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ABSTRACT 

 

RESEARCH ON TRANSFER ALIGNMENT FOR INCREASED SPEED 

AND ACCURACY  

 

 

 

KAYASAL, UĞUR 

PhD., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M. Kemal ÖZGÖREN 

September 2012, 206 pages 

 

In this thesis, rapid transfer alignment algorithm for a helicopter launched guided 

munition is studied. 

 

Transfer alignment is the process of initialization of a guided munition’s inertial 

navigation system with the aid of the carrier platform’s navigation system, which 

is generally done by comparing the navigation data of missile and carrier’s 

navigation data. In the literature, there are different studies of transfer alignment, 

especially for aircraft launched munitions. 

 

One important problem in transfer alignment is the attitude uncertainty of lever 

arm between munition’s and carrier’s navigation systems. In order to overcome 

this problem, most of the studies in the literature do not use carrier’s attitude data 

in the transfer alignment, only velocity data is used. In order to estimate attitude 



 

 

 

v 

and related inertial sensor errors, specific maneuvers of carrier platform are 

required which can take 1-5 minutes. 

 

Especially for helicopter launched munitions, the transfer alignment should be 

completed in limited time duration. In order to have a rapid transfer alignment, 

attitude data should be included in transfer alignment with proper handling of 

lever arm uncertainty. Also, mechanical vibration of helicopter is another 

important problem compared to the aircraft launched systems. In aircrafts, lever 

arm uncertainty due to wing flexure is the main problem, whereas both lever arm 

uncertainty due to rotor based vibration and flexibility are the source of error. The 

helicopter’s mechanical vibration results in another problem; performance of 

MEMS based inertial sensors degrade with the presence of vibration. Modeling 

and compensation of vibration induced inertial sensor errors should also be done 

in a helicopter based transfer alignment 

 

The purpose of this thesis is to compensate the errors arising from the dynamics of 

the Helicopter, lever arm, mechanical vibration effects and inertial sensor error 

amplification, thus designing a transfer alignment algorithm under real 

environment conditions. The algorithm design begins with observability analysis, 

which is not done for helicopter transfer alignment in literature.  In order to make 

proper compensations, characterization and modeling of vibration and lever arm 

environment is done for the helicopter. Also, vibration based errors of MEMS 

based inertial sensors are experimentally shown. The developed transfer 

alignment algorithm is tested by simulated and experimental data 

 

Keywords: Inertial Navigation Systems, Rapid Transfer Alignment, 

Observability Analysis 
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ÖZ 

 

YÖNELİM AKTARIMI’NIN HIZININ  VE HASSASIYETININ 

ARTTIRILMASI ICIN ARASTIRMA  

 

 

 

KAYASAL, Uğur 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M. Kemal ÖZGÖREN 

 

Ağustos 2012, 206 sayfa 

 

Bu tezde, helikopterden fırlatılan bir güdümlü mühimmatın hızlı yönelim aktarımı 

üzerine çalıĢılmıĢtır. 

 

Yönelim aktarımı, güdümlü mühimmatın ataletsel seyrüsefer sisteminin, taĢıyıcı 

platformun seyrüsefer sistemi verileri yardımıyla, genellikle her iki Navigasyon 

sisteminin verilerinin karĢılaĢtırılmasıyla baĢlatılması iĢlemidir. Literatürde 

özellikle uçaktan fırlatılan mühimmatlar için birçok yönelim aktarımı çalıĢması 

yer almaktadır. 

 

Yönelim aktarımındaki önemli bir sorun, mühimmat ve platform Navigasyon 

sistemleri arasındaki yönelim belirsizliğidir. Bu sorunu aĢabilmek için, yönelim 

aktarımında sadece platformun hız verisi kullanılırken yönelim bilgisi 
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kullanılmaz. Yönelim ve ilgili ataletsel sensör hatalarının kestirimi için, 

platformun 1-5 dakika arası süren özel manevralar yapması gerekmektedir. 

