DESIGN AND IMPLEMENTATION OF Z-SOURCE FULL-BRIDGE DC/DC CONVERTER

A THESIS SUBMITTED TO
 THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

AYCAN UÇAR

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
ELECTRICAL AND ELECTRONICS ENGINEERING

DESIGN AND IMPLEMENTATION OF Z-SOURCE FULL-BRIDGE DC/DC CONVERTER

submitted by AYCAN UÇAR in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Electronics Engineering Department, Middle East Technical University by,

Prof. Dr. Canan ÖZGEN

Dean, Graduate School of Natural and Applied Sciences
Prof. Dr. İsmet ERKMEN
Head of Department, Electrical and Electronics Engineering
Prof. Dr. Aydın ERSAK
Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Muammer ERMIȘ
Electrical and Electronics Engineering Dept., METU
Prof. Dr. Aydın ERSAK
Electrical and Electronics Engineering Dept., METU
Prof. Dr. Işık ÇADIRCI
Electrical and Electronics Engineering Dept., HU
Dr. Faruk BİLGíN
Space Technologies Research Institute, TUBITAK
Murat ERTEK, M.Sc. in EEE
SST, ASELSAN

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name : Aycan UÇAR

Signature

ABSTRACT

DESIGN AND IMPLEMENTATION OF Z-SOURCE FULL-BRIDGE DC/DC CONVERTER

UÇAR, Aycan
M. Sc., Department of Electrical and Electronics Engineering Supervisor: Prof. Dr. Aydın ERSAK

September 2012, 170 pages

In this work, the operating modes and characteristics of a Z-source full-bridge dc/dc converter are investigated. The mathematical analysis of the converter in continuous conduction mode, CCM and discontinuous conduction mode-2, DCM-2 operations is conducted. The transfer functions are derived for CCM and DCM-2 operation and validated by the simulation. The current mode controller of the converter is designed and its performance is checked in the simulation. The component waveforms in CCM and DCM-2 modes of operation are verified by operating the prototype converter in open-loop mode. The designed controller performance is tested with the closed-loop control implementation of the prototype converter. The theoretical efficiency analysis of the converter is made and compared with the measured efficiency of converter.

Keywords: Z-source, full-bridge dc/dc converter, state-space averaging method, circuit averaging method,

ÖZ

Z-KAYNAKLI TAM KÖPRÜLÜ DC/DC ÇEVİRİCI TASARIMI VE GERÇEKLENMESİ

UÇAR, Aycan
Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü Tez Yöneticisi: Prof. Dr. Aydın ERSAK

Eylül 2012, 170 sayfa

Bu çalı̧̧mada Z-kaynaklı tam köprülü d.a./d.a. çeviricinin çalışma kipleri ve karakteristiği incelenmiştir. Çeviricinin sürekli-iletim kipi ve kesikli-iletim kipi-2 operasyonları için matematiksel analizi yapılmıştır. Sürekli-iletim kipi ve kesikliiletim kipi-2 için türetilen transfer fonksiyonları benzetim ile doğrulanmıştır. Çeviricinin akım döngüsü denetleci tasarlanıp, tasarlanan denetlecin benzetim ortamında performansı incelenmiştir. Sürekli iletim kipi ve kesikli iletim kipi-2 çalışma kipleri için devre elemanları gerilim ve akım dalga biçimleri prototip çeviricinin açık-döngü çalışırııması ile doğrulanmıştır. Tasarlanan denetlecin performansı prototip çeviricinin kapalı-döngü çalı̧̧̧ırılması ile test edilmiştir. Çeviricinin teorik verim analizi yapılı, çeviricinin ölçülen verimi ile kıyaslanmıştır.

Anahtar Kelimeler: Z-kaynak, tam köprü d.a./d.a. çevirici, durum uzayı ortalama metodu, devre ortalama metodu
to My Family and Love,

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my supervisor Prof. Dr. Aydın ERSAK for his guidance, encouragement, suggestions and support throughout the thesis study.

I wish to send a special thank to M. Tufan Ayhan for his valuable help and endless support throughout this work. I also would like to thank Ümit Büyükkeleş, Hüseyin Meşe, Doğan Yıldırım and Kenan Ahıska for their support.

I would like to thank Adem İleri and Gökhan Ünal for their endless support, encouragements throughout the work.

I am grateful to ASELSAN Inc. for the funding of the hardware and facilities made my work easier. I am indebted to TUBİTAK for the scholarship that supported my work.

Finally, I would like to express my gratitude to my family and my love for their encouragement and support.

TABLE OF CONTENTS

ABSTRACT IV
ÖZ V
ACKNOWLEDGEMENTS VII
TABLE OF CONTENTS VIII
LIST OF TABLES
LIST OF FIGURES XI
CHAPTERS

1. INTRODUCTION 1
1.1 History 1
1.2 Z-Source Full-Bridge DC/DC Converter 3
1.3 Scope and Outline of the Thesis 7
2. MATHEMATICAL ANALYSIS OF Z-SOURCE DC/DC CONVERTER 9
2.1 Introduction 9
2.2 Circuit Analysis and Simplification of Z-Source Full Bridge DC/DC Converter 10
2.3 Analysis of the Simplified Model 12
2.3.1 Mathematical Analysis of Simplified Model in CCM 13
2.3.2 Dynamic Model in CCM Operation 21
2.3.3 Mathematical Analysis of Simplified Model in DCM-2 34
2.3.4 Obtaining Dynamic Model in DCM-2. 46
3. SIMULATION RESULTS OF Z-SOURCE DC/DC CONVERTER 65
3.1 Introduction 65
3.2 Determination of the Sizes of the Energy Storage Components 65
3.3 Simulation Results in CCM Operation 70
3.3.1 Verification of Circuit Components Waveforms 70
3.3.2 Verification of Transfer Functions 73
3.4 Simulation Results in DCM-2 Operation 80
3.4.1 Verification of Circuit Components Waveforms 80
3.4.2 Verification of Transfer Functions 83
4. CONTROLLER DESIGN OF Z-SOURCE DC/DC CONVERTER 89
4.1 Introduction 89
4.2 Controller Design 91
4.2.1 Current loop controller design 93
4.2.2 Voltage Loop Controller Design 98
4.3 Simulation Results of the Closed-Loop System 102
5. EXPERIMENTAL RESULTS OF Z-SOURCE DC/DC CONVERTER. 108
5.1 Introduction 108
5.2 The Experimental Results in Open-Loop Control 109
5.2.1 Open-Loop Control CCM Operation Experimental Results 110
5.2.2 Open-Loop Control DCM-2 Operation Experimental Results 115
5.2.3 The Efficiency of the Converter in Open-Loop Control Operation 119
5.3 The Experimental Results in Closed-Loop Control 120
5.3.1 The Output Voltage Regulation Against Output Loading Step Changes 121
5.3.2 Comments on the Output Voltage Responses Against Step Output Loading Changes. 131
5.3.3 The Output Voltage Responses Against Step Changes of the Input Voltage 132
5.4 The Efficiency Analysis of the Prototype Converter from Experimental Results 137
5.4.1 Power Loss Calculation on the Switches (MOSFETs) from the Experimental Results. 141
5.4.2 Power Loss Calculation of the Switches (Diodes) from the Experimental Results 145
5.4.3 Power Loss Calculation of the Capacitors from the Experimental Results 146
5.4.4 Power Loss Calculation of the Inductors from the Experimental Results 147
5.4.5 Power Loss Calculation of the Isolation Transformer from the Experimenatl Results 151
5.4.6 Comparison of the Measured and Calculated Efficiency of the Prototype Converter 153
6. CONCLUSION AND FUTURE WORKS 155
6.1 Conclusion 155
6.2 Future Works 157
REFERENCES 158
APPENDICES
A. CALCULATION OF PARTIAL DERIVATIVES 162
B. PROTOTYPE CONVERTER CIRCUIT SCHEMATICS 166
C. PROTOTYPE CONVERTER CIRCUIT LAYOUT 170

LIST OF TABLES

TABLES

Table 3-1 Parameters of the simulated converter for CCM operation 70
Table 3-2 Parameters of the simulated converter for DCM-2 operation 80
Table 4-1 Simulation Results of the Converter against Step Disturbances 104
Table 5-1 Open loop control efficiency of the converter at 10% load, half load and full-load conditions 120
Table 5-2 Definitions of the parameters used in t_{on} and $\mathrm{t}_{\mathrm{off}}$ formula 143

LIST OF FIGURES

FIGURES

Figure 1-1 C-fed full-bridge dc/dc converter 3
Figure 1-2 Z-source impedance network 4
Figure 1-3 Bidirectional power flow operation 5
Figure 1-4 Z-source dc/dc converter with filter inductor and capacitor 6
Figure 2-1 Z-source full bridge dc/dc converter 10
Figure 2-2 Simplified circuit diagram for Z-source dc/dc converter 11
Figure 2-3 Defining electrical variables in simplified equivalent circuit for Z-source dc/dc converter 13
Figure 2-4 Active loops during mode-1 in CCM operation of Z-source dc/dc converter 15
Figure 2-5 Active loops during mode-2 in CCM operation of Z-source dc/dc converter 16
Figure 2-6 Voltage and current waveforms regarding the circuit elements during the CCM operation of Z-source dc/dc converter 17
Figure 2-7 Voltage and current waveforms regarding the switching elements (D_{i} and Q) during the CCM operation of Z-source dc/dc converter 18
Figure 2-8 Variation of the normalized output voltage $\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{s}}$ with duty factor, D.. 21
Figure 2-9 Linearization of non-linear function at an operating point 22
Figure 2-10 Active loops during mode-1 in DCM-2 operation of Z-source dc/dcconverter36
Figure 2-11 Active loops during mode-2 in DCM-2 operation of Z-source dc/dc converter 37
Figure 2-12 Active loops during mode-3 in DCM-2 operation of Z-source dc/dc converter 39
Figure 2-13 Capacitors ($C_{Z_{1}}$ and $C_{Z_{2}}$) and inductors ($L_{Z_{1}}$ and $L_{Z_{2}}$) voltage and current waveforms during the DCM-2 operation of Z -source dc/dc converter............... 40
Figure 2-14 Switching elements (D_{i} and Q) voltage and current waveforms during the CCM operation of Z-source dc/dc converter ... 41
Figure 2-15 Input diode voltage and current waveforms over a period.................. 48
Figure 2-16 Switch (MOSFET) waveforms over a period..................................... 49
Figure 2-17 Rectification diode waveforms over a period..................................... 50
Figure 2-18 Small signal ac model of the input diode ... 59
Figure 2-19 Small signal ac model of the switch ... 59
Figure 2-20 Small signal ac model of the rectification diode 59
Figure 2-21 Small signal ac model of the Z-source dc/dc converter in DCM-2
operation... 60

Figure 2-22 Reduced order small signal ac model of the Z-source dc/dc converter61
Figure 2-23 Small signal ac model for determination of $G_{v_{o} / d}^{D C M}(s)$ in DCM-2 operation .. 61
Figure 2-24 Small signal ac model for determination of $G_{v_{o} / v_{s}}^{D C M}(s)$ in DCM-2 operation ... 63
Figure 3-1 Simplified circuit diagram of Z-source dc/dc converter for CCM
simulation .. 70
Figure 3-2 Z-source network capacitor and output voltage in CCM 71
Figure 3-3 Input diode, Z-source network inductor and output filter inductor current waveforms in CCM .. 72

Figure 3-4 Z-source network capacitor and output filter capacitor current variation in CCM73
Figure 3-5 Circuit configurations simulated in order to verify $G_{v_{o} / d}^{C C M}(s)$ 74
Figure 3-6 Dynamic response of the circuit model simulated in SIMPLORER to verify duty factor to output voltage transfer function in CCM 74
Figure 3-7 Duty factor to output voltage transfer function in CCM simulated in SIMULINK 76

Figure 3-8 Dynamic response of $G_{v_{o} / d}^{C C M}(s)$, duty factor to output voltage transfer function in CCM obtained by SIMULINK... 76

Figure 3-9 Circuit model simulated in SIMPLORER in order to verify input voltage

Figure 3-10 Dynamic response of the circuit model for input voltage to output voltage transfer function, $G_{v_{o} / v_{s}}^{C C M}(s)$ by SIMPLORER 78
Figure 3-11 Input voltage to output voltage transfer function in CCM, $G_{v_{o} / v_{s}}^{C C M}(s)$ simulated in SIMULINK .. 79

Figure 3-12 Dynamic response of input voltage to output voltage transfer function
in CCM, $G_{v_{o} / v_{s}}^{C C M}(s)$ simulated in SIMULINK .. 79
Figure 3-13 Z-source network capacitor voltage and the output voltage in DCM-2 mode of operation.. 81
Figure 3-14 Current waveforms belonging to input diode, Z-source network inductor and output filter inductor in DCM-2 operation.................................... 82
Figure 3-15 Current waveforms belonging to Z-source network capacitor and
output filter capacitor in DCM-2 operation... 83
Figure 3-16 Dynamic response of the circuit model simulated in SIMPLORER to verify duty factor to output voltage transfer function in DCM-2 of operation.... 84
Figure 3-17 Duty factor to output voltage transfer function in DCM-2 of operation simulated in SIMULINK 85
Figure 3-18 Dynamic response of $G_{v_{o} / d}^{D C M}(s)$, duty factor to output voltage transfer function in DCM-2 mode of operation obtained by SIMULINK 85
Figure 3-19 Dynamic response of the circuit model simulated by SIMPLORER to verify input voltage to output voltage transfer function in DCM-2 mode of operation 86
Figure 3-20 Input voltage to output voltage transfer function in DCM-2 mode of operation simulated in SIMULINK 87
Figure 3-21 Dynamic response of $G_{v_{o} / v_{s}}^{D C M}(s)$, input voltage to output voltage transfer function in DCM-2 mode of operation obtained by SIMULINK 87
Figure 4-1 Control block diagram of the converter 92
Figure 4-2 Current loop control block diagram. 93
Figure 4-3 Pole-zero map of $G_{i_{L_{z}} / d}(s)$ 95
Figure 4-4 Bode diagram of $G_{i_{L_{z}} / d}(s)$ 96
Figure 4-5 Bode diagram of the compensated open-loop transfer function of current loop 98
Figure 4-6 Voltage loop control block diagram 99
Figure 4-7 Pole-zero map of $G_{V_{o} / d}(s)$ 100
Figure 4-8 Bode diagram of the compensated open-loop transfer function of voltage loop. 101
Figure 4-9 Pole-zero map of $G_{O L}^{v}(s)$. 102
Figure 4-10 Closed-loop simulation model of Z-source dc/dc converter 103
Figure 4-11 Output voltage during full-load-to-10\% load-to-full-load transition under 32 V input voltage 105
Figure 4-12 Output voltage during full-load-to-10\% load-to-full-load transition under 18 V input voltage 105
Figure 4-13 Output voltage during 18 V -to- 32 V -to-18V input voltage transition under full-load 106
Figure 4-14 Output voltage during 18 V -to-32V-to-18V input voltage transition under 10% load 106
Figure 5-1 Top view of the prototype converter 109
Figure 5-2 Bottom view of the prototype converter 109
Figure 5-3 Voltage and current waveforms of L_{z} against applied PWM in CCM 11
Figure 5-4 Voltage and current waveforms of L_{o} against applied PWM in CCM 112Figure 5-5 C_{z} voltage waveform against applied PWM in CCM, a) dc coupling, b)ac coupling113
Figure 5-6 Output voltage waveform against applied PWM in CCM, a) dccoupling, b) ac coupling ... 114
Figure 5-7 a) D_{i} anode-cathode, b) isolation transformer primary side, c) $Q_{1}-$ Q_{3} cross-pair $v_{D S}$ voltage waveforms against applied PWM in CCM............. 115
Figure 5-8 L_{z} current and voltage waveform against applied PWM in DCM-2 ... 116
Figure 5-9 L ${ }_{o}$ current and voltage waveform against applied PWM in DCM-2 ... 117
Figure 5-10 C_{z} voltage waveform against applied PWM in DCM-2, a) dc coupling, b) ac coupling

Figure 5-11 The output voltage waveform against applied PWM in DCM-2, a) dc coupling, b) ac coupling ... 118
Figure 5-12 a) D_{i} anode-cathode, b) isolation transformer primary side, c) $Q_{1}-$ Q_{3} cross-pair $v_{D S}$ voltage waveforms against applied PWM in DCM-2 119
Figure 5-13 The output voltage response of the converter against a step change of loading from 0.2 A to 1.5 A for $\mathrm{V}_{\mathrm{s}}=20 \mathrm{~V}$.. 122
Figure 5-14 The output voltage response of the converter against a step change of loading from 0.2 A to 1.5 A for $\mathrm{V}_{\mathrm{s}}=30 \mathrm{~V}$ 123

Figure 5-15 The output voltage response of the converter against a step change of loading from 1.5 A to 0.2 A for $\mathrm{V}_{\mathrm{s}}=20 \mathrm{~V}$ 124
Figure 5-16 The output voltage response of the converter against a step change of loading from 1.5 A to 0.2 A for $\mathrm{V}_{\mathrm{s}}=30 \mathrm{~V}$ 125
Figure 5-17 The output voltage response of the converter against a step loading from 1.5 A to 3 A for $\mathrm{V}_{\mathrm{s}}=20 \mathrm{~V}$ 126

Figure 5-18 The output voltage response of the converter against a step loading from 1.5 A to 3 A for $\mathrm{V}_{\mathrm{s}}=30 \mathrm{~V}$ 126

Figure 5-19 The output voltage response of the converter against a step unloading from 3 A to 1.5 A for $\mathrm{V}_{\mathrm{s}}=20 \mathrm{~V}$... 127
Figure 5-20 The output voltage response of the converter against a step unloading from 3 A to 1.5 A for $\mathrm{V}_{\mathrm{s}}=30 \mathrm{~V}$ 128
Figure 5-21 The output voltage response of the converter against a step increase of loading from 0.2 A to 3 A for $\mathrm{V}_{\mathrm{s}}=20 \mathrm{~V}$. 129

Figure 5-22 The output voltage responses of the converter against a step increase of loading from 0.2 A to 3 A for $\mathrm{V}_{\mathrm{s}}=30 \mathrm{~V}$... 129
Figure 5-23 The output voltage response of the converter against a step unloading from 3 A to 0.2 A for $\mathrm{V}_{\mathrm{s}}=20 \mathrm{~V}$ 130
Figure 5-24 The output voltage response of the converter against a step unloading from 3 A to 0.2 A for $\mathrm{V}_{\mathrm{s}}=30 \mathrm{~V}$ 131
Figure 5-25 The output voltage response of the converter against a step change of the input voltage from 20 V to 30 V for $\mathrm{i}_{\text {Load }}=0.2 \mathrm{~A}$ 133

Figure 5-26 The output voltage response of the converter against a step change of the input voltage from 20 V to 30 V for $\mathrm{i}_{\text {Load }}=1.5 \mathrm{~A}$ 134

Figure 5-27 The output voltage response of the converter against a step change of input voltage from 20 V to 30 V for $\mathrm{i}_{\text {Load }}=3 \mathrm{~A}$ 134

Figure 5-28 The output voltage response of the converter against a ramp input voltage decay from 30 V to 20 V for $\mathrm{i}_{\text {Load }}=0.2 \mathrm{~A}$ 135

Figure 5-29 The output voltage response of the converter against a ramp input voltage decay from 30 V to 20 V for $\mathrm{i}_{\text {Load }}=1.5 \mathrm{~A}$. 136

Figure 5-30 The output voltage response of the converter against a ramp input voltage decay from 30 V to 20 V for $\mathrm{i}_{\text {Load }}=3 \mathrm{~A}$ 137

Figure 5-31 Defining electrical variables for efficiency analysis of Z-source dc/dc converter 138
Figure 5-32 Determination of current waveform magnitudes regarding the circuit elements for open-loop control 139
Figure 5-33 Determination of current waveform magnitudes regarding the circuit elements for open-loop control 140
Figure B-1 Sheet 1 of the prototype converter circuit schematics 166
Figure B-2 Sheet 2 of the prototype converter circuit schematics 167
Figure B-3 Sheet 3 of the prototype converter circuit schematics 168
Figure B-4 Sheet 4 of the prototype converter circuit schematics 169
Figure C-1 Top side layout of the prototype converter 170
Figure C-2 Bottom side layout of the prototype converter 170

CHAPTER 1

INTRODUCTION

1.1 History

Dc power supplies are mainly utilized to meet the power needs of electrical and electronics equipments. The required output voltage can be produced either by a linear voltage regulator, LVR or a switch mode power supply, SMPS.

LVRs have some certain advantages such as simplicity of design and low level noise since no switching element exists in LVR topology. However, boosting the input voltage is not possible with LVR topology. Moreover, isolation cannot be achieved. Inefficiency is the main drawback of LVRs, which makes it unsuitable for the applications where the required output voltage is not close to the unregulated input voltage, or the unregulated input voltage varies within a wide range.

SMPS topologies have several advantages relative to LVRs such as higher efficiency within wide operating range, smaller sizes of energy storage components and lower weight of the converter. Furthermore, buck and/or boost operations and isolation between the input and output voltage can be achieved with SMPS.

The buck and boost converters are the two basic SMPS topologies, from which all other SMPS topologies can be derived [1]. They can be separated into two groups as isolated and non-isolated. In many applications the isolation between the
input voltage and output voltage is required due to safety issues. The traditional boost converter cannot be used in the applications where isolation is required.

Flyback converter is the most popular transformer based boost converter topology. Very high efficiencies can be achieved with flyback. However, due to its topology, the primary side of the isolation transformer always sees a positive voltage, resulting in always in the same direction flux in the core. This phenomenon limits the amount of power to be transferred by the isolation transformer, and therefore the output power rating of the converter [2]. Hence, flyback topology is generally preferred up to $100-150 \mathrm{~W}$.

The traditional transformer isolated high power dc/dc conversion circuit is full-bridge converter. The full-bridge converter can be voltage-fed (V-fed) or current-fed (C-fed).

V-fed full-bridge converter is a buck derived topology. Hence, it is not possible to obtain a higher output voltage unless using a step-up transformer for the isolation. In [3] it is mentioned that, higher transformer turns ratio leads to higher leakage inductance resulting in excessive ringing on the rectifier diodes. [4] states that ringing decreases the efficiency of the converter. Besides efficiency concern, the severe ringing shortens the life time of rectifier diodes, hence decreases reliability of the converter. The current drawn from the input power supply increases as the turns ratio increases according to [5]. This results in higher conduction loss on the parasitic of the converter, hence decreasing the efficiency; and higher current carrying capable switches to be used in the converter, thus raising the cost of the converter.

The C-fed full-bridge converter can be used for boosting operation. The output voltage of the C -fed full-bridge converter is always greater than the input voltage. Hence, the C-fed full-bridge converter is not preferred for wide input voltage range operations. The traditional C-fed full-bridge converter is displayed in Figure 1-1. The most commonly known problem of C-fed full-bridge converter is the voltage overshot problem in the primary switches, due to the leakage inductance of the isolation transformer [6]. Another limitation for the C-fed converter is that one of
the upper switches $\left(\mathrm{Q}_{1}, \mathrm{Q}_{3}\right)$ and one of the lower switches $\left(\mathrm{Q}_{2}, \mathrm{Q}_{4}\right)$ have to be gated on and maintained on together at any time as mentioned in [7]. In other words, the current flowing through the inductor, $i_{s}(t)$ must always find a path to flow. In C-fed full-bridge converter the path has to be provided by the proper gating on the switches in full-bridge part. If at least one of the upper switches and one of the lower switches fail to conduct, which might be due to EMI noise, switch failure or drive circuitry failure, during the operation the dc inductor would then be open-circuited [7]. This might destroy the switches in the full-bridge part, since the energy stored on the dc inductor is dissipated on the switches. The open circuit problem of the C-fed fullbridge is a major concern regarding the converter's reliability [8], [9].

Figure 1-1 C-fed full-bridge dc/dc converter

The aforementioned limitation and problems of the C-fed full-bridge converter can be solved by Z-source topology.

1.2 Z-Source Full-Bridge DC/DC Converter

The Z-source network impedance is shown in Figure 1-2. Z-source network is used to couple the converter/inverter main circuitry to the power source.

Figure 1-2 Z-source impedance network

Z-source network can be used in each type of power conversion; that is ac/ac, $\mathrm{ac} / \mathrm{dc}$, dc/ac and dc/dc. The operation principles of the Z-source network for the inverters are investigated in detail in [8]. The theoretical limitations and drawbacks of the traditional voltage-source and current-source inverters are discussed in this work. In voltage-source inverters the switches on the same half-bridge cannot be turned on at the same time and the output voltage cannot exceed the input voltage (buck derived). In the current-source inverters, the output voltage is always greater than the input voltage (boost derived) and at least one of the upper and one of the lower switches must be 'ON' at the same time. Z-source eliminates these problems and makes it possible to use the inverter in a step-up or step-down manner.

Some discusses the ac/ac power conversion with Z-source network impedance [10]. The Z-source impedance is connected to the ac power source. Adjustable speed drive implementation is conducted in this work. It is shown that when duty factor is less than 0.5 the inverter works in buck mode, and when duty factor is greater than 0.5 the inverter work in boost mode.

For the dc/dc converter implementations main studies are addressed in [7], [11]-[14]. In [7] the Z-source impedance network is composed of an array of inductors and capacitors. The impedance network contains two conductors with dielectric insulation to form capacitance and two current carrying conductors insulated by magnetic core to form inductance. The output voltage of the converter is controlled by changing the switching frequency. In normal operation all the switches
have a duty cycle of 0.5 . For boosting the input voltage short circuit duty cycle is increased, that is the switches on the same phase leg are gated on simultaneously (short circuit the phase leg). For buck operation open-circuit duty ratio is increased, so that the switches on the same phase leg are gated off simultaneously (open circuit the phase leg).

Another report discusses the Z-source resonant dc/dc converter structure [11]. This work is a follow-up of the study in [7]. The Z-source network is replaced by the qZ-source structure so that the sizes of the energy storage elements are reduced, which in turn reduces the cost and weight of the converter. The output voltage is kept constant at 100 V while the input voltage varies between $50-150 \mathrm{~V}$ by changing the switching frequency of the converter.

In [12] a novel Z -source dc/dc converter topology is proposed. In this topology the isolation between input and output does not exist. The prototype converter is designed for an electric vehicle application. The input diode is replaced by a switch, MOSFET. The topology allows bidirectional power flow. Considering the power source as a dc voltage source, power flows from the source to the load side. When the vehicle needs to be braked the power flows from load to power source. The power flow direction and the switches operating during the operating modes are displayed in Figure 1-3. The conducting switches during the operation are shown in red.

Figure 1-3 Bidirectional power flow operation

The Z-source dc/dc converter without isolation and without filter inductor is analyzed for discontinuous conduction mode, DCM, of operation in [13]. In this
work, it is assumed that DCM operation starts when the Z-source inductor current falls to zero. Only the input voltage-output voltage relationships are derived and the critical Z-source inductor value calculation is done in this work.

A well organized and detailed investigation of the operating modes and operation of Z-source dc/dc converter with filter inductor and filter capacitor is conducted in [14]. The analyzed circuit is shown in Figure 1-4.

Figure 1-4 Z-source dc/dc converter with filter inductor and capacitor

In [14] it is stated that the converter can operate in CCM or DCM operation. There are three different DCM and one CCM of operation for the analyzed converter.

- CCM Operation: The current through the input diode, D_{i} and rectifier diode, D_{r} does not fall to zero in their switching time intervals.
- DCM-1 Operation: The current through the input diode, D_{i} falls to zero in its switching time interval, but rectifier diode, D_{r} does not fall to zero in its switching time interval.
- DCM-2 Operation: The current through the input diode, D_{i} does not fall to zero in its switching time interval, but rectifier diode, D_{r} falls to zero in its switching time interval.
- DCM-3 Operation: The current through the input diode, D_{i} and rectifier diode, D_{r} fall to zero in their switching time intervals.

In [14] all the input voltage-output voltage relationships and the necessary transfer function of the converter are derived for CCM and DCM-1 operations. All
the verifications of the voltage relationships and transfer functions are provided in [14]. Voltage mode control of the produced prototype converter is implemented.

1.3 Scope and Outline of the Thesis

In this thesis a Z-source full-bridge dc/dc converter is designed and implemented. The CCM and DCM-1 operation of the converter have been analyzed before [14]. In this work, the converter is designed so as to operate in CCM and DCM-2 operations.

The thesis contains six chapters. In the second chapter, the input voltageoutput voltage relationships and the necessary transfer functions of the converter for CCM and DCM-2 operation are derived. The mathematical analysis of the converter in DCM-2 operation developed in this thesis study is an original contribution to the literature. The derived transfer functions and input voltage-output voltage relationships are verified by simulation in the third chapter. Circuit level simulations are made in SIMPLORER, while the transfer functions of the converter are verified in SIMULINK.

The controller design of the converter is done in Chapter 4. The current mode control design is made with the help of MATLAB for determining the phase and gain margins of the closed-loop controlled converter. The current mode control implementation and the controller design given in this thesis as another original contribution to the literature. The controller implemented in digital control form is an extension of this last original contribution. The closed-loop system simulation results given in the fourth chapter can also be seen as a contribution.

The fifth chapter is composed of the experimental results obtained from the produced prototype converter. The converter is operated in open-loop control to verify the component waveform simulations result. In order to examine the designed controller performance the converter is operated in closed-loop control. The output voltage regulation against applied disturbances is investigated. A comparison of the simulation and experimental results is given in this chapter. In the fifth chapter, the
efficiency analysis of the converter is also conducted. The calculated and measured efficiencies are compared in the efficiency analysis part.

The last chapter is a concluding chapter which proposes possible future works.

CHAPTER 2

MATHEMATICAL ANALYSIS OF Z-SOURCE DC/DC CONVERTER

2.1 Introduction

The theoretical analysis of Z-source dc/dc converter has been examined in detail with ideal elements before [14]. The analysis introduced here establishes input and output voltage relationships both for continuous conduction mode (CCM) and discontinuous conduction mode-1 (DCM-1) operational conditions. For a design and implementation process such analyses are to be done.

The converter is designed here so as to work in CCM and DCM-2 and the converter operating in these modes has not been analyzed before. In this chapter this task, the mathematical analysis of the converter operating in CCM and DCM-2 will be accomplished. The input-output voltage relation is established for both modes of the converter operation. In addition the input voltage-to-output voltage and duty factor-to-output voltage transfer functions are derived for both operation modes. The state space averaging technique is utilized for the transfer function analysis of the converter in CCM operation. For DCM-2 operation analysis, the circuit averaging technique is used. The boundary condition for the transition between CCM and DCM-2 operations is also established in this chapter.

2.2 Circuit Analysis and Simplification of Z-Source Full Bridge DC/DC Converter

The Z-source full bridge dc/dc converter is utilized in order to boost the input voltage to the higher output voltage level in applications. The circuit diagram of the converter is basically as shown in Figure 2-1.

Figure 2-1 Z-source full bridge dc/dc converter

Apparently the Z-source network is used to adjust the dc voltage level seen across the full bridge MOSFETs. In order to boost the voltage at the input terminals of full bridge, the MOSFETs in the same half bridge must be gated on simultaneously. Thus, either Q_{1} and Q_{2}, or Q_{3} and Q_{4} must be turned on simultaneously. In literature this is known as shoot-through state [8]. Generally all the MOSFETs in the full bridge are turned on at the same time for boosting operation in order to apply equal stress on the MOSFETs to prevent an early MOSFET failure or degradation of electrical characteristics [15]. In this way the current passing through the MOSFETs during the shoot through state is shared between the two half bridges. This enables the designer to use MOSFETs with lower current rating in the design leading to a cost effective solution. During the shoot-through state the Zsource network inductors are energized by the Z-source network capacitors.

The full bridge part is necessary for the isolation and rectification. By the switching pattern of the MOSFETs an ac voltage is generated across the primary terminals of the isolation transformer. The ac voltage transferred to the secondary side by the transformer action is rectified by the use of rectification diodes. Furthermore the rectification diodes prevent the energy flow from the output filter capacitor C_{0} to the primary side of the transformer.

