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ABSTRACT 

ORBIT TRANSFER OPTIMIZATION OF A SPACECRAFT WITH IMPULSIVE THRUST USING  
GENETIC ALGORITHM 

 
 

Yılmaz, Ahmet 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M.Kemal Özgören 

 

 

September 2012, 127 pages 

 

 

 

This thesis addresses the orbit transfer optimization problem of a spacecraft. The optimal 

orbit transfer is the process of altering the orbit of a spacecraft with minimum propellant 

consumption. The spacecrafts are needed to realize orbit transfer to reach, change or keep 

its orbit. The spacecraft may be a satellite or the last stage of a launch vehicle that is 

operated at the exo-atmospheric region. In this study, a genetic algorithm based orbit 

transfer method has been developed. The applicability of genetic algorithm based orbit 

transfer method has been verified using orbit transfers which are optimal at specific cases. 

The solution to orbit transfer problem is also searched using steepest descent algorithm. 

While genetic algorithm can reach the optimal solution, steepest descent algorithm can 

reach optimal solution when a good initial prediction is provided. The effects of the initial 

orbital values on the orbit transfer solutions are also studied. 

Keywords: Orbit transfer, optimal orbit transfer, minimum propellant consumption, impulsive 

maneuvers, genetic algorithms. 
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ÖZ 

GENETİK ALOGRİTMA KULLANILARAK BİR UZAY ARACININ DARBESEL İTKİYLE YÖRÜNGE 
TRANSFER OPTİMİZASYONU 

 
 

Yılmaz, Ahmet 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M.Kemal Özgören 

 

 

Eylül 2012, 127 sayfa 

 

 

 

Bu tez çalışması bir uzay aracının yörünge transfer eniyileme problemini içermektedir. 

Eniyilenmiş yörünge transferi asgari yakıt tüketimi ile uzay aracının yörüngesinin 

değiştirilmesidir. Uzay araçları yörüngeye erişmek, değiştirmek ve korumak amaçlı yörünge 

transferi gerçekleştirirler. Uzay aracı uydu ya da atmosfer dışı bölgede kullanılan uydu 

fırlatma aracı son kademesidir. Bu çalışmada bir genetik algoritma tabanlı yörünge transfer 

metodu geliştirilmiştir. Genetik algoritma tabanlı yörünge transfer yönteminin 

uygulanabilirliğinin belirli koşullarda eniyilenmiş yörünge transferleri kullanılarak 

doğrulanmıştır. Yörünge transfer problemine çözüm ayrıca ‘steepest descent’ algoritması ile 

de aranmıştır. Genetik algoritma eniyilenmiş sonuca ulaşabilirken, ‘steepest descent’ 

algoritması yanlızca iyi bir ilk tahmin sağlandığında eniyilenmiş sonuca ulaşabilmektedir. İlk 

yörünge değerlerinin yörünge transfer problem çözümüne etkileri de bu çalışmada 

incelenmiştir. 

 

Anahtar Kelimeler: Yörünge transferi, eniyilenmiş yörünge transferi, asgari yakıt tüketimi, 

darbeli manevra, genetik algoritma. 
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CHAPTER 1  

INTRODUCTION 

1.1 INTRODUCTION 

A spacecraft is a vehicle that is designed for spaceflight. Spacecraft can be categorized in 

two main groups. These are satellites and launch vehicles. 

Satellite is a natural or an artificial body that revolves around a celestial body. In this study 

only man-made (artificial) satellites are considered. Starting from this point the satellite is 

used instead of artificial satellite. 

The idea of satellite was originated at the late 1800s. The modern satellite application 

concept was originated from a paper of Arthur C. Clarke published in Wireless World 

magazine in 1945. In this article he stated that “... I would like to close by mentioning a 

possibility of the more remote future perhaps half a century ahead. An 'artificial satellite' at 

the correct distance from the earth would remain stationary above the same spot and would 

be within optical range of nearly half the earth's surface. Three repeater stations, 120 

degrees apart in the correct orbit, could give television and microwave coverage to the 

entire planet” (Clarke, 1945). The orbit that Clarke suggested is actually a geostationary 

orbit (35,786 km altitude, circular). Therefore, a geostationary orbit is also sometimes called 

a Clarke orbit. 

Satellites are mainly used for communication (Figure 1), Earth observation (Figure 2), 

military and scientific purposes. 



 2

 

Figure 1 Geostationary satellite (Maini, Anil K.; Argawal, Varsha, 2011) 

 

 

Figure 2 Earth observation satellite (Maini, Anil K.; Argawal, Varsha, 2011) 
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In 1955 the United States and Russia announced that their plans were to design and insert 

an artificial satellite to an orbit. On 4 October 1957, Russia inserted the first man-made 

satellite ‘Sputnik’ (Figure 3) into an elliptic orbit. It serviced for 92 days. 

 

Figure 3 Sputnik-1 spacecraft (Krebs, 2012) 

Russia inserted Sputnik-2 into the orbit also in 1957. Sputnik-2 carried a dog named “Laika” 

to space. In 1958 the United States inserted their first satellite, Explorer-1, into the orbit 

successfully on 31 January 1958. 

Sputnik and Explorer series satellites provide very important knowledge about satellite and 

satellite launch technologies. Different types of satellites were inserted into different orbits 

to specify possible application areas of satellites from 1960 to 1965. The first satellites were 

communication satellites inspired from Arthur Clarke. Communication satellites followed by 

Earth observation, broadcasting and navigation purposed satellites. 

Launch vehicles are a kind of multi-stage rocket system that carries satellites to orbit. 

Launch vehicles have also evolved in order to meet launch demands of different categories 

of satellites. (Maini, Anil K.; Argawal, Varsha, 2011) stated that both smaller launch vehicles 

capable of launching satellites into low Earth orbits and giant sized launch vehicles that can 

deploy multiple satellites into geostationary transfer orbit have shown improvements in their 

design over the last four decades of their history. In the earlier stages, the need to develop 

launch vehicles by countries like the United States and Russia (earlier Soviet Union) was 

targeted to acquire superiority in space technology. This led them to use the missile 

technology developed during the Second World War era to build launch vehicles. This was 

followed by their desire to have the capability to launch bigger satellites to different orbits. 
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Launch vehicles are expected to carry satellites to their desired orbits as close as possible. 

However, satellite is separated from the launch vehicle within a limited accuracy. This is also 

defined as injection/separation accuracy and generally defined in the datasheets or manuals 

of launch vehicles. For example in the Proton launch vehicle user manual, accuracy and 

performance values for both Low Earth Orbit and Geostationary Earth Orbit are given 

(Proton Mission Planner's Guide, 2009). The injection accuracy is mainly specified depending 

on the final stage guidance and the propulsion system performances. 

It is obvious that, in the highly competitive environment of the launch service market, the 

future trend of spacecraft will be to reduce the cost and size of the spacecraft as well as 

increasing the performance of spacecraft payload. If orbit transfers which require less 

amount of energy can be obtained, the mass of onboard propellant of a spacecraft is 

reduced. Therefore orbit transfer is an important and contemporary subject.  

1.2 MOTIVATION 

Artificial satellites are positioned around Earth for mainly surveillance, reconnaissance, 

communications and scientific missions. A launch vehicle carries the spacecraft to the orbit. 

Based on the launch vehicle and the launch area, the launch vehicle can carry the 

spacecraft up to the desired region in the space with a restricted accuracy. This is also 

defined as the injection/separation accuracy and generally defined in the datasheets or the 

manuals of the launch vehicles. 

After the separation of the spacecraft from the launch vehicle, the spacecraft is alone to 

perform all its orbit/attitude correction operations. During most of these operations the 

spacecraft consumes its propellant, which has to be spared as much as possible to increase 

the useful life of the spacecraft. These operations can be described briefly as follows: 

1. Orbit transfer: This is the modification of the spacecraft’s initial orbit to the desired 

orbit. Orbit transfer may be carried out for many reasons. Mostly, after the separation 

from a launch vehicle, a satellite is generally placed closely but not exactly at its 

mission orbit. In that case, the satellite uses its own propulsion system to reach its 

mission orbit. Other reasons of orbit transfers are rendezvous requirements with 

another spacecraft or asteroid, escaping from a threat, etc. 

2. Orbit maintenance: This is the effort of keeping the spacecraft in the desired mission 

orbit. 

3. Attitude control: Actually, the attitude control is mainly realized by means of additional 

actuators such as reaction wheels, magneto torque bars, etc, which do not consume 



 5

propellant. Spacecraft propulsion system is only used as a secondary actuator at the 

attitude control tasks. 

4. De-orbiting: The orbital maneuvers which cause leaving mission orbit at the end of the 

life of a satellite. 

Orbit transfer can be described as the changing of one or more orbital elements using the 

thrust force. Most of the propellant of a spacecraft is consumed during orbit transfers. 

During attitude control tasks only a small amount of propellant is used.  

The main critical parameter that specifies the lifetime of a satellite is the amount of 

propellant in the satellite. The propellant mass budget is decided based on the orbit transfer 

requirements.  

An extra or inefficient orbit transfer may decrease the lifetime of the satellite. Owing to the 

fact that the propellant is needed to be saved to increase the lifetime of a spacecraft, the 

orbit transfer should be performed at the correct point(s) of the orbit and the propulsion 

system should be operated for proper duration. 

Numerous studies on orbit maintenance operations have been performed and these 

operations are turned to routines. Orbit maintenance procedures have reached to enough 

maturity and require less amount of propellant; therefore it is not critical to decrease the 

propellant consumption during orbit maintenance operations. Spacecrafts also utilize some 

amount of propellant during de-orbiting operations. The propellant consumption at the de-

orbiting operations is much less than the propellant consumption during other orbit transfer 

and maintenance operations (Delft University faculty aerospace engineering). Similar to 

orbit maintenance, during de-orbiting it is also not so possible to save considerable amount 

of fuel because de-orbiting requires low amount of propellant. Typical propellant 

consumption percent of a geostationary earth orbit spacecraft is given in Table 1 (Delft 

University faculty aerospace engineering). 

Table 1 Propellant consumption percent of a typical geostationary satellite 

Operation Propellant consumption (%) 
Orbit transfer 70.0 
Orbit maintenance 29.6 

De-orbiting 0.4 
 

Different from orbit maintenance and de-orbiting, orbit transfers require high amount of 

propellant consumption. The minimization of propellant consumption during orbit transfers 
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is still a contemporary research area. In the case that spacecraft consumes less propellant 

during orbit transfers, it can use the remaining propellant for orbit maintenance purposes 

during the rest of its lifetime. Therefore, the service duration of the spacecraft increases. 

The design, production and insertion of a spacecraft to an orbit are very expensive tasks; 

because of these reasons increasing service time/lifetime of a spacecraft is very crucial and 

beneficial. 

The classical orbit transfers suggest optimal results at specific conditions. At the most of the 

cases there exists no classical optimal orbit transfer strategy. While at some cases it is 

possible to use superposition of classical orbit transfers, they may not suggest the optimal 

result. Classical orbit transfers focus on changing the desired orbital element(s); however 

ignores the change at the other orbital elements which should be kept constant. Because of 

these reasons classical orbit transfers are not preferred. 

The purpose of this research is to develop and implement an algorithm which provides 

optimum orbit transfer strategies for a spacecraft. The main function of this algorithm is to 

generate orbit transfer strategies which minimize propellant consumption. The algorithm 

should suggest solutions for different orbit transfer problems. These strategies should be 

applicable to real satellites and restartable last stage of launch vehicle which works under 

the exo-atmospheric region. The algorithm must work in the presence of constraints and it 

should find/obtain results for all types of orbit transfers. 

1.3 LITERATURE SURVEY 

Orbit transfer optimization is the changing of orbit of a spacecraft while 

minimizing/maximizing some parameters that prolong the service time of a spacecraft or 

increases the performance. It may be the minimization of fuel consumption and/or transfer 

duration or the maximization of payload to total weight ratio. For the Earth centered orbits, 

generally, the fuel consumption minimization is more critical. 

In the orbit transfer optimization, initial and final orbits are state inputs and thrust forces 

are control inputs. 

In this part, some applications of the orbit transfer optimization problem are summarized. 

Since orbit transfer optimization subject is very broad, only some of the critical steps and 

studies are summarized. 

In the literature, it can be seen that different optimization methods can be used to minimize 

propellant consumption during orbit transfer. These studies are presented in the 

chronological order. Analytical solution methods for orbit transfer optimization are 
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introduced at first. Then numerical optimization applications to orbit transfer are explained. 

Lastly the evolutionary optimization studies are presented. 

The first type of orbit transfer optimization studies is analytical derivations. They include the 

first results of analytical studies. Hohmann and Lawden’s studies fall into this category. 

Hohmann transfer is an orbital transfer that realizes orbit transfers from one circular to 

another circular orbit. It was invented by a German scientist in 1925. It is the most fuel 

efficient way to get from one circular orbit to another circular orbit where the ratio of initial 

and final orbit radius is less than 11.94 (Hohmann, 1925). It is an analytical optimization 

method. (Barrar, 1963) proved the optimality of Hohmann transfer. 

D.F. Lawden is also one of the earliest scientists who studied on optimal orbit transfers. In 

(Lawden, 1963), he described the analytical necessary conditions for the optimality of orbit 

transfer using his own theory “primer vector”. In this study the motion is assumed to be 

confined to a plane and the time of transit is regarded as an optimization variable. He 

derived a necessary condition for the optimality of impulsive trajectories in terms of the 

magnitude of this vector. This study is the origin of the orbit transfer analytical optimization 

studies. 

(Lion & Handelsman, 1968) derived gradients of the cost with respect to terminal impulse 

times and midcourse impulse times and positions using Lawden’s primer vector theory. In 

this study the necessary conditions were developed to specify the applicability of 

improvement with an additional impulse, the effect of interior impulses of a multi-impulse; 

and the effect of initial and/or final coasts to the improvement of the trajectory. In the case 

of orbit transfers between coplanar circular orbits, a geometric interpretation was also 

given. 

The gradients of the cost developed in (Lion & Handelsman, 1968) were then implemented 

in a nonlinear programming algorithm to iteratively improve a non-optimal solution and 

converge to an optimal trajectory (Jezewski & Rozandaal, 1968). 

Lawden’s primer vector theory has been applied to different orbit transfer problems such as 

spacecraft rendezvous, low thrust, etc. (Prussing, 1969) and (Prussing J. B., 1970) detailed 

fixed time rendezvous in the vicinity of a circular orbit. It is assumed that the terminal orbits 

lie close enough to an intermediate circular reference orbit that the linearized equations of 

motion can be used to describe the transfer. The linear problem for the rendezvous is then 

solved analytically. Carter and Pardis studied low thrust orbit transfers using primer vector 

theory (Carter & Pardis, 1996). In this study they assumed that the spacecraft thrusters can 
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supply four level of thrust. The mathematical structure of the solution of the optimal 

rendezvous problem associated with this propulsion model is found. Computer simulations 

of rendezvous with a satellite in circular orbit are presented. 

Although many scientists have tried to obtain analytical general solution for orbit transfers 

(mostly up to 1975), so far no closed form expressions have been obtained for optimal orbit 

transfers. Of course there have been many important optimal results obtained; however, 

these studies are valid only at specific conditions. During the evolution of spacecraft mission 

requirements, the orbit transfer requirements also change. 

(Gobetz & Doll, 1969) collected the analytical results of orbit transfers available in the 

literature. The study was categorized depending on orbit types. The most common 

breakdown of these categories was according to geometrical features such as coplanar or 

noncoplanar boundary conditions, intersecting or nonintersecting orbits, type of conic 

section, etc. They also stated that three specific problem areas in which additional research 

is necessary have emerged in this investigation: fixed-time trajectories, optimal multi-

impulse modes, and optimal rendezvous. 

Since the boundary conditions of initial and final states and costates are specified, the orbit 

transfer optimization is a two point boundary value problem (TPBVP). As the analytical 

solution of TPBVP is not easy for this problem, the numerical methods are also used to 

obtain results for the orbit transfer optimization problem. 

Numerical optimizations methods can be analyzed in two main parts; namely, indirect and 

direct optimization methods. The indirect optimization method uses necessary conditions of 

optimality and state equations to solve the problem. In direct optimization, the necessary 

conditions are not used to obtain results; instead the problem is converted to parameter 

optimization problem. 

Many methods have been developed to solve the TPBVP that results from the indirect 

approach to the optimal trajectory problem. The list includes the method of gradients, 

quasilinearization, finite difference methods, and collocation techniques. For example 

(Dickmanns & Well, 1974) used the collocation scheme to solve the TPBVP of the indirect 

method. 

(Conway, 2010) stated that the orbit transfer problem include nonlinearities and 

singularities. This means the solution is very sensitive to the initial point of some or all of 

costate variables. The indirect optimization method is not easy to implement this problem. A 
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further difficulty is that the costate variables lack the physical significance of the state 

variables so that estimating the initial costates proves to be very difficult. 

In direct methods, the continuous optimization problem is converted to parameter 

optimization problem, and it is tried to optimize the parameters while satisfying boundary 

conditions. (Hargraves & Paris, 1987) was obtained one of the biggest improvements in 

orbit transfer optimization. They suggested that it was not necessary to solve the all 

equations (state and costate equations); the costate variables could be ignored from the 

solution provided that discrete control variables were introduced as additional nonlinear 

programming parameter. This study enabled the reduction of size of the orbit transfer 

optimization problem. 

After Hargraves and Paris studies, different direct methods are applied to this problem. 

Enright and Conway studied direct collocation and transcription methods for orbit transfer 

problem (Enright & Conway, 1991) & (Enright P.J., 1992). In these studies, they stated that 

the collocation method was found to have deficient accuracy, and an alternative method 

which discretizes the equations of motion by using an explicit Runge-Kutta parallel-shooting 

approach was developed. Both methods were applied to finite-thrust spacecraft trajectory 

problems. These are a three-burn rendezvous and a low-thrust transfer to the moon. 

There also exist commercial software packages implementing direct methods for spacecraft 

and launch vehicle trajectory optimization, for example OTIS (Paris, 1992) and ASTOS 

(Well, Markl, & Mehlem, 1997) and (Wiegand, Mehlem, Steinkopf, & Ortega, 1999). 

In the literature there are also methods that include both the principles of direct and 

indirect optimization methods. Zondervan et al. studied three impulse orbit transfer in ideal 

gravity (Zondercab, Wood, & Caughey, 1984). In Ilgen, 1994 (as cited in (Conway, 2010)) 

also a hybrid method to study orbit transfer problem is used. Low thrust orbit transfer 

problem is especially studied. 

Evolutionary algorithms are also commonly used in orbit transfer optimization with the 

improvements on the computer technologies. They are also numerical optimizers, which 

mimic processes of nature. Evolutionary algorithms are stochastic optimization methods that 

obtain solution by trial and error process. They have important advantages over direct and 

indirect optimization methods because genetic algorithm does not require an initial 

prediction. Since in the orbit transfer optimization it is difficult to generate an initial 

prediction, the popularity of evolutionary algorithms is increased tremendously. 
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Genetic algorithm is one of the earliest evolutionary optimization methods that are applied 

at many different areas including orbit transfer problem. To date, genetic algorithm is 

accepted as one of the most powerful and mature evolutionary algorithms. 

(Cacciatore & Toglia, 2008) studied impulsive orbit transfers using minimum fuel with a 

constraint in the transfer time. They selected genetic algorithm as an optimization method. 

Their studies also include the effects of genetic algorithm parameters to the solution 

accuracy and duration. 

(Kim & Spencer, 2002) applied genetic algorithms to the coplanar and/or orbit rendezvous 

problems. They constructed the two impulse orbit transfer problem using six optimization 

parameters which are true anomaly and thrust components at the initial and final orbits. 

Their results are compatible with the analytical results. 

Reichert also studied the coplanar orbit transfers but instead of six variables he used only 

three optimization variables (Reichert, 1999). These variables are the semimajor axis, 

eccentricity and orientation angle of the transfer orbit. He computed the required impulsive 

velocities from the initial and final orbit values. 

(Abdelkhalik, 2005) obtained results for orbit selection and transfer using genetic algorithm. 

He compared orbit transfer solutions to known orbit transfers (optimal at some cases). He 

used Lambert problem in order to model the orbit transfer problem. In Lambert problem, 

the initial and final orbits are constant, so the solution may not be optimal, but there exists 

always a solution for an orbit transfer. 

Denilson, Antonio and Guido studied Lambert problem using genetic algorithm (Santos, 

Prado, & Colasurdo, 2012). They obtained solution for four impulse rendezvous problem 

between coplanar circular orbits. In this paper, the approach is to assume that the problem 

is time-free (transfer duration is not important). In order to perform this task, an engine 

(kick motor or thruster) that can deliver four burns is assumed to be available. This 

assumption is used to represent a common constraint posed by real missions. 

Particle swarm optimization is another heuristic optimization method that is applied to orbit 

transfer problem. One of the latest applications of particle swarm optimization to orbit 

transfer problem is the study of (Pontani & Conway, 2012). They solved the two impulse 

coplanar orbit transfer from circular to circular and elliptic to elliptic transfers. They also 

studied the noncoplanar orbit transfers briefly. 
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(Radice & Olmo, 2006) used ant colony optimization method to model orbit transfer from an 

Earth orbit to Mars orbit. They modeled the orbit transfer using two impulses. They 

obtained solutions to launch date and time for such a mission. 

In the literature there also exist studies, which combine evolutionary algorithms with other 

optimization methods. One of the examples of this type is (Sentinella & Casalino, 2009). 

They suggested a hybrid optimization procedure that runs three different optimizers based 

on genetic algorithm, differential evolution and particle swarm optimization. They applied 

this method to the optimization of multiple-impulse rendezvous trajectories and of Earth-to-

Mars round-trip missions. 

1.4 SCOPE 

In this study, a tool is developed to obtain optimal solutions for different type orbit transfer 

problems. This tool is mainly used at the orbit transfer problems since orbit maintenance 

and de-orbiting maneuvers do not require so much improvement. Hence orbit transfer is 

studied in this thesis. In the space, there may be perturbations and gravity effects. In this 

study the effects of perturbations and gravity are neglected. These are 3rd body, 

atmospheric drag, solar pressure, Earth’s nonspherical shape, and etc. disturbances. It is 

assumed that the spacecraft is only effected from the central body and the thrust force 

generated by its propulsion system. This assumption is valid for orbit transfer problems 

since Newton’s gravitational force and thrust forces are much larger than perturbations and 

gravity effects. 

The content of this thesis can be summarized as follows: 

 Mathematical formulation of orbit transfer problem is defined. 

 An optimization algorithm for orbit transfers is developed/applied using two 

optimization methods. These methods are: 

o Genetic algorithm 

o steepest descent algorithm 

 The applicability of these optimization methods (genetic algorithm and steepest 

descent algorithm) is discussed. 

 The orbit raising problem of Earth centered orbits (LEO, MEO, GEO, Molniya) are 

defined. The cost function coefficients for each case are obtained. 

 Genetic algorithm based orbit transfer optimization and classical orbit transfer 

strategies are applied to LEO, MEO, GEO and Molniya raising problems. The 

performances of orbit transfer methods are compared. 
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 The effects of initial orbital values to the different orbit raising problems (LEO, MEO, 

GEO, and Molniya) are investigated. 

The method that is developed in this study is expected to be used at the mission planning 

and sizing of: 

 Turkey’s satellite projects  

 Turkey’s launch vehicle projects: Note that only the mission planning and sizing of 

last stage of launch vehicle which is used at the out of atmospheric trajectories can 

be modeled using this tool. 

1.5 THESIS OUTLINE 

This thesis is organized as follows: 

Chapter 1 is constructed to introduce the study. The introduction of the problem and 

motivation are explained. After that a short literature survey about orbit transfer 

optimization studies is given. Scope of the thesis is presented. 

Chapter 2 focuses on the mathematical modeling of orbit transfers. The introduction of 

orbital elements, main governing equations of orbit transfers and orbit transfer models are 

detailed. At the end of chapter 2, orbit transfer force models are compared briefly. 

Chapter 3 details two kinds of optimization methods (genetic and steepest descent 

algorithms) that can be applied to obtain orbit transfer strategies. The performance of these 

optimization methods are specified and compared using optimal orbit transfers. 

Chapter 4 includes orbit transfer optimization results for different test cases. In this chapter 

the optimization results are compared to optimal orbit transfer results (optimal only at 

specific conditions). The effects of each orbital element to the solutions are also considered 

for all test cases. 

