564	0.078
0.1	0.1	0.01	40000	3130	5912	0.078
0.1	0.1	0.02	40000	3130	2858	0.078
0.1	0.1	0.05	40000	3130	1243	0.078

 Table 4-8
 - Sensitivity Analysis Results

The algorithm still has room for efficiency improvement in its structure. At this point, it has been deemed unnecessary to spend time for further optimization since the simulation times in the present form are reasonable.

4.3.3. Experimental Results Reproduction – System Identification

Modeling approach for the study was made through the separation the system into two parts. Temperatures of the oven (which are T_{front} , T_{back} and T_{sides}) were assumed as not measured throughout the operation; on the other hand thermocouple temperatures (TC_{front} , TC_{back} and TC_{center}) were assumed to be the values to be measured all through the operation. With this approach, expressions between the filaments and substrate met the expressions between the filaments and thermocouples. Those led to substrate and thermocouple energy balances and finally to the final temperature distribution.

Note that this is slightly different compared to the ANSYS model where the input to the model is the fundamental property (i.e. the filament powers) that derive the temperature increases. This requires a thermal model for the entire system, including the insulation and quartz oven tube. The simplified MATLAB approach correlates the temperature of the oven thermocouples to the temperatures on the substrate through the different view-factors involved in the geometry. Therefore less computational power is required at the expense of somewhat lower accuracy.

A typical plot of model estimations vs experimentation is shown below for Run 01.

Figure 4-20 – Model Estimations vs Experimentation for Run 1

Steady-state estimations are relatively accurate – with predicted substrate temperatures falling within 3% of the measured values. Dynamic predictions are within the same trend; however their magnitudes are about 2x lower than the actual values.

CHAPTER 5

5. CONCLUSIONS and FUTURE WORK

5.1. CONCLUSIONS

In this thesis study, detailed experimental and modeling work carried out on the furnace, which is perhaps the most important process in the LTCC manufacturing flow was summarized. The experimental observations and model predictions were within reasonable agreement. The dynamic behavior of the process and its limitations had been well supported by fundamental physical laws. With this detailed understanding of the furnace process, it will be possible to design the optimal process for the co-firing of the LTCC stack. Specific conclusions include.

- Demonstration of an effective modeling strategy for process optimization. We have successfully been able to predict oven temperature distribution dynamics by using complex as well as simplified, efficient models in connection with an effective experimental design. This is a good recipe for effective process development in manufacturing environments. The models allow us to understand the unmeasured (and perhaps unmeasurable) factors that fundamentally derive the final temperature distributions.
- 2. Oven thermocouple to substrate temperature correlation is reasonable under steady state operating conditions. However due to differences in installation location and more importantly the significant difference in thermal mass – oven thermocouples fail to predict the within substrate temperature distributions while the system is dynamically changing.

3. Significant temperature profiles within the substrate may exist during the ramp-up and cool-down stages. The range during cool-down is more significant since the cooling is done in an unbalanced manner through the use of a blower passing room temperature air on one side of the oven. It is possible to address this issue through the use of advanced control algorithms or equipment re-designs. Similar approaches are possible during the warm-up stage – where temperature profiles could have a more significant impact on the LTCC product performance.

5.2. FUTURE WORK

Further work will be carried out on the modeling front – by reducing the gap between the model predictions and reality through parameter fitting. At the end of this work it will be possible to propose an improved control strategy for the control of the oven temperature profiles.

More sensitivity studies need to be conducted on the remaining operation parameters (such as ramp rates for warm-up and cool-down as well as the steady state soak temperature) to reproduce the result of all experimental runs – not just Run 01 and the air-flow impacts.

The material selection has been completed for the green sheets and the compatible pastes and inks. Once these materials arrive on site – the characterization of the screen printing process will begin using the test chip developed.

CHAPTER 6

6. **RECOMMENDATIONS**

- In order to obtain the uniform temperature distribution, cooling stage can be controlled more effectively. In the system, cool-down part was done with forced convection – more effective on one side of the oven. In order to have a better control over the system, this forced convection can be more uniformly applied by re-designing the blower system to achieve the same air flow-rate over the entire surface area of the furnace. Since this redesign would require a hardware change, it is not very practical. The same effect can be mimicked by adjusting the power ramp down rates independently on either side of the furnace.
- Inside the substrate there are another 5 thermocouples in order to achieve a uniform distribution. They are placed as four in corners and one in the center. Placement might be made on the edges to have a better surveillance over the temperature distribution.
- Thermocouple shape assumption can be tested and selected among dot, spherical or cubical.
- As the most complicated part of the study, view factor assessment was conducted with the individual estimations. Instead of the assumption of the substrate not being in the way of the thermocouples, it is recommended to conduct view factors when thermocouples are accompanied by the substrate.

REFERENCES

- [1] Imanaka, Y., Multilayered Low Temperature Co-fired Ceramics (LTCC) Technology, Japan: Springer, 2004
- [2] Stetson H., "Multilayer Ceramic Technology," *Ceramics and Civilization*, No. 3, 1987, pp. 307-321,
- [3] Blodgett A. J. and Barbour, D. R. "Thermal conduction module: A high performance multilayer ceramic package," *IBM J. Res. Develop.*, Vol. 26, No.3 , 1982, pp. 30.
- [4] "Low-Temperature Fireable Multi-layer Ceramic Circuit Board", Nikkei New Materials, 1987, pp. 93-103.
- [5] Niwa K., Horikoshi E. and Imanaka Y., "Recent Progress in Multilayer Ceramic Substrates," *Ceramic Transactions* Vol. 97, Multilayer Electronic Ceramic Devices, 1999, pp. 171-182.
- [6] Kamehara N., Imanaka Y., and Niwa K., "Multilayer Ceramic Circuit Board with Copper Conductor", Tokyo, 1987, pp. 143-148.
- [7] Utsumi K., Shimada Y., Ikeda T., Takamizawa H., Nagasako S., Fujii S. and Nanamatsu S., "Monolithic Multicomponents Ceramic (MMC) Substrate", *NEC Res. & Develop.*, No. 77, 1985, pp. 1-12.
- [8] Kamehara N., Imanaka Y. and Niwa K., "Multilayer Ceramic Circuit Board with Copper Conductor", Denshi Tokyo, No. 26, 1987, pp. 143-148.
- [9] Usui Y., "Quantitative Analysis Overcomes Design Bottleneck for PCB's with Speeds over IGHz", Nikkei Electronics, 2002, pp. 107-113.

- [10] Mohammed A. A., "LTCC for High-Power RF Application", *Advanced Packaging*, 1999, pp. 46-50.
- [11] Amey D. I., Dirks M. T., Draudt R. R., Horowitz S. J. and Needs C. R. S., "Opening the door to wireless innovations", *Advanced Packaging*, 2000, pp. 37-54.
- [12] Shina Y., Kima O., Hongb J. C., Ohb J. H. and Kimb W. J. "The Development Of Micro-Fuel Processor Using Lowtemperature Co-Fired Ceramic (LTCC)", *International Journal of Hydrogen Energy*, 31, 2006, pp 1925-1933.
- [13] Park J. J., Shin Y., Oh J.H. and Chung C.H. "The Development Of A Fully Integrated Micro-Channel Fuel Processor Using Low Temperature Co-Fired Ceramic (LTCC)", *Journal of Industrial and Engineering Chemistry*, 15, 2009, pp 618–623.
- [14] Fournier Y., Rouelle G.B., Craquelin N. and Maeder T., "SMD pressure and flow sensor for compressed air in LTCC technology with integrated electronics", *Procedia Chemistry*, 1, 2009, pp 1471–1474.
- [15] Al-Bahadili H., Wood J., "View Factor For Radiation Heat Exchange Between The Wall And End Of A Cylinder", *Ann. Nucl. Energy*, Vol. 18, No: 4, 1991, pp 229-231.
- [16] Jantunen H., Kangasvieri T., Vahakangas J., Leppavuori S. "Design aspects of microwave components with LTCC technique", Journal of the European Ceramic Society, 23, 2003, pp 2541–2548.
- [17] Devlin, L., Pearson, G. and Pittock, J. "RF and microwave component in LTCC", In Proc. of the 38th IMAPS Nordic Conference, Oslo, Norway, 2001, pp. 96–110.
- [18] Jantunen, H. A Novel Low Temperature Co-firing Ceramic (LTCC) Material for Telecommunication Devices. PhD Thesis, Department of Electrical Engineering, University of Oulu, Finland, 2001.

- [19] Harper C. A., Sampson R.M., Electronic Materials and Processes Handbook, McGraw-Hill, New York, 1993
- [20] Fathy E., "Design of Embedded Passive Components in Low-Temperature Cofired Ceramic on Metal (LTCC-M) Technology," Microwave Symposium Digest, 1998 IEEE MTT-S Symp., v. 3, 1998, pp. 1281-1284.
- [21] Jones H. R. N., "Radiation Heat Transfer", Oxford Chemistry Primers, Oxford University Press, 2000.
- [22] Sparrow E. M., Cess R. D., "Radiation Heat Transfer", CRC Press, 1978.

APPENDICES

APPENDIX A. MODEL DEVELOPMENT

Model for the study was held with two main arteries; substrate energy balances and thermocouple energy balances. Each line has its own complicated view factor estimations.

1. SUBSTRATE ENERGY BALANCES

On the process of modeling the substrate, finite element method was used with the partial differential equations and non-uniform temperature distribution assumption.

Substrate was divided into grids as follows and treated by the proper heat transfer mechanisms.

1	2	2	2	2	2	1
2	3	3	3	3	3	2
2	3	3	3	3	3	2
2	3	3	3	3	3	2
2	3	3	3	3	3	2
2	3	3	3	3	3	2
1	2	2	2	2	2	1

Figure A. 1 - Substrate Grid Division

Conductive term for the mechanism and its interpretations are;

$$\frac{dT_{i,j}}{dt} = \frac{T_{i,j}^{k+1} - T_{i,j}^k}{\Delta t}$$

Table A. 1 - Conductive Terms for the Grids

Node	Conductive Term
1 - Corners	$k(T_{i+1,j}^k + T_{i,j+1}^k - 2T_{i,j}^k)$
2 – Edges	$k(T_{i+1,j}^{k} + T_{i,j+1}^{k} + T_{i,j-1}^{k} - 3T_{i,j}^{k})$
3 - Center	$k(T_{i+1,j}^{k} + T_{i-1,j}^{k} + T_{i,j+1}^{k} + T_{i,j-1}^{k} - 4T_{i,j}^{k})$

The convective term for the general expression for the

2. SUBSTRATE VIEW FACTORS

Following figure represents the nomenclature for the temperatures of the oven and thermocouples.

Figure A. 2 - Thermocouple Placements on the Oven
2.1. Equations for Front Lid of the Oven

General expression between Thermocouples and the front lid temperature (T_{front})

Figure A. 3 - T_{front} Placement on the Oven

2.1.1. General Expressions for the Upper Surface of Thermocouples

Thermocouple: $P_1 = \langle a, 0, -b \rangle$; $n_1' = \langle 0, 1, 0 \rangle$ Cylinder: $P_2 = \langle rcost, rsint, -L/2 \rangle$; $n_2' = \langle 1, 0, 0 \rangle$ $s = P_2 - P_1 = \langle rcost - a, rsint, -\frac{L}{2} + b \rangle$ (A.2.1)

$$s.s = r^2 - 2a.rcost + a^2 + (b - \frac{L}{2})^2$$
 (A.2.2)

$$dF = \frac{|n'_{1}.s||n'_{2}.s|}{|s.s|^{2}} r dr dt$$
 (A.2.3)

$$dF = \frac{(r)(sint)(rcost-a)}{\left[-2a.rcost+a^2+r^2+(b-\frac{L}{2})^2\right]^2} drdt$$
(A.2.4)

$$dF = \int_{0}^{t_2} \int_{0}^{R} f(r,t) dr dt + \int_{t_1}^{2\pi} \int_{0}^{R} f(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{0}^{\frac{b}{cost}} f(r,t) dr dt$$
(A.2.5)

2.1.2. General Expressions for the Lower Phase of Thermocouples

Thermocouple: $P_1 = \langle a, 0, -b \rangle$; $n_1' = \langle 0, -1, 0 \rangle$ Cylinder: $P_2 = \langle rcost, rsint, -L/2 \rangle$; $n_2' = \langle 1, 0, 0 \rangle$

$$s = P_2 - P_1 = < rcost - a, rsint, -\frac{L}{2} + b >$$
 (A.2.6)

$$s.s = r^2 - 2a.rcost + a^2 + (b - \frac{L}{2})^2$$
 (A.2.7)

$$dF = \frac{|n'_{1}.s||n'_{2}.s|}{|s.s|^{2}} r dr dt$$
 (A.2.8)

$$dF = -\frac{(r)(rsint)(rcost-a)}{\left[-2a.rcost+a^2+r^2+(b-\frac{L}{2})^2\right]^2} drdt$$
(A.2.9)

$$dF = \int_{0}^{t_2} \int_{0}^{R} f(r,t) dr dt + \int_{t_1}^{2\pi} \int_{0}^{R} f(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{\frac{B}{cost}}^{R} f(r,t) dr dt$$
(A.2.10)

2.1.3. Front Lid Temperature and Front Thermocouple

Due to the placement, location of the front thermocouple TC_{front} is represented as (-a).

Function for upper surface:

$$f_1(r,t) = \frac{(r)(rsint)(rcost+a)}{\left[2a.rcost+a^2+r^2+(b-\frac{L}{2})^2\right]^2}$$
(A.2.11)

$$dF_{1} = \int_{0}^{t_{2}} \int_{0}^{R} f_{1}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{1}(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{0}^{\frac{b}{cost}} f_{1}(r,t) dr dt$$
(A.2.12)

Function for lower surface:

$$f_2(r,t) = -\frac{(r)(rsint)(rcost+a)}{\left[2a.rcost+a^2+r^2+(b-\frac{L}{2})^2\right]^2}$$
(A.2.13)

$$dF_{2} = \int_{0}^{t_{2}} \int_{0}^{R} f_{2}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{2}(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{\frac{b}{cost}}^{R} f_{2}(r,t) dr dt$$
(A.2.14)

2.1.4. Front Lid Temperature and Central Thermocouple

Due to the placement, location of the central thermocouple TC_{center} is represented as 0.

Function for upper surface:

$$f_3(r,t) = \frac{(r)(rsint)(rcost)}{\left[r^2 + (b - \frac{L}{2})^2\right]^2}$$
(A.2.15)

$$dF_{3} = \int_{0}^{t_{2}} \int_{0}^{R} f_{3}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{3}(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{0}^{\frac{b}{cost}} f_{3}(r,t) dr dt$$
(A.2.16)

Function for lower surface:

$$f_{4}(r,t) = -\frac{(r)(rsint)(rcost)}{\left[r^{2} + (b - \frac{L}{2})^{2}\right]^{2}}$$
(A.2.17)
$$dF_{4} = \int_{0}^{t_{2}} \int_{0}^{R} f_{4}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{4}(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{\frac{b}{cost}}^{R} f_{4}(r,t) dr dt$$
(A.2.18)

2.1.5. Front Lid Temperature and Back Thermocouple

Due to the placement, location of the back thermocouple TC_{back} is represented as (+a).

