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ABSTRACT

D*Dr COUPLING CONSTANT IN 2 + 1 FLAVOR LATTICE QCD

Can, Kadir Utku
M.S., Department of Physics

Supervisor : Prof. Dr. Altug Ozpineci
Co-Supervisor : Assoc. Prof. Dr. Giiray Erkol

September 2012, 42 pages

Developments in high-performance computing instruments and advancements in the numer-
ical algorithms combined with lattice gauge theory make it possible to simulate Quantum
Chromodynamics (QCD), the theory of strongly-interacting quarks and gluons, numerically
at nearly physical light-quark masses. In this work we present our results for the D* D cou-
pling constant as simulated on 32° x 64, unquenched 2 + 1-flavor lattices. We estimate the
coupling at the chiral limit as gp-p, = 16.23 + 1.71, which is in good agreement with its

experimental value g(;fgir =17.9 £ 0.3 + 1.9 as obtained by CLEO II Collaboration.

Keywords: Lattice QCD, Axial coupling, Axial current, D meson
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D*Dn ETKILESIM SABITININ ORGU KRD YONTEMI ILE BELIRLENMESI

Can, Kadir Utku

Yiiksek Lisans, Fizik Bolimii
Tez Yoneticisi : Prof. Dr. Altug Ozpineci

Ortak Tez Yoneticisi : Dog. Dr. Giiray Erkol
Eyliil 2012, 42 sayfa

Yiiksek bagarimli hesaplama tekniklerindeki gelismeler ile sayisal algoritmalar ve orgii ayar
teorisindeki ilerlemeler sayesinde, kuvvetli etkilesen kuark ve gluonlarin teorisi olan Kuan-
tum Renk Dinamigi (KRD) benzetisimlerinde neredeyse gercek kuark kiitlesini kullanmak
miimkiin olmustur. Bu ¢alismada deniz kuarklarinin etkisi katilmig olan 323 x 64, 2 + 1-

cesnili orgiiler kullanilarak D* Drr etkilesim sabiti hesab1 yapilmistir. Gergek kuark kiitlesinde

(exp) _

bulunan sonu¢ gp-pr = 16.23 + 1.71 olup, CLEO II deneyi tarafindan belirlenen g ., =

17.9 + 0.3 + 1.9 degeriyle uyumluluk gostermektedir.

Anahtar Kelimeler: Orgii KRD, Axial akim, D mezonu
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CHAPTER 1

INTRODUCTION

We can describe the three of the four known forces with the Standard Model (SM) of the
particle physics. This model constructs the theoretical foundations of the electromagnetic,
weak and strong interactions of elementary particles and enables us to study the Nature in
a systematic fashion. The SM is a gauge theory with the gauge group SU(3)xSU(2)xU(1)
where the SU(2)xU(1) group constitutes the electroweak sector of the SM whereas the SU(3)
is the gauge group of Quantum Chromo Dynamics (QCD) and governs the strong interactions.
The elementary particles are classified as the Fermions and the Bosons. Fermion sector holds
three families of quarks and leptons and their anti-particles with half-integer spins (e.g. 1/2,
3/2,...), and the Boson sector has force carrying particles, the Gauge Bosons, with integer
spins (e.g. 0, 1, ...). The quarks and gluons, apart from spin and charge quantum numbers
like leptons and bosons, also carry a color quantum number, which leads to the strong in-
teractions among them and the self-interactions of the gluons. One peculiarity of the strong
interactions, or QCD, is the difference in the behaviour of the strong coupling constant a;.
Given in Figure 1.1, the a, in the high energy limit decreases so that the quarks and gluons
nearly don’t interact among themselves as Q — oo. This behaviour is known as the asymp-
totic freedom and we are able to do perturbative calculations in the high-energy regime since
the a; is small enough. Although we have been able to observe the leptons and bosons, not
a single quark or gluon is observed yet. It is believed that the color-interaction potential be-
tween the quarks and gluons is responsible for this peculiar phenomena in such a way that the
quarks, anti-quarks and gluons are confined to the colorless objects: hadrons, a plentiful of
which have been observed. Hadrons are classified according to their quark content as baryons
and mesons where the baryons are formed by three (anti-)quarks and mesons consists of a

quark anti-quark pair. Investigating hadrons gives us an insight into their internal structure



(electric charge, spin distributions etc.), helps us to identify the non-perturbative QCD effects
on the experimental observables (i.e. CKM matrix elements [6]) and predict the parameters
related to their decays [7]. However, due to the non-linear running of the strong-coupling con-
stant, a;, perturbation theory breaks down at small momentum transfers since the coupling
constant becomes large (see Figure 1.1) and has a Landau Pole at the typical QCD scale,
Agcp ~ 200 MeV, where it diverges. In this low-energy regime (i.e., at energy scale 0’ <1

GeV?), where the hadrons live, non-perturbative methods are necessary.

0.5 April 2012
o (Q) v T decays (N3LO)
0.4 a DIS jets (NLO)
o Heavy Quarkonia (NLO)
o e'e jets & shapes (res. NNLO)
e 7 pole fit (N3LO)
B pp — jets (NLO)
03+
0.2
0.1}
=QCD 03(Mz)=0.1184 £0.0007
1 100

" Q[Gev]

Figure 1.1: Running of the strong coupling constant, ay, [3].

In order to probe the hadron structure and extract the information theoretically, non-perturbative
methods have been developed such as the QCD Sum Rules (QCDSR) [8] or the Chiral Pertur-
bation Theory (yPT). While each method has proven itself to be successful, it would be rather
naive to think that they are flawless. Considering the QCDSR for example, results may have
uncontrollable uncertainties due to several reasons: The condensates which describe the non-
perturbative nature of the QCD vacuum or in the case of Light Cone QCDSR errors that arise
from the distribution amplitudes can introduce some uncertainty. In addition, the continuum

part of the spectrum describing the excited states or the Borel stability region which indicates



the independence to the unphysical Borel-Mass parameter may be misidentified. Despite
these uncertainties QCDSR provide us very valuable information regarding the hadronic ob-
servables (see [9, 10] and references therein). yPT [11, 12] on the other hand, is an effective
field theory formulated as a perturbative expansion over m, and contains the coupling con-
stants as input parameters which have to be fitted to the experimental data or calculated from

other theoretical methods.