Chapter 5 represents the conclusion of the whole study. It also includes a brief summary of 

the contributions of this thesis and recommendations for future research. 
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CHAPTER 2 

MATHEMATICAL MODEL 

2.1 ORBITAL ELEMENTS 

A spacecraft’s orbit can be defined using different sets of elements. The most common ones 

are Earth Centered Inertial (ECI) position and velocity vectors with components (rx, ry, rz, vx, 

vy, vz), perifocal frame (orbit frame) position and velocity vector components (rp, rq, rw, vp, 

vq, vw), and Keplerian elements. {X, Y, Z} is the axis triad of earth centered inertial frame 

and {P, Q, W} is the axis triad of the perifocal frame. ECI frame is the frame where the X-Y 

axes are at the Earth’s equatorial plane, with X pointing along the intersection of the 

equator and the ecliptic (vernal equinox or line of Aries) direction. Z is along the Earth spin 

axis. Y completes the triad (Figure 4) (Orbit in Space Coordinate Frames and Time, 2012). 

Note that the effect of nutation of the Earth is ignored at the ECI frame. The perifocal frame 

is the frame p and q are unit vectors in the orbit plane with p directed to perigee; w along 

the angular momentum vector and q completes the triad. The ECI frame, perifocal frame 

and orbital elements are also shown in Figure 5.  

The Keplerian orbital elements, sometimes called as classical or conventional elements, are 

generally used to define a spacecraft’s orbit since they are defined around the whole space 

and make easier to define a spacecraft mission. In orbital elements, five of six variables are 

constant at an orbit and the remaining variable changes with time. The most commonly 

used Keplerian orbital element set is { a , e , i , Ω , ω , v }. There are also different set of 

elements which can be used to define the orbit. Two-line element sets are used by United 

States of America military and equinoctial elements preferred during perturbation analysis 

are also popular orbital element sets. 
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Figure 4 Earth Centered Inertial (ECI) frame 

 

 

Figure 5 Orbit of a spacecraft (Casella & Lovera, 2008) 
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The short definitions of Keplerian orbital elements are tabulated in Table 2. Detailed 

descriptions of the orbital elements are given after Table 2 . 

Table 2 Brief description of the Keplerian orbital elements 

Keplerian Elements Symbol Short Definition 

Semimajor Axis a  describes the size of orbit ellipse 

Eccentricity e  describes the shape of orbit ellipse 

Inclination i  the angle between the orbit plane and Earth's 
equatorial plane. 

Right Ascension of 
Ascending Node (RAAN) Ω 

the angle from the vernal equinox to the 
ascending node 

Argument of Perigee ω 

the angle from the ascending node to the 
eccentricity vector (the vector which is defined 
in the direction from the Earth center to the 
perigee point with a magnitude of eccentricity) 
measured in the direction of satellite's motion 

True Anomaly v  indicates the position of the satellite in its orbit 

 

This set of orbital elements, Keplerian, can be divided into two groups: the dimensional 

elements and the orientation elements. The dimensional elements specify the size and 

shape of the orbit and relate the position of spacecraft in the orbit to time; they are 

semimajor axis, eccentricity, and true anomaly. The orientation elements specify the 

orientations of the orbit in space which are: inclination, right ascension of ascending node, 

and argument of perigee (Chobotov, 2002). All Keplerian orbital elements are described 

briefly as follows: 

1. Semi-major axis ( a ): This element is a geometrical parameter of an elliptical orbit. 

It can be computed from apogee and perigee distances as: 

2
a pr r

a


  (2.1)

where:  

ar : apogee point (farthest point to the Earth) 

pr : perigee point (closest point to the Earth) 

The planar geometry of an orbit is presented in Figure 6 where the position of a spacecraft 

with respect to the Earth is given. The Earth is at the one of the foci of the orbit ellipse. 
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Figure 6 Planar Geometry of an Orbit 

2. Eccentricity ( e ): The orbit eccentricity, e , is the ratio of the distance between the 

centers of the ellipse and the Earth to the semi-major axis of the ellipse. It can be computed 

applying the following expression; 

a p

a p

r r
e

r r





 (2.2)

3. Inclination ( i ): Inclination is the angle that the orbital plane of the spacecraft 

makes with the Earth’s equatorial plane. The spacecraft orbit intersects with the equatorial 

plane at two points: the first one, called the descending node (N1), where the satellite 

passes from the northern hemisphere to the southern hemisphere, and the second one, 

called the ascending node (N2), where the satellite passes from the southern hemisphere to 

the northern hemisphere. Inclination is the angle between that half of the satellite’s orbital 

plane containing the trajectory of the satellite from the descending node to the ascending 

node to that half of the Earth’s equatorial plane containing the trajectory of a point on the 

equator from n1 to n2, where n1 and n2 are respectively the points vertically below the 

descending and ascending nodes (Figure 7) (Maini, Anil K.; Argawal, Varsha, 2011). 

Inclination is measured in the direction of counterclockwise and defined between 0° and 

360°. 
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Figure 7 Inclination ( i ) of an orbit (Maini, Anil K.; Argawal, Varsha, 2011) 

4. Right ascension of ascending node (Ω ): Right ascension of ascending node is an 

angle measured counterclockwise in the equator plane, from the direction of the vernal 

equinox to the ascending node. It is defined between 0° to 360°. Vernal equinox direction is 

the direction from the center of the Earth to the intersection of the ecliptic and equatorial 

plane.  

 

 

Figure 8 Right ascension of ascending node (Ω ) of an orbit (Maini, Anil K.; Argawal, 
Varsha, 2011) 
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5. Argument of perigee (ω ): This element specifies the orientation of the orbit in its 

plane, i.e. the location of the major axis at the orbit. It is measured as the angle ω  

between the line joining the perigee and the center of the Earth and the line of nodes from 

the ascending node to the descending node (Maini, Anil K.; Argawal, Varsha, 2011). 

Argument of perigee is defined in the direction of motion, from the ascending node to the 

perigee and defined between 0° and 360°. 

 

Figure 9 Argument of perigee () of an orbit (Maini, Anil K.; Argawal, Varsha, 2011) 

6. True anomaly ( v ): This element is used to indicate the position of the satellite in its 

orbit. This parameter varies with time. True anomaly is defined as the angle formed by the 

line joining the perigee and the center of the Earth with the line joining the satellite and the 

center of the Earth (Maini, Anil K.; Argawal, Varsha, 2011). It is defined in the direction of 

motion, from the perigee to the satellite’s position in the orbit and defined between 0° and 

360°. 
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Figure 10 True anomaly ( v ) of an orbit (Maini, Anil K.; Argawal, Varsha, 2011) 

2.2 ORBITAL MOTION 

The motion of a spacecraft, excluding the effect of drag and thrust, around Earth can be 

specified by the application of Newton’s law of gravitational attraction and Kepler’s laws. 

Kepler laws are the main governing laws that define the physical relations of spacecraft and 

Earth system.  

2.2.1 Kepler’s Laws 

Johannes Kepler, well known Austrian mathematician and astronomer, stated three laws 

which describe the motions of the planets around the Sun. Although these laws are argued 

and derived for planetary motion, they are also valid for the motion of natural and artificial 

satellites around Earth or for any body revolving around another body. These laws can be 

described briefly as follows: 

2.2.1.1 Kepler’s First Law 

Every planet moves in an orbit that is an ellipse, with the sun at one focus of the ellipse. It 

is applied to the satellite orbit as follows: The orbit of a satellite around Earth is elliptical 

with the center of the Earth lying at one of the foci of the ellipse (Figure 2.6). The elliptical 

orbit is characterized by semimajor axis ( a ) and eccentricity ( e ) (Chobotov, 2002).  
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Figure 11 Kepler’s First Law 

2.2.1.2 Kepler’s Second Law 

A line joining a planet/comet and the Sun sweeps out equal areas in equal intervals of time. 

It is applied to a spacecraft orbit as follows: The line joining a spacecraft and the Earth 

sweeps out equal areas in equal intervals of time (Figure 12).  

2


dA h

dt
 (2.3)

where:  

h : specific angular momentum vector magnitude 

A : sweep-out area 

This means that angular momentum of a spacecraft on an orbit is constant at all points on 

the orbit (Figure 13): 

 
  
h r v  (2.4)

Note that angle between the direction of motion of the spacecraft and the local horizontal. 

Therefore the specific angular momentum can be stated as follows: 

cosh rv  (2.5)

 

where: 

 r


: position vector of a spacecraft 
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 v


: velocity vector of a spacecraft 

 h


: specific angular momentum vector of a spacecraft 

 h : specific angular momentum vector magnitude of a spacecraft 

 r : position vector magnitude (

r ) of a spacecraft 

 v : velocity vector magnitude (

v ) of a spacecraft 

  : angle between the direction of motion of the spacecraft and the local horizontal 

This means that spacecraft moves faster close to the Earth and slower far from the Earth on 

the orbit.  Spacecraft reaches its maximum speed at the closest point to the Earth; perigee 

point and the satellite at the farthest point to the Earth reach its minimum speed which is 

named as apogee point. 

 

 

Figure 12 Kepler’s Second Law 
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Figure 13 Spacecraft position and velocity vectors on an orbit 

2.2.1.3 Kepler’s Third Law 

The squares of the periods of revolution of the planets are proportional to the cubes of the 

semimajor axes of their orbits. This law is applied to the spacecraft as follows: The squares 

of the time period of any spacecraft is proportional to the cube of the semi-major axis of its 

elliptical orbit.  

The area of an ellipse is obtained in terms of its semimajor and semiminor axis by the 

formula:  

A ab  (2.6)

To find the period T  of the elliptical orbit, Kepler’s second law is applied (Curtis, 2005): 

2

dA h

dt
  

(2.7)

For one complete revolution: 

 A ab  (2.8)

 t T  (2.9)

Thus the period can be stated as: 

2 a b
T

h


  (2.10)

Since semiminor axis is:  

21 b a e  (2.11)

The period T can be stated as follows: 
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3

2 2

2

1

h
T

e




 
  

 
 (2.13)

since  

 21h a e   
(2.14)

substituting equation 2.14 to 2.13 

3 / 22
T a




  (2.15)

 

where: 

 a : semimajor axis 

  Gmearth = 398600 km3/s2 

 T : period 

 h : specific angular momentum vector magnitude 

2.2.2 Newton’s Law of Gravitational Attraction 

According to Newton’s Law of Gravitational Attraction, represented in Figure 14, two 

particles irrespective of their masses are mutually attracted with equal and opposite force 

12


F  and 21


F : 

21 12  F F F
  

 (2.16)

2
1 2Gm m

rr
 

r
F


 (2.17)

where: 


r : the vector between two particles  

G : Newton’s gravitational constant 
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1m : mass of the first body 

2m : mass of the second body 

12F


: force applied to mass-1 by body-2 

21F


: force applied to mass-2 by body-1 

This law is applied for a spacecraft and the Earth system:  

2
1m

rr
 

r
F


 (2.18)

where:  

1m : spacecraft mass 

2m : Earth mass  

 Gm2 =398600 km3/s2   

r

FF12 21
m

m
1

2  

Figure 14 Newton’s Law of Gravitational Attraction 

2.2.3 Two Body Problem 

In classical mechanics, the two-body problem is used to determine the motion of two point 

mass particles that interact only with each other. Common examples include a planet 

orbiting a star, and a satellite orbiting a planet.   

To develop a mathematical model for two body problem of an Earth orbiting spacecraft, it is 

assumed that (Vallado & McClain, 2007): 
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 The mass of the spacecraft is negligible compared to Earth. This is reasonable for 

artificial satellites. 

 The bodies of the spacecraft and Earth are spherically symmetrical, with uniform 

density. This enables to treat Earth and satellite as a point mass. 

 The coordinate system chosen for a particular problem is inertial. 

 No other forces act on the system except for gravitational forces that act along a 

line joining the centers of the two bodies. 

The orbiting motion of a spacecraft can be studied as a two body problem. In two body 

mathematical model, there exist only forces that are applied by Earth and spacecraft to 

each other.  

Using Newton’s second law, these forces can be obtained as follows: 

2 2
1 2

1 22 2
  

r r
F

  d d
m m

dt dt
 (2.19)

where: 

21 12  F F F
  

 (2.20)

1m : mass of the first body 

2m : mass of the second body 

The vector 

R  denoting the position of the center of mass is defined as: 

1 1 2

1 2

m m

m m





2r r

R
 

 (2.21)

Using the eqn (2.20) and eqn (2.21) the motion of center of masses can be written as 

follows: 

1 2( ) 0m m R


 (2.22)

Eqn (2.24) corresponds to the following equation: 

0R


 (2.23)

This means that the velocity of the center of mass is constant. 
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The equation of motion of Earth (m2)-spacecraft (m1) system can be written after obtaining 

the relative position vector 

r and the equivalent mass meq: 

The relative position vector can be obtained as: 

2 1 
  
r r r  (2.24)

 

and the equivalent mass meq is defined as: 

1 2

1 2

eq
m m

m
m m




 (2.25)

 

Using the above definition of the equivalent mass meq, the two-body equations of motion 

can be converted to an equivalent one-body problem 

eqm F
r


r

r


  (2.26)

The equation (2.27) describes the motion of a mass m under the action of force

F . 

Inserting equation (2.19), Newtonian gravitational force, the equation of motion for the 

equivalent system becomes:
 
 

1 2
2

( )G m m

rr


 

r
r


  (2.27)

The motion of spacecrafts, which are not under the effect of thrust or perturbation, around 

Earth is governed by two forces. One of them is the centripetal force directed towards the 

center of the Earth caused by the gravitational force of attraction of Earth and the other is 

the centrifugal force that acts outwards from the center of the Earth. During the motion of a 

spacecraft under the effect of thrust, the problem can be examined as an extension of the 

two body problem. In this study, during the motion of a spacecraft both the force exerted 

by Earth and the thrust force are considered. 

2.2.4 Rocket Equation 

The rocket equation describes the motion of vehicles that follow the basic principle of a 

rocket: a device that can apply acceleration to itself (a thrust) by expelling part of its mass 

with high speed and move due to the conservation of momentum (Chobotov, 2002). The 

Rocket equation, also known as “Tsiolkovsky rocket equation”, can be used during the 
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motion of launch vehicles, satellites, space ships, etc. The rocket equation can be obtained 

as follows: 

Let a system includes two masses: one of these masses is m  with a velocity v  and the 

other mass is Δm  with a velocity 1v . The initial system momentum (in scalar form) is  

1v Δ v1P = m + m  (2.28)

where: 

 1P : initial system momentum 

At a time Δt  later, the two masses are joined and their combined momentum is: 

Δ v Δv2P = (m+ m)( + )
 

(2.29)

Since the impulse is equal to change of momentum: 

Δ Δv Δ v v Δ Δv2 1 1I = F t = P - P = m + m( - )+ m (2.30)

where: 

I : impulse magnitude 

F : force magnitude 

Δt : force application duration 

in the limit as 0t   and , v 0m   , the force F , 

 

1v-v )
dv dm

F = m + (
dt dt

 (2.31)

1v-vu =
 

(2.32)

vd dm
F = m - u

dt dt  
(2.33)

vd
F = m - T

dt  
(2.34)

 

where: 
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dm
T = -u

dt
 (2.35)

 where: 

 T : momentum thrust of a rocket 

 F : external force acting on the rocket (gravity, ,etc.) 

 u : exhaust velocity 

 

assuming 0F   

T dt u dm
dV = = -

m m
 (2.36)

after integration 

v i i
0 sp

f f

m m
= u ln( )= g I ln( )

m m
  (2.37)

 where: 

 im : initial mass of rocket 

 fm : final mass of rocket 

 spI : propellant specific impulse (thrust/propellant weight flow rate) 

 0g : gravitational constant at sea level 

 v : impulsive velocity vector magnitude 

 

It should be noted that the consumed propellant is the difference between the initial and 

final mass: 

consumed f im = m - m  (2.38)

where: 

 consumedm : mass of consumed propellant 
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This shows that impulsive velocity vector magnitude and consumed propellant mass are 

directly related. As the level of required impulsive velocity vector magnitude decreases for 

an orbit transfer, the propellant consumption also decreases. 

2.2.5 Orbit Transfer Force Models 

Orbital maneuvers can be modeled in two ways depending on thrusting type; namely, 

impulsive and continuous thrusting. In continuous thrusting the variation of satellite position 

during maneuver is considered. This causes complexity at the orbit control issues. If it is not 

obligatory, the orbit transfer should not be modeled using continuous thrust model. On 

contrary to the continuous thrusting case, in impulsive force model equations are simple 

and the results are obtained fast and accurately. In this section both impulsive and 

continuous thrust models are detailed and compared. Impulsive model is valid if the 

maneuver duration is much less than orbit period. The assumption is ideal if the maneuver 

duration is zero (0). 

2.2.5.1 Continuous Force Model 

In continuous thrusting the variation of spacecraft position during transfer is also 

considered. Gauss Planetary Equation is a special solution to the orbit element variation 

equation problem where the position vectorr


, velocity vector v


  and the acceleration 

column matrix a   expressed in R  frame components. R  frame is a very convenient 

rotating reference frame R ={ ri , i , hi }used in orbital mechanics where ri  is along the 

orbit position vector, hi  is along the angular momentum vector and is the perpendicular to 

the previous two satisfying right hand rule. This frame is often referred to as Local Vertical 

Local Horizontal (LVLH) reference frame since it tracks the local horizontal plane. 

By using Newton’s law of gravitation and variation of parameters, continuous force model of 

orbit transfer is obtained. 
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 (2.39)

 

where:  

a  = semimajor axis (meters) 

e  = eccentricity (dimensionless) 

i  = inclination (radian) 

Ω  = right ascension of the ascending node (radian) 

ω  = argument of perigee (radian) 

n =mean motion (1/seconds)  

2(1 )p a e  = semi-latus rectum (meters) 

b  = semiminor axis (meters) 

h  =specific angular momentum vector magnitude (meters per second) 

ra  = radial component of acceleration vector a


 (meters/second2)  

a  = tangential component of acceleration vector a


 (meters/second2)  

na  = normal component of acceleration vector a


 (meters/second2)  
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x  is the [6X1] classical orbital elements [ a , e , i , Ω , ω , M ], and a


 is a [3X1] control 

acceleration column matrix. 

2.2.5.2 Impulsive Force Model 

In impulsive thrusting force model it is assumed that all the required energy is supplied to 

the spacecraft instantaneously. The position of the satellite is kept constant at the impulse 

time but the velocities of the satellite are changed. After the application of impulse, the 

position and velocity vector of a spacecraft is changed as follows:  

+ -
x 0 x 0r (t )= r (t )  (2.40)

+ -
y 0 y 0r (t ) = r (t )  (2.41)

+ -
z 0 z 0r (t )= r (t )

 
(2.42)

x 0 x 0 xv ( ) v ( ) vt t    (2.43)

y 0 y 0 yv ( ) v ( ) vt t    (2.44)

z 0 z 0 zv ( ) v ( ) vt t  
 

(2.45)

 

where: 

 xr : x component of position vector (in ECI frame) 

 yr : y component of position vector (in ECI frame) 

 zr : z component of position vector (in ECI frame) 

 xv : x component of velocity vector (in ECI frame) 

 yv : y component of velocity vector (in ECI frame) 

 zv : z component of velocity vector (in ECI frame) 
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Since the initial and final orbits are needed to be defined in terms of Keplerian elements. 

Impulsive force model requires the conversion of position and velocity vectors to Keplerian 

elements and vice versa.  

The position and velocity vectors (ECI) can be converted to Keplerian elements as follows 

(Vallado & McClain, 2007): 

2v

2
ξ

r


   (2.46)

where: 

 v : the magnitude of velocity vector 

 r : the magnitude of position vector 

 ξ : specific orbital energy 

2 2 2
x y zv v +v +v v


 (2.47)

2 2 2
x y zr r r r   r


 (2.48)

2
a

ξ


   (2.49)

where: 

 a : semimajor axis  

Specific angular momentum vector of a spacecraft is calculated as follows: 

 

2( ) ( . )




 


   
 v

r
r r v v

e  
(2.50)

e  e


 (2.51)

where: 

 e: eccentricity 

The specific angular momentum vector of a spacecraft can be defined as: 
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 h r v
  

 (2.52)

The cosine of inclination can be calculated using z-component and total magnitude of 

angular momentum: 

 

cos( ) zh
i 

h
  (2.53)

 

where:  

zh  = the magnitude of h


 vector in k direction 

So the inclination ( i ) value can be calculated as follows: 

cos zh
i a

 
 
 
 h
  (2.54)

The vector pointing to the node (n


) is calculated as: 

 n k h
 

 (2.55)

 

Cosine of right ascension of ascending node () is obtained as follows: 

cos( ) xΩ 
n

n



  (2.56)

 

Using the equation (2.57), right ascension of ascending node () can be calculated as: 

cos
y

Ω a
 
 
 
 

n

n



  

 ( 0)n


yif then  360Ω Ω    

(2.57)

The argument of perigee (ω ) can be obtained using the vector pointing to the node (n


) 

and eccentricity vector ( e


). 
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Cosine of argument of perigee (ω ) is calculated as: 

.
cos( )

.
ω 

n e

n e

 

    (2.58)

So the argument of perigee () is obtained as:  

.
cos

.
ω a

 
   

 

n e

n e

 

 

 

if ( 0ze  ) then 360ω ω   

(2.59)

Cosine of true anomaly can be calculated using eccentricity and position vectors: 

.
cos( )

.
v 

e r

e r

 

    (2.60)

So the true anomaly is: 

.
cos

.
v a

 
   

 

e r

e r

 

   

if ( . 0r v
  ) then 360v v   

(2.61)

Similarly, position and velocity vectors (perifocal frame) can be derived from Keplerian 

elements. : 

2

2

(1 )cos( )

1 cos( )

(1 )sin( )

1 cos( )

0

PQW

a e v

e v

a e v

e v

 
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  
 

 
 
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r


 (2.62)

where: 

 r


PQW : position vector on the perifocal frame 
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3 1 3( ) ( ) ( )IJK PQWR Ω R i R ω   r r
 

 (2.64)

3 1 3( ) ( ) ( )IJK PQWR Ω R i R ω   v v
 

 (2.65)

where: 

3 1 3( ) ( ) ( )

cos( )cos sin( )sin cos cos( )sin sin( )cos cos sin( )sin

sin( )cos os( )sin cos sin( )sin cos( )cos cos cos( )sin
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   
      
  

 
(2.66)

 

In impulsive orbit transfer problem, parameters that are tried to be optimized are true 

anomaly values (the timing of thruster firings) and impulsive thrust vector to determine the 

direction and magnitude of the velocity vector that should be added to the spacecraft’s 

velocity. Note that, actually the thrust is applied to the spacecraft and the thrust force 

provides the impulsive velocity vector.  

A two-impulse orbit transfer computation flowchart is presented in Figure 15. First orbit 

values are stated in terms of Keplerian elements, and then position and velocity vector at 

the given impulse time are found. The thrust force is applied to spacecraft which provides 

the impulsive velocity at the impulse time. Position and velocity vectors are updated by 

considering the impulse/energy value added to spacecraft at the time of impulse. These 

position vector and velocity vector belong to new orbit, intermediate orbit. For the second 

impulse, similar procedure is applied and the spacecraft reaches to the final desired orbit. 

The flowchart of a two impulse orbit transfer is given in Figure 15. 

 



 36

 

Figure 15 Two- impulse orbit transfer calculation flowchart 

In this study, as orbit transfers of Earth-centered spacecrafts are examined, it is presumed 

that the impulsive model is valid. In the subsequent parts of the thesis, studies will be done 

under impulsive model assumption. 
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CHAPTER 3 

ORBIT TRANSFER OPTIMIZATION PROBLEM 

The orbit transfer optimization problem can be stated as the determination of a trajectory of 

a spacecraft which satisfies the initial and final conditions while minimizing some quantities 

(Conway, 2010). The most common objective is to minimize the required propellant or 

equivalently to maximize the fraction of the spacecraft that is not devoted to propellant (dry 

mass) to total mass.  

In this chapter firstly the optimum orbit transfers are introduced. Although there is not a 

general optimal solution for orbit transfers, there exist optimal solutions for limited 

conditions. Then the optimization techniques, genetic algorithm and steepest descent 

methods are described briefly. These optimization methods are applied to obtain solutions 

for orbit transfer problems whose optimal solutions are known. Finally the performance of 

optimization method results is compared with optimal orbit transfer results and applicability 

of the optimization methods to orbit transfer problem are discussed. 