Function for upper surface:

$$f_{5}(r,t) = \frac{(r)(rsint)(rcost-a)}{\left[-2a.rcost+a^{2}+r^{2}+(b-\frac{L}{2})^{2}\right]^{2}}$$
(A.2.19)
$$dF_{5} = \int_{0}^{t_{2}} \int_{0}^{R} f_{5}(r,t)drdt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{5}(r,t)drdt + \int_{\frac{3\pi}{2}-acos\frac{b}{R}}^{\frac{3\pi}{2}+acos\frac{b}{R}} \int_{0}^{\frac{b}{cost}} f_{5}(r,t)drdt$$
(A.2.20)

Function for lower surface:

$$f_{6}(r,t) = -\frac{(r)(rsint)(rcost-a)}{\left[-2a.rcost+a^{2}+r^{2}+(b-\frac{L}{2})^{2}\right]^{2}}$$
(A.2.21)
$$dF_{6} = \int_{0}^{t_{2}} \int_{0}^{R} f_{6}(r,t)drdt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{6}(r,t)drdt + \int_{\frac{3\pi}{2}-acos\frac{b}{R}}^{\frac{3\pi}{2}+acos\frac{b}{R}} \int_{\frac{b}{cost}}^{R} f_{6}(r,t)drdt$$
(A.2.22)

2.2. Equations for the Back Lid of the Oven

General expression between thermocouples and the back lid temperature

Figure A. 4 - T_{back} Placement on the Oven

2.2.1. General Expressions for the Upper Phase of Thermocouples

Thermocouple: $P_1 = \langle a, 0, -b \rangle$; $n_1' = \langle 0, 1, 0 \rangle$ Cylinder: $P_2 = \langle rcost, rsint, L/2 \rangle$; $n_2' = \langle -1, 0, 0 \rangle$

$$s = P_2 - P_1 = \langle rcost - a, rsint, \frac{L}{2} + b \rangle$$
 (A.2.23)

$$s.s = -2a.rcost + r^2 + a^2 + (b + \frac{L}{2})^2$$
 (A.2.24)

$$dF = \frac{|n'_{1.s}||n'_{2.s}|}{|s.s|^2} r dr dt$$
 (A.2.25)

$$dF = -\frac{(r)(rsint)(rcost-a)}{\left[-2a.rcost+a^2+r^2+(b+\frac{L}{2})^2\right]^2} drdt$$
(A.2.26)

$$dF = \int_{0}^{t_2} \int_{0}^{R} f(r,t) dr dt + \int_{t_1}^{2\pi} \int_{0}^{R} f(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{0}^{\frac{b}{cost}} f(r,t) dr dt$$
(A.2.27)

2.2.2. General Equations for the Lower Surface of Thermocouples

Thermocouple: $P_1 = \langle a, 0, -b \rangle$; $n_1' = \langle 0, -1, 0 \rangle$ Cylinder: $P_2 = \langle rcost, rsint, L/2 \rangle$; $n_2' = \langle -1, 0, 0 \rangle$

$$s = P_2 - P_1 = < rcost - a, rsint, \frac{L}{2} + b >$$
 (A.2.28)

$$s.s = -2a.rcost + r^2 + a^2 + (b + \frac{L}{2})^2$$
 (A.2.29)

$$dF = \frac{|n'_1 \cdot s| |n'_2 \cdot s|}{|s \cdot s|^2} r dr dt$$
 (A.2.30)

$$dF = \frac{(r)(sint)(rcost-a)}{\left[-2a.rcost+a^2+r^2+(b+\frac{L}{2})^2\right]^2} drdt$$
(A.2.31)

$$dF = \int_{0}^{t_2} \int_{0}^{R} f(r,t) dr dt + \int_{t_1}^{2\pi} \int_{0}^{R} f(r,t) dr dt + \int_{\frac{3\pi}{2} - a\cos\frac{b}{R}}^{\frac{3\pi}{2} + a\cos\frac{b}{R}} \int_{\frac{b}{\cos t}}^{R} f(r,t) dr dt$$
(A.2.32)

2.2.3. Back Lid Temperature and Front Thermocouple

Due to the placement, location of the front thermocouple TC_{front} is represented as (-a).

Function for upper surface:

$$f_7(r,t) = -\frac{(r)(rsint)(rcost+a)}{\left[2a.rcost+a^2+r^2+(b+\frac{L}{2})^2\right]^2}$$
(A.2.33)

$$dF_{7} = \int_{0}^{t_{2}} \int_{0}^{R} f_{7}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{7}(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{0}^{\frac{b}{cost}} f_{7}(r,t) dr dt$$
(A.2.34)

Function for lower surface:

$$f_{8}(r,t) = \frac{(r)(rsint)(rcost+a)}{\left[2a.rcost+a^{2}+r^{2}+(b-\frac{L}{2})^{2}\right]^{2}}$$
(A.2.35)
$$dF_{8} = \int_{0}^{t_{2}} \int_{0}^{R} f_{8}(r,t)drdt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{8}(r,t)drdt + \int_{\frac{3\pi}{2}-acos\frac{b}{R}}^{\frac{3\pi}{2}+acos\frac{b}{R}} \int_{\frac{b}{cost}}^{R} f_{8}(r,t)drdt$$
(A.2.36)

2.2.4. Back Lid Temperature and Central Thermocouple

Due to the placement, location of the central thermocouple TC_{center} is represented as 0.

Function for upper surface:

$$f_9(r,t) = -\frac{(r)(rsint)(rcost)}{\left[r^2 + (b + \frac{L}{2})^2\right]^2}$$
(A.2.37)

$$dF_{9} = \int_{0}^{t_{2}} \int_{0}^{R} f_{9}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{9}(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{0}^{\frac{b}{cost}} f_{9}(r,t) dr dt$$
(A.2.38)

Function for lower surface:

$$f_{10}(r,t) = \frac{(r)(rsint)(rcost)}{\left[r^{2} + (b + \frac{L}{2})^{2}\right]^{2}}$$
(A.2.39)
$$dF_{10} = \int_{0}^{t_{2}} \int_{0}^{R} f_{10}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{10}(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{\frac{b}{cost}}^{R} f_{10}(r,t) dr dt$$
(A.2.40)

2.2.5. Back Lid Temperature and Back Thermocouple

Due to the placement, location of the central thermocouple TC_{center} is represented as (+a).

Function for upper surface:

$$f_{11}(r,t) = -\frac{(r)(rsint)(rcost-a)}{\left[-2a.rcost+a^2+r^2+(b+\frac{L}{2})^2\right]^2}$$
(A.2.41)

$$dF_{11} = \int_{0}^{t_2} \int_{0}^{R} f_{11}(r,t) dr dt + \int_{t_1}^{2\pi} \int_{0}^{R} f_{11}(r,t) dr dt + \int_{\frac{3\pi}{2} - a\cos\frac{b}{R}}^{\frac{3\pi}{2} + a\cos\frac{b}{R}} \int_{0}^{\frac{b}{\cos t}} f_{11}(r,t) dr dt$$
(A.2.42)

Function for lower surface:

$$f_{12}(r,t) = \frac{(r)(rsint)(rcost-a)}{\left[-2a.rcost+a^2+r^2+(b+\frac{L}{2})^2\right]^2}$$
(A.2.43)
$$dF_{12} = \int_{0}^{t_2} \int_{0}^{R} f_{12}(r,t)drdt + \int_{t_1}^{2\pi} \int_{0}^{R} f_{12}(r,t)drdt + \int_{\frac{3\pi}{2}-acos\frac{b}{R}}^{\frac{3\pi}{2}+acos\frac{b}{R}} \int_{\frac{b}{cost}}^{R} f_{12}(r,t)drdt$$

2.3. Equations for the Sides of the Oven

General expression between Thermocouples and the oven side temperatures are explained below:

Figure A. 5 - $T_{\mbox{side}}$ Placement on the Oven

2.3.1. General Expressions of the Upper Surface of the Thermocouples

Thermocouple: $P_1 = \langle a, 0, -b \rangle$; $n_1' = \langle 0, 1, 0 \rangle$ Cylinder: $P_2 = \langle Rcost, Rsint, z \rangle$; $n_2' = \langle -cost, -sint, 0 \rangle$

$$s = P_2 - P_1 = \langle Rcost - a, Rsint, z + b \rangle$$
 (A.2.45)

$$s.s = -2a.Rcost + R^2 + a^2 + (z+b)^2$$
 (A.2.46)

$$dF = \frac{|n'_1.s||n'_2.s|}{|s.s|^2} r dr dt$$
 (A.2.47)

$$dF = \frac{(R)(Rsint)[(-cost)(Rcost - a) + (-sint)(Rsint)]}{[-2a.Rcost + R^2 + a^2 + (z + b)^2]^2} dzdt$$
$$dF = \frac{(R)(Rsint)(-Rcos^2t + acost - Rsin^2t)}{[-2a.Rcost + R^2 + a^2 + (z + b)^2]^2} dzdt$$

$$dF = \frac{(R)(Rsint)(-R+acost)}{\left[-2a.Rcost + R^2 + a^2 + (z+b)^2\right]^2} dz dt$$
 (A.2.48)

$$dF = \int_{0}^{t_2} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f(z,t) dz dt + \int_{t_1}^{2\pi} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f(z,t) dz dt$$
(A.2.49)

2.3.2. General Expressions of the Lower Surface of the Thermocouples

Thermocouple: $P_1 = \langle a, 0, -b \rangle$; $n_1' = \langle 0, -1, 0 \rangle$

Cylinder: $P_2 = \langle Rcost, Rsint, z \rangle$; $n_2' = \langle -cost, -sint, 0 \rangle$

$$s = P_2 - P_1 = \langle Rcost - a, Rsint, z + b \rangle$$
 (A.2.50)

$$s.s = -2a.Rcost + R^2 + a^2 + (z+b)^2$$
 (A.2.51)

$$dF = \frac{|n'_1 \cdot s| |n'_2 \cdot s|}{|s \cdot s|^2} r dr dt$$
 (A.2.52)

$$dF = -\frac{(R)(Rsint)(-R+acost)}{\left[-2a.Rcost + R^{2} + a^{2} + (z+b)^{2}\right]^{2}} dz dt$$
(A.2.53)

$$dF = \int_{t_1}^{t_2} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f(z,t) dz dt$$
 (A.2.54)

2.3.3. Side Temperature and Front Thermocouple

Due to the placement, location of the front thermocouple TC_{front} is represented as (-a).

Function for upper surface:

$$f_{13}(z,t) = -\frac{(R)(Rsint)(R+acost)}{\left[2a.Rcost + R^2 + a^2 + (z+b)^2\right]^2}$$
(A.2.55)

$$dF_{13} = \int_{0}^{t_2} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f_{13}(z,t) dz dt + \int_{t_1}^{2\pi} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f_{13}(z,t) dz dt$$
(A.2.56)

Function for lower surface:

$$f_{14}(z,t) = \frac{(R)(Rsint)(R+acost)}{\left[2a.Rcost + R^2 + a^2 + (z+b)^2\right]^2}$$
(A.2.57)

$$dF_{14} = \int_{t_1}^{t_2} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f_{14}(z,t) dz dt$$
(A.2.58)

2.3.4. Side Temperature and Central Thermocouple

Due to the placement, location of the central thermocouple $TC_{central}$ is represented as 0.

Function for upper surface:

$$f_{15}(z,t) = -\frac{\frac{(R)(R)(R)}{[R^2 + (z+b)^2]^2}}{\left[R^2 + (z+b)^2\right]^2}$$
(A.2.59)
$$dF_{15} = \int_{0}^{t_2} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f_{15}(z,t) dz dt + \int_{t_1}^{2\pi} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f_{15}(z,t) dz dt$$
(A.2.60)

Function for upper surface:

$$f_{16}(z,t) = \frac{(R)(R)(R)}{\left[R^2 + (z+b)^2\right]^2}$$
(A.2.61)
$$dF_{16} = \int_{t_1}^{t_2} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f_{16}(z,t) dz dt$$
(A.2.62)

2.3.5. Side Temperature and Back Thermocouple

Due to the placement, location of the back thermocouple TC_{back} is represented as (+a).

Function for upper surface:

$$f_{17}(z,t) = \frac{(R)(Rsint)(-R+acost)}{\left[-2a.Rcost + R^2 + a^2 + (z+b)^2\right]^2}$$
(A.2.63)

$$dF_{17} = \int_{0}^{t_2} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f_{17}(z,t) dz dt + \int_{t_1}^{2\pi} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f_{17}(z,t) dz dt$$
(A.2.64)

Function for lower surface:

$$f_{18}(z,t) = -\frac{(R)(Rsint)(-R+acost)}{\left[-2a.Rcost + R^2 + a^2 + (z+b)^2\right]^2}$$
(A.2.65)

$$dF_{18} = \int_{t_1}^{t_2} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f_{18}(z,t) dz dt$$
(A.2.66)

2.4. Resulting Equations

2.4.1. Expressions for the Front Lid of the Oven

TC_{front} – T_{front}:

$$dF_{1} = \int_{0}^{t_{2}} \int_{0}^{R} f_{1,1}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{1,1}(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{0}^{b} f_{1,1}(r,t) dr dt + \int_{0}^{t_{2}} \int_{0}^{R} f_{1,2}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{1,2}(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{\frac{b}{cost}}^{R} f_{1,2}(r,t) dr dt$$
(A.2.67)

Where $f_{1,1}$ and $f_{1,2}$ functions represent frontal thermocouple's upper and lower surfaces, respectively that expressed as follows:

$$f_{1,1}(r,t) = \frac{(r^2 sint)(r cost+a)}{\left[2a.r cost+a^2+r^2+(b-\frac{L}{2})^2\right]^2}$$
(A.2.68a)

$$f_{1,2}(r,t) = -\frac{(r^2 sint)(r cost + a)}{\left[2a r cost + a^2 + r^2 + (b - \frac{L}{2})^2\right]^2}$$
(A.2.68b)

 $TC_{center} - T_{front}$:

$$dF_{2} = \int_{0}^{t_{2}} \int_{0}^{R} f_{2,1}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{2,1}(r,t) dr dt + \int_{\frac{3\pi}{2} - a\cos\frac{b}{R}}^{\frac{3\pi}{2} + a\cos\frac{b}{R}} \int_{0}^{\frac{b}{\cos t}} f_{2,1}(r,t) dr dt + \int_{0}^{t_{2}} \int_{0}^{R} f_{2,2}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{2,2}(r,t) dr dt + \int_{\frac{3\pi}{2} - a\cos\frac{b}{R}}^{\frac{3\pi}{2} + a\cos\frac{b}{R}} \int_{\frac{b}{\cos t}}^{R} f_{2,2}(r,t) dr dt$$
(A.2.69)

Where $f_{2,1}$ and $f_{2,2}$ functions represent central thermocouple's upper and lower surfaces, respectively that expressed as follows:

$$f_{2,1}(r,t) = \frac{r^{3.sint.cost}}{\left[r^{2} + (b - \frac{L}{2})^{2}\right]^{2}}$$
(A.2.70a)

$$f_{2,2}(r,t) = -\frac{r^{3}.sint.cost}{\left[r^{2} + (b - \frac{L}{2})^{2}\right]^{2}}$$
(A.2.70b)