One other promising non-perturbative method is Lattice QCD (LQCD). It is an ab initio
method starting directly from the QCD Lagrangian which simulates the strong interactions
numerically on a discretized Euclidean space-time. LQCD method has proven itself over
years and has become even more reliable with technological and algorithmic advancements
in the last years. Some of its remarkable achievements are the precise spectroscopy mea-
surements [1] and the prediction for the behavior of the running coupling constant [4] (see
Figure 1.2) consistent with the experiments. Lattice community actively studies the hadronic
observables to gain a better perspective on the hadron structure and interactions, as well as to

provide valuable input to other methods [13].

These non-perturbative methods have been applied to light (u#, d, s) and heavy (¢, b) quark
sectors extensively but the charm sector still requires more attention from LQCD. Charm
physics plays a significant role in understanding the quark-gluon plasma, a new phase of the
QCD matter where quarks and gluons are believed to live as free particles. The suppression
of the charmonium state J/¢ is considered as a signal for the formation of this new phase.
It is possible that J/¢ can be absorbed by light mesons (i.e. 7, p) or nucleons (see ref. [14])
abundant in the later stages of the heavy ion collisions like the ones in RHIC or LHC’s Pb-Pb

collisions. Below are some possible absorption reactions that may occur.

n+J/y— D+D*, D+D*
po+JIW— D+D

N+J/y—> A.+D

We see that specific coupling constants at the hadronic vertices (e.g. gp+pr etc.) are needed
to give an accurate description of charm-hadron production and suppression in collisions per-

formed at RHIC.
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Figure 1.2: Remarkable Lattice QCD results: Hadron spectroscopy (up) and running coupling
constant (down), compare with Figure 1.1. Plots are from Ref. [1] and [4] respectively.

In this work we concentrate on one particular hadronic observable: The D* D coupling con-
stant, gp«p,. The reason we choose this coupling is primarily because there is enough phase
space for D* — D decay and it is possible to compare our result to experimental data ob-

tained from CLEO II experiment [15].

There are several results available in the literature estimated by both QCDSR and LQCD.

QCDSR calculations, however, underestimate the D* D coupling constant(e.g. gggg SR~
9+2or g%,%%cmm) = 11 + 2. See Ref. [16]) compared to its experimental value, g(Defl’;; =

17.9 £ 0.3 £ 1.9. An earlier LQCD result [17] on the other hand is in good agreement with

experiment, g([l)zgg = 18.8 +2.3*1}. This lattice result was obtained on 24> X 64 quenched

4



(sea-quark effects ignored) lattices. We estimate our results from simulations on 323 X 64 un-
quenched (with sea-quark effects), 2 + 1-flavor (i, d, s) lattices and with a different simulation

method than used in Ref. [17].

This thesis is organized as follows. In Chapter 2 we discuss the Lattice-QCD method by
demonstrating how to discretize the space-time and continuum action and sketch the typical
workflow. The method we use and the simulation details are given in Chapter 3. We present
our results and discuss the possible source of errors in Chapter 4. Conclusions are summarized

in Chapter 5.



CHAPTER 2

LATTICE QCD

Like any other renormalizable quantum field theory, QCD needs an ultraviolet regularization
if we want to extract physical information. Discretizing the space-time to a lattice introduces
an intrinsic momentum cut-off proportional to the inverse of the lattice spacing “a” and pro-
vides a regularization per se. In addition to regularization, we should also consider how to
quantize our theory. Euclidean path-integral formalism governs the quantization of the lattice
theory and is the main instrument to calculate the physical observables. Correlation func-

tions give access to the observables, namely the hadronic properties such as the energy of the

hadron or the matrix elements:

Jim (0200107 = > (010alh)(hIO |0y 2.1)
h

and in the path-integral formalism we can write,

n ~ 1
(02(H01(0)) = z f D[We M0, [W(%,1)] 01 [P(F, 0)] (2.2)

where O>(1), 0;(0) are the Euclidean operators, Ej, is the energy of the intermediate hadronic
state, Zr is the partition function, Zy = f D[WP]e S and S i is the Euclidean action. The
hadron operators 0, and O, create(annihilate) the hadronic states with the quantum numbers
that they carry, which in turn creates(annihilates) not only the ground state but also the excited
states of the hadron in question. The limit description in Eq. (2.1) ensures that, as the time

evolves only the ground state survives.

The choice of Euclidean space-time holds the key to solve the theory numerically. It is real-



ized by a Wick rotation to imaginary time and Eq. (2.2) shows two notable benefits of such
t — —it transformation: i) This rotation clearly reveals the resemblance between the sta-
tistical and quantum field theories, enabling the use of statistical methods such as Monte
Carlo integration, where the e % term is interpreted as the weight factor. ii) In contrast to
the Minkowski version the wildly oscillating exponent is now an exponential decay, e %,

changing the integral to a well-behaved function.

The path integral formalism is suitable to solve with Monte Carlo integration on a finite lattice,
however the underlying theory should also be discretized like the lattice itself. The following
sections cover the naive discretization of fermions, Wilson Gauge action and the improved

discretized actions used in this work.

2.1 Discrete Space-time and QCD

Throughout this section, we follow the Gattringer & Lang’s [18] notation.

2.1.1 Discrete Space-time

The first thing to do is to replace the continuum space-time with the discrete 4D lattice. Let’s

denote it by A:

A= {n:(nl, ny, n3, ng), lnip3=0,1,...,N-1,
2.3)
ng=0,1,...,Nyr — 1},

where N7 is the total number of the time steps and N is the total number of the spatial steps.
We impose the condition that the fermion fields are restricted to the lattice sites and allowed

to move step by step on straight lines only,

W(x) — a>'? y(an), #(x) — a>'* y(an), (2.4)

where n is the coordinate vector (i,n4) and “a” is the lattice spacing, which we drop for

simplicity.