3.1 OPTIMAL ORBIT TRANSFERS 

In the literature different orbit transfer methods are suggested for different cases; however, 

most of these orbit transfer methods are not optimal. Among these orbit transfers, 

Hohmann and only inclination change orbit transfers suggest optimal results at specific 

conditions. It should be noted that there are some other optimal orbit transfers in the 

literature, in this section only two optimal orbit transfers are used. In this section Hohmann 

and only inclination change orbit transfers are described briefly which are used during the 

validation of optimization methods that are applied to orbit transfer problem. 

3.1.1 Hohmann Orbit Transfer (Coplanar Orbit Transfer) 

Hohmann orbit transfer is the most energy efficient two-impulse orbit transfer for 

transferring between two coplanar circular orbits sharing a common focus whose radius 

ratios (rfinal/rinitial) is less than 11.94. The Hohmann transfer orbit is an elliptical orbit tangent 

to both circles at its apse line, as illustrated in Figure 16. The periapse and apoapse of the 
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transfer ellipse are the radii of the inner and outer circles, respectively. Starting from A on 

the inner circle, a velocity increment 1v


 in the direction of flight is required to transfer the 

spacecraft onto the higher-energy elliptical trajectory. After coasting from A to B, another 

forward velocity increment 2v


 at the apogee of the transfer orbit places the vehicle onto 

the still higher-energy, outer circular orbit (Curtis, 2005).  

 

Figure 16  Hohmann Orbit transfer (Hale, 1994) 

 

Hohmann orbit transfer impulsive velocity requirement can be obtained by using the 

following equations (Chobotov, 2002): 

Firstly the radial ( rv ) and tangential velocities ( θv ) are defined:  

r 2
v sin

(1 )
e v

a e





 (3.1)

θ 2
v (1 cos )

(1 )
e

a e

  


(3.2)

Initial radial ( irv ) and tangential ( iθv ) velocities are:  
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 (3.3)

iθ 2
1

v (1 )
(1 )

e
ra e

 
  


(3.4)

Note that radial distances are:  

r1=ri 
(3.5)

r2=rf (3.6)

Using the vis-viva equation (orbital energy conservation equation) the impulsive velocity 

vector magnitude is obtained. The term, “vis-viva” is originated from the Latin, vis is force 

or power and viva is living. In other words “vis-viva” means living force. Vis-viva equation is 

the ability of a body to do work on its environment. It is used as to refer to the principle of 

energy conservation. This equation enables to calculate the orbital velocity of the spacecraft 

at a point on an elliptical orbit.  

2v

2
ξ

r


   (3.7)

The intermediate orbit velocity vector magnitude at the perigee point (1) can be obtained 

as follows: 

2
1

1 1 2

2 2
v

r r r

 
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 (3.8)
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1 2 1
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v 2

1 ( / )r r r

  
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 (3.9)

2 2 2 1
1 i

2 1

2 2 ( / ) 2
v =v

1 ( / )

r r

r r

  
  

 (3.10)

The ratio of intermediate orbit velocity vector magnitude at the perigee (1) to the initial 

orbit velocity vector magnitude (vi) is: 

irv 0
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1 2 1
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r r

r r

 
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 (3.11)

The required impulsive velocity vector magnitude at the first impulse (v1) is: 

 

1 1 i 2 1

i i 2 1
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 (3.12)
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 (3.14)

Again from the vis-viva equation, the intermediate orbit velocity vector magnitude at the 

apogee (v2) is obtained as follows: 

 
2

2
2 2 2 1

2 2
v

1 (1/( / ))r r r r

 
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(3.15)
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 (3.16)

2
f

2

v
r


  (3.17)

where: 

 vf: final orbit velocity magnitude 

The ratio of intermediate orbit velocity vector magnitude at the perigee point (v1) to the 

initial orbit velocity vector magnitude (vi) is: 

2 2 1
f i

2

v =v
r

r
 (3.18)
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The required impulsive velocity vector magnitude at the second impulse (v2) is: 

 2 i
2 1 2 1 2 1

1 2
v =v
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(3.24)

The impulse moments (true anomalies) are:  

1v =free

 
(3.25)

2v = 180°

 
(3.26)

The total required velocity vector magnitude is: 

total 1 2v v v      (3.27)

 
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(3.28)

 

3.1.2 Only Inclination Change (OIC) Orbit Transfer 

A spacecraft’s semimajor axis ( a ), eccentricity (e ), argument of perigee (ω ), and true 

anomaly ( v ) can be changed by applying coplanar orbit transfers. On the other hand thrust 
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normal to the orbit plane is applied when the orbit inclination ( i ), argument of perigee (ω ) 

and the right ascension of ascending node () are desired to be changed. Plane change 

orbit transfers require more energy than planar orbit transfers since changing the orbit 

requires the change in the direction of the velocity vector, in other words, the direction of 

angular momentum. The change of velocity and specific angular momentum vectors during 

a noncoplanar orbit transfer are shown in Figure 17.  

 

 

Figure 17 Velocity and specific angular momentum vector change during noncoplanar orbit 
transfer (Tewari, 2007) 

Noncoplanar thrust changes inclination and right ascension of ascending node values as 

follows: 
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where: 
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 n normal spacecrafta F /m  (specific normal force) 

 normalF : normal force 

 spacecraftm : spacecraft mass 

 nv : impulsive velocity vector magnitude normal component 

 ω : argument of perigee 

Sometimes it is required to change the plane of the orbit without changing its shape. Such 

an orbit transfer is called “only inclination change orbit transfer”. At this orbit transfer, the 

flight path angle of the spacecraft at the impulse moment is zero (0). Neither the speed of 

the spacecraft nor the flight-path angle is modified during this orbit transfer. All orbital 

elements excluding inclination and true anomaly is kept constant. The thrust is supplied at a 

specific point on the orbit which enables only the change of inclination. The other Keplerian 

elements are not changed when the out-of-plane direction thrust is applied at this point. This 

specific point is the equatorial crossing (node) which corresponds to: 

(2 ) 180 0,1, 2,...ω v n n     (3.33)

then using the continuous force model (eqn. 2.39), inclination and right ascension of 

ascending node changes are obtained as follows: 

nv
r

i
h

    (3.34)

0Ω   (3.35)

 

Analytical solution for this orbit transfer can be obtained using triangle vector geometry 

(Figure 18). 

 

Figure 18 Velocity vector during only inclination change orbit transfer 
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From the triangle vector geometry: 

2 2
i f i fv= v +v 2 v v cos 

 
(3.36)

since 

i fv =v  (3.37)

no change in the magnitude of the velocities. Therefore the required impulsive velocity 

vector magnitude (v) is: 

2 2
i iv= 2v -2v cos

 
(3.38)

using trigonometric half angle identity: 

i

sin
v=2v

2




 
(3.39)

3.2 ORBIT TRANSFER OPTIMIZATION PROBLEM 

The orbit transfer problem can be stated as the determination of a trajectory of a spacecraft 

which satisfies the initial and final conditions. During orbit transfer, the propellant 

consumption is minimized (Conway, 2010). 

Optimization variables, sometimes called design variables, are the parameters that are 

desired to be optimized. At the orbit transfer problem the optimization variables are the 

impulsive velocity vector components and the timing (i.e. true anomaly) of each impulse. 

The number of optimization variables determines the dimension of the problem. For 

example for a two impulse orbit transfer problem the dimension of the problem is eight (8). 

The optimization parameters at an impulse are:  

x,i

y,i

z,i

Δv

Δv

Δv

 
 
 
 
 
  iv

 

where: 

 x,iΔv : impulsive velocity vector x component magnitude  

 y,iΔv : impulsive velocity vector y component magnitude 
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 z,iΔv : impulsive velocity vector z component magnitude 

  iv : impulse timing (true anomaly at impulse moment) 

Orbit transfer is performed using thrust forces generated by the propulsion system of a 

spacecraft. For a spacecraft whose propulsion system only provides constant force, the orbit 

transfer optimization is the minimization of thrust application duration. To achieve this aim, 

the cost function should be constructed based on required impulsive velocity vector 

components and the difference between desired and calculated final orbits suggested by 

algorithm. In reality, the orbit of a spacecraft is not defined using constant orbital element 

values; instead a range is defined for all orbital elements. When spacecraft is at a position 

out of its defined tolerance limits, orbit maintenance maneuver is realized. The typical orbit 

maintenance values are used as a baseline to generate tolerance values for each Keplerian 

element. For instance, the maximum semimajor axis deviation of a spacecraft’s orbit is 

defined as ±5 km during the design phase considering its mission. When spacecraft’s 

position exceeds to out of this value, an orbit maintenance maneuver is applied. The orbit 

maintenance values/ranges may be defined as tolerances and they are strict which does not 

cause any problem for the mission of a spacecraft. In this study, the tolerances are defined 

for destination orbits using orbit maintenance values. The tolerance values are specified 

depending on final orbit and the mission of the spacecraft, in other words problem specific. 

If the final orbit values are in the tolerance limits of destination orbit, then, it can be stated 

that this orbit transfer is realized. 

Orbit transfer problem may also include different physical restrictions. These physical 

restrictions should be defined as constraints and considered in the problem. In the orbit 

transfer optimization the most critical constraints are: transfer duration, impulse level per 

one operation of propulsion system, and total impulse capacity. The constraints specified 

here are only main constraints that are applied at the orbit transfer problem. In some cases 

there may be additional constraints such as the orbit of other spacecrafts, rendezvous, 

other celestial bodies, space junks, etc. Three main constraints are described briefly. In this 

study these constraints are not included in the problem. 

Transfer duration: In some circumstances it is desired to realize an orbit transfer in a 

limited duration. The transfer duration is defined as a constraint for long duration orbit 

transfers. This constraint especially makes sense where the number of impulses is high 

and/or there is a spacecraft rendezvous problem. Transfer duration constrain can be 

described as follows: 



 46

max( )transfer transfert t    (3.40)

 

where: 

 transfert : transfer duration 

 max transfer(Δt ) : maximum allowable transfer duration 

Impulse level / operation of propulsion system : Thrusters of spacecraft propulsion 

system cannot generate an impulse less than a lower limit and more than an upper limit 

because of specific impulse ( spI ), propellant properties, etc. This property of propulsion 

subsystem should also be considered as a constraint. In orbit transfer problem terminology 

instead of impulse level, impulsive velocity vector magnitude is used which is: 

ivi i iI F t m     (3.41)

iv iI

m
   (3.42)

 

where: 

 iI : magnitude of ith impulse 

 iv : impulsive velocity vector magnitude of ith impulse 

 m : spacecraft mass 

The expected impulsive velocity vectors computed by algorithm are needed to be checked 

whether they are in the acceptable region or not. Acceptable impulsive velocity vector level 

constraint at one burn can be constructed mathematically as follows: 

i i imin max( v ) v ( v )      (3.43)

where: 

 imin( v ) : minimum impulsive velocity vector magnitude that can be supplied at the 

ith impulse 

 imax( v ) : maximum impulsive velocity vector magnitude that can be supplied at 

the ith impulse 
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Total impulse capacity: The amount of propellant in a spacecraft can also be limited. 

Since the propellant amount at a spacecraft is constant, the maximum level of impulse 

supplied by spacecraft propulsion system is limited. During orbit transfer analysis of a 

spacecraft, this constraint should be considered. This constraint may also be defined as total 

propellant capacity. Total impulse capacity constraint can be defined as: 

maxI I  (3.44)

where: 

  I : Impulse requirement of an orbit transfer 

  maxI : Total impulse capacity of a spacecraft 

Adding constraints to the problem enables to obtain realistic results. If it is not mandatory, 

constraints should not be included to the problem since this causes elimination of some 

good results. In this study only the critical constraints are considered. These are the 

difference between the calculated and desired final orbital element values, the impulse level 

at one burn and the total impulse capacity.  

It should be noted that true anomaly value can vary between 0o and 360o. Since it is not 

easy to generate a reasonable prediction for the true anomaly of an impulse, 0º for 

minimum and 360º for maximum are assumed: 

0º< v <360º (3.45)

where: 

 v true anomaly 

The orbit transfer optimization problem may be stated mathematically as follows: 

minimize: 

2 2 2
ix iy iz

1

( ) ( v Δv +Δv )
n

i

f x


    (3.46)

 

subject to: 
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obtained final obtaineda δa a a δa     (3.47)

obtained final obtainede δe e e δe     (3.48)

obtained final obtainedi δi i i δi     (3.49)

obtained final obtainedΩ δΩ Ω Ω δΩ     (3.50)

obtained final obtainedω δω ω ω δω     (3.51)

i i i( v ) v ( v )    min max  (3.52)

maxI I
  (3.53)

0º< v <360º (3.54)

( )transfer transfert t  max  (3.55)

where: 

 δa : Semimajor axis tolerance 

 δe : Eccentricity tolerance 

 δi : Inclination tolerance 

 δΩ : Right ascension of ascending node tolerance 

 δω : Argument of perigee tolerance 

 n: number of impulse  

 ixΔv : x component impulsive velocity of the ith impulse 

 iyΔv : y component impulsive velocity of the ith impulse 

 izΔv : z component impulsive velocity of the ith impulse 

 imin( v ) : minimum impulsive velocity vector magnitude that can be supplied at 

the ith impulse 

 i( v )max : maximum impulsive velocity vector magnitude that can be supplied at 

the ith impulse 
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 I : Impulse requirement of an orbit transfer 

 maxI : Total impulse capacity of a spacecraft 

 
Orbit transfer problem is a constrained problem; it needs to be converted into an 

unconstrained one. The constrained optimization problem can be transformed into an 

unconstrained one by penalty functions method. The penalty function which is added to the 

objective function penalized the cost function when the constraints are violated. By this 

means, the solution that achieves a minimum value for the cost function is driven away from 

violating the constraints. The new objective function can now be written as follows: 

1

n

v i a error e error i error Ω error error
i

J

c c a c e c i c Ω c ω




      v
   (3.56)

where: 

 error final obtaineda a a   

 error final obtainede e e   

 error final obtainedi i i   

 error final obtainedΩ Ω Ω   

 error final obtainedω ω ω   

 vc , ac , ec , ic , Ωc , c : weighting factors chosen based on importance and 

magnitude of variable 

The orbital element tolerances and cost function coefficients are tabulated in Table 3. 

Table 3 Tolerances and cost function coefficients of orbital elements 

Orbital Element Tolerance Cost Function Coefficients 

a  (km) δa    ac  

e  δe   ec  

i  (°) δi   ic  

Ω (°) δΩ   Ωc  

ω  (°) δω   c  

v  (°) N/A N/A 
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The elements of cost function are needed to be multiplied by weighting factors since the 

importance; magnitude (order) and unit of each element are different. The semimajor axis 

cost function coefficients are assumed as unity (1) ac =1. Multiplication of semimajor axis 

tolerance value and corresponding cost function coefficient is obtained. This value is used as 

a reference value. To put differently, multiplication of each orbital element’s cost function 

coefficient and tolerance are equalized to this value (C ). Note that in the cost function the 

coefficients are needed to be scaled depending on the importance and value of orbital 

elements and impulsive velocity vector magnitude. In the literature there exist no direct cost 

function coefficient values. Some coefficients exist for specific cases. In this study it is 

assumed that the importance of orbital element is directly related to its tolerance. The cost 

function coefficients are also checked during different orbital elements and it is seen that 

this approach is applicable. With this approach depending on mission cost function 

coefficients can be obtained. 

a e i Ω ωC = c δa = c δe = c δi = c δΩ= c δω  (3.57) 

where: 

C = constant 

So the cost function coefficients of orbital elements are obtained as follows: 

a
e

c δa
c

δe
  (3.58)

a
i

c δa
c

δi
  (3.59)

a
Ω

c δa
c

δΩ
  (3.60)

ac δa
c

δω   (3.61)

 

The cost function coefficient of impulsive velocity magnitude is needed to be at least 10 

times of semimajor axis cost function coefficient (Kim & Spencer, 2002). Depending on the 
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desired accuracy and available propellant, this value is defined. In this study this value is 

assumed to be 25. Note that although impulse level one burn and total impulse level are not 

included in the cost function, the applicability of solution is checked considering these 

constraints. 

It should be noted that the cost function coefficients explained in this section are only 

typical values. The cost function coefficients can also be obtained by using different ways. 

In this study, the desired accuracy of each orbital element is used to define the cost 

function coefficients. The orbital elements which requires more accuracy is defined as more 

critical and its cost function coefficient is enlarged/highlighted. In the literature the cost 

function coefficients are specified depending on importance of orbital elements. The 

importance of orbital elements may change depending on the mission and the desired 

accuracy of spacecraft. Considering the accuracy values and the magnitudes of orbital 

elements, cost function coefficients are calculated. 

In this study a generic cost function is used. Depending on mission, desired accuracy and 

the amount of propellant different cost function coefficients can be selected. In this study 

only typical values are selected. It is aimed to show the working principle of the orbit 

transfer optimization. At different situations different cost functions may be used.  

3.3 OPTIMIZATION METHODS  

The success of an optimization method greatly depends on choosing search directions/initial 

conditions. Optimization algorithms depending on search direction may be analyzed in two 

groups: those not requiring any information on the objective/cost function, and those based 

on the information provided by the gradient of the objective/cost function. The first group is 

non-gradient based optimization and the second group is gradient based optimization 

methods.  

The convergence of gradient based optimization algorithms are mostly based on starting 

point (initial prediction/condition). Gradient-based algorithms may converge to a local 

optimum if a poor/bad starting point is given. 

Non-gradient optimization algorithms do not use gradient information during the 

optimization process. Among non-gradient optimization methods, the evolutionary 

algorithms are one of the best optimization methods since they are global optimization 

methods and they do not require any initial prediction. With the evolution of computers, 

evolutionary algorithms become more popular. Genetic algorithm is one of the most 

advanced evolutionary methods. Several studies have been performed using genetic 

algorithm including orbit transfer optimization. 
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As can be seen in mathematical modeling section of the study, the problem includes 

discrete points (perigee & apogee) and nonlinearities (trigonometric relations). This means 

that linear optimization methods may not suggest good results. In orbit transfer problem it 

is hard to make reasonable prediction for an orbit transfer. Because of all these reasons the 

optimization method should pass local minimums and handle discrete points and 

nonlinearities. In this thesis, both gradient and non-gradient optimization methods are 

applied to orbit transfer problem. As a gradient method, steepest descent algorithm is used 

and as a non-gradient method genetic algorithm is selected and applied. The results of each 

optimization are compared with the optimality known orbit transfers. 

3.3.1 Genetic Algorithm 

The genetic algorithm (GA) is a stochastic global search method that mimics some aspects 

of natural biological evolution. The GA operates on a population of potential solutions by 

applying the principle of survival of the fittest to converge to an optimal solution (Kim & 

Spencer, 2002). The GA starts, like any other optimization algorithm, by defining the 

optimization variables and the cost function. It also ends like other optimization algorithms, 

by testing for convergence (Haupt & Haupt, 2004) 

In genetic algorithm optimization globally optimal solution(s) are searched in a predefined 

search space. If the search space is wide, it is time consuming to reach a solution; on the 

other hand, if the search space is selected to be narrow, the optimal solutions may not be 

obtained. For this reason the search space should be large enough to be able to obtain 

optimal solutions and should be narrow enough to consume less time. The search space is 

defined by limiting the search interval for each optimization parameters.  

The gene is the basic building block of genetic algorithm. Each optimization parameter is 

defined as a gene. There are usually two classes of genes: real, where a gene is a real 

number; and alphabetic, where a gene takes a value from an alphabet set. Common 

alphabet sets are the binary, octal, decimal, and hexadecimal sets (Qing, 2009). In this 

study the binary set is used to define a gene. The number of bits (Nb) defines the accuracy 

of a gene. 

If the problem includes more than one optimization parameter, a multi-variable coding is 

constructed using as many single variables coding as the number of variables in the 

problem. A chromosome is the collection of genes which correspond to optimization 

parameters. A chromosome is the binary string collection that is suggested as a solution of 

an optimization problem. 

Chromosome=[gene1,gene2,…., geneNvar] 
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where: 

 gene: an optimization parameter 

 Nvar: Number of optimization parameter (dimension of the problem) 

An individual p is an aggregate of a chromosome and objective function (including 

constraint) values. The union of individuals is called population. The number of individuals 

(Ni) in a population is an important parameter of genetic algorithm.  

Fitness is the measure of goodness of a chromosome. It is directly related to cost function 

values with a scaling operation (Qing, 2009). The individuals whose corresponding fitness 

values are more than others are closer to the optimal solution(s). Cost function is 

constructed as obtaining fittest individuals while using minimum effort. Main aim is to 

minimize the control effort while reaching the desired final boundary conditions. As an 

example, for a minimum path problem of a point mass (transfer of a point mass from an 

initial point to final point) the required force/energy ratio is minimized.  

After the creation of initial population randomly, the corresponding cost function is 

computed for each individual. Later, in order to create a new generation selection, crossover 

and mutation operations are applied. These operations which are applied to model the 

evolutionary/biological process of the population are described below: 

1. Selection: Selection (or reproduction) is an operator that makes more copies of better 

strings. Reproduction selects good strings. This is one of the reasons for the reproduction 

operation to be also known as the selection operator. Thus, in reproduction operation the 

process of natural selection causes those individuals that encode successful structures to 

produce copies more frequently. In reproduction, good strings in a population are 

probabilistically produced a larger number of copies and a mating pool is formed. It is 

important to note that no new strings are formed in the reproduction phase. Most 

commonly used selection methods are as follows: 

a.  Ranking: A numerical rank based on fitness is assigned to each individual in the 

population. The disadvantage of this method is that it can prevent very fit individuals 

from gaining dominance early at the expense of less fit ones, which would reduce the 

population's genetic diversity and might hinder attempts to find an acceptable solution 

(Obitko, 1998). 

b. Roulette Wheel: The probabilities assigned to the chromosomes in the mating pool 

are inversely proportional to their cost. A chromosome with the lowest cost has the 

greatest probability of mating, while the chromosome with the highest cost has the 
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lowest probability of mating. A random number determines which chromosome is 

selected. This type of weighting is often referred to as roulette wheel weighting (Haupt 

& Haupt, 2004).  

c. Tournament: Another approach that closely mimics mating competition in nature is 

to randomly pick a small subset of chromosomes (two or three) from the mating pool, 

and the chromosome with the lowest cost in this subset becomes a parent. The 

tournament repeats for every parent needed. Roulette wheel and tournament selection 

make a nice pair, because the population never needs to be sorted. Tournament 

selection works best for larger population sizes because sorting becomes time-

consuming for large populations (Haupt & Haupt, 2004). 

2. Crossover (Mating): Mating is the creation of one or more offspring from the parents 

selected in the pairing process. A crossover operator is used to recombine two strings to 

get a better string. In crossover operation, recombination process creates different 

individuals in the successive generations by combining material from two individuals of 

the previous generation  (Mathew).  

The crossover operation does not always occur. Sometimes, based on a set probability, 

no crossover occurs and the parents are copied directly to the new population (Skinner, 

2001). (Oliver, Smith, & Holland, 1987) suggested that the probability should be 

between 0.60-0.90. 

The most common form of mating involves two parents that produce two offspring. The 

most common and most successful crossover methods are single point and two points 

crossover. Crossover operation is done at string level by randomly selecting two strings 

for crossover operations.  

a. One point crossover: A one site crossover operator is performed by randomly 

choosing a crossing site along the chromosome (string) and by exchanging all bits on the 

right side of the crossing site as shown in Table 4 (Mathew). 

Table 4 One point crossover 

  Before Crossover After Crossover 

String-1 11 1100 11 11001 

String-2 110 11001 11 1100 
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b. Two point crossover: Two point crossover is a variation of the one site crossover, 

except that two crossover sites are chosen and the bits between the sites are exchanged 

as shown in Table 5  (Mathew). 

Table 5 Two point crossover 

  Before Crossover After Crossover 

String-1 011 011 00 011 110 00 

String-2 110 110 01 011 011 01 
 

3. Mutation: Mutation is the process of randomly disturbing genetic information. They 

operate at the bit level; when the bits are being copied from the current string to the new 

string, there is probability that each bit may become mutated. This probability is usually a 

quite small value, called as mutation probability. It is generally selected between 0.002 and 

0.100 (Greenwell, Angus, & Finck, 1995). 