TC_{back} – T_{front}:

$$dF_{1} = \int_{0}^{t_{2}} \int_{0}^{R} f_{3,1}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{3,1}(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{0}^{\frac{b}{cost}} f_{3,1}(r,t) dr dt + \int_{0}^{t_{2}} \int_{0}^{R} f_{3,2}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{3,2}(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{\frac{b}{cost}}^{R} f_{3,2}(r,t) dr dt$$
(A.2.71)

Where $f_{3,1}$ and $f_{3,2}$ functions represent back thermocouple's upper and lower surfaces, respectively that expressed as follows:

$$f_{3,1}(r,t) = \frac{(r^2 sint)(r cost - a)}{\left[-2a.r cost + a^2 + r^2 + (b - \frac{L}{2})^2\right]^2}$$
(A.2.72a)

$$f_{3,2}(r,t) = -\frac{(r^2 sint)(r cost - a)}{\left[-2a r cost + a^2 + r^2 + (b - \frac{L}{2})^2\right]^2}$$
(A.2.72b)

2.4.2. Expressions for the Sides of the Oven

$$dF_{4} = \int_{0}^{t_{2}} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f_{4,1}(z,t)dzdt + \int_{t_{1}}^{2\pi} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f_{4,1}(z,t)dzdt + \int_{t_{1}}^{t_{2}} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f_{4,2}(z,t)dzdt$$
(A.2.73)

Where $f_{4,1}$ and $f_{4,2}$ functions represent frontal thermocouple's upper and lower surfaces, respectively that expressed as follows:

$$f_{4,1}(z,t) = -\frac{(R)(Rsint)(R+acost)}{\left[2a.Rcost + R^2 + a^2 + (z+b)^2\right]^2}$$
(A.2.74a)

$$f_{4,2}(z,t) = \frac{(R)(Rsint)(R+acost)}{\left[2a.Rcost + R^2 + a^2 + (z+b)^2\right]^2}$$
(A.2.74b)

TC_{center} – T_{side}:

$$dF_{5} = \int_{0}^{t_{2}} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f_{5,1}(z,t) dz dt + \int_{t_{1}}^{2\pi} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f_{5,1}(z,t) dz dt + \int_{t_{1}}^{t_{2}} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f_{5,2}(z,t) dz dt$$
(A.2.75)

Where $f_{5,1}$ and $f_{5,2}$ functions represent central thermocouple's upper and lower surfaces, respectively that expressed as follows:

$$f_{5,1}(z,t) = -\frac{R^3 sint}{\left[R^2 + (z+b)^2\right]^2}$$
(A.2.76a)

$$f_{5,2}(z,t) = \frac{R^3 sint}{\left[R^2 + (z+b)^2\right]^2}$$
(A.2.76b)

TC_{back} – T_{side}:

$$dF_{6} = \int_{0}^{t_{2}} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f_{6,1}(z,t) dz dt + \int_{t_{1}}^{2\pi} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f_{6,1}(z,t) dz dt + \int_{t_{1}}^{t_{2}} \int_{-\frac{L}{2}}^{+\frac{L}{2}} f_{6,2}(z,t) dz dt$$
(A.2.77)

$$f_{6,1}(z,t) = \frac{(R)(Rsint)(-R+acost)}{\left[-2a.Rcost + R^2 + a^2 + (z+b)^2\right]^2}$$
(A.2.78a)

$$f_{6,2}(z,t) = -\frac{(R)(Rsint)(-R+acost)}{\left[-2a.Rcost + R^2 + a^2 + (z+b)^2\right]^2}$$
(A.2.78b)

2.4.3. Expressions for the Back Lid of the Oven

TC_{front} – T_{back}:

$$dF_{7} = \int_{0}^{t_{2}} \int_{0}^{R} f_{7,1}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{7,1}(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{0}^{b} f_{7,1}(r,t) dr dt + \int_{0}^{t_{2}} \int_{0}^{R} f_{7,2}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{7,2}(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{\frac{b}{cost}}^{R} f_{7,2}(r,t) dr dt$$
(A.2.79)

Where $f_{7,1}$ and $f_{7,2}$ functions represent frontal thermocouple's upper and lower surfaces, respectively that expressed as follows:

$$f_{7,1}(r,t) = -\frac{(r^2 sint)(r cost+a)}{\left[2a r cost+a^2+r^2+(b+\frac{L}{2})^2\right]^2}$$
(A.2.80a)

$$f_{7,2}(r,t) = \frac{(r^2 sint)(r cost+a)}{\left[2a.r cost+a^2+r^2+(b+\frac{L}{2})^2\right]^2}$$
(A.2.80b)

TC_{center} – T_{back}:

$$dF_{8} = \int_{0}^{t_{2}} \int_{0}^{R} f_{8,1}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{8,1}(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{0}^{\frac{b}{cost}} f_{8,1}(r,t) dr dt + \int_{0}^{t_{2}} \int_{0}^{R} f_{8,2}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{8,2}(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{\frac{b}{cost}}^{R} f_{8,2}(r,t) dr dt$$
(A.2.81)

Where $f_{8,1}$ and $f_{8,2}$ functions represent central thermocouple's upper and lower surfaces, respectively that expressed as follows:

$$f_{8,1}(r,t) = -\frac{(r^2 sint)(r cost)}{\left[r^2 + (b + \frac{L}{2})^2\right]^2}$$
(A.2.82a)

$$f_{8,2}(r,t) = \frac{(r^2 sint)(r cost)}{\left[r^2 + (b + \frac{L}{2})^2\right]^2}$$
(A.2.82b)

TC_{back} – T_{back}:

$$dF_{9} = \int_{0}^{t_{2}} \int_{0}^{R} f_{9,1}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{9,1}(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{0}^{\frac{b}{cost}} f_{9,1}(r,t) dr dt + \int_{0}^{t_{2}} \int_{0}^{R} f_{9,2}(r,t) dr dt + \int_{t_{1}}^{2\pi} \int_{0}^{R} f_{9,2}(r,t) dr dt + \int_{\frac{3\pi}{2} - acos\frac{b}{R}}^{\frac{3\pi}{2} + acos\frac{b}{R}} \int_{\frac{b}{cost}}^{R} f_{9,2}(r,t) dr dt$$
(A.2.83)

Where $f_{9,1}$ and $f_{9,2}$ functions represent back thermocouple's upper and lower surfaces, respectively that expressed as follows:

$$f_{9,1}(r,t) = -\frac{(r^2 sint)(r cost - a)}{\left[-2a r cost + a^2 + r^2 + (b + \frac{L}{2})^2\right]^2}$$
(A.2.84a)

$$f_{9,2}(r,t) = \frac{(r^2 sint)(r cost - a)}{\left[-2a r cost + a^2 + r^2 + (b + \frac{L}{2})^2\right]^2}$$
(A.2.84b)

3. THERMOCOUPLE ENERGY BALANCES

Another aspect of the modeling includes radiation equation with respect to thermocouple temperatures which is stated below in terms of emissivity, absorptivity and Stefan-Boltzmann constants:

$$Q_{radiation} = \sigma F_{i,j} \left(\varepsilon T C^4 - \alpha T^4 \right) \tag{A.2.85}$$

$$[(q_{in}A - q_{out}A)\Delta t]_{for \ Tback, Tfront, Tside} = V\rho Cp(TC^{k+1} - TC^{k})$$
(A.2.86)

$$\sigma F_{i,j} \left(\varepsilon T C_{back}^{4} - \alpha T_{front}^{4} \right) A + \sigma F_{i,j} \left(\varepsilon T C_{back}^{4} - \alpha T_{side}^{4} \right) A$$
$$+ \sigma F_{i,j} \left(\varepsilon T C_{back}^{4} - \alpha T_{back}^{4} \right) A = V \rho C p \left(\frac{T C_{back}^{k+1} - T C_{back}^{k}}{\Delta t} \right)$$
(A.2.87)

$$TC_{back}^{k+1} = TC_{back}^{k} + C_1 \begin{bmatrix} F_{i,j} \left(\varepsilon TC_{back}^4 - \alpha T_{front}^4 \right) + \\ F_{i,j} \left(\varepsilon TC_{back}^4 - \alpha T_{side}^4 \right) + F_{i,j} \left(\varepsilon TC_{back}^4 - \alpha T_{back}^4 \right) \end{bmatrix}$$
(A.2.88)

Where C_1 is the generalized constant for the expression which includes:

$$C_1 = \frac{\sigma \Delta t}{V \rho C p}$$

For each thermocouple, named TC_{back} , TC_{center} and TC_{front} ; expressions are listed respectively:

$$TC_{back}^{k+1} = TC_{back}^{k} + C_1 \begin{bmatrix} F_{i,j} \left(\varepsilon TC_{back}^4 - \alpha T_{front}^4 \right) + \\ F_{i,j} \left(\varepsilon TC_{back}^4 - \alpha T_{side}^4 \right) + F_{i,j} \left(\varepsilon TC_{back}^4 - \alpha T_{back}^4 \right) \end{bmatrix}$$
(A.2.89)

$$TC_{center}^{k+1} = TC_{center}^{k} + C_{2} \begin{bmatrix} F_{i,j} \left(\varepsilon TC_{center}^{4} - \alpha T_{front}^{4} \right) + F_{i,j} \left(\varepsilon TC_{center}^{4} - \alpha T_{side}^{4} \right) + F_{i,j} \left(\varepsilon TC_{center}^{4} - \alpha T_{back}^{4} \right) \end{bmatrix}$$
(A.2.90)

$$TC_{front}^{k+1} = TC_{front}^{k} + G_{3} \begin{bmatrix} F_{i,j} \left(\varepsilon TC_{front}^{4} - \alpha T_{front}^{4} \right) + F_{i,j} \left(\varepsilon TC_{front}^{4} - \alpha T_{side}^{4} \right) + F_{i,j} \left(\varepsilon TC_{front}^{4} - \alpha T_{back}^{4} \right) \end{bmatrix}$$
(A.2.91)

General expression between the thermocouple temperatures and filament temperatures is expressed as follows:

$$\frac{\partial TC_i}{\partial t} = C_{1,i} \left(TC_i^4 - T_f^4 \right) + C_{2,i} \left(TC_i^4 - T_s^4 \right) + C_{3,i} \left(TC_i^4 - T_b^4 \right)$$
(A.2.92)

Again for each thermocouple:

$$TC_{front} : 0 = C_1 \left(TC_{front}^4 - T_{front}^4 \right) + C_2 \left(TC_{front}^4 - T_{side}^4 \right) + C_3 \left(TC_{front}^4 - T_{back}^4 \right)$$
(A.2.93)

$$TC_{back} : 0 = C_4 \left(TC_{back}^4 - T_{front}^4 \right) + C_5 \left(TC_{back}^4 - T_{side}^4 \right) + C_6 \left(TC_{back}^4 - T_{back}^4 \right)$$
(A.2.94)

$$TC_{center} : 0 = C_7 \left(TC_{center}^4 - T_{front}^4 \right) + C_8 \left(TC_{center}^4 - T_{side}^4 \right) + C_9 \left(TC_{center}^4 - T_{back}^4 \right)$$
(A.2.95)

4. THERMOCOUPLE VIEW FACTORS

Thermocouples are placed inside a tube at the bottom of the co-firing oven. They are called as the front thermocouple (TC_{front}), central thermocouple (TC_{center}) and the back thermocouple (TC_{back}). View factor calculations for the three TCs were made with 2 different surfaces, which are upper and lower surfaces of TCs and with respect to three different cases, which are for the front lid of the oven, back lid of the oven and filaments around the oven (defined as 'sides').

Figure A. 6 - View Factor Definitions between Oven and TCs

APPENDIX B. CODING

1. Substrate View Factor Coding

1.1. Top.m

```
function dF = viewtop(t, r)
global x y L
A = L/2;
num = r.*(r.*sin(t)).*( -A - y);
den = r.^2 + x.^2 - 2.*x.*r.*cos(t) + ( -A - y).^2;
dF = -num./(den.^2)/pi();
```

1.2. Sides.m

function dF = filamentsides(t, z)
global x y R
num = R.*(R.*sin(t)).*(x.*cos(t) - R);
den = R.^2 + x.^2 - 2.*x.*R.*cos(t) + (z-y).^2;
dF = -num./(den.^2)/pi();

1.3. Bottom.m

```
function dF = viewbottom(t, r)
global x y L
A = L/2;
num = -r.*(r.*sin(t)).*( +A - y);
den = r.^2 + x.^2 - 2.*x.*r.*cos(t) + ( +A - y).^2;
dF = -num./(den.^2)/pi();
```

2. Thermocouples View Factor Coding

2.1. View Factors between Thermocouples and Front Surface of the Oven (TC_front)

Each sub heading named as "top" and "bottom" represents the 2 areas of the front lid. Division depends on the placement of the thermocouple alignment on the axis of z=-b line and the codes named as "inner" represent the inner part of the double quadratic equation set.

2.1.1.TC_front_top.m

```
function dF = TC_Front_Top(t, r)
global x b L
num = -(r.*sin(t) + b).*(L/2 + x).*r;
den = r.^2 + 2.*r.*b.*sin(t) + b.^2 + (L/2 + x).^2;
dF = -num./(den.^2)/pi();
end
```

2.1.2.TC_front_top_inner.m

```
function dF = TC_Front_Top_Inner(t)
global x b L
for i = 1:length(t)
    tt = t(i);
    dF(i) = quad(@(r) ((r.*sin(tt)+b).*(L/2+x).*r./(((L/2+x).^2 +
b.^2 + r.^2 + (2.*r.*b.*sin(tt))).^2)/pi()), 0, b/sin(-tt));
end
end
```

2.1.3. TC_front_bottom_inner.m

```
function dF = TC_Front_Bottom_Inner(t)
global x b L R
for i = 1:length(t)
    tt = t(i);
    dF(i) = quad(@(r) -((r.*sin(tt)+b).*(L/2+x).*r./(((L/2+x).^2
+ b.^2 + r.^2 + (2.*r.*b.*sin(tt))).^2)/pi()), b/sin(-tt), R);
end
end
```

2.2. View Factors between Thermocouples and Back Surface of the Oven (TC_back)

2.2.1.TC_back_top.m

```
function dF = TC_Front_Top(t, r)
global x b L
L = -L;
num = -(r.*sin(t) + b).*(L/2 + x).*r;
den = r.^2 + 2.*r.*b.*sin(t) + b.^2 + (L/2 + x).^2;
L = -L;
```

dF = num./(den.^2)/pi();
end

2.2.2.TC_back_bottom_inner.m

```
function dF = TC_Front_Bottom_Inner(t)
global x b L R
L = -L;
for i = 1:length(t)
    tt = t(i);
    dF(i) = quad(@(r) ((r.*sin(tt)+b).*(L/2+x).*r./(((L/2+x).^2 +
b.^2 + r.^2 + (2.*r.*b.*sin(tt))).^2)/pi()), b/sin(-tt), R);
end
L = -L;
end
```

2.3. View Factors between Thermocouples and Sides of the Oven (TC_sides)

2.3.1.TC_sides_top.m

function dF = TC_Sides_Top(t, z)
global x b R
num = R.*(R*sin(t) + b).*(R + b*sin(t));
den = R.^2 + 2.*R.*b.*sin(t) + b.^2 + (z-x).^2;
dF = num./(den.^2)/pi();
end