Figure 2.1: A 2D slice of a periodic lattice with fermion fields and Link Variables. [5]

The gauge fields of the continuum theory are replaced by the so-called Link Variables U,
which are the connections between the lattice sites. Technically speaking, they are the ele-
ments of the SU(3), group with each matrix element corresponding to the probability density

of transition from one color component to another,

r b

T R/ O/ Vi
Us=¢ (U Uy Ut (2.5)

b \Uy Uk Uk

Link variables are related to the continuum fields by an exponent;

U,(n) = exp (iaA,(n)). (2.6)

Shrinking the infinite space-time to a finite hypercube raises the question about the nature



of the boundaries, whether the lattice should have periodic or anti-periodic boundary con-
ditions. For our purposes we choose periodic boundary conditions to conserve the discrete

translational symmetry.

1/1(0, n23 n3’ n4) = w(N9 n29 n3’ n4) U}l(N’ ”12, n3, n4) = U#(O, ”12, n3, n4)
2.7

Y(ni,na,n3,0) = Y(ny,na,n3, Nr)  Up(ny,na,n3, Nr) = Uy(ny, nz, n3,0)

Now we have discretized the main components, all we need to do is to reformulate our theory

accordingly.

2.1.2 Discrete QCD

The familiar continuum QCD action is as follows:

Ny
S0 A1= Y [ @ B0 Wald+ igh) + mP W+ 5 [ dTHELFT 28
=1

where w(f )(X)ges ;.7/(f )(X)qe are the fermion, anti-fermion spinors with Dirac, flavor and color
indices a, f and c, respectively. A, is the gauge field, g is the strong coupling constant and

F, is the field strength tensor,

Fuy = 0,A,(x) — 0,Au(x) +ig[A, Al 2.9

Taking the color components of the gauge fields into account,

8
A0 = ) AL, (2.10)
i=1
we can rewrite Eq. (2.9) as,

8
Fu(x) = > [0,A1x) = 0,AL,(0) = g fiAl AL T Q.11

i=1



and denoting,

Fi,(x) = 8,AL(x) — 8,Al(x) — g friA}AX (2.12)
with T; being the Gell-Mann matrices and fj; the structure constant of the SU(3) group, we

can rewrite the QCD action as,

Ny 3
NIANIEDY f d*x § D ()acl@+ igh(x) + m DD (e - %Z f d*xFl (O™ (x)
f=1 p)
(2.13)

where the repeated indices are summed over as usual but we have indicated explicitly that

there are eight observable color combinations for gluons.

Before we start discretizing QCD, there are some important issues to mention, since we
switched to the Euclidean metric. First, the change of Dirac index convention from y =
0,1,2,3 =(t,x,y,2)tou =1,2,3,4 = (x,,z,t) and secondly the use of chiral basis gamma
matrices,
M M M M
Yi="Wr, V2=, V3ET3s VA=Y

{yﬂ,yv} = 20,1
where the 7341 , 5 matrices are the usual Minkowski ones.

In order to simplify the discussion let’s consider the fermionic and gluonic parts of the action

separately.

2.1.3 Fermion Action

In addition to the aforementioned discretizations, we shall use the central-difference dis-

cretization for the partial derivative,

Yo+ p) -y -

7 (2.14)

6/4 v (n) =

where /1 is the unit vector in the y direction. We also replace the integral over all space by a

sum over all lattice points.

10



Starting from the Dirac equation form, the discretized action is,

4 AN oA
Srlwdl=a Y dmy| )y, LEHA VAR ) 2.15)

neA u=1 2a

However it is easy to see that this action is not gauge-invariant under SU(3) gauge transfor-

mations of the form,

Yn) = ' (n) = Q) Jn) = §(n) = GmQ' (n) (2.16)

where Q(n) is an SU(3) phase.

This is the same problem as the continuum case which in return had led us to a redefinition
of the partial derivative as a covariant derivative. Following the footsteps, we are going to
do the same trick, but with different terminology. Defining the gauge transformation of link

variables as,

Uu(n) = Uy(n) = QU mQ (n + ), (2.17)

we can use them like the comparator [19] of the continuum theory and construct an SU(3)

gauge-invariant fermion action.

U,y + ) — Uj(n — fy(n - f2)
2a

4
SFly, ¥, Ul = d* )" dm)| > v,

neA u=1

+mym)|  (2.18)

The discretization scheme we have covered is called the naive discretization of fermions. Of
course one should show that in the continuum limit Eq. (2.18) reduces to the continuum

action. When we use the Taylor expansions,

U,(n) = 1 + iaA,(n) + O(a®) (2.19a)
Ulm=-9) =1-iaA,(m - 1) + O@) (2.19b)
A (n - i) = A,(m) + O(a) (2.19¢)

y(m+a)=y¢(m)+O(a) (2.19d)

11



we recover the continuum action up to O(a),

4

4
Sply, Ul =a* > " dm) (yudy + m)ym) +ia* >~ " gm)y,Au(my(m) +O(a). (2.20)
=1

neA u=1 neA p

Note that the sum over all lattice points introduces a term proportional to 1/a*, thus the first

two terms are of the order of zero with respect to a.

2.14 Gauge Action

The gauge action discretization is rather straightforward and follows from the fact that we
need a locally gauge-invariant object. The only component we have to use is the link variables

shown in Figure 2.2.

n+v Up(n+#) n+ji+ i

Uy(n) Q Uu(n+ 1)
l - l l . )|
T

n— ﬂT n n T T n+ji

U_,(n) =U,(n—p)f Uy(n) n Uyu(n) n+ ji

Figure 2.2: Forward and backward link variables (left) and 1 X 1 Plaquette Uy, constructed
from four link variables (right).

Following the geometrical origin of the F,;, we construct the most basic gauge-invariant object

with them, the so-called Plaquette, shown in Figure 2.2.

U(n) = Uu(m)Uy(n + DU (n + MU (n) (2:21)

Using the plaquette definition we can write the Wilson gauge action as,

SGlU] = g 2> Re{Tr(1 - U}, (2.22)

neA pu<v
where 3 is the lattice coupling and it is inversely proportional to the strong coupling, 8 = 6/g”.