The need for mutation is to create a point in the neighborhood of the current point, thereby 

achieving a local search around the current solution. The mutation is also used to maintain 

diversity in the population  (Mathew). 

After the application of selection, crossover, and mutation operators, a new generation is 

constructed. Note that for some genetic algorithms a process named as replacement is also 

defined and used. In this study this operator is not used. The corresponding cost function of 

new generation is calculated. This process is continued until the convergence criteria are 

met. The convergence criteria can be a value of a cost function, number of generations, etc. 

The number of generations (Ngen) is generally selected as a convergence criterion since the 

other criteria can be satisfied easier than the number of generation criteria. 

The genetic algorithm working principle can be summarized as follows: the optimization 

parameters are decided and corresponding search space is defined. An initial population is 

constructed and the fitness of the individuals is evaluated. The optimization criterion is 

controlled, then biological processes (selection, crossover, mutation) are applied and a new 

iteration is started. The genetic algorithm flowchart is presented in Figure 19. 
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Figure 19 Genetic algorithms flowchart (Cao & H., 1999) 

The following genetic algorithm optimization parameters are used during the orbit transfer 

problem. These parameters are selected based on the suggested ranges for each parameter 

in the literature and by trial & error process. 

Ni (number of individuals): 400 

Nb (number of bits): 7 

Ngen (generation number): 600 

Cp (crossover probability): 0.80 

Mp (mutation probability): 0.08 

The run time of a two impulse genetic algorithm based orbit transfer method at a computer 

with the following specifications: Intel® Core™2 Duo CPU E6550@2.33GHz, 2.00GB of RAM 

is approximately 620 seconds. The run time is directly related to number of impulses, 

number of individuals, and generation number. 

3.3.2 Steepest Descent Optimization Method 

Gradient based optimization methods use gradient of a function during optimization. These 

methods suggest fast and accurate results. However, gradient based optimization methods 

may not be good preference for functions that include discontinuities and/or local 

minimums/maximums.  
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In this section, a steepest descent optimization method is used.  

3.4 COMPARISON OF OPTIMIZATION METHODS FOR 
ORBIT TRANSFER OPTIMIZATION 

Orbit transfer optimization can be realized by using different type of optimization methods. 

In this study among these optimization techniques, genetic algorithm and steepest descent 

methods are selected and applied to orbit transfer problem. The method based on genetic 

algorithm is called as “genetic algorithm based orbit transfer method”.  

The performances of these methods are evaluated using the orbit transfer cases with known 

optimal results. These are coplanar circular to circular orbit transfers and only inclination 

change transfers. The optimal result of coplanar circular to circular orbit transfer can be 

obtained from Hohmann orbit transfer method. The result of only inclination change orbit 

transfer solution can also be obtained analytically. Coplanar circular to circular orbit transfer 

is defined as problem-1, and only inclination change orbit transfer is defined as problem-2. 

3.4.1 Problem-1 Coplanar Circular-Circular Orbit Transfer 

Coplanar circular to circular orbit transfer is a kind of orbit transfer that semimajor axis is 

changed while keeping other orbital elements constant. The optimal solution of coplanar 

circular-circular orbit transfer can be obtained using Hohmann orbit transfer. In this section 

the results of this orbit transfer is used to verify the applicability of optimization methods at 

the orbit transfer optimization problem. A test case is constructed to measure the 

performance of the optimization methods for orbit transfer problem (Table 6). This test case 

starts from low earth orbit altitudes and ends at geosynchronous earth orbit altitudes. This 

orbit transfer requires a large change in the semimajor axis value, in other words, the 

spacecraft performs a large change in orbit size. Therefore it can be stated that this test 

case requires larger change than real case orbit transfers of many spacecrafts. 

Table 6 Problem-1 Initial and Final Orbit values 

Orbital Element Initial Orbit Final Orbit 
a  (km) 7000.00 42164.00 
e  0.00000 0.00000 
i  (°) 90.000 90.000 
Ω  (°) 0.00 0.00 
ω  (°) N/A N/A 
v  (°) free free 
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Hohmann orbit transfer method is applied to obtain optimal solution to the problem given in 

Table 6. The required impulsive velocity vector magnitudes and corresponding true 

anomalies obtained by using Hohmann transfer are presented in Table 7. The total required 

impulsive velocity vector magnitude is 3770.70 m/s and the second impulse true anomaly is 

180°. Note that since the initial orbit is circular, the first impulse true anomaly value is not 

important. The first impulse can be applied at any point of the initial orbit. 

Table 7 Hohmann Orbit Transfer solution for Problem-1 

HOHMANN 
ORBIT TRANSFER 

Impulsive Velocity  
Vector Magnitude (m/s) 

Impulse True  
Anomaly (°) 

First Impulse 2336.80 Free 

Second Impulse 1433.90 180 
Total Impulse 3770.70 N/A 

 

Cost Function for Problem-1 

The thrust applied on the orbit plane of a spacecraft can only change semimajor axis ( a ), 

eccentricity ( e ), argument of perigee (ω ) and true anomaly (v ). Right ascension of 

ascending node (Ω ) and inclination ( i ) cannot be modified by the thrust applied on the 

orbit plane. True anomaly variation is generally not critical since it defines only the position 

of a spacecraft in an orbit. Argument of perigee is also not critical/defined at the circular 

orbits. Therefore, the cost function coefficients of true anomaly and argument of perigee is 

taken as zero.  

Cost function coefficients of orbital elements for Problem-1 are as follows: 

semimajor axis tolerance is  (Satellite Programmes Overview:Satellite Orbits, 2012): 

10.00aδ   km (3.61)

eccentricity tolerance is  (Satellite Programmes Overview:Satellite Orbits, 2012): 

0.00024eδ    (3.62)

It is assumed that acceptable error for inclination is  (Chao, 2005) : 

0.100iδ   ° (3.63)

It is assumed that acceptable error for right ascension of ascending node is  (Chao, 2005): 
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0.20Ωδ   ° (3.64)

The tolerance values for each orbital element and the corresponding cost function 

coefficients for problem-1 are tabulated in Table 8. 

Table 8 Tolerance values and cost function coefficients for problem-1 

Orbital Element Tolerance Values Cost Function Coefficient 
a  (km) ±10.00 1.00 
e  ±0.00024 41666.67 
i  (°) ±0.100 100.00 
Ω  (°) ±0.20 50.00 
ω  (°) N/A N/A 
v  (°) N/A N/A 

 

so the cost function is constructed as: 

1

J

25.00 41666.67 100.00 50.00
n

i error error error error
i

a e i Ω




     v
  (3.65)

3.4.1.1 Application Of Genetic Algorithm Method To Problem-1 

Genetic algorithm based orbit transfer optimization is applied to obtain solutions for 

Problem-1 (given in Table 6). In Table 9 the genetic algorithm based orbit transfer results 

are tabulated and in Table 10 the impulsive velocity vector magnitude and impulse timings 

(true anomaly) of the corresponding transfer is given. 

Table 9 Genetic Algorithm Based Orbit Transfer Results for Problem-1 

Orbital 
Element 

Desired Final 
Orbit 

Calculated Final 
Orbit 

Absolute 
Error  

Error 
(%) 

a  (km) 42164.00 42163.68 0.32 0.00 

e  0.00000 0.00007 0.00007 * 

i  (°) 90.000 90.000 0.000 0.00 

Ω  (°) 0.00 0.00 0.00 0.00 

ω  (°) N/A N/A N/A N/A 

v  (°) Free 356.52 N/A N/A 
* The percent error is not calculated for this orbital element since the initial and final value 
of this element is the same. 
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Table 10 Impulsive velocity vector magnitude comparison of optimal and genetic algorithm 
orbit transfer method results for problem-1 

  Analytical 
Result 

Algorithm 
Result 

Absolute 
Error 

Error 
(%) 

first impulsive velocity 
vector magnitude (m/s) 2336.80 2340.31 3.49 0.15 

second impulsive velocity 
vector magnitude (m/s) 1433.90 1434.29 0.39 0.03 

total impulsive velocity 
vector magnitude (m/s) 3770.70 3774.60 3.90 0.10 

first impulse 
true anomaly (°) free 131.61 N/A N/A 

second impulse 
true anomaly (°) 180.00 180.18 0.18 0.10 

 

As can be seen in Table 9, the orbital elements obtained by genetic algorithm orbit transfer 

strategy are compatible with the desired values. The semimajor axis absolute error is about 

0.3 km and the percent error is 0.001%. The eccentricity absolute error is 0.00007 which is 

a negligible value since this value is within the predefined tolerances. As expected, the 

inclination and right ascension of ascending node errors are zero (0). 

The genetic algorithm and analytical method results are compared considering total 

required impulsive velocity vector magnitude. As illustrated in Table 10, in the analytical 

method, the required impulsive velocity vector magnitude is 3770.70m/s and the impulsive 

velocity vector magnitude calculated by genetic algorithm based orbit transfer is 

3774.60km/s. The difference between the impulsive velocity vector magnitude of analytical 

and genetic algorithm based orbit transfers is less than 1%. The second impulse true 

anomaly value obtained by genetic algorithm (180.18º) is also very close to the optimal 

result (180.00º).  

Both final orbital elements and the required impulsive velocity vector magnitudes are very 

close to their desired/expected values. All the errors are within the tolerances that are 

presented in Table 8. It can be concluded that genetic algorithm based orbit transfer 

method can be used at the coplanar orbit transfer calculations. 

3.4.1.2 Application Of Steepest Descent Algorithm To Problem-1 

Gradient based numerical optimization methods are fast and robust, but they may converge 

to a local minimum instead of global minimum. In order to specify the performance of 

steepest descent method at the orbit transfer problem two initial predictions are generated: 

one close to the global minimum and one far to the global minimum for problem-1 (Table 

6). In orbit transfer optimization main difficulty is to generate a good initial prediction. It is 
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expected that the optimization method that is used at the orbit transfer optimization should 

pass over local minimums and reach to global minimum(s). If the steepest descent method 

reaches to a global minimum for these initial predictions, it can be concluded that this 

method can be used for orbit transfer optimization. Since the optimal solution of problem-1 

is known (Hohmann transfer), problem-1 is used to test the performance of the steepest 

descent method. Note that the performance of genetic algorithm based orbit transfer is also 

tested using problem-1. The same cost function used for genetic algorithm is used at the 

steepest descent optimization method. 

In the first case the initial prediction is done far from the optimal result and second case is 

devoted to the initial prediction close to the optimal result. 

Case 1 Initial Prediction Far From Optimal Solution 
The performance of steepest descent algorithm may change depending on initial prediction. 

Generally it is not easy to make a close prediction at the orbit transfer optimization problem. 

In this section an initial prediction that is far to the optimal solution is used to obtain 

solution to problem-1 (coplanar circular to circular orbit transfer). Initial prediction is 

generated as: 

Initial prediction:

1x

1y

1z

1

2x

2y

2z

2

Δv 1000.00
Δv 1000.00

Δv 1000.00

180.00
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1000.00Δv
180.00

v

v

   
   
   
   
   
      
   
   
   
   
     

 

Steepest descent algorithm is run for the initial prediction stated above. The obtained result 

is given in Table 11. There exist large errors in the semimajor axis, inclination, eccentricity 

and right ascension of ascending node. Steepest descent method suggests a highly elliptic 

( e =0.85) and retrograde ( i >90º) orbit whereas it is aimed to reach circular or nearly 

circular and polar orbit. The errors are beyond the tolerances (Table 8) and not acceptable. 

In Table 12, for Problem-1 the required impulsive velocity vector magnitude and obtained 

orbit values of steepest descent method are compared to analytical results of coplanar 

circular-circular orbit transfer. Although the required total impulsive velocity vector 

magnitude is close to the optimal value, the distribution of impulsive velocity vector and 

second impulse true anomaly are not at the expected values. This shows that steepest 
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descent algorithm cannot pass over a local minimum value at Problem-1 when far initial 

prediction is given as an initial prediction. Actually it is an expected situation since orbit 

transfer problem includes many local minimums (Conway, 2010). From these results it can 

be stated that the steepest descent method, when far initial prediction is selected, is not a 

proper optimization method for orbit transfer calculations. 

Table 11 Steepest descent method (far initial prediction) result for Problem-1 

Orbital 
Element 

Desired Final 
Orbit 

Calculated Final 
Orbit 

Absolute 
Error  

Error 
(%) 

a  (km) 42164.00 42124.00 40.00 0.11 
e  0.00000 0.83280 0.83280 * 
i  (°) 90.000 95.238 5.238 * 
Ω  (°) 0.00 10.93 10.93 * 
ω  (°) undefined undefined undefined undefined 
v  (°) insignificant 72.0 insignificant insignificant 

* The percent error is not calculated for this orbital element since the initial and final value 
of this element is the same. 

Table 12 Impulsive velocity vector magnitude comparison of analytical and steepest descent 
(far initial prediction) orbit transfer method results for Problem-1 

  
Analytical 
result 

Algorithm 
result 

Absolute 
Error 

Error 
(%) 

first impulsive velocity 
vector magnitude (km/s) 2336.80 2180.00 156.80 6.71 

second impulsive velocity 
vector magnitude (km/s) 1433.90 1600.00 166.10 11.58 

total impulsive velocity 
vector magnitude (km/s)  3770.70 3780.00 9.30 0.25 

first impulse 
true anomaly (°) Free 298.10 N/A N/A 

second impulse 
true anomaly (°) 180.00 82.94 97.06 53.92 

Case 2 Initial Prediction Close To Optimal Solution 
At the first case of application of steepest descent algorithm to problem-1 optimal solution 

cannot be obtained. In this section the optimal solution to the same problem (problem-1) is 

searched for an initial prediction that is close to the optimal solution. 

Initial prediction is: 
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Initial prediction:
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Steepest descent method is used for initial prediction given above and the corresponding 

result is tabulated in Table 13. The analytical and steepest descent algorithm based orbit 

transfer method results are close. The impulsive velocity vector magnitudes and true 

anomalies of this orbit transfer are presented in Table 14. 

Table 13 Steepest descent algorithm (close initial prediction) result for Problem-1 

Orbital 
Element 

Desired Final 
Orbit 

Calculated Final 
Orbit

Absolute 
Error 

Error 
(%) 

a  (km) 42164.00 42164.00 0.00 0.00 
e  0.00000 0.00067 0.00067 * 
i  (°) 90.000 89.997 0.003 * 
Ω  (°) 0.00 0.00 0.00 0.00 
ω  (°) undefined undefined undefined undefined 
v  (°) insignificant 92.50 insignificant insignificant 

* The percent error is not calculated for this orbital element since the initial and final value 
of this element is the same. 

Table 14 Impulsive velocity vector magnitude comparison of analytical and steepest descent 
(close initial prediction) orbit transfer method results for Problem-1 

  
Analytical 
result 

Algorithm 
result 

Absolute 
Error 

Error 
(%) 

first impulsive velocity 
vector magnitude (km/s) 2336.80 2340.00 3.20 0.14 

second impulsive velocity 
vector magnitude (km/s) 1433.90 1430.00 3.90 0.27 

total impulsive velocity 
vector magnitude (km/s) 3770.70 3770.00 0.70 0.02 

first impulse 
 true anomaly (º) Free 0.00 N/A N/A 

second impulse 
true anomaly(º) 180.00 180.18 0.18 0.10 
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3.4.2 Problem-2 Only Inclination Change Orbit Transfer 

Only inclination change (OIC) orbit transfer is an orbit transfer that is applied to change 

only the inclination of the orbit. In order to perform this orbit transfer the thrust is needed 

to be applied at the equatorial crossing point. Details of this kind of orbit transfer can be 

found in section 3.1.2. In this section only inclination change orbit transfer is taken as 

baseline and the performance of genetic algorithm at the noncoplanar motion is evaluated. 

It should be noted that, since steepest descent optimization is found to be unsatisfactory for 

Problem-1 in 3.4.1.2 part, this method is not applied to only inclination change orbit transfer 

problem (Problem-2). 

This kind of orbit transfer is a single impulse orbit transfer, to put differently, only one 

impulse is applied to spacecraft. To illustrate this situation, only inclination change orbit 

transfer problem is defined in Table 15. Note that the initial value of sum of argument of 

perigee and true anomaly is 360°, which is a prerequisite for this transfer in order not to 

modify right ascension of ascending node. 

Table 15 Test scenario for only inclination change orbit transfer 

Orbital Element Initial Orbit Desired Final Orbit 
a  (km) 42164.00 42164.00 
e  0.00000 0.00000 
i  (°) 7.000 0.000 
Ω  (°) 300.00 300.00 
ω  (°) N/A N/A 
v  (°) 0.0 free 

 

The required impulsive velocity vector magnitude for the corresponding transfer is 

calculated: 

v =375.40 m/s (3.66)

The cost function is constructed similar to Problem 1 except the tolerances of inclination and 

right ascension of ascending node. Since only inclination change orbit transfer requires 

more accurate values for inclination and right ascension of ascending node, the acceptable 

errors are assumed to be as follows: 

It is assumed that tolerance of inclination is (Chao, 2005): 

0.050  i ° (3.67)
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It is assumed that acceptable error for right ascension of ascending node is (Chao, 2005): 

0.10  δ ° (3.68)

The tolerance values for each orbital element and the corresponding cost function 

coefficients for Problem-2 are tabulated in Table 16. 

Table 16 Tolerance values and cost function coefficients for problem-2 

Orbital Element Tolerance Values Cost Function Coefficient 
a (km) ±10.00 1.00 
e  ±0.00024 41666.67 
i  (°) ±0.050 200.00 
Ω  (°) ±0.10 100.00 
ω  (°) undefined undefined 
v  (°) insignificant insignificant 

 

so the cost function is constructed as: 

1

J

25.00 1.00 41666.67 200.00 100.00
n

i error error error error
i

a e i Ω




     v
  (3.69)

3.4.2.1 Application Of Genetic Algorithm Method To Problem-2 

In this section, the performance of genetic algorithm is evaluated by comparing analytical 

and genetic algorithm results for Problem-2.  

The result of this strategy (genetic algorithm based orbit transfer) is tabulated in Table 17. 

The genetic algorithm based orbit transfer method provides a successful result; the 

spacecraft can be transferred to the final orbit as desired. All the final orbital element values 

are in their tolerances. Only the eccentricity value differs a little from the desired final value. 

Semimajor axis, inclination, and right ascension of ascending node are exactly at the 

desired orbit values.  
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Table 17 Genetic Algorithm orbit transfer method results for problem-2 

Orbital 
Element 

Desired Final 
Orbit 

Calculated Final 
Orbit 

Absolute 
Error  

Error 
(%) 

a  (km) 42164.00 42164.00 0.00 0.00 
e  0.00000 0.00003 0.00003 * 
i  (°) 0.000 0.000 0.000 0.00 
Ω  (°) 300.00 300.00 0.00 0.00 
ω  (°) undefined undefined undefined undefined 
v  (°) insignificant 269.9 insignificant insignificant 

* The percent error is not calculated for this orbital element since the initial and final value 

of this element is the same. 

 

The required impulsive velocity magnitude is obtained by using genetic algorithm based 

orbit transfer for problem-2 is: 

v =375.40 m/s. 

This value is exactly the same as the analytical result. This shows that genetic algorithm 

based orbit transfer method’s performance is good enough and can be used to search 

optimal orbit transfer solutions.  

3.4.3 Optimization Method Comparisons For Problem-1 & 2 

As can be seen in sections 3.4.1 and 3.4.2, it is possible to obtain solutions for orbit transfer 

optimization problems using different optimization methods. In this study two optimization 

methods; genetic algorithm and steepest descent algorithm, are used to optimize orbit 

transfers. The required impulsive velocity vector magnitudes of these optimization results 

and analytical results are presented in Table 18. The calculated final orbit values of 

problem-1 and 2 are given in Table 19 and Table 20 respectively. 

It is seen that genetic algorithm provides optimal solutions for both problem-1 and problem-

2 since the desired and calculated final orbit values are close and required impulsive velocity 

vector magnitudes are also close to analytical results. 

Steepest descent optimization algorithm is run to obtain solution for problem-1. Two 

different initial predictions are generated: one is initial prediction far from the optimal 

solution and the other is close initial prediction to optimal solution. While the required 

impulsive velocity vector magnitudes are close to analytical result at the both cases (far and 

close to optimal solution), the calculated final orbit is different than the desired final orbit at 

the far initial prediction case. 
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Table 18 Impulsive velocity vector magnitude results of genetic and steepest descent 
algorithms for problem-1 & problem-2 

  
Total Impulsive Velocity 
Vector Magnitude (m/s) 

Optimization 
Method 

Problem-1 (coplanar 
circular-circular) 

Problem-2 (inclination  
change only) 

Analytical result 3770.70 375.40 

Genetic algorithm 3774.60 375.40 

Steepest descent algorithm 
(far to optimal solution) 

3780.00 Not calculated 

Steepest descent algorithm 
(close to optimal solution) 

3770.00 Not calculated 

Table 19 Calculated final orbital element results of genetic and steepest descent algorithms 
for problem-1 

  PROBLEM-1 

Orbital 
Element 

Desired 
Final Orbit 

Genetic  
Algorithm 

Steepest descent 
algorithm (far to 
optimal) 

Steepest descent 
algorithm (close 
to optimal) 

a  (km) 42164.00 42163.68 42124.00 42164.00 

e  0.00000 0.00007 0.83280 0.00067 

i  (°) 90.000 90.000 95.238 89.997 

Ω  (°) 0.00 0.00 10.93 0.00 

ω  (°) undefined undefined undefined undefined 

v  (°) insignificant 356.52 72.00 92.50 
 

Since the optimal result for problem-1 cannot be obtained using steepest descent algorithm 

for a far prediction to the optimal solution, steepest descent algorithm is not used to search 

optimal result for problem-2. 

Table 20 Calculated final orbital element results of genetic algorithm for problem-2 

PROBLEM-2 
Orbital Elements Desired Final Orbit Genetic Algorithm 
a  (km) 42164.00 42163.68 

e  0.00000 0.00007 

i  (°) 0.000 90.000 

Ω  (°) 300.00 0.00 

ω  (°) undefined undefined 

v  (°) insignificant 356.52 
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It can be concluded from steepest descent method results of case-1 & 2; steepest descent 

optimization method can be used for orbit transfer optimization if a good initial prediction 

can be supplied. Poor starting prediction may cause the steepest descent method to stick in 

a local minimum. However, it is generally not very easy to make a good initial prediction for 

orbit optimization problem. Therefore, in orbit transfer optimization problem it is better to 

use a heuristic method rather than a gradient based method for optimization purposes. 
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CHAPTER 4 

TEST CASES 

The orbital elements of a spacecraft mainly depend on spacecraft mission, earth coverage 

area, the time distribution of spacecraft at specific areas, and the observation time. 

Spacecrafts are generally inserted to orbits for Earth observation, scientific, meteorological, 

navigation and telecommunication purposes (97.8%) (Technical Issues: UCS Satellite 

Database, 2012). These types of spacecrafts have mission orbits where the Earth is at the 

one of the foci of the orbit ellipse. The spacecrafts which do not have Earth related missions 

have special and/or scientific missions. The mission analysis and orbit transfer problem of 

these spacecrafts have different requirements such as magnetic distribution, mass of central 

body, other perturbations, and etc. Since the orbit transfer of spacecrafts which Earth is not 

at the foci at their orbit are out of scope of this study, in this section these spacecrafts’ orbit 

transfers are not analyzed. 

In this section orbit transfer methods are developed for different orbit raising problem using 

classical orbit transfers and genetic algorithm based orbit transfer optimization. Classical 

orbit transfers are the transfers that exist in the literature and only some of these orbit 

transfers are optimal at specific cases. There exist no optimal solutions to the test case 

problems. In this section as a classical orbit transfer problem, if superposition of optimal 

orbit transfers are applied where applicable. For the cases where superposition of optimal 

orbit transfers is not applicable, nonoptimal orbit transfers are applied. The genetic 

algorithm based orbit transfer method is run for different number of impulses. These are 

two (2), three (3) and four (4) impulse orbit transfers. Among these the simplest orbit 

transfer strategy is the two impulse orbit transfer since it requires only two impulse. In the 

space industry, reliability is one of the most important parameter of spacecrafts. As the 

number of impulses increase, the reliability value decreases. If the two impulse orbit 

transfer strategy suggests good enough solution, it should be preferred. Similar to the two 

impulse case, among three and four impulse cases, three impulse should be selected if it 

suggests good enough results.  
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The results of genetic algorithm based orbit transfer and classical orbit transfer methods are 

compared. The genetic algorithm based orbit transfer optimization can be used to develop 

strategies for orbit transfer, orbit raising and de-orbiting. In this part only the orbit raising 

problems are detailed to illustrate the genetic algorithm orbit transfer method. 