2.3.2.TC_sides_bottom.m

```
function dF = TC_Sides_Bottom(t, z)
global x b R
num = R.*(R*sin(t) + b).*(R + b*sin(t));
den = R.^2 + 2.*R.*b.*sin(t) + b.^2 + (z-x).^2;
dF = -num./(den.^2)/pi();
end
```

2.4. Coding for sum of the View Factors between Thermocouples and Oven

```
clear all
global x y R L b
% Geometric Constants
L = 33; % Cylinder Length in cm
R = 16.400; % Cylinder radius in cm
```

```
A = 10;
                   % Substrate Length in cm (square substrate)
filament n = 12; % Number of Filaments
filament 0 = 15; % Location of the first filement - degrees
from the flat plane
a = 2
                  ; % Location of front and back thermocouples
from the center of the oven
b = 8 ; % Distance of the thermocouples to the central
axis of the oven
% Simulation Parameters
delx = 1; % Substrate Mesh Size x-dimension
dely = 1;
                 % Substrate Mesh Size y-dimension
dely = 1;% Substrate Mesh Size y-delt = 0.1;% Time step sizet_final=8000;% Final time for theT_0 = 25;% Initial Temperature% load Tf.txt;% Loading the p
                    % Final time for the simulation
                   % Loading the profile of the filament
temperatures
% t = Tf(:,1);
% Tf = Tf(:,2:13);
% Mesh Definition
x grid = [-A/2+delx/2:delx:A/2-delx/2];
y grid = [-A/2+dely/2:dely:A/2-dely/2];
time grid = [0:delt:t final];
filaments = [0:30:360]/180*pi();
% % Initial Conditions
% T(:,:,1) = ones(length(x grid), length(y grid)) * (T 0 +
273.15);
% Ts = [];
                             % Assigning the temperatures of the
filaments
% for i = 1:12
% Ts = [Ts [interp1(t,Tf(:,i),time grid)]'];
% end
% Ts = Ts';
% Tt=interp1(t,Tf(:,1),time grid);
                                                % Temperature of
the top surface
% Tb=interp1(t,Tf(:,1),time grid);
                                                % Temperature of
the bottom surface
% Ta = 350;
                                                 % Temperature of
the air blown into the oven
% Physical Constants
stf bol = 5.6704e-08;
                          % Stefan Boltmann Constant in W/m2/K4
emissivity = 1;
                           % Emissivity of the substrate surface
absorptivity = 1;
                                % Absorbtivity of the substrate
surface
k = 0.3;
                                    % Thermal Conductivity of the
substrate
                                      % Convective heat transfer
h = 0;
coefficient of the substrate surface
rho = 3.89;
                            % Density of the substrate
Cp = 880;
                            % Heat capacity of the substrate
```

```
C1 = delt * k / rho / delx / dely / Cp;
% View Factor Calculations for the thermocouples
initial = cputime;
% Thermocouples and the front surface
t1 = 2*pi() - asin(b/R);
t2 = pi() + asin(b/R);
x = -a;
  Ff ft
           = dblquad(@TC_Front_Top, 0,
                                            t2,
                                                  Ο,
                                                       R)
                                                              +
dblquad(@TC Front Top, t1,
                                   2*pi(),
                                                      R)
                                                              +
                                              0,
quad(@TC Front Top Inner, t2, t1);
   Ff fb = quad(@TC Front Bottom Inner, t2, t1);
x = 0;
   Fc ft = dblquad(@TC_Front_Top,
                                       Ο,
                                             t2,
                                                    Ο,
                                                              +
                                                        R)
dblquad(@TC Front Top, t1,
                                                              +
                                                      R)
                                  2*pi(),
                                              Ο,
quad(@TC Front Top Inner, t2, t1);
   Fc fb = quad(@TC Front Bottom Inner, t2, t1);
x = a;
               dblquad(@TC_Front_Top,
   Fb ft
           =
                                       Ο,
                                             t2,
                                                    Ο,
                                                        R)
                                                              ^+
dblquad(@TC Front Top, t1,
                                   2*pi(),
                                              Ο,
                                                      R)
                                                              +
quad(@TC Front Top Inner, t2, t1);
   Fb fb = quad(@TC Front Bottom Inner, t2, t1);
% Thermocouples and the back surface
x = -a;
   Ff bt
          = dblquad(@TC_Back_Top, 0,
                                             t2,
                                                    Ο,
                                                        R)
                                                              +
dblquad(@TC Back Top, t1,
                                 2*pi(),
                                                      R)
                                                              +
                                             Ο,
quad(@TC Back Top Inner, t2, t1);
   Ff bb = quad(@TC Back Bottom Inner, t2, t1);
x = 0;
           = dblquad(@TC Back_Top, 0,
   Fc bt
                                             t2,
                                                    Ο,
                                                        R)
dblquad(@TC Back Top, t1,
                                  2*pi(),
                                             Ο,
                                                      R)
                                                              +
quad(@TC Back Top Inner, t2, t1);
   Fc bb = quad(@TC Back Bottom_Inner, t2, t1);
x = a;
   Fb bt = dblquad(@TC Back Top, 0,
                                             t2,
                                                   Ο,
                                                        R)
dblquad(@TC Back Top,
                                  2*pi(),
                        t1,
                                                      R)
                                                              +
                                             Ο,
quad(@TC Back Top Inner, t2, t1);
   Fb bb = quad(@TC Back Bottom Inner, t2, t1);
% Thermocouples and the Side Surfaces
x = -a;
   Ff_st = dblquad(@TC_Sides_Top, 0, t2,
                                               -L/2,
                                                        L/2)
                                                              +
dblquad(@TC_Sides_Top, t1, 2*pi(), -L/2, L/2);
   Ff sb = dblquad(@TC Sides Bottom, t2, t1, -L/2, L/2);
x = 0;
   Fc_st = dblquad(@TC_Sides_Top, 0, t2,
                                                      L/2)
                                                              +
                                               -L/2,
dblquad(@TC_Sides_Top, t1, 2*pi(), -L/2, L/2);
   Fc sb = dblquad(@TC Sides Bottom, t2, t1, -L/2, L/2);
x = a;
                                               -L/2, L/2) +
   Fb_st = dblquad(@TC_Sides_Top, 0, t2,
dblquad(@TC_Sides_Top, t1, 2*pi(), -L/2, L/2);
   Fb sb = dblquad(@TC Sides Bottom, t2, t1, -L/2, L/2);
а
```

```
b
```

```
119
```

Fx_xx = [Ff_ft Ff_fb Ff_bt Ff_bb Ff_st Ff_sb; Fc_ft Fc_fb Fc_bt
Fc_bb Fc_st Fc_sb; Fb_ft Fb_fb Fb_bt Fb_bb Fb_st Fb_sb]
sum(Fx_xx')

APPENDIX C. SYSTEM DRAWINGS

Figure C. 1 - Co-firing Oven Drawings

Figure C. 2 - Filament Positioning

Figure C. 3 - Co-firing Oven (inside)

Figure C. 4 – Assignment of the Oven Temperatures

Figure C. 5 – Assignment of the View Factors

Figure C. 6 – Representation of the Heating Filaments

APPENDIX D. EXPERIMENTAL RESULTS

- Note 1 all time axes are in terms of seconds
- Note 2 filament power is % of maximum power
- Note 3 temperature axes are in terms of °C

Figure D. 1 - Trends for Run 01

Run 02

Figure D. 2 - Trends for Run 02

Figure D. 3 – Trends for Run 03

Figure D. 4 – Trends for Run 04

Figure D. 5 – Trends for Run 05

Run 06

Figure D. 6 – Trends for Run 06

Run 07

Figure D. 7 - Trends for Run 07

Figure D. 8 – Trends for Run 08

Figure D. 9 – Trends for Run 09

Run 10

Figure D. 10 – Trends for Run 10

Run 11

Figure D. 11 – Trends for Run 11

Run 12

Figure D. 12 - Trends for Run 12

Run 13

Figure D. 13 - Trends for Run 13

APPENDIX E

ANSYS MODEL PREDICTIONS

(Note – this is an ANSYS standard output for one of the many simulations executed)

Contents

Units

TABLE 1						
Unit System	Metric (m, kg, N, s, V, A) Degrees rad/s Celsius					
Angle	Degrees					
Rotational Velocity	radis					
Temperature	Celsius					

Model (A4)

Geometry

TABLE 2 Model (Kal.) > Geometry								
Object Name	Geometry							
State	Fully Defined							
	Definition							
Source	C1Documents and Setting#User/DesktopiLTCC Oven Simulations/Dynamic Oven Simulation Dynamic Oven Simulation dp39 files/dp0/SYS/DM SYS.apdb							
Type	DesignModeler							
Length Unit	Milmeters							
Element Control	Manual							
Display Style	Part Color							
	Bounding Box							
Longth X	0.698 m							
Length Y	0.698 m							
Length Z	0.857 m							
	Properties							
Volume	0.27833 m*							
Mass	144.13 kg							
Scale Factor Value	5. ·							
	Statistics							
Bodies	39							
Active Bodies	39							
Nodes	26059							
Elements	4773							
Mesh Metric	None							
	Preterences							
Parameter Processing	Yes							
Personal Parameter Key	DS							
CAD Attribute Transfer	No							
Named Selection Processing	No							
Material Properties Transfer	No							
CAD Associativity	Yes							
Import Coordinate Systems	Yes							
Reader Save Part File	No							
Import Using Instances	Yes							
Do Smart Update	No							
Attach File Via Temp File	Yes							
Temporary Directory	C\Documents and SettingslUserLocal SettingslTemp							
Analysis Type	3D							
Enclosure and Symmetry Processing	Yes							

Model (A4) > G	BLE 3
Object Name	Substrate
State	Meshed
Graphics	Properties
Visible	Yes
Transparency	1
Defi	nition
Suppressed	No
Stiffness Behavior	Flexible
Brick Integration Scheme	Full
Coordinate System	Default Coordinate System
Reference Temperature	By Environment
Ma	terial
Assignment	Alumina
Nonlinear Effects	Yes
Thermal Strain Effects	Yes
Bound	ling Box
Length X	0.2 m
Length Y	1.e-002 m
Length Z	0.2 m
Prop	perties
Volume	4.e-004 m ^a
Mass	1.58 kg
Centroid X	-6.17e-017 m
Centroid Y	5.e-003 m
Centroid Z	0. m
Moment of Inertia Ip1	5.2798e-003 kg·m ²
Moment of Inertia Ip2	1.0533e-002 kg-m ²
Moment of Inertia Ip3	5.2798e-003 kg·m²
Stat	tistics
Nodes	416
Elements	49
Mesh Metric	None

Mod	iel (A4) > Geometr	y > Body Group	\$				
Object Name	Front Filaments	Main Filaments	Back Filaments				
State		Meshed					
	Graphics Pro	operties					
Visible Yes							
	Definiti	on					
Suppressed		No					
Assignment		Kanthal					
Coordinate System	Defa	ult Coordinate Sy	stem				
	Bounding	Box					
Length X	0.29156 m	0.33682 m	0.29156 m				
Length Y	0.29156 m	0.33682 m	0.29156 m				
Length Z	4.e-003 m	0.507 m	4.e-003 m				
	Propert	ies					
Volume	6.434e-005 m ^a	1.9113e-003 m ²	6.434e-005 m ^a				
Mass	0.3603 kg	10.704 kg	0.3603 kg				
Centroid X	-6.3326e-009 m	5.0182e-017 m	-6.3326e-009 m				
Centroid Y	-2.2513e-016 m	1.954e-017 m	1.6126e-016 m				
Centroid Z	0.2515 m	-3.2099e-017 m	-0.2515 m				
Moment of Inertia Ip1	2.089e-003 kg·m²	0.37232 kg·m²	2.089e-003 kg·m ²				
Moment of Inertia Ip2	2.089e-003 kg·m²	0.37232 kg·m²	2.089e-003 kg-mP				
Moment of Inertia Ip3	4.177e-003 kg·m²	0.28841 kg·m²	4.177e-003 kg·m²				
	Statisti	cs					
Nodes	1606	1680	1606				
Elements	143	132	143				
Mesh Metric		None					

TABLE 4

Model (A4) > Geometry > Front_Filaments > Parts							
Object Name	Solid	Solid	Solid	Solid	Solid		
State	State Meshed						
	Graphics Properties						
Visible			Yes				
Transparency			1				
		Definiti	on				
Suppressed			No				
Stiffness Behavior			Flexible				
Brick Integration Scheme			Full				
Coordinate System		De	fault Coordinate Syst	tem			
Reference Temperature			By Environment				
		Materi	al				
Assignment			Kanthal				
Nonlinear Effects			Yes				
Thermal Strain Effects			Yes				
		Bounding	Box				
Length X	0.29156 m	7.2889e-002 m	0.10933 m	0.14578 m	0.18222 m		
Length Y	0.29156 m	7.2889e-002 m	0.10933 m	0.14578 m	0.18222 m		
Length Z			4.e-003 m				
		Propert	ies				
Volume	1.4454e-005 m ³	3.4627e-006 m ³	5.2946e-006 m ³	7.1265e-006 m ^a	8.9584e-006 m ³		
Mass	8.0943e-002 kg	1.9391e-002 kg	2.965e-002 kg	3.9909e-002 kg	5.0167e-002 kg		
Centroid X	-8.7305e-009 m	-7.4005e-017 m	-2.256e-017 m	-8.5234e-009 m	-6.4007e-009 m		
Centroid Y	-4.2181e-016 m	5.1764e-017 m	-1.2981e-016 m	-2.2336e-016 m	4.9002e-016 m		
Centroid Z			0.2515 m				
Moment of Inertia Ip1	8.3468e-004 kg·m²	1.1451e-005 kg·m²	4.0804e-005 kg·m²	9.9807e-005 kg·m²	1.9843e-004 kg·m²		
Moment of Inertia Ip2	8.3468e-004 kg·m ²	1.1451e-005 kg·m²	4.0804e-005 kg·m²	9.9807e-005 kg·m²	1.9843e-004 kg·m²		
Moment of Inertia Ip3	1.6691e-003 kg·m²	2.2851e-005 kg·m²	8.1529e-005 kg·m²	1.9951e-004 kg·m²	3.9673e-004 kg·m²		
		Statisti	CS				
Nodes	336	103	144	189	192		
Elements	28	9	12	17	16		
Mesh Metric	None						

TABLE 5

TABLE 6 Model (A4) > Geometry > Front Filaments > Darte

model(A4) > Geometry > Front_Filaments > Parts						
Object Name	Solid	Solid	Solid			
State	Meshed					
Graphics Properties						
Visible		Yes				
Transparency		1				
	Definiti	on				
Suppressed		No				
Stiffness Behavior		Flexible				
Brick Integration Scheme		Full				
Coordinate System	De	fault Coordinate Syst	em			
Reference Temperature		By Environment				
	Materi	al				
Assignment		Kanthal				
Nonlinear Effects		Yes				
Thermal Strain Effects		Yes				
	Bounding	Box				
Length X	0.21867 m	0.25511 m	3.6444e-002 m			
Length Y	0.21867 m	0.25511 m	3.6444e-002 m			
Length Z		4.e-003 m				
	Propert	ies				
Volume	1.079e-005 m ^a	1.2622e-005 m ²	1.6308e-006 m ^a			
Mass	6.0426e-002 kg	7.0684e-002 kg	9.1327e-003 kg			
Centroid X	1.7708e-008 m	-2.8064e-008 m	-2.464e-018 m			
Centroid Y	-9.2317e-016 m	-6.2698e-017 m	4.5938e-017 m			
Centroid Z		0.2515 m				
Moment of Inertia Ip1	3.4695e-004 kg·m²	5.5562e-004 kg·m²	1.2197e-006 kg·m²			
Moment of Inertia Ip2	3.4695e-004 kg·m²	5.5562e-004 kg·m²	1.2197e-006 kg·m²			
Moment of Inertia Ip3	6.9374e-004 kg·m²	1.1111e-003 kg·m²	2.4152e-006 kg·m²			
	Statisti	cs				
Nodes	240	288	114			
Elements	20	24	17			
Mesh Metric	Mesh Metric None					

