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ABSTRACT 

 
AN IMPLEMENTATION OF 3D SLAM WITH PLANAR SEGMENTS 

 
 

Turunç, Çağrı 

M. S., Department of Electrical and Electronics Engineering 

Supervisor      : Assoc. Prof. Dr. İlkay Ulusoy 

 

September 2012, 222 pages 

 
 

Localization and mapping are vital capabilities for a mobile robot. These two 

capabilities strongly depend on each other and simultaneously executing both of 

these operations is called SLAM (Simultaneous Localization and Mapping). SLAM 

problem requires the environment to be represented with an abstract mapping 

model. It is possible to construct a map from point cloud of environment via 

scanner sensor systems. On the other hand, extracting higher level of features from 

point clouds and using these extracted features as an input for mapping system is 

also a possible solution for SLAM. 

In this work, a 4D feature based EKF SLAM system is constructed and open form of 

equations of algorithm are presented. The algorithm is able to use center of mass 

and direction of features as input parameters and executes EKF SLAM via these 

parameters. Performance of 4D feature based EKF SLAM was examined and 

compared with 3D EKF SLAM via monte-carlo simulations. By this way; it is believed 

that, contribution of adding a direction vector to 3D features is investigated and 

illustrated via graphs of monte-carlo simulations. 

At the second part of the work, a scanner sensor system with IR distance finder is 

designed and constructed. An algorithm was presented to extract planar features 

from data collected by sensor system. A noise model was proposed for output 

features of sensor and 4D EKF SLAM algorithm was executed via extracted features 
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of scanner system. By this way, performance of 4D EKF SLAM algorithm is tested 

with real sensor data and output results are compared with 3D features. So in this 

work, contribution of using 4D features instead of 3D ones was examined via 

comparing performance of 3D and 4D algorithms with simulation results and real 

sensor data. 

 
 
Keywords: Feature Based EKF SLAM, Center Point and Direction SLAM, Plane 
Segment Extraction, Range Scanner Sensor Modeling 
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ÖZ 

 
DÜZLEM KESİTLERİ İLE 3D SLAM UYGULAMASI 

 
 

Turunç, Çağrı 

YüksekLisans, ElektrikElektronikMühendisligiBölümü 

TezYöneticisi: Doç. Dr. lkay Ulusoy 

 

Eylül 2012, 222 sayfa 

 
 

Kendini konumlandırma ve haritalama mobil robotların önemli özelliklerindendir. Bu 

iki özellik birbiriyle ciddi biçimde ilintilidir ve her ikisini birlikte çalıştırma işlemi Eş 

Zamanlı Konumlandırma ve Haritalama (SLAM) şeklinde adlandırılır. SLAM problem 

çevrenin soyut bir modelle haritalandırılmasını gerektirir. Tarayıcı sensor sistemleri 

tarafından oluşturulmuş bir nokta kümesi haritalama amacıyla kullanılabilir. Bununla 

birlikte nokta kümesinden daha üst seviyede işaretler çıkarılması ve bu işaretlerin 

haritalama sisteminde girdi olarak kullanılması da SLAM problemine çözüm olarak 

kullanılabilir. 

Bu çalışmada 4B işaret tabanlı EKF SLAM sistemi oluşturulmuş ve sistemin 

denklemleri açık biçimleriyle verilmiştir. Yazılan algoritma nesnelerin kütle merkezi 

ve yön bilgisini girdi olarak kullanmakta ve bu şekilde EKF SLAM algoritmasını 

koşabilmektedir. 4B işaret tabanlı EKF SLAM algoritması detaylı biçimde incelenmiş 

ve monte-carlo analiz yöntemi kullanılarak 3B EKF SLAM algoritmalarıyla 

kıyaslanmıştır. Böylece 3B işaretlere yön bilgisi eklenmesinin ne tür bir gelişme 

sağladığı incelenmiş ve monte-carlo analizi grafikleriyle görselleştirilmiştir. 

Çalışmanın ikinci bölümünde, bir tarayıcı sensör sistemi tasarlanmış ve üretilmiştir. 

Sistemin oluşturduğu nokta kümesinden düzlemsel işaret çekilmesi için bir 

algoritma sunulmuş, uygun bir hata modeli geliştirilmiş ve bu modelle sensörden 

alınan veri kullanılarak 4B EKF SLAM algoritması koşturulmuştur. Son adımda 4B EKF 
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SLAM algoritmasın gerçek veri ile çalıştırılarak sonuçları 3B algoritma sonuçlarıyla 

karşılaştırmalı olarak sunulmuştur. Böylece bu çalışmada, 4B işaret kullanılarak 

sağlanan gelişme simülasyon ortamı ve gerçek veri ile 3B sonuçlarla karşılaştırılarak 

incelenmiştir. 

 
 
Anahtar Kelimeler: İşaret Tabanlı EKF SLAM, Orta Nokta ve Yön ile SLAM, Düzlem 
Kesitleri Çıkarma, Uzaklık Tarayıcı Sensör Modelleme.  
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CHAPTER 1 
 

 

 

INTRODUCTION 
 

 

 

 

 

 

 

1.1 Problem Definition and Motivation 

Using autonomous or remote controlled systems can remove humans from 

dangerous conditions; accomplish operations in places that humans cannot even 

survive and decrease the cost or rate of the defects in several processes. This 

property makes the remote systems a good choice for industry, defense systems, 

aerospace systems, underground and underwater applications. Efficient use of 

mobile agents needs them to be localized in the environment that they are used. 

For the cases that the map of the environment is unknown, a remote system must 

also be able to construct the map of its environment, using its sensors. 

Building the map of an unknown environment and localizing a robot in a known 

map are two fundamental issues in mobile robotics. Looking the solution of both of 

these two issues is called Simultaneous Localization and Mapping, in short SLAM. To 

solve this problem the robot must incrementally construct the map of the 

environment while localizing itself in this recently constructed map. In other words, 

SLAM problem asks if it is possible to construct a consistent map of the 

environment with iterative methods while localizing the place of the robot in this 

semi-constructed map. 

SLAM can be used both at indoor and outdoor environments. Constructing the map 

of a structured environment -such as the interior of a building- is a good example 

for indoor SLAM. Such application can be used in different areas, for example 
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Minerva[1] is an autonomous robot that is used as a tour guide in American History 

Museum. This kind of autonomous robots can be used to construct the map of 

buildings. Besides the usage of tour guiding, SLAM can be used in different kinds of 

constructed or unconstructed closed environments, which are dangerous for 

humans. Building the maps of mines, caves, sewer systems; searching damaged 

constructions or places that humans cannot survive can be achieved by 

autonomous mobile robots. In addition, mobile robots can be used to map outdoor 

areas. Exploration of outdoor terrain with autonomous land or air vehicles and 

underwater applications of SLAM are used in several areas. 

Various types of solutions for SLAM problem are proposed throughout the last 

decades. Each SLAM approach has advantages and disadvantages for different kinds 

of sensors and environmental conditions. Different equations, algorithms and 

sensors are used for different requirements. 

Probabilistic methods are widely used in SLAM. Probabilistic robotics is relatively a 

new approach to robotics which pays tribute to uncertainty in the placement and 

actions of robot. The main idea in probabilistic robotics is to represent the 

uncertainty explicitly using mathematical functions.[2] In probabilistic perception, 

the belief of positions of surroundings and the belief of the agent are not kept as a 

single point existence, but they are kept as probability distribution functions the in 

whole space. 

This thesis presents an EKF SLAM algorithm which uses center of mass and direction 

information as feature parameters. Point clouds are processed to extract planar 

features, just like done in many other works about feature based EKF SLAM. In 

addition to this, another EKF SLAM algorithm which uses 3D point landmarks is 

presented. Each algorithm is executed both in simulation environment and with real 

data. By this way several analysis are presented for 3D EKF SLAM and contribution 

of adding a direction vector to features is emphasized. A custom range scanner 

system –named IRSCAN- is designed and fully constructed for this work. The 

experiments in real environment are conducted with IRSCAN, thus the thesis 
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presents feature extraction method and a noise model for this custom scanner 

system. The following two sections (Section 1.2 – Section 1.3) provide deeper 

information about the state of the art and contributions of this thesis. 

1.2 Literature Survey 

State-of-the-art approaches for metric localization and mapping are probabilistic 

methods, explicitly considering uncertainty information modeling sensor noise and 

imperfections in robot motion. The most important representations used are grid-

based, raw data based or feature-based methods.[3] 

Grid based methods, represent the environment with metric grids and assign a 

number to each grid that represents the probability of being filled or not. Since 

grids directly represent occupancy information, they are known useful methods for 

navigation operations. In their work, Burgard and Thrun[4] proposed a typical 

solution for grid based mapping method. They constructed a tour guiding agent 

with 1 DoF sonar scanner, which constructs 2D grid maps of close door 

environments. When the agent needs to localize itself in a relatively large 

environment, grid based methods suffer from complexity of cross-correlation search 

algorithms. In addition, if the cross-correlation result is multi-model (has more than 

one maximum point) a maximum likelihood search may converge to wrong local 

maxima. These two problems might be addressed by employing a particle based 

localization method in the grid map.[5] A multi robot grid based mapping SLAM 

implementation is proposed by Birk[6] and mapping of an indoor environment with 

six mobile robots is presented in his work. One of the most significant weaknesses 

of grid based mapping SLAM is cycle detection. For large the cycles, the minimal 

search-space may become too great for real-time cross-correlation; on the other 

hand using a tight search space may lead the agent to fail detecting the cycles. 

Additionally, given a large search-space for scan matching, the possibility of multiple 

correlation modes is high, and data association failure becomes increasingly 

likely.[7] 
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The majority of 3D SLAM approaches are implemented with raw data based scan 

alignment method related to Iterative Closest Point algorithm. It has the advantage 

that it solves the data association problem automatically as it directly tries to find 

corresponding points in the raw data.[7] Such method needs no feature extraction 

algorithm since it directly uses scanner data. In his work Surmann[8] created a 

precise 3D map of an indoor environment using a 2 DoF laser scanner system 

integrated with a mobile agent. Similarly Nüchter[9] implemented a variant of 

Iterative Closest Point method to build a mine mapping robot, which use raw sensor 

data with a 6 degrees of freedom agent. However due to its iterative nature the 

above methods are relatively slow and may lead inconsistent maps for cycle 

detection.[7] 

For the feature based methods the assumption is made the environment can be 

modeled by abstract geometric features. Due to the small quantity of parametric 

data required to represent these features, the resulting maps are compact and the 

associated algorithms are efficient in comparison to other approaches. However 

such methods needs a data processing algorithm that extract features and associate 

them with landmarks in the map.[3] The Extended Kalman Filter (EKF) is a widely 

used estimation tool applicable to feature based methods. A drawback of EKF based 

SLAM is its restriction to the Gaussian noise model, but Arras[10] proposed a multi 

hypothesis EKF SLAM model which allows tracking more than one Gaussian noise 

model in the same map. In addition to this, Montemerlo[11] presented a solution 

called FAST SLAM, which integrates particle filter to SLAM problem. By this way, 

position tracking localization and global localization methods are combined to 

provide stronger localization and mapping techniques. 

Several kinds of features can be used for mapping of the environment. Scanner 

based sensor systems creates a point cloud of the environment and different kinds 

of features can be extracted from this point cloud. Guivant[12] used a laser scanner 

sensor to create point features of the interesting points. Lemaire[13] used a 

monocular camera to extract line segments and used these segments as features to 

represent indoor environment. Different kinds of features can already be used 
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depending on the task of the agent. For example Guivant [12] use trees as features 

to create the map of a park. Sunghwan[14] use center points of objects as features. 

In addition to that different kinds of geometric shapes such as cylinders or spheres 

can also be used as features to represent the map.[15] For example Berger[16]  use 

a similar method used in this work and they represent the environment with plane 

segments which are integration of a 3D point and three normal vectors. In his work, 

Newman[17] represent the environment with planes via representing the 

uncertainty with SP-model. For visual SLAM Gee[18] collects visual point landmarks 

and to obtain a higher level structure, he place the landmarks on a plane which is 

represented by a 9D state vector that is composed of an origin and two vectors that 

lies on the plane. Similarly Kwon[19] used a mono camera system and added a 

normal vector to point landmarks to execute SLAM.  Finally Weingarten[3] 

presented an influencing example of utilization of 3D features that, 3D infinite 

planes and 3D planar segments are used as features via SP-model for feature based 

3D EKF SLAM. When taking the step from 2D to 3D what was a line in 2D often 

becomes a plane in 3D.[20] Actually using higher level of features for EKF SLAM is a 

straight forward extension of 2D EKF SLAM, but added significant complexity due to 

the vehicle and mapping models.[21] 

1.3 Thesis Contribution 

The major contributions of this thesis are related with constructing and executing 

an EKF SLAM algorithm with 3D planar features, constructing a scanner based 

sensor system named IRSCAN, presenting an appropriate feature extraction 

algorithm and a valid noise model for IRSCAN and executing EKF SLAM algorithm via 

data collected by this sensor system. By this way it is believed that a mathematical 

solution to SLAM problem is developed similar to the solutions based on Extended 

Kalman Filter in the literature. The relation between parameters of SLAM and 

algorithm performance is analyzed and illustrated with graphical representations. 

Two algorithms are coded and compared for EKF SLAM. The first algorithm uses 

direction vectors in addition to 3D center of mass information, while the latter one 

does not use any direction vector or plane orientation information. Since both 
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algorithms run in similar simulation environment, the contribution of adding a 

direction vector to EKF SLAM is examined via monte-carlo analysis. 

As stated previously a custom scanner based sensor system named IRSCAN is 

constructed for this work. A feature extraction algorithm and a valid noise model 

are presented for IRSCAN and the extracted features are used for real experiments. 

Since IRSCAN provides a noisy point cloud relative to the other laser scanner 

systems, the thesis also provides a solution for 3D planar feature extraction and EKF 

SLAM implementation with a noisy sensor system. The principal contributions of the 

thesis are as follows: 

 An IR scanner system that –named IRSCAN- constructs distance image and 

point cloud of the surroundings is designed, fully constructed and a noise 

model that can be used in EKF SLAM is presented for the sensor system. 

 Widely used edge detection methods were executed (via MatLab) on the 

data collected by IRSCAN. By this way, points belonging to the surface of 

different objects are decomposed from other points in the cloud. A plane 

extraction algorithm was executed on the data produced by IRSCAN to 

extract planes from the decomposed data. Additionally, a corner detection 

method using edges of objects is presented for IRSCAN. By this way IRSCAN 

is able to provide data for feature based 3D EKF SLAM with planar segments 

and corner point features. 

 A 3D feature based EKF SLAM algorithm that uses center of mass and 

orientation of planar features as landmarks is presented. The algorithm is 

able to run both in simulation environment and with real sensor data. The 

presented algorithm is an extension of feature based EKF SLAM algorithm 

presented by Thrun[2]. To execute such algorithm, a direction vector is 

added to 3D point features and open forms of EKF SLAM algorithm is 

presented to clarify the method used for this work. 
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 Another EKF SLAM algorithm that uses 3D positions of the point features is 

presented. This algorithm is also able to run both in simulation environment 

and with real sensor data. 

 Two methods of EKF SLAM stated above (using plane and point features) are 

executed with real data. To achieve this, data collected by IRSCAN is 

processed to the extract features from the environment. The resulting 

parameters of the features are inserted into EKF SLAM algorithm with the 

presented sensor noise model. Finally the algorithm is executed for each 

data input and the map of the environment is constructed. By this way, it is 

believed that, mechanical, electronics and software design of IRSCAN; the 

presented model of sensor noise for IRSAN; point cloud construction and 

feature extraction algorithms and finally the MATLAB code written for EKF 

SLAM implementation is tested in real environment. Resulting outputs of 

stated process is presented with background truth. 

 A simulation system, that runs the algorithms indicated above, is 

constructed. In the simulation system, variance of control parameters of the 

agent, variance of the sensor system parameters of the agent, 

environmental conditions such as the size of the map, number or type of the 

landmarks can be altered; skills of agent such as scanner range, scanner field 

of view, and locomotion speed can be adjusted. The simulation can be 

executed manually for each set of parameters or able to run monte-carlo 

analysis for different sets of parameters. Resulting outputs of the monte-

carlo runs can be recorded and graphed via MATLAB. 

 Several monte-carlo simulations for different set of parameters were 

executed and the output results of simulations are illustrated. It is believed 

that, output graphs of monte-carlo runs provide valuable information to 

examine effect of parameters of the agent on the performance of EKF SLAM.  
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CHAPTER 2 
 

 

 

2. THEORETICAL BACKGROUND 
 

 

 

 

 

 

2.1 Extended Kalman Filter 

R. E. Kalman published his famous paper in 1960. In his paper he described a 

recursive solution to discrete-data linear filtering problem. Since that time, the 

Kalman filter has been the subject of extensive research and application, 

particularly in the area of autonomous or assisted navigation. The Kalman filter 

provides mathematical equations for computational solution of the least-squares 

method. The filter is powerful since it supports estimations of past and present 

states. The Kalman filter is a set of mathematical equations that provides an 

efficient computational solution. It can do so, even when the precise nature of the 

modeled system is unknown.[22] 

The Kalman filter addresses the general problem of trying to estimate the state of a 

discrete-time controlled process, which is governed by the linear stochastic 

difference equation; 

                       2-1 

 

with a measurement equation; 

             2-2 

 

The random variables    and    represent the process and the measurement noise. 

They are independent, white, and normal probability distributions. 
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The       matrix  , relates the state at time step k to the state at k+1. The       

matrix   relates the control input to the state x. The       matrix   in the 

measurement equation relates the state to the measurement   .[22] 

In short, the Kalman filter is a set of mathematical equations that updates a 

Gaussian distributed probabilistic state to another Gaussian distributed state. The 

filter updates most possible position and distribution parameters for each step. In a 

localization algorithm the filter does such operation in two recursive steps: time 

update and measurement update. 

 

 

Figure 1 – Diagram representation of Kalman filter 

 

 

Equations of time update part are given below; 

 ̂   
      ̂      2-3 

 

    
         

      2-4 

 

Equations of measurement update part are given below; 

      
   

      
   

      
   2-5 

 

 ̂    ̂ 
            ̂ 

   2-6 

 

              
  2-7 
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With a very friendly explanation (2-3) is update of maximum likely point of state, 

relative to control input. This step is linear addition of previous state and change in 

the present state. By this way, new maximum likely point is found for given control 

input. 

When the state is changed relative to the control input, uncertainty of state is 

expected to increase because of added uncertainty from control input. (2-4) is the 

update step comes from uncertainty of control input. It is a linear operation that 

sums previous uncertainty and additional uncertainty. 

(2-5) is Kalman Gain which represents the relation of variance between previous 

step and the next step in terms of the measurement noise. This relation will be used 

in the next equations. 

By (2-6) the final pose of the maximum likely points of the state is found and (2-7) 

updates uncertainty of the final pose. By this way, given the control and 

measurement inputs; Kalman Filter converts previous state and previous 

uncertainty to a new state and a new uncertainty. 

The Kalman filter updates states via linear equations. However, the relation 

between the new state and the control input or the measurement input may be 

nonlinear. Actually for this work, the relation between state and inputs are 

nonlinear for some parts of the equations. So a nonlinear form of the Kalman filter 

is needed to be used. 

An extension of the Kalman filter is called Extended Kalman Filter (EKF), which can 

be applied to nonlinear set of equations. EKF linearizes a set of nonlinear equations 

via Jacobian’s. 

Let f and h be nonlinear function that shows the following relation: 

 ̂       ̂      2-8 

 

 ̂     ̂   2-9 
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By Jacobians; 

        
     

     
 

2-10 

 

 

        
     

     
 

2-11 

 

 

        
     

     
 

2-12 

 

 

        
     

     
 

2-13 

 

 

Here;      and      are used to represent the effect of control and measurement 

noise. The Kalman filter equations can be updated as follows. 

 ̂   
     ̂      2-14 

 

    
         

         
  2-15 

 

Equations of the measurement update are as follows; 

      
   

      
   

         
     2-16 

 

 ̂    ̂ 
           ̂ 

    2-17 

 

              
  2-18 

 

(2-10) is a linearization of the transition between the previous state and the next 

state. 

(2-11) is a linearization of the effect of the control input and the next state. It is 

used to add the effect of control noise. 

(2-12) represents a linearization of the transition between the measurement and 

previous states. 
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Finally (2-13) is a linearization of the transition between the measurement and next 

state. 

By this way all nonlinear equations are transformed to linear ones and Kalman Filter 

as shown in (2-14) – (2-18) can be executed. 

Mathematical functions shown (2-8) – (2-18) will be extensively used in this work. 

Given probabilistic control input for the locomotion system of the agent and 

measurements of the sensor system; above equations provide strong 

transformation between previous pose of the robot and the map to next pose of 

the robot and the map. The reader shall see work of Welch[22] for more detailed 

information about derivation and application of EKF. 

2.2 Probabilistic SLAM 

SLAM is a process that, a mobile agent can build the map of its surroundings while 

localizing its pose in this map. An illustration of SLAM simulation is given below: 

 

 

Figure 2 – An illustration of an agent in SLAM simulation. Steps of the agent is superposed. Figure from [23] 
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In Figure 2; 

 xk: the state describing the pose (both location and orientation) 

 uk: the control vector, applied at time k – 1. Drives the vehicle from xk-1 to xk 

 mi: the actual location of landmark i 

 zik : observation vector taken from the vehicle of the location of the ith 

landmark at time k. 

In explicit form the following vectors may also needed to be used: 

 X0:k = {x0, x1, x2, … , xk} 

Used to describe the history of vehicle locations 

 U0:k = {u1, u2, u3, … , uk} 

Used to describe history of control inputs 

 m = {m1, m2, m3, … , mn} 

Used to describe the pose of all landmarks 

 Z0:k = {z11, z21, z31, … , zn1, z12, z22, z32, … , zn2, … , z1k, z2k, z3k, … , znk} 

Used to describe the history of all observations for all landmarks 

As the reader can verify from Figure 2, there is a gap between the real and the 

belief pose of the landmarks and the agent. Probabilistic SLAM must be able to deal 

with such erroneous mis-posed landmarks and agent. 

In probabilistic SLAM problem, the main task of the system is to calculate 

       |              2-19 

 

for each k times.[7] In other words, probabilistic SLAM is a process that calculates 

the pose of the robot (xk) and the landmarks (m) via sensor readings from 

surroundings (Z0:k), control/sensor inputs of locomotion system of the robot (U0:k) 

and of course initial position of the robot (x0). For each step of robot and for each 

sensor reading, the pose of the robot (xk) and pose of landmarks (m) shall be 

updated. Throughout this process, inputs of the system are sensor readings and 
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control input (and of course initial position). The outputs of the system are belief of 

the robot pose, belief of the landmark poses. 

As it can be verified by the reader, (2-19) has two outputs: robot pose (xk) and 

landmark poses (m). The first output xk, is the solution of localization problem and 

the latter one m is the solution of the mapping problem. On the next chapters, 

these two problems will be discussed. 

2.3 Localization 

SLAM algorithm is mainly composed of two parts: Localization and Mapping. Mobile 

robot localization is the problem of determining the pose of a robot relative to a 

given map of its surroundings. 

This task can be thought as a coordinate transformation operation between the 

map and the agent. The map is a global frame which is independent from the pose 

of robot. Localization is the process of establishing correspondence between the 

map coordinate system and the robot’s local coordinate system. Knowing this 

coordinate transformation enables the robot to express the location of objects of 

interest within its own coordinate frame.[2] In many cases knowing the relative 

position (x, y, z)T and orientation (pitch, yaw, roll) angles is enough to find 

coordinate transformation parameters. Actually localization task itself is finding 

these position and the orientation transfer parameters relative to global map. Once 

these are obtained, all other parameters of transformation matrixes can be 

calculated via simple transformation operations. A graphical representation of 

localization problem for EKF SLAM is illustrated bellow. 
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Figure 3 – Graphical representation of ekf localization. Figure taken from [2] 

 

 

There are two main approaches for localization; incremental localization and global 

localization. Former one assumes that the initial position is known. The robot 

position is then updated using the measurements, while the robot is navigating in 

the environment. This type of localization is also called “position tracking”. 

Global positioning problem is more complicated compared to the former one since 

the initial pose is unknown. In this approach the localization has to be done by 

running a localization algorithm that covers the entire map. Although the latter 

approach does not require the assumption of a pre-known initial position, it has 

high memory and processing requirements. Both of these approaches require the 

map of the environment to be known. Throughout this work incremental location 

approach will be used to execute EKF SLAM. 

Some well-known solutions for localization problem will be discussed in the 

following sections. 
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2.3.1 Dead Reckoning Localization 

Dead reckoning is the simplest localization technique. It use motion model and 

control inputs of the agent and decide a new location for the robot. Even though it 

is easy to execute this localization technique in an algorithm; Dead Reckoning is 

known as useless. Because, it does not provide any feedback for locomotion error. 

So accumulating errors will possibly lead the algorithm to diverge in time. 

Rugged surface, chaotic structure of terrain, uncertainty in vehicle dynamics, wheel 

slip, skidding, sliding, disparity of wheel sizes and model biases etc. lead error in 

belief of vehicle position and direction. Error rate can significantly be degraded via 

an Inertial Navigation System support (INS), however accumulating behavior of 

errors and low frequency faults of motion models cannot be prevented.[2] Due to 

these reasons Dead Reckoning is not a useful option in probabilistic robotics. 

2.3.2 Markov Localization 

The key idea of Markov localization is to compute a probability distribution over all 

possible locations in the environment.            denotes the robot’s belief of 

being at position   at time t.         represents the initial state of knowledge: if the 

robot knows its starting position,         is centered on the correct location as an 

impulse; if the robot has not any knowledge about its initial location,         is 

uniformly distributed to reflect the global uncertainty of the robot (latter case is 

illustrated at Figure 4). 

The belief     is updated when one of the following two actions occurs. First, when 

the agent moves. The robot motion is modeled by conditional probability, denoted 

by     |   .     |    is used to update the belief upon robot motion, 

where           denotes the resulting belief at time  : 

           ∑     |                 

  

 
2-20 

 

 

Here,      |     must be obtained from the model of the robot’s kinematics. 
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The second case of update occurs when the agent use its sensors. Let   denote a 

sensor reading and      |    is the likelihood of perceiving   at position  . When 

sensing  , the belief is updated according to the following rule: 

            
    |              

    
 

2-21 

 

 

Here      is the normalizer that ensures that the integral of belief all over the space 

is 1.[24] 

An illustration of Markov Localization for a 1D environment can be seen bellow: 

 

 

Figure 4 – Markov localization. Robot pose is completely unknown. 