The test cases are selected based on realistic and popular missions. The most popular four 

Earth centered orbits, Sun Synchronous Low Earth Orbit (SS-LEO), Medium Earth Orbit 

(MEO), Geostationary Earth Orbit (GEO) and Molniya Orbit raising problems, are selected to 

be evaluated as test cases. These orbits are illustrated in Figure 20. The orbit at which 

spacecraft is separated from the launch vehicle is defined as initial orbit of the spacecraft. A 

launch vehicle can insert spacecraft with a limited accuracy. The initial orbit of a spacecraft 

is specified based on the worst performance of launch vehicle. It is assumed that the 

deviation from the final orbit of a launch vehicle is at its maximum (worst injection 

accuracy). In this section these test cases are introduced and orbit transfers are realized 

applying both classical orbit transfer methods and genetic algorithm based orbit transfer 

methods. For each test case, the classical and genetic algorithm based orbit transfer 

methods are compared where applicable. In all cases same initial and final orbital elements 

and genetic parameters are used. 

 

Figure 20 Test cases with respect to Earth (LEO, MEO, GEO, and Molniya orbit) 
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The performance of genetic algorithm based orbit transfer method for each test case is 

measured by using a cost function. The cost function includes difference between 

destination orbit elements and the algorithm results and the required energy/propellant to 

realize the algorithm suggested orbital maneuver. The coefficients of cost function are 

specified depending on the importance of each orbital element based on mission 

requirements and the importance of propellant/energy. The cost function does not include 

other constraints (transfer duration, impulse level per one burn, total impulse level, orbit of 

3rd bodies, etc.). Although impulse level one burn and total impulse level is not included in 

the cost function, the applicability of solution is checked considering these constraints. 

For each test case, initial orbital element values, final orbital element values and the 

corresponding tolerances of each orbital element are defined. In each test case it is 

expected that each orbital element is to be within the predefined tolerances. If the 

algorithm result is not in the tolerance range, the result is assumed to be unsuccessful. 

In this section classical and genetic algorithm based orbit transfer results are presented. 

The results of these methods are compared with respect to the impulsive velocity 

requirements for all test cases. Afterwards in order to investigate the effects of initial orbital 

elements to results, the algorithm is run for different orbital elements. The effects of each 

orbital element to the solutions are obtained for each case (LEO, MEO, GEO, and Molniya). 

These conclusions can also be used during the mission planning of both restartable last 

stage of launch vehicle which is used at the exoatmospheric region and spacecraft. 

4.1 TEST CASE-1 SUN SYNCHRONOUS LOW EARTH ORBIT 
(SS-LEO) RAISING PROBLEM 

The first test case is sun-synchronous Low Earth Orbit raising problem. Sun-synchronous 

Low Earth Orbit is a very popular orbit especially used for Earth observation and 

communication purposes. Today 190 of 994 operational satellites (19.1%) are sun-

synchronous Low Earth Orbit satellites (Technical Issues: UCS Satellite Database, 2012). A 

sun-synchronous orbit is one that lies in a plane that maintains a fixed angle with respect to 

the Earth–sun direction. Therefore the inclination value is related to orbit altitude 

(semimajor axis and eccentricity). The relationship between altitude (for circular orbits) and 

the inclination value is given in Figure 21. Note that altitude is the difference between 

semimajor axis and radius of Earth for circular orbits. For sun synchronous orbit the 

inclination value is generally selected between 96 ̊-104 ̊. These properties ensure that: 

 The satellite passes over a given location on Earth every time at the same local 

solar time, so guarantees almost the same illumination conditions [49]. 
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 The satellite covers the whole surface of the Earth. 

In Sun-synchronous Low Earth Orbit missions the critical orbital elements are semimajor 

axis, eccentricity, inclination, and right ascension of ascending node. At the SS-LEO raising 

problem includes both the correction of coplanar and noncoplanar orbit parameters. This 

disables the direct application of classical optimal orbit transfers, since there exist no 

optimal method in the literature that realizes orbit transfer like LEO raising. 

In order to decrease the perturbation effects at the Sun Synchronous Low Earth Orbit (SS-

LEO), eccentricity should not be exactly zero (0); instead it should be a close value to zero. 

Generally around 0.00112 values is selected (Larson & Wertz, 2005). Since SS-LEO mission 

requires almost circular orbit (i.e. e =0.00112), the argument of perigee is not 

critical/defined. True anomaly is not important for this mission; therefore it is not included 

in the cost function. Based on launch vehicle injection accuracies for LEO, the test Case-1 is 

constructed. It is assumed that the orbit that a spacecraft is separated from a launch 

vehicle (initial orbit) and it is expected that the spacecraft reaches its mission (final) orbit 

using its own propulsion system. Initial (separation) and final (mission) orbits of a typical 

SS-LEO satellite are tabulated in Table 21.  

Table 21 Test Case-1 initial and final orbital element values 

Orbital Element 
Initial Orbit (PSLV 
user guide, 2005) Desired Final Orbit 

a  (km) 7050.00 7080.00 
e  0.00300 0.00112 
i  (°) 98.000 98.200 
Ω  (°) 0.00 0.00 
ω  (°) N/A N/A 
v  (°) free free 

 

The tolerance values of the orbital elements are the values that do not affect the mission of 

the spacecraft. Semimajor axis tolerance is specified at (Jensen, 1998): 

1.00aδ   km (4.1)

eccentricity tolerance is  (Jensen, 1998): 

0.00014eδ    (4.2)

Since this mission also requires sun synchronous orbit, the inclination value is needed to be 

fixed at an altitude (Figure 21). 
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where: 

 ssi : inclination value for sun synchronous mission 

 h : orbit altitude 

 R : Earth’s radius (6378km) 

 

Figure 21 Orbital Altitude versus Orbital Inclination for Circular Sun Synchronous Earth 
Orbits (Boain, 2005) 

The corresponding inclination tolerance for this case is given in (Jensen, 1998): 

0.100iδ     (4.4)

where: 

 iδ : tolerance value of inclination 

 

It is assumed that 10 minutes local time error is acceptable for SS-LEO case. So 

( 10 /(24.60))360 2.50Ωδ       (4.5)
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where: 

 Ωδ : tolerance value of right ascension of ascending node 

 

The tolerance values and corresponding cost function coefficients of each orbital element 

for test case-1 are tabulated in Table 22. Note that these values are close to the values 

obtained in the literature. For example, USA’s earth observation satellite Aquarius/Sac-D’ 

has orbit accuracy values close to the values in Table 22 . 

The cost function coefficients are calculated as follows: the multiplications of tolerance value 

and cost function coefficient are kept constant. Cost function coefficient for semimajor axis 

is assumed as unity (1) since the corresponding cost function coefficient of impulsive 

velocity is 25. During all cases the cost function coefficients of semimajor axis are kept 

constant and the other orbital elements cost function coefficients (eccentricity, inclination, 

right ascension of ascending node) are scaled depending on tolerance values. It should be 

noted that the tolerance values and cost function coefficients can be selected differently 

depending on the performance and accuracy requirements of a spacecraft. The tolerance 

and cost function values stated here are typical values and they can vary for different 

situations. The algorithm can be run for different tolerance and cost function values.  

Table 22 Tolerance values and cost function coefficients of test case 1 

Keplerian Elements Tolerance Values Cost Function Coefficient 
a  (km) ±1.00 1.00 
e  ±0.00014 7142.86 
i  (°) ±0.100 10.00 
Ω  (°) ±2.50 0.40 
ω  (°) N/A N/A 
v  (°) N/A N/A 

 

so the cost function is constructed as: 
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n
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(4.6)

 

A spacecraft, which has sun synchronous LEO mission, can reach to its mission orbit by 

applying two or more orbital maneuvers. Since the initial and final orbits are not 

intersecting, the transfer cannot be realized by applying a single impulse. In the literature it 
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is shown that applying more than four (4) maneuvers is not feasible (Gobetz & Doll, 1969). 

Since the required impulsive velocity vector magnitude of more than four impulse does not 

offer much better results than four or less impulse case and more than four impulse 

decreases the reliability factor of spacecraft, it is generally not preferred. Therefore in this 

study, the maximum number of impulse is assumed to be four (4).  

Firstly, SS-LEO raising problem is performed applying classical orbit transfer methods. 

Afterwards, solution for SS-LEO raising problem is obtained using genetic algorithm based 

orbit transfer method to implement two, three, and four impulse orbit transfers. At the end 

of this part, the results of classical methods and genetic algorithm based orbit transfer 

methods for different number of impulses are compared.  

4.1.1 Implementation of Classical Orbit Transfer Methods for SS-LEO 
Raising Problem 

In this section a SS-LEO orbit raising problem whose initial and final values are given in 

Table 21 is studied using classical orbit transfer methods. Since it is possible to apply 

superposition of optimal orbit transfers such a SS-LEO raising problem, superposition of 

Hohmann and only inclination change orbit transfers are applied respectively. For this 

reason, the combination of optimal classical orbit transfers is applied to perform SS-LEO 

raising. Solutions for planar orbit transfers can be obtained using Hohmann transfer. This 

method is only valid between coplanar circular orbit transfers. Since the eccentricity values 

of initial and final orbit values are small, these orbits are assumed to be circular and 

Hohmann transfer is applied to perform necessary coplanar transfer. Only inclination change 

orbit transfer is used to make plane change corrections. Since the equations of Hohmann 

transfer and only inclination change orbit transfer is presented in chapter 3, it is not 

repeated again. In Table 23, the required impulsive velocity vector magnitude of a SS-LEO 

orbit raising problem is obtained using classical orbit transfer methods.  

Table 23 Classical orbit transfer solution for SS-LEO orbit raising case 

  Impulsive Velocity Vector Magnitude(m/s) 
Hohmann Transfer 29.80 
OIC 26.20 
TOTAL 56.00 
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4.1.2 Implementation of Genetic Algorithm Orbit Transfer Methods for 
SS-LEO Raising Problem 

The genetic algorithm based orbit transfer methods can suggest results better than classical 

orbit transfers. Since initial and final orbits are not intersecting at SS-LEO orbit raising case 

at least two impulse orbit transfer is needed to be applied. The solution to SS-LEO raising 

problem may also be obtained by applying more than two impulses. Solution for SS-LEO 

raising problem is searched by applying two, three, and four impulse genetic algorithm orbit 

transfer methods. The same cost function is used at each orbit transfer method for SS-LEO 

raising problem. 

4.1.2.1 Two-Impulse SS-LEO Raising Strategy 

The simplest SS-LEO raising strategy is the two impulse orbit transfer. The results of SS-

LEO spacecraft orbit raising two impulse maneuvers are given in Table 24. The final orbit 

values are close to the destination orbit values. All the errors are less than 0.25%. The 

semimajor axis error is about 70 meters, the eccentricity and inclination errors are zero (0), 

and the largest error is observed at the right ascension of ascending node element which is 

only 0.03°. All these errors are in the defined tolerance range, in other words this transfer 

strategy can be applied to realize SS-LEO raising. 

Table 24 SS-LEO spacecraft orbit raising result for two-impulse orbit transfer 

Orbital 
Element 

Desired Final 
Orbit 

Calculated Final 
Orbit 

Absolute 
Error  

Error 
(%) 

a  (km) 7080.00 7079.93 0.07 0.23 
e  0.00112 0.00112 0.00000 0.00 
i  (°) 98.200 98.200 0.000 0.00 
Ω  (°) 0.00 0.03 0.03 * 
ω  (°) undefined undefined undefined undefined 
v  (°) insignificant 268.70 insignificant insignificant 

* The percent error is not calculated for this orbital element since the initial and final value 
of this element is the same. 

The initial, intermediate and final orbits for this orbit transfer are tabulated in Table 25. As 

seen, more than half of the required orbit change is realized at the initial impulse. Right 

ascension of ascending node is almost not changed. 
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Table 25 Two impulse SS-LEO spacecraft orbit raising intermediate orbit results 

Orbital Element  Initial Orbit Intermediate Orbit Final Orbit 
a  (km) 7050.00 7076.99 7079.93 
e  0.00300 0.00109 0.00112 
i  (°) 98.000 98.097 98.200 
Ω  (°) 0.00 359.99 0.03 
ω  (°) undefined undefined undefined 
v  (°) 173.92 39.15 268.70 

 

The required impulsive velocity vector components in x, y, and z directions (Earth inertial) 

and corresponding true anomaly values for two impulse SS-LEO raising orbit transfer 

problem are given in Table 26. The total required impulsive velocity vector magnitude is 

about 33.97m/s. The largest component at the both impulse is the y axis which is about 

14m/s. 

Table 26 Impulse details of two impulse SS-LEO raising orbit transfer strategy 

  
X axis 
(m/s) 

Y axis 
(m/s) 

Z axis 
(m/s) 

Total Impulsive 
Velocity 
Magnitude (m/s) 

Impulse True 
Anomaly (°) 

Impulse-1 -4.263 14.647 -12.064 19.449 173.92 
Impulse-2 -1.433 -14.414 -0.940 14.516 246.17 
TOTAL   33.97  

 

4.1.2.2 Three-Impulse SS-LEO Raising Strategy 

In this section three impulse SS-LEO raising transfer results are presented. The results of 

three-impulse SS-LEO raising orbit transfer are tabulated in Table 27. As can be seen in 

Table 27, the semimajor axis, eccentricity, and inclination errors are much less than their 

tolerances. The largest error is observed at the right ascension of ascending node (0.01º) 

which is also much less than its tolerance (2.5º). Since all final orbital elements are close to 

the desired orbital values (in the tolerance range), three impulse orbit transfer strategy can 

also be applied to perform SS-LEO raising. 

 

 



 78

Table 27 SS-LEO spacecraft orbit raising result for three-impulse orbit transfer 

Orbital 
Element 

Desired Final 
Orbit 

Calculated Final 
Orbit 

Absolute 
Error  

Error 
(%) 

a  (km) 7080.00 7080.00 0.00 0.00 
e  0.00112 0.00113 0.00001 0.53 
i  (°) 98.200 98.200 0.000 0.00 
Ω  (°) 0.00 0.01 0.01 * 
ω  (°) undefined undefined undefined undefined 
v  (°) insignificant 11.72 insignificant insignificant 

* The percent error is not calculated for this orbital element since the initial and final value 
of this element is the same. 

 

The initial, intermediate and final orbits for this orbit transfer are tabulated in Table 28. 

Most of the inclination error is corrected during the first and second impulse case. While 

eccentricity error is decreased to low value after the first impulse, eccentricity error is 

increased during second impulse. The eccentricity error is minimized at the third impulse. 

Table 28 Three impulse SS-LEO spacecraft orbit raising intermediate orbit results 

Orbital Element  Initial Orbit
Intermediate 
Orbit-1 

Intermediate 
Orbit-1 Final Orbit 

a  (km) 7050.00 7064.81 7072.73 7080.00 
e  0.00300 0.00122 0.00008 0.00113 
i  (°) 98.000 98.079 98.152 98.200 
Ω  (°) 0.00 0.01 0.06 0.01 
ω  (°) N/A 51.51 343.20 undefined 
v  (°) free 135.72 127.99 11.72 

 

The required impulsive velocity vector components and corresponding true anomaly values 

of this orbit raising strategy are given in Table 29. The total required impulsive velocity 

vector magnitude is 38.67m/s. Similar to the two impulse strategy, the largest vector 

components are at the y axis at the all impulses of three impulse strategy. 

Table 29 Impulse details of three (3) impulse SS-LEO raising orbit transfer strategy 

  
X axis 
(m/s) 

Y axis 
(m/s) 

Z axis 
(m/s) 

Total Impulsive 
Velocity 
Magnitude (m/s) 

Impulse True 
Anomaly (°) 

Impulse-1 -8.177 11.531 -7.459 15.983 187.23 
Impulse-2 4.927 11.843 0.003 12.827 163.69 
Impulse-3 4.133 -8.947 0.090 9.855 332.47 
TOTAL  38.67  
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4.1.2.3 Four-Impulse SS-LEO Raising Strategy 

Four-impulse strategy can also be applied to perform SS-LEO orbit raising transfer. The 

results of four impulse SS-LEO orbit raising maneuver are tabulated in Table 30. The 

eccentricity and inclination are at the desired values. A small amount of error is observed at 

the semimajor axis (10 meters). The impulse details (impulsive velocity vector and true 

anomalies) are presented in Table 32.  

Table 30 SS-LEO spacecraft orbit raising simulation result for four-impulse orbit transfer 

Orbital 
Element 

Desired Final 
Orbit 

Calculated Final 
Orbit 

Absolute 
Error  

Error 
(%) 

a  (km) 7080.00 7079.99 0.01 0.03 
e  0.00112 0.00112 0.00000 0.00 
i  (°) 98.200 98.200 0.000 0.00 
Ω  (°) 0.00 0.04 0.04 * 
ω  (°) undefined undefined undefined undefined 
v  (°) insignificant 141.87 insignificant insignificant 

* The percent error is not calculated for this orbital element since the initial and final value 
of this element is the same. 

The initial, intermediate and final orbits for this orbit transfer are tabulated in Table 31. The 

inclination error is corrected linearly; however, semimajor axis error is corrected at the third 

and fourth impulse cases. 

Table 31 Four impulse SS-LEO spacecraft orbit raising intermediate orbit results 

Orbital  
Element 

Initial 
Orbit 

Intermediate
Orbit-1 

Intermediate
Orbit-2 

Intermediate 
Orbit-3 

Final 
Orbit 

a  (km) 7050.00 7062.05 7055.09 7073.48 7079.99 
e  0.00300 0.00126 0.00104 0.00230 0.00112 
i  (°) 98.000 98.058 98.088 98.141 98.200 
Ω  (°) 0.00 0.02 0.06 0.05 0.04 
ω  (°) N/A 353.92 304.12 207.06 undefined 
v  (°) free 156.97 107.14 33.15 141.87 
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Table 32 Impulse details of four (4) impulse SS-LEO raising orbit transfer strategy 

  
X axis 
(m/s) 

Y axis
(m/s) 

Z axis
(m/s) 

Total Impulsive 
Velocity 
Magnitude (m/s) 

Impulse  
True 
Anomaly (°)

Impulse-1 -0.880 8.853 -5.815 10.628 196.95 
Impulse-2 2.611 -5.922 -3.541 7.377 57.33 
Impulse-3 2.386 8.277 -9.000 12.458 229.79 
Impulse-4 -4.750 -8.438 3.323 10.237 141.60 
TOTAL   40.70  

 

The desired and algorithm results of orbital elements are close to each other (all in the 

tolerances), the maximum percent error is observed at the eccentricity which is  less than 

0.04%. The required impulsive velocity vector magnitude for four impulse genetic algorithm 

orbit transfer strategy is about 40.70m/s. At this strategy the largest component at each 

impulse is also at the y axis components. 

4.1.3 Comparison of Transfer Alternatives for SS-LEO Raising Problem 

It is possible to obtain solutions for SS-LEO raising problem with different orbit transfer 

strategies. All the strategies applied above are applicable to Sun Synchronous Low Earth 

Orbit (SS-LEO) raising problem since all results are in the tolerance limits. These strategies 

have advantages and disadvantages with respect to each other. Main difference between 

these strategies is the magnitude of the required impulsive velocity. Since the errors are 

negligibly small and all within their tolerances, there is no need to compare final orbital 

values to desired orbital values. In Table 33, the total required impulsive velocity vector 

magnitudes for each method that can be applied for SS-LEO raising are tabulated. 

Table 33 Impulsive Velocity Requirement Comparison of SS-LEO raising strategies 

SS-LEO raising strategy  Total Impulsive Velocity 
Vector Magnitude (m/s) 

Classical Orbit Transfer Methods 56.00 
Two-impulse Orbit Transfer Method 33.97 
Three-impulse Orbit Transfer Method 38.67 

Four-impulse Orbit Transfer Method 40.70 
 

Although both the Hohmann and only inclination change orbit transfers are optimal for 

some conditions, the combination may not be optimal. This is actually the case that is 

encountered in SS-LEO raising orbit transfer problem. The solution of SS-LEO raising orbit 

transfer problem obtained by the superposition of optimal methods is the most fuel 

consuming method (56.00m/s). Two-impulse genetic algorithm strategy requires the least 
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impulsive velocity magnitude (33.97m/s) which is approximately 39.3% less than the 

combination of optimal methods. Instead of two-impulse orbit transfer strategy, three and 

four-impulse strategies can also be applied for SS-LEO raising problem. However, three and 

four impulse strategies require more impulsive velocity than two-impulse strategy. Three 

and four impulse strategies should also not be preferred because of reliability issues. As can 

be seen from Table 33, the impulsive velocity requirements of three and four impulse are 

close, however the four-impulse orbit transfer strategy requires a little more. 

4.1.4 Effect of Initial Orbital Elements to SS-LEO Raising Problem 
Solution 

In this section the effects of initial orbital elements to SS-LEO raising problem is studied. 

The main critical parameters at the SS-LEO raising problem (defined in section 4.1) are 

semimajor axis ( a ), eccentricity (e ), and inclination ( i ). Right ascension of ascending 

node is not critical for SS-LEO mission. Because of these reasons, the effects of initial 

semimajor axis, eccentricity, and inclination are studied. 

The problem defined in Table 21 is taken as baseline and called as SS-LEO-1. The solutions 

are obtained for different initial conditions. For each orbital element, three different test 

cases are constructed. 

In this section it is assumed that the cost function coefficients and tolerances are the same 

as the problem in section 4.1 since the cases are similar. The desired orbit for all SS-LEO 

raising problems are assumed to be the same ( a =7080km, e =0.00112, i =98.200°, and 

Ω =0.00°) 

4.1.4.1 Semimajor axis variation  

The test problems and corresponding solutions for different initial semimajor axis values are 

given in Table 34. 

At these test problems, eccentricity and inclination values are kept constant and only 

semimajor axis values are changed. Two, three and four impulse orbit transfer strategies 

are applied to obtain solutions for each test problems. 
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Table 34 Effect of initial semimajor axis value to SS-LEO raising problem 

Test Case 

Orbital Element 
Total Impulsive Velocity 
Vector Magnitude (m/s) 

a (km) e  i (°) 

Two 
Impulse 
Strategy 

Three 
Impulse 
Strategy 

Four 
Impulse 
Strategy 

SS-LEO-1(+) 7050.00 0.00300 98.000 33.97 38.67 40.70 
SS-LEO-2 7040.00 0.00300 98.000 37.69 38.94 44.04 
SS-LEO-3 7020.00 0.00300 98.000 43.48 44.51 48.5 

SS-LEO-4 7000.00 0.00300 98.000 54.54 53.74 51.91 
(+) reference test case 

As seen in Table 34, the initial semimajor axis values affect directly the required impulsive 

velocity vector magnitudes. In Figure 22, the required impulsive velocities of SS-LEO-1, 2, 3, 

and 4 are presented graphically. 

 

Figure 22 Effect of initial semimajor axis (km) to SS-LEO raising problem 

As can be seen in Figure 22, as the initial semimajor axis value is further to the destination 

orbit semimajor axis value, the required impulsive velocity vector magnitude increases. The 

increment is close to linear at the two impulse case; however the increments are not linear 

at the three and four impulse cases. Note also that required impulsive velocity vector 

magnitudes are close. The minimum required total impulsive velocity magnitude for SS-LEO-

4 test case (a=7000km) is 51.91m/s, for SS-LEO-1 test case (a=7050km) it is about 

33.96m/s. 
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Two, three and four impulse orbit transfer strategy results are close at each test case; 

especially, two and three impulse strategy results. 

At SS-LEO-4 the four impulse strategy requires minimum amount of propellant and the two 

impulse strategy requires maximum amount of propellant. However, the difference between 

results of these strategies is very small (less than 3m/s). Considering the reliability of a 

spacecraft, two impulse strategy should be selected instead of four impulse strategy. For 

the remaining test cases (SS-LEO-1, SS-LEO-2, SS-LEO-3), two impulse orbit transfer 

strategy offers the best solution. At these test cases, the required impulsive velocity vector 

magnitude increases as the number of impulses increases. Therefore, for these test cases 

two impulse orbit transfer strategy is also the orbit transfer strategy which requires 

minimum impulsive velocity vector magnitude. 