	Model (A4) > Geometry > Main_Filaments > Parts					
Object Name	Solid	Solid	Solid	Solid	Solid	
State			Meshed			
	Graphics Properties					
Visible			Yes			
Transparency			1			
		Definition	1			
Suppressed			No			
Stiffness Behavior			Flexible			
Brick Integration Scheme			Full			
Coordinate System		Defa	ult Coordinate Sys	stem		
Reference Temperature			By Environment			
		Material				
Assignment			Kanthal			
Nonlinear Effects			Yes			
Thermal Strain Effects			Yes			
		Bounding B	lax			
Length X			2.e-002 m			
Length Y			2.e-002 m			
Length Z			0.507 m			
		Properties	5			
Volume			1.5928e-004 m ³			
Mass			0.89196 kg			
Centroid X	-0.11	597 m	-0.158	41 m	-4.2446e-002 m	
Centroid Y	0.11597 m	-0.11597 m	-4.2446e-002 m	4.2446e-002 m	0.15841 m	
Centroid Z	-4.4444e-017 m	-2.4438e-016 m	-8.3403e-016 m	8.3942e-016 m	-7.4882e-016 m	
Moment of Inertia Ip1		1	.9032e-002 kg·m	:		
Moment of Inertia Ip2		1	.9032e-002 kg·m	2		
Moment of Inertia Ip3		4	.4147e-005 kg·m	2		
		Statistics	1			
Nodes			140			
Elements	11					
Mesh Metric			None			

TABLE 7

TABLE 8 Model (A4) > Geometry > Main Filaments > Pa

Model (A4) > Geonetry > Main_Filaments > Parts					
Object Name	Solid	Solid	Solid	Solid	Solid
State Meshed					
		Graphics Pro	perties		
Visible			Yes		
Transparency			1		
		Definitio	n		
Suppressed			No		
Stiffness Behavior			Flexible		
Brick Integration Scheme			Full		
Coordinate System		Defa	ault Coordinate Sy	/stem	
Reference Temperature			By Environment		
		Materia	1		
Assignment			Kanthal		
Nonlinear Effects			Yes		
Thermal Strain Effects			Yes		
		Bounding	Box		
Length X			2.e-002 m		
Length Y			2.e-002 m		
Length Z			0.507 m		
		Propertie	95		
Volume			1.5928e-004 m ^a		
Mass			0.89196 kg		
Centroid X	4.2446e-002 m	0.11597 m	0.158	41 m	0.11597 m
Centroid Y	0.15841 m	0.11597 m	4.2446e-002 m	-4.2446e-002 m	-0.11597 m
Centroid Z	7.5225e-016 m	2.2847e-016 m	-8.2583e-016 m	8.9194e-016 m	-3.1001e-016 m
Moment of Inertia Ip1			1.9032e-002 kg·n	1 ²	
Moment of Inertia Ip2	1.9032e-002 kg·m²				
Moment of Inertia Ip3	a lp3 4.4147e-005 kg·m²				
		Statistic	s		
Nodes			140		
Elements			11		
Mesh Metric			None		

TABLE 9 Model (A4) > Geometry > Main Filaments > Parts					
Object Name	Solid	Solid			
State	Mes	shed			
Graph	ics Properties				
Visible	Y	es			
Transparency	1	1			
[Definition				
Suppressed	N	lo 🛛			
Stiffness Behavior	Flex	cible			
Brick Integration Scheme	F	ull			
Coordinate System	Default Coord	dinate System			
Reference Temperature	By Erwi	ronment			
	Material				
Assignment	Kar	thal			
Nonlinear Effects	onlinear Effects Yes				
Thermal Strain Effects Yes		es			
Bo	unding Box				
Length X	2.e-0	102 m			
Length Y	2.0-0	102 m			
Length Z	0.50	07 m			
P	roperties				
Volume	1.59286	⊦004 m³			
Mass	0.891	96 kg			
Centroid X	4.2446e-002 m	-4.2446e-002 m			
Centroid Y	-0.15	841 m			
Centroid Z	-9.2843e-016 m	8.3868e-016 m			
Moment of Inertia Ip1	1.9032e-	002 kg·m²			
Moment of Inertia Ip2	1.9032e-	002 kg·m²			
Moment of Inertia Ip3 4.4147e-005 kg·m ²		005 kg•m²			
	Statistics				
Nodes	14	40			
Elements	1	1			
Mesh Metric	No	ne			

TABLE 10 Model (A4) > Geometry > Back_Filaments > Parts						
Object Name	Solid	Solid	Solid	Solid	Solid	
State			Meshed			
		Graphics Pro	perties			
Visible			Yes			
Transparency			1			
		Definitio	n			
Suppressed			No			
Stiffness Behavior			Flexible			
Brick Integration Scheme			Full			
Coordinate System		Det	ault Coordinate Syst	em		
Reference Temperature			By Environment			
		Materia	al			
Assignment			Kanthal			
Nonlinear Effects			Yes			
Thermal Strain Effects			Yes			
		Bounding	Box			
Length X	0.29156 m	7.2889e-002 m	0.10933 m	0.14578 m	0.18222 m	
Length Y	0.29156 m	7.2889e-002 m	0.10933 m	0.14578 m	0.18222 m	
Length Z			4.e-003 m			
		Propert	es			
Volume	1.4454e-005 m ³	3.4627e-006 m ³	5.2946e-006 m ³	7.1265e-006 m ³	8.9584e-006 m ³	
Mass	8.0943e-002 kg	1.9391e-002 kg	2.965e-002 kg	3.9909e-002 kg	5.0167e-002 kg	
Centroid X	-8.7305e-009 m	1.9887e-017 m	-4.6271e-017 m	-8.5234e-009 m	-6.4007e-009 m	
Centroid Y	2.1577e-016 m	7.0056e-017 m	1.5659e-016 m	6.2714e-017 m	-5.3486e-017 m	
Centroid Z			-0.2515 m			
Moment of Inertia Ip1	8.3468e-004 kg·m²	1.1451e-005 kg·m²	4.0804e-005 kg·m²	9.9807e-005 kg·m²	1.9843e-004 kg·m ²	
Moment of Inertia Ip2	8.3468e-004 kg·m²	1.1451e-005 kg·m²	4.0804e-005 kg·m²	9.9807e-005 kg·m²	1.9843e-004 kg·m²	
Moment of Inertia Ip3	1.6691e-003 kg·m²	2.2851e-005 kg·m²	8.1529e-005 kg·m²	1.9951e-004 kg·m²	3.9673e-004 kg·m²	
	Statistics					
Nodes	336	103	144	189	192	
Elements	28	9	12	17	16	
Mesh Metric None						

TABLE 11 Model (A4) > Geometry > Back. Filaments > Parts						
Object Name	Solid	Solid Solid Solid				
State		Meshed				
	Graphics Pro	operties				
Visible		Yes				
Transparency		1				
	Definiti	on				
Suppressed		No				
Stiffness Behavior		Flexible				
Brick Integration Scheme		Full				
Coordinate System	De	fault Coordinate Syst	em			
Reference Temperature		By Environment				
	Materi	al				
Assignment		Kanthal				
Nonlinear Effects		Yes				
Thermal Strain Effects		Yes				
	Bounding	Box				
Length X	0.21867 m	0.25511 m	3.6444e-002 m			
Length Y	0.21867 m	0.25511 m	3.6444e-002 m			
Length Z		4.e-003 m				
	Propert	ies				
Volume	1.079e-005 m ^a	1.2622e-005 m ^a	1.6308e-006 m ^a			
Mass	6.0426e-002 kg	7.0684e-002 kg	9.1327e-003 kg			
Centroid X	1.7708e-008 m	-2.8064e-008 m	-9.272e-018 m			
Centroid Y	8.111e-016 m	-1.9867e-016 m	-1.6851e-017 m			
Centroid Z		-0.2515 m				
Moment of Inertia Ip1	3.4695e-004 kg·m²	5.5562e-004 kg·m²	1.2197e-006 kg·m²			
Moment of Inertia Ip2	3.4695e-004 kg·m²	5.5562e-004 kg·m²	1.2197e-006 kg·m²			
Moment of Inertia Ip3	6.9374e-004 kg·m²	1.1111e-003 kg·m²	2.4152e-006 kg·m²			
	Statisti	cs				
Nodes	240	288	114			
Elements	20	24	17			
Mesh Metric		None				

Model (A4) > Geometry > Parts				
Object Name	TCC	TCB	TCF	
State		Meshed		
	Graphics Prop	erties		
Visible		Yes		
Transparency		1		
	Definition			
Suppressed		No		
Stiffness Behavior		Flexible		
Brick Integration Scheme		Full		
Coordinate System	Defai	ult Coordinate Sy	stem	
Reference Temperature		By Environment		
	Material			
Assignment		K-type TC		
Nonlinear Effects	Yes			
Thermal Strain Effects		Yes		
	Bounding B	ox		
Length X		2.e-003 m		
Length Y		2.e-003 m		
Length Z		2.e-003 m		
	Properties	1		
Volume		8.e-009 m ³		
Mass		6.984e-005 kg		
Centroid X	-1.5728e-019 m	6.3635e-016 m	-4.1999e-016 m	
Centroid Y		-9.e-002 m		
Centroid Z	-6.0137e-020 m	-0.225 m	0.225 m	
Moment of Inertia Ip1	4.656e-011 kg·m²			
Moment of Inertia Ip2	4.656e-011 kg·m²			
Moment of Inertia Ip3	3 4.656e-011 kg·m²			
	Statistics			
Nodes	756			
Elements	125			
Mesh Metric	Mesh Metric None			

TABLE 13 Model (A4) > Geometry > Body Groups			
Object Name	Quartz_Tube	Insulation	
State	Mes	shed	
Grap	hics Properties		
Visible	Y	95	
	Definition		
Suppressed	N	lo 🛛	
Assignment	Quartz	Insulation	
Coordinate System	Default Coordinate System		
B	ounding Box		
Length X	0.398 m	0.698 m	
Length Y	0.398 m	0.698 m	
Length Z	0.557 m	0.857 m	
	Properties		
Volume	1.7255e-002 m ³	0.25863 m ³	
Mass	38.014 kg	93.108 kg	
Centroid X	-1.4211e-016 m	-1.3054e-018 m	
Centroid Y	6.2248e-018 m	-8.1446e-018 m	
Centroid Z	4.1535e-016 m	5.6843e-017 m	
Moment of Inertia Ip1	1.9772 kg·m²	9.8873 kg·m²	
Moment of Inertia Ip2	1.9792 kg·m²	9.8873 kg·m²	
Moment of Inertia Ip3	1.176 kg·m²	6.628 kg·m²	
	Statistics		
Nodes	11013	7470	
Elements	2467	1464	
Mesh Metric	No	ne	

	TABLE 15	

Darte

Mo

in order (Pre-	1 > Geometry >	insulation > 1 an		
Object Name	Back_Insulation	Side_Insulation	Front_Insulation	
State		Meshed		
	Graphics Prop	erties		
Visible		Yes		
Transparency		1		
	Definition	n		
Suppressed		No		
Stiffness Behavior		Flexible		
Brick Integration Scheme		Full		
Coordinate System	Defa	ult Coordinate Sy	stem	
Reference Temperature		By Environment		
	Material			
Assignment		Insulation		
Nonlinear Effects		Yes		
Thermal Strain Effects		Yes		
	Bounding B	Box		
Length X	0.698 m			
Length Y		0.698 m		
Length Z	0.15 m	0.557 m	0.15 m	
	Propertie	s		
Volume	5.7397e-002 m ³	0.14384 m ³	5.7397e-002 m ³	
Mass	20.663 kg	51.782 kg	20.663 kg	
Centroid X	-1.1014e-017 m	5.0674e-018 m	-7.5672e-018 m	
Centroid Y	-3.0388e-018 m	-1.0499e-017 m	-7.3497e-018 m	
Centroid Z	-0.3535 m	1.2287e-017 m	0.3535 m	
Moment of Inertia Ip1	0.66138 kg·m²	3.4003 kg·m ²	0.66138 kg·m²	
Moment of Inertia Ip2	0.66138 kg·m²	3.4003 kg·m ²	0.66138 kg·m²	
Moment of Inertia Ip3	1.2457 kg·m²	4.1366 kg·m ²	1.2457 kg·m²	
	Statistic	8		
Nodes	2065	3932	2065	
Elements	372	720	372	
Mesh Metric	None			

TABLE 14 Model (A4) > Geometry > Quartz_Tube > Parts				
Object Name	Left_Quartz	Back_Quartz	Right_Quartz	Front_Quartz
State		Mes	hed	
	Gra	aphics Properties		
Visible		Ye	98	
Transparency		1	l i i i i i i i i i i i i i i i i i i i	
		Definition		
Suppressed		N	o	
Stiffness Behavior		Flex	ible	
Brick Integration Scheme		Fi	ll i	
Coordinate System		Default Coord	linate System	
Reference Temperature		By Envir	onment	
		Material		
Assignment		Qu	artz	
Nonlinear Effects		Ye	95	
Thermal Strain Effects		Y	95	
		Bounding Box		
Length X	0.199 m	0.398 m	0.199 m	0.398 m
Length Y		0.39	18 m	
Length Z	0.517 m	2.e-002 m	0.517 m	2.e-002 m
		Properties		
Volume	6.1395e-003 m ³	2.4882e-003 m ³	6.1395e-003 m ³	2.4882e-003 m ³
Mass	13.525 kg	5.4815 kg	13.525 kg	5.4815 kg
Centroid X	-0.12013 m	-2.6836e-017 m	0.12013 m	-2.5833e-017 m
Centroid Y	-1.8913e-017 m	6.4205e-017 m	7.42e-018 m	7.3203e-018 m
Centroid Z	-3.6113e-018 m	-0.2685 m	2.907e-017 m	0.2685 m
Moment of Inertia Ip1	0.53953 kg·m²	5.3902e-002 kg·m²	0.53953 kg·m²	5.3902e-002 kg·m²
Moment of Inertia Ip2	0.34534 kg·m²	5.3902e-002 kg·m²	0.34534 kg·m²	5.3902e-002 kg·m²
Moment of Inertia Ip3	0.2854 kg·m²	0.10744 kg·m²	0.2854 kg·m²	0.10744 kg·m²
		Statistics		
Nodes	4565	1501	4247	1466
Elements	616	649	572	630
Mesh Metric		No	ne	

	Model	(A4) > Coordinate Syst	tems > Coordinate System		
Object Name	Global Coordinate System	Front_Filament_Plane	H1_plane	H2_plane	M_plane
State			Fully Defined		
		Definit	tion		
Туре			Cartesian		
Coordinate System ID	0.		Program Co	ntrolled	
		Origi	in		
Origin X	0. m	1	8.e-002 m	-8.e-002 m	0. m
Origin Y	0. m	1		5.e-003 m	
Origin Z	0. m	0.2515 m	-8.e	-002 m	0. m
Define By		Global Coordinates			
Location			Define	d	
		Directional	Vectors		
X Axis Data	[1.0.0.]	[0.01.]		[1.0.0.]	
Y Axis Data			[0.1.0.]		
Z Axis Data	[0.0.1.]	[1.0.0.]		[0.0.1.]	
		Principa	l Axis		
Axis			X		
Define By			Fixed Ve	ctor	
		Orientation About	t Principal Axis		
Axis			Y		
Define By			Fixed Ve	ctor	
		Transform	nations		
Base Configuration			Absolu	te	
Transformed Configuration		[0. 0. 0.2515]	[8.e-002 5.e-003 -8.e-002]	[[-8.e-002 5.e-003 -8.e-002][[0.5.e-003.0.]