 

 

The figure above shows the belief of a robot at initial position. The map of the 

surroundings is given to the robot for this case and the three doors are the only 

landmarks of this map. Since initial state is unknown, probability density function 

(pdf) of robot position is uniform through the map. Whenever the robot starts to 

move and collects data the graph is updated as shown below: 
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Figure 5 – Markov localization. Robot senses one of the doors. 

 

 

As stated in (2-21) new belief of robot position is multiplication of previous belief 

and the belief comes from the observation. After the sensing step, the robot keeps 

moving as follows: 

 

Figure 6 -Markov Localization. Uncertainity increases as the agent moves. 

 

 

As the robot moves, belief of robot’s position graph also moves. However at this 

step (2-20) holds and certainty of belief of position decreases because of the noise 

of the robot’s locomotion system. Uncertainty will increase until it senses a new 

door: 
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Figure 7 – Markov localization – When the agent senses the second door. 

 

 

Just when the robot senses the new door, the belief will be updated again according 

to (2-21). Final belief will be updated as shown in Figure 7.[25] 

2.3.3 Extended Kalman Filter Localization 

Extended Kalman Filter Localization (EKF Localization) is a special variant of Markov 

Localization. This localization technique is used to find the position and the 

orientation of the agent in a given map. EKF localization represents the belief of 

pose with a Gaussian function in which the mean of belief is    and covariance of 

belief is Σt. In other words, instead of several types of graphs, which are harder to 

parameterize, a set of mean and covariance matrixes are used in EKF localization. 

Equations used in EKF localization are similar to the ones used in Markov 

localization. However forms of pdf used in these equations are restricted with 

Gaussian function with representation         . 

An illustration of EKF localization is as follows: 
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Figure 8 – EKF Localization. Initial pose of agent. 

 

 

In the figure above the Gaussian variance is superposed on the mean of the robot 

position. 

 

 

Figure 9 - EKF localization. Uncertainty grows as the agent moves. 

 

 

(2-20) states variance of the robot position is increasing according to its motion 

model so throughout each step of movement, the uncertainty of robot’s position is 

increasing, as it can be seen on Figure 9.  
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Figure 10 – EKF localization. The agent established contact with landmark. 

 

 

When the robot senses the landmark, it will increase the precision of the belief of 

its location since the true pose of the landmark is known in the given map. Here the 

location cannot be determined with complete certainty, since landmark 

measurement system also has an uncertainty. 

 

 

Figure 11 – EKF localization. The agent loose contact with landmark and keeps moving. 

 

 

Whenever the robot loses contact with the landmark, variance of the agent keeps 

grooving while it moves. 

A variant of EKF localization will be used through this work for localization of agents 

and surroundings. The equations of used variant of EKF localization will be given in 

open form in related sections of this work. 
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2.4 MAPPING 

As stated previously localization is the act of finding coordinates of the agent given 

the coordinates of surroundings. Mapping in EKF SLAM is a similar action. This time 

the coordinate of agent is given and the coordinates of surroundings are asked.  

Maps allow the vehicle to plan its movement within the environment in order to 

achieve its goals. The automatic creation of maps allows the vehicle to model the 

surroundings using its sensors. In some instances, the creation of an accurate map 

of the environment is the goal itself. While in many other circumstances the maps 

are used as a tool for performing other actions. 

Once the position of the agent is given, creation of a map of the environment is a 

simple transformation operation. Given the current position estimate and an 

observation of the environment; the observation can be fused into the existing map 

to create an updated map estimate.[26] 

Feature Based Maps 

Feature maps represent the environment by the global locations and the 

orientations of parametric features. Localization is performed by extracting features 

from the sensed data and finding correspondence with the elements in the map. 

Just after finding correspondence between the sensor data and the previously 

known map landmarks, position of the belief map shall be updated according to 

variance of the sensor and the variance of the previous belief. By this way, 

localization operation becomes a multiple target tracking problem but, unlike 

normal target tracking, the targets are static and the observer is in motion. 

In SLAM a feature can be used as a form of hypothesis about the existence and the 

location of a geometric shape or point in the environment. In feature based maps 

only the features and the accumulated evidence about them are stored. This leads 

to an abstraction of the environment. For example, in a feature map, a point cloud 

of a cylindrical shape can be stored as parameters of the cylinder (center of mass, 

orientation, height and radius). By this way point cloud information collected by 

sensor system is stored into a geometrically meaningful parameter set. Thus, 
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building a feature map can be considered as a form of data compression method. 

The abstraction of the environment could also lead to an understanding of the data 

on a deeper level. This method may be preferred for many cases, since the features 

are more recognizable by humans.[20] 

Ultrasound sensors and laser scanner sensors can be used to create 3D point clouds 

to extract features. The work of Weingarten[27] is a significant example of 

utilization of distance sensors to execute 3D feature based EKF SLAM, that planar 

features are extracted from point clouds to represent environment via infinite 

planes. Mono or stereo camera systems can also be used to extract features to 

represent the environment. Kalay[28] used both mono and stereo camera systems 

to extract interesting points, thus represented the environment via these 3D point 

features. For a stronger representation of the environment, Lemaire [13] used a 

mono camera system to extract line features in a 3D map. An alternative method to 

extract features from the environment is fusing the laser (or sonar) scanner data 

with camera image. Work of Arras[29] is a significant example of fusing a laser 

scanner data and camera data to extract lines in a 2D map. Similarly Biber[30] used 

a 2D laser scanner system and a camera to represent indoor environment with 3D 

vertical planes. Finally Puente[15] used a laser scanner system to create a point 

cloud; segmented the point cloud with visual image segmenting techniques; 

extracted planar, cylindrical and spherical features from the point cloud and placed 

these features in a 3D map to represent the environment (with features those are 

represented with 3D positions and orientations). In all the works stated above, a 

method to extract features from a camera or a scanner system is presented and 

point, line, plane or some higher level features such as spheres or cylinders are used 

to represent the environment in a 2D or 3D map. 

Each feature is entirely defined by its parameter set. For example, a cylindrical 

feature in a 2D map might be defined by              , where   is the feature 

type (cylinder),   is the cylinder radius, and   and   define its 2D position. Only the 

location information is directly useful for localization but the other information 

serves to assist landmark recognition for data association.[7] 
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Feature based maps does not show free space. Instead they only represent 

existence of surroundings with some parameters and this property of feature based 

maps makes them easy to work with. Because, every feature is represented by a set 

of mathematical parameters and once parameter set is chosen effectively, it is 

efficient to work with feature based maps. The maps composed by occupancy 

information usually need more memory since they also store information for free 

space. In addition to this, directly using raw data as a map construction tool (such as 

point cloud) needs excessive amount of memory compared to other methods.[7] 

Different mapping techniques will be compared with feature maps at the following 

section. 

2.4.1 Comparison of Feature Based Mapping with other Mapping Methods 

and Contribution of Using Direction Vector 

Recent work about 3D mapping and localization shows that, extending SLAM 

algorithm to 3D environment is very promising. Such maps can be used for 

visualization of architects, fire-fighters or virtual reality applications. On the other 

hand, even though 2D approaches are easier to deal with and need less power of 

computation, they may fail if the environment is non-planar, sensors are masked by 

a group of objects or if the robot is not restricted to ground plane.[39] Actually it 

can be said that, 3D maps are useful compared to 2D ones since real world itself is a 

3D environment and realistic simulation of the world requires 3D localization and 

mapping for many cases. There are several approaches for 3D mapping of the 

environment. Weingarten[3] states that, most important mapping categories of 

representations are feature-based, grid-based and raw data-based mapping of the 

world. 

Occupancy grids represent a region as a matrix of cells. Each cell describes a small 

rectangular area in the environment, and indicates the probability that, the area is 

occupied or not. Occupancy grids are effective localization method in relatively 

small environments. Filling values for grids does not require significant data 

processing operation and the data collected by sensor system is usually directly 

usable to fill the map. Thus grid maps are effective for multi sensor fusing 
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operations. Occupancy grids also offer an explicit representation of both occupied 

and free space, which is useful for navigation and path planning.[7] 

A significant difficulty about occupancy grids mapping is data association. The cross-

correlation search, within the region of the vehicle pose uncertainty, requires great 

amount of processing power if the search-space is large.[7] The above difficulties, 

makes cycle detection a challenging issue for grid based maps. If the agent just goes 

through a corridor and returns from the same path, the agent can correct its 

odometric error incrementally. However once a cyclic environment is required to be 

mapped, finding a true cross-correlation between the existing point and starting 

point in efficient way is a problematic issue for the algorithm.[2] 

The most significant difficulty with occupancy grids is the tradeoff between grid 

resolution and the computational complexity. Ideally, to capture environmental 

detail and to facilitate accurate pose estimation, the grid size must be as small as 

possible, whereas for feasible computation a larger grid size may be necessary. Also; 

for high resolution grid maps, tasks like path-planning become computationally 

expensive. Methods to obtain variable resolution, and focus CPU resources at 

regions of environmental complexity, have been presented[31] but these 

implementations possess difficulties of their own.[7] 

An alternative approach for mapping for SLAM is using unprocessed raw data. Such 

approach is also called scan correlation or range-image registration. The idea of 

using raw data is to align consecutive scans taken by sensors from the robot and 

estimate the agent’s trajectory while creating a consistent map. A popular variation 

of scan matching method is known as Iterative Closest Point (ICP). ICP looks for 

closest point pairs between two different scans and iteratively minimizes their 

relative transform.[3] 

Feature based maps need the environment to be parameterized, however in some 

cases, the geometric shapes in the environment is difficult to parameterize. This 

property of feature based EKF SLAM makes it weak in unconstructed environment 

such as mines or underwater applications. Thus, using raw data is superior to 
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feature based methods at unstructured environments, because it does not need to 

form sensor data, but directly uses it.[7] On the other hand, -just like grid based 

mapping- scan-matching is a tracking model and due to this reason it does not 

provide strong solution for global localization and creates several problems for cycle 

detection.[3] Additionally, feature based mapping methods stores data in compact 

packages, however the raw data maps stores individual scans and due to this reason 

mapping needs significant amount of memory environments.[20] 

For feature-based approaches, it is assumed that the physical environment can be 

modeled by geometric features. This is the case especially holds for man-built 

environments like building interiors or cities which can be represented by a 

meaningful set of points, lines or planes. Due to the compact structure of data 

required to represent these features, the resulting maps are compact and the 

associated algorithms are efficient in comparison to other approaches using more 

memory like occupancy grids or raw data mapping. On the other hand, they require 

a reliable feature extraction mechanism, which may be a challenging task for 

several features. Secondly, in feature-based approaches, the data association or 

correspondence problem has to be solved.[3] 

The Extended Kalman Filter (EKF) is a widely used estimation tool applicable to 

feature-based localization and mapping. It has the advantage that it provides an 

analytical solution to the SLAM problem, which leads to efficient implementation 

with high accuracy. A significant disadvantage of the EKF-based SLAM approach is 

its restriction to Gaussian error distributions which have a single peak and therefore 

can represent only a single hypothesis about the robot pose. In addition to this, 

complexity of the EKF-SLAM scales with square of the number of features.[3] Before 

implementing feature based EKF SLAM in real environment, the type of data 

abstraction method must be decided. As stated previously the sensor data is 

needed to be processed and several features must be extracted. 

There are several methods of representing the features in space. The selection of 

features is based on the environment and the sensor system. Additionally the agent 
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must be able to be localized in the feature map. Without the ability to localize the 

robot, using the map, it would be impossible to execute EKF SLAM algorithm.[20] As 

a result; one requirement of a map feature is that it must be able to store necessary 

pose parameters of the robot. 

The need of extracting information from the sensor data is another parameter for 

selected feature geometry. The sensor measurements must be able to constrain 

some of the geometry of features. Thus, the available sensors limit the feature 

selection. In addition to this, a feature may not be fully observable in a single sensor 

reading. This leads to the situation of partially observed features. In some cases, the 

partial observability depends on the frame of reference of the sensor data.[20] As 

the robot moves, it can fully observe the features and the ability to merge these 

measurements may needed to achieve several tasks. For example the walls of a 

corridor are not fully observable for many cases, but the task of the agent may 

require the algorithm to represent the wall as a single feature. 

Environment is a significant constraint for feature selection. For example planar 

features cover a great part of indoor of a building or a city which are known as 

constructed environments.[32] On the other hand, a tree is a significant feature for 

mapping non-structured or semi-structured outdoor environment. [12] A point, a 

line or a plane may be used as feature for EKF SLAM.[20] In addition to these ones, 

different kinds of 3D features such as cylinders or spheres can be used to represent 

indoor environment.[15] Representing the plane segments is a vital issue for indoor 

feature based SLAM. Such representation covers surfaces of many objects in a 

building such as walls, tables, cabinets, doors, couches and so on.[32] According to 

Folkesson[20] a vertical planar segment such as a wall can be represented with 

following parameter sets: 

Slope and Intersection: It is a way of representing a wall with simple line 

equation       . Even though it seems to cover requirements of a wall, it is 

infinite in length; parameter m is nonlinear and has a singular behavior around 

90°.[20] 
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Distance and Direction: One of the most simple map origin based 

representations is to use the perpendicular distance to the wall and the orientation 

of the wall. However this method results an infinite wall. Additionally a second 

problem called “lever-arm” effect[33] occurs; which points that, if the wall is 

passing close from origin point of the map, small errors in orientation angle leads 

the wall located in wrong position. An improved version of this representation also 

parameterizes starting and ending points of the wall, however it also suffers from 

lever-arm effect. 

Center Point, Length, and Orientation: Since each wall is positioned according 

to its own center of mass, this method does not suffer from level-arm effect. Such 

representation needs the planar object to be fully observable, since it uses center of 

mass of the wall as an input parameter.[20] However a wall may not be fully 

observable for many cases as stated previously. For example, when one requires 

constructing map of a closed door environment, mapping the walls of the room may 

be a significant problem. Because the need of measuring true place of CoM of walls 

requires that the wall must be fully observable in one single observation and this 

may be hard or impossible for several cases depending on sensor range, sensor field 

of view or interference of other objects that stands on the floor. On the other hand, 

since infinite planes are used for many different plane representations, the 

methods that use different kinds of transformation or plane representation systems 

(such as SP-Model) may suffer from correspondence problem as Weingarten[3] 

states in his article. Whereas using CoM information may provide a significant tool 

to avoid miscorrespondence for landmarks. 

SP-Model: The SP-model offers a solution to the lever-arm effect too. In this 

model, a local coordinate frame is attached to the center of the wall and the wall is 

described by the transformation to this local frame. This allows for a representation 

of the uncertainty of the wall location in this local frame. When compared with 

center point length and orientation method a drawback of the SP-model is that it 

does not handle information along the direction of the wall as easily. However it 
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creates less coupling between the parameters of the landmarks and does not 

require full observability for the feature. [20] 

In this work planar segments will be represented by center point and orientation. 

Such representation requires the plane segments to be fully observable; due to this 

reason, in experimental part, small planar objects will be used, instead of wall like 

large plane segments. In addition to this representation, planar segments will also 

be represented by four corners, which is a 3D point feature map representation 

method. Using planar segments provides strong feedback to robot’s angular pose 

while dealing with feature based 3D EKF SLAM. Contribution of using orientation for 

features will be examined in Section 5.8. 

As stated previously Feature based EKF SLAM is known as an efficient SLAM 

algorithm in terms of required processing power and used memory for mapping. In 

addition to this, it is possible to provide an improved computational complexity by 

increasing the level of abstraction for feature based SLAM. 

Computational Complexity for Feature Maps 

A contribution of feature based EKF SLAM is about computational complexity. Raw 

data is processed and several features are extracted from it. Most popular solution 

to SLAM, considers it as a stochastic process in which EKF is used to compute an 

estimation of a state vector, together with the covariance matrix. Most of the 

processes associated to the move-sense update cycle of EKF SLAM are linear in 

complexity. As Paz [34] states; the exception is the update of the covariance matrix, 

which is      . The EKF solution to SLAM has been used successfully in small scale 

environments, but       limits the use EKF-SLAM in large environments. Feature 

data may be represented with several different methods; for example at 

experimental part of this work, rectangular planar segments are used as objects. At 

this point, instead of representing objects with several points or lines, executing this 

operation with a 6D feature that indicates position and orientation may be a 

beneficial option. By this way, the data may be stored with more compact structure 

and complexity shall be reduced by decreasing number of landmarks. With a more 
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formal expression; if data structure of landmarks is altered in the way that number 

of landmarks is decreased by k times, while number of parameters represents a 

landmark is increased m times (k > m); complexity of covariance matrix will 

decrease from       to            . By this way complexity of EKF SLAM 

algorithm shall be reduced via more compact data structure that represents 

landmarks. An implementation of decreasing complexity of EKF SLAM by increasing 

parameter size can be seen in Section 5.8. 

Data Association Problem in Feature Maps 

As stated in section 2.3.3, EKF localization and mapping method will be used 

throughout this work. A drawback of EKF localization is, it models uncertainty with 

Gaussian form and this property requires initial pose to be known. In other words, 

once the algorithm is executed to update location of landmark, it combines 

previous position and new sensor reading to localize final position. The need of 

usage of previous position brings the requirement of correspondence between 

previously known map and the new sensor reading. In short, the sensor reading of 

each feature must be associated to a landmark in the map. 

Correspondence problem is arguably the main weakness of feature map 

localization.[7] Correct pose estimation relies on finding correct correspondence 

between a feature observation and its associated map feature. Whenever a 

misassociation occurs, the real error -possibly- increases. This effect may lead the 

vehicle get lost or even get the map collapsed. Most feature map localization 

implementations are susceptible to data association failure because they rely on the 

association methods developed for target tracking, which treat each measurement 

in isolation. However one must realize that, other mapping methods such as raw 

data mapping or grid mapping also suffers from associating the initial location to 

existing location while closing a loop. In addition to this, a stronger solution for data 

association problem can be obtained by increasing the abstraction level of features. 

In other words, fusing point features to obtain planes or fusing planar features to 

obtain objects as a feature type may provide significant improvement for data 

association problem. 
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2.4.2 Plane Model 

Planar segments will be used at necessary parts of this work. A plane in a 3D space 

can be represented with formulation: 

             2-22 

 

A, B, C, D are unique parameters that represent the plane. There are also other 

formulations: 

       

in which; 

2-23 

 

 

  (        )
 

 
2-24 

 

 

Above formulation represents a plane with a normal vector n and distance to origin, 

d. For a similar useful plane representation one can change d with a point in 3D 

space: 

        

in which; 
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The formulation above is composed of a normal vector that shows direction of 

plane and a point that the plane passes. This formulation is useful to represent the 

plane segments, since it consists a specific point (such as center of mass) and a 

direction vector. Because of this property the formulation (2-25), (2-26) and (2-27) 

will be one of the main plane segment representations used in this work. The 

reader shall see literature, for different kinds of representations and properties of 

these formulations. 

Plane Segments 

A plane segment can be represented by a number of parameters. The center of 

mass (CoM) of the plane can be represented by (2-26) while the normal of the plane 



32 
 
 

can be represented by (2-27). Since it is a normal vector, once two of the 

parameters in (2-27) are known, the third parameter can be found. So it can be said 

that; in 3D space, two parameters are needed to represent angular orientation of a 

plane. 

In addition to these parameters, size of the plane segment may also be used to 

improve correspondence and provide a stronger illustration of the map. Three more 

parameters can be used for this task: 
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The three parameters shown in (2-28) represents width (w), height (h) and roll (tilt-

t) angle of the plane. So they can be used as an additional tool to improve the 

solution of correspondence problem of features in the map and they will also be 

used as a tool to visualize the map in experimental part. 

So it can be said that eight parameters can be used to represent a planar segment in 

a 3D map: 
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2.4.3 Extracting Planar Segments from Point Cloud 

Laser scanners, IR scanners and sonar scanners can be used to create a distance 

image of the environment from their point of view. In a scanner sensor, the 

distance sensing part measures the distance to closest object on the beam. This 

beam is used to scan the area and a distance is measured for each angle set of the 

scanner. By this way, the sensor constructs a point cloud representation of the 

environment. 
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Figure 12 – A point cloud of four objects standing on the floor. Background is the wall. Data is collected 
IRSCAN. 

 

 

There are various types of feature extraction/plane extraction methods. A feature 

extraction algorithm, first processes and labels each point as a part of feature. Every 

single point that belongs to the same feature is required to be labeled with the 

same label. After all points are labeled, the ones with same label must be processed 

and several characteristics and parameters of features shall be extracted.[3] The 

output of feature extraction algorithm may be a set of 3D points or even may be the 

positions, orientations and complicated information for a set of higher level 

features like planes spheres or arcs. 

A plane extraction algorithm extracts parameters of a plane                    . 

There are various types of plane extraction methods. In order to get a better 

overview of the numerous existing planar segmentation algorithms, a classification 

is useful. There are two main ways of segmenting entities in a picture, dominating 

the literature. The former is split technique. This method starts from the entire 

image and checks if it is homogeneous according to some criterion. If not, the 
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object is split into sub objects. The action is applied until each sub object becomes 

homogeneous.[35] 

The latter method is a merging sub objects to a greater one. This method is also 

called region-growing. A region-growing algorithm starts from single entities of an 

input range image. After processing these small entities, they are merged and 

grown into larger regions with matching neighbors according to some parameter. 

This operation is stopped, when a certain stopping criteria is achieved.[35] An 

example for latter method can be seen in Figure 13. 

 

 

Figure 13 – An example of surface merging method. Upper left image is the photograph of real environment. 
Upper right image shows the point cloud representation of the environment via a laser scanner. Bottom left 
image shows planer segment which are created by a plane fitting method. Finally, similar neighboring planes 

are merged and label as a feature as shown in bottom right image. Figure taken from [3] 

 

 

Another categorization for plane extraction methods is region based extraction and 

edge based extraction. Region based methods use the regions of point clouds to 
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detect the features. On the other hand edge based methods extract the edges of 

features according to some criteria and label the points inside closed edges.[3] In 

this work, edge based methods will be used for sensor experiments. 

There are various types of edge detection methods. A scanner sensor with a specific 

resolution creates a distance image of environment. An illustration of a distance 

image of Figure 12 is as follows: 

 

 

Figure 14 – Distance image of 4 objects. Darker pixels indicate close distance while brighter pixels indicate 
farther. Data is collected by IRSCAN. 

 

 

In distance image illustrated at Figure 14, edge finding methods can be used to 

detect surrounding edges of the image. A few methods used in this work are briefly 

explained in 

APPENDIX A. For each method explained in  

APPENDIX A, MATLAB 7.12.0 code is be implemented to Figure 14 and resulting 

edge map will be illustrated. By this way the edges of features can be marked and 

feature extraction algorithms can be executed via edge based methods.  
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CHAPTER 3 
 

 

 

3. FEATURE BASED EXTENDED KALMAN FILTER SLAM WITH 3D 

POSITION AND ORIENTATION FEATURES 
 

 

 

 

 

 

 

 

Extended Kalman Filter Simultaneous Localization and Mapping (EKF SLAM) is the 

process of incrementally building a map of the environment while tracking robot’s 

pose at this map. As stated previously EKF SLAM is composed of two problems; 

localization and mapping. Localization problem was discussed in Section 2.3 while 

mapping was discussed in Section 2.4. In localization part, true map of the 

environment was given and the task is locating the agent probabilistically in this 

map. On the other hand in mapping part, transformation of feature parameters 

from true position of robot is performed. 

Solving the problem of localization requires an a priori map of the environment. 

However, such a map is not always available. Blue prints may not exist or represent 

real pose of surroundings, furniture in an office environment for example may have 

shifted over time, which makes the map out of date. 

Mapping on the other hand requires a known robot pose. GPS (Global Positioning 

System) makes it possible with some uncertainty at outdoor environments. 

However, GPS cannot be used in conditions like forests or cities, that GPS signal is 

weak or in places such as caves and indoor environments. The robot pose can be 

provided by sensors like wheel encoders, gyros or accelerometers; however, these 

sensors accumulate errors and therefore can only be used reliably over short 

distances. 
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Due to these reasons both localization and mapping algorithms must be processed 

recursively in SLAM. Unlike the problems discussed in Section 2.3 and Section 2.4, 

but this time, both location of the agent and poses of the features are probabilistic. 

 

 

Figure 15 – Diagram that represent recursive operations of EKF SLAM. 

 

 

A graphical representation of EKF SLAM is illustrated at Figure 15 which is a very 

similar representation with Figure 1. As it can be seen on the figure, EKF SLAM is a 

recursive algorithm that updates pose of robot and features. Internal sensors of the 

agent (wheel encoders, gyro, accelerometer etc.) detect movement and update 

belief of the robot. Once the environment is sensed via external sensors (laser 

scanner, IR scanner, camera etc.) both the pose of the robot and positions of its 

surroundings are updated. 

The definition of the problem shall be formalized at this point. A sensor system 

provides data from the environment. Let the data set provided by the sensor 

system be z. Data collected by the sensor system is stored with a data structure and 

let this previously stored data be    . Finally there is another data structure that 

points the pose of the robot. Let robot pose be represented as   . At this point, to 

make inferences about landmark pose (   ) and robot pose (  ) via measurements 

(z), a function is needed to be defined that relates these three data types. Let this 

relation be named innovation (η). So η is a function of    ,    and z. 
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Jacobian matrix of innovation is stated by; 

(           
      

)   (
  

  

  

    

  

   
) 

 

3-1 

EKF SLAM use Jacobian functions to calculate these relations of innovation.[3] 

The algorithm of EKF SLAM executes necessary parts of these relation functions via 

control inputs, sensor observations and previously obtained landmark poses. 

3.1 FEATURE BASED EKF SLAM WITH 3D POSITION AND ORIENTATION 

In this work a code for 3D feature based EKF SLAM is presented and this code is fit 

into a simulation. After simulation part, the code written is used to execute data 

collected by IRSCAN. The pseudo code of full EKF SLAM, EKF SLAM simulation 

results, specifications of the sensor will be explained in the following sections. This 

chapter aims to explain EKF SLAM in 3D environment with plane segment features. 

Note that theoretic perception of EKF SLAM algorithm given here closely matches to 

the one described by Thrun[2]. However unlike the approach of Thrun the code in 

this work is extended to 3D space with planar features; instead of 2D space with 

point features. 

The agent is assumed to work in a structured indoor environment with a flat ground 

(z=0). Landmark planes in the environment are represented by their 3D position and 

orientation. Even though only planar features are used in the real sensor code, the 

same algorithm can also work for other features such as non-planar segments once 

feature extraction algorithm can handle them. 

3.1.1 Data Structure 

In EKF SLAM all pdf’s of the pose of the robot and its surroundings are assumed to 

be Gaussian. Structure of stored data keeps parameters of these Gaussian formed 

pdf’s. As stated in Section 2.3.3 a Gaussian shall be represented as         . Here 

   represents maximum likely location and    stands for covariance of Gaussians. 

Maximum likely point of the agent is kept in the form: 
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  3-2 

 

In above equation                                  represent maximum likely position of 

the agent while            ,           ,            represent maximum likely value of 

yaw, roll and pitch angle of the agent relative to the global coordinate system. 