Özellikle helikopterden fırlatılan mühimmatlar için yönelim aktarımı kısıtlı bir 

süre içerisinde tamamlanmalıdır.  Hızlı bir yönelim aktarımı yapabilmek için, 

yönelim bilgisinin moment kolu belirsizliğinin uygun biçimde ele alınmasıyla 

yönelim aktarımına dahil edilmesi gerekmektedir. Ayrıca, helikopterin mekanik 

titreĢimi de uçaktan fırlatılan mühimmatlara göre önemli bir sorundur. Uçaklarda 

esas sorun kanat esnemesinden dolayı kaynaklanan moment kolu belirsizliği iken, 

helikopterler rotor kaynaklı titreĢim ve esneme esas sorun kaynaklarıdır. 

Helikopterin mekanik titreĢimi bir diğer soruna daha yol açmaktadır; MEMS 

tabanlı ataletsel sensörlerin performansı titreĢim altında düĢmektedir. 

Helikopter’de yapılan yönelim aktarımında, titreĢime bağlı ataletsel sensör 

hatalarının da karakterize edilmesi ve modellenmesi gerekmektedir. 

 

Bu tezin amacı, Helikopter dinamiğinden kaynaklanan moment kolu, titreĢim ve 

ataletsel sensör hata artmasının telafisinin yapılarak gerçek çevresel ortamda 

çalıĢabilen bir yönelim aktarımı algoritması elde etmektir. Algoritmanın tasarımı, 

literatürde daha önce yapılmamıĢ olan, helikopter yönelim aktarımı için 

gözlenebilirlik analizi yapılarak baĢlamaktadır. Gerekli hata telafilerinin 

yapılabilmesi için moment kolu ve titreĢim etkilerinin karakterizasyonu ve 

modellemesi yapılmıĢtır. Ayrıca, MEMS tabanlı ataletsel sensörlerin titreĢime 

bağlı hataları deneysel olarak belirlenmiĢtir. GeliĢtirilen yönelim aktarımı 

algoritması, benzetim ve deneysel verilerle test edilmiĢtir. 

 

Anahtar Kelimeler: Ataletsel Seyrüsefer Sistemi, Hızlı Yönelim Aktarımı, 

Gözlenebilirlik Analizi 
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CHAPTER 1 

1 INTRODUCTION 

 

1.1 Motivation 

Navigation is the determination and calculation of position, velocity and attitude 

information of a dynamic platform. Inertial navigation systems (INS) obtain these 

navigation states by integrating data from an inertial measurement unit (IMU), 

which contains accelerometers and gyroscopes. Nowadays, almost of all of the 

aircrafts, helicopters, ships and guided missiles are equipped with an INS.  

 

Inertial navigation systems have a lot of advantages; high accuracy in short 

durations, high dynamic bandwidths, immunity to jamming and spoofing etc. But, 

most important point in inertial navigation arises from the nature of INS; 

navigation states (position, velocity and attitude) are calculated by integrating 

linear acceleration and angular velocity measured by IMU. This integration, the 

navigation mechanization requires initial conditions to obtain real navigation 

states. Thus, INSs are also known as deduced reckoning type navigations systems. 

Any error in initial conditions will degrade the navigation performance, resulting 

in accumulated error behavior especially in position. Thus, the initialization of an 

INS should be done very accurately. 

 



 

 

 

2 

There are many different methods of this initialization procedure, basically 

dependent on whether the initialized system is stationary or moving [1].  

 

On the move alignment is very critical for aircraft and helicopter launched guided 

munitions. The main objective of this thesis is to obtain an initialization algorithm 

for helicopter launched guided munitions, known as transfer alignment. 