The last block in Figure 2-1 is utilized to diminish the ripples observed on the output voltage and the current waveforms

The full bridge section in the Z-source converter can be simplified in order to simplify the mathematical analysis of converter to some extent. Note that when all full bridge MOSFETs are turned on during shoot-through state, the primary of the transformer is shorted in this state. In the next switching cycle, only one of the MOSFETs is going to be left conducting in each phase leg. Considering this fact the full bridge MOSFETs and diodes can be replaced by a single MOSFET and a single diode by removing the isolation transformer. In this manner all the functional features of the converter is kept as they are, and the mathematical analysis, however, becomes much simple. The only difference between the simplified Z-source dc/dc converter and the actual full bridge dc/dc converter is the loss of isolation between the input and the output. The simplified circuit diagram of the Z-source $\mathrm{dc} / \mathrm{dc}$ converter is given in Figure 2-2.

Figure 2-2 Simplified circuit diagram for Z-source dc/dc converter

2.3 Analysis of the Simplified Model

In this part the input voltage-output voltage relations and the transfer functions of the circuit are derived in terms of duty factor, D , and the components of the circuit, i.e. inductors, capacitors and load resistance. The analysis is made for both CCM and DCM-2 operations.

In literature the Z-source network inductors are set equal to each other, which is also the case for capacitors. By this way symmetrical voltage waveforms are obtained on Z-source inductors. In addition to that the current waveforms obtained on Z-source capacitors come out identical over the switching period [8], [9]. Hence by setting the Z -source network inductors and capacitors as in (2.1), it can be concluded that the equalities given in (2.2) hold.

$$
\begin{gather*}
L_{Z 1}=L_{Z 2}=L_{Z} \tag{2.1}\\
C_{Z 1}=C_{Z 2}=C_{Z} \\
V_{L_{Z 1}}(t)=V_{L_{Z 2}}(t)=V_{L_{z}}(t)=0 \tag{2.2}\\
V_{C_{Z 1}}(t)=V_{C_{z 2}}(t)=V_{C_{z}}(t) \\
I_{L_{Z 1}}(t)=I_{L_{Z 2}}(t)=I_{L_{z}}(t) \\
I_{C_{Z 1}}(t)=I_{C_{Z 2}}(t)=I_{C_{z}}(t)=0 \\
\tilde{v}_{L_{Z 1}}(t)=\tilde{v}_{L_{Z 2}}(t)=\tilde{v}_{L_{Z}}(t) \\
\tilde{v}_{C_{Z 1}}(t)=\tilde{v}_{C_{Z 2}}(t)=\tilde{v}_{C_{Z}}(t) \\
\tilde{i}_{L_{Z 1}}(t)=\tilde{i}_{L_{Z 1}}(t)=\tilde{i}_{L_{Z}}(t) \\
\tilde{i}_{C_{Z 1}}(t)=\tilde{i}_{C_{Z 1}}(t)=\tilde{i}_{C_{Z}}(t)
\end{gather*}
$$

In (2.2) the upper case letters represent the dc values of the voltages and currents of Z-source inductors and capacitors. The lower case letters with ${ }^{\text {ºn top }}$ represent the small signal values of currents and voltages.

2.3.1 Mathematical Analysis of Simplified Model in CCM

Considering the simplified circuit diagram of Z-source dc/dc converter we define voltages and currents associated with the circuit as shown in Figure 2-3.

Figure 2-3 Defining electrical variables in simplified equivalent circuit for Z-source dc/dc converter

The CCM operation of a Z-source dc/dc converter consists of two modes over a switching period [11], [14].

MODE-1

i. The CCM operation in mode-1 starts when Q starts to conduct. Referring to Figure 2-6 and Figure 2-7 the CCM operation in mode-1 occupies whole t_{1} time interval.
ii. The Z-source network inductors, L_{z}, are energized by the Z -source network capacitors, C_{z} in this period.
iii. The loops and loop equations which govern the operation of the circuit in mode-1 can be established as suggested in Figure 2-4.
iv. Applying the Kirchhoff's voltage law around LOOP-2 shown in Figure 2-4, the voltage $v_{L_{z}}(t)$ across the Z-source network inductor during t_{1} time interval yields;

$$
\begin{equation*}
v_{L_{z}}(t)=v_{C_{Z}}(t) . \tag{2.3}
\end{equation*}
$$

v. Applying the Kirchhoff's voltage rule around LOOP-1 shown in Figure $2-4$, the voltage $v_{D_{i}}(t)$ across the input diode D_{i} during t_{1} time interval yields;

$$
\begin{equation*}
v_{D_{i}}(t)=v_{S}(t)-2 v_{C_{z}}(t) . \tag{2.4}
\end{equation*}
$$

vi. For the boosting operation of the converter the Z-source network capacitor voltage $v_{C_{Z}}(t)$ is equal to output voltage $v_{O}(t)$ as;

$$
\begin{equation*}
v_{O}(t)=v_{C_{z}}(t) \tag{2.5}
\end{equation*}
$$

The equality stated in (2.5) is proven at (2.16) and (2.18). Considering (2.4) and (2.5), and the fact that the converter is boosting the input voltage, i.e. $v_{s}(t)<$ $v_{o}(t)$, it can be concluded that the input diode voltage $v_{D_{i}}(t)$ is negative during t_{1}, hence D_{i} is not conducting implying that no current is drawn from the input supply during the period.
vii. Thus, during t_{1}, the output filter elements L_{o} and C_{o} supply the required energy to the load. Note that, the energy to the load is supplied via L_{o}, hence the rectification diode D_{r} is conducting during the time interval.
viii. Note that, the Kirchhoff's voltage law around LOOP-3 yields;

$$
\begin{equation*}
v_{L_{O}}(t)=-v_{O}(t) . \tag{2.6}
\end{equation*}
$$

Figure 2-4 Active loops during mode-1 in CCM operation of Z-source dc/dc converter

MODE-2

i. Let T_{s} represent a full switching period for the converter while running at steady state. The CCM operation in mode-2 starts at time DT_{s} where D is called as the duty factor applied to Q . At that instant, Q is turned off and stops conducting.
ii. The loop equations regarding to mode- 2 operation can be written referring to the circuit shown in Figure 2-5.
iii. Applying the Kirchhoff's voltage law around LOOP-1 shown in Figure 2-5, the voltage $v_{L_{o}}(t)$ across the filter inductor L_{o}, during mode-2 is found as;

$$
\begin{equation*}
v_{L_{O}}(t)=2 v_{C_{Z}}(t)-v_{S}(t)-v_{O}(t) . \tag{2.7}
\end{equation*}
$$

From (2.5) and (2.7) the filter inductor voltage $v_{L_{O}}(t)$ can be written as;

$$
\begin{equation*}
v_{L_{o}}(t)=v_{o}(t)-v_{S}(t) . \tag{2.8}
\end{equation*}
$$

Recall that $v_{O}(t)>v_{S}(t)$ for boosting operation, hence the filter inductor voltage $v_{L_{o}}(t)$ in mode- 2 for CCM operation is positive implying that it stores energy during this time interval.
iv. Applying the Kirchhoff's voltage law around LOOP-2 shown in Figure $2-5$, the voltage $v_{L_{Z}}(t)$ across L_{z} during mode- 2 is found as;

$$
\begin{equation*}
v_{L_{Z}}(t)=v_{S}(t)-v_{C_{Z}}(t) \tag{2.9}
\end{equation*}
$$

From (2.5) and recalling the fact that $v_{O}(t)>v_{S}(t)$, it is obvious that $v_{L_{Z}}(t)$ is negative during mode- 2 for CCM operation. As a result, the energy stored in L_{z} in mode-1 is transferred to the load in mode-2.
v. The negative polarity of $v_{L_{Z}}(t)$ on L_{z} forces the input diode D_{i} to conduct.
vi. Finally the current circulating around LOOP-1, shown in Figure 2-5, charges C_{z}.

Figure 2-5 Active loops during mode-2 in CCM operation of Z-source dc/dc converter

For further details in the mathematical analysis and to find input voltageoutput voltage relationship some assumptions must be made at this point. The first, is that the capacitor sizes are supposed to be chosen large enough so that the ripple voltage across them over a period is negligible [7], [14]. The second is that the input voltage is ripple free and remains constant over a period, T_{s}. With these two assumptions the capacitor voltages and input voltage can be accepted as dc voltages for the rest of the analysis. Thus we define the followings;

$$
\begin{gather*}
v_{C_{z}}(t)=V_{C_{Z}} \tag{2.10}\\
v_{C_{O}}(t)=V_{C_{O}}=V_{O} \\
v_{S}(t)=V_{S} .
\end{gather*}
$$

Based on the definitions made in (2.10) the voltage and current waveforms of Z-source dc/dc converter in CCM operation are given in Figure 2-6 and Figure 2-7.

Figure 2-6 Voltage and current waveforms regarding the circuit elements during the CCM operation of Z-source dc/dc converter

Figure 2-7 Voltage and current waveforms regarding the switching elements (D_{i} and Q) during the CCM operation of Z-source dc/dc converter

Since the rectification diode, D_{r} is always conducting in CCM operation its voltage waveform, $v_{D_{r}}(t)$ is simply zero throughout the operation and is not shown in Figure 2-6 and Figure 2-7.

Note that referring to Figure 2-6 it is possible to express the inductor voltages $v_{L_{z}}(t)$ and $v_{L_{O}}(t)$ in terms of the capacitor voltages, $v_{C_{z}}(t)$ and $v_{C_{O}}(t)$, and the input supply voltage, $v_{S}(t)$, over a period, T_{s}. With the assumption stated in (2.10), it is concluded that the voltages across the inductors during mode-1 and mode-2 in CCM operation are purely DC. Under these circumstances the inductor currents change linearly during CCM operation. This is a result of the relationship between the voltage induced on an inductor and the current passing through it which is shown in (2.11) [1], [16].

$$
\begin{equation*}
v=L \frac{d i}{d t} \tag{2.11}
\end{equation*}
$$

At steady state, the average current through an inductor does not change over a switching period. Note that, Z-source network inductor current rises to its peak at the end of mode- 1 and returns to its initial values at the end of mode- 2 as seen in Figure 2-6. Hence the average value of the inductor current does not change. $I_{L_{Z}}(\max), I_{L_{Z}}(\min)$ and $I_{L_{Z}}(\operatorname{avg})$ stand for the peak, valley and average values of the inductor current over a period in Figure 2-6. The average stored energy in an inductor is related to the average current passing through it. Since the average current does not change the energy stored in the inductor remains constant. In other words, the average flux change over a period is zero. Faraday's law states that the total flux change is related to the volt-second applied on an inductor to give;

$$
\begin{equation*}
v(t)=n \frac{d \varphi}{d t} . \tag{2.12}
\end{equation*}
$$

By (2.12) the total volt-second applied to an inductor over a period is zero in steady state since there is no average flux change. This is known as volt-second balance rule which is often used in finding the relationship between the input and output voltages for $\mathrm{dc} / \mathrm{dc}$ converters.

Referring to Figure 2-2 it is seen that there are two inductors L_{z} and L_{o} that can be used to find the input-output voltage relationship in Z-source dc/dc converter. The voltages, $v_{L_{z}}(t)$ and $v_{L_{O}}(t)$ across these inductors during mode- 1 are;

$$
\begin{gather*}
v_{L_{z}}(t)=V_{C_{Z}} \tag{2.13}\\
v_{L_{O}}(t)=-V_{C_{O}}=-V_{O} .
\end{gather*}
$$

Likewise, the voltages, $v_{L_{z}}(t)$ and $v_{L_{O}}(t)$ across these inductors during mode-2 are;

$$
\begin{equation*}
v_{L_{z}}(t)=V_{S}-V_{C_{z}} \tag{2.14}
\end{equation*}
$$

$$
v_{L_{o}}(t)=2 V_{C_{Z}}-V_{S}-V_{O} .
$$

Mode-1 lasts for a period DT_{s} while mode-2 lasts for a period (1-D) T_{s} over a period, T_{s}. Applying the volt-second balance rule for L_{z} gives;

$$
\begin{equation*}
D \cdot T_{S} \cdot V_{C_{Z}}+(1-D) \cdot T_{S} \cdot\left(V_{S}-V_{C_{Z}}\right)=0, \tag{2.15}
\end{equation*}
$$

and rearrangement of (2.15) yields;

$$
\begin{equation*}
V_{C_{Z}}=\frac{1-D}{1-2 D} V_{S} . \tag{2.16}
\end{equation*}
$$

Applying the same procedure for the output filter inductor L_{0} gives;

$$
\begin{gather*}
D \cdot T_{S} \cdot\left(-V_{O}\right)+(1-D) \cdot T_{S} \cdot\left(2 V_{C_{Z}}-V_{S}-V_{O}\right)=0, \tag{2.17}\\
V_{O}=\frac{1-D}{1-2 D} V_{S} . \tag{2.18}
\end{gather*}
$$

Note from (2.16) and (2.18) that average Z-source network capacitor voltage, $V_{C_{Z}}$ is equal to the output voltage for CCM operation. Furthermore the relationship between the input and the output voltages is established in (2.18). In CCM operation of Z-source dc/dc converter it is seen that the output voltage V_{O} depends only on the duty factor applied to the power MOSFET, Q , and the input voltage V_{s}. In theory it is expected that the output voltage changes between the input voltage V_{s} and infinity for the range $0 \leq \mathrm{D} \leq 0.5$. The output voltage V_{O} changes polarity for operations in the range of $0.5 \leq \mathrm{D} \leq 1$. Defining the normalized output voltage as $\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{s}}$, the variation of the normalized output voltage with respect to the input voltage with duty factor, D, is given in Figure 2-8.

Figure 2-8 Variation of the normalized output voltage $\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{S}}$ with duty factor, D

2.3.2 Dynamic Model in CCM Operation

In this part the steady-state and dynamic model of the converter is obtained. The dynamic model of a converter is used to estimate the transient response of a converter against disturbances that the converter is exposed to. The state space averaging method is widely used in power electronics in order to obtain the dynamic model of the converter. State-space averaging method is rewriting the differential equations of the converter in canonical form. It is always possible to obtain a smallsignal averaged model as long as the state equation of the converter is written [16]. For the sake of completeness a brief description of state-space averaging method is given in this section.

2.3.2.1 State-Space Averaging Method (SSAM)

In SSAM the state variables of the converter are expressed as linear combinations of state variables and input of the system. The aim of the method is to linearize the power converter around a steady state operating point for small ac
signals. The linearization process is graphically described in Figure 2-9 for a general case.

Figure 2-9 Linearization of non-linear function at an operating point

The state variables of a system are usually selected as the electrical variables associated with energy storing elements which are the voltages on capacitors and currents through inductors for a converter [16]. The state space equations obtained when the switch is closed, are different than the ones obtained when the switch is open. In state space averaging method, SSAM the state space equations obtained for different modes of the converter operation are averaged over the switching period, Ts. The averaging process removes the switching ripples; however, the ripples at frequencies higher than the switching frequency must still be represented in the model. That is, SSAM behaves like a low pass filter in obtaining the dynamic model of the system. In other words, only the low frequency response of the system can be estimated using the obtained model. The model response obtained using SSAM deviates substantially from the actual converter response with the increasing frequency [1], [16], [18].

The state equations of a converter can be written as;

$$
\begin{align*}
& \dot{x}(t)=A x(t)+B u(t) \tag{2.19}\\
& y(t)=C x(t)+E u(t)
\end{align*}
$$

Here $x(t)$ is the state vector. The capacitor voltages and inductor currents in a converter are elements of $x(t) . u(t)$ is the input vector which consists of independent inputs applied to the converter. In general, $y(t)$ is the output vector, and any signal in the converter can be selected as an output signal. It is usually desired to select the input current to the converter as an output signal [16]. The A, B, C and E are the matrices of proportionality constants which depend on the sizes of the capacitance, inductance and resistance in the converter.

In order to obtain the small-signal ac model and the steady state dc model it is necessary to introduce small ac perturbations imposed upon dc steady state quantities. Introducing such small ac perturbations into the state equations of (2.19) the state vector and output vector are to be redefined as;

$$
\begin{align*}
& x(t)=X+\tilde{x}(t) \tag{2.20}\\
& y(t)=Y+\tilde{y}(t)
\end{align*}
$$

and consider such perturbation $\tilde{d}(t)$ on the duty-ratio D as well

$$
d(t)=D+\tilde{d}(t)
$$

The capital letters show steady-state operating points and the quantities with ${ }^{\sim}$ show the small ac perturbations subjected to the system around the steady state operating point.

It is now necessary to obtain the state-space equations in the first subinterval, mode-1 and in the second subinterval mode-2. In the first subinterval mode- 1 shown in Figure 2-4, it is possible to represent the converter as a linear circuit with the following state-space equations:

$$
\begin{align*}
& \dot{x}(t)=A_{1} \cdot x(t)+B_{1} \cdot u(t) \tag{2.21}\\
& y(t)=C_{1} \cdot x(t)+E_{1} \cdot u(t) .
\end{align*}
$$

In the second subinterval mode- 2 the converter reduces to another linear circuit having state equations as in (2.22).

$$
\begin{align*}
& \dot{x}(t)=A_{2} \cdot x(t)+B_{2} \cdot u(t) \tag{2.22}\\
& y(t)=C_{2} \cdot x(t)+E_{2} \cdot u(t)
\end{align*}
$$

Averaging the equation sets given in (2.21) and (2.22) over a switching period, T_{s} yields;

$$
\begin{align*}
\dot{x}(t) & =\left[A_{1} d(t)+A_{2}(1-d(t))\right] \cdot x(t) \tag{2.23}\\
& +\left[B_{1} d(t)+B_{2}(1-d(t))\right] \cdot u(t) \\
y(t) & =\left[C_{1} d(t)+C_{2}(1-d(t))\right] \cdot x(t) \\
& +\left[E_{1} d(t)+E_{2}(1-d(t))\right] \cdot u(t) .
\end{align*}
$$

Small ac perturbation must be introduced to state, input and output vectors and the duty factor in (2.23) so as to obtain the dynamic model of the converter. For this purpose (2.20) and (2.23) must be combined. For the sake of simplicity, time dependency in the notations given in (2.23) will be ignored at the rest of the analysis. In other words, $x(t), d(t), y(t)$ and $u(t)$ will be taken as x, d, y and u for the rest of the analysis. Combining (2.20) and (2.23) yields;

$$
\begin{align*}
{[X \dot{+} \tilde{x}] } & =\left[A_{1}(D+\tilde{d})+A_{2}(1-(D+\tilde{d}))\right] \cdot(X+\tilde{x}) \tag{2.24}\\
& +\left[B_{1}(D+\tilde{d})+B_{2}(1-(D+\tilde{d}))\right] \cdot(U+\tilde{u}) \\
{[Y+y] } & =\left[C_{1}(D+\tilde{d})+C_{2}(1-(D+\tilde{d}))\right] \cdot(X+\tilde{x}) \\
& +\left[E_{1}(D+\tilde{d})+E_{2}(1-(D+\tilde{d}))\right] \cdot(U+\tilde{u})
\end{align*}
$$

Reorganizing the terms given in (2.24) and taking into account that the differentiation of steady-state equilibrium quantities yields zero, the equality stated in (2.25) is obtained.

$$
\begin{align*}
\dot{\tilde{x}}= & \bar{A} X+\bar{B} U+\bar{A} \tilde{x}+\bar{B} \tilde{u}+\left[\left(A_{1}-A_{2}\right) X+\left(B_{1}-B_{2}\right) U\right] \tilde{d} \tag{2.25}\\
& \quad+\text { neglected terms (product of } \tilde{x} \text { and } \tilde{d}) \\
Y+y= & \bar{C} X+\bar{E} U+\bar{C} \tilde{x}+\bar{E} \tilde{u}+\left[\left(C_{1}-C_{2}\right) X+\left(E_{1}-E_{2}\right) U\right] \tilde{d} \\
+ & \text { neglected terms (product of } \tilde{x} \text { and } \tilde{d})
\end{align*}
$$

In [16] it is stated that the state-space averaged dc model describing the converter in steady state is as in (2.26) provided that the frequency of the input variations for the converter are much lower than the switching frequency.

$$
\begin{align*}
0 & =\bar{A} X+\bar{B} U \tag{2.26}\\
Y & =\bar{C} X+\bar{E} U .
\end{align*}
$$

The averaged matrices in (2.26) are as follows:

$$
\begin{align*}
& \bar{A}=D A_{1}+(1-D) A_{2} \tag{2.27}\\
& \bar{B}=D B_{1}+(1-D) B_{2} \\
& \bar{C}=D C_{1}+(1-D) C_{2} \\
& \bar{E}=D E_{1}+(1-D) E_{2} .
\end{align*}
$$

In [16] the vectors in (2.26) and (2.27) are defined as the following:
X : Steady-state (dc) state vector,
Y : Steady-state (dc) output vector,
U : Steady-state (dc) input vector,
D : Steady-state (dc) duty factor.
The solution for (2.26) yields the steady state (dc) state and output vectors as;

$$
\begin{gather*}
X=-\bar{A}^{-1} \bar{B} U \tag{2.28}\\
Y=\left(-\bar{C} \bar{A}^{-1} \bar{B}+\bar{E}\right) U .
\end{gather*}
$$

From (2.25) and (2.26), it is straightforward to define the small signal ac model state equations;

$$
\begin{align*}
\dot{\tilde{x}} & =\bar{A} \tilde{x}+\bar{B} \tilde{u}+\left[\left(A_{1}-A_{2}\right) X+\left(B_{1}-B_{2}\right) U\right] \tilde{d} \tag{2.29}\\
y & =\bar{C} \tilde{x}+\bar{E} \tilde{u}+\left[\left(C_{1}-C_{2}\right) X+\left(E_{1}-E_{2}\right) U\right] \tilde{d} .
\end{align*}
$$

The averaged steady-state dc and small signal ac model state equation are derived so far. The transfer functions of the system are found by applying Laplace transformation to the small signal ac model [16]. In order to determine the transfer functions, the proportionality constant matrices need to be found. This requires writing the state equations in mode- 1 and mode- 2 . As mentioned earlier the state space variables are selected as capacitor voltages and inductor currents which are $i_{L_{Z}}(t), i_{L_{O}}(t), v_{C_{Z}}(t)$, and $v_{C_{O}}(t)$ for Z-source dc/dc converter. The input voltage, $v_{S}(t)$, is chosen as the input vector while the input current, $i_{S}(t)$, is chosen as output vector.

2.3.2.2 State Space Equations of the Converter in CCM

State-Space Equations in Mode-1

Z-source dc/dc converter is as shown in Figure 2-4 during mode-1 in CCM operation. State-space equations given in (2.30) are valid during mode-1 in CCM operation.

$$
\begin{gather*}
i_{L_{Z}}=\frac{1}{L_{Z}} v_{C_{Z}} \tag{2.30}\\
i_{L_{O}}=-\frac{1}{L_{O}} v_{C_{O}} \\
v_{C_{Z}}=-\frac{1}{C_{Z}} i_{L_{Z}} \\
v_{C_{O}}=\frac{1}{C_{O}} i_{L_{O}}-\frac{1}{R C_{O}} v_{C_{O}} \\
i_{S}(t)=0
\end{gather*}
$$

Reorganizing the equation set in (2.30) in matrix form such as;

$$
\begin{align*}
{\left[\begin{array}{c}
i_{L_{Z}} \\
i_{L_{O}} \\
v_{C Z} \\
v_{C O}
\end{array}\right]=} & {\left[\begin{array}{cccc}
0 & 0 & \frac{1}{L_{Z}} & 0 \\
0 & 0 & 0 & -\frac{1}{L_{O}} \\
-\frac{1}{C_{Z}} & 0 & 0 & 0 \\
0 & \frac{1}{C_{o}} & 0 & -\frac{1}{R C_{O}}
\end{array}\right]\left[\begin{array}{c}
i_{L_{Z}} \\
i_{L_{O}} \\
v_{C_{Z}} \\
v_{C_{O}}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
\left.v_{s}\right] \\
\end{array}\right]\left[\begin{array}{l}
i_{L_{Z}} \\
i_{L_{O}} \\
v_{C_{Z}} \\
v_{C_{O}}
\end{array}\right]+[0]\left[v_{s}\right] } \tag{2.31}
\end{align*}
$$

where the following matrices and vectors are defined as;

$$
\begin{align*}
& A_{1}=\left[\begin{array}{cccc}
0 & 0 & \frac{1}{L_{Z}} & 0 \\
0 & 0 & 0 & -\frac{1}{L_{O}} \\
-\frac{1}{C_{Z}} & 0 & 0 & 0 \\
0 & \frac{1}{C_{o}} & 0 & -\frac{1}{R C_{o}}
\end{array}\right], B_{1}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right], \tag{2.32}\\
& C_{1}=\left[\begin{array}{llll}
0 & 0 & 0
\end{array}\right], E_{1}=[0] .
\end{align*}
$$

State-Space Equations in Mode-2

Z-source dc/dc converter is shown in Figure 2-5 during mode-2 in CCM operation. State-space equations valid during mode- 2 in CCM operation are given as;

$$
\begin{gather*}
i_{L_{Z}}=\frac{1}{L_{Z}} v_{s}-\frac{1}{L_{Z}} v_{C_{Z}} \tag{2.33}\\
i_{L_{O}}=\frac{2}{L_{O}} v_{C_{Z}}-\frac{1}{L_{O}} v_{C_{O}}-\frac{1}{L_{O}} v_{S} \\
v_{C_{Z}}=\frac{1}{C_{Z}} i_{L_{Z}}-\frac{1}{C_{Z}} i_{L_{O}} \\
v_{C_{O}}^{\cdot}=\frac{1}{C_{O}} i_{L_{O}}-\frac{1}{R C_{O}} v_{C_{O}} \\
i_{S}(t)=2 i_{L_{Z}}-i_{L_{O}}
\end{gather*}
$$

which can be rewritten in matrix form as;

$$
\begin{gather*}
{\left[\begin{array}{c}
\dot{i_{L_{Z}}} \\
\dot{i_{L_{O}}} \\
v_{\dot{C}_{Z}} \\
v_{C_{O}}^{\cdot}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & -\frac{1}{L_{Z}} & 0 \\
0 & 0 & \frac{2}{L_{O}} & -\frac{1}{L_{O}} \\
\frac{1}{C_{Z}} & -\frac{1}{C_{Z}} & 0 & 0 \\
0 & \frac{1}{C_{o}} & 0 & -\frac{1}{R C_{O}}
\end{array}\right]\left[\begin{array}{c}
i_{i_{Z}} \\
i_{L_{O}} \\
v_{C_{Z}} \\
v_{C_{O}}
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{L_{Z}} \\
-\frac{1}{L_{O}} \\
0 \\
0
\end{array}\right]\left[v_{s}\right]} \tag{2.34}\\
{\left[i_{s}\right]=\left[\begin{array}{llll}
2 & -1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
i_{L_{Z}} \\
i_{L_{O}} \\
v_{C_{Z}} \\
v_{C_{O}}
\end{array}\right]+[0]\left[v_{s}\right]}
\end{gather*}
$$

where the following matrices and vectors are defined as;

$$
\begin{align*}
& A_{2}=\left[\begin{array}{cccc}
0 & 0 & -\frac{1}{L_{Z}} & 0 \\
0 & 0 & \frac{2}{L_{o}} & -\frac{1}{L_{o}} \\
\frac{1}{C_{Z}} & -\frac{1}{C_{Z}} & 0 & 0 \\
0 & \frac{1}{C_{o}} & 0 & -\frac{1}{R C_{o}}
\end{array}\right], B_{2}=\left[\begin{array}{r}
\frac{1}{L_{Z}} \\
-\frac{1}{L_{o}} \\
0 \\
0
\end{array}\right], \tag{2.35}\\
& C_{2}=\left[\begin{array}{llll}
2 & -1 & 0 & 0
\end{array}\right], E_{2}=[0] .
\end{align*}
$$

2.3.2.3 Steady-State DC and Small-Signal AC Model of the

 Converter in CCMRecalling that modelling the converter using the state space averaging method is based on taking the average of the matrices obtained for mode-1 and mode-2 corresponding to the steady-state dc and small-signal ac model of the converter.

The equation set for the averaged matrices is given in (2.27). The matrices of proportionality constants valid for mode-1 and mode-2 are found in (2.32) and (2.35). Substituting (2.32) and (2.35) into (2.27) yields the averaged matrices as;

$$
\left.\left.\begin{array}{c}
\bar{A}=D A_{1}+(1-D) A_{2}=\left[\begin{array}{cccc}
0 & 0 & \frac{2 D-1}{L_{Z}} & 0 \\
0 & 0 & \frac{2-2 D}{L_{O}} & \frac{-1}{L_{O}} \\
\frac{1-2 D}{C_{Z}} & \frac{D-1}{C_{Z}} & 0 & 0 \\
0 & \frac{1}{C_{O}} & 0 & \frac{-1}{R C_{O}}
\end{array}\right] \\
\bar{B}=D B_{1}+(1-D) B_{2}=\left[\begin{array}{c}
\frac{1-D}{L_{Z}} \\
\frac{D-1}{L_{O}} \\
0 \\
0
\end{array}\right] \\
\bar{C}=D C_{1}+(1-D) C_{2}=[2-2 D \\
D-1
\end{array}\right] \quad 0\right]\left[\begin{array}{c}
D E_{1}+(1-D) E_{2}=[0] .
\end{array}\right.
$$

After obtaining the averaged matrices the steady-state dc and small-signal ac models of the converter can be obtained.

Steady-State DC Model

The solution for the state and output vectors in steady-state is given in (2.28). By using (2.28) and the averaged matrices given in (2.36) the steady-state dc model of the converter is obtained as the following:

$$
\begin{align*}
& X=\left[\begin{array}{l}
I_{L_{Z}} \\
I_{L_{O}} \\
V_{C_{Z}} \\
V_{C_{O}}
\end{array}\right]=\left[\begin{array}{c}
\frac{(1-D)^{2}}{R(1-2 D)^{2}} \\
\frac{1-D}{R(1-2 D)} \\
\frac{1-D}{1-2 D} \\
\frac{1-D}{1-2 D}
\end{array}\right] V_{S} \tag{2.37}\\
& Y=\left[I_{S}\right]=\left[\frac{(1-D)^{2}}{R(1-2 D)^{2}}\right] V_{S} .
\end{align*}
$$

(2.37) expresses the steady-state dc operating points for the capacitor voltages and inductor currents. It is understood from (2.37) that the capacitor voltages depend
only on the duty-factor and the input voltage in CCM operation. However the inductor currents depend to the duty factor and the input voltage but additionally also on the load resistance.

At this point it is also important to notice that the capacitor voltages are equal to each other according to the steady-state dc model obtained. The relationship between the input voltage and the Z-source network capacitor voltage and output filter capacitor voltage were found in (2.16) and (2.18). A close investigation of (2.37) reveals the fact that exactly the same relationship between the input voltage and capacitor voltages is obtained by the SSAM. This is strong evidence that the steady-state dc model obtained by SSAM is valid and complies with the previous results obtained in 2.3.1.