Since the agent moves on a flat ground, it has a changing yaw angle but pitch and 

roll angles of agent are constant (assumed zero). So pose of the robot can be 

specified with three parameters, two parameters for position (   ) and one for 

orientation ( ). Flat ground assumption shall be represented as: 

             3-3 

 

             3-4 

 

             3-5 

 

So; 

                                          
  3-6 

 

Similarly maximum likely pose of the landmark i at time t is kept in the form; 

                                            
  

 

3-7 

 

In which                       stand for the position of center of mass (CoM) of the 

landmark and                       represent the orientation of the landmark in 3D 

space. Since height, roll and pitch parameters of the robot are fixed, roll and pitch 

parameters of landmarks will not be used in EKF SLAM simulation. The reason why 

these two parameters are not used will be explained with more detail in Jacobian 

part of algorithm. However, these two unused parameters are useful while trying to 

find true correspondence information. Due to this reason they shall kept in data 

structure of the algorithm. So the pose of a feature in SLAM algorithm is composed 

of four parameters. The first three parameters are used to specify the position of 

the center of mass (     ) and the last parameter will be used to show the 
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orientation (      ) of the feature. Other two parameters (               ) 

will not be actively used in the algorithm. Thus maximum likely position and 

orientation of data is examined above and will be kept in the following matrixes: 

   

                                                                                        

 3-8 
 

                [

            

            

 
] 

3-9 

 

 

 

So for N landmarks (3-8) is a [4N + 3, 1] matrix and (3-9) is a [N, 2] matrix. 

In EKF SLAM variance and covariance of every parameter must be kept just as 

maximum likely points done, so; 
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] 
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in which; 
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  3-14 

Finally variance of                are kept with matrix; 

                  [

            

            

 
] 

3-15 

 

 

Diagonal elements of 3-10 represent variance for each parameter and other entries 

represent covariance of parameters. 

In short, in this work parameters of EKF SLAM will be kept in the matrixes given 

below: 

 

Table 1 – Size of parameters for 3D position and orientation EKF SLAM 

 symbol size of matrix 

Mean of parameters 
    4N + 3 x 1 

                 4N x 2 

Variance of parameters 
   4N + 3 x 4N +3 

                 4N x 2 

 

 

Where N is the number of observed landmarks and: 

    stores maximum likely values of       parameters of robot and 

maximum likely points of  ,       parameters of each landmark 

                 stores maximum likely values of     parameters for each 

landmark 

   stores covariance of each parameter of     

                 stores variance of each parameter of                  

Every single parameter of    ,                 ,   ,                  is a real number. 
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3.1.2 Displacement of the Agent (Update Robot Pose) 

In this work the agent is assumed moving and stopping to collect data. After 

collecting data, the robot is moved once more and stopped again. Robot motion 

model is assumed differential motion model and all the parameters will be updated 

according to this model. 

Differential drive robot control input is: 

    *
  

  
+ 

3-16 

 

 

Here    is translational motion and    is rotational motion. The goal is to find final 

pose of the robot, given the initial pose (an illustration is shown in Figure 16). 

 

 

Figure 16 – An illustration that shows movement of a differential drive robot. 

 

 

In this exact motion model: [2]  

                                , 3-17 

 

                                , 3-18 

 

                                , 3-19 

 

Where: 
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              , 3-20 

 

           
  

  
       

  

  
              , 3-21 

 

                 . 3-22 

 

So, equations of exact motion model of agent are presented. 

3.1.2.1 Uncertainty of Robot Motion 

In EKF SLAM once the pose of robot is updated, covariance matrix must also be 

updated. The new uncertainty is a function of previous uncertainty and added from 

uncertainty of motion. The Jacobian update equations of robot pose uncertainty 

can be found by simple derivative operations as follows: [2] 
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And    represents the uncertainty comes from robot motion, then; 

              
         

  3-25 

 

So, update equations of uncertainty of robot’s pose are presented. 

3.1.3 Integrating Sensor Reading (Update Map and Robot Pose) 

Once the sensors of the agent are operated and collected data from the 

environment, observed pose of the features can be found. Previous belief of the 

robot and the feature poses may differentiate from newly observed poses. Due to 

this reason the belief position of the agent and the features must be updated 

according to the sensor observation. 

One can say; 

                                         3-26 
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where,                represents sensor reading. An illustration of this update step is 

as follows. 

 

  

Figure 17 - Black stars represent previous belief position of landmarks, while the red ones illustrates pose of 
recent measurement. Blue ones are the final belief after update step. 

 

 

Because of imprecision of the sensors and uncertainty of robot pose both new 

measurement and previous belief may have some error as shown Figure 17 (left). 

The new belief pose of the landmarks and the agent are determined from the 

combination of the previous belief and the recent sensor observation as can be 

seen in Figure 17 (right). While combining these two maps, covariances of beliefs 

are used as a weighting factor to locate new poses. When the new map is compared 

to the old one, variances are expected to decrease and covariance between 

parameters are expected to get stronger. 

In EKF SLAM variances of sensor system and robot belief must be converted to 

comparable forms. In our solution variance of the map will be converted to form of 

the sensor noise and these two set of variance will be compared via a factor called 

Kalman Gain (  ). 

Let’s say i different landmarks are observed in a set of sensor readings. These 

observations will be kept in a matrix;               . After that part, one needs to 
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obtain predicted observation matrix by using the map data. This matrix will be 

shown with              : 

                     3-27 

 

             is the output of a transformation function from robot coordinate frame 

to sensor reading model. 

Once              is obtained, a Jacobian function shall be created to convert 

variance of belief to variance of observation; 
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Open form of (3-28) will be given at (3-55) and Appendix B. 

So,    (sensor noise model) and    can now be compared in the form; 
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New     will be indicated by    ̇  

   ̇          (                            ) 3-30 

 

And new    will be indicated by   ̇ 

  ̇               3-31 

 

So, input output relationship stated in (3-26) is obtained. 

3.2 Feature Based EKF SLAM Algorithm Implementation in Simulation 

Environment with 3D position and Orientation  

In this section, EKF SLAM algorithm which is used in simulation will be given in more 

opened form. Open form of equations, matrixes and Jacobian’s will be presented 

and explained. The algorithm given below is implemented with MATLAB 7.12.0. 

Discussing insignificant details of simulation is not the main issue of this part but 

implementation of theoretical equations will be explained. 
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Robot and the Environment 

It is assumed that the robot is operating in a 3D environment. The features are 

located with 3D position and orientation in the map. Feature extraction and 

correspondence problem is assumed to be solved and features with true 

correspondences will be considered given to the algorithm. The robot is assumed to 

be moving on a flat ground in a closed door environment (like a building or a room). 

Translational speed of the robot is    and rotational speed is   . Height of the 

sensor part of the robot from the ground is assumed to be zero for all observations. 

Representation of Features by Sensor Point of View 

The EKF SLAM code written for simulation is also tested with IRSCAN. So scanner 

sensor modeled in simulation has similar output form with IRSCAN. 

When a 3D scanner collects data from the environment, it outputs a 3D point cloud 

illustration of the surroundings. After being processed with a feature extraction 

algorithm, the point cloud can be transformed to a set of features. It is assumed 

that feature extraction algorithm obtains center of mass (CoM) and also outputs 

angular orientation information for each detected feature. CoM information is 

formed from a range and two bearing parameters. An illustration of representation 

of CoM is shown in Figure 18. 

 

 

Figure 18 – Illustration of output of sensor system for CoM 
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As stated previously; for each feature, three parameters are used to represent CoM 

(             from sensor coordinate system) and the other three parameters are 

used to represent angular orientation (             from sensor coordinate system) 

of feature in 3D map. To clarify this issue, one can assume, that the features are 

plane segments scattered through the map. Since two orientation parameters will 

not actively be used, orientation of the sensor will be represented only by   . 

Implementation 

As stated in previous parts, robot and features will be represented according to 

global frame as presented by (3-7) and (3-8) as follows: 

Maximum likely positions are represented as follows (3-8 modified); 
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Covariance for N landmarks (3-10 modified): 

   *
  

     
     

  
       

       + 
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The following steps are followed for feature based EKF SLAM: 

1- When the robot moves, control input (  ) is calculated. 
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2- New maximum likely pose of the robot is calculated. 

  
       

      3-35 

 

3- The effect of previous robot pose to the next robot pose and the effect of 

control inputs to the next robot pose are calculated to update uncertainty. To 

achieve this, one must obtain the Jacobian’s below. 
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where; 
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4- After obtaining necessary Jacobian’s, new covariance is calculated  

  
           

     
         

  3-40 

assuming; 

    [
    
    

] 
3-41 

So, update operation for robot motion is completed. 

5- Assume M + L features observed in a sensor data set. M of these features 

are already observed before and L of them are observed for the first time. 

Step 5 to step 9 must be operated for all M features. 

For feature i, the agent has the observation: 

  
   [  

    
    

    
 ]
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Each landmark has a unique correspondence number denoted by i. 
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6-  Predict the distance parameters using map data 

  
  [  

   
 
  

   
 ]

 
 

 

where; 
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   , since the robot is at flat ground. 

7- Predicted distance parameters must be transformed to predicted 

measurements with inverse geometric transformations 

 ̂ 
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   ̂ 
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   ̂ 
 ]

 
 

 

where; 
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8- Error generated by sensor model must be inserted into a matrix. In this work 

Gaussian error model is assumed; 

  
   

[
 
 
 
 
   

  

    
 

       
       

       
       

   
  

    
 ]
 
 
 
 

 

3-53 

The above matrix points that every parameter of all variances for each feature is 

independent from each other. 
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9- Once true observation and predicted observation are obtained, the pose of 

the robot and the landmarks must be updated via covariance of the map and the 

sensor model. To achieve this, first Jacobian matrix   
  must be constructed. 
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                                                      3i-3                                     3N-3i  

Here    provides the correspondence relation between sensor input and the 

landmarks and the required Jacobian function is as follows: 
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Where open forms of elements of 3-55 are given at Appendix B; 

10- Operations in step 5 to step 9 must be processed and stored for each 

landmark that was observed at time t and also known previously. Newly observed 

features will be added to data package at the end. At this point stored matrixes will 

be merged in the same matrixes.  
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On above equation, i1, i2 ... iM denote the features observed and known previously.  

11- Kalman Gain (innovation) is be calculated as follows: 
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12-     is updated for the observation part. 

 ̅               ̂   
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13-    is updated for the observation part. 

 ̅           
     

 

3-62 

14- Finally old data set shall be replaced with new one. 

      ̅   
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      ̅  

 

3-64 

15- Now newly observed landmarks will be added to the landmark 

correspondence map and they will be placed to maximum likely pose in the map. In 
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addition to that, variance matrix must be extended for the new landmarks. As 

stated before there are L new landmarks and step 15 to step 19 must be processed 

for each of them. First   
 
 must be merged to the end of    . 
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16- Now variance of new landmark must be calculated and merged to   . First 

Jacobians stated below must be obtained. 
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Where each element of (3-68) is presented at Appendix C; 
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17- Error matrix must be formed similar to (3-53) 

18- Variance of new feature will be calculated and inserted 
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19- Finally data set must be recorded and by this way an iteration of EKF SLAM is 

completed. 

      ̅   
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Above equations are listed with similar order proposed by Thrun[2]. Pseudo code 

presented by Thrun is extended to higher dimensions for the purpose of this study. 

3.2.1 Unused Parameters of Features 

As stated previously; even though, it is possible to obtain 6 DoF pose from features, 

only four parameters were used in algorithm ( ̂ 
   [ ̂ 

   ̂ 
   ̂ 

   ̂ 
 ]

 
). In other words 

pitch and roll angles of the features were not used in algorithm. The reason of this 

issue is that since the robot is moving on a flat platform height, roll and pitch 

parameters of the agent are constant and known. Due to this reason; knowing roll 

and pitch angles of features does not provide any feedback for the pose of the 

robot. To explain this issue formally, one can claim that the effect of a parameter on 

other parameters can be defined by Jacobians and Jacobians of roll and pitch 

parameters are shown below. 

  ̂ 
 

   
 
     

 

3-74 

  ̂ 
 

   
 
     

 

3-75 

However since  ̂ 
 ,  ̂ 

  and  ̂ 
  are constant and assumed to be 0, the information 

derived from (3-75) is useless. So; 
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Due to this reason    
  and    

  are omitted from    and they are not used in EKF 

SLAM part of the simulation algorithm. 

However it is invalid to claim that   
  and   

  are completely useless. As stated 

previously one of the most significant weaknesses of EKF SLAM is finding the true 

correspondence between the map and the observed data. At this point,   
  and   

  

provide crucial information to find the true correspondence. 

3.2.2 EKF SLAM with Point Landmarks 

As stated previously a different version of EKF SLAM with 3D point landmarks will 

also be executed in this work. In the experiments part, once a rectangular plane is 

extracted from a distance map, four corners of this plane are used as landmarks and 

another run of EKF SLAM is executed with the corner landmarks. For EKF SLAM with 

point landmarks, the same equations explained in Section 3.2 were used; but the 

rows and columns of the matrixes that relate angular orientation of planes with 

other parameters are omitted. Unlike planes, points are composed of only 3 

parameters. Sizes of the matrixes for N point features are presented in the table 

below. 

Table 2–Data Structure of point feature EKF SLAM vs. plane segment feature EKF SLAM. 

 symbol size of matrix 

Mean of parameters for 

point landmarks 

    3N + 3 x 1 

                 N/A 

Variance of parameters 

for point landmarks 

   3N + 3 x 3N +3 

                 N/A 
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CHAPTER 4 
 

 

4. SENSOR AND SENSOR MODEL FOR FEATURE BASED EKF SLAM 
 

 

 

 

 

 

 

A fundamental requirement for the reliable functioning of a mobile robot for SLAM 

is its ability to perceive its environment. This is achieved by using exteroceptive (or 

external) sensors (in contrast to proprioceptive or internal sensors). In other words, 

the agent is expected to collect data from the outer environment, it does not 

measure internal states. 

A custom 3D IR distance scanner sensor is designed and produced for this work. This 

sensor is composed of a part that measures the distance on a beam and a 

mechanism that adjusts the direction of the beam to scan in 2 DoF. The mechanism 

and the sensor are controlled via PIC 16F877A. The sensor is designed and produced 

for this work and it will be referred with name IRSCAN through the rest of this work. 

A photograph of IRSCAN can be seen below. 

 

 

Figure 19 – A photograph of IRSCAN. 
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To create a better visualization for the reader, a set of data collected by IRSCAN 

from real indoor environment is illustrated at Appendix D. 

4.1 Distance Measurement Tool 

A SHARP GP2Y0A700 IR distance measuring sensor[36] is used to construct the 

distance map of IRSCAN. SHARP GP2Y0A700 measures the distance via triangulation 

method and it measures closer distance more accurate compared to farther. 

Response of the expected analog output of the sensor relative to the distance can 

be seen in Figure 20. 

 

 

Figure 20 - Expected analog output of sensor relative to distance 

 

 

The output graph may vary for each GP2Y0A700. Because of that, sensor needs 

calibration for more precise measurements. The sensor is slightly sensitive to color 

of measured objects. Due to this reason, calibration and tests in this work are done 

only with white objects. Sensor replenishes its output in every 20.2ms (maximum) 

and its total response time is about 25ms (maximum). This response time is the 

main restriction of the data collection speed. 
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4.2 Scanner 

Direction of GP2Y0A700 is adjusted with two gearbox integrated stepper motors. 

The first motor controls the yaw angle and the second one controls the pitch angle. 

IRSCAN is able to create a 3D point cloud representation of the environment by 

acquiring range from SHARP GP2Y0A700 and controlling       and     angles with 

stepper motors. Resolution angle in yaw direction is 0.1875° and resolution in pitch 

direction is 0.635°. The mechanical system is able to collect 660 samples in yaw 

direction and 130 samples in pitch direction; which means that a 130x660 (85.8 KP) 

distance image can be constructed. 

4.3 Control System 

As stated previously IRSCAN is controlled via PIC 16F877A. A graphical structure of 

the electronic circuit of the control system of IRSCAN is illustrated below. 

 

 

Figure 21 – Electronics diagram of IRSCAN. 

 

 

16F877A drives the motors via a simple motor driver circuit (L293D). Scanner 

starting positions are located by scanner reference switches. GP2Y0A700 is 

connected to analog input of 16F877A via a coaxial cable. Two potentiometers 
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indicate lowest and highest possible voltage range and they are connected to 

analog voltage range setting pins of 16F877A. By this way resolution of analog 

reading shall be enhanced. Three control buttons and an LCD is used as an interface 

for controlling, testing and calibrating the sensor system. RS232 output of 16F877A 

is used for communication with PC. Sensor system sends output for each pixel to PC 

in real time; so throughout the operation time, sensor must be kept connected to 

PC via RS232 port and the PC must record RS232 data in real time. 

4.4 Calibration 

Intrinsic calibration refers to the process of setting the magnitude of the output (or 

response) of a measuring instrument or sensor to the magnitude of the input 

property within specified accuracy and precision. Extrinsic calibration refers to the 

process of relating the reference frame of the measurement instrument to another 

reference like the global coordinate frame.[37] Practically, it aims finding the 

location of the sensor coordinate frame with respect to some other reference 

frames. This is typically required in multi-sensor fusion where the data of different 

sensors has to be registered in a single coordinate frame. In this work, since there is 

no need for sensor fusion, intrinsic calibration methods will be used. 

When hardware of IRSCAN is completed, analog level adjusting potentiometers are 

adjusted and fixed. Then, a white object is placed in front of the beam of the sensor 

and distance-voltage table is created for the sensor. Since the voltage response 

against distance is slightly different for each GP2Y0A700, this table must be 

renewed if the GP2Y0A700 unit is replaced with another one. The calibration graph 

for digital output is as follows: 
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Figure 22 – Calibration graph of sensor – x-axis: Digital Output (10 bits). y-axis: Distance (mm)  

 

 

After constructing analog conversion table, IRSCAN is placed in a room and point 

clouds of the walls of the room are constructed from several distances. 

The point cloud of a wall is observed and a second set of calibration operation is 

performed depending on the output of IRSCAN. To do this IRSCAN is placed 

perpendicular in front of a wall and the wall is scanned at different distances such 

as 996mm, 997mm, 1396mm, 1696mm, 1996mm, 2296mm, 2596mm, 2896mm, 

3196mm, 3496mm, 3796mm. 

After scanning the wall, a function called Calibration Rate (CR) is created: 

    

   
 

 
∑

                                        

                            

 

   

 

 

4-1 

In (4-1), CR denotes the Calibration Rate of points between    and    mm away 

from the sensor.   denotes the number of points between range of    and   . This 
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calibration rate is used to calibrate output of the sensor with piecewise linear 

manner. To clarify, one can assume that there are 180 points between 1510mm and 

1540mm and 195 points between 1540mm and 1570mm. So       
     and       

     are 

as follows respectively: 
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Once a measurement of 1530mm is collected,        can be found by simple 

weighting equation: 

        
                                      

         
 

 

4-4 

With more general formulation the linear weighting equation is as follows: 

     
                

   
 

 

4-5 

Finally, 

                                  

 

4-6 

Resolution of this correction factor must be set to an optimum value. Even though 

increasing resolution rate seems a stronger method, it creates memorization of the 

calibration data and makes    weaker. This noise will create a point cloud as 

illustrated bellow. 
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Figure 23 – CR function constructed with 5mm calibration resolution (constructed point cloud). 

 

 

As the reader can verify, the planar surface of the wall is composed of rings because 

of calibration noise. The graph CR function for 5mm resolution is as follows: 

 

Figure 24 – CR function with resolution rate = 2mm 

 

 

So it can be said that increasing calibration resolution to very dense values may 

create several problems as illustrated in Figure 23. In addition to this, one can sense 
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the noise of calibration data by looking at the CR function given in Figure 24 – CR 

function with resolution rate = 2mm. 

On the other hand decreasing resolution weakens the effect of calibration process 

and leads jumps between crossing points to next resolution part. After several trials; 

120mm resolution is decided to be used and a piecewise calibration method is 

implemented. The graph of piecewise CR is illustrated bellow. 

 

 

Figure 25 – Calibration Rate vs. distance (mm) 

 

 

After calibration is completed the walls are reconstructed, some illustrations of the 

walls are as follows: 
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Figure 26 – Point Cloud of Wall from 997mm 

 

 

Figure 27 – Constructed Point Cloud of Wall from 997mm 

 

 

 

Figure 28 – Constructed Point Cloud of Wall from 1396mm 
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Figure 29 – Constructed Point Cloud of Wall from 1696mm 

 

 

Figure 30 – Constructed Point Cloud of Wall from 2296mm 

 

 

 

Figure 31 – Constructed Point Cloud of Wall from 2596mm 
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Figure 32 – Constructed Point Cloud of Wall from 2896mm 

 

 

 

Figure 33 – Constructed Point Cloud of Wall from 3196mm 

 

 

Figure 34 – Constructed Point Cloud of Wall from 3796mm 
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Figure 35 – Constructed Point Cloud of Wall from 4096mm 

 

 

Figure 26 - Figure 35 show illustrations of a wall from several distances. As the 

reader can verify, even though calibration operation was implemented, there are 

still some patterns like circles on the wall (circular shapes are best visible in Figure 

29). The reason of this circular pattern is that, GP2Y0A700 IR distance measuring 

sensor has a resolution for distance measuring operation. In other words 

GP2Y0A700 has a non-uniform distance vs. voltage output function and this effect 

make the sensor give specific output voltage values with higher probability. This 

impact is weakened by collecting more than one measurement for each point. For 

example, mean of 25 measurements is used for each point while calibrating the 

sensor and 25 sensor readings will be taken for other experiments too (unless 

otherwise stated). But even such a filter is used, there is still a non-uniform pattern 

in the point cloud of the wall and this effect will be tolerated in the conducted 

experiments with increased sensor variance. 

Non-uniform pattern is getting weaker while the sensor system is getting farther 

from the wall, but this time a uniform noise is taking the place of non-uniform 

pattern. The reader can verify increased amount of noise at farther distances by 
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observing the figures above. Especially the change at the form of the noise between 

Figure 29 and Figure 35 can easily be visualized. 

4.4.1 Variance of Observation Distance for a Single Point 

IRSCAN will be used to extract several features for EKF SLAM, thus a noise model for 

the scanner system has to be presented. The first step of presenting a noise model 

shall be constructing a noise model for a single point of the sensor system. To 

achieve this IRSCAN is placed perpendicular in front of a wall and several sets of 

data were collected from different distances once more. Once the distance of the 

wall and the angular pose of the wall relative to IRSCAN are known, the true 

distance for each point can be calculated. Dividing the true distance to measured 

distance for each point, a set of histograms for different distances is obtained. The 

histogram set, which shows probability distribution function of error model, is 

presented at Appendix E. The resulting graphs that show average error rate and 

variance rate are as follows: 

 

 

Figure 36 – Average Error Rate – x-distance (mm) vs. y-average error (mm) 
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Figure 37 – Average of Square of Error– x-distance (mm) vs. y-square of average error (mm
2
) 

 

 

 

Figure 38 – Square Root of Figure 37– x-distance (mm) vs. y-error (mm) 
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Figure 38 is a sensible choice of standard deviation for a single point for IRSCAN. 

However; in this work, landmarks of 3D features will be chosen as edges of the 

object and it is not possible to choose the true pixel as edge for each case. Even 

though Figure 38 is a good choice of standard deviation for a random point, 

variance of range of CoM or edges will be calculated with different method at the 

following sections. 

Variance of Angular Data for a Single Point: 

There are two axes of rotations of the sensor: yaw and pitch axes. These two axes 

are controlled by two stepper motors and they can be directed independently. Due 

to this reason, variance of angular data of a point will be divided into variance of 

yaw and pitch axes and variance of these two axes will be assumed independent. 

As stated before GP2Y0A700 measures the distance with triangulation method. In 

this method, the sensor emits a beam of light and the angle of reflection of light is 

measured via a sensor array. By this way the distance of reflection point can be 

calculated. A simple diagram that illustrates triangulation mechanism of sensor 

system is shown below. 

 

 

Figure 39 – Diagram that shows measureing mechanism of SHARP GP2Y0A700 
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As it can be seen in Figure 39, reflections from different distances illuminates 

different parts of the sensor line. Once the distance between transmitter and 

receiver is known, distance of reflection can be calculated via trigonometric 

operations. 

At this point a problem arises because of the structure of optics. The emitter sends 

the beam with an offset and divergence rate. In other words, the beam has an 

offset radius comes from the radius of the emitter lens and has a divergence angle. 

A figure that illustrates an exaggerated form of radius of the beam is shown below. 

 

Figure 40 –Offset of GP2Y0A700.  

 

 

Variance of a single point may be dominated by the mechanical error of the gearbox 

of IRSCAN. However, output of sensor needs to be processed to find interesting 

points (such as corners or edges) of features. In practical experiments, it is observed 

that the weakness of edges create an error while finding CoM or corners points of 

objects and this error dominates mechanical errors. Due to this reason variance of 

yaw angle will be calculated via this transition radius, which is an impact of 

divergence of the beam. 

Variance of Yaw Axes: 

As seen in Figure 40 radius of the beam linearly increases with distance. To find the 

parameters of this change, an object was placed in front of the sensor and a set of 
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data is collected. The sharp transition of edges is blurred because of the radius of 

the beam. Following figure shows the output of the experiment for the given object. 

 

  

Figure 41 – Edge transition of calibration of IRSCAN from 1200mm. 

 

 

Offset of radius is marginalized with increasing distance and the divergence angle 

dominates the blurring effect. In above illustration, points of measurement (each 

point in point cloud) are indicated with intersection of lines and there are 8 

transition points at 1200mm object. Angular distance between points is 0.1875° and 

lens radius is 15mm. 

So for 1200mm, emitted beam radius is: 

                                  

 

4-7 

By linear equation: 

                              

 

4-8 

                                         4-9 
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4-10 

               

 

4-11 

                                

 

4-12 

(4-12) shows angular size of beam from x mm away. Since the edge is expected to 

be placed at center of transition part, actual divergence rate shall be chosen as half 

of (4-12). 

       
                       

 
  

 

4-13 

(4-13) will be used as standard deviation of yaw angle. This variance rate can be 

decreased via several data processing techniques. But, the goal of this part is finding 

a parameter that can be used as variance for edge detection algorithms. It is well 

known that standard deviation of angle is linearly related with angle of divergence 

of GP2Y0A700. However other parameters like the color of the object, color of 

background, angular pose of measurement surface and strength or bias of edge 

detection algorithms also dominates angular variance in both positive and negative 

directions. Since, using angle of divergence as standard deviation rate is believed to 

be a close value for possible worst case error angle; it is a sensible assumption that, 

this angle rate possibly covers the impact of different kinds of erroneous effects. In 

addition to this, choosing a defensive standard deviation is sensible for EKF SLAM. A 

monte-carlo analyzes will be executed in Section 5.9 to explain the reason of 

choosing a high value of standard deviation. 