 

Transfer alignment is the initialization of a moving inertial navigation system 

(INS) with the aid of a higher accuracy already aligned INS [1,2]. The reference 

INS is generally called “master” and the aligned one is called “slave”. Mostly, 

transfer alignment is done in guided munitions, where the host platform has the 

master INS and munition has the slave. Transfer alignment is not only the 

alignment and initialization of the slave INS, but also a pre-flight calibration of 

inertial sensors, accelerometer and gyroscopes can be done. [2] 

 

Transfer alignment can be done with different methods and procedures [5]. Most 

used ones are; 

 

1. One shot alignment 

2. Parameter matching 

a. Velocity matching 

b. Integrated velocity matching 

c. Attitude matching 

d. Velocity and attitude matching 

 

The simplest but the most inefficient type is one shot alignment as it does not 

involve any estimation process, just starting the slave INS with master INS 

navigation states which can lead to serious navigation errors due to 

synchronization, dynamic misalignment etc. This method is used in very short 

range terminal guided munitions. 
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Transfer alignment consists of two stages;  

 

1. One shot coarse initialization 

2. Main transfer alignment phase 

 

One shot coarse initialization is the one time step transfer of navigation states, 

position, velocity and attitude from the host platform to the munition. Thus, the 

munition’s INS can start from realistic initial value set instead of dead reckoning 

from zero velocity or attitude values. 

 

One shot initialization is followed by the main phase, the transfer alignment itself, 

where the parameter matching between master and slave INS is done through an 

estimation procedure. The matched parameters are generally, velocity, attitude or 

both. Usually, the master is a high accuracy navigation grade INS, thus has a 

negligible error behavior with respect to the slave INS. So, in the transfer 

alignment, the measurement difference between the master and slave INSs is a 

function of the slave INS attitude, velocity and inertial sensor errors. With the use 

of an estimation filter, a measurement series is used to find these errors. [3]  

 

The slave INS navigation and inertial sensor errors are estimated by Kalman 

filtering or alternative iterative stochastic estimation method dependent on the 

alignment case [3].  Within the estimation, both estimated errors and their related 

uncertainties are obtained. Dependent on the design of the alignment algorithm, 

the estimated errors are used to correct the slave INS. Maximum theoretical 

achievable accuracy in the transfer alignment is limited by master INS. In most of 

cases, the master INS has performance better than 1 Nautical mile per hour 

position and 1 mil attitude accuracy.  

 

As it is explained previously, the parameter matching methods involve coarse one 

shot alignment and a fine alignment through estimation algorithms. Most popular 

parameter matching methods are velocity and integrated velocity matching 

methods. In these methods, attitude is only used in one shot phase and estimated 
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through velocity measurement. The main reason of not using attitude in the 

estimation phase is the uncertainty in attitude information due to dynamics of 

lever arm between the master and slave navigation systems.. This method is used 

where limited information about the dynamic misalignment is available as the 

method is robust against dynamic misalignment. 

 

In the real transfer alignment case, the alignment performance is affected by 

various physical and environmental restrictions, such as mounting misalignments, 

deflections, vibration etc. These misalignments can be divided into two types [3, 

4]; 

 

1. Static 

2. Dynamic 

 

Static errors are a result of manufacturing tolerances and mounting errors of 

equipment leading to misalignments between different items of equipment on the 

host platform. Generally, static errors can be measured and compensated, thus 

becoming a smaller error source. 

 

In the literature, there are lots of studies for aircraft based transfer alignment 

algorithms [1, 2, 3, and 4], in which the main problem is the wing flexure. As the 

airframe is not perfectly rigid and it has flexibility due to the aerodynamic loading 

on the wings and launcher where the guided munition is loaded. The dynamic 

misalignment increases significantly in the presence of platform maneuvers. Also, 

vibration arising from engines, rotors or aerodynamic loading can contribute to 

dynamic misalignment [4]. 

 

The velocity matching requires lengthy platform maneuvers to complete the 

alignment, thus increasing the transfer alignment duration. The required maneuver 

usually takes 1 to 5 minutes to be completed in order to obtain accurate alignment 

estimation. The reason of this requirement is to obtain observability of azimuth 

attitude error estimation. Usually, s or c turn type maneuvers, which are basically 



 

 

 

5 

level maneuvers with a specific heading change profile is performed in the 

alignment [6]. This heading change is required to estimate both azimuth error and 

gyro errors such as bias and scale factor error. Mathematically, the alignment 

maneuvers generate an acceleration to estimate attitude errors, especially azimuth 

error. The accuracy of azimuth error estimation is proportional to the agility of the 

maneuver up to a limit.  