Small-Signal AC Model and Determination of the Transfer Functions

The small-signal ac model of the converter is stated in (2.29). Rewriting (2.29) by substituting the matrices of proportionality constants found in (2.32) and (2.35) into (2.29), the small-signal ac model of the Z -source $\mathrm{dc} / \mathrm{dc}$ converter is obtained as follows:

$$
\begin{align*}
& \frac{d}{d t}\left[\begin{array}{c}
\tilde{i}_{L_{Z}}(t) \\
\tilde{i}_{L_{O}}(t) \\
\tilde{v}_{C_{Z}}(t) \\
\tilde{v}_{C_{O}}(t)
\end{array}\right]= \bar{A}\left[\begin{array}{c}
\tilde{i}_{L_{Z}}(t) \\
\tilde{i}_{L_{O}}(t) \\
\tilde{v}_{C_{Z}}(t) \\
\tilde{v}_{C_{O}}(t)
\end{array}\right]+\bar{B}\left[\tilde{v}_{S}(t)\right]+\left[\begin{array}{c}
2 V_{C_{Z}}-V_{S} \\
V_{S}-2 V_{C_{Z}} \\
I_{L_{O}}-2 I_{L_{Z}} \\
0
\end{array}\right] \tilde{d} \tag{2.38}\\
& {\left[\begin{array}{ll}
\left.\tilde{i}_{s}(t)\right] & =\bar{C}\left[\begin{array}{c}
\tilde{i}_{L_{Z}}(t) \\
\tilde{i}_{L_{O}}(t) \\
\tilde{v}_{C_{Z}}(t) \\
\tilde{v}_{C_{O}}(t)
\end{array}\right]+\left[\begin{array}{lll}
-2 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
I_{L_{Z}} \\
I_{L_{O}} \\
V_{C_{Z}} \\
V_{C_{O}}
\end{array}\right]
\end{array}, ~\right.}
\end{align*}
$$

where $\mathrm{I}_{\mathrm{L}_{\mathrm{Z}}}, \mathrm{I}_{\mathrm{L}_{\mathrm{O}}}, \mathrm{V}_{\mathrm{C}_{\mathrm{Z}}}$ and $\mathrm{V}_{\mathrm{C}_{\mathrm{o}}}$ show the steady-state dc operating points of the capacitor voltages and inductor currents. On the other hand, $\tilde{i}_{L_{Z}}(t), \tilde{i}_{L_{O}}(t), \tilde{v}_{C_{Z}}(t)$ and $\tilde{\mathrm{v}}_{\mathrm{C}_{0}}(\mathrm{t})$ are the small ac perturbations around the steady-state operating point of the capacitor voltages and inductor currents.

Expressing the state-space equation set for the small-signal ac model given in (2.38) separately makes the analysis much more understandable. Hence writing the equations separately rather than the matrix form and substituting the averaged matrices found in (2.36) to (2.38), the following equation set is obtained.

$$
\begin{align*}
& \frac{d \tilde{i}_{L_{Z}}(t)}{d t}=\frac{2 D-1}{L_{Z}} \tilde{v}_{C_{Z}}(t)+\frac{1-D}{L_{Z}} \tilde{v}_{S}(t)+\frac{2 V_{C_{Z}}-V_{S}}{L_{Z}} \tilde{d}(t) \tag{2.39}\\
& \frac{d \tilde{i}_{L_{O}}(t)}{d t}=\frac{2-2 D}{L_{O}} \tilde{v}_{C_{Z}}(t)+\frac{D-1}{L_{O}} \tilde{v}_{S}(t)-\frac{1}{L_{O}} \tilde{v}_{C_{O}}(t) \\
& -\frac{2 V_{C_{Z}}-V_{S}}{L_{O}} \tilde{d}(t) \\
& \frac{d \tilde{v}_{C_{Z}}(t)}{d t}=\frac{1-2 D}{C_{Z}} \tilde{i}_{L_{Z}}(t)+\frac{D-1}{C_{Z}} \tilde{i}_{L_{O}}(t)+\frac{I_{L_{O}}-2 I_{L_{Z}}}{C_{Z}} \tilde{d}(t) \\
& \frac{d \tilde{v}_{C_{O}}(t)}{d t}=\frac{1}{C_{O}} \tilde{i}_{L_{O}}(t)-\frac{1}{R C_{O}} \tilde{v}_{C_{O}}(t) \\
& \tilde{i}_{S}(t)=(2-2 D) \tilde{i}_{L_{Z}}(t)+(D-1) \tilde{i}_{L_{O}}(t)+\left(I_{L_{O}}-2 I_{L_{Z}}\right) \tilde{d}(t)
\end{align*}
$$

In determining the transfer functions of the converter "Laplace Transform" of the equations given in (2.39) must be found. Thus, the "Laplace Transform" of (2.39) yields;

$$
\begin{gather*}
s \tilde{i}_{L_{Z}}(s)=\frac{2 D-1}{L_{Z}} \tilde{v}_{C_{Z}}(s)+\frac{1-D}{L_{Z}} \tilde{v}_{S}(s)+\frac{2 V_{C_{Z}}-V_{S}}{L_{Z}} \tilde{d}(s) \tag{2.40}\\
s \tilde{i}_{L_{O}}(s)=\frac{2-2 D}{L_{O}} \tilde{v}_{C_{Z}}(s)+\frac{D-1}{L_{O}} \tilde{v}_{S}(s)-\frac{1}{L_{O}} \tilde{v}_{C_{O}}(s) \\
\quad-\frac{2 V_{C_{Z}}-V_{S}}{L_{O}} \tilde{d}(s) \\
s \tilde{v}_{C_{Z}}(s)=\frac{1-2 D}{C_{Z}} \tilde{i}_{L_{Z}}(s)+\frac{D-1}{C_{Z}} \tilde{i}_{L_{O}}(s)+\frac{I_{L_{O}}-2 I_{L_{Z}}}{C_{Z}} \tilde{d}(s) \\
s \tilde{v}_{C_{O}}(s)=\frac{1}{C_{O}} \tilde{i}_{L_{O}}(s)-\frac{1}{R C_{O}} \tilde{v}_{C_{O}}(s) \\
\tilde{i}_{S}(s)=(2-2 D) \tilde{i}_{L_{Z}}(s)+(D-1) \tilde{i}_{L_{O}}(s)+\left(I_{L_{O}}-2 I_{L_{Z}}\right) \tilde{d}(s) .
\end{gather*}
$$

Considering the controller design of the Z-source dc/dc converter it is assumed that the dynamic change in the output voltage, v_{o} depends on the input voltage and duty factor applied to the switching power MOSFETs. As a result it is
possible to express the output voltage variation in terms of input voltage variation and duty-factor variation as shown in (2.41).

$$
\begin{equation*}
\tilde{v}_{o}(s)=G_{v_{o} / d}^{C C M}(s) \tilde{d}(s)+G_{v_{o} / v_{s}}^{C C M}(s) \tilde{v}_{S}(s) \tag{2.41}
\end{equation*}
$$

The definitions for the variables and transfer functions stated in (2.41) are as follows:
$\tilde{v}_{O}(s)$:"Laplace Transform" of the small ac perturbation around the output voltage, v_{o} $\tilde{v}_{S}(s)$: "Laplace Transform" of the small ac perturbation around the input voltage, v_{S} $\tilde{d}(s)$:"Laplace Transform" of the small ac perturbation around the duty factor, d. $G_{v_{o} / d}^{C C M}(s)$:Duty-factor, d. to output voltage, v_{o} transfer function
$G_{v_{o} / v_{s}}^{C C M}(s)$:Input voltage, v_{s} to output voltage, v_{o} transfer function
In order to determine the duty-factor to output voltage transfer function it is wise to assume that there is no small ac perturbation around the input voltage. That is it is purely dc. As a result the Laplace Transform of the small ac perturbation around the input voltage, $\tilde{v}_{S}(s)$ is zero. In this case the duty-factor, $\tilde{d}(s)$ to output voltage, $\tilde{v}_{O}(s)$ transfer function is expressed as in;

$$
\begin{equation*}
G_{v_{o} / d}^{C C M}(s)=\frac{\tilde{v}_{O}(s)}{\tilde{d}(s)}=\frac{\alpha_{2} s^{2}+\alpha_{1} s+\alpha_{0}}{\beta_{4} s^{4}+\beta_{3} s^{3}+\beta_{2} s^{2}+\beta_{1} s+\beta_{0}} \tag{2.42}
\end{equation*}
$$

where the coefficients given in (2.42) are

$$
\begin{aligned}
& \alpha_{0}=V_{S} \\
& \alpha_{1}=-\frac{2 V_{S} L_{Z}(D-1)^{2}}{R(1-2 D)^{2}} \\
& \alpha_{2}=-\frac{V_{S} L_{Z} C_{Z}}{(1-2 D)} \\
& \beta_{0}=(1-2 D)^{2} \\
& \beta_{1}=\left[\frac{L_{O}}{R}(1-2 D)^{2}\right]+\left[\frac{2 L_{Z}}{R}(1-D)^{2}\right] \\
& \beta_{2}=\left[L_{O} C_{O}(1-2 D)^{2}\right]+\left[L_{Z} C_{Z}\right]+\left[2 L_{Z} C_{O}(1-D)^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{3}=\frac{L_{Z} L_{O} C_{Z}}{R} \\
& \beta_{4}=L_{Z} L_{O} C_{Z} C_{0} .
\end{aligned}
$$

In the same manner setting $\tilde{d}(s)$ to zero the input voltage, $\tilde{v}_{S}(s)$ to output voltage $\tilde{v}_{O}(s)$ transfer function can be found as;

$$
\begin{equation*}
G_{v_{o} / v_{s}}^{C C C M}(s)=\frac{\tilde{v}_{O}(s)}{\tilde{v}_{S}(s)}=\frac{\gamma_{2} s^{2}+\gamma_{1} s+\gamma_{0}}{\beta_{4} s^{4}+\beta_{3} s^{3}+\beta_{2} s^{2}+\beta_{1} s+\beta_{0}} . \tag{2.43}
\end{equation*}
$$

Note that the denominator of (2.43) is exactly the same of the one obtained in (2.42). The coefficients of the numerator of the transfer function given in (2.43) are as follows.

$$
\begin{aligned}
& \gamma_{0}=(1-D)(1-2 D) \\
& \gamma_{1}=0 \\
& \gamma_{2}=-L_{Z} C_{Z}(1-D)
\end{aligned}
$$

It is also necessary to obtain the duty factor to L_{z} inductor current transfer function $G_{i_{L_{z}} / d}^{C C M}(s)$ which will be utilized in the controller design part.

$$
\begin{equation*}
G_{i_{L_{z}} / d}^{C C M}(s)=\frac{\tilde{c}_{L_{Z}}(s)}{\tilde{d}(s)}=\frac{c_{3} s^{3}+c_{2} s^{2}+c_{1} s+c_{0}}{\beta_{4} s^{4}+\beta_{3} s^{3}+\beta_{2} s^{2}+\beta_{1} s+\beta_{0}} \tag{2.44}
\end{equation*}
$$

with the coefficients as follows;

$$
\begin{aligned}
& c_{0}=\frac{V_{S}(1-D)}{2 R(1-2 D)(1-D)}+\frac{V_{S}(1-D)}{R(1-2 D)} \\
& c_{1}=\frac{V_{S} C_{Z}}{2(1-2 D)(1-D)}+\frac{V_{S}(1-D) L_{O}}{R^{2}(1-2 D)}+\frac{V_{S} C_{O}}{2(1-2 D)} \\
& c_{2}=\frac{V_{S} L_{O} C_{Z}}{2 R(1-D)(1-2 D)}+\frac{(1-D) V_{S} L_{O} C_{O}}{R(1-2 D)} \\
& c_{3}=-\frac{V_{S} L_{O} C_{Z} C_{O}}{2(1-D)(1-2 D)} .
\end{aligned}
$$

The results obtained in (2.42)-(2.44) reveal that the denominator of the two transfer functions are exactly the same. This completes the mathematical analysis of Z-source dc/dc converter in CCM operation.

2.3.3 Mathematical Analysis of Simplified Model in DCM-2

There are three different possibilities for discontinuous conduction mode (DCM) operation of Z-source dc/dc converter as mentioned in [14].

DCM-1: In this mode the input current flowing through the input diode D_{i} shown in Figure 2-2 falls to zero before the beginning of the next period. On the other hand, the current flowing through D_{r} does not fall to zero before the beginning of the next period.

DCM-2: In this mode the input current flowing through the input diode D_{i} shown in Figure 2-2 does not fall to zero before the beginning of the next period. On the other hand the current flowing through D_{r} falls to zero before the beginning of the next period.

DCM-3: Both of the currents flowing through the input diode D_{i} and the rectification diode D_{r} shown in Figure 2-2 fall to zero before the beginning of the next period.

The analysis of the Z-source dc/dc converter has been done in DCM-1 previously and reported in the literature [14]. In this work the mathematical analysis of the converter in DCM-2 operation is done and the small-signal ac model of the converter in DCM-2 is obtained.

There are three different modes over one switching period during the DCM-2 operation of the Z-source dc/dc converter.

MODE-1

i. It starts when Q starts to conduct. It lasts for a time interval t_{1}, which is shown in Figure 2-13 and Figure 2-14.
ii. The Z -source network inductors, L_{z}, are energized by the Z -source network capacitors, C_{z}.
iii. The loop equations valid for mode- 1 in DCM- 2 operation are shown in Figure 2-10.
iv. Applying the Kirchhoff's voltage law around LOOP-2 shown in Figure $2-10$, the voltage across the Z -source network inductor, $v_{L_{z}}(t)$, during t_{1} interval is found as;

$$
\begin{equation*}
v_{L_{z}}(t)=v_{C_{Z}}(t) . \tag{2.45}
\end{equation*}
$$

v. During mode- 1 the input diode D_{i} is reverse biased so that the current drawn from the supply is zero.
vi. Since the current drawn from the supply is zero the output filter capacitor C_{0} and inductor L_{0} supply the necessary energy to the load. Since the energy required by the load is given by the path of L_{0}, the rectification diode D_{r} is conducting during mode-1 in DCM-2 operation.
vii. Applying the Kirchhoff's voltage law around LOOP-3 shown in Figure $2-10$, the voltage across the output filter inductor voltage, $v_{L_{O}}(t)$, is equal to the opposite of the output voltage $v_{o}(t)$.

$$
\begin{equation*}
v_{L_{O}}(t)=-v_{O}(t) . \tag{2.46}
\end{equation*}
$$

viii. Applying the Kirchhoff's current rule at "Node A", the Z-source network capacitor current, $i_{C_{Z}}(t)$ is found to be equal to the opposite of the Z-source network inductor current, $i_{L_{Z}}(t)$.

$$
\begin{equation*}
i_{C_{Z}}(t)=-i_{L_{Z}}(t) . \tag{2.47}
\end{equation*}
$$

ix. Finally applying the Kirchhoff's current rule at "Node B", the output filter capacitor current, $i_{C_{O}}(t)$ is found to be as;

$$
\begin{equation*}
i_{C_{O}}(t)=i_{L_{O}}(t)-\frac{V_{O}}{R} . \tag{2.48}
\end{equation*}
$$

Figure 2-10 Active loops during mode-1 in DCM-2 operation of Z-source dc/dc converter

MODE-2

i. It starts when the rectification diode current falls to zero and D_{r} stops to conduct. It lasts for time interval t_{2}.
ii. The Z-source capacitors continue to energize the Z-source inductors during mode- 2 .
iii. The loop equations valid during mode- 2 in DCM- 2 operation are shown in Figure 2-11.
iv. Applying the Kirchhoff's voltage law around LOOP-2 shown in Figure 2-11, the voltage across the Z -source network inductor, $v_{L_{z}}(t)$, during t_{2} time interval is found as ;

$$
\begin{equation*}
v_{L_{z}}(t)=v_{C_{z}}(t) \tag{2.49}
\end{equation*}
$$

v. During mode-2 the input diode D_{i} is still reverse biased so that the current drawn from the supply is still zero.
vi. Since the rectification diode D_{r} stops to conduct, the current flowing through the output filter L_{o} is zero. This means that the load is energized only by the output filter capacitor C_{o} during mode-2.
vii. Since L_{o} current is constant and zero during mode-2 no voltage will be induced on L_{o} according to the Faraday's Law for t_{2} period.

$$
\begin{equation*}
v_{L_{O}}(t)=L_{O} \frac{\Delta i}{\Delta t}=L_{O} \frac{0}{\Delta t}=0 \tag{2.50}
\end{equation*}
$$

viii. Applying the Kirchhoff's current law at "Node A", the Z-source capacitor current, $i_{C_{Z}}(t)$ is found to be equal to the opposite of the Z-source inductor current $i_{L_{Z}}(t)$ during mode-2.

$$
\begin{equation*}
i_{C_{Z}}(t)=-i_{L_{Z}}(t) \tag{2.51}
\end{equation*}
$$

ix. Applying the Kirchhoff's current law at "Node B", the output filter capacitor current, $i_{C_{O}}(t)$ is found as;

$$
\begin{equation*}
i_{C_{O}}(t)=\frac{V_{O}}{R} . \tag{2.52}
\end{equation*}
$$

Figure 2-11 Active loops during mode-2 in DCM-2 operation of Z-source dc/dc converter

MODE-3

i. Considering one switching period as T_{s}, mode-3 in DCM-2 operation starts at DT_{s} when the switch Q stops to conduct.
ii. The loop equations valid during mode- 3 in DCM- 2 operation are shown in Figure 2-12.
iii. Applying the Kirchhoff's voltage law around LOOP-1 the voltage across the Z -source inductor is found as;

$$
\begin{equation*}
v_{L_{Z}}(t)=v_{S}(t)-v_{C_{Z}}(t) \tag{2.53}
\end{equation*}
$$

iv. Applying the Kirchhoff's voltage law around LOOP-1 the voltage across the output filter inductor can be written as;

$$
\begin{equation*}
v_{L_{O}}(t)=2 v_{C_{Z}}(t)-v_{S}(t)-v_{O}(t) \tag{2.54}
\end{equation*}
$$

v. The current flowing through L_{Z} forces the input diode to conduct during mode-3 in DCM-2 operation.
vi. Applying the Kirchhoff's current law at "Node A" yields that the Zsource capacitor current is equal to the difference between the current drawn from the supply, $i_{S}(t)$ and the Z-source inductor current, $i_{L_{Z}}(t)$;

$$
\begin{equation*}
i_{C_{Z}}(t)=i_{S}(t)-i_{L_{Z}}(t) \tag{2.55}
\end{equation*}
$$

vii. Applying the Kirchhoff's current law at "Node B" it is seen that (2.56) is valid during mode-3.

$$
\begin{equation*}
i_{C_{O}}(t)=i_{L_{O}}(t)-\frac{V_{O}}{R} . \tag{2.56}
\end{equation*}
$$

viii. Applying the Kirchhoff's current law at "Node C" the Z-source capacitor current can be expressed as given in (2.57) during mode-3.

$$
\begin{equation*}
i_{C_{Z}}(t)=i_{L_{Z}}(t)-i_{L_{O}}(t) \tag{2.57}
\end{equation*}
$$

Combining (2.55) and (2.57) it is possible to obtain (2.58).

$$
\begin{equation*}
i_{S}(t)=2 i_{L_{Z}}(t)-i_{L_{O}}(t) \tag{2.58}
\end{equation*}
$$

Figure 2-12 Active loops during mode-3 in DCM-2 operation of Z-source dc/dc converter

In order to continue the mathematical analysis in DCM-2 operation it is necessary to stick to the assumptions stated in (2.10). With these assumptions the voltage and current waveforms of Z-source dc/dc converter in DCM-2 operation are given in Figure 2-13 and Figure 2-14.

Figure 2-13 Capacitors ($C_{Z_{1}}$ and $C_{Z_{2}}$) and inductors ($L_{Z_{1}}$ and $L_{Z_{2}}$) voltage and current waveforms during the DCM-2 operation of Z-source dc/dc converter

Figure 2-14 Switching elements (D_{i} and Q) voltage and current waveforms during the CCM operation of Z-source dc/dc converter

In order to determine the input-output voltage relationship, the same procedure applied in the mathematical analysis in CCM operation in 2.3.1 is followed. Within this scope it is required to apply the volt-second balance rule to the two inductors in Z-source dc/dc converter.

The voltages across the inductors during mode- 1 in DCM-2 operation are as follows:

$$
\begin{gather*}
v_{L_{z}}(t)=V_{C_{Z}} \tag{2.59}\\
v_{L_{O}}(t)=-V_{C_{O}}=-V_{O} .
\end{gather*}
$$

The voltages across the inductors during mode-2 in DCM-2 operation are as follows.

$$
\begin{equation*}
v_{L_{z}}(t)=V_{C_{Z}} \tag{2.60}
\end{equation*}
$$

$$
v_{L_{O}}(t)=0 .
$$

Finally the voltages across the inductors during mode-3 in DCM-2 operation are as follows:

$$
\begin{gather*}
v_{L_{Z}}(t)=V_{S}-V_{C_{Z}} \tag{2.61}\\
v_{L_{o}}(t)=2 V_{C_{Z}}-V_{S}-V_{o} .
\end{gather*}
$$

After the determination of the inductor voltages during the operating modes of DCM-2 operation, it is now necessary to apply the volt second rule to the inductors in the converter. Applying volt-second balance rule for L_{z} over a period yields

$$
\begin{equation*}
D T_{S} V_{C_{Z}}+(1-D) T_{S}\left(V_{S}-V_{C_{Z}}\right)=0 \tag{2.62}
\end{equation*}
$$

It is possible to obtain the relationship between the input voltage and the Zsource capacitor voltage from (2.62).

$$
\begin{equation*}
V_{C_{Z}}=\frac{1-D}{1-2 D} V_{S} . \tag{2.63}
\end{equation*}
$$

Writing the volt-second balance equation for L_{0} inductor gives;

$$
\begin{equation*}
d_{1} T_{S}\left(-V_{O}\right)+\left(D-d_{1}\right) T_{S} 0+(1-D) T_{S}\left(2 V_{C_{Z}}-V_{S}-V_{O}\right)=0 . \tag{2.64}
\end{equation*}
$$

The relationship between the input voltage and the output voltage can be constructed using (2.63) and (2.64).

$$
\begin{equation*}
V_{O}=\frac{(1-D)}{(1-2 D)\left(1-D+d_{1}\right)} V_{S} . \tag{2.65}
\end{equation*}
$$

d_{1} can be determined from (2.65) as follows:

$$
\begin{equation*}
d_{1}=\frac{V_{S}(1-D)}{V_{O}(1-2 D)}+D-1 \tag{2.66}
\end{equation*}
$$

In order to determine the relationship between the input voltage and output voltage d_{1} must be written in terms of the circuit parameters, $L_{z}, L_{0}, R, D, T_{s}$. In
order to achieve this goal the current changes in the inductors are needed to be written using the volt-second balance rule. With careful examination of L_{z} current change in mode-1 and mode-2 shown in Figure 2-13, it is possible to derive;

$$
\begin{equation*}
I_{L_{Z}}(\max)=\frac{V_{C_{Z}} D T_{S}}{L_{Z}}+I_{L_{Z}}(\min) \tag{2.67}
\end{equation*}
$$

Similarly the current change in L_{o} during mode-1 can be expressed as;

$$
\begin{equation*}
I_{L_{O}}(\max)=\frac{V_{O} d_{1} T_{S}}{L_{O}} . \tag{2.68}
\end{equation*}
$$

Determining the equality for the inductor current changes in mode-3 yields;

$$
\begin{gather*}
I_{L_{O}}(\max)=\frac{\left(2 V_{C_{Z}}-V_{O}-V_{S}\right)(1-D) T_{S}}{L_{O}} \tag{2.69}\\
I_{L_{Z}}(\max)=-\frac{\left(V_{S}-V_{C_{Z}}\right)(1-D) T_{S}}{L_{Z}}+I_{L_{Z}}(\min) .
\end{gather*}
$$

Finally, it is also necessary to express the average current drawn from the supply. It is clear from Figure 2-3 that the current drawn from the supply is equal to the current flowing through the input diode D_{i}. Hence referring to Figure 2-14 the average current drawn from the supply can be expressed from as;

$$
\begin{equation*}
I_{S_{A V G}}=\frac{2 I_{L_{Z}}(\max)+2 I_{L_{Z}}(\min)-I_{L_{O}}(\max)}{2}(1-D) \tag{2.70}
\end{equation*}
$$

The dual of volt second balance rule for the inductors is the current second balance rule for the capacitors. In dc/dc converter analysis it is sometimes necessary to apply the current-second balance rule for the capacitors in order to determine the input and output voltage relationship. The current-second rule dictates that the current-second area under the capacitor current variation over one switching period is zero. In other words, the average current of a capacitor is zero over a period. In order to apply the current-second balance rule to the capacitors of the converter it is first necessary to determine the average currents flowing through them in each mode
during the DCM-2 operation. At this point a new notation for the average current in each mode of operation is needed to be introduced.
$\left.I_{L_{Z}, \text { avg }}\right|_{D T_{S}}$ represents the average of the current $i_{L_{Z}}(t)$ for the time duration $D T_{S}$.

Next step is applying the current-second balance rule to the Z-source capacitor as;

$$
\begin{gather*}
D\left(-\left.I_{L_{Z}, a v g}\right|_{D T_{S}}\right)+(1-D)\left(\left.I_{L_{Z}, \text { avg }}\right|_{(1-D) T_{S}}-\left.I_{L_{O}, a v g}\right|_{(1-D) T_{S}}\right) \tag{2.71}\\
D\left[\frac{I_{L_{Z}}(\max)+I_{L_{Z}}(\min)}{2}\right]+(1-D)\left[\frac{I_{L_{Z}}(\max)+I_{L_{Z}}(\min)}{2}-\frac{I_{L_{O}}(\max)}{2}\right]=0 .
\end{gather*}
$$

Reorganizing the terms given in (2.71) it is possible to obtain;

$$
\begin{equation*}
I_{L_{Z}}(\max)+I_{L_{Z}}(\min)=\frac{1-D}{1-2 D} I_{L_{O}}(\max) . \tag{2.72}
\end{equation*}
$$

The average current drawn from the supply is determined in (2.70). It is possible to express the average current drawn from the supply, $I_{S_{A V G}}$ in terms of only the L_{o} inductor current by combining (2.70) and (2.72).

$$
\begin{equation*}
I_{S_{A V G}}=\frac{1-D}{2(1-2 D)} I_{L_{O}}(\max) . \tag{2.73}
\end{equation*}
$$

So far the average current drawn from the supply is determined. In order to find the input and output voltage relationship it is now necessary to use the principle of conservation of power. Assuming that all the components in Z-source dc/dc converter are lossless, then the power taken from the supply is equal to the power given to the load,

$$
\begin{gather*}
P_{I N}=P_{\text {OUT }} \tag{2.74}\\
V_{S} I_{S_{A V G}}=\frac{V_{O}{ }^{2}}{R} .
\end{gather*}
$$

where R represents the load resistance. Recalling that $I_{L_{O}}(\max)$ given in (2.68), from (2.70) and (2.74) one obtains;

$$
\begin{equation*}
V_{S} \frac{1-D}{2(1-2 D)} \cdot \frac{V_{O} d_{1} T_{S}}{L_{O}}=\frac{V_{O}{ }^{2}}{R} . \tag{2.75}
\end{equation*}
$$

Equation (2.75) can be rewritten as;

$$
\begin{equation*}
\frac{V_{S}}{V_{O}}=\frac{2(1-2 D) L_{O}}{R(1-D) d_{1} T_{S}} \tag{2.76}
\end{equation*}
$$

Reorganizing (2.65), one obtains;

$$
\begin{equation*}
\frac{V_{S}}{V_{O}}=\frac{(1-2 D)\left(1-D+d_{1}\right)}{(1-D)} . \tag{2.77}
\end{equation*}
$$

Inspection of (2.76) and (2.77) reveals that the left hand sides of the equalities are the same. Hence, the right hand sides of the equalities must also be the same, to give;

$$
\begin{gather*}
\frac{2(1-2 D) L_{O}}{R(1-D) d_{1} T_{S}}=\frac{(1-2 D)\left(1-D+d_{1}\right)}{(1-D)} \tag{2.78}\\
\frac{2 L_{O}}{R T_{S}}=d_{1}-D d_{1}+d_{1}^{2}
\end{gather*}
$$

The solution for (2.78) yields;

$$
\begin{equation*}
d_{1}=\frac{-(1-D)+\sqrt{(1-D)^{2}+\frac{8 L_{O}}{R T_{S}}}}{2} \tag{2.79}
\end{equation*}
$$

With the results obtained in (2.79), the relationship between input and output voltage can be stated as;

$$
\begin{equation*}
V_{O}=\frac{(1-D)}{(1-2 D)\left(1-D+d_{1}\right)} V_{S} \tag{2.80}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{1}=\frac{-(1-D)+\sqrt{(1-D)^{2}+\frac{8 L_{O}}{R T_{S}}}}{2} . \tag{2.81}
\end{equation*}
$$

Critical Load for DCM-2 Operation

The condition for the transition between CCM and DCM-2 operation is worthy to note as well. Referring to Figure 2-13, one notes that in DCM-2 operation $d_{1}<D$ must hold. The critical load which will cause the converter to operate at the instant of transition from CCM to DCM-2, the duty factor D is needed to be equal to d_{1}.

$$
\begin{equation*}
d_{1}=\frac{-(1-D)+\sqrt{(1-D)^{2}+\frac{8 L_{O}}{R T_{S}}}}{2}=D \tag{2.82}
\end{equation*}
$$

The solution for (2.82) gives the critical load as;

$$
\begin{equation*}
R_{c r t}=\frac{2 L_{o}}{D T_{S}} \tag{2.83}
\end{equation*}
$$

In conclusion if $\mathrm{R}>\mathrm{R}_{\text {crt }}$ is satisfied, then the Z -source converter transits from CCM operation into the DCM-2 operation.

2.3.4 Obtaining Dynamic Model in DCM-2

In this part the dynamic model of the converter in DCM-2 operation is obtained using the circuit averaging method. Circuit averaging method is another well-known method for derivation of the converter model. In SSAM the state equations of the converter are averaged. However, in circuit averaging method the converter waveforms are averaged directly [16].For the sake of completeness of the analysis in DCM-2 operation a brief description of circuit averaging method is given in this section.

2.3.4.1 Circuit Averaging Method (CAM)

CAM involves averaging and small signal linearization which makes it equivalent to state space averaging method, SSAM. The key point in CAM is to replace the converter switches, diodes and MOSFET's in the converter structure,
with dependent or independent voltage and current sources. In this manner a time invariant circuit is obtained. The next step is averaging the converter waveforms over a switching period.

The main idea of circuit averaging method, CAM is to find an averaged circuit model for the switch network. The resulting averaged circuit model can then be inserted into the converter circuit in order to obtain an averaged circuit model. The first step in CAM is to obtain a time-invariant circuit. Next is averaging the waveforms. As a final step perturbation and linearization is needed in order to obtain the dynamic model of the converter.

2.3.4.2 Time-Invariant Circuit in DCM-2

The first step in the circuit averaging method, CAM is to replace the switch network in the converter with voltage and current sources such that the circuit connection does not change in time. Throughout this process the assumptions stated in (2.10) are still valid.

As seen from Figure 2-3, in the simplified model of Z-source dc/dc converter there are three switching elements, $\mathrm{D}_{\mathrm{i}}, \mathrm{D}_{\mathrm{r}}$ and Q . The averaged values of the voltage and current waveforms of these elements are needed to be determined in terms of the converter state variables (inductor current and capacitor voltages) and the converter independent inputs (input voltage and duty cycle) in order to obtain a time-invariant circuit with CAM.

The Input Diode, D_{i}, Voltage Waveform Averaging

Throughout the analysis the voltage waveform of the input diode is as shown as $v_{1}(t)$ as Figure 2-15.

Figure 2-15 Input diode voltage and current waveforms over a period

As illustrated in Figure 2-15 the voltage change on D_{i} can be expressed as;
Mode-1

$$
\begin{equation*}
v_{1}(t)=\left\langle v_{S}(t)\right\rangle_{T_{S}}-2\left\langle v_{C_{Z}}(t)\right\rangle_{T_{S}} \tag{2.84}
\end{equation*}
$$

Mode-2

$$
v_{1}(t)=\left\langle v_{S}(t)\right\rangle_{T_{S}}-2\left\langle v_{C_{Z}}(t)\right\rangle_{T_{S}}
$$

Mode-3

$$
v_{1}(t)=0 .
$$

where $\left\langle v_{S}(t)\right\rangle_{T_{S}}$ and $\left\langle v_{C_{Z}}(t)\right\rangle_{T_{S}}$ stand for the input voltage and the Z-source capacitor voltages averaged over a period respectively. Taking the average of the input diode voltage waveform over a switching period yields;

$$
\begin{equation*}
\left\langle v_{1}(t)\right\rangle_{T_{S}}=D\left[\left\langle v_{S}(t)\right\rangle_{T_{S}}-2\left\langle v_{C_{Z}}(t)\right\rangle_{T_{S}}\right] . \tag{2.85}
\end{equation*}
$$

MOSFET, Q, Voltage Waveform Averaging

Throughout the analysis the voltage waveform of the switch (MOSFET) is typically as $v_{2}(t)$. The voltage and current waveforms of Q are shown in Figure 2-16.