TABLE 16 Model (A4) - Coordinate Sustems - Coordinate Su

	Mod	el (A4) > Coordinate	e Systems > Coord	inate System	
Object Name	TC_back_plane	TC_center_plane	TC_front_plane	V1_plane	V2_plane
State			Fully Def	ined	
		[Definition		
Туре			Cartes	ian	
Coordinate System ID			Program Co	ntrolled	
			Origin		
Define By			Global Coor	dinates	
Origin X		0. m		8.e-002 m	-8.e-002 m
Origin Y		-9.e-002 m		5.0-0)03 m
Origin Z	-0.225 m	0. m	0.225 m	8.0-0)02 m
Location			Define	xd	
		Pri	ncipal Axis		
Axis			X		
Define By			Fixed Ve	ctor	
		Orientation	About Principal Axi	5	
Axis			Y		
Define By			Fixed Ve	ector	
		Direc	tional Vectors		
X Axis Data			[1. 0.	0.]	
Y Axis Data		[0. 1. 0.]			
Z Axis Data	[0.0.1.]				
		Trar	sformations		
Base Configuration			Absolu	te	
	1			1	

Transformed Configuration [0. -9.e-002 -0.225] [0. -9.e-002 0.] [0. -9.e-002 0.225] [8.e-002 5.e-003 8.e-002] [-8.e-002 5.e-003 8.e-002]

TABLE 18 Model (A4) > Connections	
Object Name	Connections
State	Fully Defined
Auto Detection	
Generate Automatic Connection On Refresh	Yes
Transparency	
Enabled	Yes

TA	BLE 19	
Model (A4) > Con	ne ctions	> Contacts
Object Mamo	Contacts	Contacte 2

Object Name	Contacts	Contacts 2			
State	Fully Defined				
De	finition				
Connection Type	Contact				
S	Scope				
Scoping Method	Geometry Selectio				
Geometry	All Bodies				
Auto Detection					
Tolerance Type	Slider				
Tolerance Slider	0.				
Tolerance Value	3.2681	e-003 m			
Face/Face	Yes	No			
Face/Edge		No			
Edge/Edge	1	No			
Priority	Inclu	ide All			
Group By	Bo	dies			
Search Across	Bodies				

TABLE 20 Model (A4) > Connections > Contacts > Contact Regions

Object Name	Contact Region 3	Contact Region 4	Contact Region 7	Contact Region 10	Contact Region 6
State		Fully Defined			
		Scop	xe 🛛		
Scoping Method			Geometry Selectic	n	
Contact			1 Face		
Target			1 Face		
Contact Bodies	Left_Quartz	Back_Quartz	Right_Quartz	Front_Quartz	Back_Quartz
Target Bodies	Side_Insulation	Back_Insulation	Side_Insulation	Front_Insulation	Side_Insulation
		Definit	tion		
Туре			Bonded		
Scope Mode			Automatic		
Behavior			Symmetric		
Suppressed		No			
	Advanced				
Formulation			Pure Penalty		
Thermal Conductance		Program Controlled			
Pinball Region	Program Controlled				

	TABLE 21			
Model (A4) >	Connections >	Contacts >	Co	

I ADLE 21					
A4) > Connections > (Contacts > Contact				
Object Name	Contact Region 8				
State	Fully Defined				
Sco	Scope				
Scoping Method	Geometry Selection				
Contact	1 Face				
Target	1 Face				
Contact Bodies	Front_Quartz				
Target Bodies	Side_Insulation				
Definition					
Туре	Bonded				
Scope Mode	Automatic				
Behavior	Symmetric				
Suppressed	No				
Advar	nced				
Formulation	Pure Penalty				
Thermal Conductance	Program Controlled				
Pinball Region	Program Controlled				

1	AB	LE	22	
		0		 0

Model (A4) > Connections > Contacts 2 > Contact Regions							
Bonded - Front_Insulation To Side_Insulation	Bonded - Back_Insulation To Side_Insulation						
Fully D	Defined						
Scope							
Geometry Selection							
1 B	ody						
1 Body							
Front_Insulation	Back_Insulation						
odies Side Insulation							
Definition							
Bonded							
Manual							
Symmetric							
No							
Advanced							
Pure Penalty							
Program (Controlled						
Program (Controlled						
	Model (A4) > Connections > Contacts 2 Bonded - Front_Insulation To Side_Insulation Fully D Geometry 1 B Front_Insulation Bor Bor Ma Sym Advanced Pure F Program						

TABLE 23

Model (A4) > M	esh
Object Name	Mesh
State	Solved
Defaults	
Physics Preference	Mechanical
Relevance	0
Sizing	
Use Advanced Size Function	Off
Relevance Center	Coarse
Element Size	Default
Initial Size Seed	Active Assembly
Smoothing	Medium
Transition	Fast
Span Angle Center	Coarse
Minimum Edge Length	2.e-003 m
Inflation	
Use Automatic Inflation	None
Inflation Option	Smooth Transition
Transition Ratio	0.272
Maximum Layers	5
Growth Rate	1.2
Inflation Algorithm	Pre
View Advanced Options	No
Advanced	
Shape Checking	Standard Mechanical
Element Midside Nodes	Program Controlled
Straight Sided Elements	No
Number of Retries	Default (4)
Extra Retries For Assembly	Yes
Rigid Body Behavior	Dimensionally Reduced
Mesh Morphing	Disabled
Defeaturing	
Pinch Tolerance	Please Define
Generate Pinch on Refresh	No
Automatic Mesh Based Defeaturing	On
Defeaturing Tolerance	Default
Statistics	
Nodes	26059
Elements	4773
Mesh Metric	None

TABLE 24 Model (A4) > Mesh > Mesh Controls

Object Name	Insulation	Automatic Method	Main Filament Mesh	Front Filament Mesh	Back Filament Mesh	
State			Fully Defined			
		Sco	ope			
Scoping Method			Named Selection			
Named Selection	Insulation	Quartz Tube	Main Filaments	Front Filaments	Back Filaments	
		Defin	ition			
Suppressed		No				
Method	MultiZone	MultiZone Automatic MultiZone				
Mapped Mesh Type	Hexa		Hexa	Hexa/	Prism	
Free Mesh Type	Not Allowed	Not Allowed Not Allowed				
Element Midside Nodes		Use Global Setting				
Src/Trg Selection	Automatic	Automatic Automatic				
Source	Program Controlled			Program Controlled		
Advanced						
Mesh Based Defeaturing	Off		Off			
Minimum Edge Length	1.2504 m		6.2832e-002 m 8.9361e-002 m			
Write ICEM CFD Files	No	No				

			Mod	lei(A4) > N	TABLE amed Select	E26 ions > Named S	elections	
			Object Name	Insulation	Quartz Tube	Main Filaments	Back Filaments Front Filaments	
TAF	RI E 25		State	State Fully Defined				
Model (A4) > Mer	sh > Mesh Controls				Sco	pe		
Object Name	Substrate Mesh		Scoping Method		Geometry Selection			
Cuject Name	Eully Defined		Geometry	3 Bodies	4 Bodies	12 Bodies	8 Bodies	
State Fully Defined			Definition					
5	cope		Send to Solver	r Yes				
Scoping Method	Geometry Selection		Visible	Yes				
Geometry	1 Body		Program Controlled Inflation	Exclude				
Definition			Statistics					
Suppressed No			Type	Manual				
Туре	Element Size		Total Selection	3 Bodies	4 Bodies	12 Bodies	8 Bodies	
Element Size	Element Size 3.e-002 m		Suppressed			0		
Behavior Soft			Hidden	0				

Model (A4) > Named Selections > Named Selections Object Name | Main Left Filaments | Main Right Filaments | Radiating Surfaces |

State	Fully Defined						
	Scope						
Scoping Method	Geometry Selection						
Geometry	6 Bodies	128 Faces					
	Definition						
Send to Solver	Send to Solver Yes						
Visible Yes							
Program Controlled Inflation	I Exclude						
Statistics							
Туре	Manual						
Total Selection 6 Bodies 128 Fac		128 Faces					
Suppressed	0						
Hidden 0							

Transient Thermal (A5)

TAE Model (A4	3LE 28 4) > Analysis					
Object Name	Object Name Transient Thermal (A5)					
State	State Solved			TABLE	29	
Def	Definition		el (A4) > T	ransient Thern	nal (A5) > Initial Cond	ition
Physics Type	Thermal			Object Name	Initial Temperature	
Analysis Type	Transient			State	Fully Defined	
Solver Target	Solver Target Mechanical APDL			Definit	ion	
Options			Initia	al Temperature	Uniform Temperature	
Generate Input Only	No		Initial Tem	perature Value	22. °C	

TABLE 30 Model (A4) ~ Transient Thermal (A5) ~ Analysis Settings

	model(A4) > transient thermal (Ab) > Analysis bettings							
Object Name Analysis Settings								
State Fully Defined								
	Step Controls							
Number Of Steps	1.							
Current Step Number	1.							
Step End Time	7000. s							
Auto Time Stepping	On							
Define By	Time							
Initial Time Step	10. s							
Minimum Time Step	10. s							
Maximum Time Step	100. s							
Time Integration	On							
	Solver Controls							
Solver Type	Program Controlled							
	Radiosity Controls							
Flux Convergence	1.e-004							
Maximum Iteration	1000.							
Solver Tolerance	0.1							
Over Relaxation	0.1							
Hemicube Resolution	10.							
	Nonlinear Controls							
Heat Convergence	Program Controlled							
Temperature Convergence	Program Controlled							
Line Search	Program Controlled							
Nonlinear Formulation	Program Controlled							
	Output Controls							
Calculate Thermal Flux	Yes							
Calculate Results At	All Time Points							
	Analysis Data Management							
Solver Files Directory	C:Documents and Settings/User/Desktop/LTCC Oven Simulations/Dynamic Oven Simulation/Dynamic Oven Simulation_dp39_files/dp0/SYS/MECH							
Future Analysis	None							
Scratch Solver Files Directory								
Save MAPDL db	No							
Delete Unneeded Files	No							
Nonlinear Solution	Yes							
Solver Units	Active System							
Solver Unit System	Solver Unit System mks							

TABLE 31 Model (A4) > Transient Thermal (A5) > Loads

		the second second second second second second second second second second second second second second second s	and the second se			
Object Name	Radiation	Main Filament Power	Front Filament Power	Back Filament Power	Blower on the Left	
State			Fully Defined			
			Scope			
Scoping Method		Named	Selection		Geometry Selection	
Named Selection	Radiating Surfaces	Main Filaments	Front Filaments	Back Filaments		
Geometry					1 Face	
	Definition					
Туре	Radiation		nternal Heat Generatio	n	Convection	
Correlation	Surface to Surface					
Emissivity	1. (step applied)					
Ambient Temperature	22. °C (step applied)				C (step applied)	
Enclosure	1.					
Suppressed		No				
Magnitude		Run 01 Main	Run 01	1 Front		
Film Coefficient					Stagnant Air - Horizontal Cvl	

500.

Temperature [°C]

250.

750.

2.5 -1.24 --148.85

ΰ.

100.	5.76
200.	7.25
300.	8.3
500.	9.84
700.	11.01
1000.	12.4

1149.8

2.

Done

Max Refinement Loops Refinement Depth

Information

Status

TABLE 35 Model (A4) > Transient Thermal (A5) > Insulation Convection Front and Back

remperature [O]	Convection Coefficient [w/m= C]
1.	0.95
10.	2.05
100.	4.41
200.	5.56
300.	6.36
500.	7.54
700.	8.43
1000.	9.5

 TABLE 36
 TABLE 37

 Model (A4) > Transient Thermal (A5) > Solution
 Model (A4) > Transient Thermal (A5) > Solution (A6) > Solution Information

 Object Name
 Solution (A6)
 Object Name
 Solution Information

 State
 Solved
 Solved
 Solved

 Adaptive Mesh Refinement
 Solved
 Solved
 Solved

State	Solved					
Solution Information						
Solution Output	Solver Output					
Update Interval	2.5 s					
Display Points	All					

 TABLE 38

 Model (A4) > Transient Thermal (A5) > Solution (A6) > Solution Information > Result Charts

 Object Name
 Temperature - Global Maximum

State	Solved							
	Scope							
Scoping Method	Global Maximum	Global Minimum						
	Definition							
Туре	Tempe	rature						
	Results							
Minimum	30.466 °C	11.347 °C						
Maximum	797.64 °C	22.129 °C						

		TABL	E 39		
	Model (A4) > 1	ransient Therma	(A5) > Solution (A	(6) > Results	
Object Name	Insulation Outer	Quartz Tube Left	Quartz Tube Right	Main Filaments	Substrate
State			Solved		
		Sco	pe		
Scoping Method		Geometry Selection	n	Named Selection	Geometry Selection
Geometry	5 Faces	1 F	ace		1 Body
Named Selection				Main Filaments	
		Defin	ition		
Туре			Temperature		
By			Time		
Display Time			Last		
Calculate Time History			Yes		
Identifier					
		Res	ults		
Minimum	22.168 °C	22.108 °C	39.437 °C	153.42 °C	194.9 °C
Maximum	41.533 °C	77.531 °C	255.21 °C	244.21 °C	228.82 °C
Minimum Occurs On	Front_Insulation			Solid	
Maximum Occurs On	Front_Insulation			Solid	
		Minimum Valu	e Over Time		
Minimum	16.849 °C	22.0	35 °C	30.438 °C	22.005 °C
Maximum	22.168 °C	612.62 °C	611.33 °C	701.17 °C	652.8 °C
		Maximum Valu	ue Over Time		
Minimum	22.004 °C	22.26 °C	22.215 °C	30.466 °C	22.014 °C
Maximum	41.533 °C	681.44 °C	673.03 °C	728.98 °C	657.35 °C
		Inform	ation		
Time			7000. s		
Load Step			1		
Substep			100		
Iteration Number	2689				