Variance for Pitch Axes: 

A similar method will be used to find standard deviation of pitch axes. However -

different from yaw axes- there is another effect that can be observed for this case. 

As stated previously, the sensor system works with triangulation. Triangulation line 
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is posed in the same direction with pitch axes in IRSCAN and this creates an 

undesired pattern at the bottom transition parts of the objects. A diagram to 

visualize the reason of such effect is as follows: 

 

Figure 42– Diagram that show a bias effect of GP2Y0A700 for bottom part of obstacles. 

 

 

In Figure 42 the intersection of dotted red and dotted blue line is the desired 

distance to be measured. However, there is a gap between center of emitted beam 

and center of reflection point; due to this reason the intersection of dotted green 

line and dotted red line is given as output (the point labeled Measured distance). 

Impact of such effect on output of point cloud is shown below. 
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Figure 43 – Constructed point cloud of two object from 2427mm with errorneous bottom. 

 

 

 

Figure 44 - Constructed point cloud of two objects from 1227mm with errorneous bottom. 

 

 

Figure 43 and Figure 44 shows constructed point clouds of two planes standing at 

115mm height from the ground. In both cases bottom side of the object is 

measured closer than the object itself. 

Weakness of GP2Y0A700 for vertical transition is also stated in data sheet of sensor 

[36] and this wrong data may create several errors on measurement or mapping of 

the features standing high ground. Due to this reason this effect must be filtered in 

feature extraction algorithm. It is hard to determine a standard size for this wrongly 
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measured part because the size may change one or two pixels depending on the 

angular pose or color of objects. In addition to this, resolution of sensor system at 

pitch axis is lower than the resolution of yaw axis. At the following sections of the 

work, a convolution mask that removes the pixels close to edges will be presented. 

While choosing the size of such filter, above stated impact must be considered and 

the size of the filter must be set large enough to remove the erroneous parts. 

In contrast of negative effects, the wrong measurement at bottom of the object can 

also be used in beneficial way to detect features. Features can be extracted via 

finding edges in the distance map. While executing such an algorithm outgrowth 

part at the bottom side of the objects creates a very strong pattern in the distance 

image. This pattern can be used to find the bottom part of high ground objects. In 

actual experiments edge detection algorithms never missed bottom parts of objects 

standing a few centimeters higher from ground. Distance image of two objects in 

Figure 43 is illustrated below. 

 

Figure 45 – There is a three pixel size pattern at bottom side of object. - Color is scaled as red is farther green 
is middle and blue is closer - The noisy zone below 35

th
 line is ground and shall be omitted. 

 

As seen in Figure 45, bottom parts of the objects are noisy and this high frequency 

part is never missed by edge detection algorithms throughout the experiments. 
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A similar effect holds for upper side of the object in reverse direction. In theory 

GP2Y0A700 tends to measure upper side of the objects farther than actual distance. 

However since background of object is farther too, this effect does not create a 

significant wrong measurement. 

A method was proposed to determine a standard deviation value for yaw axes of 

IRSCAN. A similar method will now be used to find the variance of pitch axes. 

Following figure is the top part of an object measured from 1633mm away. 

 

 

Figure 46 – top of the object is 1633mm away from the sensor 

 

 

There are 5 transition points at the top of the object in Figure 46. The pitch angle 

resolution is 0.635°. So, for 1633mm, radius is: 

                                 

 

4-14 
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4-16 



77 
 
 

               

 

4-17 

                                

 

4-18 

The reason of transition of (4-12) to (4-13) holds for this case too. So (4-18) will be 

divided by two. 

       
                       

 
  

4-19 

Just as done at yaw axis, (4-19) will be used as standard deviation in pitch axis. 

4.4.2 Segmenting the Object and Fitting a Plane into Point Cloud 

As stated previously, features will be extracted from point clouds for feature based 

EKF SLAM. This work focuses on mapping of indoor environments. Such 

environments are usually composed of planar structures such as walls, door, tables, 

closets and so on. Due to this reason working on planar features for EKF SLAM is a 

good choice, Thrun call this “structured environment assumption”[32]. In 

experimental part of this work, planes will be used as objects for several cases. So 

plane extraction algorithms will be used to find size and direction of the plane. 

A set of data collected by sensor system is shown below. 

 

 
 

Figure 47 – Distance image of a planar segment (Right) – Constructed point cloud of the image (left) 
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When the point cloud and the distance map are obtained, edges of objects in 

distance map must be found. To do this standard edge finding codes of MATLAB 

7.12.0 are used. These methods of finding edges were discussed at  

APPENDIX A. Illustrations of output of several modes of edge finding codes of Figure 

47 are given below: 

 

Table 3 – 6 edge finding methods for Figure 47 

  

Canny edge detector Prewitt edge detector 

  

Robert’s edge detector Zero cross edge detector 

  

Laplacian of Gaussian edge detector Sobel edge detector 
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When the figures in Table 3 are observed one can realize that Canny edge detector 

gives the best edge finding result for depth segmentation. In addition to this Zero 

cross and Laplacian of Gaussian edge detectors gives similar output and they are 

both strong for segmentation. In this work all of the above stated edge detectors 

will be superposed and the resulting edge image will be used. An illustration of final 

edge image is shown below. 

 

Figure 48 – Edge Image Superposed by Distance Image for Figure 47 

 

Figure 48 is the overlapped edge image. It is known that, performance of sensor 

system may degrade at edges as stated previously (Section 4.4.1). Due to this 

reason, edges of the image are extended via a simple convolution algorithm and the 

extended version of edge image is obtained as follows: 
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Figure 49 – Extended edge image of Figure 48 (right) – Watershed segmented version of the image (left) 

 

 

Figure 49 (right) is extended edge map of distance image and areas enclosed by 

edges must now be segmented. To achieve this, watershed algorithm is used on 

extended edge image and Figure 49 (left) is obtained. 

As discussed previously, EKF SLAM needs correspondence between the segments 

and the landmarks. In this work; since no auto-correspondence operation is 

executed, the correspondence between segment#3 and object#1 is manually 

inserted into the algorithm. After that point, segment#3 will be named as object#1 

and the data of object#1 will be processed. The point cloud of object#1 will be 

formatted to a suitable data type for EKF SLAM. First of all, the point cloud of 

object#1 shall be extracted from distance image and reconstructed. 
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Figure 50 – Point Cloud of object#1 at Figure 49 (right) – A plane is fit into point cloud (left) 

 

 

A plane must be fit into the point cloud as shown in Figure 50 (left). For this fitting 

operation, a code that uses least square of errors was chosen.[38] 

Normal vector of the plane is [0.9963 0.0089 -0.0851]. Yaw angle of direction of 

plane (direction#1), relative to sensor is found 0.5135° (Actual angle is 0°). CoM#1 

of plane relative to sensor axis is found as follows: 

Table 4 – Position of CoM of object#1 at Figure 50 

 measured real 

range of CoM#1 relative to sensor frame 1237.4mm 1241.9mm 

yaw angle of CoM#1 relative to sensor 

frame 
0.6182° 0° 

pitch angle of CoM#1 relative to sensor 

frame 
8.44° 8.89° 

 

Here, CoM#1 represents center of mass of object#1. By this way three parameters 

for CoM#1 and one parameter for Direction#1 are found. To make these 
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parameters used in EKF SLAM, variance of the direction of the plane must also be 

obtained. 

Variance for Plane Direction 

Direction of the plane will be used as one of the main parameters of EKF SLAM. So, 

at this point the variance of the direction vector must also be presented. Graphs of 

standard deviation of the sensor system -for different ranges- are illustrated 

previously. Once the variance of each point is known, it is possible to calculate a 

variance for plane fit into the point cloud. There are several methods of fitting a 

plane to a point cloud. Weingarten[39] propose a method to fit a plane into a point 

cloud for EKF SLAM. Once variance for each point is known, it is also possible to 

determine a variance rate for the angular pose of the whole plane. However, 

response of GP2Y0A700 may depend on the color or the angular pose of the object. 

In addition to this, IRSCAN has a resolution of depth and this effect may create 

undesired circular shapes on the resulting distance image (an example of circular 

shapes is illustrated at Figure 29). Additionally, edges of the object are blurred by 

the divergence effect. Due to this reason instead of complete theatrical calculations 

an experiment based method will be chosen to determine a variance for angular 

pose and it will be calculated with the following formulation. 

1- Error rate of the direction vector is inversely proportional with the average 

distance of points. Assume that direction vector will be created via two 

points. 

 

Figure 51 – Diagram that illustrates variance of direction relative to distance between points 
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Figure 51 shows the change of the variance of the direction vector of a line that was 

fit on two points (variance of points did not changed). As it can be seen from the 

figure, while the distance between points is increasing, the amount of change in 

angular direction relative to the variance of points is decreasing too. A similar 

situation also holds for plane fitting operation. Once the variance of single points 

does not vary; more precise angle of plane is expected with farther average 

distance of points. So it is expected that, the standard deviation of the angular 

direction is inversely proportional with the width of the plane. 

2- One can realize that certainty of the range of the points is proportional to 

the certainty of the direction of the plane. A simple illustration of this issue 

is presented below. 

 

 

Figure 52 – Diagram that illustrates variance of direction relative to variance of range of points. 

 

In many cases, resolution of the sensor dominates error of angular pose and 

resolution is –not completely but- closely linear with distance. So standard 

deviation of direction vector is closely proportional with distance of CoM. 

So, standard deviation of direction angle (SDDA) for a rectangle is: 
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Let; 
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4-21 

Experimental results with IRSCAN shows that an average error of 0.5° is acceptable 

for a plane with range = 1200mm and width = 503mm. 

However this is the result of several experiments conducted with one single white 

colored rectangular object. As stated previously, erroneous data collected from 

transition part of features, may interfere the direction of plane or may change CoM 

of plane in undesired way. In addition to this, size of the transition pixels makes it 

harder to mark the edges of the object. Because of that, the transition of 

background may also interfere with the extracted features for some cases. 

When the amount of uncertainty is uncertain or may change depending on other 

conditions; it is a more sensible strategy to choose standard deviation at higher 

value, than expected uncertainty. In his work Thrun[40] states that adding a safety 

noise to sensor system may be used for increasing consistency of EKF SLAM for 

some cases. Such option may seem to degrade the performance of EKF SLAM, but it 

also avoids the algorithm from collapsing. In other words, if there is the risk of 

increasing uncertainty because of the environmental issues; using a safety margin 

for uncertainty is an acceptable strategy. Due to this reason, the standard deviation 

of object will be increased to twice value and 1° will be used for the object given 

above. A monte-carlo analysis will be executed at Section 5.9, to analyze the effect 

of using a standard deviation value higher from the true model’s value. 

So, to find c for a set of data taken with 1200mm range and width 503mm; 
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The constant stated above will be used at experiments with following formulation; 

             
 

 
 

 

4-24 

(4-24) is resulting output of experiments with a safety margin added on it. It is 

believed that standard deviation of direction angle can be decreased with stronger 

level of edge detection methods calibrated for sensor system and improved plane 

fitting operation which takes non-homogenous response of sensor into account (of 

course with the cost of increased need of processing power). However, at the 

experiments, the above equation produces standard deviations rates about 1°-2° 

and in practice, the resulting standard deviation rates provide beneficial 

contribution to EKF SLAM. 

4.4.3 Finding Corner Points 

Corner points are detected by an algorithm and the output results of the algorithm 

are never manipulated by supervisor. Below figure is an illustration of the point 

cloud of an object. 

 

Figure 53 – Point cloud of an object collected by IRSCAN 
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Figure 53 is a point cloud illustration of an object. In the point cloud, each point has 

a yaw and pitch angle value. For each corner; a function is used to attach a number 

on each point (in total four numbers are attached to each point. Each number 

shows a candidate value to be one of the corners). The point with highest function 

output is chosen as corner. 
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The point that outputs maximum value for each function is chosen as candidate of 

related corner point. But to improve the performance of the algorithm two more 

corrections are carried out. 
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Figure 54 – Different view of Figure 53 

 

 

Figure 54 is the same point cloud at Figure 53 but with different point of view. As 

the reader can verify the upper transition part is involved into the feature at top 

row. Similarly there are cases that transition of bottom row or left and right 

columns are included into the feature. Such interference will make the algorithm to 

find wrong values for the range of the edge or the corner points. Due to this reason 

the range of inner pixels is used as the range of corner point as shown below: 

 

Figure 55 – True candidate of corner is at (25, 94). But the range of point at (26, 96) is used. 
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By the method illustrated at Figure 55, the range transition error close to edges is 

strongly degraded and a remarkable rate of performance improvement is obtained. 

The second operation to improve the performance of corner selection is shifting the 

angular parameters of the pixels to outer part of object. As shown in Figure 48 and 

Figure 49, a convolution operation is carried on point cloud to remove transition 

part. Such action filters transition error of edges, but it also makes extracted plane 

segment smaller than true segment size. Due to this reason angular parameters of 

outer side of candidate will be used for chosen corner to fix this issue. An 

illustration is shown below. 

 

Figure 56 - True candidate of corner is at (25, 94). But the range data will be placed on (24, 92). 

 

 

By using the correction shown at Figure 56 impact of convolution shown at Figure 

48 and Figure 49 is degraded. 

So (4-28) chooses candidate points. Let these candidate points are indicated with 

following coordinates in distance map: 
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Given the parameters of candidate corner points, the parameters of true corner 

points will be chosen as following simple shifting operations: 

Parameters of upper right corner: 

                                   

 

4-33 

                       

 

4-34 

                           

 

4-35 

Parameters of bottom right corner: 

                                   

 

4-36 

                       

 

4-37 

                           

 

4-38 

Parameters of bottom left corner: 

                                   

 

4-39 

                       4-40 
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Parameters of upper left corner: 

                                   

 

4-42 

                       

 

4-43 

                           

 

4-44 

Variance for Corners and CoM of Surfaces: 

As stated previously, just as IRSCAN has a mis-measurement rate; the 

environmental factors, the plane extraction algorithm, the edge detection algorithm 

and the corner detection algorithm may also lead errors on measurements due to 

mis-selection of edge lines or corners. Because of that, some of the variance rates 

will be revised via the results of experiments conducted with IRSCAN. So, standard 

deviation rates used for each parameter are revised or restated for unification as 

follows: 

Variance of Range of Corner Points: 

Experimental results indicate that Figure 38 is a good choice of standard deviation 

of range of a single point. However mis-selection of corner pixels may create large 

amount of errors (up to 70mm for some cases). Even though such large error rates 

occur rarely, they may make EKF SLAM algorithm collapsed. Due to this reason; to 

create a safety margin, values of Figure 38 will be doubled and used as standard 

deviation as illustrated at Figure 57. Increased amount of observation distance may 

seem to decrease performance of EKF SLAM, but as it will be explained in Section 

5.5, increased rate of variance of observation distance is tolerable for many cases. 
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Figure 57 –Standard Deviation (mm) vs. measured distance (mm) - Standard deviation of observation distance 
for corner points. 

 

 

Variance of Yaw Angle of Corner Points: 

(4-13) is a sensible choice of standard deviation of yaw angle and it will be directly 

used for standard deviation value. 

                                         

 
      (

                

     
)

 
  

4-45 

Variance of Pitch Angle of Corner Points: 

(4-19) is a sensible choice of standard deviation of pitch angle and it will be directly 

used for standard deviation value. 

                                           

 
      (

               

     
)  

 
 

4-46 

Variance of Range of CoM: 

CoM is the average of parameters of a number of points, so it is expected a stronger 

rate of certainty for range of CoM compared to range of corners. However 
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interference of transition part and range resolution of sensor also creates error on 

range of CoM. An illustration is shown below: 

 

  

Figure 58 – Two illustrations of a point cloud of a planar object (left image is top view of point cloud; right 
image is side view of point cloud). As the reader can verify the resolution of the sensor may dominate 

placement of CoM since the points are grouped around a biased range (left). In addition to this, there is a 
group of transition pixels, that some of them are farther than 100mm from the true surface of the plane 

(right). These points lead an additional error on the calculated range of CoM. 

 

 

Experimental results shows error rates of CoM is about half of error rate of corner 

points for a single object. So Figure 38 (at page 68) will be used as standard 

deviation of range. 

Variance of Yaw Angle of CoM: 

(4-13) is a sensible choice of standard deviation of yaw angle of a single point. The 

experimental results shows that, error rate of the yaw angle of CoM is about half of 

the error rate of corners. Actually this is consistent with theory, Angular pose of 

CoM is expected to be close to center of four corner points for a plane segment, so 

with an intuitive perception, the standard deviation of angular pose of CoM is 

expected to be the half of standard deviation of corners. 
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4-47 

Variance of Pitch Angle of CoM: 

Similar conditions of variance of the yaw angle also hold for variance of the pitch 

angle. For this case half of the standard deviation of pitch angle of corners will be 

used. 
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CHAPTER 5 
 

 

 

 

5. EFFECTS OF PARAMETERS ON SLAM AND SIMULATION RESULTS 
 

 

 

 

 

 

 

As stated previously an algorithm of EKF SLAM was coded in this work via MATLAB, 

which can be used for both real sensor data or in a simulation environment. In this 

part; first, the simulation system will shortly be explained, then the results of 

several monte-carlo runs will be discussed and the effects of parameters of 

locomotion system and sensor system will be presented. 

5.1 Manual Run of Simulation 

In this part, the simulation system will be introduced and a manual run will be 

presented and explained. 
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Figure 59 – Simulation#1 Figure#1 

 

 

The robot and landmarks can be seen in Figure 59. True pose of the robot and the 

features are indicated by red and the belief pose are indicated by blue (initially, the 

belief and the real poses of the agent are overlapped). Laser sight of the agent is 

indicated by semicircle (red). Even though, the features are posed in 3D, height 

parameter is not illustrated in the figures. The points and stars represent position of 

features (CoM of plane segment) while the lines represent direction of the features 

(orientation of plane segment). 
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Figure 60 – Simulation#1 Figure#2 

 

 

In this example the agent moves with a speed of 1m/s. Figure 60 is taken at 7th 

second. While the robot moves, it adds new observed features to its 

correspondence map. Blue ellipses indicates x and y parameters of standard 

deviation and covariance. Each ellipse is drawn with the size of two standard 

deviations. 
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Figure 61 – Simulation#1 Figure#3 

 

 

Figure 61 shows the map in 15th second. When the agent loses contact with 

features and moves without observing any objects, the variance of the robot grows 

faster. 
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Figure 62 – Simulation#1 Figure#4 

 

 

In Figure 62, the cyan arc indicates the real path of the agent. As the robot moves 

with no contact of features, the variance of the agent keeps grooving. Of course the 

amount of increase in variance depends on the precision of the locomotion system 

of the agent (In this example variance of agent is set relatively large values. By this 

way a stronger illustration of feedback of EKF SLAM will be created). 
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Figure 63 – Simulation#1 Figure#5 

 

 

60th second is illustrated in Figure 63. Just as expected the effect of the large 

variance of the agent can also be seen as large variance of landmarks. 
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Figure 64 – Simulation#1 Figure#6 

 

 

Just when the robot observes the initial landmarks and localizes its position in the 

map, all variance significantly decrease. As Figure 64 states, when precision of the 

agents pose improves, the precision of the previously observed landmarks are also 

affected in positive direction.  
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Another run for simulation will be illustrated bellow. This time correlation between 

landmarks will be emphasized. No direction vector for landmarks will be used. 

 

Figure 65 – Simulation#2 Figure#1 

 

 

A new map is created. There are 90 landmarks in this map. The agent observes 

lm#3, lm#5, lm#15, and lm #84 at the beginning. 
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Figure 66 – Simulation#2 Figure#2 

 

 

While getting farther from the starting point, the error rate and the standard 

deviation ellipses grow. 
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Figure 67 – Simulation#2 Figure#3 

 

 

The agent passes through a close distance to the starting point but sees no initial 

landmarks. So the error rates keep increasing through movement. 
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Figure 68 – Simulation#2 Figure#4 

 

 

Since the robot has never seen a previously observed landmark, the grooving error 

rate of the robot pose dominates the error rate of newly added landmarks. 
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Figure 69 – Simulation#2 Figure#5 

 

 

Just before observing the initially added landmarks. 
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Figure 70 – Simulation#2 Figure#6 

 

 

When the agent sees lm#84 again, it recognizes its true pose. Due to this reason the 

error rate of the other landmarks are decreasing too. Three zones are indicated in 

Figure 70. Correlations between the landmarks are strong in each zone, since the 

landmarks in the same zone are observed one after the other. Zone 1 shows initially 

observed landmarks. 

Some variance values are given bellow for two landmarks in zone 3. 
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Table 5 – Variance rates for Figure 69 and Figure 70 

#landmark 

 Figure 69 

(Before seeing lm#84 

again) 

Figure 70 

(After seeing lm#84 

again) 

lm#47 
Variance of x 1,700091921 0,021434706 

Variance of y 1,002924156 0,07474686 

lm#79 
Variance of x 1,72171921 0,018939868 

Variance of y 1,135742843 0,041543165 

 

 

In zone 3, lm#47 and lm#79 are the closest landmarks to the initial point. Due to 

this reason; when the initial landmarks are observed, their variance suddenly 

decreased to relatively low values. 

Variance of lm#41, lm#62, and lm#52 are shown below (zone 3).  

 

Table 6 – Variance rates for Figure 69 and Figure 70 

#landmark 

 Figure 69 

(Before seeing lm#84 

again) 

Figure 70 

(After seeing lm#84 

again) 

lm#41 
Variance of x 1,758776811 0,321233773 

Variance of y 1,60033739 0,133777038 

lm#62 
Variance of x 1,609371146 0,121511807 

Variance of y 0,87062264 0,181887278 

lm#52 
Variance of x 1,750693484 0,306990895 

Variance of y 1,609995055 0,135237631 
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lm#41, lm#62, and lm#52 are also in Zone 3 and correlation of them with lm#47 and 

lm#79 are strong. Due to this reason, even though they are not observed in the 

same scanner frame, certainty of them still improved. From a more general 

perception, correlation between Zone 1 and Zone 3 becomes stronger. Due to this 

reason the certainty of all landmarks in zone 3 is improved. 

Below table shows the variance rates of two landmarks in zone 2. 

 

Table 7 – Variance rates for Figure 69 and Figure 70 

#landmark 

 Figure 69 

(Before seeing lm#84 

again) 

Figure 70 

(After seeing lm#84 

again) 

lm#46 
Variance of x 0,236459526 0,144300758 

Variance of y 0,39427701 0,282492142 

lm#7 
Variance of x 0,206117676 0,091844527 

Variance of y 0,38707026 0,281333251 

 

 

lm#46 and lm#7 (Zone 2) are farther from the starting point. They are also far from 

Zone 3. So, the improvement of their variance is weaker compared to lm#41, lm#62, 

and lm#52. 
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Figure 71 – Simulation#2 Figure#7 

After a few observations certainty of robot’s pose is improved (standard deviation 

circle of agent is shrinking in Figure 71 when compared with Figure 70). By this way, 

variance values of Zone 3 are improved too. 

 

Table 8 – Variance of Figure 70 and Figure 71 

#landmark 

 Figure 70 

(After seeing lm#84 

again) 

Figure 71 

(After taking 5 more 

observations) 

lm#41 
Variance of x 0,321233773 0,100970883 

Variance of y 0,133777038 0,048805747 
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Table 8 (continued) 

lm#62 
Variance of x 0,121511807 0,060371916 

Variance of y 0,181887278 0,082014497 

lm#52 
Variance of x 0,306990895 0,10001562 

Variance of y 0,135237631 0,048456047 

 

 

The agent is turned to Zone 2. In a few seconds (Figure 72) it will observe some 

landmarks once more in Zone 2. 

 

Figure 72 – Simulation#2 Figure#8 
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By the movement illustrated at Figure 72 the correlation between Zone 1 and Zone 

2 is improved. Thus precision of belief pose of all landmarks in Zone 2 are enhanced. 

Variance values of lm#7 and lm#46 (in Zone 2) are shown below. 

 

Table 9 – Variance of Figure 71 and Figure 72 

#landmark 

 Figure 71 

(before seeing lm#63, 

lm#73 again) 

Figure 72 

(after seeing lm#63, 

lm#73 again) 

lm#46 
Variance of x 0,236459526 0,144300758 

Variance of y 0,39427701 0,282492142 

lm#7 
Variance of x 0,206117676 0,091844527 

Variance of y 0,38707026 0,281333251 

 

 

5.2 Erroneous Rotation of Map Frame Relative to Real Frame 

In some of the figures above, the real positions of some features are not in the 

standard deviation ellipse (e.g. Figure 72). In other words, the difference between 

real pose and belief pose for some features are larger than two standard deviations. 

Since there is less number of features at the first steps, the impact of the 

locomotion error creates a gap between the real coordinate frame and the map 

coordinate frame. For example, if the robot has a 2° error at the first few steps, the 

final map coordinate frame will possibly shift approximately with same amount. An 

exaggerated illustration of this shift can be seen at next simulation. 
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Figure 73 – Simulation#3 Figure#1 

 

Figure 73 shows a state that the agent has a relatively large angular pose error at 

first step. 
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Figure 74 – Simulation#3 Figure#3 

 

 

Agent explores the environment and after certain time the variance ellipses of the 

features gets smaller while the map frame still turned in CCW direction relative to 

the real world frame. In Figure 74 average error for all features is 1.74 meters. 

However when the coordinate frame of the map is rotated 9.2° in CCW direction 

(rotated through line: x=0, y=0), average error decreases to 0.12 meter. 

Similar impact can also be seen at Bailey’s work.[41] For example, the map given 

below is the output of Bailey’s MATLAB EKF SLAM algorithm. 
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Figure 75 – Map created by simulation of Bailey. 

 

 

In Figure 75 (Bailey’s simulation) the true pose of the landmarks are indicated with 

blue stars (*) and the belief of them are indicated with red ellipses. Just as the code 

written in this work, landmarks are out of two standard deviation ellipses and the 

map is turned around starting point (turned CW direction in this example). 

Due to the reasons explained above, average error for corrected map reference 

frame, will also be used while evaluating the performance of algorithm at following 

sections. 

From Figure 76 to Figure 84 normal lines indicate average error rate of features in 

map, while dashed lines indicate average error rates of angularly corrected maps. 
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5.3 Effect of Uncertainty of Speed on EKF SLAM 

In this part, the effect of uncertainty of speed on performance of EKF SLAM will be 

discussed. Keeping all other parameters fixed, the standard deviation of the speed 

of the agent was altered and 10000 monte-carlo simulation runs were executed for 

each standard deviation parameter set. Average output of error rate vs. time was 

illustrated bellow. When Figure 76 is examined, one can see that the error rate of 

the map increases with the standard deviation of translational speed. However 

increasing standard deviation of translational speed does not seem to create a large 

gap at error rate. Whereas, the gap between the resulting outputs may vary with 

other parameters of the agent. 