Figure 2-16 Switch (MOSFET) waveforms over a period

As illustrated in Figure 2-16 the voltage change on the switch MOSFET, Q, can be expressed as in (2.86).

Mode-1

$$
\begin{equation*}
v_{2}(t)=0 \tag{2.86}
\end{equation*}
$$

Mode-2

$$
v_{2}(t)=0
$$

Mode-3

$$
v_{2}(t)=2\left\langle v_{C_{Z}}(t)\right\rangle_{T_{S}}-\left\langle v_{S}(t)\right\rangle_{T_{S}} .
$$

Taking (2.86) into consideration the average switch voltage over a switching period is as;

$$
\begin{equation*}
\left\langle v_{2}(t)\right\rangle_{T_{S}}=(1-D)\left[2\left\langle v_{C_{Z}}(t)\right\rangle_{T_{S}}-\left\langle v_{S}(t)\right\rangle_{T_{S}}\right] . \tag{2.87}
\end{equation*}
$$

The Rectification Diode, D_{r}, Voltage Waveform Averaging

Throughout the analysis the voltage waveform on the rectification diode is typically $v_{3}(t)$ shown in Figure 2-17.

Figure 2-17 Rectification diode waveforms over a period

Referring to Figure 2-17 the voltage change on D_{r} can be expressed as;
Mode-1

$$
\begin{equation*}
v_{3}(t)=0 \tag{2.88}
\end{equation*}
$$

Mode - 2

$$
v_{3}(t)=-\left\langle v_{O}(t)\right\rangle_{T_{S}}
$$

Mode - 3

$$
v_{3}(t)=0 .
$$

Taking the average of the rectification diode voltage waveform over a switching period yields;

$$
\begin{equation*}
\left\langle v_{3}(t)\right\rangle_{T_{S}}=\left(D-d_{1}\right)\left[-\left\langle v_{O}(t)\right\rangle_{T_{S}}\right] . \tag{2.89}
\end{equation*}
$$

It is now necessary to determine the average value for the current waveforms of the diodes and switch over a switching period, T_{s}.

The Input Diode, D_{i}, Current Waveform Averaging

The current waveform of the input diode is shown in Figure 2-15 and its variation is given as;

Mode-1

$$
\begin{equation*}
i_{1}(t)=0 \tag{2.90}
\end{equation*}
$$

Mode-2

$$
i_{1}(t)=0
$$

Mode-3

$$
i_{1}(t)=2 i_{C_{Z}}(t)-i_{L_{O}}(t) .
$$

In order to determine the average current $\left\langle i_{1}(t)\right\rangle_{T_{S}}$ time integral of the current waveform over a switching period must be determined as;

$$
\begin{equation*}
\left\langle i_{1}(t)\right\rangle_{T_{S}}=\frac{1}{T_{S}} \int_{t}^{t+T_{S}} i_{1}(t) d t=\frac{q_{1}}{T_{S}} \tag{2.91}
\end{equation*}
$$

where q_{1} represents the area under the current waveform $i_{1}(t)$ over one period. This can be calculated as;

$$
\begin{gather*}
q_{1}=\frac{1}{2}\left[2 I_{L_{Z}}(\max)+2 I_{L_{Z}}(\min)-I_{L_{O}}(\max)\right](1-D) T_{S} \tag{2.92}\\
q_{1}=\left[I_{L_{Z}}(\max)+I_{L_{Z}}(\min)-\frac{1}{2} I_{L_{O}}(\max)\right](1-D) T_{S} .
\end{gather*}
$$

For finding the circuit average model of the input diode, it is necessary to express the current waveform $\left\langle\mathrm{i}_{1}(\mathrm{t})\right\rangle_{\mathrm{T}_{\mathrm{S}}}$ in terms of $\left\langle\mathrm{v}_{1}(\mathrm{t})\right\rangle_{\mathrm{T}_{\mathrm{S}}},\left\langle\mathrm{v}_{2}(\mathrm{t})\right\rangle_{\mathrm{T}_{\mathrm{S}}},\left\langle\mathrm{v}_{3}(\mathrm{t})\right\rangle_{\mathrm{T}_{\mathrm{S}}}$ and duty factor, D. The expression $\left[I_{L_{Z}}(\max)+I_{L_{Z}}(\min)-\frac{1}{2} I_{L_{O}}(\max)\right]$ in (2.92) must be rewritten for this purpose. Using the expression (2.72), the expression (2.92) can be put in the form;

$$
\begin{equation*}
q_{1}=\left[\frac{(1-D)}{2(1-2 D)} I_{L_{O}}(\max)\right] T_{S} \tag{2.93}
\end{equation*}
$$

As a final step, using (2.69) and (2.93) the following equation is obtained as;

$$
\begin{equation*}
q_{1}=\left[\frac{(1-D)}{2(1-2 D)} \times \frac{\left(2 V_{C_{Z}}-V_{O}-V_{S}\right)(1-D) T_{S}}{L_{O}}\right] T_{S} \tag{2.94}
\end{equation*}
$$

Considering the assumptions stated in (2.10), the average voltages on the capacitors in the converter and the input voltage to the converter can be expressed as;

$$
\begin{align*}
V_{C_{Z}} & =\left\langle v_{C_{Z}}(t)\right\rangle_{T_{S}} \tag{2.95}\\
V_{S} & =\left\langle v_{S}(t)\right\rangle_{T_{S}} \\
V_{O} & =\left\langle v_{O}(t)\right\rangle_{T_{S}} .
\end{align*}
$$

Combining (2.94) and (2.95) one obtains;

$$
\begin{equation*}
q_{1}=\left[\frac{(1-D)}{2(1-2 D)} \cdot \frac{\left(2\left\langle v_{C_{Z}}(t)\right\rangle_{T_{S}}-\left\langle v_{O}(t)\right\rangle_{T_{S}}-\left\langle v_{S}(t)\right\rangle_{T_{S}}\right)(1-D) T_{S}}{L_{O}}\right] T_{S} . \tag{2.96}
\end{equation*}
$$

In (2.91) the average value of the input diode current is found in term of q_{1}. Using this equality, the average value of the input diode current can be expressed as follows;

$$
\begin{equation*}
\left\langle i_{1}(t)\right\rangle_{T_{S}}=\frac{q_{1}}{T_{S}}=\frac{(1-D)}{2(1-2 D)} \cdot \frac{\left(2\left\langle v_{C_{Z}}(t)\right\rangle_{T_{S}}-\left\langle v_{O}(t)\right\rangle_{T_{S}}-\left\langle v_{S}(t)\right\rangle_{T_{S}}\right)(1-D) T_{S}}{L_{O}} . \tag{2.97}
\end{equation*}
$$

Finally by (2.85), (2.89) and (2.97) the average value of the input diode current can be expressed as;

$$
\begin{equation*}
\left\langle i_{1}(t)\right\rangle_{T_{S}}=\frac{(1-D)^{2} T_{S}}{2(1-2 D) L_{O}}\left[-\frac{\left\langle v_{1}(t)\right\rangle_{T_{S}}}{D}+\frac{\left\langle v_{3}(t)\right\rangle_{T_{S}}}{D-d_{1}}\right] . \tag{2.98}
\end{equation*}
$$

Switch, Q, Current Waveform Averaging

The current waveform of the switch is typically as shown in Figure 2-16 with variation in time as;

Mode-1

$$
\begin{equation*}
i_{2}(t)=2 i_{L_{Z}}(t)-i_{L_{O}}(t) \tag{2.99}
\end{equation*}
$$

Mode-2

$$
i_{2}(t)=2 i_{L_{Z}}(t)
$$

Mode-3

$$
i_{2}(t)=0 .
$$

The same procedure followed in determination of the average current waveform of the input diode is followed in order to determine the average current waveform of the switch. Hence, as a first step the average current waveform of the switch is defined as;

$$
\begin{equation*}
\left\langle i_{2}(t)\right\rangle_{T_{S}}=\frac{1}{T_{S}} \int_{t}^{t+T_{S}} i_{2}(t) d t=\frac{q_{2}}{T_{S}} \tag{2.100}
\end{equation*}
$$

where q_{2} represents the area under the current waveform $i_{2}(t)$ over one period. The area under $i_{2}(t)$ current waveform can be calculated as;

$$
\begin{equation*}
q_{2}=\frac{1}{2}\left[2 I_{L_{Z}}(\max)+2 I_{L_{Z}}(\min)\right] D T_{S}-\frac{1}{2} I_{L_{O}}(\max) d_{1} T_{S} . \tag{2.101}
\end{equation*}
$$

Substituting (2.72) into (2.101) yields;

$$
\begin{equation*}
q_{2}=\left[\frac{(1-D) D}{1-2 D}-\frac{1}{2} d_{1}\right] I_{L_{O}}(\max) T_{S} \tag{2.102}
\end{equation*}
$$

Substituting $I_{L_{O}}$ (max) found in (2.69) into (2.102) gives;

$$
\begin{equation*}
\mathrm{q}_{2}=\left[\frac{(1-\mathrm{D}) \mathrm{D}}{1-2 \mathrm{D}}-\frac{1}{2} \mathrm{~d}_{1}\right] \times\left[\frac{\left(2 \mathrm{~V}_{\mathrm{C}_{\mathrm{Z}}}-\mathrm{V}_{\mathrm{O}}-\mathrm{V}_{\mathrm{S}}\right)(1-\mathrm{D}) \mathrm{T}_{\mathrm{S}}}{\mathrm{~L}_{\mathrm{O}}}\right] \mathrm{T}_{\mathrm{S}} . \tag{2.103}
\end{equation*}
$$

Under the assumptions stated in (2.95) it is possible to rewrite (2.103) as;

$$
\begin{gather*}
q_{2}=\left[\frac{(1-D) D}{1-2 D}-\frac{1}{2} d_{1}\right] \times \tag{2.104}\\
{\left[\frac{\left(2\left\langle v_{C_{Z}}(t)\right\rangle_{T_{S}}-\left\langle v_{O}(t)\right\rangle_{T_{S}}-\left\langle v_{S}(t)\right\rangle_{T_{S}}\right)(1-D) T_{S}}{L_{O}}\right] T_{S}}
\end{gather*}
$$

The average current waveform of the switch can be expressed as;

$$
\begin{gathered}
\left\langle i_{2}(t)\right\rangle_{T_{S}}=\frac{q_{2}}{T_{S}} \\
\left\langle i_{2}(t)\right\rangle_{T_{S}}=\left[\frac{(1-D) D}{1-2 D}-\frac{1}{2} d_{1}\right] \cdot \frac{\left(2\left\langle v_{C_{Z}}(t)\right\rangle_{T_{S}}-\left\langle v_{O}(t)\right\rangle_{T_{S}}-\left\langle v_{S}(t)\right\rangle_{T_{S}}\right)(1-D) T_{S}}{L_{0}} .
\end{gathered}
$$

From (2.87), (2.89) and (2.105) one obtains;

$$
\begin{align*}
& \left\langle i_{2}(t)\right\rangle_{T_{S}}=\left[\frac{(1-D) D}{1-2 D}-\frac{1}{2} d_{1}\right] \frac{T_{S}}{L_{O}}\left\langle v_{2}(t)\right\rangle_{T_{S}} \tag{2.106}\\
& \quad-\left[\frac{(1-D) D}{1-2 D}-\frac{1}{2} d_{1}\right] \frac{(1-D) T_{S}}{\left(d_{1}-D\right) L_{O}}\left\langle v_{3}(t)\right\rangle_{T_{S}} .
\end{align*}
$$

The Rectification Diode, D_{r}, Current Waveform Averaging

The current waveform of the rectification diode is typically as shown in Figure 2-17 with its variation being;

Mode-1

$$
\begin{equation*}
i_{3}(t)=i_{L_{O}}(t) \tag{2.107}
\end{equation*}
$$

Mode-2

$$
i_{3}(t)=i_{L_{O}}(t)
$$

Mode-3

$$
i_{3}(t)=i_{L_{o}}(t) .
$$

The average value of the current waveform of the rectification diode is defined as;

$$
\begin{equation*}
\left\langle i_{3}(t)\right\rangle_{T_{S}}=\frac{1}{T_{S}} \int_{t}^{t+T_{S}} i_{3}(t) d t=\frac{q_{3}}{T_{S}} \tag{2.108}
\end{equation*}
$$

where q_{3} is the area under the current waveform $i_{3}(t)$ shown in Figure 2-17. It is possible to express q_{3} as;

$$
\begin{equation*}
q_{3}=\frac{1}{2} I_{L_{O}}(\max)\left(1-D+d_{1}\right) T_{S} \tag{2.109}
\end{equation*}
$$

Substituting (2.68) for $I_{L_{O}}$ (max) into (2.109) yields;

$$
\begin{equation*}
q_{3}=\frac{1}{2} \frac{V_{o} d_{1} T_{S}}{L_{O}}\left(1-D+d_{1}\right) T_{S} \tag{2.110}
\end{equation*}
$$

Replacing the output voltage in terms of the average voltage of the rectification diode over one period found in (2.89) results as;

$$
\begin{equation*}
q_{3}=\frac{1}{2} \frac{\left\langle v_{3}(t)\right\rangle_{T_{S}}}{\left(d_{1}-D\right)} \frac{d_{1} T_{S}}{L_{O}}\left(1-D+d_{1}\right) T_{S} . \tag{2.111}
\end{equation*}
$$

Finally, it is straightforward to find the average current of the rectification diode over a period as;

$$
\begin{equation*}
\left\langle i_{3}(t)\right\rangle_{T_{S}}=\frac{q_{3}}{T_{S}}=\frac{1}{2} \frac{\left\langle v_{3}(t)\right\rangle_{T_{S}}}{\left(d_{1}-D\right)} \frac{d_{1} T_{S}}{L_{O}}\left(1-D+d_{1}\right) \tag{2.112}
\end{equation*}
$$

In the analysis of Z-source dc/dc converter in DCM- 2 mode of operation the average voltage and the current waveforms of the switching elements are found so far. It is now time to determine the small signal ac model of the converter at a fixed operating point $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\right.$ and D$)$. For this purpose it is required to add small ac perturbations $\left(\tilde{v}_{1}(t), \tilde{v}_{2}(t), \tilde{v}_{3}(t), \tilde{d}(t)\right)$ to the fixed operating points. Adding small ac perturbations to the average voltage and current waveforms and the duty factor of the converter at the selected fixed operating points yield the followings;

$$
\begin{gather*}
\left\langle v_{1}(t)\right\rangle_{T_{S}}=V_{1}+\tilde{v}_{1}(t) \tag{2.113}\\
\left\langle v_{2}(t)\right\rangle_{T_{S}}=V_{2}+\tilde{v}_{2}(t) \\
\left\langle v_{3}(t)\right\rangle_{T_{S}}=V_{3}+\tilde{v}_{3}(t) \\
\left\langle i_{1}(t)\right\rangle_{T_{S}}=I_{1}+\tilde{i}_{1}(t) \\
\left\langle i_{2}(t)\right\rangle_{T_{S}}=I_{2}+\tilde{i}_{2}(t) \\
\left\langle i_{3}(t)\right\rangle_{T_{S}}=I_{3}+\tilde{i}_{3}(t) \\
d(t)=D+\tilde{d}(t) .
\end{gather*}
$$

In (2.113) the capital letters stand for the dc operating points while small letters with \sim on top represents the small ac perturbations. In the circuit averaging method, CAM the small ac perturbations are defined as;

$$
\begin{align*}
& \tilde{i}_{1}=\frac{\tilde{v}_{1}}{r_{1}}+j_{1} \tilde{d}+g_{1} \tilde{v}_{3} \tag{2.114}\\
& \tilde{i}_{2}=\frac{\tilde{v}_{2}}{r_{2}}+j_{2} \tilde{d}+g_{2} \tilde{v}_{3}
\end{align*}
$$

$$
\tilde{i}_{3}=\frac{\tilde{v}_{3}}{r_{3}}+j_{3} \tilde{d}
$$

where the coefficients can be found by using the Taylor series expansion [16].
Considering (2.98) it is understood that the average current of the input diode, $i_{1}(t)$ can be expressed as a function of $\left\langle v_{1}(t)\right\rangle_{T_{S}},\left\langle v_{3}(t)\right\rangle_{T_{S}}, d(t)$;

$$
\begin{equation*}
\left\langle i_{1}(t)\right\rangle_{T_{S}}=f_{1}\left(\left\langle v_{1}(t)\right\rangle_{T_{S^{\prime}}}\left\langle v_{3}(t)\right\rangle_{T_{S^{\prime}}} d(t)\right) \tag{2.115}
\end{equation*}
$$

Applying the Taylor expansion to (2.115) around the operating point $\left(V_{1}, V_{3}, D\right)$ yields the expressions;

$$
\begin{align*}
& I_{1}+\tilde{i}_{1}(t)=f_{1}\left(V_{1}, V_{3}, D\right)+\left.\tilde{v}_{1}(t) \frac{\partial f_{1}\left(v_{1}, V_{3}, D\right)}{\partial v_{1}}\right|_{v_{1}=V_{1}} \tag{2.116}\\
& +\left.\tilde{v}_{3}(t) \frac{\partial f_{1}\left(V_{1}, v_{3}, D\right)}{\partial v_{3}}\right|_{v_{3}=V_{3}}+\left.\tilde{d}(t) \frac{\partial f_{1}\left(V_{1}, V_{3}, d\right)}{\partial d}\right|_{d=D}
\end{align*}
$$

+ higher order nonlinear terms to be neglected.
Equating the corresponding terms in both sides of (2.116) to have;

$$
\begin{aligned}
& I_{1}=f_{1}\left(V_{1}, V_{3}, D\right) \\
& \tilde{i}_{1}(t)=\left.\tilde{v}_{1}(t) \frac{\partial f_{1}\left(v_{1}, V_{3}, D\right)}{\partial v_{1}}\right|_{v_{1}=V_{1}}+\left.\tilde{v}_{3}(t) \frac{\partial f_{1}\left(V_{1}, v_{3}, D\right)}{\partial v_{3}}\right|_{v_{3}=V_{3}} \\
&+\left.\tilde{d}(t) \frac{\partial f_{1}\left(V_{1}, V_{3}, d\right)}{\partial d}\right|_{d=D}
\end{aligned}
$$

Combining (2.114) and (2.116), the coefficients for the ac perturbation valid for \tilde{i}_{1} can be determined as;

$$
\begin{align*}
& \frac{1}{r_{1}}=\left.\frac{\partial f_{1}\left(v_{1}, V_{3}, D\right)}{\partial v_{1}}\right|_{v_{1}=V_{1}} \tag{2.117}\\
& g_{1}=\left.\frac{\partial f_{1}\left(V_{1}, v_{3}, D\right)}{\partial v_{3}}\right|_{v_{3}=V_{3}}
\end{align*}
$$

$$
j_{1}=\left.\frac{\partial f_{1}\left(V_{1}, V_{3}, d\right)}{\partial d}\right|_{d=D}
$$

The same procedure can be followed for $\left\langle i_{2}(t)\right\rangle_{T_{S}}$ and $\left\langle i_{3}(t)\right\rangle_{T_{S}}$. Therefore expressing $i_{2}(t)$ as;

$$
\begin{equation*}
\left\langle i_{2}(t)\right\rangle_{T_{S}}=f_{2}\left(\left\langle v_{2}(t)\right\rangle_{T_{S}}\left\langle v_{3}(t)\right\rangle_{T_{S^{\prime}}} d(t)\right) \tag{2.118}
\end{equation*}
$$

and applying the Taylor expansion to (2.118) around the operating point $\left(V_{2}, V_{3}, D\right)$ yields the expression given below;

$$
\begin{align*}
I_{2}+\tilde{i}_{2}(t) & =f_{2}\left(V_{2}, V_{3}, D\right)+\left.\tilde{v}_{2}(t) \frac{\partial f_{2}\left(v_{2}, V_{3}, D\right)}{\partial v_{2}}\right|_{v_{2}=V_{2}} \tag{2.119}\\
& +\left.\tilde{v}_{3}(t) \frac{\partial f_{2}\left(V_{2}, v_{3}, D\right)}{\partial v_{3}}\right|_{v_{3}=V_{3}}+\left.\tilde{d}(t) \frac{\partial f_{2}\left(V_{2}, V_{3}, d\right)}{\partial d}\right|_{d=D}
\end{align*}
$$

+higher order nonlinear terms to be neglected. Equating the corresponding terms in both sides of (2.119) to have;

$$
\begin{gathered}
I_{2}=f_{2}\left(V_{2}, V_{3}, D\right) \\
\tilde{i}_{2}(t)=\left.\tilde{v}_{2}(t) \frac{\partial f_{2}\left(v_{2}, V_{3}, D\right)}{\partial v_{2}}\right|_{v_{2}=V_{2}}+\left.\tilde{v}_{3}(t) \frac{\partial f_{2}\left(V_{2}, v_{3}, D\right)}{\partial v_{3}}\right|_{v_{3}=V_{3}} \\
+\left.\tilde{d}(t) \frac{\partial f_{2}\left(V_{2}, V_{3}, d\right)}{\partial d}\right|_{d=D} .
\end{gathered}
$$

Combining (2.114) and (2.119), the coefficients for the ac perturbation valid for \tilde{i}_{2} can be determined as;

$$
\begin{align*}
& \frac{1}{r_{2}}=\left.\frac{\partial f_{2}\left(v_{2}, V_{3}, D\right)}{\partial v_{2}}\right|_{v_{2}=V_{2}} \tag{2.120}\\
& g_{2}=\left.\frac{\partial f_{2}\left(V_{2}, v_{3}, D\right)}{\partial v_{3}}\right|_{v_{3}=V_{3}}
\end{align*}
$$

$$
j_{2}=\left.\frac{\partial f_{2}\left(V_{2}, V_{3}, d\right)}{\partial d}\right|_{d=D}
$$

Repeating the procedure for $\left\langle i_{3}(t)\right\rangle_{T_{S}} ;$

$$
\begin{equation*}
\left\langle i_{3}(t)\right\rangle_{T_{S}}=f_{3}\left(\left\langle v_{3}(t)\right\rangle_{T_{S^{\prime}}} d(t)\right) \tag{2.121}
\end{equation*}
$$

Applying the Taylor expansion to (2.121) around the operating point $\left(V_{3}, D\right)$ yields the expression;

$$
\begin{aligned}
I_{3}+\tilde{i}_{3}(t)= & f_{3}\left(V_{3}, D\right)+\left.\tilde{v}_{3}(t) \frac{\partial f_{3}\left(v_{3}, D\right)}{\partial v_{3}}\right|_{v_{3}=V_{3}} \\
& +\left.\tilde{d}(t) \frac{\partial f_{3}\left(V_{3}, d\right)}{\partial d}\right|_{d=D} \\
& + \text { higher order nonlinear terms to be neglected } .
\end{aligned}
$$

Equating again the corresponding terms in both sides of (2.122) to have;

$$
\begin{gathered}
I_{3}=f_{2}\left(V_{3}, D\right) \\
\tilde{i}_{3}(t)=\left.\tilde{v}_{3}(t) \frac{\partial f_{3}\left(v_{3}, D\right)}{\partial v_{3}}\right|_{v_{3}=V_{3}}+\left.\tilde{d}(t) \frac{\partial f_{3}\left(V_{3}, d\right)}{\partial d}\right|_{d=D} .
\end{gathered}
$$

Combining (2.114) and (2.122), the coefficients for the ac perturbation for \tilde{i}_{3} can be determined as;

$$
\begin{gather*}
\frac{1}{r_{3}}=\left.\frac{\partial f_{3}\left(v_{3}, D\right)}{\partial v_{3}}\right|_{v_{3}=V_{3}} \tag{2.123}\\
j_{3}=\left.\frac{\partial f_{3}\left(V_{3}, d\right)}{\partial d}\right|_{d=D}
\end{gather*}
$$

In order to determine the small signal ac model of the converter in DCM-2 operation the partial derivatives in (2.117), (2.120) and (2.123) should be determined. MATLAB is quite suitable for this complex and long task. These partial derivatives obtained this way are given in Appendix A.

2.3.4.3 Small-Signal AC Model of the Converter in DCM-2

After determination of the coefficients for DCM-2 operation, the next step is to establish the small signal ac model of the converter. With the coefficients found in 2.3.4.2 the small signal ac models for the input diode, switch and the rectification diode can be obtained as shown in Figure 2-18, Figure 2-19 and Figure 2-20.

Figure 2-18 Small signal ac model of the input diode

Figure 2-19 Small signal ac model of the switch

Figure 2-20 Small signal ac model of the rectification diode

These small signal ac models are inserted to the converter so that small signal ac model of the total converter in DCM-2 operation is obtained as shown in Figure 2-21.

Figure 2-21 Small signal ac model of the Z-source dc/dc converter in DCM-2 operation

So far in section 2.3.4, the mathematical analysis of the Z-source converter in DCM-2 operation is conducted and the small signal ac model of the converter is obtained. The transfer function analysis of the converter in CCM operation reveals the duty factor-to-output voltage transfer function can be determined by setting the small signal perturbation in input voltage, \tilde{v}_{S}, to zero [16].

For determination of the transfer functions in DCM-2, another assumption is necessary. Recalling that, the small signal ac models of the converters are used to estimate the low frequency (frequencies far below the switching frequency) response of the converters. In [16] it is mentioned that the poles due to the inductor in a converter in DCM operation are located relatively at high frequencies. So, it is assumed that the poles due to the Z-source network inductor, L_{z} and the output filter inductor L_{o} are at high frequencies so that their effects on the transfer function can be neglected so that the order of the real transfer function will be lowered. Yet the transfer function obtained will still provide a good estimation for the low frequency response of the converter. Under these circumstances the small signal ac model of the Z-source converter in DCM- 2 operation will be as follows.

Figure 2-22 Reduced order small signal ac model of the Z-source dc/dc converter

Duty Factor to Output Voltage Transfer Function, $G_{v_{o} / d}^{D C M}(s)$

So far the mathematical analysis of Z-source dc/dc converter is done for DCM-2 operation and the reduced order small signal ac model is obtained. The next step is to determine the duty factor to output voltage transfer function. For this purpose the perturbation in the input voltage must be set zero so that the output voltage perturbation will be only due to the perturbation in the control input, duty factor. The small signal ac model to be used in order to determine the $G_{v_{o} / d}^{D C M}(s)$ will be as the following.

Figure 2-23 Small signal ac model for determination of $G_{v_{o} / d}^{D C M}(s)$ in DCM-2 operation

Referring to Figure 2-23 the following equalities can be determined.

$$
\begin{gather*}
\tilde{v}_{1}=-\tilde{v}_{2} \tag{2.124}\\
\tilde{v}_{2}-\tilde{v}_{3}=\tilde{v}_{0}
\end{gather*}
$$

Moreover applying the Kirchhoff's current low at node A yields;

$$
\begin{equation*}
g_{1} \tilde{v}_{3}+\frac{1}{r_{1}} \tilde{v}_{1}+j_{1} \tilde{d}-g_{2} \tilde{v}_{3}-\frac{1}{r_{2}} \tilde{v}_{2}-j_{2} \tilde{d}-\frac{\tilde{v}_{2}}{1 / 2 s C_{Z}}-j_{3} \tilde{d}-\frac{1}{r_{3}} \tilde{v}_{3}=0 \tag{2.125}
\end{equation*}
$$

Finally applying the Kirchhoff's current low at node B, one obtains the output voltage as;

$$
\begin{align*}
& j_{3} \tilde{d}+\frac{1}{r_{3}} \tilde{v}_{3}-\frac{\tilde{v}_{O}}{\left(R / / \frac{1}{s C_{O}}\right)}=0 \tag{2.126}\\
& \tilde{v}_{O}=\left(j_{3} \tilde{d}+\frac{1}{r_{3}} \tilde{v}_{3}\right)\left(R / / \frac{1}{s C_{O}}\right)
\end{align*}
$$

Using equations given in (2.124)-(2.126) the duty factor to output voltage transfer function in DCM- 2 operation can be expressed as;

$$
\begin{equation*}
G_{v_{o} / d}^{D C M}(s)=\frac{j_{3} r_{3}\left(g_{1}+g_{2}-\frac{1}{r_{3}}-\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{Z_{C_{z}}}\right)-j_{1}+j_{2}+\frac{1}{Z_{e q}}}{-\frac{r_{3}}{Z_{e q}}\left(g_{1}-g_{2}-\frac{1}{r_{3}}+\frac{1}{r_{2}}+\frac{1}{r_{1}}+\frac{1}{Z_{C_{z}}}\right)-\frac{1}{r_{1}}-\frac{1}{r_{2}}+\frac{1}{Z_{e q}}} \tag{2.127}
\end{equation*}
$$

where

$$
\begin{gather*}
Z_{C_{Z}}=\frac{1}{2 s C_{Z}} \tag{2.128}\\
Z_{e q}=\frac{R}{1+s R C_{o}} .
\end{gather*}
$$

Input Voltage to Output Voltage Transfer Function, $G_{v_{o} / v_{s}}^{D C M}(s)$

In order to determine the input voltage to output voltage transfer function the perturbation in the duty factor, $\tilde{d}(\mathrm{t})$, must be set zero so that the output voltage
variation will only be due to the variation in the input voltage. By setting $\tilde{d}(\mathrm{t})$ equal to zero the reduced small signal ac model of the Z-source dc/dc converter will be as shown in Figure 2-24.

Figure 2-24 Small signal ac model for determination of $G_{v_{o} / v_{s}}^{D C M}(s)$ in DCM-2 operation

From Figure 2-24 it is possible to express the following equalities.

$$
\begin{gather*}
\tilde{v}_{S}=\tilde{v}_{1}+\tilde{v}_{2} \tag{2.129}\\
\tilde{v}_{2}=\tilde{v}_{3}+\tilde{v}_{0} \\
\tilde{v}_{S}=\tilde{v}_{1}+\tilde{v}_{3}+\tilde{v}_{0}
\end{gather*}
$$

As a second step it is necessary to apply the Kirchhoff's current law at node A.

$$
\begin{equation*}
g_{1} \tilde{v}_{3}+\frac{1}{r_{1}} \tilde{v}_{1}-\frac{\tilde{v}_{2}}{1 / 2 s C_{Z}}-g_{2} \tilde{v}_{3}-\frac{1}{r_{2}} \tilde{v}_{2}-\frac{1}{r_{3}} \tilde{v}_{3}=0 \tag{2.130}
\end{equation*}
$$

Finally the output voltage must be expressed in order to determine the input voltage to output voltage transfer function. Application of Kirchhoff's current law at node B yields;

$$
\begin{gather*}
\frac{\tilde{v}_{3}}{r_{3}}-\frac{\tilde{v}_{O}}{Z_{e q}}=0 \tag{2.131}\\
\tilde{v}_{O}=\frac{Z_{e q}}{r_{3}} \tilde{v}_{3}
\end{gather*}
$$

Using equations (2.129)-(2.131) the input voltage to output voltage transfer function can be defined as the following.

$$
\begin{equation*}
G_{v_{o} / v_{s}}^{D C M}(s)=\frac{1 / r_{1}}{\frac{r_{3}}{Z_{e q} r_{2}}+\frac{r_{3}}{Z_{e q} Z_{c z}}+\frac{r_{1}+r_{2}}{r_{1} r_{2}}+\frac{1}{Z_{c z}}+\frac{r_{3}}{Z_{e q}}\left(g_{1}-g_{2}-\frac{1}{r_{3}}+\frac{1}{r_{1}}\right)} \tag{2.132}
\end{equation*}
$$

where $Z_{c z}$ and $Z_{e q}$ are as defined in (2.128).

CHAPTER 3

SIMULATION RESULTS OF Z-SOURCE DC/DC CONVERTER

3.1 Introduction

In this chapter, the simulation results of the Z -source $\mathrm{dc} / \mathrm{dc}$ converter are examined. The first goal of the simulations is to verify the waveforms of the converter displayed in Figure 2-6, Figure 2-7, Figure 2-13 and Figure 2-14 related to CCM and DCM-2 operations. The second goal of the simulations is to verify the validity of the mathematical analysis conducted in Chapter 2. The input-output voltage relationships found in Chapter 2 are verified via the simulation results. Besides these goals the validity of the input voltage-to-output voltage and duty factor-to-output voltage transfer functions in estimating the low frequency response of the converter determined in Chapter 2 are confirmed by the simulation results conducted for both CCM and DCM-2 operations of the converter. The circuit level simulations are carried out by SIMPLORER but verification of the validity of the transfer functions are made by using SIMULINK.