We can show that in the ¢ — 0 limit, this action approximates the continuum one up to O(a?).
Using Eqgs. (2.19a), (2.19b) and the Baker-Campbell-Hausdorff formula for the product of

exponentials of matrices:

12



exp(A)exp(B) = exp|A + B+ %[A, Bl+... ), (2.23)

we expand the plaquette,

U,y = expliaA,(n) + iaA(n + 1) - é[Au(n),Ay(n + ) (2.24)
— iaA,(n + ) — iaA,(n) - %[A/J(n +9), A, (n)]) (2.25)
+ a—;[AV(n + ), Au(n + ] + %Z[A,u(n),Av(n)]) (2.26)
+ g[A,u(n),Aﬂ(n +9)] + a—;[Av(n + ), Aym)]) + O@)) (2.27)

and Taylor expanding the resulting fields A,(n+/1) = A, (n)+ad, A, + O(a?), further simplifies

the plaquette expression,

Uy = exp(ia®(0,A,(n) — 8,4, + i[A,(n), Ay (m)]) + O@@’)) (2.28)

= exp(ia’ Fy,(n) + O(a®)), (2.29)

and we see that action reduces to,

4
SelU] = § D2 Re{Trl1 = Up(m)l} = %2 > Tr|Fum?]+ 0@, (230)

neA pu<v neA u<v

This discrete formulation of QCD was first done by Kenneth G. Wilson in his 1974 paper
[20]. His formulation indeed showed that the physical information can be extracted from
first-principles calculations. However, in the contrary it led to other discretization-related
problems. We have mentioned the discretization errors in sections 2.1.3 and 2.1.4, when
we said that discrete actions approximate the continuum ones up to order O(a) and O(a?)
respectively. Even though one thinks that when we take the continuum limit @ — 0, these
errors would go to zero; practically, simulating an a = 0 lattice is impossible for numerical

calculations and these errors will always be counted as systematical errors. Thus, corrections
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are necessary to improve the discretization errors and to better approximate the continuum
actions. One should keep in mind of course that these correction terms should vanish in
the continuum limit. Iwasaki gauge action [21], Liischer-Weisz gauge action [22], the non-
perturbatively O(a)-improved Wilson fermion action, or also known as the clover action [23]

are some improved actions.

Apart from discretization errors there is also another important problem with the naive dis-
cretization which is the Fermion Doubling. We will deal with this problem in the following
section in the context of our choice of improved fermion action and we will see that we adapt
our solution in the price of explicitly breaking the chiral symmetry. There are other solutions
that take chiral symmetry into account such as the overlap fermions [24] and related domain-
wall fermions [25], staggered fermions [26] and twisted-mass fermions [27] which are out of

the scope of this thesis.

2.1.5 Fermion Doubling and Wilson Term

Fermion Doubling arises in the naive discretization when we consider the quark propaga-
tor, which is necessary to calculate the correlation functions. To explicitly see the doubling

problem let’s identify the Dirac term from Eq. (2.18) as below and invert it.

4 T

U,(n)0,40.m — U, (n)d0,_x

D(njm) = Zy# w(1) ”*“’mza p e + M Spm. (2.31)
u=1

Here, we have dropped the flavor, Dirac and color indices and let’s consider a trivial gauge

configuration U, = 1 for simplicity. Using,

Spm = — Z ¢ iaku(n—m) (2.32)
kﬂ

where |A| = N3Ny is the total number of lattice sites, we can Fourier transform the Dirac

operator,

—iak,(n+g-m) _ e—iak,,(n—,&—m)

4
~ 1 e —iak,(n-m)
D(njm) = I Z Z Vi - + m e~k (2.33)

n,meA u=1
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by factoring out e~ ®™~™) and using Eq. (2.32), we get,

3 i
D(nlm) = 6, [5 Z sin(kyayy, +mi |, (2.34)

u=1

where we have also used the Euler’s formula for the sine function and dropped the unit vector
|2l = 1. Defining the term in parenthesis as D(k) and multiplying the Eq. (2.34) with D(k)™!

from right we find the relation,

D(alm)D(k)™" = 6m (2.35)

which tells us to compute the inverse of the D(k),

ml — ia”! 2 sin(kya)yy,

D)™ = 2.36
) m? + a2y, sin*(k,a) (2.36)
and inverse Fourier transform to get the quark propagator D(n|m)~!,
1 .
Dnlm)™' = — ) D7 (k) iakin=m (2.37)
n 2

The fermion-doubling problem is evident when we analyze Eq. (2.36). To simplify the discus-
sion further, lets consider massless fermions and concentrate on the denominator term which

has a pole for k = (0, 0, 0, 0) corresponding to physical fermions.

—ia~! 2 Sin(kua)y,
a2y, sin*(ka)

D) = (2.38)

However, due to the periodicity of the sine function it is easy to see that k =(x/a, 0,0, 0),
©O,n/a,0,0), ..., (w/a,n/a,n/a,n/a), values all give rise to in total 24 _ 1 unphysical

fermions, the so-called doublers.

The solution to this problem suggested by Wilson (1975) is to add a term to the fermion action

such that the Fourier transformed Dirac operator becomes,
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. 4 4
~ i 1
Dk) =ml + - sin(k,ayy, + 1— 1 —costk,a)). (2.39)
- ; wa)y + 1~ ;( 4@)

The relevant term turns out to be the 4D lattice Laplace operator,

4 il
_g |j -4 Z Uu(n)énﬂi,m - 26n,m + Uy(”)5n—ﬁ,m (2.40)

242
u=l1

where the constant a ensures that the Wilson term vanishes as a — 0. We can write the

corrected Dirac operator as,

M-

D(njm) = (m + 3)6,1,," - zl—a (1 + %) U0 + (1 = %) Usonpom| — (2.41)

u=l1

and the doubler-free Wilson fermion action becomes,

SHW.0, Ul =d* Y HmDimpym). (242)

n,meA

As mentioned before, the 4/a factor introduced by the Wilson term explicitly breaks the chiral

symmetry which in turn forces us to perform chiral extrapolations.