 

 

Figure 76 - Average Error Rate of 10000 Runs –x-axis: time (seconds) – y-axis: average error (meters) 

The standard deviation of variance of speed is altered through 0.1m/sec to 0.25m/sec 

Mean of linear speed: 1m/sec, standard deviation of angular speed: 3°/sec, standard deviation of observation 
yaw-pitch angles:3°, standard deviation of observation distance: 0.2m  
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5.4 Effect of Uncertainty of Angular Velocity on EKF SLAM 

Similar effect holds for the uncertainty of angular speed of the agent. The graph of 

the average error rate for different values of the standard deviation of angular 

velocity can be seen below. Just as expected, increasing standard deviation of 

angular velocity leads increasing average error rate. 

 

 

Figure 77 -Average Error Rate of 10000 Runs – x-axis: time (seconds) – y axis: average error (meters) 

The standard deviation of variance of angular velocity speed is altered through 1°/sec to 11°/sec 

Mean of linear speed: 1m/sec, standard deviation of linear speed: 0.15m/sec, standard deviation of 
observation yaw angle: 3°, standard deviation of observation pitch angle: 2°, standard deviation of 

observation distance: 0.15m 
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5.5 Effect of Uncertainty of Observation Distance on EKF SLAM 

A similar effect for change of the standard deviation of observation distance is 

expected like previous ones. Increasing variance of observation distance will 

possibly increase error rate but for given case (and possible for many cases) 

increased variance of observation distance does not create a large error rate since 

all graphs of different error rates are close to each other. 

 

 

Figure 78 -Average Error Rate of 10000 Runs –x axis: time (seconds) – y axis: average error (meters) 

The standard deviation of variance of observation distance is altered through 0.2m to 0.4m 

Mean of linear speed: 1m/sec, standard deviation of linear speed: 0.15m/sec, standard deviation of angular 
speed: 3°/sec, standard deviation of observation yaw angle: 3°, standard deviation of observation pitch angle: 

2°, standard deviation of observation distance: 0.15m 
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5.6 Effect of Uncertainty of Observation Yaw Angle (Azimuth) on EKF 

SLAM 

Standard deviation of the yaw (azimuth) angle of scanner is altered and 5000 

monte-carlo runs were executed for each set. The average errors of monte-carlo 

runs are illustrated at Figure 79. 

Increasing error rate with increasing standard deviation of observation is an 

expected result for this trial. 

 

 

Figure 79-Average Error Rate of 5000 Runs –x axis: time (seconds) – y axis: average error (meters) 

The standard deviation of variance of observation yaw angle is altered through 1° to 9° 

Mean of linear speed: 1m/sec, standard deviation of linear speed: 0.1m/sec, standard deviation of angular 
speed: 3°/sec, standard deviation of observation pitch angle: 2°, standard deviation of observation distance: 

0.15m 
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5.7 Effect of Uncertainty of Observation Pitch Angle (Elevation) on EKF 

SLAM 

While using a laser scanner system in 3D EKF SLAM, a laser scanner with two 

degrees of freedom is needed. In this part, the standard deviation of the pitch angle 

of the agent will be altered and 20000 monte-carlo runs will be executed. 

Figure 80 shows the result of the monte-carlo runs. Increasing error rate with 

increasing standard deviation is an expected result. But as it can be seen from the 

graph this standard deviation is not a dominant factor on the average error rates 

(for stated parameters). 

As stated previously, the agent is assumed to be in a close door environment with 

flat ground. So the agent’s pitch and roll angle is constant and covariance between 

z-parameter (height) and other parameters of landmarks is relatively weak. Due to 

this reason elevation angle of the landmark does not provide valuable information 

relative to other parameters. 

However one must recognize that -since real world is a 3D environment- adding a z-

parameter to EKF SLAM creates a more realistic model of the world and provides 

significant benefit to overcome correspondence problem. 
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Figure 80-Average Error Rate of 20000 Runs –x time (seconds) vs. y average error (meters) 

The standard deviation of variance of observation pitch angle is altered through 1° to 7° 

Mean of linear speed: 1m/sec, standard deviation of linear speed: 0.1m/sec, standard deviation of angular 
speed: 2°/sec, standard deviation of observation yaw angle:2°, standard deviation of observation 

distance:0.2m  

 

 

5.8 Effect of Uncertainty of Feature Direction on EKF SLAM 

In EKF SLAM 3D landmarks are widely used. A 3D landmark consists of three 

parameters which show the location of the landmark in 3D map. In addition to 

these three parameters; there are also other variables, which indicate the variance 

of landmarks and correlation of each landmark with other landmarks. 

In this work, a parameter that shows the direction of landmark is used, just like 

some versions of EKF SLAM in the literature. To represent a feature with more than 

three parameters, the sensor data must be processed with several kinds of data 

processing algorithms to extract the parameters of higher dimension features. 
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This part shows the effect of direction parameter on performance of EKF SLAM. 

Figure 81 shows the performance of algorithm while changing variance of direction 

of feature. Each line is average error rate of 12000 monte-carlo runs. 

 

 

Figure 81 – Performance of EKF SLAM while changing standard deviation of direction of feature. 

Average Error Rate of 12000 Runs –x axis: time (seconds) – y axis: average error (meters) 

The standard deviation of variance of direction vector of features is altered through 3° to 9°. A line that 
represents no direction vector error rate is also added. 

Mean of linear speed: 1m/sec, standard deviation of linear speed: 0.15m/sec, standard deviation of angular 
speed: 2°/sec, standard deviation of observation yaw angle: 4°, standard deviation of observation pitch angle: 

5°, standard deviation of observation distance: 0.15m 
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of precision. While increasing the uncertainty of this newly added parameter, 

performance of the algorithm gets closer to the one with no direction vector. 

The direction information of the features provides very direct feedback to the 

direction of the agent. All other Jacobian’s of feature direction are “0” for the state 

matrix of the agent and landmark poses. The Jacobian equation of the direction 

vector (in “H”) is as follows: 

  
      

   ̂ 
    

 ⁄      

 

5-1 

Even though, every single parameter in EKF SLAM provides feedback to each other, 

the direction of the agent is dominated by two parameters stated bellow. 

For the robot locomotion system, change in the robot direction at time t, can be 

computed as follows: 

                                       

 

5-2 

To find the Jacobian of change of position, derivative of (5-2) must be found: 

                     

 

5-3 

   represents the change in time and it is the multiplier of all control input. For 

simplification              and      . By this way: 

               5-4 

So the variance of the angular speed “   ” is one of the main dominant factor of 

the uncertainty of angular pose of the agent. Actually, in robot control system since: 

            ⁄     

 

5-5 

    is the only factor that affects the uncertainty of the angular pose of the agent 

in direct manner. 
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Now the effect of the sensor system on the angular pose of the agent will be 

examined. Direct contribution of the sensor input to pose of the agent is 

determined by H function, as stated in (3-55): 

  
                             

                                    
 

 

5-6 

So for angular pose of the agent: 

  ̂ 
    

 ⁄    

 

5-7 

  ̂ 
    

 ⁄    

 

5-8 

and 

  ̂ 
    

 ⁄      

 

5-9 

In short, there are two main direct inputs of EKF SLAM algorithm: the locomotion 

input and the sensor readings of the agent. All other variables and parameters are 

composed of these two main input systems (and initial pose of the agent). 

Locomotion is composed of    and   . 

            ⁄     

 

5-10 

and 

                   

 

5-11 

Sensor readings are composed of  ̂ 
 ,  ̂ 

 ,  ̂ 
 ,  ̂ 

 . 

  ̂ 
    

 ⁄    

 

5-12 

  ̂ 
    

 ⁄    5-13 
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  ̂ 
    

 ⁄      

 

5-14 

  ̂ 
    

 ⁄      5-15 

In other words, even though every input of the sensor and the locomotion control 

input provides feedback to all other parameters;   ,  ̂ 
 ,  ̂ 

  provide very direct 

feedback to the angular pose of the agent. So, weakness of precision of    and  ̂ 
  

can be corrected by  ̂ 
  for some cases. 

At this point, the writer of this work does not claim that the only or the strongest 

method to fix weakness of angular pose is adding a direction vector to the features. 

However, since it provides very direct feedback to the angular pose, using a 

direction vector for features shall be a beneficial method to correct the angular 

pose of the agent. 

Performance of EKF SLAM algorithm is illustrated bellow for different variance 

values assigned to the direction feature. 
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Figure 82 - Performance of EKF SLAM while changing standard deviation of direction of feature 

Average Error Rate of 1500 Runs –x axis: time (seconds) – y axis: average error (meters) 

The standard deviation of variance of direction vector of features is altered through 1° to 7°, standard 
deviation of angular speed: 1°/sec, standard deviation of observation yaw angle:1° 

Mean of linear speed: 1m/sec, standard deviation of linear speed: 0.15m/sec,, standard deviation of 
observation pitch angle:5°, standard deviation of observation distance: 0.15m 

 

 

Figure 83 - Performance of EKF SLAM while changing standard deviation of direction of feature 

Average Error Rate of 1500 Runs –x axis: time (seconds) – y axis: average error (meters) 

standard deviation of variance of direction vector of features is altered through 1° to 7°, standard deviation of 
angular speed: 7°/sec, standard deviation of observation yaw angle: 7° 

Mean of linear speed: 1m/sec, standard deviation of linear speed: 0.15m/sec,, standard deviation of 
observation pitch angle: 5°, standard deviation of observation distance: 0.1m 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 7

1
4

2
1

2
8

3
5

4
2

4
9

5
6

6
3

7
0

7
7

8
4

9
1

9
8

1
0

5

1
1

2

1
1

9

1
2

6

1
3

3

1
4

0

1
4

7

1
5

4

1
6

1

1
6

8

1
7

5

1
8

2

1
8

9

1
9

6

2
0

3

2
1

0

2
1

7

2
2

4

2
3

1

2
3

8

2
4

5

1°
3°
5°
7°

0

0,5

1

1,5

2

2,5

3

3,5

0 7

1
4

2
1

2
8

3
5

4
2

4
9

5
6

6
3

7
0

7
7

8
4

9
1

9
8

1
0

5

1
1

2

1
1

9

1
2

6

1
3

3

1
4

0

1
4

7

1
5

4

1
6

1

1
6

8

1
7

5

1
8

2

1
8

9

1
9

6

2
0

3

2
1

0

2
1

7

2
2

4

2
3

1

2
3

8

2
4

5

1°
3°
5°
7°



126 
 
 

Once, Figure 82 - Performance of EKF SLAM while changing standard deviation of 

direction of featureand Figure 83 - Performance of EKF SLAM while changing 

standard deviation of direction of feature are examined, one can realize that the 

contribution of the direction vector precision is stronger in Figure 83 - Performance 

of EKF SLAM while changing standard deviation of direction of feature. The reason 

of this issue is that the precision of the angular velocity and the landmark 

observation angle is stronger at the first analysis. Since, uncertainty of the angular 

pose of the robot is smaller in Figure 82 - Performance of EKF SLAM while changing 

standard deviation of direction of feature, contribution of feedback loses its 

significance. 

When the standard deviation of angular velocity (  ) and the observation angle ( ̂ 
 ) 

are 1°, increasing standard deviation of direction (decreasing precision) from 1° to 

7° increases the average error rate ≈1.3 times. 

On the other hand, when standard deviation of angular velocity (  ) and 

observation angle ( ̂ 
 ) are 7°, increasing standard deviation of direction (decreasing 

precision) from 1° to 7° increases the average error rate ≈1.7 times. 

So, direction of landmark provides stronger feedback at higher uncertainty of 

angular velocity (  ) and observation angle ( ̂ 
 ). 

In short, using planar features may be a beneficial method to improve the 

performance of EKF SLAM for many cases. Once such a vector is added, number of 

parameters that represent each feature will increase and due to this reason the 

new parameters shall be used to distinguish landmarks in the map. Thus increased 

number of parameters is expected to provide valuable information to avoid mis-

correspondence problem. As stated in Section 2.4.1 one of the weaknesses of 

feature based EKF SLAM is the correspondence problem and increasing the number 

of parameters is a beneficial way to provide a tool for distinguishing the features 

from each other. Additionally representing the environment with higher level of 

features leads a deeper level of understanding of the maps, which is a significant 

property of feature based SLAM as it can be seen on Figure 81. In addition to 
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providing a stronger representation of the environment, increasing the number of 

parameters for each feature supplies stronger feedback to the pose of the agent, 

thus increase the performance of EKF SLAM. 

However one must remember that adding a direction vector requires an 

appropriate sensor system and several feature extraction and comparison 

mechanisms. In addition to this, adjusting precision of direction vector may be a 

challenging issue and certainty of direction vector may be restricted by 

performance of sensor system. So, with improved precision of sensor system, an 

improvement at other parameters of features is expected too. Due to this reason, 

utilizing a stronger sensor system and stronger feature extraction algorithms is 

expected to increase precision of direction vector. But such operation may not 

provide expected amount of benefit on performance for each case, since certainty 

of other parameters are also expected to increase with stronger sensor system and 

feature extraction algorithms. 

5.9 Using Incorrect Standard Deviation Values 

In simulation part of the thesis, the algorithms run from the path that is illuminated 

by theoretic knowledge, but in real experiments there may be unpredicted 

interference from environment or undesired sensor failures may occur.  

As stated previously, while presenting a sensor noise model for IRSCAN, the 

variance rates used for the algorithms are chosen higher from the measured 

variance rates. At this section, the effect of choosing wrong variance rates will be 

examined. The following table and graph shows a set of cases that, the standard 

deviations of the sensors were chosen wrong. 
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Table 10 – Error rates of Figure 84 at the end of 500 seconds. 

Manipulation 

ratio 

True Values of 

Standard Deviation of 

Scanner Yaw – Pitch 

Angle – Landmark 

Direction Angle 

(comes from real 

sensor model) 

EKF SLAM Algorithm 

Values of Standard 

Deviation of Scanner 

Yaw – Pitch Angle – 

Landmark Direction 

Angle (manipulated 

sensor model) 

Average Error Rate 

at the end of 500 

Seconds 

0.25 

3° - 3° - 3° 

0.75° - 0.75° - 0.75° 4,441884m 

0.5 1.5° - 1.5° - 1.5° 3,121644m 

0.75 2.25° - 2.25° - 2.25° 2,688035m 

1 3° - 3° - 3° 

(no manipulation) 2,612749m 

1.25 3.75° - 3.75° - 3.75° 2,605406m 

1.5 4.5° - 4.5° - 4.5° 2,619884m 

1.75 5.25° - 5.25° - 5.25° 2,694553m 

2 6° - 6° - 6° 2,708768m 
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Figure 84 – Shows performance of EKF SLAM when standard deviation values are chosen wrong. Bold purple 
line (1) indicates true standard deviation. Blue line (0.25) indicates performance of EKF SLAM where belief of 

standard deviation used by EKF SLAM is four times smaller than true noise model. Gray line (2) indicates 
performance of EKF SLAM where belief of standard deviation used by EKF SLAM is two times greater than 

true noise model. True and belief standard deviation rates can be seen in Table 10. 

Average Error Rate of 18500 Runs –x time (seconds) vs. y average error (meters) 

Mean of linear speed: 1m/sec, standard deviation of linear speed: 0.15m/sec, standard deviation of angular 
speed: 3°/sec, standard deviation of observation distance: 0.2m 

 

 

As Figure 84 and Table 10 indicate, using a higher deviation rate is not as risky as 

using a lower one. Actually the performance of EKF SLAM does not degrade when 

the belief of standard deviation is slightly increased. In contrast, decreased 

deviation rate may deteriorate performance of EKF SLAM dramatically. The 

algorithm may even collapse at some cases with decreased variance rate. Due to 

this reason; while constructing a sensor model in the true experiments, it is sensible 

to set the variance of the sensors a little bit higher values from the measured 

variance rates. By this way, a stronger safety margin shall be created to prevent the 

algorithm against the impact of undesired interference from the environment or 

the sensor failures. That is why standard deviations of sensor system were set to 

values higher than measured values in Section 4.4.2.  
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CHAPTER 6 
 

 

 

6. EXPERIMENTS WITH REAL SENSOR 
 

 

 

 

 

 

 

In this part the experimental EKF SLAM runs will be demonstrated. The sensor 

system constructed for this work was used to collect data from real environment. 

The experiments are conducted at indoor environment and artificial objects 

(rectangular shapes covered with white paper) were used to improve consistency of 

IRSCAN. 

Feature extraction is done by edge based segmentation methods, using edge 

function with several parameters of MATLAB 7.12.0 (explained at Section 4.4 and 

APPENDIX A). Features were never extracted via complete supervisor support. But 

in some cases non-marked pixels of edges was marked manually to obtain closed 

objects (manually marked edges will be emphasized at explanations of figures and 

will be shown with brighter pixels on edge maps in Appendix F). Using edge based 

segmentation for the feature extraction algorithm may suffer from finding the edge 

lines with a few pixels fault. Such faulty impacts were not corrected by the 

supervisor. For example the plane may be extracted a few pixels larger or smaller 

for some cases; due to this reason the transition between the object and the 

background may be included into the feature itself. By this way, the range and the 

angular pose of the feature will be found slightly incorrect. Since real world EKF 

SLAM may also suffer from such erroneous effects, none of the challenging 

problems stated above was fixed by the supervisor. By this way, it is believed that 

performance of the algorithm shall be tested with more realistic parameters. On the 
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other hand, to avoid divergence of EKF SLAM, variance of input data was increased 

as stated in Section 4.4. 

Finding true correspondence between the observations is out of scope of this work 

and the correspondence is conducted with complete supervisor support ( the 

features are numbered via supervisor). 

To extract the direction of the planes, a plane fitting algorithm was used.[38] Since 

the agent has no locomotion system, it was moved manually and the variance of 

locomotion system is fixed (standard deviation of velocity (  ) = 0.01m/sec, 

standard deviation of angular velocity (  ) = 2°). 

At the experiments: 

Edge detection method defined in Section 4.4.2 and  

APPENDIX A was used to find edges in distance maps 

Segmentation of object was done as explained in Section 4.4.2; 

Corner points were found as explained in Section 4.4.3; 

Position and direction of the CoM were found as explained in Section 4.4.2; 

Variance of the corner points and variance of the position of CoM were calculated 

as explained in Section 4.4.1 and Section 4.4.2; 

Finally, variance of the plane direction was calculated as explained at 4.4.2 

Once the control inputs,  the variance of the control inputs, the pose of corners and 

CoM, the variance of pose of corners and CoM are obtained; EKF SLAM algorithm 

can be executed. 

Through the experiments the planar segments are placed in front of IRSCAN and 

after collecting the data set IRSCAN is moved one step forward to plane segment. 

An image of experiment with two planar segments is shown below: 
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Figure 85 – Two objects are placed in front of IRSCAN. After collecting the data, the sensor will be moved to 
the next point and another set of data will be collected. Such moving and data collecting operation will be 

repeated for each set of data of each experiment. 

 

 

Graphics of error rates of four experiments are presented below: 

 

Figure 86 – Error rate of Experiment#1 – x axis: step number – y axis: average error rate – IRSCAN collected 4 
set of data from different locations – Details of experiment can be seen on Appendix F 
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Figure 87 – Error rate of Experiment#2 – x axis: step number – y axis: average error rate – IRSCAN collected 6 
set of data from different locations – Details of experiment can be seen on Appendix F 

 

 

Figure 88 – Error rate of Experiment#3 – x axis: step number – y axis: average error rate – IRSCAN collected 5 
set of data from different locations – Details of experiment can be seen on Appendix F 

 

 

Figure 89 – Error rate of Experiment#4 – x axis: step number – y axis: average error rate – IRSCAN collected 6 
set of data from different locations – Details of experiment can be seen on Appendix F 
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As it can be seen on the above graphs, error rate of the point landmarks is 

fluctuating between 25mm to 90mm while error rate of the plane landmarks is 

fluctuating between 10mm to 60mm. Such result supports simulation outputs. For 

the give case, implementing feature based EKF SLAM with planar landmarks is a 

stronger method then using four corner point features for IRSCAN and provided 

sensor model. 

However due to the probabilistic nature of EKF SLAM, the performance of the point 

features may outrun the performance of the plane segment features at several 

cases. For example; the read can realize that, the point features provides less 

amount of error rate in experiment#3 - step#2-3. Such fluctuations are expected in 

EKF SLAM, because of its probabilistic nature. The writer of this work emphasizes 

that, the smooth graphs illustrated in Section 0 are the average error rate of 

thousands of monte-carlo trials. Whereas; when the number of the monte-carlo 

trials is decreased to five or ten executions, such undesired fluctuations also 

become visible in monte-carlo graphs. 

EKF SLAM is expected to converge for given parameters through experiment time. 

Such effect can also be seen on the graphs. Average error rate of the plane 

landmarks decreases from 34.8mm to 23.5mm at four experiments. Similarly 

average error rate of the point landmarks decreases from 55.8mm to 38.5mm, 

through the experiments. These results supports converging behavior of the feature 

based EKF SLAM for the presented algorithms and presented parameters. At this 

point the writer of the work emphasize that, this decreasing error rate indicates the 

main trend of the algorithm for given parameters; but in some cases error rate may 

also increase due to probabilistic structure of EKF SLAM algorithm. An example of 

increasing error rate can be observed in experiment#3 step#2-3. Such increasing 

average error rates can also be visualized in simulation environment. 

A significant contribution of using 3D landmarks with orientation information is 

about the correspondence issue. However since correspondence in experiments are 
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conducted via supervisor support, it is not possible to observe such contribution via 

these experiments. 

In experiment#1-2-3 the size of the covariance matrix is 7x7 for the planar features, 

while the size of covariance matrix is 15x15 for the point features. Similarly in 

experiment#4 the size of covariance matrix is 11x11 for the planar features while 

the size is 27x27 for the point features. Thus, as stated in Section 2.4.1 processing 

power required for EKF SLAM with planar features is less than processing power 

needed for EKF SLAM with point features. However, feature extraction algorithms 

also use processing power to extract features and the amount of processing power 

needed for feature extraction algorithm may dominate the time required for 

execution cycle. 

In short an error rate with increased amount of variance values is presented at 

Section 4.4. The presented feature extraction algorithms with indicated variance 

rates are combined to execute feature based EKF SLAM. The output results of 

experiments are consistent with converging behavior of EKF SLAM for given 

parameters and this supports the idea of utilizing 3D planar features instead of 3D 

points features to improve the performance of feature based EKF SLAM algorithms.  
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CHAPTER 7 
 

 

7. CONCLUSION AND FUTURE WORK 
 

 

 

 

 

 

 

In this chapter of the thesis it will be summarized what was done throughout the 

work, conclusions gained from the experiments will be reviewed and possible future 

extensions of this work will be presented. Starting from the review and the 

contributions; 

 An accurate algorithm of SLAM is implemented by utilizing Extended Kalman 

Filter. The algorithm use CoM information for features and a direction vector 

is added to CoM information. Adding a direction vector to CoM provides 

valuable information for SLAM but it requires full observability for the 

extracted feature while popular SP-Model plane representation does 

not[20]. 

o The previous methods used for SLAM are shortly explained and a 

friendly mathematical background of Extended Kalman Filter is 

presented. 

o Center of mass and the orientation of the features are used as 

landmarks for the algorithm. 

o Open form of the control update equations, Jacobians of the control 

update equations and Jacobians of the observation equations for EKF 

are presented. 

o All mathematical equations used for EKF SLAM are presented with 

the same order that they are used in the algorithm. Every element of 
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Jacobians, update equations, error matrixes and Kalman Gain 

equations are presented in open form with true execution order. 

o A second EKF SLAM algorithm that uses 3D point features instead of 

plane segments is also presented (the second algorithm is created by 

omitting some parts of first algorithm’s equations). 

 An open source simulation system with a useful interface, that makes it 

available to test performance of –both plane segment based and point 

based- EKF SLAM algorithm is coded and presented. Basic usage of the 

simulation needs no coding operation (or code manipulation) but works via 

buttons on MATLAB interface. 

o The simulation system creates a virtual environment composed of 

several landmarks and a scanner integrated agent which can sense 

the virtual landmarks. The exact control and measurement data is 

hidden form EKF SLAM algorithm, but Gaussian noise added versions 

of these data are inserted as inputs. 

o True and belief pose of the agent true pose of the landmarks, the 

standard deviation ellipses of belief pose of the agent and the 

landmarks can be visualized with simulation interface. The robot in 

the simulation environment can actively be controlled via MATLAB 

interface. By this way, one can experience behavior of EKF SLAM by 

controlling the simulation agent. 

o Every single standard deviation parameter of EKF SLAM and several 

skills of agent can be adjusted via MATLAB simulation interface. By 

this way, the behavior of EKF SLAM algorithm can be tested for 

different parameters. 

o A monte-carlo analysis option is added to the simulation code. By 

this way the effect of change of the noise parameters, several 

properties of the agent and some environmental conditions can be 

altered and average error rates for each set of parameters can be 
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graphed through time. By this way main trends of effect of 

parameters can be observed. 

 A custom sensor IR distance measurement based scanner system is designed 

and constructed, named IRSCAN. 

o All mechanical structure, electronics circuit, control and interface 

software programming of IRSCAN are designed and implemented by 

the writer of this work. 

o A method for calibration of IRSCAN is presented and implemented. 

o A noise model for range measurement, yaw and pitch angles is 

proposed for IRSCAN. 

o Open source MATLAB codes of well-known edge detection methods 

are implemented to extract features from data collected by IRSCAN. 

By this way, a practical method for edge based segmentation is 

presented for the sensor system. 

o A practical open source plane extraction algorithm is modified and 

implemented to segmented point clouds of IRSCAN. By this way the 

planes used for feature based EKF SLAM can automatically be 

generated. A practical noise model is presented for the generated 

planes. 

o A practical corner detection method was presented for the distance 

image created by IRSCAN. By this way, the points used for point-

feature EKF SLAM can automatically be generated. A practical noise 

model is presented for the generated points. 

 The simulation algorithm written for EKF SLAM code is executed and the 

results of several monte-carlo runs are illustrated. 

o For each monte-carlo run, one of the parameter is swept through a 

range and the resulting average error rates are graphed. By this way, 

several clear illustrations of effect of parameters on EKF SLAM are 

presented. 
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o The effect of precision of the direction vector is emphasized through 

simulation runs. The feedback effect of the direction vector to 

uncertainty of the agent’s angular velocity and the sensor’s angular 

observation is discussed. 

o The effect of using numerically wrong variance rates, is discussed and 

graphed. Through this discussion, a method to enhance the 

performance of IRSCAN, against possible failures is presented (and 

used in sensor noise model). 