3.2 Determination of the Sizes of the Energy Storage Components

Before introducing the simulation results, the sizes of the energy storage components in the converter must be determined. The operating condition of the
converter depends crucially on the proper selection of the sizes of the inductors and capacitors in the converter. The operational specifications for the converter are;

Nominal input voltage, $\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V}$
Output voltage, $\mathrm{V}_{\mathrm{O}}=60 \mathrm{~V}$
Maximum output power, $\mathrm{P}_{\mathrm{O}}=180 \mathrm{~W}$.
Assuming that the load is resistive purely, the load resistance, R at full load is;

$$
R=\frac{V_{o}^{2}}{P_{o}}=\frac{60^{2}}{180}=20 \Omega .
$$

One of the most important parameters of the converter design is to determine the switching frequency of the converter. The switching frequency of the converter directly affects the magnitude and size of the energy storage components in a converter. It is known that higher switching frequency results in smaller size of the energy storage components. This reduces the dimensions of the converter and decreases the cost. On the other hand, high switching frequency causes higher switching loss on the switch. In Z-source full bridge dc/dc converter, there are four switches, and this sets an upper limit on the switching frequency. A high switching frequency makes the converter less efficient. Considering these issues the switching frequency of Z-source dc/dc converter is selected to be 100 kHz .

Next step in the design phase is determination of the sizes of the energy storage components in the converter. In the selection of the sizes of the energy storage components the nominal operating duty factor plays an important role. Using the input-output voltage relationship (2.18) the duty factor of the converter under nominal operating conditions can be determined as;

$$
\begin{equation*}
D=\frac{V_{O}-V_{S}}{2 V_{O}-V_{S}} . \tag{3.1}
\end{equation*}
$$

Considering the nominal input voltage and the desired output voltage the nominal duty factor is found to be $\mathrm{D}=0.33$. This duty factor will be used in the selection of the sizes of inductors and capacitors in the converter later.

Beginning with selection of the sizes of the Z-source network inductors and output filter inductor, it is important to determine the average current flowing through them. Under full load operating condition, the maximum average current flows through the inductors, but that level of the average current must not cause the cores used for the inductors to saturate. The average current flowing through the Zsource inductors can be found using the fact that input power, $\mathrm{P}_{\text {in }}$ is equal to the output power, P_{o} for a lossless converter. Since the current carried by the Z -source capacitors are zero in steady state, in Z-source topology the average current drawn from the supply flows through the inductors, so that one can write the inductor current $I_{L_{Z}}$ as;

$$
\begin{equation*}
I_{L_{Z}}=\frac{P_{O}}{V_{S}} \tag{3.2}
\end{equation*}
$$

Considering the full-load condition, the maximum value of the average current, $I_{L_{z}}$ through L_{z} is 6 A .

Another important issue for the inductor design is determination of the magnitude of the ripple current through the inductor. The magnitude of the ripple current of the inductors determines the operating mode of the converter. It is desired to operate the converter both in CCM and DCM-2 operation within the scope of this work. Hence the ripple current magnitude is selected to be 40% of the average current, $\bar{I}_{L_{Z}}$ carried by the Z-source network inductor, L_{z}. Recalling the expression for the Z -source inductor voltage, $v_{L_{Z}}$ equality valid during mode- 1 in CCM operation we have;

$$
\begin{equation*}
v_{L_{z}}(t)=L_{Z} \frac{\Delta i_{L_{Z}}}{D T_{S}}=V_{C_{Z}}=V_{O} \tag{3.3}
\end{equation*}
$$

and from which

$$
L_{Z}=\frac{V_{O} D T_{S}}{\Delta i_{L_{Z}}}
$$

Under nominal operating conditions the input voltage, V_{s}, of the converter is 30 V . The desired output voltage, V_{o}, is 60 V . The duty factor is therefore 0.33 for this operating condition. The switching frequency of the converter is selected as 100 kHz , with $T_{S}=1 / 100000=10^{-5} \mathrm{~S}$. The ripple current magnitude of the Z-source network inductor is determined as $\Delta i_{L_{Z}}=40 \% I_{L_{Z}}=2.4 \mathrm{~A}$ in order to make sure that the converter is able to operate both in CCM and DCM-2 operation. Thus, all the parameters needed to determine the size of the Z -source inductor taking place in (3.3) are known to give $L_{Z}=83.3 \mu \mathrm{H}$.

The same procedure is followed to determine the size of the output filter inductor. The average current flowing through the output filter inductor is actually the load current. Hence the maximum average current, $I_{L_{O}}$ of the output filter inductor can be found as;

$$
\begin{equation*}
I_{L_{O}}=\frac{P_{O}}{V_{O}}=3 A \tag{3.4}
\end{equation*}
$$

The main objective of this work is to examine the CCM and DCM-2 operations of the converter. In Chapter 2, it has been shown that the output filter inductor current falls to zero in DCM-2 operation. This means that the ripple current magnitude of the output filter inductor must be greater than 100% of the average inductor current; 133% of the average current of the output filter inductor has been adopted here. Remembering that the output filter inductor voltage, $v_{L_{O}}$ during mode1 in CCM operation one obtains;

$$
\begin{equation*}
v_{L_{O}}(t)=L_{O} \frac{\Delta i_{L_{O}}}{D T_{S}}=V_{C_{Z}}=V_{O} . \tag{3.5}
\end{equation*}
$$

and from which

$$
L_{O}=\frac{V_{O} D T_{S}}{\Delta i_{L_{O}}}
$$

The output voltage, nominal operating duty factor and switching frequency of the converter are already known, thus determining the ripple current magnitude of the output filter inductor as 133% of the average current with $\Delta i_{L_{o}}=133,3 \%$ of $I_{L_{o}}=4 \mathrm{~A}$. The output filter inductor is then $\mathrm{L}_{\mathrm{O}}=50 \mu \mathrm{H}$ by (3.5).

The other energy storage elements in the converter are the Z-source network and output capacitors. The output voltage ripple is required to be less than 5% of the output voltage. Moreover the maximum overshoot voltage during the load changes is desired to be less than 10% of the output voltage. The output filter capacitor satisfying the requirements is 1 mF . There is no condition imposed on the voltage ripple magnitude of Z-source network capacitor, but for the control performance issues it is seemed to be more suitable to select it as $20 \mu \mathrm{~F}$. Moreover, by this way the Z-source network capacitor can be constructed with ceramic capacitors which have excellent dynamic frequency response and the lowest ESR in capacitor family. As a result the power loss in Z-source capacitors will be very low which will improve the efficiency of the converter

Finally, sizes of all the energy storage elements in the converter and the switching frequency of the converter are determined. The parameters of the converter used in the simulation are tabulated in Table 3-1.

Table 3-1 Parameters of the simulated converter for CCM operation

Parameter	$\underline{\text { Value }}$
Input voltage, V_{S}	30 V
Output voltage, V_{O}	60 V
Z-source network inductor, L_{Z}	$83.3 \mu \mathrm{H}$
Z-source network capacitor, C_{Z}	$20 \mu \mathrm{~F}$
Output filter inductor, L_{O}	$50 \mu \mathrm{H}$
Output filter capacitor, C_{O}	1 mF
Switching frequency, f_{S}	100 kHz
Nominal input current, $I_{\text {in }}$	6 A
Nominal output current, $I_{\text {out }}$	3 A

3.3 Simulation Results in CCM Operation

3.3.1 Verification of Circuit Components Waveforms

In order to verify the waveforms of the components of the converter in CCM operation, the simplified circuit shown in Figure 3-1 is run in SIMPLORER simulation software.

Figure 3-1 Simplified circuit diagram of Z-source dc/dc converter for CCM simulation

The CCM operation using the parameters given in Table 3-1 requires that the duty factor applied to the circuit should be 0.33 according to (3.1). Hence, throughout the simulation the duty factor applied to the circuit model is kept constant at 0.33 .The mathematical analysis of the converter in CCM operation reveals by (2.16) and (2.18) that the Z-source network capacitor's average voltage, $V_{C_{z}}$ is equal to the output voltage, V_{o}. The simulation results of the converter in CCM operation verifies that $V_{C_{z}}=V_{o}=60 \mathrm{~V}$ as can be seen in Figure 3-2.

Figure 3-2 Z-source network capacitor and output voltage in CCM

Figure 3-3 shows the currents belonging to the input diode D_{i}, Z-source network inductor $L_{Z_{1}}$ and the output filter inductor L_{o}. The PWM variation is also shown in this figure. The first noticeable issue on the simulation results illustrated in Figure 3-3 is that neither $L_{Z_{1}}$ current nor L_{o} current falls to zero as a necessary condition for CCM operation of the converter. In the mathematical analysis part, it has been pointed out that whenever the PWM is in "HIGH" status the input diode D_{i} is reverse biased so that the current through it becomes zero. This is really the case as indicated by the simulation results given in Figure 3-3. Moreover the input diode current, $i_{D_{i}}$ does not fall to zero during its conduction time interval t_{2}, thus fulfilling the second necessary condition for CCM operation.

Figure 3-3 Input diode, Z-source network inductor and output filter inductor current waveforms in CCM

The peak to peak magnitude of the ripple on the Z-source inductor current $i_{L_{z}}$ is selected to be 2.4 A in the previous section 3.2. The maximum value of $i_{L_{z}}$ is found to be 7.24 A and the minimum value of it is 4.86 A . The ripple on $i_{L_{z}}$ is found as 2.38 A in the simulation. The slight difference is most probably due to the computational error made by the simulation software. The same analysis can be conducted for the output filter inductor current, $i_{L_{o}}$ as well. The maximum value of $i_{L_{o}}$ is 4.98 A and the minimum value of it is 0.98 A . The ripple on $i_{L_{o}}$ is found to be 4 A which is exactly 133.33% of the average current, $I_{L_{o}}$.

Lastly the current waveforms belonging to the Z-source network capacitor $i_{C_{z}}$ and output filter capacitor $i_{C_{o}}$ are provided in Figure 3-4. In the mathematical analysis of the converter it has been shown that Z-source capacitors transfer energy to Z-source inductors whenever PWM applied to the circuit is "HIGH". In the simulations we see that the Z -source capacitor current is negative in sense and increases in the negative direction during time interval t_{1} of the CCM operation. Thus, the net charge on the capacitors decreases when PWM is "HIGH". Hence simulations validate that the Z-source capacitors supplies energy to the Z-source inductors during time interval t_{1}. Considering the output filter capacitor, it can be
concluded that the ripple on the output filter inductor current is taken by the output filter capacitor so that a smooth and ripple-free output current, I_{o} is provided to the load.

Figure 3-4 Z-source network capacitor and output filter capacitor current variation in CCM

3.3.2 Verification of Transfer Functions

In this section the transfer functions obtained in 2.3.2 for CCM operation of the converter are verified via the simulations. In order to verify the transfer functions obtained, the step responses of the circuit model simulated in SIMPLORER, and the step response of the transfer function obtained by MATLAB are compared with each other.

Firstly the duty factor to output voltage transfer function will be examined by simulation results. For this purpose the circuit configuration shown in Figure 3-5 is simulated in SIMPLORER. In this configuration a constant duty factor D , is applied to the circuit. This is shown as capital ' D ' in Figure 3-5. Under this condition the simulation is run for 200 ms so that the waveforms reach their steady state values for CCM operation. Next a small step disturbance, $\mathrm{d}=0.01$ is applied onto the constant
duty factor, $\mathrm{D}=0.33$. The input voltage magnitude, capacitor and inductor sizes are set as given in Table 3-1. The output load is set as 20Ω so that the output current is 3 A.

Figure 3-5 Circuit configurations simulated in order to verify $G_{v_{o} / d}^{C C M}(s)$

For dynamic response of the output voltage, V_{o} waveform the rise time, the peak voltage and the damped oscillation frequency of the waveform result as in Figure 3-6.

Figure 3-6 Dynamic response of the circuit model simulated in SIMPLORER to verify duty factor to output voltage transfer function in CCM

A close inspection of the waveform given in Figure 3-6 reveals that the rise time of the waveform is 1.5 ms . The peak of the overshoot in the output voltage, V_{o}
for the applied step disturbance is 65.95 V . It is clearly seen in the figure that the output voltage follows a damped oscillation while settling at its steady state value. The frequency of this damped oscillation is found to be 172.4 Hz . The output voltage settles to 63.1 V at steady state after a 0.01 step change of d applied to the operating duty factor, $\mathrm{D}=0.33$.

The next step after obtaining the step response of the circuit is to determine the duty factor to output voltage transfer function for CCM operation. The transfer function for CCM operation was derived in 2.3.2 and $G_{v_{o} / d}^{C C M}(s)$ is obtained as in (2.42). The coefficients of $G_{v_{o} / d}^{C C M}(s)$ transfer function are also found in terms of the circuit parameters $V_{S}, L_{Z}, L_{O}, C_{Z}, C_{O}, D$ and R. Inserting the selected parameters given in Table 3-1 into (2.42), the duty factor to output voltage transfer function in CCM operation is determined as in (3.6).
$G_{v_{o} / d}^{C C M}(s)=$
$\frac{-1.5 \cdot 10^{-7} s^{2}-0.001 s+30}{8.33 \cdot 10^{-17} s^{4}+4.167 \cdot 10^{-15} s^{3}+8.13 \cdot 10^{-8} s^{2}+3.981 \cdot 10^{-6} s+0.1111}$
Before simulating and examining the step response of the obtained transfer function in SIMULINK, there is one key point to be taken into consideration. The transfer functions represent the small signal ac model of the converters. They do not carry information about the dc operating point of the converter. They estimate how the circuit will behave against a small perturbation applied to the control input of the system. Control inputs of the system are duty factor or input voltage magnitude. The dc operating points are somehow filtered while obtaining the transfer functions. Moreover since the state space averaging technique, SSA is based on taking the averages of the states of the converter over a switching period, the switching ripples appearing on the component waveforms obtained by the circuit model simulation run in SIMPLORER are not expected to be observed in the simulation result of the transfer function by SIMULINK. In order to make the comparison of the waveforms
much easier, it is wise to add 60 V DC offset voltage for the simulation of the $G_{v_{o} / d}^{C C M}(s)$ in SIMULINK as illustrated in Figure 3-7.

Figure 3-7 Duty factor to output voltage transfer function in CCM simulated in SIMULINK

Simulation result of $G_{v_{o} / d}^{C C M}(s)$ transfer function in SIMULINK is displayed in Figure 3-8.

Figure 3-8 Dynamic response of $G_{v_{o} / d}^{C C M}(s)$, duty factor to output voltage transfer function in CCM obtained by SIMULINK

The simulation has been conducted with a step disturbance applied at the instant $\mathrm{t}=200 \mathrm{~ms}$. The rise time for the step response obtained from transfer function simulated in SIMULINK is 1.5 ms as obtained in simulation by SIMPLORER. The peak overshoot voltage is 65.55 V . The step response has again damped oscillations whose frequency is 175 Hz similar to the result obtained in simulation by

SIMPLORER. The steady state output voltage is obtained as 62.9 V for a step disturbance of 0.01 in duty factor. Moreover the switching ripple resulted in circuit model simulation is not observed in the simulation results of the transfer function as expected.

Comparing the results obtained from the circuit model simulation in SIMPLORER and transfer function simulation in SIMULINK reveals that the results are very close to each other. The slight differences between the two simulation results are acceptable and the transfer function obtained makes a good approximation for the step response of the converter against a disturbance applied to the duty factor of the circuit.

Finally the input voltage to output voltage transfer function $G_{v_{o} / v_{s}}^{C C M}(s)$ will be examined via the simulation results. The circuit model simulated in SIMPLORER is given in Figure 3-9. The duty factor, D applied to the circuit is kept constant at 0.33 throughout the simulation. The input voltage, V_{s} is kept constant at 30 V for 200 ms so that states of the system can reach steady state. At the instant $\mathrm{t}=200 \mathrm{~ms}$ a step disturbance, \tilde{v}_{s} of 1 V is applied to the input voltage. The circuit parameters are again set to the values stated in Table 3-1.

Figure 3-9 Circuit model simulated in SIMPLORER in order to verify input voltage to output voltage transfer function, $G_{v_{o} / v_{s}}^{C C M}(s)$

The dynamic response of $G_{v_{o} / v_{s}}^{C C M}(s)$ yields the information for the rise time, peak voltage and damped oscillation frequency of the waveform as shown in Figure 3-10.

Figure 3-10 Dynamic response of the circuit model for input voltage to output voltage transfer function, $G_{v_{o} / v_{s}}^{C C M}(s)$ by SIMPLORER

A close inspection of the dynamic response for $G_{v_{o} / v_{s}}^{C C M}(s)$ in Figure 3-10 reveals that the rise time is 1.4 ms which is very close to that obtained for duty factor to output voltage transfer function, $G_{v_{o} / d}^{C C M}(s)$. The peak overshoot in the output voltage is 63.95 V . The output voltage waveform again displays a damped oscillation at 172.4 Hz . It is exactly at the same frequency of the oscillation obtained in the simulation of duty factor to output voltage transfer function, $G_{v_{o} / d}^{C C M}(s)$. This is expected since the denominators of the transfer functions are exactly the same for the duty factor to output voltage and input voltage to output voltage transfer functions. It is well known that the denominator of a transfer function is called characteristic equation of the system and specifies the step response characteristics of a system. The steady state voltage settles at 62.07 V .

The same procedure followed in verification of $G_{v_{o} / d}^{C C M}(s)$ is applied in order to validate $G_{v_{o} / v_{s}}^{C C M}(s)$ obtained in (2.43). After inserting the selected parameters given in Table 3-1 into (2.43), $G_{v_{o} / v_{s}}^{C C M}(s)$ is obtained as;
$G_{v_{o} / v_{s}}^{C C M}(s)=$

$$
\frac{-1.111 \times 10^{-9} s^{2}+0.2222}{8.33 \times 10^{-17} s^{4}+4.167 \times 10^{-15} s^{3}+8.13 \times 10^{-8} s^{2}+3.981 \times 10^{-6} s+0.1111}
$$

The simulation diagram constructed in SIMULINK is given in Figure 3-11, and the result of the simulation is given in Figure 3-12.

Figure 3-11 Input voltage to output voltage transfer function in CCM, $G_{v_{o} / v_{s}}^{C C M}(s)$ simulated in SIMULINK

Figure 3-12 Dynamic response of input voltage to output voltage transfer function in $\mathrm{CCM}, G_{v_{o} / v_{s}}^{C C M}(s)$ simulated in SIMULINK

In the simulation of $G_{v_{o} / v_{s}}^{C C M}(s)$ the step disturbance of $\tilde{v}_{s}=1 \mathrm{~V}$ is applied at the instant $\mathrm{t}=200 \mathrm{~ms}$. The rise time is 1.4 ms and the peak overshoot voltage is 63.89 V . Damped oscillation frequency is 175 Hz . Comparison of the results obtained by
circuit model simulation and transfer function simulation again reveals that the transfer function obtained by mathematical analysis approximates the step response well.

3.4 Simulation Results in DCM-2 Operation

3.4.1 Verification of Circuit Components Waveforms

In order to verify the waveforms of the components of the converter in DCM2 operation, the circuit illustrated in Figure 3-1 is simulated in SIMPLORER with different operating condition. In order to force the converter to operate in DCM-2 mode, the input voltage is decreased to 20 V and the load is decreased to 1.5 A , in other words $\mathrm{R}_{\text {LOAD }}=40 \Omega$. The parameters of the converters used in simulations for DCM-2 mode are provided in Table 3-2.

Table 3-2 Parameters of the simulated converter for DCM-2 operation

Parameter	Value
Input voltage, V_{S}	20 V
Output voltage, V_{O}	60 V
Z-source network inductor, L_{Z}	$83.3 \mu \mathrm{H}$
Z-source network capacitor, C_{Z}	$20 \mu \mathrm{~F}$
Output filter inductor, L_{O}	$50 \mu \mathrm{H}$
Output filter capacitor, C_{O}	1 mF
Switching frequency, f_{S}	100 kHz
Nominal input current, $I_{\text {in }}$	4.5 A
Nominal output current, $I_{\text {out }}$	1.5 A

In DCM-2 mode of operation the input-output voltage relationship is found as given in (2.77). In this equation the parameter d_{1} depends on the switching
frequency, duty factor, L_{o} and the load as stated in (2.79). Using these two equalities it is possible to conclude that the duty factor applied to the circuit must be 0.38 in order to obtain 60 V output voltage. The critical load for the applied duty factor is found to be 26Ω by (2.83). Since $R_{\text {LOAD }}>R_{\text {crt }}$ condition is satisfied with preset load, the converter will operate in DCM-2 mode. In this case d_{1} is found to be 0.28 .

In DCM-2 mode of operation the average Z-source capacitor voltage, $V_{C_{z}}$ is not equal to the output voltage according to the results obtained in (2.63) and (2.77). With the given operating conditions, although the output voltage is 60 V , the Zsource capacitor voltage is found to be 55.4 V regarding (2.63). This is also verified by the simulation results of the converter in DCM-2 mode shown in Figure 3-13.

time, ms
Figure 3-13 Z-source network capacitor voltage and the output voltage in DCM-2 mode of operation

Figure 3-14 shows currents belonging to the input diode D_{i}, Z-source network inductor $L_{Z_{1}}$ and the output filter inductor L_{O} and PWM variations in DCM-2 mode of operation. As seen from Figure 3-14 the Z-source network inductor current never falls to zero during the operation. On the other hand, the output filter inductor current falls to zero in DCM-2 operation as seen from the simulation result. Whenever the PWM is "HIGH", the input diode is reverse biased again and does not let the current flow through it. However when PWM is "LOW" the input diode conducts. The input
diode current never falls to zero during the time interval t_{3}. When PWM is HIGH, the Z-source capacitors transfer energy to the Z-source inductors as mentioned before. This is also understood from the simulation results since $L_{Z_{1}}$ current increases during $t_{1}+t_{2}$ period, in other words energy is stored in these inductors. During t_{1} period the load is supplied by the output filter inductor and capacitor. However L_{O} current falls to zero and stops to transfer energy at the start of t_{2} period. Hence during $\mathrm{t}_{2} C_{O}$ transfers the required energy to the load alone since the rectification diode does not conduct. This is the fundamental requirement of DCM-2 operation. When PWM switches into the LOW state, D_{r} again starts to conduct and as a result L_{O} current starts to increase. During this t_{3} period, the Z-source inductors transfer the energy stored on them to the load side via the rectification diode. This is the reason why L_{Z} current falls during t_{3} period. Finally during t_{3}, the current drawn from the source energizes the Z-source capacitors.

Figure 3-14 Current waveforms belonging to input diode, Z-source network inductor and output filter inductor in DCM-2 operation

Finally the Z-source network capacitor and output filter capacitor current waveforms are provided in Figure 3-15. As mentioned before when PWM is HIGH C_{Z} transfers energy which is understood from the negative capacitor current during this period. In addition to that C_{O} current decreases during t_{1} which shows that it
transfer energy to the load. The noticeable issue on C_{O} current is that its value is constant during t_{2} which proves that the load is fed only by C_{0}. Since the output voltage is 60 V and load is 40Ω, the output filter capacitor current is constant at -1.5 A during t_{2}. The positive current of C_{Z} indicates that it accumulates charge on it during t_{3} period. A careful investigation of Figure 3-14 and Figure 3-15 reveals that during t_{3} period, the ripple current of L_{O} is absorbed by C_{O}.

time, ms
Figure 3-15 Current waveforms belonging to Z-source network capacitor and output filter capacitor in DCM-2 operation

3.4.2 Verification of Transfer Functions

In this section the transfer functions obtained in 2.3.4 for DCM-2 operation of the converter are verified via the simulations. The procedure to be followed for DCM-2 operation will be the same with that applied for CCM operation. The step response of the circuit model operated in DCM-2 is obtained by simulation in SIMPLORER and the step responses of the derived transfer functions are obtained by MATLAB.

The circuit model illustrated in Figure 3-5 is again simulated in SIMPLORER in order to verify the duty factor to output voltage transfer function with the given parameters in Table 3-2. Constant duty factor D is set as 0.38 . The simulation is
again run for 200 ms so that the waveforms reach their steady state values for DCM2 mode of operation. The step disturbance of $\mathrm{d}=0.01$ is applied to the duty factor, D at $\mathrm{t}=200 \mathrm{~ms}$. The simulation result of the circuit model is as displayed in Figure 3-16.

Figure 3-16 Dynamic response of the circuit model simulated in SIMPLORER to verify duty factor to output voltage transfer function in DCM-2 of operation

When examined of the waveform illustrated in Figure 3-16 reveals that the converter behaves as an overdamped system in DCM-2 of operation. It does not exhibit damped oscillations or overshoot while reaching steady state. The settling time is longer for overdamped systems relative to underdamped or critically damped systems. The settling time is 43.2 ms and the output voltage settles at 65.58 V at steady state against $\mathrm{d}=0.01$ step change on the operating duty factor, D .

It is now necessary to obtain the step response of the derived duty factor to output voltage transfer function for DCM-2 operation. The mathematical calculation is conducted in 2.3.4 and $G_{v_{o} / d}^{D C M}(s)$ is obtained as given in (2.127). The coefficients of $G_{v_{o} / d}^{D C M}(s)$ transfer function are needed to be determined according to the parameters given in Table 3-2. Doing the necessary calculations the duty factor to output voltage transfer function in DCM-2 operation is found as follows:

$$
\begin{equation*}
G_{v_{o} / d}^{D C M}(s)=\frac{0.001894 s+189.3}{1.749 \times 10^{-7} s^{2}+0.003104 s+0.323} \tag{3.8}
\end{equation*}
$$

It is previously mentioned in CCM transfer function analysis part that, the step response of a transfer function helps us to estimate only the small signal ac characteristics of a system. Hence it is again a good approach to add the dc output voltage as an offset in simulation in SIMULINK so that the comparison of the waveforms will be much understandable. The simulation diagram constructed in SIMULINK is given in Figure 3-17.

Figure 3-17 Duty factor to output voltage transfer function in DCM-2 of operation simulated in SIMULINK

Simulation result of $G_{v_{o} / d}^{D C M}(s)$ transfer function in SIMULINK is displayed in Figure 3-18.

Figure 3-18 Dynamic response of $G_{v_{o} / d}^{D C M}(s)$, duty factor to output voltage transfer function in DCM-2 mode of operation obtained by SIMULINK

The step disturbance is again applied at 200 ms . The step response of the transfer function does not exhibit damped oscillations. It takes 42.5 ms to reach the steady state in simulation. The steady state voltage is obtained as 65.81 V in SIMULINK for a step disturbance of $\mathrm{d}=0.01$ on the duty factor, D . Comparison of the results obtained by the circuit model and transfer function simulation reveals that the steady state voltages and time to reach the steady state are very close in both simulations. Hence the derived transfer function is a good approximation for the converter operating in DCM-2 mode of operation.

Next, the input voltage to output voltage transfer function is needed to be validated via the simulation results. The circuit model illustrated in Figure 3-9 is again simulated in SIMPLORER with the parameter set as given in Table 3-2. The duty factor, D applied to the circuit is kept constant at 0.38 in order to obtain 60 V output voltage, V_{o} throughout the simulation. The input voltage, V_{s} is kept constant at 20 V for 200 ms . so that the waveforms reach the steady state. A step disturbance, \tilde{v}_{s} of 1 V is applied to the input voltage at $\mathrm{t}=200 \mathrm{~ms}$. The simulation result of the circuit model is shown in Figure 3-19.

Figure 3-19 Dynamic response of the circuit model simulated by SIMPLORER to verify input voltage to output voltage transfer function in DCM-2 mode of operation

The converter operating in DCM-2 mode again exhibits an overdamped step response for an input voltage step disturbance, \tilde{v}_{s}. The settling time is 43.3 ms against 1 V step disturbance application and the output voltage settles at 63.08 V at steady state.

Lastly, the step response of the derived input voltage to output voltage transfer function in (2.132) should be verified via simulation in SIMULINK. The coefficients of $G_{v_{o} / v_{s}}^{D C M}(s)$ transfer function in DCM-2 operation are calculated using the parameters given in Table 3-2. $G_{v_{o} / v_{s}}^{D C M}(s)$ is found as follows:

$$
\begin{equation*}
G_{v_{o} / v_{s}}^{D C M}(s)=\frac{0.4337}{1.749 \times 10^{-7} s^{2}+0.002064 s+0.135} . \tag{3.9}
\end{equation*}
$$

The simulation diagram constructed in SIMULINK is given in Figure 3-20, and the result of the simulation is given in Figure 3-21.

Figure 3-20 Input voltage to output voltage transfer function in DCM-2 mode of operation simulated in SIMULINK

Figure 3-21 Dynamic response of $G_{v_{o} / v_{s}}^{D C M}(s)$, input voltage to output voltage transfer function in DCM-2 mode of operation obtained by SIMULINK

In simulation of $G_{v_{o} / v_{s}}^{D C M}(s)$ obtained for DCM-2 mode of operation in SIMULINK, the step disturbance of 1 V is applied at $\mathrm{t}=200 \mathrm{~ms}$. The time to reach steady state takes 46.7 ms . The output voltage settles at 63.21 V at steady state in the simulation of the transfer function. Comparing the results of the circuit model and transfer function shows that there are slight differences between them. These differences are acceptable because of the assumptions made in the derivation of the small signal ac model of the converter in DCM-2 mode and the transfer function $G_{v_{o} / v_{s}}^{D C M}(s)$ still approximates the dynamic response of the converter in DCM-2 mode of operation.

CHAPTER 4

CONTROLLER DESIGN OF Z-SOURCE DC/DC CONVERTER

4.1 Introduction

In this chapter the controller design of the implemented circuit will be given. In the design process of the controller we will make use of the transfer functions obtained and verified previously.

The implemented converter circuit is supposed to operate properly within an input voltage range of $18-32 \mathrm{~V}$. The load regulation is desired to be less than 5% within a load range of zero to 3 A . The controller performance is the most crucial part of the system in order to achieve the mentioned goals about the regulation of the converter.

The controller can be implemented in analog or digital form. For the analog control form there are three well known compensator topologies: Type I, type II and type III compensators. The compensators are implemented using capacitors, resistors and error amplifiers. All three compensator structures are different from each other in terms of the circuit layouts. Hence, it is constructed by bringing the necessary infrastructures on the circuit board together in case a different compensator type is to be utilized for the controller design. In addition, the poles and zeros of the analog compensators are set by suitably selected capacitors and resistors. The pole and zero
locations of the controller determined in the simulation may slightly differ than the ones applied to the circuit. This is expected since the transfer functions are obtained assuming that the components of the converter are ideal. In this case it is necessary to change the size of the capacitors and resistors which make the realization of the controller more difficult. However digital controller parameters being set in software, it is easy to change the controller parameters for trimming in software which provides advantage. The main disadvantage of the digital control is the time delay caused by the digital controller due to the computations done during the implementation. If it takes too much to generate the necessary PWM signal the controller will not be able to close the control loop. The system will respond too late to the changes observed at the output voltage. This might cause indefinite oscillations at the output voltage and result in an unstable system. In order to overcome this disadvantage the digital controller must be able to complete the necessary computations less than a PWM period. By this way the delay caused by the computations will not affect the controller performance. Microchip has special digital controllers designed for SMPS applications. The computation time for the required PWM can be lowered below 10us with an efficient code embedded into dsPIC series products. Among this family dcPIC30F2020 is selected in the application since it has the necessary analog-to-digital conversion channels, PWM output channel and general purpose input/output channels.