For future discussions we will do a factorization of the Dirac term and introduce the hopping

parameter k, which is an important lattice parameter:

1 4
C=m+ -

Dinm) = C( = kH(um), - & = 50— a

A (2.43)
Henm) = 3" [(1+ Y) Uansm + (1 = 90) U000
p=1

2.1.6 Improved Actions

One should control the systematical errors due to discretization in order to obtain more reli-
able results. This is best done by improving the actions to have smaller discretization errors.
We showed in subsequent sections that naive fermion and gauge actions have O(a) and O(a?)
discretization errors respectively. It is common sense to use actions that have same discretiza-

tion errors. We now briefly discuss the improved actions used in this work.
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2.1.6.1 Iwasaki Gauge Action

Since we do not generate lattices but instead use the ones generated by PACS-CS collabora-
tion, we are not directly involved in the choice of gauge action; so we refer to the related paper
for details [1] and references therein. Here we briefly discuss the Iwasaki action. PACS-CS
use the plaquette-only Wilson gauge action by adding a rectangular loop term [28] like shown

in Figure 2.3. The action is given by,

Sg = /é {co Wl Y W,}jz(x)} (2.44)
X U<V X, U<V
where the coefficient of the rectangular loop ij (x), c1 = —0.331, is fixed by an approximate

renormalization group analysis [21]. The normalization condition, ¢y + 8¢; = 1, can be
obtained following the procedure in Section 2.1.4, where the coefficient of the c¢; term is fixed
so that the Iwasaki action reduces to the continuum action in the @ — 0 limit. Using this

condition, the coefficient of the plaquette WJVXl(x), is found to be ¢co = 1 — 8¢y = 3.648.

W (z) Whe(z)

uv uv

Figure 2.3: Plaquette and rectangular loop contributions to Iwasaki action

2.1.6.2 Clover Fermion Action

For the sake of consistency with PACS-CS lattices, we choose the clover action to calculate
our valence quark propagators. Clover action is a non-perurbatively O(a) improved version
of the Wilson action in Eq. (2.42) according to the Symanzik improvement program [22]. The

action is written as [23],

1
SE=SE +rgeswa’ Y ) H0) 30 Fiun () (2.45)

neA pu<v
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where Sheikholeslami-Wohlert term is found to be csw = 1.715 [29], 0y = %[yﬂ,yv], Kg 18
the hopping parameter of the quark and F,,(n) is discretized as the difference of the sum of

the plaquettes like shown in Figure 2.4,

1
Fu(n) = == (Quv(n) = O, () (2.46)
Q,uv(n) = Up,v(n) + Uv,—,u(n) + U—,u,—v(n) + U—V,/J(n) (2.47)

Figure 2.4: Sum of plaquettes in the u-v plane. Compare with Eq. (2.21) and Figure 2.2.

2.2 Workflow

The idea is to compute the correlation functions and when doing so we need quark propagators
calculated on each individual gauge configuration or lattice. To make things more clear lets

consider such a two-point correlation function,
5 ! ~561U]
(OM(m)Opi(m)) = = | DWUle et detiD,] det[Dy] detlDy]
x Tr[L Dy (nm)T D} (min)] (2.48)

Z= f D[U)e 5Wdet[ D, ] det[D,] det[D;],

where Oy(n) and Oy (m) are a generic meson’s annihilation, creation operators defined as
Ou(n) = ¢1(M)qr(n) and Oy (m) = G>(m)['qy (m), respectively. Determinants det[D,,], det[D,]

and det[D;] are obtained after integrating out the fermion action and the trace term comes

18



form the quark field contractions according to the Wick’s Theorem. The I' is a combination

of y-matrices specific to the meson M.

There are two independent steps in calculating such correlation functions. First one is the
Monte Carlo generation of the lattice according to the “e~561Y1 det[D,] det[D,] det[D,]” term
which acts like the Boltzman factor and includes the sea-quark effects via the fermion deter-
minants. Lattice generation is out of the scope of this work and we refer the interested reader
to the Gattringer and Lang’s book [18], which has a nice introductory chapter on generating
gauge configurations. Further techniques related to the configurations used in this work can

be found at the PACS-CS paper [1].

The second step is the computation of the quark propagators DIZI (n|m), on each gauge config-
uration for each flavor f and contract them to find the value of the correlation function. When
this procedure is repeated sufficiently many times one can approximate the integral according

to the importance sampling,

1Y
©0) = lim N;()[Un] (2.49)

where O[U,] stands for the value of the function on each gauge configuration.

Ideally, one should calculate such propagators from each site on the lattice for each quark
flavor that forms the hadron, which is extremely time and resource consuming considering
the inversion of the Dirac operator matrix and the high statistical needs. As a workaround one

chooses a source point and computes the propagator from that point to all other lattice sites:

D™ (nlmg) = Z D‘l(n|m>§as (m)o (2.50)

a,a
A typical choice for the source is a Dirac delta function which, in turn called as a point source.

S(m)«; = 0(m — mO)éaaodaao (2.51)

where the @ and a are the Dirac and color indices. However, if one wants to improve the
ground-state dominance (i.e. ground-state saturation after fewer time steps), then the smeared

sources are favored:
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Sm)= " 6(m - mp)e”™" (2.52)

v = (Uj(n, n)é(m + J,m) + UjT(n — J,n)é(m - J, nt)) (2.53)

i
3
=1

~

where N is the number of smearing steps applied to the Dirac delta function and o is a con-
stant, dimensionless smearing parameter. The set of values for N and o are chosen so that the
resulting hadron’s root mean square radius is around 1 fm. This type of smearing is known
as gauge-invariant-gaussian smearing or shortly, shell smearing. As a special case, choosing
o = 0 and summing over all lattice sites leads to wall smearing, which improves ground state

dominance but suffers from large statistical errors.
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CHAPTER 3

METHOD

3.1 Theory

In order to extract the vector-pseudoscalar-pion coupling constant gyp,, we should calculate
the (P(p")IA*(¢)|V(p, 1)) transition matrix element. This matrix element can be parameterized

with three form factors [17]:

A
(PR @IV (p. D) = 2vao<q2)€q—fq“

A
+ (mp + my)Fi()[e¥ - %qﬂ] (3.1)

pl 2 _ 2

€'.q ,omy —m

+ Fa(g)———I[p' + p* - ———4"],
mp + my q

where Fo(q?), Fi(g%) and F»(g*) are the form factors, e! is the polarization of the vector

meson and the transferred momentum is given by, ¢ = (p — p’}*.