	Model (A4) >	rransient i ner	mai(A5) > 50	iution (A6) > I	insulation Ot
ime [s]	Minimum [°C]	Maximum [°C]	Time [s]	Minimum [°C]	Maximum [9
0.	21.998	22.004	3389.7	21.835	25.107
	21.995	22.01	3489.7	21.87	25.19
	21.985	22.041	3589.7	21.894	25.277
	21.964	22.086	3689.7	21.913	25.373
	21.796	22.362	3789.7	21.911	25.48
	21.497	22.748	3889.7		25.593
	21.112	23.107	3989.7	21.91	25.719
ŧ.	20.774	23.349	4089.7	21,911	25.854
2	20.433	23.562	4189.7	21,914	26.006
1	20.151	23.776	4289.7	21,918	26.171
67	19.991	23.901	4389.7	21,923	26.351
93	19.868	24.019	4489.7		26.547
61	19.615	24.274	4589.7	21.926	26 762
29	19.381	24,519	4689.7	21.927	27 114
17	19,115	24.827	4789.7	21,928	27.57
81	18.95	25.038	49907	21 766	29.416
0	18 929	25.2	40097	21,000	20.410
00	18.609	25 257	4923	21.802	20.3/0
77	18.615	25 462	4945.3	21./51	29.000
56	18,520	25.571	4907.6	21.558	29.879
72	18 425	25.602	5016.6	20.413	30.884
0.4	10.420	25.093	5065.5	19.912	31.24
8.1	18.349	25.792	5148.7	20.173	31.187
0.2	18,2/1	25.892	5232.	20,949	31.008
39.	18.209	25.9/8	5315.3	21.882	30.871
(.1	18.146	26.065	5398.5	21.926	30.794
5.3	18.09/	26.144	5498.5	21.937	31.374
4	18.043	26.227	5598.5	21.953	31.982
.6	17.991	26.311	5698.5	21,969	32.61
2.7	18.024	26.333	5798.5	21.987	33.252
9	18.319	26.1/9	5898.5	22.006	33.909
3	16.849	26.84	5998.5	22.013	34.576
9.3	17.515	26.484	6098.5	22.02	35.252
9.3	18.153	26.279	6198.5	22.031	35.936
9.3	18.299	26.189	6298.5	22.043	36.624
6.	18.492	26.04	6398.5	22.057	37.318
4.1	18.722	25.786	6498.5	22.073	38.014
2.2	18.874	25.579	6598.5	22.09	38.714
2.2	19,169	25.206	6698.5	22.108	39.415
22	19.471	25.02	6798.5	22.127	40.118
5.9	19.763	25.029	6848.5	22.136	40.469
2.7	20.053	24.992	6873.5	22.141	40.645
9.7	20.324	24,939	6898.5	22.146	40.821
9.7	20.463	24.883	6973.5	22.162	41.347
9.7	20,603	24.827	7000	22,168	41 533
9.7	20.743	24.777			111000
9.7	20,885	24.739			
9.7	21.027	24,702			
9.7	21,166	24,666			
89.7	21,297	24,645			
207	21 410	24 630			
80.7	21 501	24 644			
807	21 579	24 655			
80.7	21 627	24.000			
07	21.007	24.051			
7	21.745	24.001			
17	21.740	05.004			
89.7	21.791	25.024			

TABLE 40 Model (A4) > Transient Thermal (A5) > Solution (A6) > Insulation Outer

Time [s]	Minimum [°C]	Maximum [°C]	Time [s]	Minimum [°C]	Maximum [°C]
10.	22.035	22.26	3289.7	600.61	643.22
20.	22.127	22.898	3389.7	601.09	643.23
50.	23.377	30.624	3489.7	601.76	643.34
80.	25.938	45.636	3589.7	602.87	644.1
170.	41,429	116.38	3689.7	604.03	644.86
260.	63.548	192.81	3789.7	605.3	645.77
350.	91.073	258.7	3889.7	605.6	645.43
419.4	117.18	309.63	3989.7	606.75	646.34
481.82	142.7	342.16	4089.7	607.21	646.24
525.41	164.89	362.04	4189.7	608.51	647.35
551.67	180.26	376.39	4289.7	609.14	047.00
577.93	194.7	388.01	4389.7	609.59	647.57
621.61	218.22	410.97	4489.7	609.95	647.63
665.29	240.28	431.2	4589.7	611.46	648.94
729.17	273.84	460.03	4690.7	612.11	640.19
780.81	302.4	483.69	4780.7	612.62	640.39
825.9	328.24	504.87	4990 7	50,060	208.62
870.99	355.76	525.25	4003.7	37.061	253.34
904.77	376.18	539.55	4045.3	33 434	233.68
938.56	396.69	555.23	4067.6	20.268	217.47
975.73	420	572.98	5016.6	26.744	101.01
1008.1	440.32	588.46	5065.5	25.061	190.02
1040.2	461.16	605.02	5140.7	24.002	166.67
1069	479.86	619.41	5222	24.095	156.1
1097.1	498.61	634.24	5215.2	29.762	147.26
1125.3	516.7	648.34	5208.5	23.702	120.67
1153.4	534.68	663.2	5409.5	23.413	121.95
1181.6	552.65	678.42	5500.5	22.000	125.04
1209.7	562.22	681.44	5608.5	22.009	110.06
1261.9	331.97	488.71	5708.5	22.505	112.75
1279.3	461.59	576.83	5808.5	22.000	109.01
1289.3	483.87	598.72	5998.5	22.419	104.74
1299.3	497.95	609.1	6008.5	22.358	100.88
1309.3	507.33	614.66	6108.5	22.308	97.362
1326.	516.7	619.31	6208.5	22.265	94 153
1364.1	527.75	624.43	6308.5	22.200	01 214
1402.2	535.14	628.16	6498.5	22.20	88 504
1502.2	549.51	637.39	6509.5	22.176	85.006
1602.2	564.02	647.82	6608.5	22.170	83.673
1695.9	575.15	654.48	6708.5	22.133	81 513
1789.7	582.28	656.93	6848.5	22.107	80 471
1889.7	589.12	659.41	6873.5	22.125	79.961
1989.7	594.27	660.53	6808.5	22.125	70.458
2089.7	596.77	659.3	6072.5	22.111	78.029
2189.7	598,89	658.13	7000	22.109	77 521
2289.7	600.77	657.2	7000.	22.100	11.001
2389.7	600.28	653.93			
2489.7	599.05	650.32			
2589.7	599.31	649 18			
2689.7	599.24	647.5			
2789.7	598.99	645.93			
2889.7	598.82	644.57			
2989.7	599.29	644.29			
3089.7	599.68	643.79			
3189.7	600.27	643 74			

TABLE 41 Model (A4) > Transient Thermal (A5) > Solution (A6) > Quartz Tube Left

FIGURE 14 Model (A4) > Transient Thermal (A5) > Solution (A6) > Substrate

FIGURE 12 Model (A4) > Transient Thermal (A5) > Solution (A6) > Quartz Tube Right

Model	(A4) > Transie	ent Thermal (A	5) >	Solution	(A6) > Quarta	z Tube Riaht
Time [s]	Minimum [°C]	Maximum [°C]		Time [s]	Minimum [°C]	Maximum [°C]
10.	22.035	22.215		3389.7	599.75	643.23
20.	22.125	22.733		3489.7	600.43	643.34
50.	23.36	28.794		3589.7	601.54	644.1
80.	25.938	40.489		3689.7	602.71	644.86
170.	41.429	96.842		3789.7	603.97	645.77
260.	63.548	161.4		3889.7	604.28	645.43
350.	91.073	220.51		3989.7	605.43	646.34
419.4	117.18	267.54		4089.7	605.89	646.24
481.82	142.7	299.81		4189.7	607.2	647.35
525.41	164.89	321.77		4289.7	607.83	
551.67	180.26	338.49		4389.7	608.28	647.57
577.93	194.7	352.28		4489.7	608.64	647.63
621.61	218.22	376.34		4589.7	610.16	648.94
665.29	240.28	397.34		4689.7	610.82	649.18
729.17	273.84	428.6		4789.7	611.33	649.38
780.81	302.4	454.8		4889.7	171.62	582.77
825.9	328.24	478.16		4923.	134.01	564.72
870.99	355.76	502.2		4945.3	120.68	553.38
904.77	376.18	519.29		4967.6	109.79	542.69
938.56	396.69	536.83		5016.6	93.614	521.87
975.73	420.	556.85		5065.5	87.568	503.51
1008.1	440.32	574.09		5148.7	80.249	476.79
1040.2	461.16	592.09		5232.	74.561	454.03
1069.	479.86	607.87		5315.3	69.958	434.18
1097.1	498.61	623.99		5398.5	66,138	416.61
1125.3	516.7	639.07		5498.5	62.337	398.06
1153.4	534.68	654.44		5598.5	59,132	381.49
1181.6	552.65	669.96		5698.5	56,405	366.59
1209.7	562.22	673.03		5798.5	54.045	353.05
1261.9	444.19	628.75		5898.5	51.989	340.68
1279.3	494.64	626.61		5998.5	50,175	329.3
1289.3	507.83	626.47		6098.5	48.564	319.63
1299.3	516.46	626.23		6198.5	47.124	310.67
1309.3	522.36	625.93		6298.5	45.829	302.28
1326.	528.49	627.07		6308.5	44,663	204 42
1364.1	536.46	628.5		6498.5	43.6	287
1402.2	542.45	630.78		6598.5	42 626	279.98
1502.2	554.03	638.74		6698.5	41 736	273.35
1602.2	566.8	648.76		6798.5	40,919	267.07
1695.9	576.82	655.06		6848.5	40.524	264
1789.7	583.24	657.17		6873.5	40.333	262.49
1889.7	589.32	659.41		6898.5	40.148	261
1989.7	593.88	660.53		6973.5	39,629	256.71
2089.7	596.08	659.3		7000.	39,437	255.21
2189.7	597.8	658.13	'			
2289.7	599.36	657.2				
2389.7	598.75	653.93				
2489.7	597.46	650.32				
2589.7	597.76	649.18				
2689.7	597.74	647.5				
2789.7	597.53	645.93				
2889.7	597.4	644.57				
2989.7	597.89	644.29				
3089.7	598.3	643.79				
3189.7	598.9	643.74				
3289.7	599.27	643.22				

mode		sent merman (~	> Soluti	OII(A0) > Mai	II Fildinetits
Time [s]	Minimum [°C]	Maximum [°C]		Time [s]	Minimum [°C]	Maximum [°C]
10.	30.438	30.466		3389.7	643.24	652.94
20.	43.457	43.545		3489.7	643.37	652.91
50.	108.75	109.49		3589.7	643.93	653.3
80.	171.32	173.28		3689.7	644.64	653.87
170.	279.94	287.61		3789.7	645.48	654.6
260.	346.01	360.16		3889.7	644.11	652.91
350.	387.77	407.55		3989.7	645.67	654.48
419.4	422.02	446.16		4089.7	644.74	653.29
481.82	437.01	463.21		4189.7	646.59	655.2
525.41	447.53	473.8		4289.7	645.91	654.3
551.67	459.11	485.4		4389.7	645.69	653.93
577.93	465.46	491.53		4489.7	645.56	653.74
621.61	484.02	510.53		4589.7	647.97	656.25
665.29	497.57	524.61		4689.7	647.55	655.67
729.17	518.28	545.89		4789.7	647.47	655.47
780.81	536.24	564.48		4889.7	515.11	593.96
825.9	552.98	581.69		4923.	481.79	574.44
870.99	568.89	597.64		4945.3	462.48	561.94
904.77	580.14	608.71		4967.6	445.42	550.06
938.56	593.77	622.31		5016.6	415.49	526.85
975.73	608.93	637.37		5065.5	390.93	506.17
1008.1	622.21	650.54		5148.7	358.93	476.77
1040.2	636.67	664.92		5232	333.35	451 79
1069	648.86	676.94		5315.3	312.26	430.24
1097.1	662.03	689.96		5398.5	294 44	411.39
1125.3	674 21	701.96		5498.5	276.48	391 77
1153.4	687.59	715.33		5598.5	261.09	374 48
1181.6	701.17	728.98		5608.5	247.60	350.1
1209.7	699.73	726.77		5708.5	235.86	345.27
1261.9	621.56	671.85		5808.5	225.32	332.74
1279.3	617.3	664.06		5008.5	215.83	321.29
1289.3	616 66	660.6		6098.5	207.23	310.78
1200.0	616.2	657.29		6108.5	100.35	301.20
1309.3	616.22	654.63		6208.5	102.05	202.53
1326	616.29	650.81		6208.5	185.32	294.37
1364.1	616.78	644.81		6408.5	170.00	276 71
1402.2	617.48	641.67		6508.5	173.20	260.40
1502.2	622.33	642.41		6600.5	167.90	262.7
1602.2	632.31	649.98		6709.5	162.93	256.28
1695.9	640.97	656 65		6849.5	160.29	253.26
1789.7	645.51	659.07		6873.5	150.00	251.62
1889.7	651.94	663.29		6809.5	157.00	250.1
1989.7	654 52	665.71		6072.5	154.6	245.72
2090 7	652.54	664.5		7000	152.42	243.73
2180.7	653.82	664.7		7000.	100.42	277.21
2280.7	654.08	664.88				
2380 7	650.88	661.53				
2480.7	647 71	658.24				
2500.7	647.50	659.1				
2600.7	646.76	657.22				
2700 7	645.22	655.52				
2000 7	644.41	654.62				
2009.7	644.04	654.10				
2000.7	642.71	652.67				
0100.7	642.64	653.07				
3189.7	640.00	003.40				
3289.7	643.38	653.1				

TABLE 43 Model (A4) > Transient Thermal (A5) > Solution (A6) > Main Filaments

Time [s]	Minimum [°C]	Maximum [°C]	Time [s]	Minimum [°C]	Maximum [°C]
10.	22.005	22.014	1789.7	638.5	648.7
20.	22.019	22.049	1889.7	644.39	653.09
50.	22.29	22.556	1989.7	648.77	656.13
80	22.942	23.678	2089.7	650.86	657.14
170	29.264	32,568	2189.7	652.05	657.35
260	40.952	47.839	2289.7	652.8	657.29
350	58.53	69 707	2389.7	651.78	655.6
419.4	76712	92.047	2489.7	649.82	653.07
401.02	06.204	115.57	2580.7	648.73	651.56
525 /1	112.05	124 77	2680.7	647.7	650.11
551.67	122.05	147.77	2780.7	646.5	648.66
577.02	122.07	161.22	2889.7	645.44	647.36
621.61	154.09	196.17	2000.7	644.70	646.64
665.20	170.05	212.45	2000.7	644.29	646.05
720.17	216.00	212.40	2100.7	644.02	645.75
729.17	210.09	204.73	2200.7	642 71	645.24
025.0	249.72	291.4/	2209.7	642.54	645.14
820.9	281.20	320.3	2400.7	642.40	645.09
004 77	2/0.0	207.77	2500.7	6/0 70	645.00
904.77	340.8	307.77	3069.7	644.10	645.02
938.50	307.57	415.03	2700.7	644.19	646.60
9/5./3	397.87	445.43	2000.7	644.02	040.02 646.65
1008.1	424.64	4/1.83	3889.7	044.87	040.00
1040.2	451.61	498.17	3969.7	040.30 645.40	647.18
1009.	4/5.94	521.02	4009.7	040.40	647.00
11097.1	499.8	544.53	4189.7	040.10	640.00
1120.0	523.44	500.79	4289.7	040.47	048.32
1103.4	540.82	088.0/	4389.7	646.59	648.45
1200.7	509.91	609.91	4489.7	646.61	648.48
1209.7	579.70	600.50	4589.7	647.47	649.31
1201.9	575.4	600.15	4689.7	647.94	649.76
12/9.0	577.70	600.0	4/89.7	648.18	650.02
1209.0	500.40	610.02	4889.7	541.39	588.74
1299.0	500.40	612.01	4923.	514.4	569.42
1009.0	506.60	612.01	4945.3	498.55	555.98
1264.1	502.44	616.72	4967.6	484.33	545.1
1400.0	595.44	610.72	5016.6	458.44	521.63
1402.2	099.2	019.30	5065.5	436.47	500.66
1602.2	622.20	625.53	5148./	406.7	4/0./
1605.0	621.66	643.55	5232.	382.18	445.04
1790.7	620.5	649.7	5315.3	301.49	422.84
1880.7	644.30	653.00	5398.5	343.7	403.39
1009.7	649 77	656 12	5498.5	325.49	383.04
2000.7	650.06	657.14	5598.5	309.67	365.1
2100.7	652.05	657.25	5098.5	295./5	349.11
2280.7	652.05	657.20	5/ 98.5	283.37	334./3
2380.7	651.78	655.6	5000 E	212.25	321.7
2490.7	640.92	653.07	0000 C	202.17	309.82
2500.7	649.02	651.56	6100.5	252.98	298.9
2680.7	647.7	650.11	6000.5	244.55	288.84
2780.7	646.5	648.66	6298.5	230.11	279.52
2880.7	645 44	647.36	6400 E	229.07	2/0.85
2000.7	644 70	646.64	0498.5	222.80	202.70
2909.7	644.79	646.05	6598.5	216.6	255.18
3180.7	644.02	645.75	6700 F	210.73	248.06
0100.7	044.02	010.70	0/98.5	205.21	241.37