There are two options for the controller design in literature: voltage mode control or current mode control. Either can be applied in order to implement the controller. In voltage mode control there is only one control loop. The output voltage feedback is taken and compared with the predetermined reference in voltage mode control technique. It is simpler than the current mode control. However the dynamic performance of the controller obtained in voltage mode control is poorer relative to the one obtained with current mode control. In current mode control there is an additional inner loop for the current compensation which makes the system faster. In current mode control the Z -source network inductor current and the output voltage
are controlled in cascaded manner. The outer control loop is required for the output voltage regulation. The output of the outer controller loop becomes the reference for the inner loop which is required for current regulation of the Z-source network inductor. For the controller designs of the outer and inner loops, one can adopt using a PI control scheme. The proportional term makes the system faster. The settling and rise times of a system can be lowered with a well selected proportional term. The integral term is required in order to achieve zero steady-state error. Hence with PI control scheme it is possible to obtain a satisfactory dynamic performance in terms of settling time and steady-state error.

So far the general controller structure is discussed. In the rest of this chapter the control block diagram of the converter will be developed. The voltage-loop and current-loop controllers will be designed utilizing the PI control scheme. The simulation results of the converter with the designed controller implemented will be given. Finally the domain conversion calculation is given at the end of this chapter. Domain conversion is necessary in order to map the controller parameters obtained in s-domain into z -domain. By this way the parameters can be directly inserted to the code which will be embedded into dsPIC30F2020.

4.2 Controller Design

In this part the controller design of the converter will be explained in detail. In designing the controller the transfer functions describing the dynamic models of the converter in CCM and DCM-2 modes of operations will be utilized. The performance of the controller will be examined via the simulation results.

In the controller design of the Z-source converter both the current- and voltage-loop will be controlled. Hence it is necessary to design two controllers for the converter. The control block diagram of the converter is shown in Figure 4-1. As seen from Figure 4-1 there is one inner loop; current-loop, and an outer loop; voltage- loop in the control block diagram. The main purpose of the controller for the converter is to produce the required duty factor for the proper operation. The
converter itself takes the duty factor applied as an input and produces the output voltage and the Z -source network inductor current as outputs.

Figure 4-1 Control block diagram of the converter

The followings used in the block diagram are defined as;
$\nu_{o}^{\text {ref }}$: Reference output voltage
$v_{o}^{e r r}$: Output voltage error
v_{o} : Output voltage feedback
$i_{L_{z}}^{r e f}: L_{Z}$ reference current
$i_{L_{z}}^{e r r}: L_{Z}$ current error
$i_{L_{z}}: L_{Z}$ current feedback
d : Applied duty factor
$G_{c n t r}^{v}$: Voltage loop controller
$G_{c n t r}^{i}$: Current loop controller
$G_{v_{o} / d}=\frac{\tilde{v} O(s)}{\tilde{d}(s)} \quad$ (Duty factor-to-output voltage transfer function)
$G_{i_{L_{Z}} / d}=\frac{\tilde{L}_{L_{Z}}(s)}{\tilde{d}(s)} \quad$ (Duty factor-to- L_{Z} current transfer function)
Referring to Figure 4-1 the difference between the reference voltage, $v_{o}^{r e f}$ and the output voltage feedback, v_{o} is called the voltage error, $v_{o}^{e r r}$. It is the input for the voltage-loop controller. The output of the voltage-loop controller is the reference input for the current control loop. The difference between the current feedback and
the reference current is applied to the current-loop controller. The output of the current controller is the duty factor which is the control parameter of the converter. The converter itself generates the output voltage and L_{Z} current value corresponding to the duty factor applied.

So far the general structure of the control block diagram is described. Two controllers must be designed for the closed-loop control implementation of the converter. It is wise to start with the control loop, which is the inner loop. After the current-loop controller is designed it is possible to express the inner loop as transfer function block so that the open-loop transfer function of the voltage-loop can be obtained.

4.2.1 Current loop controller design

The current-loop block diagram alone is as shown in Figure 4-2.

Figure 4-2 Current loop control block diagram

The closed-loop transfer function of such current-loop, $G_{C L}^{i}(s)$ is as;

$$
\begin{equation*}
G_{C L}^{i}(s)=\frac{i_{L_{z}}(s)}{i_{L_{Z}}^{r e f}(s)}=\frac{G_{i_{L_{z}} / d}(s) G_{C n t r}^{i}(s)}{1+G_{i_{L_{z}} / d}(s) G_{c n t r}^{i}(s)} . \tag{4.1}
\end{equation*}
$$

The denominator of the closed-loop transfer function of a system represents the dynamic characteristic of the system. It is called the characteristic equation of the system. In this case the characteristic equation, Δ for the current-loop is;

$$
\begin{equation*}
\Delta=1+G_{i_{L_{z}} / d}(s) G_{c n t r}^{i}(s) \tag{4.2}
\end{equation*}
$$

By definition the characteristic equation, Δ of a system is as follows;

Characteristic equation $=1+$ open loop transfer function.

Hence the open-loop transfer function of the above system, $G_{O L}^{i}(s)$ is as follows;

$$
\begin{equation*}
G_{O L}^{i}(s)=G_{i_{L_{Z}} / d}(s) G_{c n t r}^{i}(s) \tag{4.4}
\end{equation*}
$$

In order to design a controller for a system it is enough to know the open-loop transfer function of that system. In the current loop controller design the Z-source network inductor current, $i_{L_{z}}$ will be utilized. Hence it is necessary to use the duty factor to inductor current transfer function which is obtained in (2.44). The transfer function coefficients depend on the circuit parameters, $R, D, L_{z}, L_{o}, C_{z}, C_{o}, V_{s}$. Hence for different load and input voltage conditions different transfer functions result and they represent the dynamic model of the system at low frequencies. The low frequency behaviors of these different transfer functions obtained at different operating points are close to each other. In other words the pole and zero locations of the characteristic equations of these different transfer functions do not change considerably.

For the controller design at a certain operating point one uses the stationary parameters of the circuit, such as inductor and capacitor sizes, and the selected load and input voltages to obtain the transfer function. In general the controller is designed by considering the full load condition under nominal input voltage value. The full load current rating of this converter is 3 A and the nominal input voltage is 30 V as mentioned before. Hence the parameters given in Table 3-1 are used in to design the current loop controller. Using the parameters given in Table 3-1, $G_{i_{L_{z}} / d}(s)$ is obtained as;
$G_{i_{L_{Z}} / d}(s)=\frac{\tilde{l}_{L_{z}}(s)}{\tilde{d}(s)}=$

$$
\frac{6.75 e^{-11} s^{3}+1.534 e^{-7} s^{2}+0.04636 s+5.25}{8.33 e^{-17} s^{4}+4.167 e^{-15} s^{3}+8.13 e^{-8} s^{2}+3.9481 e^{-6} s+0.1111} .
$$

The pole-zero map of the transfer function in (4.5) is shown in Figure 4-3.

Figure 4-3 Pole-zero map of $G_{i_{L_{z}} / d}(s)$

In Figure 4-3 ' x ' shows the locations of poles, and ' o ' shows the locations of zeros of the transfer function. Note that none of the poles are on the right half complex plane in Figure 4-3 indicating that the system represented by the transfer function is stable. In addition none of the zeros are on the right half complex plane. Such kinds of systems are known as minimum phase systems which are relatively easier to stabilize.

Before beginning the controller design, the bode diagram of the transfer function must also be obtained so that the phase and gain margins of the system can be identified and the frequency locations where some poles or zeros must be added
can be determined. Bode diagram of the system is obtained with MATLAB and given in Figure 4-4.

Figure 4-4 Bode diagram of $G_{i_{L_{z}} / d}(s)$

In order to compensate the current control loop, a PI controller will be utilized. PI controller is the most common controller technique used in literature. In general it is known that the derivative term in a PID controller is sensitive to the noise involved with the measured data. Hence it is usually excluded in the controller design. The transfer function of a PI controller is as follows.

$$
\begin{equation*}
G_{c n t r}^{i}(s)=K_{p}^{i}+\frac{K_{i}^{i}}{s}=K_{p}^{i}\left(\frac{s+K_{i}^{i} / K_{p}^{i}}{s}\right) . \tag{4.6}
\end{equation*}
$$

K_{p}^{i} shows the proportional gain constant of the current controller in (4.6). This term is necessary to obtain a quick and satisfactory response. The rise time settling time and percentage magnitude of the overshoot, all depend on the proportional gain constant. K_{i}^{i} term in the equality above represents the integral gain constant of the current controller. K_{i}^{i} term is necessary in order to obtain a zero steady state error in the closed-loop operation. The transfer function of the current loop controller has a pole at zero frequency. K_{p}^{i} term determines the gain of the current loop controller. Moreover the controller has a zero whose location is
determined with the selected K_{p}^{i} and K_{i}^{i} terms. Hence the controller design of the current loop is actually setting the gain of the controller and determining the location of the zero of the controller.

The phase margin of the open-loop transfer function is 90° and the gain margin is positive. The open-loop transfer function itself is stable. However in literature it is highly recommended to obtain a phase margin of $45^{\circ}-60^{\circ}$ due to the stability concerns. A great phase margin makes the system slower and the system becomes overdamped. A smaller phase margin, however, makes the system much faster while making the system less resistant to the disturbances that the converter is exposed to. A phase margin of $45^{\circ}-60^{\circ}$ actually represents a system having critically damped response to a step input. Hence it is a reasonable choice to adjust the phase margin of the open-loop transfer function of the current loop controller to $45^{\circ}-60^{\circ}$. MATLAB has a toolbox called SISOTOOL which is used for controller design. In SISOTOOL it is possible to add poles and zeros to the controller transfer function and change the locations of the added poles and zeros. Moreover the gain of the controller can be set in an online manner. With a proportional gain constant of 0.0045 and integral gain constant of 10 , a reasonable phase and gain margin is obtained. With the selected proportional and integral gain constants the controller transfer function of the current loop is obtained as follows.

$$
\begin{equation*}
G_{c n t r}^{i}(s)=K_{p}^{i}+\frac{K_{i}^{i}}{s}=0.0035+\frac{10}{s} \tag{4.7}
\end{equation*}
$$

The bode plot for the open-loop transfer function, $G_{O L}^{i}(s)$ is shown in Figure 4-5 with the designed current loop controller.

Figure 4-5 Bode diagram of the compensated open-loop transfer function of current loop

With the designed controller the phase margin of the current loop is adjusted to be 53.5° which is in the range of the recommended values. There is no strict requirement on the gain margin except that it has a positive magnitude. As seen from Figure 4-5 the gain margin is always positive since the phase response does not fall to -180 within the frequency band of concern.

So far the necessary K_{p}^{i} and K_{i}^{i} terms of the current loop controller are determined and the bode diagram of the open-loop transfer function is examined. The current loop controller is obtained in s-domain and it should be transferred to the z domain using the bilinear transformation during the implementation process. The next step is to design a controller for the voltage control loop.

4.2.2 Voltage Loop Controller Design

In the previous part the current loop controller is designed. Hence it is possible to define the inner loop, which is current control loop with its closed-loop
transfer function. Referring to the Figure 4-1, the closed-loop transfer function of the current loop can be defined as the following:

$$
\begin{equation*}
G_{\text {CL_current_loop }}^{i}(s)=\frac{d(s)}{i_{L_{z}}^{\text {ref }}(s)}=\frac{G_{c n t r}^{i}(s)}{1+G_{i_{L_{z}} / d}(s) G_{c n t r}^{i}(s)} . \tag{4.8}
\end{equation*}
$$

In (4.8), $G_{\text {CL_current_loop }}^{i}(s)$ stands for the closed-loop transfer function of the current loop shown in Figure 4-1. The voltage loop control block diagram is illustrated in Figure 4-6.

Figure 4-6 Voltage loop control block diagram

The closed-loop transfer function of the voltage loop can be determined as follows:

$$
\begin{equation*}
G_{C L}^{v}(s)=\frac{v_{o}(s)}{v_{o}^{r e f}(s)}=\frac{G_{c n t r}^{v}(s) G_{C L _c u r r e n t _l o o p ~}^{i}(s) G_{v_{o} / d}(s)}{1+G_{c n t r}^{v}(s) G_{C L_{-} \text {current_loop }}^{i}(s) G_{v_{o} / d}(s)} . \tag{4.9}
\end{equation*}
$$

Using the definition of $G_{\text {CL_current_loop }}^{i}(s)$ given in (4.8), and rewriting (4.9) the characteristic equation of the voltage loop, Δ is obtained as follows:

$$
\begin{equation*}
\Delta=1+G_{i_{L_{z}} / d}(s) G_{c n t r}^{i}(s)+G_{c n t r}^{v}(s) G_{c n t r}^{i}(s) G_{v_{o} / d}(s) \tag{4.10}
\end{equation*}
$$

Hence the open-loop transfer function of the voltage loop, $G_{O L}^{v}(s)$ can be obtained as;

$$
\begin{equation*}
G_{O L}^{v}(s)=G_{i_{L_{z}} / d}(s) G_{c n t r}^{i}(s)+G_{c n t r}^{v}(s) G_{c n t r}^{i}(s) G_{v_{o} / d}(s) \tag{4.11}
\end{equation*}
$$

As seen from (4.11), the open-loop transfer function of the voltage loop is not the product of the other transfer functions in the loop. Hence the voltage loop controller cannot be designed with the traditional bode plot approach which was applied in the design process of the current loop controller. It is necessary to try different proportional and integral gains for the controller and check whether the required phase- and gain-margins are obtained or not. It is a time-consuming but easy design procedure with the utilization of MATLAB SISOTOOL toolbox. However obtaining the necessary phase- and gain-margins for the open-loop transfer function is not satisfactory for achieving the stability of the voltage control loop.

Z-source converter has two inductors and two capacitors due and a careful investigation of the duty factor-to-output voltage transfer function $G_{v_{o} / d}$ shows that it has a right half plane zero. This can be confirmed by examining the pole-zero map of $G_{v_{o} / d}(s)$ of the converter shown in Figure 4-7 obtained with MATLAB.

Figure 4-7 Pole-zero map of $G_{V_{o} / d}(s)$

The systems having at least one right half plane zero are called the nonminimum phase systems. These systems are more difficult to compensate relative to the minimum phase systems. Obtaining the recommended phase- and gain-margins
for the open-loop transfer function of non-minimum phase systems does not mean that the system is closed-loop stable. It is necessary to verify that the system does not have right half plane zero with the designed controller.

After several trials the proportional and integral gains of the voltage loop controller are selected as 0.5 and 1000, respectively. Hence the voltage loop controller can be defined as follows:

$$
\begin{equation*}
G_{c n t r}^{v}(s)=K_{p}^{v}+\frac{K_{i}^{v}}{s}=0.5+\frac{1000}{s} \tag{4.12}
\end{equation*}
$$

In order to verify the designed voltage loop controller the bode diagram of the open-loop transfer function of the voltage loop is obtained and shown in Figure 4-8.

Figure 4-8 Bode diagram of the compensated open-loop transfer function of voltage loop

With the designed controller the phase-margin of the voltage loop is adjusted to 53.4° which is in the range of the recommended phase-margin in literature. As seen from Figure 4-8 the gain margin is again always greater than zero since the phase never falls to -180° within the frequency band of concern.

Finally the minimum phase property of the open-loop transfer function of the voltage loop must be checked in order to state that the system will be closed-loop stable. The pole-zero map of $G_{O L}^{v}(s)$ with the designed controller is given in Figure 4-9

Figure 4-9 Pole-zero map of $G_{o L}^{v}(s)$

As seen from Figure 4-9 there is not any right half plane zero in the openloop transfer function of the voltage loop. In other words the designed controller shifts the right half plane zero to the left half plane. Hence the phase- and gainmargin results obtained with bode diagram approach are trustable. The system is closed-loop stable with the designed controller.

4.3 Simulation Results of the Closed-Loop System

In this part the designed controllers will be verified via the simulations run in SIMPLORER. The designed converter is supposed to operate with an input voltage of 18 V to 32 V range. The load is supposed to change from no-load to 3 A full-load. The components are selected so as to operate the converter both in CCM and DCM-2 mode of operation. Hence the designed controllers must be able to regulate the output voltage both in CCM and DCM-2 mode of operation.

For the verification of the designed controllers the full-bridge Z-source dc/dc converter is simulated in SIMPLORER. The controllers are inserted into the simulation model and converter is run in a closed-loop control manner. The closedloop simulation model of the converter is given in Figure 4-10.

Figure 4-10 Closed-loop simulation model of Z-source dc/dc converter

In Figure 4-10 the red signals represent the voltage and current feedbacks. The output voltage is set at 60 V ; hence $\mathrm{V}_{\text {REF }}$ is set at 60 V in simulation. As mentioned earlier the output of the voltage controller is the reference for the current loop. The output of the current-loop controller is duty-factor necessary for the proper operation of the converter. The duty-factor generated enters the gate drive signal generation block. This block is necessary to generate the gate drive signals required by $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$ and Q_{4}. When PWM is "HIGH", all the switches in full-bridge are conducting. Hence, the input terminal of the isolation transformer is shorted and shoot-through mode of operation is achieved. When PWM is low one of the switch pairs, either " $\mathrm{Q}_{1}, \mathrm{Q}_{4}$ " or " $\mathrm{Q}_{2}, \mathrm{Q}_{3}$ " are conducting. These conducting switching pairs follow each other during the operation. For example if " Q_{1}, Q_{4} " are conducting in the first period, " $\mathrm{Q}_{2}, \mathrm{Q}_{3}$ " will be conducting in the next period. In this way an ac square waveform is applied to the input of the transformer.

In order to determine the performance of the designed controllers step load and input voltage changes are applied to the converter in simulation. The input voltage is raised from 18 V to 32 V under full-load and 10% load conditions. In addition to that the load is changed from full-load to no-load and under an input voltage of 18 V and 32 V , respectively. In this manner the converter is operated both in CCM and DCM- 2 modes of operation. As a result the controller performance is verified both in CCM and DCM-2 modes of operation of the converter. The simulation results are summarized in Table 4-1.

Table 4-1 Simulation Results of the Converter against Step Disturbances

Input Voltage	Load	Figure
Fixed at 32 V	$3 \mathrm{~A}-\mathrm{to}-0.3 \mathrm{~A}-\mathrm{to}-3 \mathrm{~A}$	Figure 4-11
Fixed at 18 V	3 A-to-0.3 A-to-3 A	Figure 4-12
18V-to-32V-to-18V	Fixed at $3 \mathrm{~A}(100 \%$ load $)$	Figure 4-13
18V-to-32V-to-18V	Fixed at $0.3 \mathrm{~A}(10 \%$ load $)$	Figure 4-14

Figure 4-11 Output voltage during full-load-to-10\% load-to-full-load transition under 32 V input voltage

Figure 4-12 Output voltage during full-load-to-10\% load-to-full-load transition under 18 V input voltage

Figure 4-13 Output voltage during 18V-to-32V-to-18V input voltage transition under full-load

Figure 4-14 Output voltage during 18V-to-32V-to-18V input voltage transition under 10% load

In the simulation the step disturbances to the input voltage and load current are applied at 80 ms later than the simulation starts so that the output voltage reaches at its steady state 60 V before the application of step disturbances. In the first two simulations, the load current is suddenly decreased from 3 A full-load current to 0.3

A at $\mathrm{t}=80 \mathrm{~ms}$ while keeping the input voltage fixed. The peak overshoot voltage and settling time are shown in the figures displaying the simulation results. For the simulation results given in Figure 4-11 and Figure 4-12 50 A offset current is added to the load current so that the output voltage and load current variations can be observed simultaneously.

The simulation results verify that the designed controllers operate well in the operating range of the converter. The system is prevented being unstable due to the step disturbances applied to the input voltage and load current via the controllers. Moreover throughout the simulation the converter operates both in CCM and DCM-2 modes due to the load and input voltage disturbances applied. Hence the designed controllers function properly both in CCM and DCM-2 mode of operation of the converter.

CHAPTER 5

EXPERIMENTAL RESULTS OF Z-SOURCE DC/DC CONVERTER

5.1 Introduction

In this chapter the experimental results of the implemented prototype converter is presented. The circuit is operated in open-loop control and closed-loop control modes. The open-loop control mode results are taken in order to verify voltage and current waveforms obtained via simulations in Chapter 3 and make a comparison of the theoretical work and experimental measurements. In the closedloop control mode, the performance of the controller designed in Chapter 4 is examined. The dynamic responses of the converter under certain operating conditions are given in this part of the work. Finally the efficiency of the converter is calculated theoretically and it is compared with that experimentally measured. The circuit schematics of the implemented converter are given in Appendix B. The prototype converter has four layers. However, only the top and bottom views of the layout are given in Appendix C. The photos of the prototype converter with the description of the used components are given in Figure 5-1 and Figure 5-2.

Figure 5-1 Top view of the prototype converter

Figure 5-2 Bottom view of the prototype converter

5.2 The Experimental Results in Open-Loop Control

The prototype converter is operated in open-loop control mode so as to verify simulation results of the voltage and current waveforms given in Chapter 3. In Chapter 3, the simulations are made for both CCM and DCM-2 operation. In order to verify the simulation results the converter should be operated both in CCM and DCM-2 operations.

5.2.1 Open-Loop Control CCM Operation Experimental Results

The open-loop control CCM operation of the converter is implemented with the following parameters: The input voltage is given by HP6032A dc power supply and adjusted to 30 V . The duty factor and frequency of PWM signal applied to the converter are set as 0.338 and 100 kHz by the software embedded into the digital signal controller. A dc electronic load (HP 6050A) is used in order to sink current from output of the converter. The current delivered to the load is set as 3 A so that the implemented and the simulated converter have exactly the same operating conditions. By this way a reasonable comparison of the simulation and experimental results can be done.

The Z-source inductor current and voltage waveforms against the applied duty factor are given in Figure 5-3.

Figure 5-3 Voltage and current waveforms of L_{z} against applied PWM in CCM

The maximum and minimum values of $i_{L_{Z}}$ are 8.32 A and 5.68 A , respectively. However, they were found to be 7.24 A and 4.86 A in the simulation results. The difference between the experimental and the simulation results is due to the fact that the components in the implemented converter are not ideal. Non-ideal
components in the implemented converter causes more current to be drawn from the input supply due to the additional losses. It is mentioned earlier that, the average current drawn from the supply is equal to the average current flowing through L_{Z}. The average L_{Z} current increases as the current drawn from supply increases. Hence it is expected that, the maximum and minimum values of L_{Z} current in the implemented circuit to be slightly greater than the ones obtained by simulation. The ripple magnitude of the current waveform of the implemented circuit is 2.64 A and it is very close to the simulation results. The maximum and minimum values of L_{Z} inductor voltage are 61 V and -31 V respectively. It is expected to observe 60 V and 30 V on L_{Z} theoretically. Hence the experimental results are very close to the theoretical results. The voltage waveform has spikes coinciding with the current direction change instants. The stray inductance in the converter might cause a voltage spike to be observed, since $d i / d t$ changes sign at these transition instants.

Figure 5-4 shows the current and voltage waveforms of the output filter inductor during the CCM operation of the converter. The maximum and minimum values of L_{o} current are found to be 4.98 A and 0.98 A , respectively in the simulation. As expected the maximum and minimum values obtained in experimental results are slightly greater due to the non-ideal components of the converter. The maximum and minimum values of the output filter inductor current are found to be 5.30 A and 0.68 A respectively in the experimental results. As seen from Figure 5-4 the output filter voltage waveform exhibits ringing throughout the operation. This is due to the leakage inductance of the isolation transformer and the reverse recovery current of output rectifier diodes. The transformer's secondary leakage inductance and the capacitance of the rectifier diode determine the frequency of the ringing. The ringing occurs whenever the voltage waveform changes from -59 V to 31 V . This does not happen during the transition of the voltage waveform from 31 V to -59 V . This is actually an indication of the fact that the ringing is due to reverse recovery charge of the rectifier diode. Referring to Figure 5-32 it can be concluded that, conducting diode pair change in each switching cycle on the falling edge of the applied PWM
signal. Note that ringing phenomena is observed at the falling edge of the applied PWM signal according to Figure 5-4. Hence it can be concluded that the reverse recovery current, or the charge stored in the rectifier diode, causes ringing in the voltage waveform of the filter inductor. The final voltage value of the output filter agrees with the mathematical analysis results.

Figure 5-4 Voltage and current waveforms of L_{o} against applied PWM in CCM

The Z-source capacitor voltage waveform during CCM operation is shown in Figure 5-5. On the left side of the figure the measurement is taken with dc coupling. The average of the waveform is 60 V , which verifies the simulation results and the mathematical analysis of CCM operation. It is also equal to the output voltage as mentioned in (2.16) and (2.18). In mathematical analysis part it is mentioned that, whenever PWM is 'high', the capacitor voltage decreases, which means that the capacitors transfer energy to the inductors in Z-source network impedance. This is also verified by the experimental results. Moreover, according to Figure 5-5 whenever PWM is 'low', the capacitor voltage increases which shows that it is charged from the input supply.

Figure 5-5 C_{z} voltage waveform against applied PWM in CCM, a) dc coupling, b) ac coupling

The output voltage of the converter is shown in Figure 5-6. On the left side of Figure 5-6, the voltage measurement is taken with dc coupling and it shows that the output voltage is exactly 60 V . On the right side of Figure 5-4 the ac coupling measurement of the output voltage is provided. Whenever the PWM is 'high' the output filter capacitor and inductor transfers the required energy to the load. Hence the filter capacitor voltage, which is the output voltage, decreases when PWM is 'high'. On the other side when PWM is 'low', the energy stored in Z-source inductors are transferred to the load side and the filter capacitor voltage increases. It is worth to note that there is voltage spike on the output voltage at the switching frequency. High $d v / d t$ and $d i / d t$ stresses during the switching instants might cause this voltage spike.

Figure 5-6 Output voltage waveform against applied PWM in CCM, a) dc coupling, b) ac coupling

Finally for the sake of completeness the voltage waveforms across the input diode, full bridge MOSFETs and primary side of the transformer are provided in Figure 5-7. From the input diode anode-cathode voltage waveform, it is seen that when PWM is 'high', the input diode is reverse biased at -90 V and does not conduct. The input diode starts to conduct when PWM becomes 'low'. This is exactly the same result obtained with the simulation of the converter in CCM operation. The minor difference between the experimental and simulation result is that, there is a voltage spike on the input diode voltage waveform at the switching frequency in the implemented circuit. The reverse voltage decreases down to -120 V during the operation. The voltage induced on the stray inductances existing in the prototype converter due to high $d i / d t$ and reverse recovery charge of the diode are the main reason of the voltage spikes observed in experimental results.

The switching MOSFET drain-source voltage makes an overshoot of 11% and increases up to 100 V during the switching instant. The stray inductance of the path between the high side and low side MOSFETs might be the reason of that. However this voltage level is below the MOSFETs breakdown voltage and does not cause any failure throughout the operation.

Figure 5-7 shows that there is AC voltage at the input terminal of the isolation transformer. When PWM signal is 'high' all the MOSFETs in full-bridge part conduct. Hence the input terminals of the transformer is shorted and primary side input voltage becomes zero. It is previously mentioned that when PWM is 'low' cross pair of the MOSFETs on each phase lag conduct. This is verified by the experimental results given in Figure 5-7.

Figure 5-7 a) D_{i} anode-cathode, b) isolation transformer primary side, c) $Q_{1}-$ Q_{3} cross-pair $v_{D S}$ voltage waveforms against applied PWM in CCM

5.2.2 Open-Loop Control DCM-2 Operation Experimental Results

For the open-loop control DCM-2 operation the converter is implemented with the following parameters: The input voltage is set to 20 V . The duty factor of the PWM signal is set to 0.38 by software while keeping the switching frequency at 100 kHz . The dc electronic load is set to sink 1.5 A . Hence the prototype converter is operated under the same conditions of the simulated model for DCM-2.

The Z -source inductor voltage and current waveform is given in Figure 5-8. The maximum and minimum values of L_{Z} current are 7.05 A and 4.3 A respectively. In the simulation those values are obtained as 6 A and 3.5 A , respectively. The reason for the slight difference is the same as explained in section 5.2.1. L_{Z} inductor voltage changes between 52 V and -32 V . In theoretical analysis the maximum value of L_{Z} inductor voltage is found to be 51.67 V . The theory and experimental results are very close to each other and difference between the two results is due to the on-state voltage drop of the input diode.

Figure 5-8 L_{z} current and voltage waveform against applied PWM in DCM-2

The output filter inductor current and voltage waveform is given in Figure 5-9. There is again ringing in the voltage waveform. The reason of the ringing is explained in the previous part. In DCM-2 operation the reverse recovery phenomenon of the rectifier diode is more obviously observed. The filter inductor current falls below zero and remove the reverse recovery charge of the rectifier diode. This situation is not observed in simulations since ideal components are used for simulation. Hence, the filter inductor voltage becomes zero whenever the rectifier diode current drops to zero in simulation. This, however, is not the case for the experimental results. Due to the reverse recovery current of the rectifier diode, the
filter inductor voltage cannot stay at zero as seen from Figure 5-9. Finally the ringing is again observed whenever the voltage of the filter inductor increases to 30 V from 60 V . Whenever the PWM signal changes from 'high' to 'low' state the conducting rectifier diode pairs change as mentioned before. Since one pair of the diodes turn off reverse recovery phenomenon is observed and ringing occurs.

Figure 5-9 L_{0} current and voltage waveform against applied PWM in DCM-2

Z-source network capacitor voltage waveform is given in Figure 5-10 The Zsource capacitor voltage and input voltage relationship is given in (2.63) for DCM-2 operation. According to (2.63) the Z -source capacitor voltage is to be 51.67 V . It is measured as 51 V in the experimental set-up which indicates that theory and practice agree.

Figure 5-10 C_{z} voltage waveform against applied PWM in DCM-2, a) dc coupling, b) ac coupling

The output filter capacitor voltage waveform is given in Figure 5-11. On the left side of Figure 5-11, the dc coupling measurement is shown. The ac coupling measurement is also provided in Figure 5-11 to observe the ripple voltage on the output voltage waveform.

Figure 5-11 The output voltage waveform against applied PWM in DCM-2, a) dc coupling, b) ac coupling

Finally for the sake of completeness the input diode anode-cathode voltage, the transformer input voltage and full-bridge MOSFETs drain-source voltage waveforms are given in Figure 5-12.

Figure 5-12 a) D_{i} anode-cathode, b) isolation transformer primary side, c) $Q_{1}-$ Q_{3} cross-pair $v_{D S}$ voltage waveforms against applied PWM in DCM-2

5.2.3 The Efficiency of the Converter in Open-Loop Control Operation

In this part, the measured efficiencies of the converter at different operating points are given. The input current is measured on the panel of the source power supply. The output current is read on the panel of the dc electronic load. The output voltage is measured by oscilloscope connected to the output terminals of the converter. All the products used in making the necessary measurements are calibrated regularly. The efficiencies of the converter at different operating conditions are tabulated in Table 5-1. The efficiency of the converter at low input
voltage decreases. This is due to the higher current drawn from the source supply at low input voltage level. The conduction losses of the parasitic elements existing in the prototype converter increase with the square of the current flowing through them. Hence it is expected to measure lower efficiency at higher input current levels. The converter's measured efficiency at 32 V input voltage level is higher since the current drawn from the source decreases. At low load condition the on state voltage drop of the diodes are the main reason of the lower efficiency in this case. It may be concluded that the efficiency of the converter increases at medium power levels.

Table 5-1 Open loop control efficiency of the converter at 10% load, half load and full-load conditions

Input Voltage	Output Loading	Efficiency
18 V	10% Load	$80,86 \%$
	Half-Load	$82,52 \%$
	Full-Load	$78,13 \%$
	10% Load	$84,67 \%$
	Half-Load	$89,57 \%$
	Full-Load	$88,20 \%$

5.3 The Experimental Results in Closed-Loop Control

In this part, closed-loop control of the converter is implemented. Step changes at load current and input voltage are applied to the operating converter in order to test the performance of the designed controller. The output voltage and the applied step change are recorded during the transition period.

The output load current of the converter is changed in a step manner for 20 V and 30 V input voltages. The load current is changed from no-load to half-load, half-
load to full-load and no-load to full-load. The reverse step changes of the transitions are also applied to the converter. The full-load, half-load and no-load current of the converter are taken as $3 \mathrm{~A}, 1.5 \mathrm{~A}$ and 0.2 A , respectively. In this manner the controller performance during the transition of CCM to DCM-2 operation is investigated.