PCAC relation [30, 31] and meson-dominance model [32], implies that the divergence of the

axial-vector current g, A* is dominated by a soft pion:

e'p.q ,

(P(POIF*AH(@IV(p, D) = gvpr > Sty + (3.2)

2
my —q

Comparing Eq. (3.1) and Eq. (3.2) it is straightforward to identify the coupling in the zero

momentum transfer as

2my Fo(0)
8vPn = — >

33
7 (3.3)
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where f; is the pion decay constant.

Further investigation of Eq.(3.1) reveals that the first term, which contains Fy form factor, has
a pole at g = 0 due to 1/¢> factor. So, an indirect approach is necessary to extract F(0).

A
Regrouping the terms containing Eq—fq" factor, we get,

(P(PHIAH @IV (p, D) = (mp + my)F1(g>)e™
A
+ (" + PP ——L—
mp

pa (3.4)

A
" EC]_;]qy [zvaO(qz) — (mp +my)F1(¢) = (my — WLP)FZ(qz)] .

Note the the square-bracketed term should be zero in the ¢g> = 0 limit to regulate the last term.

Exploiting this requisite we factorize the F O(qz) form factor in terms of F'; (qz) and F' 2(q2),

2myFo(q°) = (mp + my)F1(q°) + (my — mp)Fa(q") (3.5)
leading Eq.(3.3) to
gvpr = i [(mp + my)F1(0) + (my — mp)F>(0)] . (3.6)
Defining,
Gi() = %Fl @ . Gag) = %Fz(qz) (3.7)

and rearranging the Eq. (3.6) reveals the dominant contribution of G1(0) to coupling,

(3.8)

GH(0
v =Gl<0>(1 » & ))

G1(0)

Having reduced the problem to the determination of those two form factors we note that it
is possible to calculate G{(0) directly but G,(0)/G(0) vanishes at g¢* = 0 due to G2’s g

dependence, so its value should be extrapolated to g* = 0.
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3.2 Correlation Functions and Ratios

The matrix elements, hence the form factors, can be isolated by forming the appropriate ratios

of the three- and two-point correlations functions having the form,

CO 1oty ) = Y €T (P (IA(VE(0) 3.9)
EAY

=Y (Poro) c10

C(z)“(ty ) = Z ﬁ'?<Vﬁ(y)V5(0)> (3.11)

where P = ¢'ysq and V = gy, q are pseudoscalar and vector-meson interpolating fields , b
and c are generic smearing labels and 7, and ¢, are the current insertion’s and sink operator’s

time slices, respectively.

To extract the ¢g> = 0 matrix element and relate it to the G1(0), we should study the following

ratio (see Appendix A for details),

3)S
;" ONZyVZp

C(Z)SS(Z‘)C(ZI)JWW(@ — )

Ri(t) = Vv (3.12)
S and W denote that the meson operators are shell- and wall-smeared and \/‘_/ is to cover
for the volume factor that arises due to different smearing choices. Figure 3.1 illustrates the

Feynman diagram of the Eq. (3.12).

The normalization factors Zy and Zp are obtained from exponential fits to the two-point cor-

relators,

—Ept e—Evl

) N PubDv
CV“VV(t’ﬁ) - ZV 2EV

e ), (3.13)

C(t, ) = Zp*

2Ep’ (O =

where Ep and Ey are ground state energies of the mesons.

As stated before the G,(0)/G1(0) term should be obtained via extrapolation of momentum
injected matrix elements which can be accessed after some cumbersome combination of the

ratios,
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Vo (t) P (ty)

Vs(ti)/*_\VS@f)
\)/ PV (t; PY(ty)

Figure 3.1: Feynman diagram of R;(¢). Curved double lines indicate the heavy quark, grey
dots are the shell smeared sources and vertical double lines are the wall smeared sinks.

Ci " (6. DNZy NZp
Ral) = s — o, TV, (3.14)
Cy,y, (@, DCpp -1
(3)SW
t,PNZy VZp
R3(1) = Vv, (3.15)
(2)SS(t —>)C(2)WW _ 0
(3)SW
. DNTNZr
Ri(t) = —2 1 T, T, (3.16)
Cyy, (@, PCrp 1ty —1)
Form factors F; and F, are related to the ratios as such,
S R (1) Ry (1)
Fi(G=0,1=——"—, Fl( = —(qx,qy,qa ) — (3.17)
my + mp my + mp
Fy  (my+mp)? my(Ey —mp) R3(t) _ mydq1 Ry(t)

Fl(’)‘W[( “ BB ) TR o Ty R | O

One expects the F,/F ratio to be insensitive to the changes of transferred momentum around
the pion pole since both form factors have the same pole and are far away from the next pole,

which is the axial vector meson a;.
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3.3 Axial-Vector Current Renormalization

The axial-vector current has to be renormalized in order to match the lattice results to their
continuum counterparts. We follow the one-loop perturbative method in the modified minimal
subtraction (MS) scheme described in the App.C of the CP-PACS paper [33]. The renormal-

ized current is
R my
AM = upZa (1 + bA—)Aﬂ, (319)
uo

where A, = gy, ¥sq is the bare local current and m, is the valence quark mass determined

from the relation,

qul(i— : ) (3.20)

2 Kq  Kcritical
where K.yirical 18 the value producing zero quark mass.

The constants Z4 and b4 depend on the running coupling constant,

1 _ 2
Za =1-0.0215g7 (1) (3.21)
ba=1+ 0.0378g/2vTS(/1) (3.22)
and ug is
up = P* = (1 - —0‘8;12), (3.23)

where P is the expectation value of the plaquette and £ is the lattice coupling.