 

For helicopter launched guided systems, the transfer alignment of guided system 

should be completed in a limited time duration, which limits the use maneuvers 

for attitude estimation. In order to initialize the guided munitions’ INS,  attitude 

information should be included in the transfer alignment process. But as in the 

aircraft launched systems, the attitude uncertainty between master and slave INS’ 

is a serious problem. If this lever arm attitude uncertainty is not taken into 

consideration, the alignment performance will be directly reduced. In the transfer 

alignment, the estimation filter, generally Kalman Filter takes measurements from 

master INS (velocity and attitude) and uses them to find the alignment solution.  

The measurements are compensated for rigid body static lever arm to be used in 

the Kalman Filter. If the flexible lever arm dynamics is not compensated, the 

Kalman Filter will assume that the measurements are unbiased. The slave INS is 

not aware of its own attitude; it only takes measurement of master INS, which is 

actually incomplete due to the flexure.  

 

As explained before, the attitude certainty in aircraft based transfer alignment is 

the wing flexure, which is directly affected by wing structure and loading. 

Generally, this flexibility based attitude is in low frequencies (1-10 Hz) in aircraft 

launched guided munitions. In the helicopters, this attitude uncertainty arises from 

the mechanical vibration driven by rotor and tail blades. 

 

Angular measurements, comprising attitude or angular rate, traditionally have not 

been used due to the difficulty in obtaining data of sufficient quality from the 

platform INS of some host platform. The advent of strapdown INS aboard 

platform resolves this problem. Again, attitude and angular rate essentially 
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comprise the same information. However, angular rate measurements can be 

severely disrupted by wing flexure and vibration, especially during roll 

maneuvers, whilst use of attitude measurements provides smoothing. 

 

It was shown that the use of attitude matching, as well as velocity matching, 

increases the observability of the INS attitude errors, especially azimuth error, 

thus reducing the maneuver requirement. Attitude and velocity matching is also 

called rapid transfer alignment as the alignment duration is reduced [6]. Attitude 

matching is mainly developed for the platforms where the dynamic misalignment 

between master and slave is relatively low [7, 8].  

 

The attitude measurement consists of both dynamic and static misalignment and 

the rigid body motion of the platform. In order to obtain highest accuracy from 

transfer alignment, these two motions must be separated.  The effect of dynamic 

misalignment can be handled as a white noise in Kalman Filtering [8]. By this 

way, stability of the alignment can be obtained but steady state accuracy and 

convergence rate will be affected. 

 

Another common solution is to implement additional Kalman filter states that 

model the dynamic misalignment. [9, 10] 

 

1.2 Literature Survey and Current Applications 

In the literature, almost all of the transfer alignment studies are given for aircraft 

launched systems. As explained in the previous part, there are very limited studies 

for helicopter launched systems. 

 

In most of the aircraft launched munitions’ transfer alignment, velocity matching 

is used [2, 5, 6, 9, 10, and 11]. The reason choosing velocity matching arises from 

the fact that there is a high dynamic misalignment issue, as the aircraft wings are 

highly flexible structures. Using attitude information from host platform may 
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result in high error as there is a considerable uncertainty due to this flexibility. In 

order to design a stable and robust alignment algorithm against these 

misalignment uncertainties, the attitude information of the aircraft is not used as a 

measurement. Although recent studies showed that the dynamic misalignment can 

be deterministically modeled up to certain level of accuracy [26], most of the 

studies prefers velocity matching as this models can be very complicated [2]. As 

stated above, the system becomes robust, but the platform becomes dependent to 

specific transfer alignment maneuvers [5, 9, 10 and 11]. These maneuvers 

generally take 1-3 minutes to be completed and impose tactical constraints to the 

pilot. 

 

Detailed derivation of velocity matching method is given in references 9, 10 and 

11.  In reference 2, the misalignment problem is considered as two parts, static 

and dynamic. The static misalignment is modeled as random constant, where as 

dynamic misalignment is modeled as a second order Markov process. In this 

study, it is stated that stochastic model only give an idea about the dynamic 

misalignment, they are not highly accurate without detailed experimental data. 