The input voltage step disturbance is applied to the converter for no-load, half-load and full-load conditions. The full-load, half-load and no-load currents are again taken as $3 \mathrm{~A}, 1.5 \mathrm{~A}$ and 0.2 A .

All the necessary information related to the taken measurements such as settling time and maximum overshoot voltage are given above the figures. The time scale and voltage division of the measurements are given on the figures. The measurements are divided into two groups. In the first group the output voltage regulation against the output loading step change is given. In the second group the output voltage regulation against the input voltage step change is provided.

5.3.1 The Output Voltage Regulation Against Output Loading Step Changes

Before starting to give the measurement it is necessary to mention that the oscilloscope used to take the measurements is capable of adding 50 V offset voltage to its own channel at most. In order to investigate output voltage more precisely, it is necessary to add 50 V offset voltage to the channel 2 of the oscilloscope. It would be the best if the scope was capable of adding 60 V offset voltage so that the channel 2 reference position would be 60 V . However it seems that taking the measurements with a voltage division scale of $5 \mathrm{~V} /$ div is fairly enough to investigate the controller performance of the converter. Hence, channel 2 reference position is adjusted to 50 V by the scope itself and all the output voltage variations are taken with a $5 \mathrm{~V} / \mathrm{div}$ scale.

The first measurement is given in Figure 5-13. The input voltage is adjusted to 20 V for the measurement. The output loading of the converter seen as trace 1 is changed from 0.2 A to 1.5 A at the first time division from left of the figure. This
corresponds to output power transition from 12 W to 90 W . The output voltage waveform makes an overshoot of 3 V during transition. This maximum overshoot corresponds to 5% of the output voltage. In practice for the most control systems the settling time is taken as the time that the required signal reaches the desired value with an error of 2% [17]. Considering that, the output voltage enters 2% band of the desired voltage in about 45 ms . However, it takes about 100 ms for $v_{\text {out }}$ to settle exactly at 60 V .

Figure 5-13 The output voltage response of the converter against a step change of loading from 0.2 A to 1.5 A for $\mathrm{V}_{\mathrm{s}}=20 \mathrm{~V}$

The same step load transition response measurement is taken by setting the input voltage to 30 V . The measurement is shown in Figure 5-14. The output voltage deviates by 3.8 V , which corresponds to 6.33% overshoot on the desired output voltage. The output voltage, $v_{\text {out }}$ enters the 2% band of the desired voltage within 45 ms . and settles exactly at 60 V after 65 ms .

Figure 5-14 The output voltage response of the converter against a step change of loading from 0.2 A to 1.5 A for $\mathrm{V}_{\mathrm{s}}=30 \mathrm{~V}$

The characteristics of the step responses shown in Figure 5-13 and Figure 5-14 are similar. The reason for this similarity is that, both of the step loading disturbances applied to the converter under 20 V and 30 V input voltages cause the converter to change its operating mode from DCM-3 to DCM-2 operation. In this work DCM-3 operation of the converter is not analyzed, although under no-load condition it is inevitable that the converter operates in DCM-3 operation.

The reverse step changes of the previous two measurements are also taken. The output load current is decreased from half to no-load instantaneously for 20 V and 30 V input voltages. The output voltage responses of the converter against a step change in loading for the two different input voltages are given in Figure 5-15 and Figure 5-16.

From Figure $5-15$ it is seen that the output voltage enters 2% band of the desired voltage within 40 ms . However, it takes 90 ms for $v_{\text {out }}$ to reach its steadystate value. Additionally the output voltage makes an overshoot of 3.8 V which is 6.33% of the desired voltage.

Figure 5-15 The output voltage response of the converter against a step change of loading from 1.5 A to 0.2 A for $\mathrm{V}_{\mathrm{s}}=20 \mathrm{~V}$

The output voltage response for the same step change in loading for 30 V input voltage is shown in Figure 5-16. This time the overshoot is 4.1V, 6.83% of the desired output voltage, and it takes 80 ms for $v_{\text {out }}$ to settle exactly at 60 V . It is also worth to mention that a similar damped oscillation seen in Figure 5-15 is not observed at the output voltage waveform this time. The responses of the converter against change of the load current from 0.2 A to 1.5 A are not the same as the responses against the changes of the load current from 1.5 A to 0.2 A . This is expected since the transfer function of the converter depends on the load resistance, i.e. load current. Under no-load condition the location of the closed-loop poles and zeros of the converter change. It is well known that the location of the closed-loop transfer function poles and zeros determine the transient response of the converter. In no-load operating condition for an input voltage of 30 V the controller does not cause any oscillation on the output voltage but increases the settling time. In control theory point of view this means that the phase margin of the converter under no-load condition decreases making the system slower but more resistant to the disturbances that the converter is exposed to.

Figure 5-16 The output voltage response of the converter against a step change of loading from 1.5 A to 0.2 A for $\mathrm{V}_{\mathrm{s}}=30 \mathrm{~V}$

Figure 5-17 shows the step change of load change from 1.5 A to 3 A for an input voltage of 20 V is given. For step changing of load from 1.5 A to 3 A , the output power changes from 90 W to 180 W . For $i_{\text {LOAD }}=1.5 \mathrm{~A}$ the converter operates in DCM-2. This step loading change causes the converter to transit from DCM-2 operation to CCM operation. The output voltage deviates from the desired level by 4.2 V at most during the transition. This corresponds to 7% of the steady-state output voltage level. The output voltage level enters in 2% band of the desired voltage within 40 ms . Finally it takes 80 ms for $v_{\text {out }}$ to settles at its steady state value and stop damped oscillation.

Figure 5-17 The output voltage response of the converter against a step loading from

$$
1.5 \mathrm{~A} \text { to } 3 \mathrm{~A} \text { for } \mathrm{V}_{\mathrm{s}}=20 \mathrm{~V}
$$

A half- to full-load step loading is applied to the converter for 30 V input voltage also. The snapshot of the measurement is given in Figure 5-18. The overshoot in output voltage response is 2.7 V , corresponding to 4.5% of the reference voltage. It takes 25 ms for $v_{\text {out }}$ to enter into the 2% band of the desired output voltage and 50 ms to settle at exactly 60 V .

Figure 5-18 The output voltage response of the converter against a step loading from 1.5 A to 3 A for $\mathrm{V}_{\mathrm{s}}=30 \mathrm{~V}$

Now the reverse transition for the step loading change presented in the previous two figures will be introduced. The output voltage variation against output unloading change from 3 A to 1.5 A for input voltages of 20 V and 30 V are given in Figure 5-19 and Figure 5-20 . The output power decreases from 180W to 90W during this output voltage transition.

As shown from Figure 5-19, the overshoot voltage for 20 V input voltage case is 3.7 V (6.16% of reference voltage). The output voltage enters 2% band of the desired voltage within 65 ms . However it takes 120 ms . for $v_{\text {out }}$ to settle at exactly 60 V.

Figure 5-19 The output voltage response of the converter against a step unloading

$$
\text { from } 3 \mathrm{~A} \text { to } 1.5 \mathrm{~A} \text { for } \mathrm{V}_{\mathrm{s}}=20 \mathrm{~V}
$$

Figure 5-20 shows the output voltage response against the step change of the output unloading from 3 A to 1.5 A . The output voltage deviates 2.1 V at most from the desired voltage level. This corresponds to an overshoot of 3.5%. Within 20 ms , the output voltage enters to 2% band of the desired voltage. It takes about 40 ms for the output voltage to settle at 60 V .

Figure 5-20 The output voltage response of the converter against a step unloading from 3 A to 1.5 A for $\mathrm{V}_{\mathrm{s}}=30 \mathrm{~V}$

The most challenging part for the designed controller are transitions from noload to full-load and full-load to no-load operations. In these transitions the operating mode of the converter changes from CCM to DCM-3. The controller performance is tested for these step changes of loading for input voltages of 20 V and 30 V . The output power changes from 12 W to 180 W and 180 W to 12 W during these output voltage transitions.

The output voltage variation during the transition from no-load to full-load condition under 20 V input voltage is shown in Figure 5-21. The output voltage waveforms exhibits 7 V overshoot (11.66% overshoot). The settling-time is 50 ms for 2% band, 80 ms for exact value of the desired output voltage value.

Figure 5-21 The output voltage response of the converter against a step increase of loading from 0.2 A to 3 A for $\mathrm{V}_{\mathrm{s}}=20 \mathrm{~V}$

Figure 5-22 shows the output voltage variation for the same step loading disturbance applied at 30 V input voltage. The output voltage waveform decreases down to $54.8 \mathrm{~V}(8.66 \%$ overshoot) 5 ms after the step disturbance is applied. The output voltage enters into the 2% band of the desired voltage within 40 ms . However, it takes about 60 ms for $v_{\text {out }}$ to settle down at exactly 60 V .

Figure 5-22 The output voltage responses of the converter against a step increase of loading from 0.2 A to 3 A for $\mathrm{V}_{\mathrm{s}}=30 \mathrm{~V}$

Finally the reverse of the transition applied in the last two measurements are introduced as a step disturbance to the converter. Figure $5-23$ shows the output voltage response against a step unloading from full- to no-load for an input voltage of 20 V . $V_{\text {out }}$ deviates by 7 V from the desired output voltage during this transition, which corresponds to 11.66% overshoot. The settling time is 60 ms . for the output voltage.

Figure 5-23 The output voltage response of the converter against a step unloading

$$
\text { from } 3 \mathrm{~A} \text { to } 0.2 \mathrm{~A} \text { for } \mathrm{V}_{\mathrm{s}}=20 \mathrm{~V}
$$

Figure 5-24 shows the output voltage variation during the transition of load current from full-load to no-load for an input voltage of 30 V . The maximum value of the output voltage is 66.5 V during the transition (10.83% overshoot). The output voltage settles down at its reference value within 100 ms .

Figure 5-24 The output voltage response of the converter against a step unloading from 3 A to 0.2 A for $\mathrm{V}_{\mathrm{s}}=30 \mathrm{~V}$

5.3.2 Comments on the Output Voltage Responses Against Step Output Loading Changes

The closed-loop performance of the controller against step load change is tested in the previous part. The first thing to mention is that since the converter has non-linear characteristic, hence responses against reverse step changes gives different responses. For example half-load to full-load gives different response than the one obtained for a step change from full-load to half load. This is expected since the transfer function of the converter varies according to the operating point of the converter. The most severe test condition is transition between full-load to no-load operations. The maximum overshoot voltages are observed on these measurements. The output voltage makes at most 11.66% overshoot in the whole operating range of the converter. In general the output voltage has less overshoot and settles faster to its reference value when the input voltage is 30 V . This is mainly due to the fact that the controller of the converter is designed considering the full-load operation under 30 V input voltage. It is expected that the gain and phase margins of the closed-loop transfer function of the controller change when the input voltage and load current
change. This affects the transient response of the converter, i.e. overshoot voltage and settling time.

5.3.3 The Output Voltage Responses Against Step Changes of the Input Voltage

In this part the responses of the output voltage against the input voltage step change is investigated. The source power supply is controlled by a computer, connected to the instrument using the General Purpose Interface Bus (GPIB) connection so that the output voltage of the power supply can be changed via a command send to the instrument from the computer.

Before giving the measurement results, it is worth to mention about the dynamic response of the source power supply. The power supply is capable of increasing its output voltage in a step manner. However, for the opposite case that is for decreasing the output voltage of the supply, the dynamic response of the power supply is not satisfactory. Under light load conditions it takes about 80 ms for the supply to decrease its output voltage to the required low level. Hence, it can be concluded that, the response of the converter against a step increase in input voltage can be examined, but the response against a step decrease in the input voltage cannot be examined. The response of the converter against a linear decrease of the input voltage might be called as the ramp response.

The measurements are taken again with the same oscilloscope used before. Again a 50 V offset voltage is added to channel 2 of the oscilloscope so that the output voltage variation is examined more precisely. This time, the measurements are taken with a voltage division scale $2 \mathrm{~V} /$ div since the overshoot in the output voltage against a step change in the input voltage is lower relative to the step change in the output loading. The measurements are taken at no-load, half-load and full-load output loading conditions. In these each output loading conditions, the input voltage is increased from 20 V to 30 V and decreased from 30 V to 20 V .

The first measurement is shown in Figure 5-25. Output loading is set to 0.2 A and the input voltage is increased from 20 V to 30 V instantaneously. As seen from Figure 5-25, the maximum overshoot in the output voltage is 0.8 V corresponding to 1.3% of the required output voltage. It takes about 80 ms for the output voltage to settle down exactly at 60 V . Note that the output voltage never exceeds out of 2% band of the desired output voltage during the transition.

Figure 5-25 The output voltage response of the converter against a step change of the input voltage from 20 V to 30 V for $\mathrm{i}_{\text {Load }}=0.2 \mathrm{~A}$

The same step input change is applied to the converter for half-load condition. The related measurement is given in Figure 5-26. The maximum overshoot is 1.6 V which is 2.6% of the desired output voltage. The output voltage enters into 2% band within 20 ms . However, it takes about 60 ms to settle exactly at 60 V.

Figure 5-26 The output voltage response of the converter against a step change of the input voltage from 20 V to 30 V for $\mathrm{i}_{\text {Load }}=1.5 \mathrm{~A}$

Finally the output voltage regulation against a step increase from 20 V to 30 V in input voltage under full-load condition is shown in Figure 5-27. Note that the maximum overshoot in this case is 3.6 V . The exact settling time is 70 ms for the output voltage. It enters into 2% band within 40 ms .

Figure 5-27 The output voltage response of the converter against a step change of input voltage from 20 V to 30 V for $\mathrm{i}_{\text {Load }}=3 \mathrm{~A}$

As mentioned before the input voltage cannot be decreased instantaneously due to the natural characteristic of the source power supply. The large internal capacitors at the output of the power supply are needed to be discharged fast so that the output voltage of the power supply can be decreased. This, however, is directly related to the current delivery capability of the source power supply. Usually the source current of the power supply is much greater than its sink current. That is why the supply can increase its output voltage instantaneously but cannot decrease it at an equal rate. Hence the output voltage response against linearly decaying input voltage can be considered as ramp input response of the converter. The responses of the output voltage against such linear decay of input voltage are given in this work to gain an insight about designed converter.

The first measurement is taken under no-load condition and shown in Figure $5-28$. The output voltage never exceeds 2% band. Actually it deviates only by 0.2 V at maximum during the transition which corresponds to 0.33% of the output voltage. In this case it is meaningless to mention about the settling time since the deviation is very low. Note that the input power supply output voltage decreases to 20 V within 80 ms .

Figure 5-28 The output voltage response of the converter against a ramp input voltage decay from 30 V to 20 V for $\mathrm{i}_{\text {Load }}=0.2 \mathrm{~A}$

The second measurement for the input voltage level decay from 30 V to 20 V is taken for operation with half-load. The response is shown in Figure 5-29. The output voltage deviates by 1.4 V which corresponds to 2.3% of the output voltage. The output voltage settles at 60 V in about 80 ms .

Figure 5-29 The output voltage response of the converter against a ramp input voltage decay from 30 V to 20 V for $\mathrm{i}_{\text {Load }}=1.5 \mathrm{~A}$

The last measurement for the input voltage linear decay from 30 V to 20 V is taken under full-load operation. The maximum overshoot on this response is 2.4 V which is 4% of the output voltage. It takes about 110 ms for the output voltage to settle exactly at 60 V . However for the 2% band of the output voltage settling time is about 80 ms .

Figure 5-30 The output voltage response of the converter against a ramp input voltage decay from 30 V to 20 V for $\mathrm{i}_{\text {Load }}=3 \mathrm{~A}$

5.4 The Efficiency Analysis of the Prototype Converter from Experimental Results

In this part the efficiency of the prototype converter will be determined. The efficiency analysis is one of the most important aspects of the converter design. All the power losses on the components involved with the prototype converter will be determined analytically so that the total power loss of the converter can be found.

The switches (MOSFETs), input and rectification diodes, inductors, capacitors and the isolation transformer cause power losses in the Z-source converter. For proper determination of the power loss, the current passing through these components must be identified. The notations and directions of the current passing through these components are shown in Figure 5-31.

Figure 5-31 Defining electrical variables for efficiency analysis of Z-source dc/dc converter

Before starting to calculate the efficiency of the converter, the current waveforms of the components in the converter must be determined. The magnitudes of the currents passing through the converter components depend on the operating point of the converter. Therefore, the converter is assumed to operate at the nominal operating point, 30 V input voltage and 3 A loading. Hence, the magnitudes of the currents passing through each component can be determined exactly.

Finally it is worth to note that the converter will operate in CCM operation for the selected operating point. The voltage and current waveforms regarding the circuit elements during CCM operation are given in Figure 2-6 and Figure 2-7. A careful examination of these two figures reveals that, all the current waveforms can be expressed in terms of L_{z} and L_{o} current. The maximum and minimum values of the above referred current waveforms are also identified in terms of $I_{L_{Z}(\max)}, I_{L_{Z}(\min)}, I_{L_{O}(\max)}$ and $I_{L_{O}(\min)}$ in Figure 2-6 and Figure 2-7. Hence for the proper determination of the current waveforms, it is only needed to know the exact variations of inductor currents which are measured and determined in 5.2.1. The inductor current measurements are given in Figure 5-3 and Figure 5-4. Using the maximum and minimum values of the inductor currents shown in Figure 5-3 and Figure 5-4, and the expressions for the circuit elements current waveforms shown in

Figure 2-6 and Figure 2-7 it is possible to obtain the current waveforms regarding the circuit elements of the converter which are shown in Figure 5-32 and Figure 5-33.

Figure 5-32 Determination of current waveform magnitudes regarding the circuit elements for open-loop control

Figure 5-33 Determination of current waveform magnitudes regarding the circuit elements for open-loop control

In Figure 5-33 it is necessary to mention that the individual currents passing through the full-bridge switches are found using the symmetry of the converter. The
instantaneous $i_{Q_{1}}(t)$ is equal to $i_{Q_{4}}(t)$ and $i_{Q_{2}}(t)$ is equal to $i_{Q_{3}}(t)$ due to the symmetry of the converter. This property will be used to determine the exact values of the current passing through the switches.

Applying Kirchhoff's current law at 'NODE A' yields;

$$
\begin{equation*}
I_{Q_{1}}+I_{Q_{3}}=I_{Q} \tag{5.1}
\end{equation*}
$$

Similarly one can conclude that;

$$
\begin{equation*}
I_{Q_{2}}+I_{Q_{4}}=I_{Q} \tag{5.2}
\end{equation*}
$$

One obtains (5.3) by the application of Kirchhoff's current law at 'NODE B'

$$
\begin{equation*}
I_{Q_{1}}+I_{T R_{-} P R I}=I_{Q_{2}} \tag{5.3}
\end{equation*}
$$

In a similar way it is also possible to obtain (5.4).

$$
\begin{equation*}
I_{Q_{4}}+I_{T R_{-} P R I}=I_{Q_{3}} \tag{5.4}
\end{equation*}
$$

Combining (5.1)-(5.4) the sum of $I_{Q_{1}}$ and $I_{Q_{4}}$ is found as;

$$
\begin{equation*}
I_{Q_{1}}+I_{Q_{4}}=I_{Q}-I_{T R_{-} P R I} \tag{5.5}
\end{equation*}
$$

Since, as mentioned before regarding that $I_{Q_{1}}=I_{Q_{4}}$, one obtains;

$$
\begin{equation*}
I_{Q_{1}}=\frac{I_{Q}-I_{T R_{-} P R I}}{2} . \tag{5.6}
\end{equation*}
$$

Using (5.6) each switch current can be determined. The values are shown in Figure 5-33.

5.4.1 Power Loss Calculation on the Switches (MOSFETs) from the Experimental Results

The switch power losses are due to two processes. The first one is the on-state losses. It is also known as the conduction losses, $P_{M O S, C O N}$ and is due to the on-state
voltage drop of the switch during the conduction of current. The second one is the switching losses, $P_{M O S, S W T}$. It is due to the variation of the voltage and current related to the switch during turn-on and turn-off periods.

In [1] it is mentioned that, the switching loss of a MOSFET can be approximated as;

$$
\begin{gather*}
P_{M O S, S W T}=P_{\text {TURN }-O N}+P_{\text {TURN-OFF }} \tag{5.7}\\
P_{M O S, S W T}=\frac{1}{2} V_{D S} I_{D S} f_{\text {swt }} t_{o n}+\frac{1}{2} V_{D S} I_{D S} f_{\text {swt }} t_{o f f} .
\end{gather*}
$$

The turn on time, t_{on} is the time for the switch to transit from blocking state to conduction stat and can be found analytically as [20];

$$
t_{\text {on }}=V_{D S} \frac{R_{g a t e} C_{r s s}}{V_{g a t e}-\left(V_{T H}+\frac{I_{D S}}{g_{f s}}\right)}+R_{\text {gate }} C_{i s s} \ln \left(\frac{g_{f s}\left(V_{g a t e}-V_{T H}\right)}{g_{f s}\left(V_{\text {gate }}-V_{T H}\right)-I_{D S}}\right) .
$$

The turn off time, $\mathrm{t}_{\text {off }}$ is the time for the switch to transit from conduction state to blocking state and can be found analytically as [20];

$$
t_{o f f}=V_{D S} \frac{R_{g a t e} C_{r s s}}{V_{T H}+\frac{I_{D S}}{g_{f s}}}+R_{g a t e} C_{i s s} \ln \left(\frac{V_{T H}+\frac{I_{D S}}{g_{f s}}}{V_{T H}}\right)
$$

The definitions of the parameters used in the formulas of t_{on} and $\mathrm{t}_{\text {off }}$ are given in Table 5-2.

Table 5-2 Definitions of the parameters used in $t_{\text {on }}$ and $t_{\text {off }}$ formula
Parameter
$V_{D S}$
$I_{D S}$
$V_{\text {gate }}$

$R_{\text {gate }}$
$V_{T H}$
$g_{f s}$
$C_{i s s}$
$C_{r s s}$

Definition
MOSFET drain-source voltage
MOSFET drain-source current MOSFET gate-source voltage when it is ON

MOSFET gate driving resistance
MOSFET threshold voltage
MOSFET transconductance
MOSFET input capacitance
MOSFET reverse transfer capacitance

In the drive circuit of the MOSFET, $V_{\text {gate }}$ is 13.5 V due to the darlington output structure of the driver IC. $R_{g a t e}$ is set as 15Ω in the driver circuit. In the converter design, IPB065N15N3+G from INFINEON is used for the full-bridge MOSFETs. The threshold voltage, $V_{T H}$ of the MOSFET is stated as 3 V typically in its datasheet [24]. The transconductance, $g_{f s}$ is typically 139S. Also from the datasheet it is known that mosfet input capacitance, $C_{\text {iss }}$ is 5.5 nF (typically) and reverse capacitance, $C_{r s s}$ is 10 pF (typically) for IPB065N15N3+G. The MOSFET drain-source voltage, $V_{D S}$ is 90 V during the transition from 'on' state to 'off' state and from 'off' state to 'on' state. The current passing through the MOSFET during turn-on is 3.03 A and 8.66 A during turn-off as seen from Figure 5-33. At this step it is necessary to clarify one point. The reverse capacitance of a MOSFET changes dramatically during the plateau region, in which $v_{D S}$ falls. Hence it is usually preferred to define the reverse capacitance, $C_{r s s}$ as (5.8) in order to determine the turn on time.

$$
\begin{equation*}
C_{r s s}=C_{g d}=\frac{Q_{g d}}{\left(V_{D S}\right)_{S W I N G}} \tag{5.8}
\end{equation*}
$$

where $C_{g d}, Q_{g d}$ and $\left(V_{D S}\right)_{\text {SWING }}$ stand for the gate-drain capacitance, gatedrain charge and voltage swing seen on the drain-source connection of the MOSFET. (5.8) must be substituted into $t_{\text {on }}$ and $t_{\text {off }}$ formula in order to determine turn on and turn off times properly. $Q_{g d}$ is found as 11 nC (typical) from the datasheet. The voltage swing $\left(V_{D S}\right)_{\text {SWING }}$ is 90 V during the operation.

Finally inserting the numerical data into the formulas given for t_{on} and $\mathrm{t}_{\mathrm{off}}$, one obtains the turn-on time as $\mathrm{t}_{\mathrm{on}}=15.92 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{off}}=55.57 \mathrm{~ns}$. Note that, the effective switching frequency is 50 kHz for each MOSFET throughout the operation. Hence switching loss of one MOSFET is;

$$
\begin{aligned}
& P_{M O S, S W T}=\frac{1}{2} \cdot 90 \cdot 3.03 .\left(50.10^{3} \cdot 15.92 n s\right)+\frac{1}{2} 90 \cdot 8.66 \cdot\left(50.10^{3} \cdot 55.57 n s\right) \\
& P_{M O S, S W T}=1.2 \mathrm{~W}
\end{aligned}
$$

The conduction loss of a MOSFET is defined as;

$$
\begin{equation*}
P_{M O S, C O N}=R_{D S(O N)} \cdot I_{M O S(R M S)}^{2} \tag{5.9}
\end{equation*}
$$

The on state resistance of the MOSFET is given as $5.2 \mathrm{~m} \Omega$ (typical) in the datasheet. The RMS current of the MOSFET can be found analytically using the current waveform of the MOSFET shown in Figure 5-33. The magnitude of RMS current passing through the MOSFET is found to be 4.605 A . Hence the conduction loss in one MOSFET is;

$$
P_{M O S, C O N}=(4.605)^{2} \cdot\left(5.2 \times 10^{-3}\right)=0.11 \mathrm{~W}
$$

Now, the total loss on MOSFET can be found by adding up the switching and conduction loss.

$$
\begin{gather*}
P_{M O S}=P_{M O S, S W T}+P_{M O S, C O N} \tag{5.10}\\
P_{M O S}=1.2 \mathrm{~W}+0.11 \mathrm{~W}=1.31 \mathrm{~W}
\end{gather*}
$$

5.4.2 Power Loss Calculation of the Switches (Diodes) from the Experimental Results

The power losses in diodes are due to the switching and conduction as in the case of MOSFETs. However, in the prototype converter fast schotky diodes are used which are known to have no switching loss or very little switching loss that can be neglected. Hence the diodes have only the conduction loss which is due to the on state voltage drop of the diodes. The conduction loss of a diode can be calculated as;

$$
\begin{equation*}
P_{D I O D E}=V_{F} \cdot I_{D(A V G)} . \tag{5.11}
\end{equation*}
$$

The input diode of the converter is selected as 40 CTQ 150 SPbf from International Rectifier [25]. The forward voltage drop on the diode is 0.71 V . The average current passing through it can be calculated from the current waveform given in Figure 5-33 as;

$$
\begin{gather*}
I_{D_{i}(A V G)}=\frac{I_{D_{i}(\max)}+I_{D_{i}(\min)}}{2} \cdot(1-D) \tag{5.12}\\
I_{D_{i}(A V G)}=\frac{15.96+6.06}{2} \cdot(1-0.338)=7.28 \mathrm{~A} .
\end{gather*}
$$

Hence the power dissipation on the input diode is;

$$
\begin{equation*}
P_{D_{i}}=V_{F} I_{D_{i}(A V G)}=(0.71 \mathrm{~V})(7.28 \mathrm{~A})=5.16 \mathrm{~W} \tag{5.13}
\end{equation*}
$$

For the rectification diodes, V60120C is used which is again a product of VISHAY. The forward voltage drop of V60120C is found from the datasheet of the product as 0.55 V [26]. The average current of the rectification diode can be found from the related current waveform given in Figure 5-32 as;

$$
\begin{align*}
& I_{D_{r}(A V G)}=\frac{I_{D_{r}(\max)}+I_{D_{r}(\min)}}{2} \cdot \frac{\left(t_{2}+t_{3}\right)}{2 T_{s}} \tag{5.14}\\
& I_{D_{r}(A V G)}=\frac{5.3+0.68}{2} \cdot(0.5)=1.495 \mathrm{~A} .
\end{align*}
$$

Hence the power dissipation on the rectification diode is;

$$
\begin{equation*}
P_{D_{r}}=V_{F} I_{D_{r}(A V G)}=(0.55 \mathrm{~V})(1.495 \mathrm{~A})=0.82 \mathrm{~W} \tag{5.15}
\end{equation*}
$$

5.4.3 Power Loss Calculation of the Capacitors from the Experimental Results

The power loss of the capacitor is due to its equivalent series resistance (ESR) and the ac current passing through it. The power dissipation of a capacitor can be expressed as;

$$
\begin{equation*}
P_{C A P}=E S R \cdot I_{C A P(R M S)}^{2} . \tag{5.16}
\end{equation*}
$$

Note that, the RMS value of the ac current passing through the capacitor must be taken into consideration in order to determine the power dissipation. In Z-source $\mathrm{dc} / \mathrm{dc}$ converter both Z-source network impedance capacitor, C_{z} and the output filter capacitor, C_{o} cause power dissipation. Hence the RMS of both Z-source capacitor current, $i_{C_{z}}$ and filter capacitor current $i_{C_{o}}$ must be determined.

For Z-source network capacitor, C1210X105K1RAC (1uF, 100 V ceramic capacitor), product of AVX, is used [27]. Here twenty many capacitors are connected in parallel to obtain $20 \mu \mathrm{~F}$. Recalling that the ceramic capacitors are known to have the lowest ESR among the capacitor families. Paralleling twenty of them will give a very low ESR and in return will reduce the total power dissipation. The ESR of one capacitor is stated as $100 \mathrm{~m} \Omega$ at 100 kHz in the datasheet. Hence paralleling twenty of them will reduce the ESR to $5 \mathrm{~m} \Omega$. The RMS of Z -source capacitor current, $\mathrm{i}_{\mathrm{C}_{\mathrm{Z}}}$ can be determined analytically from Figure 5-33 as 5.511 A. Hence the power dissipation on C_{z} is;

$$
\begin{equation*}
P_{C_{z}}=E S R_{C_{z}} \cdot I_{C_{z}(R M S)}^{2}=(5 \mathrm{~m} \Omega) .\left(5.511 A_{R M S}\right)^{2}=0.152 \mathrm{~W} . \tag{5.17}
\end{equation*}
$$

For the output filter capacitor of the converter, A710160 (aluminum electrolytic type capacitor) from SICSAFCO Company is used [28]. The ESR of A710160 is $51 \mathrm{~m} \Omega$ at 100 Hz . It is mentioned in the catalog that the ESR at 100 kHz
is typically $1.5 \mathrm{xESR}_{100 \mathrm{~Hz}}$. Hence the ESR of the output capacitor can be accepted as $76.5 \mathrm{~m} \Omega$ The RMS of the output filter capacitor current, $i_{C_{o}}$ is found to be 1.33 A from Figure 5-33. Hence the power dissipation on C_{o} is;

$$
\begin{equation*}
P_{C_{o}}=E S R_{C_{o}} \cdot I_{C_{o}(R M S)}^{2}=(76.5 \mathrm{~m} \Omega) \cdot\left(1.333 A_{R M S}\right)^{2}=0.135 \mathrm{~W} . \tag{5.18}
\end{equation*}
$$

5.4.4 Power Loss Calculation of the Inductors from the Experimental Results

The inductor losses are composed of two components. The first is the core loss which occurs in the inductor core. The second one is the copper loss due to the windings around the coil former of the inductor core. The copper loss is mainly due to the average inductor current passing through the inductor. However, the ripple of the inductor current causes power dissipation also on the ac resistance of the windings, which is due to the proximity effect [16].

ETD59/31/22 N87 B6639762000X1 cores from EPCOS are used for the Zsource network inductors. Two AWG16 copper wires are paralleled and 16 turns of this wire is wounded around the coil former of the core so that $83.3 \mu \mathrm{H}$ inductance is obtained. The copper wires are paralleled in order to decrease the dc resistance of the winding.