TABLE 44 Model (A4) > Transient Thermal (A5) > Solution (A6) > Substrate

TABLE 45							
Model (A	44) > Transient Therma	al (A5) > Solution (A6)	> Results				
Object Name	Main Filaments_2500s	Main Filaments_3500s	Main Filaments_4500s				
State		Solved					
	Sc	ope					
Scoping Method		Named Selection					
Named Selection		Main Filaments					
	Defin	nition					
Туре		Temperature					
By		Time					
Display Time	2500. s	3500. s	4500. s				
Calculate Time History		Yes					
Identifier							
	Res	sults					
Minimum	647.7 °C	643.43 °C	645.81 °C				
Maximum	658.22 °C	652.95 °C	654. °C				
Minimum Occurs On		Solid					
Maximum Occurs On		Solid					
	Minimum Val	ue Over Time					
Minimum		30.438 °C					
Maximum		701.17 °C					
	Maximum Va	lue Over Time					
Minimum		30.466 °C					
Maximum		728.98 °C					
	Inform	mation					
Time	2500. s 3500. s 4500. s						
Load Step		1					
Substep	48	58	68				
Iteration Number	387	437	486				

Time [s]	Minimum [°C]	Maximum [°C]	Time [s]	Minimum [°C]	Maximum [°C]
10.	30.438	30.466	2089.7	653.54	664.5
20.	43.457	43.545	2189.7	653.82	664.7
50.	108.75	109.49	2289.7	654.08	664.88
80.	171.32	173.28	2389.7	650.88	661.53
170.	279.94	287.61	2489.7	647.71	658.24
260.	346.01	360.16	2589.7	647.59	658.1
350.	387.77	407.55	2689.7	646.76	657.22
419.4	422.02	446.16	2789.7	645.22	655.52
481.82	437.01	463.21	2889.7	644.41	654.63
525.41	447.53	473.8	2989.7	644.04	654.13
551.67	459.11	485.4	3089.7	643.71	653.67
577.93	465.46	491.53	3189.7	643.61	653.45
621.61	484.02	510.53	3289.7	643.38	653.1
665.29	497.57	524.61	3389.7	643.24	652.94
729.17	518.28	545.89	3489.7	643.37	652.91
780.81	536.24	564.48	3589.7	643.93	653.3
825.9	552.98	581.69	3689.7	644.64	653.87
870.99	568.89	597.64	3789.7	645.48	654.6
904.77	580.14	608.71	3889.7	644.11	652.91
938.56	593.77	622.31	3989.7	645.67	654.48
975.73	608.93	637.37	4089.7	644.74	653.29
1008.1	622.21	650.54	4189.7	646.59	655.2
1040.2	636.67	664.92	4289.7	645.91	654.3
1069.	648.86	676.94	4389.7	645.69	653.93
1097.1	662.03	689.96	4489.7	645.56	653.74
1125.3	674.21	701.96	4589.7	647.97	656.25
1153.4	687.59	715.33	4689.7	647.55	655.67
1181.6	701.17	728.98	4789.7	647.47	655.47
1209.7	699.73	726.77	4889.7	515.11	593.96
1261.9	621.56	671.85	4923.	481.79	574.44
1279.3	617.3	664.06	4945.3	462.48	561.94
1289.3	616.66	660.6	4967.6	445.42	550.06
1299.3	616.2	657.29	5016.6	415.49	526.85
1309.3	616.22	654.63	5065.5	390.93	506.17
1326.	616.29	650.81	5148.7	358.93	476.77
1364.1	616.78	644.81	5232.	333.35	451.79
1402.2	617.48	641.67	5315.3	312.26	430.24
1502.2	622.33	642.41	5398.5	294.44	411.39
1602.2	632.31	649.98	5498.5	276.48	391.77
1695.9	640.97	656.65	5598.5	261.09	374.48
1789.7	645.51	659.07	5698.5	247.69	359.1
1889.7	651.94	663.29	5798.5	235.86	345.27
1989.7	654.52	665.71	5898.5	225.32	332.74

TABLE 46 Model (A4) > Transient Thermal (A5) > Solution (A6) > Main Filaments_2500s

Time [s]	Minimum [°C]	Maximum [°C]	Time [s]	Minimum [°C]	Maximum [°C
10.	30.438	30.466	2989.7	644.04	654.13
20.	43.457	43.545	3089.7	643.71	653.67
50.	108.75	109.49	3189.7	643.61	653.45
80.	171.32	173.28	3289.7	643.38	653.1
170.	279.94	287.61	3389.7	643.24	652.94
260.	346.01	360.16	3489.7	643.37	652.91
350.	387.77	407.55	3589.7	643.93	653.3
419.4	422.02	446.16	3689.7	644.64	653.87
481.82	437.01	463.21	3789.7	645.48	654.6
525.41	447.53	473.8	3889.7	644.11	652.91
551.67	459.11	485.4	3989.7	645.67	654.48
577.93	465.46	491.53	4089.7	644.74	653.29
621.61	484.02	510.53	4189.7	646.59	655.2
665.29	497.57	524.61	4289.7	645.91	654.3
729.17	518.28	545.89	4389.7	645.69	653.93
780.81	536.24	564.48	4489.7	645.56	653.74
825.9	552.98	581.69	4589.7	647.97	656.25
870.99	568.89	597.64	4689.7	647.55	655.67
904.77	580.14	608.71	4789.7	647.47	655.47
938.56	593.77	622.31	4889.7	515.11	593.96
975.73	608.93	637.37	4923.	481.79	574.44
1008.1	622.21	650.54	4945.3	462.48	561.94
1040.2	636.67	664.92	4967.6	445.42	550.06
1069.	648.86	676.94	5016.6	415.49	526.85
1097.1	662.03	689.96	5065.5	390.93	506.17
1125.3	674.21	701.96	5148.7	358.93	476.77
1153.4	687.59	715.33	5232.	333.35	451.79
1181.6	701.17	728.98	5315.3	312.26	430.24
1209.7	699.73	726.77	5398.5	294.44	411.39
1261.9	621.56	671.85	5498.5	276.48	391.77
1279.3	617.3	664.06	5598.5	261.09	374.48
1289.3	616.66	660.6	5698.5	247.69	359.1
1299.3	616.2	657.29	5798.5	235.86	345.27
1309.3	616.22	654.63	5898.5	225.32	332.74
1326.	616.29	650.81	5998.5	215.83	321.29
1364.1	616.78	644.81	6098.5	207.23	310.78
1402.2	617.48	641.67	6198.5	199.35	301.29
1502.2	622.33	642.41	6298.5	192.05	292.53
1602.2	632.31	649.98	6398.5	185.32	284.37
1695.9	640.97	656.65	6498.5	179.09	276.71
1789.7	645.51	659.07	6598.5	173.29	269.49
1889.7	651.94	663.29	6698.5	167.89	262.7
1989.7	654.52	665.71	6798.5	162.83	256.28
2089.7	653.54	664.5	6848.5	160.38	253.16
2189.7	653.82	664.7	6873.5	159.18	251.62
2289.7	654.08	664.88	6898.5	157.99	250.1
2389.7	650.88	661.53	6973.5	154.6	245.73
2489.7	647.71	658.24	7000.	153.42	244.21
2589.7	647.59	658.1			
2689.7	646.76	657.22			
2789.7	645.22	655.52			

TABLE 47 Model (A4) > Transient Thermal (A5) > Solution (A6) > Main Filaments_3500s

TABLE 49 Model (A4) > Transient Thermal (A5) > Solution (A6) > Probes

Object Name	TCC	TCF	TCB	H1	H2		
State			Solved				
		Definitio	n				
Туре			Temperatur	е			
Location Method	Geo	metry Selec	ction	Coordina	te System		
Geometry		1 Body					
Location				H1_plane	H2_plane		
X Coordinate				8.e-002 m	-8.e-002 m		
Y Coordinate				5.e-(03 m		
Z Coordinate				-8.e-	002 m		
	Options						
Display Time			End Time				
Spatial Resolution	L L	Jse Maximur	n				
		Result	s	_			
Temperature	187.55 °C	191.88 °C	192.09 °C	227.74 °C	197.8 °C		
	Maxir	num Value	Over Time				
Temperature	658.32 °C	687.22 °C	688.35 °C	655.28 °C	654.82 °C		
	Minin	num Value	Over Time				
Temperature			22. °C				
		Informati	ion				
Time	7000. s						
Load Step	1						
Substep			100				
Iteration Number			2689				

Time [s]	Minimum [°C]	Maximum [°C]	Time [s]	Minimum [°C]	Maximum [°C]
10.	30.438	30.466	2689.7	646.76	657.22
20.	43.457	43.545	2789.7	645.22	655.52
50.	108.75	109.49	2889.7	644.41	654.63
80.	171.32	173.28	2989.7	644.04	654.13
170.	279.94	287.61	3089.7	643.71	653.67
260.	346.01	360.16	3189.7	643.61	653.45
350.	387.77	407.55	3289.7	643.38	653.1
419.4	422.02	446.16	3389.7	643.24	652.94
481.82	437.01	463.21	3489.7	643.37	652.91
525.41	447.53	473.8	3589.7	643.93	653.3
551.67	459.11	485.4	3689.7	644.64	653.87
577.93	465.46	491.53	3789.7	645.48	654.6
621.61	484.02	510.53	3889.7	644.11	652.91
665.29	497.57	524.61	3989.7	645.67	654.48
729.17	518.28	545.89	4089.7	644.74	653.29
780.81	536.24	564.48	4189.7	646.59	655.2
825.9	552.98	581.69	4289.7	645.91	654.3
870.99	568.89	597.64	4389.7	645.69	653.93
904.77	580.14	608.71	4489.7	645.56	653.74
938.56	593.77	622.31	4589.7	647.97	656.25
975.73	608.93	637.37	4689.7	647.55	655.67
1008.1	622.21	650.54	4789.7	647.47	655.47
1040.2	636.67	664.92	4889.7	515.11	593.96
1069.	648.86	676.94	4923.	481.79	574.44
1097.1	662.03	689.96	4945.3	462.48	561.94
1125.3	674.21	701.96	4967.6	445.42	550.06
1153.4	687.59	715.33	5016.6	415.49	526.85
1181.6	701.17	728.98	5065.5	390.93	506.17
1209.7	699.73	726.77	5148.7	358.93	476.77
1261.9	621.56	671.85	5232.	333.35	451.79
1279.3	617.3	664.06	5315.3	312.26	430.24
1289.3	616.66	660.6	5398.5	294.44	411.39
1299.3	616.2	657.29	5498.5	276.48	391.77
1309.3	616.22	654.63	5598.5	261.09	374.48
1326.	616.29	650.81	5698.5	247.69	359.1
1364.1	616.78	644.81	5798.5	235.86	345.27
1402.2	617.48	641.67	5898.5	225.32	332.74
1502.2	622.33	642.41	5998.5	215.83	321.29
1602.2	632.31	649.98	6098.5	207.23	310.78
1695.9	640.97	656.65	6198.5	199.35	301.29
1789.7	645.51	659.07	6298.5	192.05	292.53
1889.7	651.94	663.29	6398.5	185.32	284.37
1989.7	654.52	665.71	6498.5	179.09	2/6./1
2089.7	653.54	664.5	6598.5	173.29	269.49
2189.7	653.82	664.7	6698.5	167.89	262.7
2289.7	654.08	664.88	6/98.5	162.83	256.28
2389.7	650.88	661.53	6848.5	160.38	253.16
2489.7	647.71	658.24	6873.5	159.18	251.62
2589.7	647.59	658.1	6898.5	157.99	250.1

TABLE 48 Model (A4) > Transient Thermal (A5) > Solution (A6) > Main Filaments 4500s

FIGURE 22 Model (A4) > Transient Thermal (A5) > Solution (A6) > H2

TABLE 50 hermal (A5) n (A6) > Probes Model (A4) > T

model (A4) > fransient friefman (A5) > Solution (A0) > Probes						
Object Name	М	V1	V2	M_2500s	M_3500s	
State	Solved					
Definition						
Туре	Temperature					
Location Method	Coordinate System					
Location	M_plane	V1_plane	V2_plane	Mp	lane	
X Coordinate	0. m	8.e-002 m	-8.e-002 m	0. m		
Y Coordinate	5.e-003 m					
Z Coordinate	0. m	8.e-002 m		0. m		
Options						
Display Time		End Time		2500. s	3500. s	
Results						
Temperature	214.25 °C	227.75 °C	197.92 °C	650.33 °C	643.58 °C	
Maximum Value Over Time						
Temperature	653.22 °C	654.75 °C	654.49 °C	653.22 °C		
Minimum Value Over Time						
Temperature	perature 22. °C					
Information						
Time	7000. s			2500. s	3500. s	
Load Step	1					
Substep	100			48	58	
Iteration Number	2689		387	437		

Material Data

Alumina	TABLE 52 Alumina > Constants Density 3950 kg m^-3 Thermal Conductive 22 W m^-1 C^-1	Quartz	TABLE 55 Constants Density 2203 kg m^3 Specific Heat 200 J kg^1 C^1
	Specific Heat 930 J kg^-1 C^-1		Thermal Conductivity 0.25 W m^-1 C^-1
Kanthal		Insulation	
	TABLE 53		Insulation > Constants
	Density 5600 kg m^-3 Specific Heat 420 J kg^-1 C^-1 Thermal Conductivity 30 W m^-1 C^-1		Density 360 kg m^.3 Thermal Conductivity 0.1 W m^.1 C^.1 Specific Heat 680 J kg^.1 C^.1
K-type TC	TABLE 54		
	K-type TC > Constants		
	Density 8730 kg m^-3 Specific Heat 448 J kg^-1 C^-1 Thermal Conductivity 19.2 W m^-1 C^-1		