In reference 5, velocity and integrated velocity matching methods are analyzed. 

Integrated velocity method is used to damp the vibration effects in Kalman 

filtering process as they have a lower noise level due to the integration of velocity.  

However, the integrated velocity method is shown to be slower with respect to the 

velocity matching method.  

 

In reference 10, the aircraft’s position and velocity information are used as 

measurement.  In the designed algorithm, the misalignment between master and 

slave INS is not modeled in the Kalman filter. IMU errors are also not modeled in 

the filter, only slave INS errors (position, velocity and attitude errors) are 

modeled. The transfer alignment algorithm is completed by a specific s type 

maneuver including a 25 degrees bank angle which is completed in approximately 

5 minutes. In this reference, convergence rate is shown to be proportional to the 

agility of the maneuver, but as a consequence of this agility, the degree of 

dynamic misalignment increases agile maneuvers may yield in a higher 
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convergence rate, but as the maneuver becomes more agile, the wings have a 

higher degree of flexibility increases. In the end of the transfer alignment, an 

attitude error of ~0.5 mrads is obtained in flight tests.  

 

In reference 11 and 12, velocity matching method is tested by a fighter jet flight 

data; offline navigation data is used to inspect the accuracy of the designed 

algorithm. In these studies, effectiveness of different types of maneuvers are 

analyzed. In the Kalman filter of transfer alignment, both slave INS error states 

and inertial sensor biases are modeled. Similar to reference 10, all proposed 

transfer alignment maneuvers are completed in 3-5 minutes. It is shown that IMU 

bias estimations are very sensitive to wing deflections. If the dynamic 

misalignment effects are higher than a certain level, the bias estimations become 

unusable. This false bias estimation has two sources, dynamic behavior of attitude 

error estimation and vibration sensitive biases of the IMU. In order to overcome 

this problem, a low dynamic S turn maneuver is used, where the wings have a 

relatively less dynamic behavior but the observability of the attitude states are 

decreased.  

 

Reference 6 briefly explains the traditional transfer alignment algorithm used in 

Joint Direct Attack Munition (JDAM), an aircraft launched guided bomb. Similar 

bias estimation problems stated above is also seen in this reference. Again, an s 

type maneuver is used to overcome dynamic misalignment issues. 

 

In reference 13, different INS error models are compared for traditional transfer 

alignment. Results using the three different error models described are also 

presented, which shows that all models have approximately the same accuracy. 

 

Attitude and velocity matching method, namely Rapid transfer alignment is first 

derived in reference 7.  It is stated that if the transfer aligned guided munition is to 

be launched in very short time, likely less than 10 seconds, velocity and attitude 

matching method is very useful. In reference 7, 14 and 15, the dynamic 

misalignment is only modeled as white noise. With this noise model, the filter 
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stability robustness is increased but the attitude estimation of accuracy is 

degraded, where the attitude accuracy with rapid transfer alignment is 5-10 mrads 

 

In Reference 16, a rapid transfer alignment algorithm is design while the 

dynamics misalignments are also taken into consideration. Dynamic misalignment 

and vibration profile is model as first and second order Markov processes which 

are derived from pre-recorded flight data.  . In dynamic misalignment modeling, 

each axis have a high frequency second order Markov process for vibration, a low 

frequency second order Markov process for flexibility, and a first order Markov 

process with a very high cutoff frequency. Totally 31 states are augmented into 

the estimation filter. As the optimal filter design has a very high computational 

load, most of these states are neglected in the final design, only three first order 

Markov process is used for dynamic misalignment and lever arm rates are totally 

discarded. Attitude accuracy is 1-2 mrads in the flight tests with a 20 degrees 

wing rock maneuver lasting 5s. 

 

In reference 17, three different transfer alignment maneuvers are compared in 

rapid transfer alignment; no maneuver, wing rock and s type. It is shown that wing 

rock and s type maneuver have the same accuracy, but wing rock maneuver is 

completed in a shorter time. In no maneuver case, scale factor error estimations 

are not observable, which is not the case in wing rock. 