3.4 Simulation Details

We carry out our simulations on 323 x 64, B =19, 2 + 1 flavor PACS-CS Iattices [1]

generated with the non-perturbatively O(a)-improved Wilson quark action (sea quarks) and

25



Iwasaki gauge action. The lattice spacing is @ = 0.0907(13)fm (a~! = 2.176(31)GeV). We
compute the u,d and ¢ quark propagators with the same action as the sea quarks . We use
kua = 0.13700, 0.13727, 0.13754, 0.13770 and «, = 0.1224 for light and heavy-quark propa-
gators respectively. The «,4 values are chosen to be consistent with the sea quark «** of the
configurations and we have fixed the value of «. so as to produce the charmonium mass. The

hopping parameter of the strange quark present in the sea is fixed to «;° = 0.1364.

We create a vector meson D* on site n = (0, 0) using shell-smeared operator to improve the
ground-state dominance. As the time evolves D* interacts with an axial-vector current at an
arbitrary time between the r = [0, 12] interval. Then the meson is annihilated after 12 time
steps, on the sink point n = (6, 0), as a pseudo-scalar D-meson. To overcome the difficulties
of the sequential-source method [34] (i.e. either fixing the insertion current or the source/sink
momentum) we implement the wall-smearing method (see Appendix B), in which we ap-
plied wall smearing to the D-meson annihilation operator. However, one should note that
the wall-sink smearing simplifies the computation in exchange of higher statistical fluctua-
tions, making it hard to identify the fit region of wall-wall two point correlation functions.
Also one caveat is that, the wall-smearing method, unlike the shell smearing, is not gauge-
invariant; hence a specific gauge must be chosen, which leads to increased computation time

or resources. In our case, we fix the gauge configurations to Coulomb gauge.

The meson interpolating-field operators are,

D(x) = d(x)yuc(x), D(x) = d(x)ysc(x) (3.24)

and we shell-(wall-) smear the D*(D) operators according to the Egs. (3.12),(3.14),(3.15),(3.16)
smearing labels. Investigating the three-point interaction shown in Figure 3.1, we see that the
interacting propagator line is broken and hence in addition to the forward u, d and ¢ propa-
gators calculated from n = (0,0), one more backward u, d propagator is necessary. In order
to calculate the backward propagator one should choose a source and we fix its source as n =
(6, 12) as imposed by the sink point. Individual forward ud, forward ¢ and backward ud propa-
gators are computed on 45, 50, 90 and 70 configurations for «,4 = 0.13700, 0.13727, 0.13754
and 0.13770 respectively.

Propagator computation is followed by the contraction procedure to obtain the two- and three-
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point correlation functions. Two-point correlators are calculated with respect to the three-

point functions’ smearing labels.
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CHAPTER 4

RESULTS

Appropriate ratios of the correlation functions tend to stay constant as time evolves and ground
state dominates. This constant behaviour is identified as plateau regions in the plots drawn
with respect to time (see e.g. Figure 4.1). Effective mass plots in Figure 4.1 shows identified

regions for two point correlation functions and Table 4.1 summarises our fits in that regions.

Table 4.1: Vector and pseudo scalar meson’s normalization constants and ground-state en-
ergies. 45, 50, 90 and 70 data sets are used to fit Zy and Zp whereas the a mp- and a mp
are extracted from 36, 50, 50 and 70 data sets on «,; = 0.13700, 0.13727, 0.13754, 0.13770

lattices respectively.

Kud ZV ZP a mp- amp
0.13700 2.051x 1072 4.013x 10 1.011(7) 0.943(6)
0.13727 1.965x 10712 4341 x10% 0.979(7) 0.922(4)
0.13754 1.643x 10712 5.153x10% 0.972(7) 0.901(5)
0.13770 1.426x 10712 4.466 x 10> 0.938(9) 0.888(8)

The normalization factors Zy and Zp are obtained from shell-shell and wall-wall two-point

correlators respectively, while the ground-state energies are fitted to shell-point correlators.

We find that the G,/G contributes to the coupling ~ 1%. Our values are listed in Table 4.2

and fit regions are given in Figure 4.2 and Figure 4.3.

Table 4.2: Dominant and minor contributions to the coupling gppy.

Kud Gi(¢*=0) G»/G; gD'Dr
0.13700 14.15+1.58 0.09(2) 1545+1.78
0.13727 13.63+1.57 0.12(4) 1524 +1.81
0.13754 1276 =143 0.15(7) 15.54+2.08
0.13770 1546 +2.17 0.07(6) 16.44 +2.41
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4.1 Chiral Extrapolations

As we stated before, technical drawbacks force us to carry our simulations with unphysical
quark masses on lattices. In order to estimate the gp-p, at the physical point we extrapolate

our results to the chiral point (i.e. m; — 0).

e Linear fit: We fit our data to the function,

g pr = a1 + ax(a my)? .1

from which it is possible to fix the values a; ». We can then extract the coupling constant

by choosing the physical m, value.

e Quadratic fit: We also fit to a quadratic function of the form,

gD pr = b1 + ba(a my)* + by(a my)* 4.2)

The linear and quadratic fit results are given in Table 4.3 and illustrated in Figure 4.4.