4.1.4.2 Inclination variation 

Inclination is one of the most critical and difficult to change orbital elements. The test cases 

based on different initial inclination values (SS-LEO-5, SS-LEO-6, and SS-LEO-7) are 

constructed and given in Table 35. The corresponding results of these test cases are also 

given in Table 35. The results are also presented graphically in Figure 23. 

Table 35 Effect of initial inclination value to SS-LEO raising problem 

  
Test Case 

  
Orbital Element 

Total Impulsive Velocity 
Vector Magnitude (m/s) 

a (km) e  i (°) 

Two 
Impulse 
Strategy 

Three 
Impulse 
Strategy 

Four 
Impulse 
Strategy 

SS-LEO-5 7050.00 0.00300 98.100 22.23 31.34 39.02 

SS-LEO-1(+) 7050.00 0.00300 98.000 33.96 38.66 40.72 
SS-LEO-6 7050.00 0.00300 97.900 47.46 53.64 56.86 
SS-LEO-7 7050.00 0.00300 97.800 59.78 66.61 69.43 

(+) reference test case 
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Figure 23 Effect of initial inclination (°) to SS-LEO raising problem 

It can be stated that inclination changes require high amount of fuel. As seen in Figure 23, 

a 0.1° inclination change requires about 12m/s impulsive velocity vector magnitude at SS-

LEO raising problems. This shows the importance of initial inclination value. 

At all test cases that are constructed to study the effect of initial inclination value (SS-LEO-

5, SS-LEO-6, SS-LEO-7), the orbit transfer strategies which require minimum energy are two 

impulse orbit transfer strategies. In these test cases as the number of impulses increases 

the required fuel also increases. Since the two impulse strategy is the least energy requiring 

strategy from the required impulse and reliability view, it should be selected at test cases 

SS-LEO-5, SS-LEO-6, SS-LEO-7. 

Test cases SS-LEO-5, SS-LEO-6, and SS-LEO-7 showed that the inclination value is one of 

the most critical orbital elements. In order to prolong the lifetime of a spacecraft, inclination 

error should be minimized. 

4.1.4.3 Eccentricity variation 

The last studied orbital element at the SS-LEO raising problem is eccentricity. Eccentricity 

defines the shape of the orbit ellipse. The test cases which are constructed to study the 

effect of the initial eccentricity value at LEO raising are tabulated in Table 36. The 

corresponding results are also given in this table (Table 36). The results are graphically 

given in Figure 24. 
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Table 36 Effect of initial inclination value to SS-LEO raising problem 

Test Case 

Orbital Element 
Total Impulsive Velocity 
Vector Magnitude (m/s) 

a (km) e  i (°) 

Two 
Impulse 
Strategy 

Three 
Impulse 
Strategy 

Four 
Impulse 
Strategy 

SS-LEO-8 7050.00 0.00200 98.000 32.16 33.85 38.12 
SS-LEO-9 7050.00 0.00250 98.000 32.95 36.93 38.86 

SS-LEO-1(+) 7050.00 0.00300 98.000 33.96 38.66 40.72 
SS-LEO-10 7050.00 0.00350 98.000 35.38 45.72 46.21 

(+) reference test case 

 

Figure 24 Effect of initial eccentricity to SS-LEO raising problem 

As the initial eccentricity value is selected close to the desired (final) value, the required 

impulse level decreases. However the required impulsive velocity vector magnitudes are 

close. It can be stated that initial eccentricity value is not very critical. 

While two impulse strategy shows linear behavior, three and four impulse strategies show 

climbing trend behavior. 

The orbit transfer strategies which have minimum energy requirement are two impulse orbit 

transfer strategies for different initial eccentricity. As the number of impulses increases the 

required fuel also increases. Since the minimum energy requiring strategy is two impulse 

method and it also provides more reliable solution than three and four impulse orbit transfer 

strategies, it should be applied at cases similar to SS-LEO-8, SS-LEO-9, and SS-LEO-10. 
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4.2 TEST CASE-2 MEDIUM EARTH ORBIT (MEO) RAISING 
PROBLEM 

Medium earth orbits are also popular orbits which are mainly used for navigation purposes. 

This mission requires more accuracy than SS-LEO missions. Because of this, the tolerance 

values are stricter than SS-LEO mission tolerances. Today 69 of 994 (6.9%) satellites have 

missions at the Medium Earth Orbit.  

Similar to the sun synchronous Low Earth Orbit (SS-LEO) case, tolerances for MEO raising 

problem are defined. Since the eccentricity is almost zero, argument of perigee is not 

considered during calculations. For zero eccentricity ( e =0), argument of perigee is 

undefined. 

Table 37 Test case 2 initial and final orbital element values 

Orbital Element 
Initial Orbit 
(Proton Mission Planner's Guide, 2009) Final Orbit 

a  (km) 19950.00 20000.00 
e  0.00200 0.00100 
i  (°) 59.800 60.000 
Ω  (°) 0.00 0.00 
ω  (°) undefined undefined 
v  (°) insignificant insignificant 

 

Similar to the SS-LEO raising case, the cost function coefficient of MEO raising is obtained 

by scaling coefficients with respect to the semimajor axis. 

The tolerance values are obtained as follows: 

semimajor axis tolerance is given in (Chao, 2005): 

0.50aδ   km  (4.7)

 

eccentricity tolerance is given in (Chao, 2005): 

0.00003eδ    (4.8)

The tolerance limits of inclination and right ascension of ascending node for a typical MEO 

mission (Chao, 2005): 

0.010iδ     (4.9)

0.10Ωδ     (4.10)
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where: 

 iδ : tolerance value of inclination 

 Ωδ : tolerance value of right ascension of ascending node 

So the tolerance values and cost function coefficients of orbital elements are obtained for 

MEO raising (Table 38). 

Table 38 Tolerance values and cost function coefficients of test case 2 

Orbital elements Tolerance Values Cost Function Coefficient  
a  (km) ±0.50 1.00 
e  ±0.00003 16666.67 
i  (°) ±0.010 50.05 
Ω  (°) ±0.10 5.05 
ω (°) undefined undefined 
v  (°) insignificant insignificant 

 

The cost function for MEO raising are constructed as follows: 
 

1

J

25.00 1.00 16667.67 50.05 5.05
n

i error error error error
i

a e i Ω




     v
  (4.11)

 
Note that this cost function is used in all MEO raising problem calculations. 

Since the linear velocity vector magnitude of MEO spacecraft is less than LEO spacecraft, 

less impulse is expected to be required during orbit raising at MEO. Similar to SS-LEO orbit 

rising, MEO orbit rising also requires the correction of semimajor axis, eccentricity, and 

inclination.  

Solutions for MEO raising problem can be obtained with the combination of optimal classical 

orbit transfers or genetic optimization based orbit transfer algorithm. MEO raising strategies 

are developed usng each method and at the end of this section the results are compared. 

4.2.1 Implementation of Classical Orbit Transfer Methods for MEO Orbit 
Raising Problem 

Similar to the SS-LEO raising case, there is no optimal orbit transfer strategy for MEO raising 

problem, but the superposition of optimal orbit transfers is possible. As a classical orbit 

transfer method, the superposition of optimal methods can be applied to obtain solution. As 

stated in section 3.1.1, Hohmann transfer is optimal for coplanar orbit transfers from 

circular to circular orbits for changing semimajor axis value. Only inclination change orbit 
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transfer enables the change of only inclination. These are applied respectively to realize 

MEO raising problem (Table 39). 

Table 39 Classical orbit transfer solution for MEO raising problem 

 Impulsive Velocity Vector Magnitude (m/s) 
Hohmann Transfer 11.40 
OIC 15.60 
TOTAL 27.00 

 

4.2.2 Implementation of Genetic Algorithm Orbit Transfer Methods for 
MEO Orbit Raising Problem 

In this section, the two, three, and four impulse genetic algorithm orbit transfer methods 

are applied to obtain solutions for MEO raising problem. It is expected that the genetic 

algorithm orbit transfer results suggest less impulse than combination of optimal orbit 

transfer methods since the combination of optimal orbit transfers may not be optimal.  

4.2.2.1 Two Impulse MEO Raising Strategy  

Similar to the SS-LEO raising, the initial and final orbits are not intersecting which means 

that MEO raising also cannot be performed with a single impulse. At least two-impulse is 

required to realize MEO raising. Two-impulse genetic algorithm based orbit transfer strategy 

results for MEO raising problem are given in Table 40 and impulse details of corresponding 

problem is tabulated in Table 42. 

As can be seen in Table 40, the error values are very small (maximum 2%) and in the 

tolerance range. This strategy is applicable for MEO raising problem. The required impulsive 

velocity vector magnitude of this strategy is about 20.4 m/s (less than SS-LEO raising case). 

While the first impulse is about 2m/s, the second impulse is about 18.4m/s. 
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Table 40 MEO spacecraft orbit raising simulation result for two-impulse orbit transfer 

Orbital 
Element 

Desired Final 
Orbit 

Calculated Final 
Orbit 

Absolute 
Error  

Error 
(%) 

a  (km) 20000.00 20000.00 0.00 0.00 
e  0.00100 0.00100 0.00000 0.00 
i  (°) 60.000 59.996 0.004 2.00 
Ω  (°) 0.00 0.02 0.02 * 
ω  (°) undefined undefined undefined undefined 
v  (°) insignificant 280.46 insignificant N/A 

* The percent error is not calculated for this orbital element since the initial and final value 
of this element is the same. 

The initial, intermediate and final orbits for this orbit transfer are tabulated in Table 41. As 

seen, the orbit transfers are almost equal. In other words about half of the required change 

is realized at the first impulse and about half of the remaining orbit transfers are realized in 

the second impulse. 

Table 41 MEO spacecraft orbit raising intermediate orbit results 

Orbital Element  Initial Orbit Intermediate Orbit Final Orbit 
a  (km) 19950.00 19978.48 20000.00 
e  0.00200 0.00127 0.00100 
i  (°) 59.800 59.896 59.996 
Ω  (°) 0.00 0.05 0.02 
ω  (°) undefined undefined undefined 
v  (°) insignificant 251.01 280.46 

 

Table 42 Impulse details of two-impulse MEO raising orbit transfer strategy 

  
X axis 
(m/s) 

Y axis 
(m/s) 

Z axis 
(m/s) 

Total Impulsive 
Velocity Magnitude 
(m/s) 

Impulse 
True Anomaly (°) 

Impulse-1 2.968 5.939 -5.997 8.95 203.01 
Impulse-2 0.239 5.536 -5.999 8.16 225.21 
TOTAL   17.11  
 

4.2.2.2 Three Impulse MEO Raising Strategy  

MEO orbit raising transfer can also be realized by applying three-impulse strategy. The 

genetic algorithm three-impulse solution and the corresponding errors are tabulated in 

Table 43. There is no error observed at the eccentricity and inclination. At the semimajor 

axis, the difference between desired and obtained values is about 10 meters. The impulse 
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details of three-impulse MEO raising orbit transfer strategy is presented in Table 45. The 

total required impulsive velocity magnitude is 18.22m/s.  

Table 43 MEO spacecraft orbit raising simulation result for three-impulse orbit transfer 

Orbital Element 
Desired Final 
Orbit 

Calculated Final 
Orbit 

Absolute 
Error 

Error 
(%) 

a  (km) 20000.00 19999.99 0.01 0.02 
e  0.00100 0.00100 0.00000 0.00 
i  (°) 60.000 60.000 0.000 0.00 
Ω  (°) 0.00 0.020 0.020 * 
ω  (°) undefined undefined undefined undefined 
v  (°) insignificant 100.06 insignificant insignificant 

* The percent error is not calculated for this orbital element since the initial and final value 
of this element is the same. 

The initial, intermediate and final orbits for this orbit transfer are tabulated in Table 44. 

Semimajor axis, eccentricity and inclination errors are decreased linearly. Since the impulse 

magnitudes are close, it is actually the expected situation. 

Table 44 Three impulse MEO spacecraft orbit raising intermediate orbit results 

Orbital Element  
Initial 
Orbit 

Intermediate 
Orbit-1 

Intermediate  
Orbit-2 Final Orbit 

a (km) 19950.00 19982.29 19985.52 19999.99 
e 0.00200 0.00147 0.00126 0.00100 
i (°) 59.800 59.855 59.923 60.000 
W (°) 0.00 0.04 0.04 0.02 
w (°) undefined undefined undefined undefined 
n (°) insignificant 90.80 128.93 100.06 

Table 45 Impulse details of three-impulse MEO raising orbit transfer strategy 

  
X axis
(m/s) 

Y axis
(m/s) 

Z axis
(m/s) 

Total Impulsive 
Velocity 
Magnitude (m/s)

Impulse True
Anomaly (°) 

Impulse-1 3.255 3.442 -4.466 6.51 215.01 
Impulse-2 -0.645 4.456 -2.944 5.38 229.52 
Impulse-3 0.112 4.445 -4.500 6.33 224.62 
TOTAL   18.22  
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4.2.2.3 Four Impulse MEO Raising Strategy  

Another MEO orbit raising strategy is the four-impulse orbit transfer. This strategy possibly 

increases the transfer duration and complexity. The results of four-impulse MEO orbit 

raising are given in Table 46. While there is no error observed at the inclination and 

eccentricity values, the semimajor axis error is about 0.04%. The impulse details of four-

impulse orbit raising transfer are tabulated in Table 48. The magnitudes of impulsive 

velocity vector magnitudes are almost equal and about 5m/s. 

Table 46 MEO spacecraft orbit raising result for four-impulse orbit transfer 

Orbital 
Element 

Desired Final 
Orbit 

Calculated Final 
Orbit 

Absolute 
Error  

Error 
(%) 

a  (km) 20000.00 19999.96 0.04 0.04 
e  0.00100 0.00100 0.00000 0.00 
i  (°) 60.000 60.000 0.000 0.00 
Ω  (°) 0.00 0.10 0.10 * 
ω  (°) undefined undefined undefined undefined 
v  (°) insignificant 110.52 insignificant insignificant

* The percent error is not calculated for this orbital element since the initial and final value 
of this element is the same. 

 

The initial, intermediate and final orbits for this orbit transfer are tabulated in Table 47. All 

the errors are corrected linearly. 

Table 47 Four impulse MEO spacecraft orbit raising intermediate orbit results 

Orbital 
 Element 

Initial 
Orbit 

Intermediate
Orbit-1 

Intermediate
Orbit-2 

Intermediate 
Orbit-3 

Final 
Orbit 

a  (km) 19950.00 19960.20 19972.46 19986.66218  19999.96 
e  0.00200 0.00173 0.00213 0.00147 0.00100 
i  (°) 59.800 59.851 59.906 59.958 60.000 
Ω  (°) 0.00 0.02 0.03 0.06 0.10 
ω  (°) undefined undefined undefined undefined undefined 
v  (°) insignificant 144.14 11.00 151.26 110.52 
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Table 48 Impulse details of four-impulse MEO raising orbit transfer strategy 

  
X axis
(m/s) 

Y axis
(m/s) 

Z axis
(m/s) 

Total Impulsive 
Velocity 
Magnitude (m/s) 

Impulse 
True 
Anomaly (°) 

Impulse-1 2.182 3.304 -2.536 4.702 196.88 
Impulse-2 -2.442 -3.411 2.983 5.148 31.31 
Impulse-3 0.425 2.968 -3.500 4.609 200.41 
Impulse-4 0.517 2.908 -3.402 4.505 226.10 
TOTAL   18.96  

 

4.2.3 Comparison of Transfer Alternatives for MEO Raising Problem 

As can be seen above, solution to MEO raising transfer can be found using different orbit 

transfer strategies. These orbit transfer strategies require different level of impulses. The 

required impulsive velocity vector magnitudes at all MEO raising transfer strategies are 

tabulated in Table 49. Since all the strategies suggest close results to the desired orbit (i.e. 

all results are in the tolerance limits), the strategies are not compared according to the 

closeness to the destination orbit. Classical orbit transfer method (superposition of 

Hohmann & only inclination change orbit transfer) requires the largest energy. The genetic 

algorithm based MEO raising strategy results are close but less than classical orbit transfer 

methods. Among all MEO raising orbit transfer methods, two-impulse orbit transfer method 

requires the minimum impulsive velocity vector magnitude. The increment of number of 

impulses increases the total required impulsive velocity magnitude in a small quantity. Since 

increasing the number of impulses can cause complexity, it is better to apply two impulse 

genetic algorithm based orbit transfer strategy for MEO raising problem. 

Table 49 Impulsive Velocity Requirement Comparison of MEO raising strategies 

MEO raising strategy  
Total Impulsive Velocity 
Magnitude (m/s) 

Classical Orbit Transfer Methods 27.00 
Two-impulse Orbit Transfer Method 17.11 
Three-impulse Orbit Transfer Method 18.22 
Four-impulse Orbit Transfer Method 18.96 

 

Another important observation is the difference between the level of required impulsive 

velocity magnitudes of LEO and MEO raising orbit transfers. As expected the required 

impulsive velocity vector magnitudes of MEO raising is less than SS-LEO raising orbit 

transfer. Main reason of this difference is that the velocity magnitude of spacecraft at MEO 

is less than LEO, therefore it is easier to change the velocity direction at MEO. While the 

minimum impulsive velocity vector magnitude of SS-LEO raising strategy requires 37.77 
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m/s, minimum impulsive velocity vector magnitude of MEO raising orbit transfer is only 

20.36m/s. 

4.2.4 Effect of Initial Orbital Elements to MEO Raising Problem Solution 

In this section the effect of initial orbital elements to MEO raising problem is detailed. 

Medium Earth orbits are located about 14000-15000 km altitudes (a=20000km). Main 

critical orbital elements of Medium Earth Orbit are semimajor axis, eccentricity, and 

inclination. In this part of the study for MEO raising problem different test cases with 

different initial orbital values are constructed and examined. Afterwards the effects of orbital 

elements are evaluated. 

It is assumed that the cost function coefficients, tolerances and final desired orbits are the 

same as the test case-2 (section 4.2, final orbit a =20000km, e =0.00100, i =60.000°). 

Test case-2 initial conditions are assumed to be baseline (Table 37). At each test case all 

orbital elements are selected as the same as test case-2 excluding the element whose effect 

is desired to be obtained. During the evaluation of initial orbital element values to the result, 

initial conditions of test case-2 are called as MEO-2 test case. 

4.2.4.1 Semimajor axis variation 

The final semimajor axis value is needed to be 20000km. The test cases are constructed as 

satellite may be separated from the launch vehicle between 19900 and 19950km. In order to 

specify the effect of initial semimajor axis value to the result of MEO raising problem, the 

test cases are specified. The initial orbital values and results of these test cases are 

tabulated in Table 50 and given graphically in Figure 25. 

Table 50 Effect of initial semimajor axis value to MEO raising problem 

Test Case 

  
Orbital Element 

Total Impulsive Velocity 
Vector Magnitude (m/s) 

a (km) e  i (°) 

Two 
Impulse 
Strategy

Three 
Impulse 
Strategy 

Four 
Impulse 
Strategy 

MEO-1  19970.00 0.00200 59.800 16.34 17.77 17.39 
MEO-2(+)  19950.00 0.00200 59.800 17.11 18.22 18.96 
MEO-3  19925.00 0.00200 59.800 20.16 19.54 20.54 
MEO-4  19900.00 0.00200 59.800 20.37 21.28 22.87 

(+) reference test case 
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Figure 25 MEO raising results for different initial semimajor axis values 

The test cases listed as close-far to final desired orbit from up to down. MEO-4 is the 

farthest orbit to the final orbit and MEO-1 is the closest orbit to the final desired orbit. When 

the initial orbit is selected close to the final desired orbit, then the required fuel decreases 

as expected. 

At MEO-1, MEO-2 and MEO-4 cases the minimum energy requiring strategy is the two 

impulse orbit transfer strategy, while at the MEO-3 the minimum energy requiring strategy 

is three impulse strategy. The required impulsive velocity vector magnitudes are close at the 

two, three, and four impulse orbit transfer strategies.  

At the test case shown in Figure 25 there is no single relationship observed between the 

number of impulse and required impulsive velocity vector magnitude. At MEO-1 and MEO-2 

as the number of impulses increases the required impulsive velocity vector magnitude also 

increases. At MEO-2 and MEO-3 no relationship is observed between required impulse and 

number of impulses. 

4.2.4.2 Inclination variation 

Four different initial inclination values are selected to detail the initial inclination value effect 

to MEO raising problem and solutions for these cases are obtained. It is expected that in 
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MEO raising problem the effect of initial inclination value is important similar to LEO raising 

problem.  

The test cases which are constructed to study the effect of initial inclination value are given 

in Table 51. Corresponding results are also given in this table (Table 51) and Figure 26. 

Table 51 Effect of initial inclination value to MEO raising problem 

Test Case 

 
Orbital Elements 

Total Impulsive Velocity 
Vector Magnitude (m/s) 

a (km) e  i (°) 

Two 
Impulse 
Strategy

Three 
Impulse 
Strategy 

Four 
Impulse 
Strategy 

MEO-5  19950.00 0.00200 59.900 10.24 10.85 11.23 
MEO-2(+)  19950.00 0.00200 59.800 17.11 18.22 18.96 
MEO-6  19950.00 0.00200 59.700 25.33 27.53 29.91 
MEO-7  19950.00 0.00200 59.600 32.11 34.46 36.68 

(+) reference test case 

 

 

Figure 26 Effect of initial inclination value to MEO raising problem 

As can be seen in, the initial inclination value is a critical orbital element since at MEO 

raising problem, 0.1° inclination change requires about 7m/s. Because of this inclination 

value is needed to be preferred as close as possible. 
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At the test cases which are constructed to the effect of initial inclination value there is a 

direct relationship between number of impulses and required impulsive velocity vector 

magnitude. As the number of impulse increases, the required fuel increases. The minimum 

impulsive velocity vector magnitude requiring strategy at these test cases is the two impulse 

orbit transfer strategy. 

4.2.4.3 Eccentricity variation 

Variation of initial eccentricity may also affect the solution of MEO raising problem. In this 

part of the study the effect of initial eccentricity value is studied. All orbital elements 

excluding eccentricity are kept constant and eccentricity is changed from 0.0015 to 0.0030. 

The test cases and corresponding results are tabulated in Table 52. The results are also 

given graphically in Figure 27. 

Table 52 Effect of initial eccentricity value to MEO raising problem 

  
Test Case 

  
Orbital Element 

Total Impulsive Velocity 
Vector Magnitude (m/s) 

a (km) e  i (°) 

Two 
Impulse 
Strategy 

Three 
Impulse 
Strategy 

Four 
Impulse 
Strategy 

MEO-8  19950.00 0.0015 59.800 16.73 18.00 18.48 
MEO-2(+)  19950.00 0.0020 59.800 17.11 18.22 18.96 
MEO-9  19950.00 0.0025 59.800 18.47 19.62 19.72 

MEO-10  19950.00 0.0030 59.800 18.84 18.69 20.59 
(+) reference test case 
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Figure 27 Effect of initial eccentricity to MEO raising problem 

As expected the initial eccentricity value affect the solution. As the initial eccentricity is 

selected close to the desired orbit eccentricity, required amount of impulsive velocity 

decreases. It should also be noted that the required impulsive velocity vector magnitudes 

are close. 

The least energy requiring strategy for all test cases constructed for eccentricity (MEO-1, 

MEO-8, MEO-9, and MEO-10) is the two impulse orbit transfer strategy. It is also observed 

that when the number of impulses increases, the required impulse increases. However it 

should also be noted that the required impulsive velocity values at different number of 

impulses are very close (less than 2m/s). Considering all these and reliability, two impulse 

strategy should be applied for cases similar to test cases given in Table 52. 

4.3 TEST CASE-3 GEOSTATIONARY EARTH ORBIT (GEO) 
RAISING PROBLEM  

A geostationary orbit, or Geostationary Earth Orbit (GEO), is a circular orbit at 35,786 km 

above the Earth's equator (zero inclination) and following the direction of the Earth's 

rotation. An object in such an orbit has an orbital period equal to the Earth's rotational 

period (one sidereal day), and thus appears motionless, at a fixed position in the sky, to 

ground observers. Communication and weather satellites are often inserted to geostationary 

orbits, so that the satellite antennas that communicate with them do not have to move to 

track them. Satellite antennas can be pointed permanently at the position in the orbit where 
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they are positioned. A geostationary orbit is a particular type of geosynchronous orbit. 419 

of 994 satellites (41.9%) are geostationary satellites. 