 EKF SLAM algorithms are tested with real data which is collected IRSCAN. 

o Since in all theoretical knowledge, sensor models, EKF SLAM 

equations and codes are practiced in the experiments, it is believed 

that, the output results of the experiments provides data to compare 

the accuracy of proposed methods with different extensions of SLAM 

methods. 

o Both plane based features and point based features are used for real 

experiments. Output results of both methods are illustrated and 

compared in same the tables and graphs. By this way, a set of sensor 

tools and sensor data is presented to compare the average error 

trends of both methods. 

Finally, suggesting several subjects to extend this work for future; 

 The resulting simulation and experiment performance of CoM and direction 

based EKF SLAM presented in this work shall be compared with performance 

of SP-Model based EKF SLAM. Benefits and drawbacks of these algorithms 

shall be compared for error performance and correspondence issue. In 

addition to these ones, performance of these two methods shall be 

compared for utilization of different kinds of non-planar feature types. 

 In this work, planar features are represented with CoM and a normal vector. 

However, such algorithm is applicable to different kinds of 3D features once 

they can be represented by a point and a direction vector. So, the presented 

algorithm can be applied for different kinds of features such as [45], [46], 
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[47] and performance of the algorithm shall be tested with these kinds of 

non-planar features. 

 To avoid unintended manipulative impact of supervisor on the data 

collected by sensor system, widely used methods of edge/corner/feature 

detection and extraction algorithms are executed. Stronger algorithms to 

extract valuable information from the point clouds can be searched and 

optimized for sensor system. By this way it may be possible to increase 

precision of processed data collected by sensor system. 

 As stated through the work, the data association operation was done by the 

supervisor. Automatic association techniques can be used and the 

performance of such methods for this type of sensor shall be presented. 

 The sensor constructed for this work is able to create the point cloud of 

different kinds of objects and environments. Such sensor system may be 

used to extract different kinds of features and the resulting features can be 

used in several kinds of SLAM techniques. Comparison of several techniques 

of feature extraction methods and several extensions of SLAM algorithms 

for this type of sensor may be a beneficial contribution for literature. 
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APPENDIX A 

 

EDGE DETECTORS 
 

 

 

 

 

 

 

This appendix aims to explain the edge detection methods used for segmentation of 

the point cloud. For each method shown here the MATLAB 7.12.0  functions are 

implemented to Figure 14. 

Sobel Edge Detector 

This is a simple edge detection method with low computational cost. The Sobel 

operator performs a 2-D spatial gradient measurement on an image and so 

emphasizes regions of high transition frequency. It is used to find the approximate 

absolute gradient magnitude at each point of an input gray scale image. The 

absolute output of edge detector is expected to correspond to edges. 

In Sobel edge detection method, two matrixes are used to be convolved with image. 

The set of matrixes offered for Sobel are shown below. 
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A-1 

 

 

 

These two matrixes are convolved with image and two images that show vertical 

and horizontal transition strengths are obtained. Once these images are combined 

with one of the following equations; 
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   √  
     

  
A-2 

 

 

or 

  |  |  |  | A-3 

 

the matrix which represents power of transitions is obtained. This   shall be filtered 

with a threshold value and the edges will be obtained by this way.[45] 

Output of Sobel edge detector is illustrated below. 

 

Figure 90 – Resulting edge map of Sobel edge detector (in both directions) 

 

 

Robert’s Cross Edge Detector 

The Roberts Cross operator performs a simple, quick to compute, 2-D spatial 

gradient measurement on an image. It thus highlights regions of high spatial 

frequency which often correspond to edges. Pixel values at each point in the output 

represent the estimated absolute magnitude of the spatial gradient of the input 

image at that point. Similar to Sobel edge detection method, there are two 

convolution kernels in Robert’s Cross method. 
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These two matrixes can be convolved with image and resulting gray scale images 

shall be integrated via (A-2) or (A-3). 

 

Figure 91 – Resulting edge map of Robert’s Cross method. 

 

 

Prewitt Edge Detector 

The Prewitt edge detector is an appropriate way to estimate the magnitude and 

orientation of an edge. Although differential gradient edge detection needs a rather 

time consuming calculation to estimate the orientation from the magnitudes in the 

x and y-directions, the compass edge detection obtains the orientation directly from 

the kernel with the maximum response. The Prewitt operator is limited to 8 

possible orientations. To obtain maximum edge transition direction, true kernel 

must be implemented, or after implementing all possible kernels, the one with 

maximum output could be selected.[46] 
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Figure 92 – Resulting edge map of Prewitt edge detector with two different masks 

 

 

Laplacian of Gaussian Edge Detector 

The Laplacian is a 2-D isotropic measure of the 2nd spatial derivative of an image. 

The Laplacian of an image highlights regions of rapid intensity change and this 

property makes it a robust tool for edge detection. However since Laplacian detects 

all intensity changes this method is sensitive against noise. Laplacian of an image is 

indicated with below equation. 

        
   

   
 

   

   
 

A-6 

 

 

For a digital image this can be iterated with one of the kernels shown below. 
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A-7 

 

 

 

However (A-7) is sensitive against noise. Due to this reason Laplacian shall be used 

with convolution of Gaussian. With this additional convolution operation (A-6) 

becomes; 
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with graph; 

 

Figure 93 – Graph of Laplacian of Gaussian 

 

 

When (A-8) is approximated to a discrete kernel one can find the convolution matrix 

shown below.[47]  

 

Figure 94 - Discrete graph of Laplacian of Gaussian with σ=1.4 
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When Laplacian of Gaussian is implemented to Figure 14, following edge map is 

created. 

 

Figure 95 – Resulting edge map of LoG Edge Detector 

 

 

Zero Cross Edge Detector 

The zero crossing detector looks for places in the Laplacian of an image where the 

value of the Laplacian passes through zero (or in discrete image where Laplacian 

changes its sign). Such places often represent edges of objects. Zero crossing 

detector shall be thought as some sort of feature detector rather than an edge 

detector. Zero crossings lie on closed contours. Due to this reason the output of the 

zero crossing detector is usually an image with single pixel thickness lines showing 

the positions of the zero crossing points.[48] This property makes zero crossing 

method a suitable choice of feature extractor for distance images. 

The core of the zero crossing detector is the LoG filter. As stated previously in LoG 

edge detector, `edges' in images give rise to zero crossings in the LoG output. For 

instance, below figure shows the response of a 1-D LoG filter to a step edge in the 

image. 
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Figure 96– Graph at left shows 1D image. Graph at the right shows LoG convolved 1D image with standard 
deviation = 3 pixels [48] 

 

 

Once Laplacian of Gaussian image is obtained, it is needed to find zero crossing 

points on this image. There are various methods to find these zero crossing points, 

the reader shall see literature for detailed information.[48] 

 

Figure 97 – Resulting edge map of Zero Cross Edge Detector. It is a very similar edge map with Figure 95 

 

 

Canny Edge Detector 

The Canny operator works in a multi-level process. At initial step the image is 

smoothed by Gaussian convolution. After that part, a simple 2-D first derivative 

50 100 150 200 250 300 350

5

10

15

20

25

30

35

40



153 
 
 

kernel such as Roberts Cross is applied to image. By this way regions of the image 

with high first spatial derivatives can be obtained. Edges give rise to ridges in the 

gradient image. The algorithm then tracks along the top of these ridges and erase 

all pixels that are not actually on the ridge top. So the algorithm creates a thin line 

in the output. The tracking process exhibits hysteresis controlled by two thresholds: 

T1 and T2, with T1 > T2. Tracking can only begin at a point on a ridge higher than T1. 

Tracking then continues in both directions out from that point until the height of 

the ridge falls below T2. This hysteresis helps to ensure that noisy edges are not 

broken up into multiple edge fragments.[49] 

 

Figure 98 – Resulting edge map of Canny Edge Detector 
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APPENDIX B 

 

KALMAN FILTER JACOBIAN EQUATIONS 
 

 

 

 

 

 

 

Open form of elements of equation 3-55 is as follows: 
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APPENDIX C 

 

KALMAN FILTER JACOBIAN INITIALIZATION EQUATIONS 
 

 

 

 

 

 

 

Open form of elements of matrix 3-68 are as follows: 
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APPENDIX D 

 

IRSCAN OUTPUT EXAMPLE FOR INDDOR ENVIRONMENT 
 

 

 

 

 

 

 

Point clouds of real indoor environment collected by sensor system can be seen 

below. There are three point clouds below and each set of points is the average of 

different amount of sensor readings. Figure 100 to Figure 104 are the point clouds 

of average of 25 sensor readings. Figure 105 is the average of 60 readings and 

Figure 106 is the average of only 2 readings. At the rest of this work average of 25 

readings will be used by default. Below figures are illustrated to make the reader 

have a stronger idea about IRSCAN. 

 

 

Figure 99 – Photograf of room 
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Figure 100 – Distance image of room collected by sensor system (25 readings for each pixel) 

 

 

 

Figure 101 – constructed version of point cloud (25 readings for each point). Red zones indicate higher 
distance between neighboring points. Blue zones indicate lower distance between neighboring points and 
green zones indicate middle range of distance. Closer objects to sensor are constructed by closer points, 

because neighboring pixels are close to each other by trigonometric perception. Due to this reason nearest 
objects to sensor are colored with blue. With increasing distance of objects, distance between points is also 
increased, so these objects are indicated with green. Finally at transition of edges, distance between points 

gets their maximum value and these zones are indicated with red. 
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Figure 102 - 25 readings for each point. Uncolored version of Figure 101. 

 

 

 

Figure 103 - 25 readings for each point 
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Figure 104 – Non-constructed point cloud (25 readings for each point) 

 

 

 

Figure 105 – Constructed point cloud of second observation (60 readings for each point) 
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Figure 106 - Constructed point cloud of third observation (2 readings for each point) 
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APPENDIX E 

 

IRSCAN NOISE MODEL 
 

 

 

 

 

The histograms presented below shows error model of IRSCAN from different 
distances. Vertical axis (y-axis) of the histograms represents the number of points 
while horizontal axis (x-axis) represents the division of true distance of point to 
measured distance of point. As the reader can verify variance rate of IRSCAN 
fluctuates with distance instead of monotonically increasing with distance. 

 

Table 11 – Histograms of error distributions of sensor system 

 
996-1098mm 

Number of Points Used = 7221 
Average Error = 3.35mm 

Average of Squares of Error = 16.0 

1098-1198mm 
Number of Points Used = 6710 

Average Error = 4.73mm 
Average of Squares of Error = 34.2 

1198-
1298mm 

Number of Points Used = 6800 
Average Error = 6.06mm 

Average of Squares of Error = 53.8
 

1298-1398mm 
Number of Points Used = 9064 

Average Error = 4.42mm 
Average of Squares of Error = 29.8 
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Table 11 (continued) 

1398-1498mm 
Number of Points Used = 5614 

Average Error = 5.45mm 
Average of Squares of Error = 47.4 

 1498-1598mm 
Number of Points Used = 5613 

Average Error = 6.03mm 
Average of Squares of Error = 61.2 

 1598-1698mm 
Number of Points Used = 6976 

Average Error = 7.45mm 
Average of Squares of Error = 89.0 

 1698-1798mm 
Number of Points Used = 3939 

Average Error = 8.43mm 
Average of Squares of Error = 120.7 

 1798-1898mm 
Number of Points Used = 4703 

Average Error = 11.70mm 
Average of Squares of Error = 189.0 

 1898-1998mm 
Number of Points Used = 5593 

Average Error = 9.70mm 
Average of Squares of Error = 132.3 
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Table 11 (continued) 

 1998-2098mm 
Number of Points Used = 3380 

Average Error = 12.63mm 
Average of Squares of Error = 248.4 

 2098-2198mm 
Number of Points Used = 5373 

Average Error = 13.53mm 
Average of Squares of Error = 296.0 

2198-2298mm 
Number of Points Used = 4878 

Average Error = 13.52mm 
Average of Squares of Error = 305.6 

 2298-2398mm 
Number of Points Used = 3135 

Average Error = 16.89mm 
Average of Squares of Error = 389.3 

 2398-2498mm 
Number of Points Used = 2290 

Average Error = 12.97mm 
Average of Squares of Error = 255.2 

 2498-2598mm 
Number of Points Used = 1613 

Average Error = 12.51mm 
Average of Squares of Error = 253.0 
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Table 11 (continued) 

 2598-2698mm 
Number of Points Used = 1152 

Average Error = 10.25mm 
Average of Squares of Error = 159.7 

 2698-2798mm 
Number of Points Used = 3541  

Average Error = 17.64mm 
Average of Squares of Error = 497.5 

 2798-2898mm 
Number of Points Used = 2376 

Average Error = 16.32mm 
Average of Squares of Error = 465.5 

 2898-2998mm 
Number of Points Used = 1107 

Average Error = 24.7mm 
Average of Squares of Error = 932.5 

 2998-3098mm 
Number of Points Used = 548 

Average Error = 19.53mm 
Average of Squares of Error = 656.3 

 3098-3198mm 
Number of Points Used = 2567 

Average Error = 18.85mm 
Average of Squares of Error = 579.0 
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Table 11 (continued) 

 3198-3298mm 
Number of Points Used = 2013 

Average Error = 24.05mm 
Average of Squares of Error = 941.2 

 3298-3398mm 
Number of Points Used = 990 

Average Error = 20.21mm 
Average of Squares of Error = 674.1 

 3398-3498mm 
Number of Points Used = 457 

Average Error = 36.62mm 
Average of Squares of Error = 1804.7 

 3498-3598mm 
Number of Points Used = 2061 

Average Error = 34.24mm 
Average of Squares of Error = 1877.4 

 3598-3698mm 
Number of Points Used = 873 

Average Error = 48.77mm 
Average of Squares of Error = 4371.6 

 3698-3898mm 
Number of Points Used = 201 

Average Error = 65.83mm 
Average of Squares of Error = 6566.0 
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Table 11 (continued) 

 
3898-4098mm 

Number of Points Used = 238 
Average Error = 53.56mm 

Average of Squares of Error = 5284.0 

 
4098-4298mm 

Number of Points Used = 358 
Average Error = 60.58mm 

Average of Squares of Error = 5741.6 

 
4298-4598mm 

Number of Points Used = 335 
Average Error = 67.64mm 

Average of Squares of Error = 6774.1 
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APPENDIX F 

 

EXPERIMENTAL RESULTS 
 

 

 

 

 

 

 

Experiment#1 

 

 

Figure 107 – object of experiment#1 

 

In this experiment the object shown in Figure 107 is placed at x=2100mm, y=0mm, 

α=0°. IRSCAN, moves through x axis and collected data from following poses: 

step#1: x=-27mm, y=0mm, α=-0.75°; step#2: x=273mm, y=0mm, α=-0.75°; 

step#3: x=573mm, y=0mm, α=-0.75°; step#4: x=873mm, y=0mm, α=-0.75°. 

  



169 
 
 

Table 12 –visual data collected for experiment#1move#1 

  
Distance Image Constructed Point Cloud 

  
Edge Image Point Cloud Of Depth Segmented Feature 

 

 

Table 13 – Background truth and measured parameters for experiment#1move#1 

 x y z r α β θ h w 

Robot Real Pose -27 0 115 - - - -0.8 - - 

Lm#1 real pose 
relative to sensor 

2127 28 192 2136 0.8 5.2 0.8 385 500 

Lm#1 measured pose 
relative to sensor 

2114 0 190 2123 0 5.1° -0.9 355 480 

Pnt#1 real pose 
relative to sensor 

2130 -222 385 2176 -6.0 10.2 - - - 

Pnt#1 measured pose 
relative to sensor 

2135 -203 360 2175 -5.4 9.5 - - - 

Pnt#2 real pose 
relative to sensor 

2130 -222 0 2142 -6.0 0 - - - 

Pnt#2 measured pose 
relative to sensor 

2143 -204 24 2153 -5,4 0,6 - - - 

Pnt#3 real pose 
relative to sensor 

2124 278 0 2142 7.5 0 - - - 

Pnt#3 measured pose 
relative to sensor 

2130 280 24 2149 7,5 0,6 - - - 

Pnt#4 real pose 
relative to sensor 

2124 278 385 2176 7.5 10.2 - - - 

Pnt#4 measured pose 
relative to sensor 

2138 274 362 2185 7,3 9,5 - - - 
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Table 14 –visual data collected for experiment#1move#2 

  
Distance Image Constructed Point Cloud 

  

Edge Image Point Cloud Of Depth Segmented Feature 
 

 

Table 15 – background truth and measured parameters for experiment#1move#2 

 x y z R α β θ h w 

Robot Real Pose 273 0 115 - - - -0.8 - - 

Lm#1 real pose 
relative to 

sensor 
1827 24 192 1837 0.8 6.0 0.8 385 500 

Lm#1 measured 
pose relative to 

sensor 
1855 27 204 1866 0.8 6.3 0.5 375 500 

Pnt#1 real pose 
relative to 

sensor 
1830 -226 385 1884 -7 11,8 - - - 

Pnt#1 measured 
pose relative to 

sensor 
1859 -202 400 1913 -6,2 12,1 - - - 

Pnt#2 real pose 
relative to 

sensor 
1830 -226 0 1844 -7 0 - - - 
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Table 15 (continued) 

Pnt#2 measured 
pose relative to 

sensor 
1857 -214 21 1870 -6,6 0,6 - - - 

Pnt#3 real pose 
relative to 

sensor 
1824 274 0 1844 8,5 0 - - - 

Pnt#3 measured 
pose relative to 

sensor 
1845 274 21 1866 8,4 0,6 - - - 

Pnt#4 real pose 
relative to sensor 

1824 274 385 1884 8,5 11,8 - - - 

Pnt#4 measured 
pose relative to 

sensor 
1861 257 402 1922 7,9 12,1 - - - 

 

 

Table 16 –visual data collected for experiment#1move#3 

  
Distance Image Constructed Point Cloud 

 
 

Edge Image Point Cloud Of Depth Segmented Feature 
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Table 17 – background truth and measured parameters for experiment#1move#3 

 x y z R α β θ h w 

Robot Real Pose 573 0 115 - - - -0.8 - - 

Lm#1 real pose 
relative to sensor 

1527 20 192 1539 0.8 7.2 0.8 385 500 

Lm#1 measured 
pose relative to 

sensor 
1533 24 181 1544 0.9 6.7 0.9 382 496 

Pnt#1 real pose 
relative to sensor 

1530 -230 385 1595 -8,5 14 - - - 

Pnt#1 measured 
pose relative to 

sensor 
1536 -197 385 1596 -7,3 14 - - - 

Pnt#2 real pose 
relative to sensor 

1530 -230 0 1547 -8,5 0 - - - 

Pnt#2 measured 
pose relative to 

sensor 
1518 -215 0 1533 -8,1 0 - - - 

Pnt#3 real pose 
relative to sensor 

1524 270 0 1547 10.0 0 - - - 

Pnt#3 measured 
pose relative to 

sensor 
1527 267 0 1550 9,9 0 - - - 

Pnt#4 real pose 
relative to sensor 

1524 270 385 1595 10.0 14 - - - 

Pnt#4 measured 
pose relative to 

sensor 
1530 263 368 1596 9,8 13,3 - - - 

 

 

Table 18 –visual data collected for experiment#1move#4 

 
 

Distance Image Constructed Point Cloud 
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Table 18 (continued) 

  
Edge Image Point Cloud Of Depth Segmented Feature 

 

 

Table 19 – background truth and measured parameters for experiment#1move#4 

 x y z R α β θ h w 

Robot Real Pose 873 0 115 - - - -0.6 - - 

Lm#1 real pose 
relative to sensor 

1227 12 192 1242 0.7 8.9 0.6 385 500 

Lm#1 measured 
pose relative to 

sensor 
1224 13 182 1237 0.6 8.4 0.5 379 503 

Pnt#1 real pose 
relative to sensor 

1229 -238 385 1310 -11 17,1 - - - 

Pnt#1 measured 
pose relative to 

sensor 
1228 -215 385 1305 -9,9 17,1 - - - 

Pnt#2 real pose 
relative to sensor 

1229 -238 0 1252 -11 0 - - - 

Pnt#2 measured 
pose relative to 

sensor 
1212 -225 0 1233 

-
10,5 

0 - - - 

Pnt#3 real pose 
relative to sensor 

1224 262 0 1252 12,1 0 - - - 

Pnt#3 measured 
pose relative to 

sensor 
1209 257 0 1236 12 0 - - - 

Pnt#4 real pose 
relative to sensor 

1224 262 385 1310 12,1 17,1 - - - 

Pnt#4 measured 
pose relative to 

sensor 
1221 251 369 1300 11,6 16,5 - - - 
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Table 20 – map constructed at each step with plane landmarks for experiment#1 

  
time = 1 time = 2 

  
time = 3 time = 4 

 

 

Table 21 – extracted data with background truth for plane landmarksexperiment#1move#1 

time = 1 x y z θ height width 

robot real -27 0 0(115) -0.75 - - 

robot belief -27 0 0 -0.75 - - 

lm#1 real 2100 0 193(308) 0 385 500 

lm#1 belief 2087 -27 190 -1.61 355 480 

 

 

Table 22 – extracted data with background truth for plane landmarks experiment#1move#2 

time = 2 x y z θ height width 

robot real 273 0 0(115) -0.75 - - 

robot belief 273 -5 0 -1.20 - - 

lm#1 real 2100 0 193(308) 0 385 500 

lm#1 belief 2108 -21 198 -1.08 366 491 
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Table 23 – extracted data with background truth for plane landmarks experiment#1move#3 

time = 3 x y z θ height width 

robot real 573 0 0(115) -0.75 - - 

robot belief 573 -11 0 -1.26 - - 

lm#1 real 2100 0 193(308) 0 385 500 

lm#1 belief 2113 -21 191 -0.78 372 492 

 

 

Table 24 – extracted data with background truth for plane landmarks experiment#1move#4 

time = 4 x y z θ height width 

robot real 873 0 0(115) -0.56 - - 

robot belief 873 -17 0 -0.9 - - 

lm#1 real 2100 0 193(308) 0 385 500 

lm#1 belief 2110 21 188 -0.75 375 496 

 

 

Table 25 – map constructed at each step with point landmarks for experiment#1 

  
time = 1 time = 2 

  
time = 3 time = 4 
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Table 26 – extracted data with background truth for point landmarks experiment#1move#1 

time = 1 x y z θ height width 

robot real -27 0 0(115) -0.75 - - 

robot belief -27 0 0 -0.75 - - 

pnt#1 real 2100 -250 385(500) - - - 

pnt#1 belief 2105 -231 360 - - - 

pnt#2 real 2100 -250 0(115) - - - 

pnt#2 belief 2113 -232 24 - - - 

pnt#3 real 2100 250 0(115) - - - 

pnt#3 belief 2107 253 24 - - - 

pnt#4 real 2100 250 385(500) - - - 

pnt#4 belief 2114 246 361 - - - 

 

 

Table 27 – extracted data with background truth for point landmarks experiment#1move#2 

time = 2 x y z θ height width 

robot real 273 0 0(115) -0.75 - - 

robot belief 273 -4 0 -0.62 - - 

pnt#1 real 2100 -250 385(500) - - - 

pnt#1 belief 2126 -229 383 - - - 

pnt#2 real 2100 -250 0(115) - - - 

pnt#2 belief 2117 -235 22 - - - 

pnt#3 real 2100 250 0(115) - - - 

pnt#3 belief 2127 253 22 - - - 

pnt#4 real 2100 250 385(500) - - - 

pnt#4 belief 2154 243 389 - - - 

 

 

Table 28 – extracted data with background truth for point landmarks experiment#1move#3 

time = 3 x y z θ height width 

robot real 573 0 0(115) -0.75 - - 

robot belief 573 -7 0 -0.61 - - 

pnt#1 real 2100 -250 385(500) - - - 

pnt#1 belief 2123 -226 385 - - - 

pnt#2 real 2100 -250 0(115) - - - 

pnt#2 belief 2082 -233 12 - - - 

pnt#3 real 2100 250 0(115) - - - 

pnt#3 belief 2126 251 13 - - - 

pnt#4 real 2100 250 385(500) - - - 

pnt#4 belief 2123 240 378 - - - 
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Table 29 – extracted data with background truth for point landmarks experiment#1move#4 

time = 4 x y z θ height width 

robot real 873 0 0(115) -0.75 - - 

robot belief 873 -9 0 -0.24 - - 

pnt#1 real 2100 -250 385(500) - - - 

pnt#1 belief 2097 -225 381 - - - 

pnt#2 real 2100 -250 0(115) - - - 

pnt#2 belief 2072 -234 7 - - - 

pnt#3 real 2100 250 0(115) - - - 

pnt#3 belief 2102 247 7 - - - 

pnt#4 real 2100 250 385(500) - - - 

pnt#4 belief 2103 237 374 - - - 

 

 

Experiment#2 

 

 

Figure 108 – object of experiment#2 

 

In this experiment the object shown in Figure 108 is placed at x=2700mm, y=0mm, 

α=2°. IRSCAN, moves through x axis and collected data from following poses: 

step#1: x=-27mm, y=0mm, α=-1.3°; step#2: x=273mm, y=0mm, α=-0.75°; 

step#3: x=573mm, y=0mm, α=-0.93°; step#4: x=873mm, y=0mm, α=-1.13°; 

step#5: x=1173mm, y=0mm, α=-1.13°; step#6: x=1473mm, y=0mm, α=-0.56°. 
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Table 30 –visual data collected for experiment#2move#1 

  
Distance Image Constructed Point Cloud 

  

Edge Image – Edges shown brighter are 
marked by supervisor 

Point Cloud Of Depth Segmented Feature – 
Bottom part of the point cloud is undesired 

interference indicated at 0 
 

 

Table 31 – background truth and measured parameters for experiment#2move#1 

 x y z R α β θ h w 

Robot Real Pose -27 0 115 - - - -1.3 - - 

Lm#1 real pose 
relative to sensor 

2726 62 210 2735 1,3 4,4 3,3 420 544 

Lm#1 measured 
pose relative to 

sensor 
2720 70 157 2725 1,5 3,3 0,7 390 537 

Pnt#1 real pose 
relative to sensor 

2741 -208 420 2781 -4,3 8,7 - - - 

Pnt#1 measured 
pose relative to 

sensor 
2773 -200 341 2801 -4,1 7 - - - 

Pnt#2 real pose 
relative to sensor 

2741 -208 -115 2752 -4,3 -2,4 - - - 
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Table 31 (continued) 

Pnt#2 measured 
pose relative to 

sensor 
2676 -184 -59 2683 -3,9 -1,3 - - - 

Pnt#3 real pose 
relative to sensor 

2711 333 -115 2734 7 -2,4 - - - 

Pnt#3 measured 
pose relative to 

sensor 
2695 337 -60 2716 7,1 -1,3 - - - 

Pnt#4 real pose 
relative to sensor 

2711 333 420 2764 7 8,7 - - - 

Pnt#4 measured 
pose relative to 

sensor 
2728 350 306 2768 7,3 6,4 - - - 

 