Table 4.3: Extrapolated values of gp-p,. Errors are estimated from 45 samples.

x-fit linear quadratic exp.
gppr 1623171 17.09+3.23 179122

4.2 Discussion of Errors

There may be several sources of systematical errors affecting our results. We can categorize

these sources as:

o Discretization errors: The aptness of the Clover action may be questioned for heavy
quarks since it has discretization errors O(a mg) but it is rather vacillating to consider
the charm as a heavy quark like the bottom. In order to predict such systematical errors,
simulations should be repeated with lattices having different lattice spacings, a, and the
consistency between the final results should be checked. However, in our current work
we simulated our results with only one lattice spacing (a = 0.0907 fm) and thus we are

unable to study the effect of the discretization.
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¢ Finite-volume effects: These lattice artefacts are caused since we model the infinite
space-time as a finite-size hypercube. In principle, finite volume effects are negligible
as long as m,L > 4. Considering we have m,L in the range 4.5 < m,L < 10 we assume
minimal effect. However it is dependent on the object that is created on the lattice and
one should check the effects of the finite volume by re-simulating the calculations on
different sized lattices. Since we have 323 x 64 lattices only we can not estimate the
finite size effects but the analysis in Ref. [17] suggests 6% of error for lattices smaller
than ours. We may expect to have less errors than they found but we won’t be reflecting

this error to our final results.

o Renormalization: We estimate the axial-vector current renormalization constant in a
perturbative way as mentioned in Section 3.3. Comparing to the approach for vector-
current renormalization [33] and estimated error of O(10)% in Ref. [35] we can expect

to have approximately same errors.

o Chiral extrapolation: We ignore the fit errors on parameters a; ; and by, 3 since we
expect negligible errors compared to the overall statistical error. Regarding the smaller

errors, we choose to consider the linear extrapolation value as our result.

Apart from systematical errors there are also statistical errors related to the Monte Carlo
sampling of the observables or fitting to data. In order to estimate these errors we employ the

jackknife resampling method.
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CHAPTER 5

CONCLUSION

In our work we have estimated the D* D coupling constant by employing the ab initio Lattice

QCD method.

Throughout the thesis we have discussed the discretization of the continuum QCD and in-
troduced the lattice theory relevant to this work in a naive and rather compact fashion. Es-
tablishing the theoretical foundations we have outlined the typical workflow and difficulties
of the numerical calculations. We have also studied the parameterization of the transition
matrix element, (P(p")|A#|V(p, 1)), in order to extract the coupling from the matrix element
calculated by the proper combinations of the correlation functions computed on lattice. We
performed our simulations on 323 x 64 sized lattices with lattice spacing a = 0.0907(13) fm
(@' =2.176(31)GeV) and 2 + 1 flavor dynamical quarks. The coupling is determined on four
different gauge configurations with Kfifa) = (0.13700, 0.13727, 0.13754, 0.13770) which cor-
respond to my, ~ (700, 570, 410, 300) MeV and with physical strange quark, £*? = 0.1364.

We estimate the pionic coupling of the ground state D-mesons, gp-px, as,

gppr=1623171 g% =17.9£03+19

which is in good agreement with the experiment. Our value is larger compared to the several

QCD Sum Rules results and consistent with the previous lattice estimation.

More precise measurements may be desirable but regarding the > 10% experimental error,
next logical step would be to estimate the systematical errors in a more subtle manner by re-
performing the simulations on different sized lattices or by computing the quark propagators
with improved Fermilab action [36], which is an improved version of the Clover action. Con-

sidering the resources we have however, it is not possible to estimate the systematical errors
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in the near future; instead generalizing this study to extract the axial-vector form factors and

studying the vector form factors of the D-mesons would be more feasible.
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APPENDIX A

Ratio

Let’s consider the ratio given in Eq. (3.12),

cYNONZy NZ
R = i (VVZy NZp

Cyh (DCEN = 1)

(A.1)

The operators in Euclidean correlators are written in Heisenberg picture and to investigate this
ratio lets write it again in Schrddinger picture. From simple quantum mechanics we know that

operators in Heisenberg and Schrédinger picture are related as,

3 _ [ Ht A ,~Hi
<0(t)>H =(e"Oe )S (A.2)
remembering that the imaginary factor i is dropped due to Wick rotation, t — —it.
Converting the correlation functions to Schrodinger picture we get,
Ci(tytst) = ) (0l P eP) (Ple™ A, e V) (VI 0, e MMV,) | (A3)
PV, -
_ —Ep(t,—t) —Evy,t D A (
poS ey € e (O1PIP) (PIA,|V,,) (V,IV,/0) (A4)
Coplty, ) = D (0™ Pe ™ |P) (Pl Pe™j0)| (A.5)
P X
o P2
= (o) (A.6)
a<<t<t
(2) _ Ht ¢ _—Ht Ht, ¥y —Ht,
Cyy, (s t) = ; (0l V,y &1V, ) (V,le™'s ¥, e71410) o (A7)
u
2
_ —Ey, t X/
a<<t< Iy ¢ <0|V#|VM>| (A-8)
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~ 2 ~ 2
where we can identify the Zp = [(01PIP)|" and Zy = [(01V,V,,)|" from Eq. (3.13)

By putting Zp, Zy and Eqs. (A.4), (A.6), (A.8) into the Eq. (A.1) we see that it reduces to the
coupling,

R = (PIA,IV,) = gvea, (A.9)
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APPENDIX B

Wall-Smearing Method

The three point correlation function can be written in terms of the quark propagators S (x, x”)

after the contractions specified by Wick’s Theorem,

(CP Pt 11/, p)) = =i ) eTPRNN (Tl S0, x1) Yyuvs Sulxr, %2) ¥ S o2, O)D)

X2,X1

(B.1)

While point-to-all propagators S ,(0, x;) and S .(x,, 0) can be easily obtained, the computation
of all-to-all propagator S,(x;,x2) is a formidable task. One common method is to use a
sequential source composed of §,(0, x;) and S.(x,,0) for the Dirac matrix and invert it in
order to compute S ,(x1, x2) [34]. However, this method requires to fix either the inserted

current or the sink momentum.

An approach that does not require to fix any of the above is the wall-smearing method, where
a summation over the spatial sites at the sink time point, X,, is made before the inversion. This

corresponds to having a wall source or sink:

D*A,D . ia ,
(Co™ (0,110, 0)) = =i 3" ™ (Trly, $,0,%1) Vs Sulx1, %) ¥5 S, 00D (o)

X2.X5.X
where the propagator (instead of the hadron state) is projected on to definite momentum (S
and W are smearing labels for shell and wall). The wall method has the advantage that one can
first compute the shell and wall propagators and then contract these to obtain the three-point

correlator, avoiding any sequential inversions.
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Figure 4.1: Effective mass plots. Black horizontal lines indicate the fit regions.
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