In order to remain above the same point on the Earth’ surface, a spacecraft must fulfill the 

following conditions (Maini, Anil K.; Argawal, Varsha, 2011): 

 The orbit inclination should be zero. 

 The orbit should be circular. 

 The orbital period should be equal to 23 hours 56 minutes, which implies that the 

satellite must orbit at a height of 35786 km above the surface of the Earth. 

 The satellite motion should be in the direction from west to east. 

 
Most of the launch vehicles cannot insert the satellite to high altitude low inclination orbits 

directly; instead launch vehicle inserts spacecraft to a transfer orbit (Geostationary Transfer 

Orbit, GTO) from where spacecraft uses its own propulsion system to reach its mission 

orbit. This transfer orbit is a highly elliptical Earth orbit with apogee at about 35786 km, 

geostationary (GEO) altitude, and whose inclination is determined from launch site 

geographical parameters. In this test case a typical GEO raising problem (GTO to GEO 

transfer), is studied. Apart from case-1 and case-2, in this case the spacecraft is inserted to 

an orbit different from its mission orbit on purpose. This orbit change requires much more 

energy than the first and second cases. In Table 53, the GTO and GEO orbital elements are 

given. In this test case, Geostationary Transfer Orbit (GTO) is taken as initial orbit and 

Geostationary Earth Orbit (GEO) is the desired (final) orbit. The final orbit of Proton launch 

vehicle is defined as the initial orbit of a spacecraft (Proton Mission Planner's Guide, 2009). 

The semimajor axis, eccentricity, and inclination elements are needed to be modified. Since 

the inclination and eccentricity of final orbit (geostationary earth orbit) are zero (0), right 

ascension of ascending node and argument of perigee at the final orbit are undefined. 

Therefore the right ascension of ascending node and argument of perigee are not included 

in the cost function of GEO raising problem. 

Table 53 Test case 3 initial and final orbital element values 

Orbital 
Element 

Geostationary 
Transfer Orbit (GTO) 

Geostationary 
Earth Orbit (GTO) 

a  (km) 26331.10 42164.00 
e  0.60130 0.00000 
i  (°) 23.200 0.000 
Ω  (°) Free N/A 
ω  (°) Free N/A 
v  (°) Free N/A 
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The tolerance values are as follows: 

semimajor axis tolerance is  (Satellite Programmes Overview:Satellite Orbits, 2012): 

5.00aδ   km (4.12)

eccentricity tolerance is  (Satellite Programmes Overview:Satellite Orbits, 2012): 

0.00012eδ    (4.13)

The tolerance value for inclination is also assumed to be 0.10º (Delft University faculty 

aerospace engineering). 

0.100iδ     (4.14)

Tolerance values and cost function coefficients for the orbit transfer problem from GTO to 

GEO are tabulated in Table 54. 

Table 54 Tolerance values and cost function coefficients of test case 3 

Orbital Element Tolerance Values Cost Function Coefficient 
a  (km) ±5.00 1.00 
e  ±0.00012 41666.67 
i  (°) ±0.10 50.00 
Ω  (°) N/A N/A 
ω  (°) N/A N/A 
v  (°) N/A N/A 

 

so the cost function is defined as follows: 

1

J 25.00 1.00 41666.67 50.00
n

i error error error
i

a e i


     v


 (4.15)

 

4.3.1 Implementation of Classical Orbit Transfer Methods for GEO 
Raising Problem  

The orbit transfer from GTO to GEO cannot be realized by applying the combination of 

optimal methods since the Hohmann maneuver is optimal for the orbit transfers from 

circular orbit to circular orbit. As can be seen in Table 53 the eccentricity of initial orbit 

(GTO) is different from zero (about 0.73), therefore the Hohmann maneuver cannot provide 

an optimal solution to this problem. Because of this reason, the superposition of optimal 

methods for GTO to GEO orbit transfer problem is not applicable.  In this part, the orbit 

transfer from GTO to GEO is realized applying classical orbit transfers which are not optimal. 

The classical orbit transfer for this case is the inclination change, altitude raising and 

circularization maneuvers. Firstly, inclination change is realized at the apogee point and 
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then the semimajor axis and eccentricity values are altered. The required impulsive velocity 

vector magnitudes for each maneuver are given in Table 55. 

Table 55 Classical GEO raising orbit transfer 

 Impulsive Velocity  
Vector Magnitude (m/s) 

Inclination correction 1529.62 
Semimajor axis & eccentricity correction 1133.24 
TOTAL 2662.86 

 

4.3.2 Implementation of Genetic Algorithm Orbit Transfer Methods for 
GTO to GEO Transfer (Raising) Problem 

In this section, the two, three and four impulse genetic algorithm orbit transfer methods are 

applied for GEO raising problem (from GTO to GEO). 

4.3.2.1 Two Impulse GEO Raising Strategy 

The simplest orbit transfer strategy for GTO to GEO transfer is the two impulse orbit 

transfer. The result of two impulse strategy is given in Table 56. As can be seen the error 

values are less than tolerances. The largest error is observed at the inclination which is 0.03 

%. The impulse velocity requirements and timing of impulses are presented in Table 58. 

Total required impulsive velocity vector magnitude is 1530.70m/s. 

Table 56 GEO raising results for two-impulse orbit transfer 

Orbital  
Element 

Desired Final 
Orbit 

Calculated Final 
Orbit 

Absolute 
Error  

Error 
(%) 

a  (km) 42164.00 42165.00 1.00 0.01 
e  0.00000 0.00002 0.00002 0.00 
i  (°) 0.000 0.007 0.007 0.03 
Ω  (°) undefined undefined undefined undefined 
ω  (°) undefined undefined undefined undefined 
v  (°) insignificant 199.48 insignificant insignificant 

 

The initial, intermediate and final orbits for this orbit transfer are tabulated in Table 57. As 

seen, a small amount of change is realized at the semimajor axis and eccentricity values at 

the first impulse case. 
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Table 57 GEO spacecraft orbit raising intermediate orbit results 

Orbital Element  Initial Orbit Intermediate Orbit Final Orbit 
a  (km) 26331.10 29428.84 42165.00 
e  0.60130 0.43331 0.00002 
i  (°) 23.200 14.409 0.007 
Ω  (°) Free 6.23 undefined 
ω  (°) Free 358.24 undefined 
v  (°) Free 165.91 199.48 

Table 58 Impulse details of two-impulse GEO raising orbit transfer strategy  

X axis 
(m/s) 

Y axis 
(m/s) 

Z axis 
(m/s) 

Total Impulsive 
Velocity Magnitude (m/s) 

Impulse True 
Anomaly (°) 

Impulse-1 12.257 -477.214 198.634 517.048 170.07 
Impulse-2 36.919 -833.350 575.893 1013.651 181.73 
TOTAL  1530.70 

 

4.3.2.2 Three Impulse GEO Raising Strategy 

The orbit transfer from GTO to GEO can also be performed applying three impulse orbit 

transfer strategy. The results of this orbit transfer strategy are given in Table 59. All the 

errors are below the corresponding tolerance values. The largest error is observed at the 

inclination which is 0.11%. Since the right ascension of ascending node and argument of 

perigee are not defined for circular zero inclination orbit ( e =0, i =0°). The impulsive 

velocity vector components and timing of each impulse are tabulated in Table 61. Total 

magnitude of impulsive velocity vector is 1855.03m/s.  

Table 59 GEO raising results using three-impulse orbit transfer method 

Orbital 
Element 

Desired Final 
Orbit 

Calculated Final 
Orbit 

Absolute 
Error  

Error 
(%) 

a  (km) 42164.000 42165.75 1.75 0.01 
e  0.00000 0.00001 0.00001 0.00 
i  (°) 0.000 0.025 0.025 0.11 
Ω  (°) undefined undefined undefined undefined 
ω  (°) undefined undefined undefined undefined 
v  (°) insignificant 92.94 insignificant insignificant 

 

The initial, intermediate and final orbits for this orbit transfer are tabulated in Table 60.  
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Table 60 Three impulse GEO spacecraft orbit raising intermediate orbit results 

Orbital Elements  Initial Orbit
Intermediate 
Orbit-1 

Intermediate 
Orbit-2 Final Orbit 

a  (km) 26331.10 29353.17 37921.01 42165.75 
e  0.60130 0.42909 0.12108 0.00001 
i  (°) 23.200 12.703 3.654 0.025 
Ω  (°) Free 12.79 132.88 undefined 
ω  (°) Free 352.72 199.54 undefined 
v  (°) Free 160.48 151.68 92.94 

Table 61 Impulse details of three-impulse GEO raising orbit transfer strategy 

  
X axis 
(m/s) 

Y axis 
(m/s) 

Z axis 
(m/s) 

Total Impulsive 
Velocity 
Magnitude (m/s) 

Impulse 
True 
Anomaly (°) 

Impulse-1 59.564 -530.046 284.164 604.355 165.42 
Impulse-2 380.611 -629.360 610.210 955.675 174.88 
Impulse-3 -46.230 -225.002 -185.094 294.996 160.12 
TOTAL  1855.03 

 

4.3.2.3 Four Impulse GEO Raising Strategy 

Four impulse strategy is also another alternative orbit transfer method for GTO to GEO 

transfer. Four impulse strategy results are given in Table 62. As can be seen in Table 62, 

the error is observed only at the inclination. The error is 0.02%. The remaining orbital 

elements are at the desired values. It should be noted that all the final orbital elements are 

retained in the tolerances. It can be said that the four impulse orbit transfer method is also 

applicable to GEO orbit raising (GTO-GEO). 

Table 62 GEO raising results using three-impulse orbit transfer method 

Orbital 
Element 

Desired Final 
Orbit 

Calculated Final 
Orbit 

Absolute 
Error  

Error 
(%) 

a  (km) 42164.000 42164.00 0.00 0.00 
e  0.00000 0.00000 0.00000 0.00 
i  (°) 0.000 0.005 0.005 0.02 
Ω  (°) undefined undefined undefined undefined 
ω  (°) undefined undefined undefined undefined 
v  (°) insignificant 131.74 insignificant insignificant 

 

The impulsive velocity vector components and true anomalies of four (4) impulse GTO-GEO 

orbit transfer strategy are given in Table 64. The magnitudes of impulsive velocities are 

close and total required impulsive velocity magnitude is 2134.88m/s. 
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The intermediate orbit values of GEO raising problem are presented in Table 63. 

Table 63 Four impulse GEO spacecraft orbit raising intermediate orbit results 

Orbital 
Element 

Initial 
Orbit 

Intermediate
Orbit-1 

Intermediate
Orbit-2 

Intermediate 
Orbit-3 

Final 
Orbit 

a  (km) 26331.10 31958.83168 36478.79594 33886.87212  42164.00 
e  0.60130 0.46166124 0.2700989 0.24493916  0.00000 
i  (°) 23.200 15.71088658 9.27987072 3.89319074  0.005 
Ω  (°) Free 348.3508392 17.55141678 329.9165093  undefined 
ω  (°) Free 350.0941747 330.0854887 3.3535705  undefined 
v  (°) Free 137.1026156 150.4880462 67.4837099  131.74 

Table 64 Impulse details of four-impulse GEO raising orbit transfer strategy 

  
X axis 
(m/s) 

Y axis 
(m/s) 

Z axis 
(m/s) 

Total Impulsive Velocity 
Magnitude(m/s) 

Impulse 
True 
Anomaly(°)

Impulse-1 313.219 -483.731 211.434 613.846 201.98 
Impulse-2 -94.805 -471.544 283.304 558.214 159.06 

Impulse-3 115.743 1.462 -500.000 513.224 53.35 
Impulse-4 -161.175 -378.518 -181.330 449.593 176.70 
TOTAL    2134.88   

 

4.3.3 Comparison of Transfer Alternatives for GEO Raising Problem 

The orbit raising from GTO to GEO is one of the most important orbit transfer since the 

impulsive velocity requirement is high. While at LEO and MEO raising the required impulsive 

velocity vector magnitude is about 50-60 m/s; at GEO the impulsive velocity requirement is 

about 2000 m/s. 

As can be seen above two, three and four impulse methods can be applied to realize orbit 

transfer from GTO to GEO. The total impulsive velocity requirements of these strategies are 

tabulated in Table 65. The most efficient method is two-impulse method which requires only 

1588.88 m/s impulsive velocity vector magnitude. The worst method is classical method 

which requires 2662.89 m/s. The difference between the minimum and maximum impulsive 

velocity requiring strategies is about 1074 m/s.  

The impulsive velocity requirement during orbit maintenance at GEO is about 50-60 m/s  

(Chao, 2005). If a spacecraft is raised to GEO by applying two impulse strategy instead of 
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applying classical orbit transfer method the lifetime of spacecraft is prolonged about 12 

years. 

Table 65 Impulsive Velocity Requirement Comparison of GEO raising strategies 

GEO raising strategy  
Impulsive Velocity 
Vector Magnitude (m/s) 

Classical Orbit Transfer Method 2662.86 
Two-impulse Orbit Transfer Method 1588.88
Three-impulse Orbit Transfer Method 1820.61 
Four-impulse Orbit Transfer Method 1880.68 

 

4.3.4 Effect of Initial Orbital Elements to GEO Raising Problem Solution 

Geostationary earth orbits (GEO) was one of the earliest orbit concept. The spacecrafts at 

this orbit have the same speed with Earth; therefore it remains at a fix position with respect 

to Earth. Geostationary Earth orbit (GEO) satellites are not directly inserted to their mission 

orbits. Launch vehicles carry these satellites up to a transfer orbit. This orbit is called as 

Geostationary transfer orbit (GTO). The apogee point of GTO is at 42164km (same as GEO), 

however apogee point is a close point to the Earth. Therefore semimajor axis and 

eccentricity values of initial orbit (GTO) are directly related. 

In this section the effect of initial orbital element values to the orbit raising problem solution 

is studied. It is assumed that the final orbit and the cost function coefficients are the same 

as in test case-3 (section 4.3, final orbit a =42164km, e =0.00000, i =0.000°). Test case-3 

(Table 53) is defined as baseline and other test cases are constructed depending on this 

test case. In this section test case-3 is named as GEO-3. 

4.3.4.1 Semimajor axis and eccentricity variation 

At the GTO semimajor axis and eccentricity values are dependent. Therefore the effect of 

initial values of semimajor axis and eccentricity to the GEO raising problem is studied 

together. The test cases which consist of different initial semimajor axis and eccentricity 

values are given in Table 66. The corresponding results are also given in Table 66 and Figure 

28. The test cases are listed beginning from closest to farthest. 
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Table 66 Effect of initial semimajor axis and eccentricity values to GEO raising (GTO-GEO) 
problem 

 
 
 

Test Case 

Orbital Elements 
Total Impulsive Velocity  
Vector Magnitude (m/s) 

a (km) e  i (°) 
Two-Impulse
Strategy 

Three-Impulse 
Strategy 

Four-Impulse 
Strategy 

GEO-1 30177.14 0.40000 23.200 1371.01 1587.81 1918.92 
GEO-2 28109.33 0.50000 23.200 1434.82 1673.10 2044.64 
GEO-3(+) 26331.10 0.60130 23.200 1503.72 1855.04 2134.98 

GEO-4 24802.35 0.70000 23.200 1747.16 2072.33 2776.74 
(+) reference test case 

 

 

Figure 28 GEO raising problem results for different initial semimajor axis values 

As expected the required impulsive velocity magnitudes change depending on initial 

semimajor axis and eccentricity values. While for GEO-2 the required impulsive velocity 

magnitude is about 1434m/s, for GEO-4 the required impulsive velocity magnitude is 

1747m/s. 

It is observed that the minimum energy requiring strategy for the test cases given in Table 

66 are two impulse orbit transfer strategy. As the number of impulses increase, the required 

impulsive velocity magnitudes also increase in a growing trend (Figure 28). In other words 

the difference between four and three impulse strategies is much more than difference 
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between three and two impulse strategies. Because of these reasons, four impulse strategy 

is not an applicable strategy from the required energy view. 

4.3.4.2 Inclination variation 

Initial inclination value is very critical since inclination is the most difficult orbital element to 

change. In Table 67 the test cases which are constructed to study the effect of initial 

inclination value at the GEO raising problem and the corresponding results are given. In 

Figure 29, the results are presented graphically.  

Table 67 Effect of initial inclination value to GEO raising (GTO-GEO) problem 

  
Test 
Case 

Orbital Elements 
Total Impulsive Velocity 
Vector Magnitude (m/s) 

a (km) e  i (°) 
Two-Impulse
Strategy 

Three-Impulse 
Strategy 

Four-Impulse
Strategy 

GEO-5 26331.10 0.60130 20.000 1421.43 1516.67 2037.31 
GEO-3(+) 26331.10 0.60130 23.200 1503.72 1855.04 2134.98 
GEO-6 26331.10 0.60130 27.000 1835.71 1973.55 2631.92 

GEO-7 26331.10 0.60130 30.000 1932.04 2243.62 2803.53 
(+) reference test case 

 

 

Figure 29 GEO raising problem results for different initial inclination values 
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As expected the initial inclination value affect the required impulsive velocity magnitude 

directly. While the required impulsive velocity magnitude of GEO-5 ( i =20°) is 1421m/s, at 

GEO-7 ( i =30°) this value is 1932m/s. It can be said that most of the propellant is 

consumed during the inclination change.  

The least energy requiring strategy for the test cases given in Table 67 is the two impulse 

orbit transfer strategy. As the number of impulse increases, the required impulsive velocity 

vector magnitudes increase. Similar to the test cases in Table 66 (effect of initial semimajor 

axis and eccentricity values to GEO raising) the increment is growing type. It can be stated 

that at GEO raising problem, four impulse strategy is not a good orbit transfer alternative. 

4.4 TEST CASE 4 MOLNIYA ORBIT RAISING PROBLEM  

Geostationary communication spacecrafts are not proper for northern countries such as 

Russia since equatorial orbits do not offer good coverage of the poles or regions at very 

high latitudes. Instead, northern countries use spacecrafts in highly inclined orbits that can 

be easily seen from northern latitudes during the large part of their period. These orbits are 

highly elliptical and have their apogee near the North Pole. The spacecraft has a high speed 

as it moves near perigee and slowly near apogee, thus spending most of its time in the orbit 

over the northern hemisphere.  This special orbit is known as Molniya orbit (Wright, Grego, 

& Gronlund, 2005). 

Molniya orbits, a kind of Highly Eccentric Orbit (HEO), are highly elliptical, with a period of 

12 hours and an inclination of 63.4° (critically inclined). At this inclination, the apogee 

remains over the same latitude in the northern (or southern) hemisphere, rather than 

precessing. Today 13 of 994 (1.3%) satellites are Molniya type satellites. A typical Molniya 

orbit spacecraft initial (launch vehicle separation orbit) and destination (final) orbit values 

are listed in Table 68 (Fortescue, Swinerd, & Stark, 2004). 

Table 68 Initial and final orbit values of a typical Molniya Orbit spacecraft 

Orbital  
Element 

Initial Orbit (Soyuz from the Guiana Space 
Centre User's Manual, 2006) Final Orbit 

a  (km) 26520.00 26554.00 
e  0.72000 0.70000 
i  (°) 63.340 63.440 
Ω  (°) free free 
ω  (°) 270.00 270.00 
v  (°) free N/A 
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It should be noted that classical orbit transfer method is not applicable for Molniya orbit 

transfer since the eccentricity value of initial and final orbits are different from zero (0) and 

there exist no optimal orbit transfer solution for argument of perigee correction. Although 

argument of perigee is not needed to be corrected, during the correction of semimajor axis, 

eccentricity, and inclination, the argument of perigee is also changed. At first and second 

case (SS-LEO, MEO) the final orbit is circular, therefore the argument of perigee is not 

critical; however, Molniya orbit is not circular; therefore, argument of perigee is also 

important. The semimajor axis, eccentricity, right ascension of ascending node and 

argument of perigee are needed to be corrected/kept accurately. Among these parameters, 

argument of perigee is one of the most critical elements since the location of perigee is 

critical for Molniya orbit missions. Because of this, a large value is initialized to the argument 

of perigee coefficient of the cost function. 

The tolerance values for Molniya orbit transfers are as follows:  

semimajor axis tolerance is defined in (Konstantinov, Popov, Obukhov, & Petukhov, 2005): 

16.67aδ   km  (4.16)

eccentricity tolerance is defined in  (Konstantinov, Popov, Obukhov, & Petukhov, 2005): 

0.00019eδ    (4.17)

For Molniya orbit mission inclination is also an important orbital element. It needs to be at 

63.44º (critically inclined). The tolerance value for inclination is assumed to be 0.05º 

(Konstantinov, Popov, Obukhov, & Petukhov, 2005): 

0.050iδ     (4.18)
Argument of perigee is also another important orbital element for Molniya orbit mission. The 

tolerance value of argument of perigee is assumed to be 0.050° in (Konstantinov, Popov, 

Obukhov, & Petukhov, 2005) 

0.05ωδ     (4.19)
Tolerance values and cost function coefficients for Molniya orbit raising problem are 

tabulated in Table 69. 

Table 69 Tolerance values and cost function coefficients of test case 4 

Orbital Elements Tolerance Values Cost Function Coefficient 
a  (km) ±16.667 1.00 
e  ±0.00019 87737.84 
i  (°) ±0.050 333.40 
Ω  (°) insignificant insignificant 
ω  (°) ±0.05 333.40 
v  (°) insignificant insignificant 
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So the cost function is defined as follows: 

1

J

25.00 1.00 87737.84 333.34 333.34
n

i error error error error
i

a e i Ω




     v
  (4.20)

 

4.4.1 Implementation of Classical Orbit Transfer Methods for Molniya 
Orbit Raising Problem 

In the literature there is not an optimal orbit transfer strategy between highly elliptic orbits. 

Since argument of perigee value is also needed to be kept constant precisely, it is also not 

possible to realize Molniya orbit raising transfer using classical orbit transfer methods. 

Therefore in this section a classical orbit transfer strategy cannot be suggested to perform 

Molniya orbit raising. 

 

4.4.2 Implementation of Genetic Algorithm Orbit Transfer Methods for 
Molniya Orbit Raising Problem 

In this section Molniya orbit raising strategies are performed using two, three and four 

impulse genetic algorithm based orbit transfer methods. Since there exists no classical orbit 

transfer strategy for Molniya orbit raising, the results of genetic algorithm strategy results 

are compared to each other only.  

 

4.4.2.1 Two Impulse Molniya Orbit Raising Strategy 

Two impulse genetic algorithm orbit transfer strategy can be used to realize Molniya orbit 

raising. During this transfer semimajor axis, eccentricity and inclination values are needed to 

be corrected and argument of perigee is needed to be kept constant strictly. 

Two impulse method solution of Molniya orbit raising problem is presented in Table 70. Two 

impulse strategy suggests very accurate results for the problem. There is no error observed, 

all orbital elements are at the desired values. The impulsive velocity vector components and 

impulse true anomalies are tabulated in Table 71. The magnitudes of required impulsive 

velocity vector magnitudes are close which are approximately 36m/s. 
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Table 70 Molniya orbit raising result of two-impulse orbit transfer 

Orbital 
Element 

Desired Final 
Orbit 

Calculated Final 
Orbit 

Absolute 
Error  Error (%)

a  (km) 26554.00 26554.00 0.00 0.00 
e  0.70000 0.70000 0.00000 0.00 
i  (°) 63.440 63.440 0.000 0.00 
Ω  (°) insignificant 359.94 insignificant insignificant
ω  (°) 270.00 270.00 0.00 0.00 
v  (°) insignificant 181.25 insignificant insignificant

The initial, intermediate and final orbits for this orbit transfer are tabulated in Table 71. As 

seen, at the first impulse semimajor axis is not corrected instead it is changed in the wrong 

direction. Inclination is also almost changed during the first impulse application. 