 

Table 32 –visual data collected for experiment#2move#2 

  
Distance Image Constructed Point Cloud 

  

Edge Image – Two mismarked points in the 
object are deleted by supervisor 

Point Cloud Of Depth Segmented Feature – 
Bottom part of the point cloud is undesired 

interference indicated at 0 
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Table 33 – background truth and measured parameters for experiment#2move#2 

 x y z R α β θ h w 

Robot Real Pose 273 0 115 - - - -0.8 - - 

Lm#1 real pose 
relative to sensor 

2427 32 210 2436 0,8 4,9 2,8 420 544 

Lm#1 measured 
pose relative to 

sensor 
2430 29 150 2435 0,7 3,5 -0,2 396 523 

Pnt#1 real pose 
relative to sensor 

2439 -239 420 2487 -5,6 9,7 - - - 

Pnt#1 measured 
pose relative to 

sensor 
2427 -231 354 2464 -5,4 8,3 - - - 

Pnt#2 real pose 
relative to sensor 

2439 -239 -115 2454 -5,6 -2,7 - - - 

Pnt#2 measured 
pose relative to 

sensor 
2379 -226 -53 2390 -5,4 -1,3 - - - 

Pnt#3 real pose 
relative to sensor 

2414 303 -115 2436 7,1 -2,7 - - - 

Pnt#3 measured 
pose relative to 

sensor 
2411 277 -54 2427 6,6 -1,3 - - - 

Pnt#4 real pose 
relative to sensor 

2414 303 420 2469 7,1 9,8 - - - 

Pnt#4 measured 
pose relative to 

sensor 
2417 310 326 2459 7,3 7,6 - - - 

 

 

Table 34 –visual data collected for experiment#2move#3 

  
Distance Image Constructed Point Cloud 
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Table 34 (continued) 

  
Edge Image –Mismarked point in the object 

is deleted by supervisor 
Point Cloud Of Depth Segmented Feature 

 

 

Table 35 – background truth and measured parameters for experiment#2move#3 

 x y z R α β θ h w 

Robot Real Pose 573 0 115 - - - -0.9 - - 

Lm#1 real pose 
relative to sensor 

2127 35 210 2137 0,9 5,6 2,9 420 544 

Lm#1 measured 
pose relative to 

sensor 
2130 36 186 2138 1 5 1,2 372 534 

Pnt#1 real pose 
relative to sensor 

2140 -236 420 2194 -6,3 11 - - - 

Pnt#1 measured 
pose relative to 

sensor 
2125 -216 407 2175 -5,8 10,8 - - - 

Pnt#2 real pose 
relative to sensor 

2140 -236 -115 2156 -6,3 -3,1 - - - 

Pnt#2 measured 
pose relative to 

sensor 
2143 -239 24 2157 -6,4 0,6 - - - 

Pnt#3 real pose 
relative to sensor 

2113 305 -115 2138 8,2 -3,1 - - - 

Pnt#3 measured 
pose relative to 

sensor 
2136 295 0 2157 7,9 0 - - - 

Pnt#4 real pose 
relative to sensor 

2113 305 420 2176 8,2 11,1 - - - 

Pnt#4 measured 
pose relative to 

sensor 
2108 313 358 2160 8,4 9,5 - - - 
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Table 36 –visual data collected for experiment#2move#4 

  
Distance Image Constructed Point Cloud 

  

Edge Image Point Cloud Of Depth Segmented Feature 
 

 

Table 37 – background truth and measured parameters for experiment#2move#4 

 x y z R α β θ h w 

Robot Real Pose 873 0 115 - - - -1.1 - - 

Lm#1 real pose 
relative to sensor 

1827 36 210 1839 1,1 6,6 3,1 420 544 

Lm#1 measured 
pose relative to 

sensor 
1834 35 202 1846 1,1 6,3 2,3 374 540 

Pnt#1 real pose 
relative to sensor 

1841 -235 420 1903 -7,3 12,8 - - - 

Pnt#1 measured 
pose relative to 

sensor 
1830 -223 415 1890 -6,9 12,7 - - - 

Pnt#2 real pose 
relative to sensor 

1841 -235 -115 1859 -7,3 -3,5 - - - 

Pnt#2 measured 
pose relative to 

sensor 
1848 -250 41 1866 -7,7 1,3 - - - 
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Table 37 (continued) 

Pnt#3 real pose 
relative to sensor 

1812 307 -115 1842 9,6 -3,6 - - - 

Pnt#3 measured 
pose relative to 

sensor 
1824 307 20 1850 9,6 0,6 - - - 

Pnt#4 real pose 
relative to sensor 

1812 307 420 1885 9,6 12,9 - - - 

Pnt#4 measured 
pose relative to 

sensor 
1816 300 393 1882 9,4 12,1 - - - 

 

 

Table 38 –visual data collected for experiment#2move#5 

  
Distance Image Constructed Point Cloud 

  

Edge Image Point Cloud Of Depth Segmented Feature 
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Table 39 – background truth and measured parameters for experiment#2move#5 

 x y z R α β θ h w 

Robot Real Pose 1173 0 115 - - - -1.1 - - 

Lm#1 real pose 
relative to sensor 

1527 30 210 1541 1,1 7,8 3,1 420 544 

Lm#1 measured 
pose relative to 

sensor 
1525 27 190 1537 1 7,1 2,3 384 539 

Pnt#1 real pose 
relative to sensor 

1541 -241 420 1615 -8,9 15,1 - - - 

Pnt#1 measured 
pose relative to 

sensor 
1531 -237 404 1601 -8,8 14,6 - - - 

Pnt#2 real pose 
relative to sensor 

1541 -241 -115 1564 -8,9 -4,2 - - - 

Pnt#2 measured 
pose relative to 

sensor 
1535 -248 17 1555 -9,2 0,6 - - - 

Pnt#3 real pose 
relative to sensor 

1512 301 -115 1546 11,2 -4,3 - - - 

Pnt#3 measured 
pose relative to 

sensor 
1509 295 0 1537 11,1 0 - - - 

Pnt#4 real pose 
relative to sensor 

1512 301 420 1598 11,2 15,2 - - - 

Pnt#4 measured 
pose relative to 

sensor 
1508 295 382 1584 11,1 14 - - - 

 

 

Table 40 – visual data collected for experiment#2move#6 

  
Distance Image Constructed Point Cloud 
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Table 40 (continued) 

 
 

Edge Image – to prevent stand legs of object 
interfere point cloud, brighter pixels are 

marked by supervisor 
Point Cloud Of Depth Segmented Feature 

 

 

Table 41 – background truth and measured parameters for experiment#2move#6 

 x y z R α β θ h w 

Robot Real Pose 1473 0 115 - - - -0.6 - - 

Lm#1 real pose 
relative to sensor 

1227 12 210 1245 0,6 9,7 2,6 420 544 

Lm#1 measured 
pose relative to 

sensor 
1216 25 202 1233 1,2 9,4 2,8 409 525 

Pnt#1 real pose 
relative to sensor 

1239 -259 420 1333 -11,8 18,4 - - - 

Pnt#1 measured 
pose relative to 

sensor 
1232 -228 433 1325 -10,5 19,1 - - - 

Pnt#2 real pose 
relative to sensor 

1239 -259 -115 1271 -11,8 -5,2 - - - 

Pnt#2 measured 
pose relative to 

sensor 
1221 -247 14 1245 -11,4 0,6 - - - 

Pnt#3 real pose 
relative to sensor 

1215 283 -115 1253 13,1 -5,3 - - - 

Pnt#3 measured 
pose relative to 

sensor 
1197 283 0 1230 13,3 0 - - - 

Pnt#4 real pose 
relative to sensor 

1215 283 420 1317 13,1 18,6 - - - 

Pnt#4 measured 
pose relative to 

sensor 
1207 290 398 1304 13,5 17,8 - - - 
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Table 42 – map constructed at each step with plane landmarks for experiment#2 

  
time = 1 time = 2 

  
time = 3 time = 4 

  
time = 5 time = 6 

 

 

 

Table 43 – extracted data with background truth for plane landmarks experiment#2move#1 

time = 1 x y z θ height width 

robot real -27 0 0(115) -1.30 - - 

robot belief -27 0 0 -1.30 - - 

lm#1 real 2700 0 210(325) 2 420 545 

lm#1 belief 2694 8 157 -0.64 390 537 
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Table 44 – extracted data with background truth for plane landmarks experiment#2move#2 

time = 2 x y z θ height width 

robot real 273 0 0(115) -0.75 - - 

robot belief 273 -5 0 -0.52 - - 

lm#1 real 2700 0 210(325) 2 420 545 

lm#1 belief 2704 5 153 -0.67 393 530 

 

Table 45 – extracted data with background truth for plane landmarks experiment#2move#3 

time = 3 x y z θ height width 

robot real 573 0 0(115) -0.93 - - 

robot belief 573 -8 0 -0.66 - - 

lm#1 real 2700 0 210(325) 2 420 545 

lm#1 belief 2696 5 166 -0.16 385 531 

 

Table 46 – extracted data with background truth for plane landmarks experiment#2move#4 

time = 4 x y z Θ height width 

robot real 873 0 0(115) -1.13 - - 

robot belief 873 -11 0 -0.71 - - 

lm#1 real 2700 0 210(325) 2 420 545 

lm#1 belief 2684 4 177 0.47 382 534 

 

Table 47 – extracted data with background truth for plane landmarks experiment#2move#5 

time = 5 x y z θ height width 

robot real 1173 0 0(115) -1.13 - - 

robot belief 1173 -15 0 -0.51 - - 

lm#1 real 2700 0 210(325) 2 420 545 

lm#1 belief 2687 1 181 0.92 383 535 
 

 

Table 48 – extracted data with background truth for plane landmarks experiment#2move#6 

time = 6 x y z θ height width 

robot real 1473 0 0(115) -0.56 - - 

robot belief 1473 -17 0 -0.31 - - 

lm#1 real 2700 0 210(325) 2 420 545 

lm#1 belief 2674 0 186 1.44 389 533 
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Table 49 – map constructed at each step with point landmarks for experiment#2 

  
time = 1 time = 2 

  
time = 3 time = 4 

  
time = 5 time = 6 

 

 

 

 

 

 

-1

0

1

2

3

-3
-2

-1
0

1
2

3

-0.2

0

0.2

0.4

0.6

-1

0

1

2

3

-3
-2

-1
0

1
2

3

-0.2

0

0.2

0.4

0.6

-1

0

1

2

3

-3
-2

-1
0

1
2

3

-0.2

0

0.2

0.4

0.6

-1

0

1

2

3

-3
-2

-1
0

1
2

3

-0.2

0

0.2

0.4

0.6

-1

0

1

2

3

-3
-2

-1
0

1
2

3

-0.2

0

0.2

0.4

0.6

-1

0

1

2

3

-3
-2

-1
0

1
2

3

-0.2

0

0.2

0.4

0.6



189 
 
 

Table 50 – extracted data with background truth for point landmarks experiment#2move#1 

time = 1 x y z θ height width 

robot real -27 0 0(115) -1.30 - - 

robot belief -27 0 0 -1.30 - - 

pnt#1 real 2709 -271 420(535) - - - 

pnt#1 belief 2741 -263 341 - - - 

pnt#2 real 2709 -271 0(115) - - - 

pnt#2 belief 2644 -245 -6 - - - 

pnt#3 real 2691 271 0(115) - - - 

pnt#3 belief 2675 275 -6 - - - 

pnt#4 real 2691 271 420(115) - - - 

pnt#4 belief 2709 287 306 - - - 

 

Table 51 – extracted data with background truth for point landmarks experiment#2move#2 

time = 2 x y z θ height width 

robot real 273 0 0(115) -0.75 - - 

robot belief 273 -5 0 -0.48 - - 

pnt#1 real 2709 -271 420(535) - - - 

pnt#1 belief 2713 -259 348 - - - 

pnt#2 real 2709 -271 0(115) - - - 

pnt#2 belief 2639 -247 -55 - - - 

pnt#3 real 2691 271 0(115) - - - 

pnt#3 belief 2744 270 -58 - - - 

pnt#4 real 2691 271 420(115) - - - 

pnt#4 belief 2695 286 317 - - - 

 

Table 52 – extracted data with background truth for point landmarks experiment#2move#3 

time = 3 x y z θ height width 

robot real 573 0 0(115) -0.93 - - 

robot belief 573 -7 0 -0.56  - 

pnt#1 real 2709 -271 420(535) - - - 

pnt#1 belief 2700 -251 371 - - - 

pnt#2 real 2709 -271 0(115) - - - 

pnt#2 belief 2628 -250 -22 - - - 

pnt#3 real 2691 271 0(115) - - - 

pnt#3 belief 2737 271 -35 - - - 

pnt#4 real 2691 271 420(115) - - - 

pnt#4 belief 2672 284 331 - - - 
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Table 53 – extracted data with background truth for point landmarks experiment#2move#4 

time = 4 x y z θ height width 

robot real 873 0 0(115) -1.13 - - 

robot belief 837 -12 0 -0.62   

pnt#1 real 2709 -271 420(535) - - - 

pnt#1 belief 2668 -251 381 - - - 

pnt#2 real 2709 -271 0(115) - - - 

pnt#2 belief 2583 -253 0 - - - 

pnt#3 real 2691 271 0(115) - - - 

pnt#3 belief 2655 261 -14 - - - 

pnt#4 real 2691 271 420(115) - - - 

pnt#4 belief 2696 278 354 - - - 

 

Table 54 – extracted data with background truth for point landmarks experiment#2move#5 

time = 5 x y z θ height width 

robot real 1173 0 0(115) -1.13 - - 

robot belief 1173 -14 0 -0.4 - - 

pnt#1 real 2709 -271 420(535) - - - 

pnt#1 belief 2652 -251 383 - - - 

pnt#2 real 2709 -271 0(115) - - - 

pnt#2 belief 2623 -258 5 - - - 

pnt#3 real 2691 271 0(115) - - - 

pnt#3 belief 2640 260 -9 - - - 

pnt#4 real 2691 271 420(115) - - - 

pnt#4 belief 2688 276 362 - - - 

 

Table 55 – extracted data with background truth for point landmarks experiment#2move#6 

time = 6 x y z θ height width 

robot real 1473 0 0(115) -0.56 - - 

robot belief 1473 -14 0 -0.07 - - 

pnt#1 real 2709 -271 420(535) - - - 

pnt#1 belief 2688 -250 400 - - - 

pnt#2 real 2709 -271 0(115) - - - 

pnt#2 belief 2669 -261 7 - - - 

pnt#3 real 2691 271 0(115) - - - 

pnt#3 belief 2657 265 -6 - - - 

pnt#4 real 2691 271 420(115) - - - 

pnt#4 belief 2674 275 371 - - - 
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Experiment#3 

 

 

Figure 109 – object of experiment#3 

In this experiment the object shown in Figure 109 is placed at x=2100mm, 

y=300mm, α=0°. IRSCAN, moves through x axis and collected data from following 

poses: 

step#1: x=-27mm, y=-600mm, α=-0.75°; step#2: x=273mm, y=-600mm, α=-0.94°; 

step#3: x=573mm, y=-600mm, α=-0.94°; step#4: x=873mm, y=-600mm, α=-1.13°; 

step#5: x=1173mm, y=-600mm, α=30.18°. 

Table 56 –visual data collected for experiment#3move#1 

  
Distance Image Constructed Point Cloud 
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Table 56 (continued) 

  
Edge Image Point Cloud Of Depth Segmented Feature 

 

 

Table 57 – background truth and measured parameters for experiment#3move#1 

 x y z R α β θ h w 

Robot Real Pose -27 -600 115 - - - -0.8 - - 

Lm#1 real pose 
relative to sensor 

2115 928 193 2318 23,7 4,8 0,8 420 544 

Lm#1 measured 
pose relative to 

sensor 
2102 928 176 2305 23,8 4,4 0,8 336 457 

Pnt#1 real pose 
relative to sensor 

2118 678 385 2257 17,7 9,8 - - - 

Pnt#1 measured 
pose relative to 

sensor 
2099 689 346 2236 18,2 8,9 - - - 

Pnt#2 real pose 
relative to sensor 

2118 678 0 2224 17,7 0 - - - 

Pnt#2 measured 
pose relative to 

sensor 
2125 714 25 2241 18,6 0,6 - - - 

Pnt#3 real pose 
relative to sensor 

2112 1178 0 2418 29,1 0 - - - 

Pnt#3 measured 
pose relative to 

sensor 
2066 1157 26 2368 29,3 0,6 - - - 

Pnt#4 real pose 
relative to sensor 

2112 1178 385 2448 29,1 9 - - - 

Pnt#4 measured 
pose relative to 

sensor 
2093 1154 374 2420 28,9 8,9 - - - 
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Table 58 –visual data collected for experiment#3move#2 

  
Distance Image Constructed Point Cloud 

  

Edge Image Point Cloud Of Depth Segmented Feature 
 

 

Table 59 – background truth and measured parameters for experiment#3move#2 

 x y z R α β θ h w 

Robot Real Pose 273 -600 115 - - - -0.9 - - 

Lm#1 real pose 
relative to sensor 

1812 930 193 2046 27,2 5,4 0,9 420 544 

Lm#1 measured 
pose relative to 

sensor 
1803 920 181 2033 27 5,1 3,2 367 450 

Pnt#1 real pose 
relative to sensor 

1816 680 385 1977 20,5 11,2 - - - 

Pnt#1 measured 
pose relative to 

sensor 
1833 690 373 1993 20,6 10,8 - - - 

Pnt#2 real pose 
relative to sensor 

1816 680 0 1939 20,5 0 - - - 

Pnt#2 measured 
pose relative to 

sensor 
1832 703 22 1963 21 0,6 - - - 
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Table 59 (continued) 

Pnt#3 real pose 
relative to sensor 

1808 1180 0 2159 33,1 0 - - - 

Pnt#3 measured 
pose relative to 

sensor 
1769 1149 23 2110 33 0,6 - - - 

Pnt#4 real pose 
relative to sensor 

1808 1180 385 2193 33,1 10,1 - - - 

Pnt#4 measured 
pose relative to 

sensor 
1788 1136 404 2157 32,4 10,8 - - - 

 

 

Table 60 –visual data collected for experiment#3move#3 

  
Distance Image Constructed Point Cloud 

 
 

Edge Image Point Cloud Of Depth Segmented Feature 
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Table 61 – background truth and measured parameters for experiment#3move#3 

 x y z R α β θ h w 

Robot Real Pose 573 -600 115 - - - -0.9 - - 

Lm#1 real pose 
relative to sensor 

1512 925 193 1783 31,5 6,2 0,9 420 544 

Lm#1 measured 
pose relative to 

sensor 
1511 911 165 1772 31,1 5,4 3,4 392 440 

Pnt#1 real pose 
relative to sensor 

1516 675 385 1704 24 13,1 - - - 

Pnt#1 measured 
pose relative to 

sensor 
1548 683 381 1734 23,8 12,7 - - - 

Pnt#2 real pose 
relative to sensor 

1516 675 0 1660 24 0 - - - 

Pnt#2 measured 
pose relative to 

sensor 
1533 707 0 1688 24,8 0 - - - 

Pnt#3 real pose 
relative to sensor 

1508 1175 0 1912 37,9 0 - - - 

Pnt#3 measured 
pose relative to 

sensor 
1473 1130 0 1857 37,5 0 - - - 

Pnt#4 real pose 
relative to sensor 

1508 1175 385 1950 37,9 11,4 - - - 

Pnt#4 measured 
pose relative to 

sensor 
1494 1131 400 1916 37,1 12,1 - - - 

 

 

Table 62 –visual data collected for experiment#3move#4 

 
 

Distance Image Constructed Point Cloud 
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Table 62 (continued) 

  
Edge Image Point Cloud Of Depth Segmented Feature 

 

 

Table 63 – background truth and measured parameters for experiment#3move#4 

 x y z R α β θ h w 

Robot Real Pose 873 -600 115 - - - -1.1 - - 

Lm#1 real pose 
relative to sensor 

1209 924 193 1534 37,4 7,2 1,1 420 544 

Lm#1 measured 
pose relative to 

sensor 
1200 910 186 1517 37,2 7 2,6 432 461 

Pnt#1 real pose 
relative to sensor 

1214 674 385 1441 29 15,5 - - - 

Pnt#1 measured 
pose relative to 

sensor 
1220 667 429 1455 28,7 17,1 - - - 

Pnt#2 real pose 
relative to sensor 

1214 674 0 1389 29 0 - - - 

Pnt#2 measured 
pose relative to 

sensor 
1215 691 31 1398 29,6 1,3 - - - 

Pnt#3 real pose 
relative to sensor 

1204 1174 0 1682 44,3 0 - - - 

Pnt#3 measured 
pose relative to 

sensor 
1172 1157 18 1647 44,6 0,6 - - - 

Pnt#4 real pose 
relative to sensor 

1204 1174 385 1725 44,3 12,9 - - - 

Pnt#4 measured 
pose relative to 

sensor 
1184 1116 482 1697 43,3 16,5 - - - 
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Table 64 –visual data collected for experiment#3move#5 

 
 

Distance Image Constructed Point Cloud 

 
 

Edge Image Point Cloud Of Depth Segmented Feature 
 

 

Table 65 – background truth and measured parameters for experiment#3move#5 

 x y z R α β θ h w 

Robot Real Pose 1173 -600 115 - - - 30.2 - - 

Lm#1 real pose 
relative to sensor 

1254 312 193 1306 14 8,5 -30,2 420 544 

Lm#1 measured 
pose relative to 

sensor 
1205 299 200 1257 14 9,2 -29,1 380 416 

Pnt#1 real pose 
relative to sensor 

1128 96 385 1196 4,9 18,8 - - - 

Pnt#1 measured 
pose relative to 

sensor 
1115 117 401 1191 6 19,7 - - - 

Pnt#2 real pose 
relative to sensor 

1128 96 0 1132 4,9 0 - - - 

Pnt#2 measured 
pose relative to 

sensor 
1118 118 37 1125 6 1,9 - - - 
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Table 65 (continued) 

Pnt#3 real pose 
relative to sensor 

1379 528 0 1477 20,9 0 - - - 

Pnt#3 measured 
pose relative to 

sensor 
1296 507 15 1392 21,4 0,6 - - - 

Pnt#4 real pose 
relative to sensor 

1379 528 385 1526 20,9 14,6 - - - 

Pnt#4 measured 
pose relative to 

sensor 
1301 475 411 1445 20,1 16,5 - - - 

 

 

Table 66 – map constructed at each step with plane landmarks for experiment#3 
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Table 66 (continued) 

 

 

time = 5  
 

 

Table 67 – extracted data with background truth for plane landmarks experiment#3move#1 

time = 1 x y z θ height width 

robot real -27 -600 0(115) -0.75 - - 

robot belief -27 -600 0 -0.75 - - 

lm#1 real 2100 300 193(308) 0 385 500 

lm#1 belief 2087 301 176 0.09 336 457 

 

 

Table 68 – extracted data with background truth for plane landmarks experiment#3move#2 

time = 2 x y z θ height width 

robot real 273 -600 0(115) -0.94 - - 

robot belief 273 -604 0 -0.079 - - 

lm#1 real 2100 300 193(308) 0 385 500 

lm#1 belief 2146 322 184 1.38 352 453 

 

 

Table 69 – extracted data with background truth for plane landmarks experiment#3move#3 

time = 3 x y z θ height width 

robot real 573 -600 0(115) -0.94 - - 

robot belief 573 -606 0 -0.54 - - 

lm#1 real 2100 300 193(308) 0 385 500 

lm#1 belief 2156 330 179 2.05 367 448 
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Table 70 – extracted data with background truth for plane landmarks experiment#3move#4 

time = 4 x y z θ height width 

robot real 873 -600 0(115) -1.13 - - 

robot belief 873 -608 0 -0.61 - - 

lm#1 real 2100 300 193(308) 0 385 500 

lm#1 belief 2115 313 181 2.07 387 452 

 

Table 71 – extracted data with background truth for plane landmarks experiment#3move#5 

time = 5 x y z θ height width 

robot real 1173 -600 0(115) 30.18 - - 

robot belief 1173 -598 0 30.42 - - 

lm#1 real 2100 300 193(308) 0 385 500 

lm#1 belief 2090 301 187 1.89 385 442 
 

 

Table 72 – map constructed at each step with point landmarks for experiment#3 
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Table 72 (continued) 

 

 

time = 5 time = 6 
 

 

Table 73 – extracted data with background truth for point landmarks experiment#3move#1 

time = 1 x y z θ height width 

robot real -27 -600 0(115) -0.75 - - 

robot belief -27 -600 0 -0.75 - - 

pnt#1 real 2100 50 385(500) - - - 

pnt#1 belief 2080 62 345 - - - 

pnt#2 real 2100 50 0(115) - - - 

pnt#2 belief 2107 86 25 - - - 

pnt#3 real 2100 550 0(115) - - - 

pnt#3 belief 2054 530 26 - - - 

pnt#4 real 2100 550 385(500) - - - 

pnt#4 belief 2081 527 374 - - - 

 

 

 

Table 74 – extracted data with background truth for point landmarks experiment#3move#2 

time = 2 x y z θ height width 

robot real 273 -600 0(115) -0.94 - - 

robot belief 273 -604 0 -0.70 - - 

pnt#1 real 2100 50 385(500) - - - 

pnt#1 belief 2135 74 367 - - - 

pnt#2 real 2100 50 0(115) - - - 

pnt#2 belief 2155 96 23 - - - 

pnt#3 real 2100 550 0(115) - - - 

pnt#3 belief 2081 541 25 - - - 

pnt#4 real 2100 550 385(500) - - - 

pnt#4 belief 2116 540 398 - - - 
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Table 75 – extracted data with background truth for point landmarks experiment#3move#3 

time = 3 x y z θ height width 

robot real 573 -600 0(115) -0.94 - - 

robot belief 573 -606 0 -0.49 - - 

pnt#1 real 2100 50 385(500) - - - 

pnt#1 belief 2165 84 380 - - - 

pnt#2 real 2100 50 0(115) - - - 

pnt#2 belief 2108 83 13 - - - 

pnt#3 real 2100 550 0(115) - - - 

pnt#3 belief 2114 560 16 - - - 

pnt#4 real 2100 550 385(500) - - - 

pnt#4 belief 2108 537 401 - - - 
 

 

Table 76 – extracted data with background truth for point landmarks experiment#3move#4 

time = 4 x y z θ height width 

robot real 873 -600 0(115) -1.13 - - 

robot belief 873 -608 0 -0.48 - - 

pnt#1 real 2100 50 385(500) - - - 

pnt#1 belief 2133 72 396 - - - 

pnt#2 real 2100 50 0(115) - - - 

pnt#2 belief 2113 86 20 - - - 

pnt#3 real 2100 550 0(115) - - - 

pnt#3 belief 2041 518 16 - - - 

pnt#4 real 2100 550 385(500) - - - 

pnt#4 belief 2092 526 428 - - - 

 