The core loss of an inductor is related to the B-H characteristics of the core material. The flux density $B(t)$ is expressed as the summation of a dc component B (due to the dc value of magnetizing current) and ac component $\Delta \mathrm{B}$ (due to the ac current ripple). The maximum value of $\mathrm{B}(\mathrm{t})$ throughout the operation must be lower than the saturation flux density of the core $\mathrm{B}_{\text {sat }} . B_{L_{z}(\max)}$ for L_{z} inductor core is found as;

$$
\begin{equation*}
B_{L_{z}(\max)}=\frac{n_{L_{z}} \cdot I_{L_{z}(\max)} \cdot \mu_{o}}{l_{g, L_{z}}} \tag{5.19}
\end{equation*}
$$

where $n_{L_{z}}, I_{L_{z}(\max)}, \mu_{0}$ and $l_{g, L_{z}}$ represent, the number of turns wounded around L_{z} core, maximum instantaneous current passing through the Z-source network inductor, permeability of vacuum and the air gap of L_{z} core, respectively [16]. For L_{z} inductor core air gap is 2 mm and the maximum current passing through it is 8.32 A . The total number of turns, $n_{L_{z}}$ is determined as 16 before and the permeability of the vacuum is known to be 4. $\pi \cdot 10^{-7}$. Hence, inserting the numerical data in (5.19), one obtains $B_{L_{z}(\max)}=0.0856 \mathrm{~T}$. The saturation flux density of the selected core for L_{z} is 0.390 T . Thus the core will not saturate throughout the operation.

The amplitude of $\Delta B_{L_{z}}$ determines the core loss of L_{z} inductor. $\Delta B_{L_{z}}$ is found as;

$$
\begin{equation*}
\text { 2. } \Delta B_{L_{z}}=\left(\frac{V_{L_{z}}}{n_{L_{z}} \cdot A_{e, L_{z}}}\right)\left(D T_{s}\right) \tag{5.20}
\end{equation*}
$$

where $V_{L_{z}}$ is the voltage across the inductor during D.T T_{s} and $A_{e, L_{z}}$ is the effective area in the magnetic cross-section of the core [16]. Recalling (2.3), (2.16) and (2.18), the voltage across the Z-source inductor, $V_{L_{z}}$ is 60 V during $\mathrm{D} . \mathrm{T}_{\mathrm{s}}$. The effective magnetic cross section of the core is found to be $368 \mathrm{~mm}^{2}$ from the datasheet [29].

Finally, referring to Figure $5-33$, it is obvious that $\mathrm{D}=0.338$ and $\mathrm{T}_{\mathrm{s}}=10 \mu \mathrm{~s}$. Thus,

$$
\begin{gather*}
\Delta B_{L_{z}}=0.5 \cdot\left(\frac{60}{16 \cdot 368 \mathrm{~mm}^{2}}\right)(0.338 \cdot 10 \mu \mathrm{~s}) \tag{5.21}\\
\Delta B_{L_{z}}=0.017 T
\end{gather*}
$$

To determine the core loss, "Core Loss vs. AC Field Flux Density Curve" graph provided by the manufacturer must be used [30]. Using the provided information in [30], it is found out that the core loss/volume of $L_{z}, P_{L_{z}, c / v}$ is $4 \mathrm{~kW} / \mathrm{m}^{3}$.

The volume of the L_{z} core, $V_{e, L_{z}}$ is found to be $51200 \mathrm{~mm}^{3}$ from datasheet. Hence the total core loss of $L_{z}, P_{L_{z}, \text { core }}$ is;

$$
\begin{gather*}
P_{L_{z}, c o r e}=P_{L_{z}, c / v} \cdot V_{e, L_{z}} \tag{5.22}\\
P_{L_{z}, \text { core }}=\left(4 \mathrm{~kW} / \mathrm{m}^{3}\right) \cdot\left(51200 \mathrm{~mm}^{3}\right)=0.256 \mathrm{~W}
\end{gather*}
$$

The windings of the inductor are wound with AWG16 copper wire whose resistance is $0.0132 \Omega / \mathrm{m}$. The effective turn length of the coil former $l_{n, L_{z}}$ is 106.1 mm and 16 turns are wounded. Recalling that two copper wires are paralleled for the winding, so that dc resistance of the inductor is;

$$
\begin{equation*}
R_{D C, L_{z}}=\left[(0.0132 \Omega / m) \cdot l_{n, L_{z}} \cdot n_{L_{z}}\right] / 2=11.2 m \Omega \tag{5.23}
\end{equation*}
$$

From the dowell's curve the ratio of ac resistance to dc resistance is found as 13, yielding that $R_{A C, L_{z}}=145.35 \mathrm{~m} \Omega$ [19]. The copper loss of the inductor can be found as;

$$
\begin{equation*}
P_{L_{z}, \text { copper }}=R_{D C, L_{z}} \cdot I_{L_{z}(\text { avg })}^{2}+R_{A C, L_{z}} \cdot I_{L_{z}(a c-r m s)}^{2} \tag{5.24}
\end{equation*}
$$

where

$$
\begin{gather*}
I_{L_{z}(a v g)}=\frac{I_{L_{z}(\max)}+I_{L_{z}(\min)}}{2}=\frac{8.32+5.68}{2}=7 \mathrm{~A} \tag{5.25}\\
I_{L_{z}(a c-r m s)}=\frac{\Delta I_{L_{z}(p p)}}{2 \sqrt{3}}=\frac{8.32-5.68}{2 \sqrt{3}}=0.76 \mathrm{~A}
\end{gather*}
$$

Using the resistance and current values determined, total copper loss of the Zsource network inductor is;

$$
\begin{equation*}
P_{L_{Z}, \text { copper }}=0.633 \mathrm{~W} . \tag{5.26}
\end{equation*}
$$

Hence the total power loss of the Z -source inductor is;

$$
\begin{equation*}
P_{L_{z}}=P_{L_{z}, \text { core }}+P_{L_{z}, \text { copper }}=0.889 \mathrm{~W} . \tag{5.27}
\end{equation*}
$$

The same procedure will be applied for the power loss calculation of the output filter inductor, L_{0}. ETD54/28/19 N87 B66395G2000X1 core, whose air gap $l_{g, L_{o}}$ is 2 mm , from EPCOS is used for the output filter inductor [31]. Two AWG16 copper wires are paralleled and 19 turns of wire ($n_{L_{o}}=19$) is wounded around the coil former to have an inductance of $50 \mu \mathrm{H}$. Referring to Figure 5-32, the maximum output filter current, $I_{L_{o}(\max)}$ is 5.3 A . Applying (5.19) for L_{o} core, the maximum flux density, $B_{L_{o}(\max)}$ is 0.063 T during the operation. The saturation flux density of L_{o} core is 0.390 T , so that the core will not saturate throughout the operation. The amplitude of $\Delta B_{L_{o}}$ is;

$$
\begin{equation*}
\text { 2. } \Delta B_{L_{o}}=\left(\frac{V_{L_{o}}}{n_{L_{o}} \cdot A_{e, L_{o}}}\right)\left(D T_{s}\right) . \tag{5.28}
\end{equation*}
$$

The voltage across the output filter inductor, $V_{L_{o}}$ is -60 V . Since we are interested in the magnitude of $\Delta B_{L_{o}}$, one can take $V_{L_{o}}$ as 60 V . The effective magnetic cross section of L_{o} core, $A_{e, L_{o}}$ is found as $280 \mathrm{~mm}^{2}$ from datasheet [31]. Inserting these numerical value into (5.20) and recalling that $\mathrm{D}=0.338$ and $\mathrm{T}_{\mathrm{s}}=10 \mu \mathrm{~s}$ for the operation one obtains $\Delta B_{L_{o}}$ as;

$$
\begin{gather*}
\Delta B_{L_{o}}=0.5 \cdot\left(\frac{60}{19 \cdot 280 \mathrm{~mm}^{2}}\right)(0.338 \cdot 10 \mu \mathrm{~s}) \tag{5.29}\\
\Delta B_{L_{o}}=0.019 \mathrm{~T}
\end{gather*}
$$

Referring to the "Core Loss vs. AC Field Flux Density Curve" graph provided by the manufacturer, the core loss/volume of $\mathrm{L}_{\mathrm{o}}, P_{L_{o}, c / v}$ is $5 \mathrm{~kW} / \mathrm{m}^{3}$. The volume of the core, $V_{e, L_{o}}$ is found to be $35600 \mathrm{~mm}^{3}$ from datasheet. Hence the total core loss of $L_{o}, P_{L_{0}, \text { core }}$ is;

$$
\begin{gather*}
P_{L_{o}, c o r e}=P_{L_{o}, c / v} \cdot V_{e, L_{o}} \tag{5.30}\\
P_{L_{o}, \text { core }}=\left(5 \mathrm{~kW} / \mathrm{m}^{3}\right) \cdot\left(35600 \mathrm{~mm}^{3}\right)=0.178 \mathrm{~W} .
\end{gather*}
$$

The windings of the inductor are wound with AWG16 copper wire whose resistance is $0.0132 \Omega / \mathrm{m}$. The effective turn length of the coil former, $l_{n, L_{o}}$ is 96 mm and 19 turns are wounded [31]. Recalling that two copper wires are paralleled for the winding, so that dc resistance of the inductor is;

$$
\begin{equation*}
R_{D C, L_{o}}=\left[(0.0132 \Omega / m) \cdot l_{n, L_{o}} \cdot n_{L_{o}}\right] / 2=12.1 \mathrm{~m} \Omega \tag{5.31}
\end{equation*}
$$

From the dowell's curve the ratio of ac resistance to dc resistance is found as 13 , yielding that $R_{A C, L_{o}}=156.17 \mathrm{~m} \Omega$ [19]. The copper loss of the inductor can be found as;

$$
\begin{equation*}
P_{L_{o}, \text { copper }}=R_{D C, L_{o}} \cdot I_{L_{o}(\text { avg })}^{2}+R_{A C, L_{o}} \cdot I_{L_{o}(a c-r m s)}^{2} \tag{5.32}
\end{equation*}
$$

where

$$
\begin{gather*}
I_{L_{o}(a v g)}=\frac{I_{L_{o}(\max)}+I_{L_{o}(\min)}}{2}=\frac{5.3+0.68}{2}=2.99 \mathrm{~A} \tag{5.33}\\
I_{L_{o}(a c-r m s)}=\frac{\Delta I_{L_{o}(p p)}}{2 \sqrt{3}}=\frac{5.3-0.68}{2 \sqrt{3}}=1.34 \mathrm{~A}
\end{gather*}
$$

Using the resistance and current values determined, total copper loss of the output inductor is;

$$
\begin{equation*}
P_{L_{o}, \text { copper }}=0.388 \mathrm{~W} . \tag{5.34}
\end{equation*}
$$

Hence the total power loss of the output inductor is;

$$
\begin{equation*}
P_{L_{o}}=P_{L_{o}, \text { core }}+P_{L_{o}, \text { copper }}=0.566 \mathrm{~W} . \tag{5.35}
\end{equation*}
$$

5.4.5 Power Loss Calculation of the Isolation Transformer from the Experimenatl Results

The transformer loss is composed of the core loss and the copper loss. For the isolation transformer OR45530 R from Magnetics Company is used [32]. The
primary side and the secondary side of the isolation transformer have 11 turns of AWG12 wire.

The amplitude of ac flux density change, $\Delta B_{T R}$ must be determined in order to calculate the core loss of the transformer. The amplitude of $\Delta B_{T R}$ is given as;

$$
\begin{equation*}
\Delta B_{T R}=\frac{\lambda}{2 \cdot n_{p r} \cdot A_{c}} . \tag{5.36}
\end{equation*}
$$

In (5.36), λ represents the volt-seconds applied to the transformer during the positive portion of the transformer input voltage waveform. Transformer input voltage waveform is 90 V for a time duration of $6.62 \mu \mathrm{~s}$. Hence the volt-seconds applied to the transformer is;

$$
\lambda=595.8 \cdot 10^{-6} V \cdot s .
$$

In (5.36), $n_{p r}$ stands for primary number of turns, which is 11 and A_{c} is the effective magnetic cross sectional are of the transformer core, which is found to be $420 \mathrm{~mm}^{2}$ from the "Magnetics Ferrite Cores Catalog". Hence the amplitude of $(\Delta B)_{T R}$ is;

$$
\begin{equation*}
\Delta B_{T R}=\frac{595.8 \cdot 10^{-6}}{2 \cdot 11 \cdot 420 \cdot 10^{-6}}=0.064 T \tag{5.37}
\end{equation*}
$$

The core loss of the transformer can be determined from the "Core Loss vs. Flux Density" curve given in Magnetics Ferrite Materials Specification Catalog. The core loss/ volume of the transformer core, $P_{T R, c / v}$ is found as $15 \mathrm{mw} / \mathrm{cm}^{3}$ [33]. The volume of the transformer core, $V_{c, T R}$ is given as $52 \mathrm{~cm}^{3}$ in the datasheet. Hence the core loss of the transformer is calculated as;

$$
\begin{gather*}
P_{T R, \text { core }}=P_{T R, c / v} \cdot V_{c, T R} \tag{5.38}\\
P_{T R, \text { core }}=\left(20.74 \mathrm{~mW} / \mathrm{cm}^{3}\right) \cdot\left(52 \mathrm{~cm}^{3}\right)=1.08 \mathrm{~W}
\end{gather*}
$$

It is now necessary to calculate the copper loss of the transformer. The effective turn length of the coil former used for the transformer core, $l_{n, T R}$ is
11.38 cm . The resistance of an AWG12 wire is $0.00521 \Omega / \mathrm{m}$. Hence the dc resistance of the transformer primary and secondary side is;

$$
\begin{equation*}
R_{D C, T R}=\left[(0.00521 \Omega / m) \cdot l_{n, T R} \cdot n_{p r}\right]=6.5 \mathrm{~m} \Omega \tag{5.39}
\end{equation*}
$$

From the Dowell's curve the ratio of ac resistance to dc resistance is found as 7, yielding that $R_{A C, T R}=45.5 \mathrm{~m} \Omega$ [19]. The copper loss of the transformer is only due to its ac resistance since the average current passing through the transformer over one switching period is zero. Hence, considering that primary and secondary sides have equal number of turns, the copper loss of the transformer can be determined as;

$$
\begin{equation*}
P_{T R, \text { copper }}=2 \cdot R_{A C, T R} \cdot I_{T R(a c-r m s)}^{2} . \tag{5.40}
\end{equation*}
$$

Referring to Figure 5-32, the RMS current of the transformer is calculated as 3.28 A, yielding;

$$
\begin{equation*}
P_{T R, \text { copper }}=2 \cdot 45.5 \cdot 10^{-3} \cdot 3.27^{2}=0.979 \mathrm{~W} . \tag{5.41}
\end{equation*}
$$

Hence the total power loss of the isolation transformer is;

$$
\begin{equation*}
P_{T R}=P_{T R, \text { core }}+P_{T R, \text { copper }}=2.06 \mathrm{~W} . \tag{5.42}
\end{equation*}
$$

5.4.6 Comparison of the Measured and Calculated Efficiency of the Prototype Converter

The power dissipation of each element in Z -source $\mathrm{dc} / \mathrm{dc}$ converter is calculated in the previous part. Hence the efficiency of the converter can be determined by summing up the calculated power dissipations of each element. Note that the Z-source capacitor and inductor dissipations must be multiplied by 2 . Moreover the switch (MOSFET) and rectification diodes power dissipations are needed to be multiplied by four due to the converter topology. Hence the total power dissipation of the converter is;

$$
\begin{gather*}
P_{D I S S, C A L}=4 P_{M O S}+P_{D_{i}}+4 P_{D_{r}}+2 P_{C_{z}}+P_{C_{o}}+2 P_{L_{z}}+P_{L_{o}}+P_{T R} \tag{5.43}\\
P_{D I S S, C A L}=18.5 \mathrm{~W} .
\end{gather*}
$$

For the determination of the measured efficiency, the output voltage and current of the input power supply of Z-source dc/dc converter is recorded. Note that the used power supply is calibrated regularly. Under the operating condition, at which the efficiency analysis is conducted, the output voltage and current of the supply is 30 V and 6.80 A . The output voltage of the Z-source dc/dc converter is set to 60 V under full-load, 3 A . Hence the measured efficiency of Z-source dc/dc converter is;

$$
\begin{gather*}
\eta=\frac{V_{\text {out }} \cdot I_{\text {out }}}{V_{\text {in }} \cdot I_{\text {out }}} \times 100 \% \tag{5.44}\\
\eta=\frac{60 \mathrm{~V} \cdot 3 \mathrm{~A}}{30 \mathrm{~V} \cdot 6.8 \mathrm{~A}} \times 100 \%=88.24 \% \\
P_{\text {DISS,MEAS }}=24 \mathrm{~W}
\end{gather*}
$$

There is slight difference between the measured and calculated power dissipation. This might be due to ringing phenomena observed on the rectifier diodes. Ringing phenomena observed during the switching instants might cause addition power dissipation which is not taken into consideration in the analytical calculation of efficiency. Moreover, the resistances of the wires wound around the inductor and transformer cores increase as the temperature of the wires increase. This causes additional copper loss power dissipation on inductors and transformer. Finally the theoretical calculation of turn-on and turn-off time does not give the exact value of the measured turn-on and turn-off times. The theoretical calculation does not take the package leakage inductance of the MOSFET which slows down the turn-on and turnoff transitions. Slower turn-on and turn-off transitions will cause larger switching losses which in turn decrease the efficiency of the converter.

CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1 Conclusion

In this work, the design and implementation of a Z-source full-bridge dc/dc converter is focused. Although the full-bridge structure is buck derived topology, it is possible to boost the input voltage using Z-source network impedance between the source power supply and full-bridge part.

The CCM operation of Z-source dc/dc converter has been analyzed before. However the DCM-2 operation of the converter was not dealt with before this thesis. The input-output voltage relationships, the voltage and current waveforms of each element in the converter structure in DCM-2 operations are provided in Chapter 2 within the scope of this work. The mathematical analysis of the component waveforms are verified by the simulation results. Furthermore, a prototype circuit is implemented so as to make a comparison of the theoretical analysis with the practical results. The inductor, capacitor and switch current and voltage waveforms obtained by the prototype converter closely match with the simulation results. However there is slight difference for the rectifier diode voltage and current waveforms. Throughout the analysis and simulation the components are assumed to be ideal. However, the capacitor effective in reverse recovery of the rectifier diode and the leakage inductance of the isolation transformer cause ringing in the rectifier diode voltage waveform. Despite the ringing phenomena, output voltage and current waveforms
obtained during the implementation are satisfactory. Also, some voltage spikes are observed in voltage waveforms of the switching elements. It is known that the stray inductances in the prototype converter can cause such voltage spikes. However spikes do not pose threat for the voltage breakdown of the elements.

For the controller design aspect of the converter, the dynamic model of the converter is derived for both CCM and DCM-2 operations. The necessary transfer functions, such as duty factor-to-output voltage $G_{v / d}(s)$ and input voltage-to-output voltage $G_{v / v_{s}}(s)$, are derived for both CCM and DCM-2 operations. The derived transfer functions are verified with the simulation results. In the design process it is realized that the controller design of the Z -source $\mathrm{dc} / \mathrm{dc}$ converter is more challenging relative to other well known converter topologies. The transfer function of Z-source dc/dc converter contains four poles since it has four energy storing elements in its structure. In addition the converter's transfer function contains a right half plane zero, which causes unexpected responses and slows down the dynamic response of the converter. In many converter topologies the transfer functions of the converters have two poles which make it easier to design a controller.

Current mode control is implemented for the prototype converter, such control has not been considered before and hence reported so far. The output voltage response does not involve continuous oscillations, but during the transitional period, it exhibits damped oscillations for a limited time against a step disturbance in input voltage or output loading. During the experiments conducted on the prototype it is observed that such damped oscillations in the output voltage exists and lasts at most 100 ms and later the output voltage settles at exactly the desired voltage. The damped oscillation can be suppressed to some extent by changing the pole-zero locations of the controller. However, this will worsen the dynamic response of the converter, settling time and overshoot. Since, no specs are imposed on the dynamic response of the converter, it is preferred to keep the settling time and overshoot as low as possible with a trade of a low level damped oscillatory response.

6.2 Future Works

In the mathematical analysis, all components in Z-source converter are assumed to be ideal. The parasitic components, such as capacitor ESRs, diode on state voltage drops, on state resistances of MOSFETs, leakage inductance of the transformer and resistance of the inductors can be added to the mathematical analysis so as to obtain a more realistic model of the converter.

In this work, the input diode current is assumed to be non-zero at all times. However in DCM-3 operation the input diode current falls to zero. DCM-3 operation can be analyzed in future research. For this case, it will be really difficult to follow an analytical approach, since there will be more than three different states of the converter. Hence, a numerical or time domain simulation based approach can be adopted to obtain the transfer function of the converter in DCM-3 operation. Detailed information about these approaches can be found in the literature [21]-[23].

The input diode among the other elements in the converter causes the highest power dissipation. MOSFET can be used instead of input diode so as to increase the efficiency of the converter. Furthermore, a Z-source resonant dc/dc converter topology can be implemented for future research. Thus, the efficiency of the converter can be increased and the energy storing components of the converter can be decreased in physical sizes.

Finally, gain scheduling approach can be implemented for the control purposes of Z-source converter. Since Z-source converter's transfer function has 4 poles making it harder to design a controller exhibiting the same performance at every operating point, a family of PI controllers can be designed and implemented each of which provides satisfactory control for different operating points.

REFERENCES

[1]: Ned Mohan, "Power Electronics: Converters, Applications, and Design", 3rd edition, Publisher: Wiley 2002-10-10 ISBN 0471226939
[2]: Fuat Onur Bağlan, "Design Of an Eductional Purpose Multifunctional DC/DC Converter Board", Master of Science Thesis Submitted to METU, November 2008
[3]: P. Kim, S. Choi and J. Kim, "An Inductorless Asymmetrical ZVS Full Bridge Converter for Step-up Application wit Wide Input Voltage Range", IEE Energy Conversion, Congress and Exposition, ECCE, pp. 1945, Atlanta USA, 12-16 Sept. 2010
[4]: K.B.Park, C.E.Kim,G.W.Moon, and M.J.Yoon, "Voltage Oscillation Reduction Techniques for Phase-Shift Full-Bridge Converter," IEEE Transactions on Industrial Electronics, Oct. 2007
[5]: Guan-Chyun Hsieh and Tuzng-Hang Yang, "Step-Up ZVS Full-Bridge Converter with Loss Reduction by Forward Energy-Delivered Circuit", Vehicle Power and Propulsion Conference, VPPC '08. IEEE, 3-5 Sept. 2008
[6]: Lizhi Zhu, "A Novel Soft-Commutating Isolated Boost Full-Bridge ZVS-PWM DC-DC Converter for Bidirectional High Power Applications," IEEE Transactions, Power Electronics, March 2006
[7]: Fang Zheng Peng, Honnyong Cha, Dong-Wook Yoo, "Distributed Impedance Network (Z-Network) DC-DC Converter" IEEE Transactions on Power Electronics, Vol. 25, No. 11, November 2010
[8]: Fang Zheng Peng, "Z-Source Inverter," IEEE Transaction on Industry Applications, Vol.39, No.2, April 2003
[9]: Fang Zheng Peng, "Z-Source Networks for Power Conversion" Applied Power Electronics Conference and Exposition, Feb. 2008
[10]: Xu-Peng Fang, "Three-Phase Z-Source AC-AC Converter for Motor Drives", Power Electronics and Motion Control Conference, 2006. IPEMC 2006. CES/IEEE 5th International, Aug. 2006
[11]: Honnyon Cha, Fang Z.Peng and Dongwook Yoo, "Z-source Resonant DC-DC Converter for Wide Input Voltage and Load Variation", International Power Electronics Conference, 2010
[12]: Xupeng Fang, Xingquan Ji, "Bidirectional Power Flow Z-Source DC-DC Converter", IEEE Vehicle and Propulsion Conference (VPPC), Sep. 2008
[13]: Ji Zhang, Jing Ge, "Analysis Z-Source DC-DC Converter in Discontinuous Current Mode", 2010
[14]: Çağdaş Pekuz, "Z-Source, Full Bridge DC/DC Converter", Master of Science Thesis Submitted to METU, December 2010
[15]: Indrek Roasto, Dmitri Vinnikov, "Analysis and Evaluation of PWM and PSM Shoot-Through Control Methods for Voltage-Fed qZSI Based DC/DC

Converters", $14^{\text {th }}$ International Power Electronics and Motion Control Conference, EPE-PEMC 2010
[16]: Robert Warren Erickson, Dragan Maksimovic Springer, "The Fundamentals of Power Electronics", 2001 ISBN 0-7923-7270-0
[17]: Katsuhiko Ogata, "Modern Control Engineering", $4^{\text {th }}$ Edition 2002
[18]: Mustafa Tufan Ayhan, "Design and Implementation of Coupled Inductor Cuk Converter Operating in Continuous Conduction Mode", Master of Science Thesis Submitted to METU, December 2011
[19]: P.L. Dowell, "Effects of Eddy Currents in Transformer Windings," Proceeding IEE (UK), Vol.113, No.8, August 1966
[20]: Jess Brown, "Power MOSFET Basics: Understanding Gate Charge and Using it to Assess Switching Performance" VISHAY AN608, December 2004
[21]: D. Maksimovic, "Automated Small-Signal Analysis of Switching Converters Using a General-Purpose Time-Domain Simulator", Applied Power Electronics Conference, Feb. 1998
[22]: A. Davoudi, "Numerical state-space average-value modeling of PWM DC-DC converters operating in DCM and CCM", IEEE Transaction on Power Electronics, July 2006
[23]: C. Fernandez, "Frequency Response of Switching DC/DC Converters From a Single Simulation in the Time Domain", Applied Power Electronics Conference and Exposition, March 2011

Manufacturer Data

[24]: "IPB065N15N3 G Datasheet", INFINEON, 2010
[25]: "40CTQ150 Datasheet", INTERNATIONAL RECTIFIERS, 2007
[26]: "V60120C Datasheet", VISHAY, 2009
[27]: "C1210X105K1RACTU Datasheet", KEMET, 2006
[28]: "SICSAFCO Catalog pp. 76-77", SICSAFCO, 2009
[29]: "ETD59/31/22 Datasheet", EPCOS, 2006
[30]: "SIFERRIT MATERIAL N87 Datasheet", EPCOS, 2006
[31]: "ETD54/28/19 Datasheet", EPCOS, 2006
[32]: "MAGNETICS Short Form Catalog pp. 19-20", MAGNETICS, 2009
[33]: "MAGNETICS Materials-Section-3 pp. 1-5", MAGNETICS, 2009

APPENDIX A

CALCULATION OF PARTIAL DERIVATIVES

All the derivatives are taken using MATLAB.

$$
\begin{align*}
& \frac{1}{r_{1}}=\left.\frac{\partial f_{1}\left(v_{1}, V_{3}, D\right)}{\partial v_{1}}\right|_{v_{1}=V_{1}}=-\frac{(1-D)^{2} T_{s}}{2(1-2 D) D L_{o}} . \tag{A.1}\\
& g_{1}=\left.\frac{\partial f_{1}\left(V_{1}, v_{3}, D\right)}{\partial v_{3}}\right|_{v_{3}=V_{3}}= \tag{A.2}
\end{align*}
$$

$$
\frac{(1-D)^{2} T_{s}}{2(1-2 D) L_{o}\left[0.5 D+0.5-0.5 \sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right]}
$$

$$
\begin{equation*}
j_{1}=\left.\frac{\partial f_{1}\left(V_{1}, V_{3}, d\right)}{\partial d}\right|_{d=D}= \tag{A.3}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{(1-D) T_{s} V_{1}}{(1-2 D) D L_{o}}-\frac{(1-D)^{2} T_{s} V_{1}}{(1-2 D)^{2} D L_{o}}+\frac{(1-D)^{2} T_{s} V_{1}}{2(1-2 D) D^{2} L_{o}} \\
& -\frac{(1-D) T_{s} V_{3}}{(1-2 D) L_{o}\left[0.5 D+0.5-0.5 \sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{(1-D)^{2} T_{s} V_{3}}{(1-2 D)^{2} L_{o}\left[0.5 D+0.5-0.5 \sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right.}\right] \\
& -\frac{(1-D)^{2} T_{s} V_{3}\left[0.5+0.5 \frac{1-D}{\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}}\right]}{2(1-2 D) L_{o}\left[0.5 D+0.5-0.5 \sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right.}
\end{aligned}
$$

$$
\begin{equation*}
\frac{1}{r_{2}}=\left.\frac{\partial f_{2}\left(v_{2}, V_{3}, D\right)}{\partial v_{2}}\right|_{v_{2}=V_{2}}= \tag{A.4}
\end{equation*}
$$

$$
\frac{\left[\frac{D(1-D)}{1-2 D}-0.25\left(D-1+\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right)\right] T_{s}}{L_{o}}
$$

$$
\begin{equation*}
g_{2}=\left.\frac{\partial f_{2}\left(V_{2}, v_{3}, D\right)}{\partial v_{3}}\right|_{v_{3}=V_{3}}= \tag{A.5}
\end{equation*}
$$

$$
\frac{\left[\frac{D(1-D)}{1-2 D}-0.25\left(D-1+\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right)\right](1-D) T_{s}}{0.5 L_{o}\left(D-1+\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right)}
$$

$$
\begin{equation*}
j_{2}=\left.\frac{\partial f_{2}\left(V_{2}, V_{3}, d\right)}{\partial d}\right|_{d=D}= \tag{A.6}
\end{equation*}
$$

$$
\frac{\left[1+\frac{2 D(1-D)}{(1-2 D)^{2}}-0.25\left(1+\frac{D-1}{\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}}\right)\right] T_{s} V_{2}}{L_{o}}
$$

$$
\begin{align*}
& \left.+\frac{\left[1+\frac{2 D(1-D)}{(1-2 D)^{2}}-0.25\left(1+\frac{D-1}{\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}}\right)\right](1-D) T_{s} V_{3}}{L_{o}\left[0.5 D+0.5-0.5 \sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right.}\right] \\
& -\frac{\left[\frac{D(1-D)}{(1-2 D)}-0.25\left(D-1+\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right)\right] T_{s} V_{3}}{L_{o}\left[0.5 D+0.5-0.5 \sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right]} \\
& -\frac{\left[\frac{D(1-D)}{(1-2 D)}-0.25\left(D-1+\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right)\right]\left[1-\frac{D-1}{\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}}\right] 0.5(1-D) T_{s} V_{3}}{L_{o}\left[0.5 D+0.5-0.5 \sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right]^{2}} . \\
& \frac{1}{r_{3}}=\left.\frac{\partial f_{3}\left(v_{3}, D\right)}{\partial v_{3}}\right|_{v_{3}=V_{3}}= \tag{A.7}\\
& \frac{0.125\left(1-D+\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right)\left(D-1+\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right) T_{s}}{-L_{o}\left[0.5 D+0.5-0.5 \sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right]} . \\
& j_{3}=\left.\frac{\partial f_{3}\left(V_{3}, d\right)}{\partial d}\right|_{d=D}= \tag{A.8}\\
& \frac{\left[1+\frac{1-D}{\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}}\right]\left[D-1+\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right] T_{s} V_{3}}{4 L_{o}\left[D+1-\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right]}
\end{align*}
$$

$$
\begin{gathered}
+\frac{\left[1-D+\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right]\left[1+\frac{D-1}{\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}}\right] T_{s} V_{3}}{4 L_{o}\left[D+1-\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right]} \\
+\frac{\left[1-D+\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right]\left[D-1+\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right]\left[1-\frac{D-1}{\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}}\right] T_{s} V_{3}}{4\left(L_{o}\left[D+1-\sqrt{(1-D)^{2}+\frac{8 L_{o}}{R T_{s}}}\right]\right)^{2}} .
\end{gathered}
$$

APPENDIX B

PROTOTYPE CONVERTER CIRCUIT SCHEMATICS

Figure B-1 Sheet 1 of the prototype converter circuit schematics

Figure B-2 Sheet 2 of the prototype converter circuit schematics

Figure B-3 Sheet 3 of the prototype converter circuit schematics

Figure B-4 Sheet 4 of the prototype converter circuit schematics

APPENDIX C

PROTOTYPE CONVERTER CIRCUIT LAYOUT

Figure C-1 Top side layout of the prototype converter

Figure C-2 Bottom side layout of the prototype converter