Table 71 Molniya spacecraft orbit raising intermediate orbit results 

Orbital Element  Initial Orbit Intermediate Orbit Final Orbit 
a  (km) 26520.00 26333.07 26554.00 
e  0.72000 0.71418 0.70000 
i  (°) 63.340 63.437 63.440 
Ω  (°) free 0.12 359.94 
ω  (°) 270.00 270.01 270.00 
v  (°) free 136.90 181.25 

Table 72 Impulse details of two-impulse Molniya Orbit raising orbit transfer strategy 

  
X axis 
(m/s) 

Y axis 
(m/s) 

Z axis 
(m/s) 

Total Impulsive 
Velocity 
Magnitude (m/s) 

Impulse True 
Anomaly (°) 

Impulse-1 -32.012 -12.457 -10.170 35.824 136.97 
Impulse-2 -38.937 2.404 -5.120 39.345 181.16 
TOTAL    75.17 

 

4.4.2.2 Three Impulse Molniya Orbit Raising Strategy 

Three impulse orbit transfer can also be applied to realize Molniya orbit raising. The final 

orbit obtained by three impulse method is given in Table 73. The desired and calculated 

final orbits are close to each other. All the errors are within the tolerance limits; therefore, 

final orbit is sufficient for Molniya mission. The semimajor axis error is 20 meters, and 

inclination error is about 0.01°. The final orbit argument of perigee and eccentricity values 

are exactly at the desired values. It can be said that this orbit transfer strategy is applicable 
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for Molniya orbit raising task. The impulse detail of this orbit transfer strategy is presented 

in Table 74 from where it can be seen that the total required impulsive velocity vector 

magnitude is about 83.63m/s. 

Table 73 Molniya orbit raising results for three-impulse orbit transfer 

Orbital 
Element 

Desired Final 
Orbit 

Calculated Final 
Orbit 

Absolute 
Error  

Error 
(%) 

a  (km) 26554.00 26553.98 0.02 0.06 
e  0.70000 0.70000 0.00000 0.00 
i  (°) 63.440 63.443 0.003 3.00 
Ω  (°) insignificant 359.45 insignificant insignificant
ω  (°) 270.00 270.00 0.00 0.00 
v  (°) insignificant 168.63 insignificant insignificant

 

The initial, intermediate and final orbits for this orbit transfer are tabulated in Table 74. 

Note that as the eccentricity error is decreased during first and second impulse, other orbital 

element errors are increased. The semimajor axis and inclination errors are corrected at the 

last impulse. 

Table 74 Three impulse Molniya spacecraft orbit raising intermediate orbit results 

Orbital Element  Initial Orbit
Intermediate 
Orbit-1 

Intermediate 
Orbit-2 Final Orbit 

a  (km) 26520.00 26690.67 26345.22 26553.98 
e  0.72000 0.71138 0.70753 0.70000 
i  (°) 63.340 63.326 63.349 63.443 
Ω  (°) free 359.86 359.96 359.45 
ω  (°) 270.00 270.48 270.33 270.00 
v  (°) free 172.86 15.35 168.63 

Table 75 Impulse details of three-impulse Molniya orbit raising orbit transfer strategy 

  
X axis 
(m/s) 

Y axis 
(m/s) 

Z axis 
(m/s) 

Total Impulsive 
Velocity 
Magnitude (m/s) 

Impulse 
True 
Anomaly(°) 

Impulse-1 -23.481 11.194 14.524 29.792 173.27 
Impulse-2 -11.891 9.465 -14.219 20.813 344.55 
Impulse-3 -19.702 2.141 -26.415 33.023 190.81 
TOTAL  83.63 
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4.4.2.3 Four Impulse Molniya Orbit Raising Strategy 

Molniya orbit raising can also be performed by applying four impulse strategy. However it 

should be considered that as the number of impulses increases, the orbit transfer 

complexity also increases. The genetic algorithm result of four impulse case is tabulated in 

Table 76. The errors are less than tolerances. The impulse components for each impulse 

and the timing of maneuvers (true anomaly) are given in Table 76. Four impulse method 

requires 77.88m/s impulsive velocity magnitude to perform Molniya orbit raising. 

Table 76 Molniya Orbit spacecraft orbit raising result for four-impulse orbit transfer 

Orbital 
Element 

Desired Final 
Orbit 

Calculated Final 
Orbit 

Absolute 
Error  

Error 
(%) 

a  (km) 26554.00 26554.34 0.34 1.00 
e  0.70000 0.70000 0.00000 0.00 
i  (°) 63.440 63.438 0.002 2.00 
Ω  (°) insignificant 359.06 insignificant insignificant
ω  (°) 270.00 270.00 0.00 0.00 
v  (°) insignificant 28.74 insignificant insignificant

 

The initial, intermediate and final orbits for this orbit transfer are tabulated in Table 78. 

Table 77 Four impulse Molniya spacecraft orbit raising intermediate orbit results 

Orbital  
Element 

Initial 
Orbit 

Intermediate
Orbit-1 

Intermediate
Orbit-2 

Intermediate 
Orbit-3 

Final 
Orbit 

a  (km) 26520.00 26649.51 26736.68 26833.53 26554.34 
e  0.72000 0.71441 0.70885 0.70327 0.70000 
i  (°) 63.340 63.381 63.377 63.398 63.438 
Ω  (°) free 359.79 359.74 359.21 359.06 
ω  (°) 270.00 269.74 269.83 269.86 270.00 
v  (°) free 167.37 175.78 177.13 28.74 

Table 78 Impulse details of three-impulse Molniya orbit raising orbit transfer strategy 

  
X axis 
(m/s) 

Y axis 
(m/s) 

Z axis 
(m/s) 

Total Impulsive 
Velocity 
Magnitude(m/s) 

Impulse 
True 
Anomaly (°) 

Impulse-1 -15.680 -0.224 -12.877 20.291 192.28 
Impulse-2 -15.409 3.423 -0.205 15.786 175.84 
Impulse-3 -14.966 6.788 -16.000 22.936 182.66 
Impulse-4 -11.142 -9.773 11.672 18.865 28.80 
TOTAL  77.88 
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4.4.3 Comparison of Transfer Alternatives for Molniya Orbit Raising 
Problem 

Molniya orbit raising can be performed by applying two, three, and four impulse strategies. 

Since at Molniya orbit raising case the superposition of classical orbit transfer methods do 

not offer any solution, the genetic algorithm orbit transfer methods can only be compared 

with respect to each other. 

The obtained results and impulse details for each strategy are given above. Since the errors 

are less than tolerance values for all strategies, these orbit strategies are only compared in 

terms of required impulsive velocity vector magnitudes. The required impulsive velocity 

vector magnitude of Molniya orbit raising task is given in Table 79. The minimum impulsive 

velocity requiring strategy for Molniya orbit raising is the two-impulse strategy (required 

impulsive velocity vector magnitude: 75.17m/s) and the worst strategy is the two-impulse 

strategy (83.63m/s). 

Table 79 Impulsive Velocity Requirement Comparison of Molniya orbit raising strategies 

Molniya Orbit Raising Strategy  
Total Impulsive 
Velocity Vector 
Magnitude (m/s) 

Two-impulse Orbit Transfer Method 75.17 
Three-impulse Orbit Transfer Method 83.63 
Four-impulse Orbit Transfer Method 77.88 

 

There is no direct relationship observed between number of impulses and required 

impulsive velocity magnitudes. Because of this at the Molniya raising problem it can be 

stated that the minimum energy requiring solution is initial orbit dependent (not 

predictable). 

 

4.4.4 Effect of Initial Orbital Elements to Molniya Raising Problem 
Solution 

In this section the effect of initial orbital element values to Molniya orbit raising solution is 

studied. Semimajor axis, eccentricity, inclination and argument of perigee are critical for 

Molniya orbit missions. Argument of perigee can be obtained accurately at the initial orbit of 

a satellite. However the initial values of other orbital elements may be different than desired 

values. These orbital elements are needed to be corrected and argument of perigee is 

needed to be kept constant. 
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The test case-4 (Table 68) is assumed to be baseline and the solutions for different initial 

orbital elements (for semimajor axis, eccentricity, inclination) are obtained. Test case-4 is 

named as Molniya-2 test case. The cost function coefficients, tolerances and final orbits are 

assumed to be the same as test case-4 (section 4.4, final orbit a =26554.00km, 

e =0.70000, i =63.44°, ω=270.00°). 

4.4.4.1 Semimajor axis variation 

Semimajor axis is an important orbital element for Molniya orbit spacecrafts. In Table 80, 

different initial semimajor axis test cases and their corresponding results are given. In Figure 

30 the results are also shown graphically. Two, three, and four impulse strategies are 

applied to obtain solutions to these problems. 

Table 80 Effect of initial semimajor axis value to Molniya raising problem 

Test 
Case 

Orbital Elements 
Total Impulsive Velocity 
Vector Magnitude (m/s) 

a (km) e  i (°) 

Two- 
Impulse 
Strategy 

Three- 
Impulse 
Strategy 

Four- 
Impulse 
Strategy 

Molniya-1 26540.00 0.72000 63.340 73.30 82.22 73.25 
Molniya-2(+) 26520.00 0.72000 63.340 75.17 83.63 79.66 

Molniya-3 26510.00 0.72000 63.340 76.67 86.42 88.63 
Molniya-4 26500.00 0.72000 63.340 77.29 87.00 94.13 

(+) reference test case 
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Figure 30 Molniya raising problem results for different initial semimajor axis values 

As can be seen in Table 80, effect of initial semimajor axis is not critical at the Molniya orbit 

raising problem since the required impulsive velocity magnitudes are close. Note that the 

trend of orbit transfer strategies is close to linear. The impulsive velocity vector magnitudes 

are not changing dramatically at the different initial semimajor axis values. 

Two impulse orbit transfer strategy requires the least impulsive velocity vector magnitude at 

the Molniya-2, 3, 4 cases. At Molniya-1 case the best orbit transfer strategy from the 

impulse requirement view is the four impulse orbit transfer strategy. Since the two and four 

impulse strategy values of Molniya-1 are close, the two impulse orbit transfer strategy can 

be applied instead of a four impulse orbit transfer strategy.  

There is no direct relationship observed between number of impulses and required 

impulsive velocity vector magnitudes. While at Molniya-1 and 2 cases three impulse strategy 

requires more propellant than four impulse strategy, at Molniya-3 and 4 four impulse 

strategy requires less propellant than three impulse strategy. 

4.4.4.2 Inclination variation 

Molniya orbit is a critically inclined orbit which means that inclination value should be about 

63.4°. Different inclination values are specified and orbit transfer solutions for these orbit 

raising problems are obtained. The test cases and their results are tabulated in Table 81. 

The graphical representations of results are given in Figure 31. 
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Table 81 Effect of initial inclination value to Molniya raising problem 

Test 
Case 

 
Orbital Elements 

Total Impulsive Velocity 
Vector Magnitude (m/s) 

a (km) e  i (°) 

Two- 
Impulse 
Strategy 

Three- 
Impulse 
Strategy 

Four- 
Impulse 
Strategy 

Molniya-5 26520.00 0.72000 63.390 74.13 79.68 76.58 
Molniya-2(+) 26520.00 0.72000 63.340 75.17 83.63 78.90 
Molniya-6 26520.00 0.72000 63.240 79.61 87.54 82.45 

Molniya-7 26520.00 0.72000 63.140 80.23 89.56 90.27 
Molniya-8 26520.00 0.72000 63.040 84.48 91.52 96.24 

(+) reference test case 

 

 

Figure 31 Molniya raising problem results for different initial inclination values 

Initial inclination values affect the required impulsive velocity magnitude as expected. As the 

difference between the initial and final orbit inclination values increase, the required 

impulsive velocity magnitudes also increase. This increment trend is growing type. While at 

the Molniya-5 the required impulsive velocity magnitude is 74.13m/s, at the Molniya-8 test 

case this value is 84.48m/s.  

Similar to semimajor axis case there is no direct relationship is observed between number of 

impulses and required energy. Four impulse strategy requires the maximum energy at the 

Molniya-2, 5 and 6 cases. On the other hand three impulse strategy requires the maximum 

energy at the Molniya-7 and 8 cases. It should be noted that the minimum energy requiring 
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orbit transfer strategy is two impulse orbit transfer strategy between at all cases given in 

Table 81. 

4.4.4.3 Eccentricity variation 

Main difference of Molniya with respect to other popular orbits (LEO, MEO, and GEO) is that 

it is a highly elliptic orbit. Final eccentricity value is 0.70000. In this section the effect of 

initial eccentricity value to Molniya raising solution is studied. In Table 82 these test cases 

are prepared for the investigation of effects of initial eccentricity values to Molniya raising 

solution and their results are presented. The results are also given in Figure 32 graphically. 

Table 82 Effect of initial eccentricity value to Molniya raising problem 

Test 
Case 

  
Orbital Elements 

Total Impulsive Velocity 
Vector Magnitude (m/s) 

a (km) e  i (°) 

Two- 
Impulse 
Strategy 

Three- 
Impulse 
Strategy 

Four- 
Impulse 
Strategy 

Molniya-9 26520.00 0.68000 63.340 81.9 83.99 86.83 

Molniya-10 26520.00 0.70000 63.340 47.99 52.40 49.65 
Molniya-2(+) 26520.00 0.72000 63.340 75.17 84.20 78.90 
Molniya-11 26520.00 0.74000 63.340 115.24 188.68 180.64 

Molniya-12 26520.00 0.76000 63.340 256.42 333.32 270.36 
(+) reference test case 

 

Figure 32 Molniya raising problem results for different initial eccentricity values 
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It is seen that the eccentricity value is the most critical orbital element at the Molniya raising 

problem. The initial eccentricity value directly affects the solution. Since the desired 

eccentricity value is 0.70000, the least impulse is required at Molniya-10 test case. Molniya-

2 and 9 are approximately at the same distance to final orbit, therefore their required 

impulsive velocity magnitudes are close. As the distance to final orbit increases, the required 

impulsive velocity magnitude increases rapidly. The minimum required impulsive velocity 

magnitude at Molniya-1 (e =0.72000) is 75.17m/s, at Molniya-12 (e =0.76000) this value is 

256.42m/s. Because of this reason initial eccentricity is very critical at Molniya orbit raising 

problems. Eccentricity should be as close as possible to final orbit for Molniya raising 

problem. 

At test cases Molniya-2, 9, 10, 11 and 12 the best orbit transfer strategy is the two impulse 

orbit transfer strategy from the required total impulsive velocity vector magnitude view. 

Similar to semimajor axis and inclination test cases for Molniya, there is no direct 

relationship between number of impulses and required impulsive velocity magnitude. While 

for some cases three impulse strategy suggests less impulse at other cases four impulse 

strategy requires less impulse. 

4.5 TEST CASE CONCLUSIONS 

At all cases the required impulsive velocity vector magnitudes of genetic algorithm orbit 

transfer strategies are less than classical orbit transfer strategies. This means that applying 

genetic algorithm orbit transfer strategies prolong the service time of the spacecraft.  

The required impulsive velocity vector magnitude difference between classical orbit transfers 

and genetic algorithm based orbit transfer methods for SS-LEO and MEO is about 39% and 

36% respectively. The same difference at GEO raising case is 40%. It can be stated that 

application of genetic algorithm based orbit transfer method saves propellant and provides 

long service time. It should be noted that since there is no classical orbit transfer method to 

realize Molniya raising, it is not possible to compare the classical and genetic algorithm 

based orbit transfer methods for this case. 

The effects of initial orbital element values to the results are also considered. For this 

purpose different initial conditions are set and results are obtained for these cases. This 

study is performed for LEO, MEO, GEO, and Molniya. Common and different conclusions 

have been obtained. Inclination is the most important and hard to change orbital element. 

At the LEO raising problem eccentricity is not critical. Similar results are also obtained for 

MEO raising problem. While inclination and semimajor axis are important, eccentricity is not 

as critical as inclination and semimajor axis. At the GEO raising problem, it is seen that all 
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orbital elements are critical and change the result dramatically. Molniya raising problem 

results are different than other cases. Consequently, for the Molniya raising problem, it can 

be stated that inclination and eccentricity are critical and semimajor axis is not so critical. 

The relationship between number of impulses and the required impulsive velocity vector 

magnitudes have also been examined. For this purpose two, three and four impulse 

strategies have been applied to all cases. It has been seen that different results are gained 

for a specific case depending on impulse number. Previous studies also show that while for 

some cases increasing impulse number is beneficial, for other cases decreasing the number 

of impulses are beneficial (Nakhjiri, 2011). 

At LEO raising case generally two impulse strategy suggest the least amount of impulsive 

velocity vector magnitude. However, at some test cases of LEO raising problem different 

solutions are also obtained. At the cases constructed for MEO raising problem two impulse 

strategy suggest the best results (minimum energy). As the number of impulse increases, 

the required impulsive velocity magnitude generally increases. At some test cases four 

impulse strategy offers results that requires less amount of propellant. At the GEO raising 

problem, the least energy requiring strategy is the two impulse orbit transfer strategy. In 

this case, as the number of impulse increases, the required impulsive velocity increases 

dramatically. At GEO raising, four impulse orbit transfer strategy is not a good orbit transfer 

alternative. At the Molniya raising problem generally two impulse orbit transfer strategy 

offers the least energy requiring result. However sometimes three and four impulse 

strategies suggest better results.  

To conclude, in this part of the study the orbit transfer methods of important satellite types 

are studied. These orbits are Earth centered orbits and contain 80% of all satellites. In 

other words almost all type satellites are studied. For the orbit raising cases, there exists no 

optimal solution in the literature. One way is to realize such transfers applying combination 

of optimal orbit transfers. While these transfers suggest an orbit transfer strategy, they are 

not optimal. The genetic algorithm based orbit transfer method introduced is applied to 

orbit raising problems examined in this section. This genetic algorithm based orbit transfer 

strategies can offer different solutions based on the number of impulses. For all cases, two, 

three and four impulse orbit transfer strategies are developed. Classical and genetic 

algorithm based orbit transfer strategies are compared. It is seen that genetic algorithm 

based orbit transfer method suggests much less propellant to realize orbit raising. This 

means that using the same amount of propellant, the satellite can service for a longer 

period. 
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CHAPTER 5 

CONCLUSION 

5.1 SUMMARY AND GENERAL DISCUSSIONS 

In this thesis work, orbit transfer optimization problem is studied. The orbit transfers are 

modeled as realized by applying impulses. The magnitude and timing of impulses were 

aimed to be optimized to satisfy the specified objectives and constraints. In this study, main 

objective of this problem is to realize the desired orbit transfer using minimum 

energy/impulsive velocity vector magnitude while considering impulse level per one 

operation of propulsion system and total impulse capacity constraints. Since the orbits 

around only Earth are focused, the transfer duration is not considered as a constraint. The 

transfer duration becomes important at the missions which include rendezvous tasks. 

Orbit transfers can be realized for different purposes. Among these the orbit transfer of a 

satellite starting from the separation from a launch vehicle ending at the mission orbit of a 

satellite is one of the most important orbit transfer problem. Since minimization of 

propellant consumption during this transfer enables to use the saved propellant during orbit 

maintenance. Therefore the service time of a satellite can be increased.  

Classical orbit transfers are the orbit transfer methods that are suggested in the orbit 

transfer literature. While some of them are optimal at specific conditions, the remaining 

transfers are not optimal. Classical orbit transfer methods can be used to develop orbit 

transfer strategies but they have deficiencies. Main deficiencies of classical orbit transfers 

are: 

 Some of the classical orbit transfers can only be used to change one or two orbital 

elements. Using classical orbit transfers the changes of six variables are not 

possible. At the orbit raising problem semimajor axis, eccentricity, inclination, and 

right ascension of ascending node (sometimes argument of perigee) is needed to 

be corrected. Classical orbit transfer methods do not offer any orbit transfer 

strategy for this problem. Only a superposition of classical orbit transfers can 
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suggest a solution to this problem. The superposition of classical orbit transfers may 

not suggest optimal results. 

 Classical orbit transfers focuses on only the changing of some orbital elements, 

some of the remaining orbital elements are also changed while they should be kept 

constant. Note that if the orbit is changed successive stages so that only one orbital 

element is changed at each stage, the energy requirement of orbit transfer 

increases.  

Considering the deficiencies of classical orbit transfer methods and constraints such as 

transfer duration, impulse level per one burn, total impulse, rendezvous of orbit transfer 

problem, classical orbit transfer methods are generally not applicable. For these reasons, an 

orbit transfer optimization method is needed to be developed. In this study the orbit 

transfer problem optimization methods are developed. Genetic and steepest descent are 

used as optimization method. The closeness of final orbital elements and required impulsive 

velocity vector magnitudes are compared to optimal orbit transfers that are known to be 

optimal at specific conditions. These optimal orbit transfers are Hohmann and only 

inclination change orbit transfers. While genetic algorithm reaches to optimal solution, 

steepest descent method is not successful when a poor initial prediction is given. In other 

words steepest descent can only be used at orbit transfers where a strong intuition to 

optimal solution. 

The genetic algorithm based orbit transfer method was applied to most common orbit 

transfer of satellites. The most popular satellite orbits are sun synchronous low earth orbit 

(SS-LEO), medium earth orbit (MEO), geostationary earth orbit (GEO) and Molniya orbit. In 

this study the orbit raising of these satellites are examined. The reason of orbit raising is the 

launch vehicle injection errors arising from final stage propulsion and orbit control systems 

excluding geostationary earth orbit raising. In geostationary earth orbit case a satellite is 

inserted to an orbit different from GEO on purpose since the capacity of launch vehicles are 

limited. This orbit is also known as geostationary transfer orbit (GTO). At this orbit satellite 

performs orbit transfers in order to reach GEO. Since the missions and orbits of SS-LEO, 

MEO, GEO, and Molniya satellites are different, the required accuracies of orbits are 

different. Therefore cost functions are specified based on cases.  

The two, three, and four impulse genetic algorithm based orbit transfer strategies are 

obtained for all cases. The results of these strategies are compared to each other and 

classical orbit transfers. The synthesis of classical orbit transfer method requires the largest 

amount of impulse for each case. All genetic algorithm based methods requires less amount 

of impulse than superposition of classical orbit transfers. The genetic algorithm based orbit 
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transfer method decreases the propellant consumption of satellites during orbit raising. The 

decrease in the propellant consumption directly increases the service lifetime of a satellite. 

The genetic algorithm based orbit transfer strategies offer different solutions based on the 

number of impulses.  

The effects of initial orbital values to the orbit raising problems were also studied. For this 

purpose test cases were constructed and solutions for these test cases were obtained for 

SS-LEO, MEO, GEO, and Molniya. For all these problems, the critical orbital elements were 

specified. The least energy requiring strategy and relationship between number of impulses 

and required impulsive velocities were also obtained. 

During these studies it is observed that there exist no single relationship between number 

of impulses and the required impulsive velocity vector magnitudes.  

The obtained results prove that the genetic algorithm based orbit transfer optimization 

method is capable of finding an optimal orbit transfer strategy satisfying the user defined 

requirements and constraints. This plays a vital role in enhancing satellite service time 

and/or conceptual design of satellite since it reduces the effort and time to find out 

optimum orbit transfer strategy throughout a huge domain. 

5.2 FUTURE WORK 

In this study the genetic algorithm is used to obtain optimal solutions to orbit transfer 

problem. Although this thesis suggests important results for the specification of orbit 

transfer method, it needs improvements. It should be noted that while these improvements 

are out of scope of this thesis, they may be beneficial for the further studies. 

1. The outputs of genetic algorithm may be used as the initial guess of a gradient 

based optimization method. In this case the generation number of genetic algorithm 

may be lessened since the genetic algorithm results are only used for initial guess. 

Therefore optimal orbit transfer strategy can be obtained faster than only genetic 

algorithm optimization. 

2. The genetic algorithm based orbit transfer method presented in this thesis may be 

run considering more difficult constraints. The satellite propulsion system and 

attitude and orbit control system requirements should also be considered during 

orbit transfer calculations. The impulsive velocity vector enables to calculate the 

required amount of propellant at each direction. 

3. Interplanetary trajectories are mainly used for scientific missions. The requirements 

of interplanetary orbit transfers are different from Earth centered orbit transfers. In 

interplanetary trajectories the timing of spacecraft is important; spacecraft should 
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be at a specific point at the defined time to benefit from the gravity assistance of 

third bodies. Interplanetary trajectories also are influenced from different 

perturbations in order to be at the specific point at the defined time and for 

escaping perturbations spacecraft should change its orbit. With the addition of all 

these parameters, the genetic algorithm based orbit transfer method can also be 

used for interplanetary trajectory planning and tracking tasks.  

4. In this study the perturbation effects causing atmospheric drag, solar pressure, 3rd 

body effects, etc are also not considered. The perturbations should also be included 

to the problem in order to obtain more realistic orbit transfer strategies. Note that 

during orbit transfers, the perturbations are not so critical since the orbit transfer 

duration is much less than the duration that perturbations affect the spacecraft. 
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