 

Table 77 – extracted data with background truth for point landmarks experiment#3move#5 

time = 5 x y z θ height width 

robot real 1173 -600 0(115) 30.18 - - 

robot belief 1173 -599 0 30.28 - - 

pnt#1 real 2100 50 385(500) - - - 

pnt#1 belief 2057 44 383 - - - 

pnt#2 real 2100 50 0(115) - - - 

pnt#2 belief 2098 80 26 - - - 

pnt#3 real 2100 550 0(115) - - - 

pnt#3 belief 2059 530 16 - - - 

pnt#4 real 2100 550 385(500) - - - 

pnt#4 belief 2104 533 431 - - - 
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Experiment#4 

 

 

Figure 110 – objects of experiment#4 and sensor system (photo taken at move#6) 

 

 

In this experiment the objects shown in Figure 110 are placed at x1=2700mm, 

y1=300mm, α1=2° and x2=2700mm, y2=-600mm, α2=-47.5°. IRSCAN, moves through 

x axis and collected data from following poses:: 

step#1: x=-27mm, y=-300mm, α= -1.3°; step#2: x=273mm, y=-300mm, α= -0.94°; 

step#3: x=573mm, y=-300mm, α= -0.75°; step#4: x=873mm, y=-300mm, α= -0.94°; 

step#5: x=1173mm, y=-300mm, α= -1.3°; step#5: x=1473mm, y=-300mm, α= -1.13. 
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Table 78 –visual data collected for experiment#4move#1 

  

Distance Image Constructed Point Cloud 

  

Edge Image - Edges shown brighter are 

marked by supervisor 

Point Cloud Of Depth Segmented 

Feature#1 

 

 

Point Cloud Of Depth Segmented 

Feature#2 
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Table 79 – background truth and measured parameters for experiment#4move#1 

 x y z R α β θ h w 

Robot Real Pose -27 -300 115 - - - -1.31 - - 

Lm#1 real pose 
relative to sensor 

2713 662 210 2800 13,7 4,3 3,3 420 545 

Lm#1 measured pose 
relative to sensor 

2688 655 179 2773 13,7 3,7 3,9 326 495 

Lm#2 real pose 
relative to sensor 

2733 -237 193 2750 -5 4 -46,2 385 500 

Lm#2 measured pose 
relative to sensor 

2716 -258 197 2735 -5,4 4,1 -50,1 277 389 

Pnt#1 real pose 
relative to sensor 

2728 393 420 2788 8,2 8,7 - - - 

Pnt#1 measured pose 
relative to sensor 

2723 404 368 2778 8,4 7,6 - - - 

Pnt#2 real pose 
relative to sensor 

2728 393 0 2756 8,2 0 - - - 

Pnt#2 measured pose 
relative to sensor 

2737 406 61 2768 8,4 1,3 - - - 

Pnt#3 real pose 
relative to sensor 

2676 933 0 2834 19,2 0 - - - 

Pnt#3 measured pose 
relative to sensor 

2653 900 0 2801 18,8 0 - - - 

Pnt#4 real pose 
relative to sensor 

2676 933 420 2865 19,2 8,4 - - - 

Pnt#4 measured pose 
relative to sensor 

2662 884 344 2826 18,4 7 - - - 

Pnt#5 real pose 
relative to sensor 

2553 -411 385 2614 -9,1 8,5 - - - 

Pnt#5 measured pose 
relative to sensor 

2611 -422 354 2669 -9,2 7,6 - - - 

Pnt#6 real pose 
relative to sensor 

2553 -411 0 2586 -9,1 0 - - - 

Pnt#6 measured pose 
relative to sensor 

2586 -392 58 2616 -8,6 1,3 - - - 

Pnt#7 real pose 
relative to sensor 

2914 -64 0 2914 -1,3 0 - - - 

Pnt#7 measured pose 
relative to sensor 

2824 -74 63 2826 -1,5 1,3 - - - 

Pnt#8 real pose 
relative to sensor 

2914 -64 385 2940 -1,3 7,5 - - - 

Pnt#8 measured pose 
relative to sensor 

2828 -111 315 2848 -2,3 6,4 - - - 
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Table 80 –visual data collected for experiment#4move#2 

  

Distance Image Constructed Point Cloud 

  

Edge Image 
Point Cloud Of Depth Segmented 

Feature#1 

 

 

Point Cloud Of Depth Segmented Feature#2  
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Table 81 – background truth and measured parameters for experiment#4move#2 

 x y z R α β θ h w 

Robot Real Pose 273 -300 115 - - - -0.94 - - 

Lm#1 real pose 
relative to sensor 

2417 640 210 2509 14,8 4,8 2,9 420 545 

Lm#1 measured pose 
relative to sensor 

2398 644 173 2489 15 4 3,3 332 514 

Lm#2 real pose 
relative to sensor 

2432 -260 193 2453 -6,1 4,5 -46,6 385 500 

Lm#2 measured pose 
relative to sensor 

2408 -271 182 2430 -6,4 4,3 -46,3 298 428 

Pnt#1 real pose 
relative to sensor 

2431 370 420 2494 8,7 9,7 - - - 

Pnt#1 measured pose 
relative to sensor 

2403 381 353 2459 9 8,3 - - - 

Pnt#2 real pose 
relative to sensor 

2431 370 0 2459 8,7 0 - - - 

Pnt#2 measured pose 
relative to sensor 

2428 385 27 2459 9 0,6 - - - 

Pnt#3 real pose 
relative to sensor 

2382 911 0 2550 20,9 0 - - - 

Pnt#3 measured pose 
relative to sensor 

2372 911 0 2541 21 0 - - - 

Pnt#4 real pose 
relative to sensor 

2382 911 420 2585 20,9 9,4 - - - 

Pnt#4 measured pose 
relative to sensor 

2351 876 336 2531 20,4 7,6 - - - 

Pnt#5 real pose 
relative to sensor 

2250 -432 385 2323 -10,9 9,5 - - - 

Pnt#5 measured pose 
relative to sensor 

2283 -439 364 2353 -10,9 8,9 - - - 

Pnt#6 real pose 
relative to sensor 

2250 -432 0 2291 -10,9 0 - - - 

Pnt#6 measured pose 
relative to sensor 

2258 -426 51 2298 -10,7 1,3 - - - 

Pnt#7 real pose 
relative to sensor 

2613 -88 0 2615 -1,9 0 - - - 

Pnt#7 measured pose 
relative to sensor 

2534 -100 28 2536 -2,3 0,6 - - - 

Pnt#8 real pose 
relative to sensor 

2613 -88 385 2643 -1,9 8,4 - - - 

Pnt#8 measured pose 
relative to sensor 

2529 -91 310 2549 -2,1 7 - - - 
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Table 82 – visual data collected for experiment#4move#3 

  

Distance Image Constructed Point Cloud 

  

Edge Image - Edges shown brighter are 

marked by supervisor 

Point Cloud Of Depth Segmented 

Feature#1 

 

 

Point Cloud Of Depth Segmented 

Feature#2 
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Table 83 – Background truth and measured parameters for experiment#4move#3 

 x y z R α β θ h w 

Robot Real Pose 573 -300 115 - - - -0.75 - - 

Lm#1 real pose 
relative to sensor 

2119 628 210 2220 16,5 5,4 2,8 420 545 

Lm#1 measured pose 
relative to sensor 

2086 626 199 2187 16,7 5,2 4,2 356 510 

Lm#2 real pose 
relative to sensor 

2131 -272 193 2157 -7,3 5,1 -46,8 385 500 

Lm#2 measured pose 
relative to sensor 

2086 -283 204 2115 -7,7 5,5 -50,2 319 429 

Pnt#1 real pose 
relative to sensor 

2132 358 420 2202 9,5 11 - - - 

Pnt#1 measured pose 
relative to sensor 

2091 366 380 2157 9,9 10,2 - - - 

Pnt#2 real pose 
relative to sensor 

2132 358 0 2162 9,5 0 - - - 

Pnt#2 measured pose 
relative to sensor 

2118 385 24 2153 10,3 0,6 - - - 

Pnt#3 real pose 
relative to sensor 

2085 899 0 2271 23,3 0 - - - 

Pnt#3 measured pose 
relative to sensor 

2062 878 25 2241 23,1 0,6 - - - 

Pnt#4 real pose 
relative to sensor 

2085 899 420 2309 23,3 10,5 - - - 

Pnt#4 measured pose 
relative to sensor 

2072 890 378 2287 23,3 9,5 - - - 

Pnt#5 real pose 
relative to sensor 

1949 -443 385 2035 -12,8 10,9 - - - 

Pnt#5 measured pose 
relative to sensor 

1970 -446 385 2056 -12,8 10,8 - - - 

Pnt#6 real pose 
relative to sensor 

1949 -443 0 1998 -12,8 0 - - - 

Pnt#6 measured pose 
relative to sensor 

1978 -441 45 2027 -12,6 1,3 - - - 

Pnt#7 real pose 
relative to sensor 

2313 -101 0 2315 -2,5 0 - - - 

Pnt#7 measured pose 
relative to sensor 

2233 -95 50 2236 -2,4 1,3 - - - 

Pnt#8 real pose 
relative to sensor 

2313 -101 385 2347 -2,5 9,4 - - - 

Pnt#8 measured pose 
relative to sensor 

2213 -94 346 2241 -2,4 8,9 - - - 
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Table 84 – Visual data collected for experiment#4move#4 

  

Distance Image Constructed Point Cloud 

  

Edge Image - Edges shown brighter are 

marked by supervisor 

Point Cloud Of Depth Segmented 

Feature#1 

 

 

Point Cloud Of Depth Segmented Feature#2  
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Table 85 – background truth and measured parameters for experiment#4move#4 

 x y z R α β θ h w 

Robot Real Pose 873 -300 115 - - - -0.94 - - 

Lm#1 real pose relative 
to sensor 

1817 630 210 1934 19,1 6,2 2,9 420 545 

Lm#1 measured pose 
relative to sensor 

1801 625 200 1917 19,1 6 5 403 524 

Lm#2 real pose relative 
to sensor 

1832 -270 193 1861 -8,4 5,9 -46,6 385 500 

Lm#2 measured pose 
relative to sensor 

1802 -289 206 1836 -9,1 6,4 -49,7 340 438 

Pnt#1 real pose relative 
to sensor 

1831 360 420 1913 11,1 12,7 - - - 

Pnt#1 measured pose 
relative to sensor 

1812 361 395 1890 11,3 12,1 - - - 

Pnt#2 real pose relative 
to sensor 

1831 360 0 1866 11,1 0 - - - 

Pnt#2 measured pose 
relative to sensor 

1829 370 21 1866 11,4 0,6 - - - 

Pnt#3 real pose relative 
to sensor 

1782 901 0 1997 26,8 0 - - - 

Pnt#3 measured pose 
relative to sensor 

1765 878 22 1971 26,4 0,6 - - - 

Pnt#4 real pose relative 
to sensor 

1782 901 420 2041 26,8 11,9 - - - 

Pnt#4 measured pose 
relative to sensor 

1796 893 452 2056 26,4 12,7 - - - 

Pnt#5 real pose relative 
to sensor 

1650 -442 385 1751 -15 12,7 - - - 

Pnt#5 measured pose 
relative to sensor 

1687 -440 413 1792 
-

14,6 
13,3 - - - 

Pnt#6 real pose relative 
to sensor 

1650 -442 0 1708 -15 0 - - - 

Pnt#6 measured pose 
relative to sensor 

1677 -449 38 1736 -15 1,3 - - - 

Pnt#7 real pose relative 
to sensor 

2013 -98 0 2016 -2,8 0 - - - 

Pnt#7 measured pose 
relative to sensor 

1941 -95 43 1944 -2,8 1,3 - - - 

Pnt#8 real pose relative 
to sensor 

2013 -98 385 2052 -2,8 10,8 - - - 

Pnt#8 measured pose 
relative to sensor 

1934 -89 347 1967 -2,6 10,2 - - - 
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Table 86 –visual data collected for experiment#4move#5 

  

Distance Image Constructed Point Cloud 

  

Edge Image - Edges shown brighter are 

marked by supervisor 

Point Cloud Of Depth Segmented 

Feature#1 

 

 

Point Cloud Of Depth Segmented Feature#2  
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Table 87 – background truth and measured parameters for experiment#4move#5 

 x y z R α β θ h w 

Robot Real Pose 1173 -300 115 - - - -1.31 - - 

Lm#1 real pose 
relative to sensor 

1513 635 210 1654 22,8 7,3 3,3 420 545 

Lm#1 measured pose 
relative to sensor 

1495 629 191 1633 22,8 6,7 2 405 515 

Lm#2 real pose 
relative to sensor 

1533 -265 193 1568 -9,8 7,1 -46,2 385 500 

Lm#2 measured pose 
relative to sensor 

1515 -274 196 1552 -10,3 7,3 -47,5 348 446 

Pnt#1 real pose 
relative to sensor 

1529 365 420 1627 13,4 15 - - - 

Pnt#1 measured pose 
relative to sensor 

1506 362 404 1601 13,5 14,6 - - - 

Pnt#2 real pose 
relative to sensor 

1529 365 0 1572 13,4 0 - - - 

Pnt#2 measured pose 
relative to sensor 

1511 368 17 1555 13,7 0,6 - - - 

Pnt#3 real pose 
relative to sensor 

1476 906 0 1732 31,5 0 - - - 

Pnt#3 measured pose 
relative to sensor 

1471 888 0 1719 31,1 0 - - - 

Pnt#4 real pose 
relative to sensor 

1476 906 420 1782 31,5 13,6 - - - 

Pnt#4 measured pose 
relative to sensor 

1460 869 423 1751 30,8 14 - - - 

Pnt#5 real pose 
relative to sensor 

1353 -438 385 1473 -17,9 15,1 - - - 

Pnt#5 measured pose 
relative to sensor 

1376 -417 392 1490 -16,9 15,2 - - - 

Pnt#6 real pose 
relative to sensor 

1353 -438 0 1422 -17,9 0 - - - 

Pnt#6 measured pose 
relative to sensor 

1378 -433 32 1445 -17,4 1,3 - - - 

Pnt#7 real pose 
relative to sensor 

1714 -92 0 1716 -3,1 0 - - - 

Pnt#7 measured pose 
relative to sensor 

1661 -87 18 1663 -3 0,6 - - - 

Pnt#8 real pose 
relative to sensor 

1714 -92 385 1759 -3,1 12,6 - - - 

Pnt#8 measured pose 
relative to sensor 

1659 -76 355 1699 -2,6 12,1 - - - 
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Table 88 –visual data collected for experiment#4move#6 
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Table 89 – background truth and measured parameters for experiment#4move#6 

 x y z R α β θ h w 

Robot Real Pose 1473 -300 115 - - - -1.13 - - 

Lm#1 real pose 
relative to sensor 

1215 624 210 1382 27,2 8,7 3,1 420 545 

Lm#1 measured pose 
relative to sensor 

1191 610 190 1352 27,1 8,1 2,3 446 497 

Lm#2 real pose 
relative to sensor 

1233 -276 193 1278 -12,6 8,7 -46,4 385 500 

Lm#2 measured pose 
relative to sensor 

1214 -286 196 1263 -13,2 9 -45,6 371 453 

Pnt#1 real pose 
relative to sensor 

1230 354 420 1347 16,1 18,2 - - - 

Pnt#1 measured pose 
relative to sensor 

1200 347 416 1317 16,1 18,4 - - - 

Pnt#2 real pose 
relative to sensor 

1230 354 0 1280 16,1 0 - - - 

Pnt#2 measured pose 
relative to sensor 

1197 363 0 1251 16,9 0 - - - 

Pnt#3 real pose 
relative to sensor 

1179 895 0 1480 37,2 0 - - - 

Pnt#3 measured pose 
relative to sensor 

1162 867 -16 1450 36,8 -0,6 - - - 

Pnt#4 real pose 
relative to sensor 

1179 895 420 1539 37,2 15,8 - - - 

Pnt#4 measured pose 
relative to sensor 

1160 831 458 1498 35,6 17,8 - - - 

Pnt#5 real pose 
relative to sensor 

1052 -448 385 1206 -23,1 18,6 - - - 

Pnt#5 measured pose 
relative to sensor 

1064 -413 408 1212 -21,2 19,7 - - - 

Pnt#6 real pose 
relative to sensor 

1052 -448 0 1143 -23,1 0 - - - 

Pnt#6 measured pose 
relative to sensor 

1064 -441 26 1152 -22,5 1,3 - - - 

Pnt#7 real pose 
relative to sensor 

1414 -103 0 1417 -4,2 0 - - - 

Pnt#7 measured pose 
relative to sensor 

1384 -95 15 1388 -3,9 0,6 - - - 

Pnt#8 real pose 
relative to sensor 

1414 -103 385 1469 -4,2 15,2 - - - 

Pnt#8 measured pose 
relative to sensor 

1366 -98 373 1419 -4,1 15,2 - - - 
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Table 90 – map constructed at each step with plane landmarks for experiment#4 

  

time = 1 time = 2 

  

time = 3 time = 4 

  

time = 5 time = 6 
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Table 91 – extracted data with background truth for plane landmarks experiment#4move#1 

time = 1 x y z θ height width 

robot real -27 -300 0(115) -1.31 - - 

robot belief -27 -300 0 -1.31 - - 

lm#1 real 2700 300 210(325) 2.00 420 545 

lm#1 belief 2675 293 179 2.6 326 495 

lm#2 real 2700 -600 193(308) -47.5 385 500 

lm#2 belief 2682 -620 198 -51.36 277 389 

 

Table 92 – extracted data with background truth for plane landmarks experiment#4move#2 

time = 2 x y z θ height width 

robot real 273 -300 0(115) -0.94 - - 

robot belief 273 -306 0 -1.02 - - 

lm#1 real 2700 300 210(325) 2.00 420 545 

lm#1 belief 2678 294 175 2.43 329 505 

lm#2 real 2700 -600 193(308) -47.5 385 500 

lm#2 belief 2679 -620 189 -49.06 288 410 

 

Table 93 – extracted data with background truth for plane landmarks experiment#4move#3 

time = 3 x y z θ height width 

robot real 573 -300 0(115) -0.75 - - 

robot belief 573 -310 0 -0.67 - - 

lm#1 real 2700 300 210(325) 2.00 420 545 

lm#1 belief 2668 292 184 2.90 339 507 

lm#2 real 2700 -600 193(308) -47.5 385 500 

lm#2 belief 2661 -618 194 -49.82 300 417 

 

Table 94 – extracted data with background truth for plane landmarks experiment#4move#4 

time = 4 x y Z θ height width 

robot real 873 -300 0(115) -0.94 - - 

robot belief 873 -314 0 -0.63 - - 

lm#1 real 2700 300 210(325) 2.00 420 545 

lm#1 belief 2686 294 191 3.4 358 512 

lm#2 real 2700 -600 193(308) -47.5 385 500 

lm#2 belief 2654 -619 198 -50.01 312 424 
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Table 95 – extracted data with background truth for plane landmarks experiment#4move#5 

time = 5 x y z θ height width 

robot real 1173 -300 0(115) -1.30 - - 

robot belief 1173 -317 0 -0.92 - - 

lm#1 real 2700 300 210(325) 2.00 420 545 

lm#1 belief 2707 303 194 2.66 371 513 

lm#2 real 2700 -600 193(308) -47.5 385 500 

lm#2 belief 2687 -619 199 -49.43 321 429 

 

Table 96 – extracted data with background truth for plane landmarks experiment#4move#6 

time = 6 x y z θ height width 

robot real 1473 -300 0(115) -1.13 - - 

robot belief 1472 -317 0 -0.49 - - 

lm#1 real 2700 300 210(325) 2.00 420 545 

lm#1 belief 2717 311 195 2.49 389 509 

lm#2 real 2700 -600 193(308) -47.5 385 500 

lm#2 belief 2684 -613 198 -48.29 333 435 
 

 

Table 97 – map constructed at each step with point landmarks for experiment#4 
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Table 97 (continued) 

  

time = 3 time = 4 

  

time = 5 time = 6 

 

 

Table 98 – extracted data with background truth for point landmarks experiment#4move#1 

time = 1 x y Z θ height width 

robot real -27 -300 0(115) -1.31 - - 

robot belief -27 -300 0 -1.31 - - 

pnt#1 real 2710 30 420(535) - - - 

pnt#1 belief 2705 41 368 - - - 

pnt#2 real 2710 30 0(115) - - - 

pnt#2 belief 2719 43 61 - - - 

pnt#3 real 2670 572 0(115) - - - 

pnt#3 belief 2646 540 0 - - - 

pnt#4 real 2670 572 420(535) - - - 

pnt#4 belief 2654 523 344 - - - 

pnt#5 real 2516 -768 385(500) - - - 

pnt#5 belief 2574 -782 354 - - - 

pnt#6 real 2516 -768 0(115) - - - 
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Table 98 (continued) 

pnt#6 belief 2549 -751 58 - - - 

pnt#7 real 2884 -431 0(115) - - - 

pnt#7 belief 2795 -439 62 - - - 

pnt#8 real 2884 -431 385(500) - - - 

pnt#8 belief 2798 -476 315 - - - 
 

 

Table 99 – extracted data with background truth for point landmarks experiment#4move#6 

time = 2 x y Z θ height width 

robot real 273 -300 0(115) -0.94 - - 

robot belief 273 -306 0 -0.97 - - 

pnt#1 real 2710 30 420(535) - - - 

pnt#1 belief 2710 41 362 - - - 

pnt#2 real 2710 30 0(115) - - - 

pnt#2 belief 2729 43 43 - - - 

pnt#3 real 2670 572 0(115) - - - 

pnt#3 belief 2566 523 0 - - - 

pnt#4 real 2670 572 420(535) - - - 

pnt#4 belief 2593 510 332 - - - 

pnt#5 real 2516 -768 385(500) - - - 

pnt#5 belief 2527 -775 355 - - - 

pnt#6 real 2516 -768 0(115) - - - 

pnt#6 belief 2443 -744 52 - - - 

pnt#7 real 2884 -431 0(115) - - - 

pnt#7 belief 2797 -443 43 - - - 

pnt#8 real 2884 -431 385(500) - - - 

pnt#8 belief 2830 -457 316 - - - 
 

 

Table 100 – extracted data with background truth for point landmarks experiment#4move#3 

time = 3 x y Z θ height width 

robot real 573 -300 0(115) -0.75 - - 

robot belief 573 -313 0 -1.02 - - 

pnt#1 real 2710 30 420(535) - - - 

pnt#1 belief 2725 29 375 - - - 

pnt#2 real 2710 30 0(115) - - - 

pnt#2 belief 2693 30 35 - - - 

pnt#3 real 2670 572 0(115) - - - 

pnt#3 belief 2691 551 10 - - - 

pnt#4 real 2670 572 420(535) - - - 

pnt#4 belief 2535 484 337 - - - 
 



221 
 
 

Table 100 (continued) 

pnt#5 real 2516 -768 385(500) - - - 

pnt#5 belief 2473 -776 358 - - - 

pnt#6 real 2516 -768 0(115) - - - 

pnt#6 belief 2393 -748 46 - - - 

pnt#7 real 2884 -431 0(115) - - - 

pnt#7 belief 2807 -452 46 - - - 

pnt#8 real 2884 -431 385(500) - - - 

pnt#8 belief 2798 -460 326 - - - 
 

 

Table 101 – extracted data with background truth for point landmarks experiment#4move#4 

time = 4 x y Z θ height width 

robot real 873 -300 0(115) -0.94 - - 

robot belief 873 -319 0 -1.03 - - 

pnt#1 real 2710 30 420(535) - - - 

pnt#1 belief 2758 29 389 - - - 

pnt#2 real 2710 30 0(115) - - - 

pnt#2 belief 2764 36 31 - - - 

pnt#3 real 2670 572 0(115) - - - 

pnt#3 belief 2709 556 14 - - - 

pnt#4 real 2670 572 420(535) - - - 

pnt#4 belief 2585 499 373 - - - 

pnt#5 real 2516 -768 385(500) - - - 

pnt#5 belief 2519 -785 380 - - - 

pnt#6 real 2516 -768 0(115) - - - 

pnt#6 belief 2375 -747 42 - - - 

pnt#7 real 2884 -431 0(115) - - - 

pnt#7 belief 2816 -452 45 - - - 

pnt#8 real 2884 -431 385(500) - - - 

pnt#8 belief 2804 -454 334 - - - 
 

 

Table 102 – extracted data with background truth for point landmarks experiment#4move#5 

time = 5 x y Z θ height width 

robot real 1173 -300 0(115) -1.30 - - 

robot belief 1172 -321 0 -1.18 - - 

pnt#1 real 2710 30 420(535) - - - 

pnt#1 belief 2765 36 401 - - - 

pnt#2 real 2710 30 0(115) - - - 

pnt#2 belief 2793 46 28 - - - 

pnt#3 real 2670 572 0(115) - - - 
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Table 102 (continued) 

pnt#3 belief 2704 562 10 - - - 

pnt#4 real 2670 572 420(535) - - - 

pnt#4 belief 2656 532 396 - - - 

pnt#5 real 2516 -768 385(500) - - - 

pnt#5 belief 2585 -790 396 - - - 

pnt#6 real 2516 -768 0(115) - - - 

pnt#6 belief 2455 -757 39 - - - 

pnt#7 real 2884 -431 0(115) - - - 

pnt#7 belief 2829 -444 37 - - - 

pnt#8 real 2884 -431 385(500) - - - 

pnt#8 belief 2821 -443 342 - - - 
 

 

Table 103 – extracted data with background truth for point landmarks experiment#4move#6 

time = 6 x y Z θ height width 

robot real 1473 -300 0(115) -1.13 - - 

robot belief 1472 -323 0 -0.68 - - 

pnt#1 real 2710 30 420(535) - - - 

pnt#1 belief 2737 34 407 - - - 

pnt#2 real 2710 30 0(115) - - - 

pnt#2 belief 2727 41 19 - - - 

pnt#3 real 2670 572 0(115) - - - 

pnt#3 belief 2682 559 3 - - - 

pnt#4 real 2670 572 420(535) - - - 

pnt#4 belief 2699 553 423 - - - 

pnt#5 real 2516 -768 385(500) - - - 

pnt#5 belief 2605 -787 409 - - - 

pnt#6 real 2516 -768 0(115) - - - 

pnt#6 belief 2490 -760 35 - - - 

pnt#7 real 2884 -431 0(115) - - - 

pnt#7 belief 2852 -438 31 - - - 

pnt#8 real 2884 -431 385(500) - - - 

pnt#8 belief 2814 -436 348 - - - 

 