 

In references 17-19, the rapid transfer alignment algorithm designed for an aircraft 

launched missile is first tested on a land vehicle test setup. The two INSs are 

placed in the van, one of them is a navigation grade INS (master INS) and the 

other is a tactical grade (slave INS).  In the rapid transfer alignment, the wing rock 

is manually initiated.  Roll and pitch misalignments are estimated before the wing 

rock starts, and azimuth error is partially estimated prior to the maneuver and 

rapidly estimated after the wing rock maneuver. After the land vehicle tests, final 

tests are conducted on the aircraft. 
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In references [3, 20-23], rapid transfer alignment with different state combinations 

are analyzed. In each of these references, slave INS errors and inertial sensor bias 

errors are modeled. In 21-23, static and dynamic misalignments are separately 

modeled; static misalignment is as random constant and dynamic misalignment as 

a first order Markov process. In all this references, dynamic misalignments are for 

stability and robustness of the filter, not for high accuracy attitude estimation. 

 

Reference 3 states that host platform’s maneuvers are required to separate the 

estimation of attitude errors and accelerometer bias states in velocity matching. 

With rapid transfer alignment, only a simple low agility maneuver is enough for 

observability. Also, the dynamic misalignment is modeled as a function of 

acceleration of the maneuver. First or higher order Markov processes discarding 

this acceleration dependent flexibility are shown to have a stability problem in the 

Kalman filter in roll maneuvers, resulting in decreased accuracy.   

 

Reference 4 and 24 gives different approaches in augmentation of dynamic 

misalignment for ship launched missiles. In reference 4, the host platform’s 

dynamics are augmented into the Kalman Filter states as a direction cosine matrix 

partial matching, especially for pitch misalignment. Dynamic misalignment is 

assumed to be small and dependent on the angular rates of the host platform, ship. 

With a proper formulation, the dynamic misalignments are decoupled from the 

attitude measurement and augmented into the state vector.  In Reference 25, 

Kalman filter equations are re-derived for time correlated measurement and 

system noise without increasing the size of the filter state vector, thus reducing the 

computational load. This formulation was specifically derived for vibration 

induced noise of the slave IMU. 

 

Reference 25 and 26 gives a deterministic modeling approach in dynamic 

behaviors. In reference 26, deterministic modeling of flexibility and vibration of 

the aircraft’s wings is compared with white noise modeling. It is shown that if an 

accurate model of the dynamic misalignment can be obtained, the transfer 

alignment performance can be significantly improved. In references 27 and 28, 
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finite element based models are improved by real flight data, which is obtained by 

a network of inertial sensors placed in proper positions of the wing to obtain the 

related characteristics. 

 

As stated above, vibration induced errors, g
2
 dependent biases of the slave IMU 

(both accelerometers and gyros) are also important in the performance of the 

transfer alignment. The g
2
 dependent biases result in a distinct error in the bias 

estimation of transfer alignment. Besides, noise of the IMU becomes higher in the 

presence of a high level of mechanical vibration [29, 30]. As these vibration 

induced biases and noises are generally not accurately calibrated, transfer 

alignment algorithm should be designed to be able to handle this error. [6] 

 

Maneuver planning is another issue especially in traditional velocity matching 

based transfer alignment. Transfer alignment maneuver should be chosen such 

that all of the modeled error parameters of slave INS and IMU should become 

observable at the end of the alignment.   

 

Some of the error parameters of inertial sensor such as scale factor error and 

dynamic misalignments are time and maneuver dependent, thus the estimated 

system becomes a linear time variant system. References 31 and 32 give a detailed 

derivation of the observability analysis of piece wise time constant systems with 

application to transfer alignment. In these references, important conclusions are 

obtained;   

 

 The observability of the transfer alignment algorithm at a specific 

maneuver segment of the depends on all preceding segments  

 The order of maneuver segments has no effect in final observability of the 

transfer alignment 

 Repetition of a maneuver segment has no effect in increasing the accuracy 
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Reference 33 and 34 gives a detailed observability analysis of the inertial 

navigation system for different types of maneuvers, especially for different phases 

of flight, from take-off to landing.  

 

A different approach in observability analysis in inertial navigation system is 

given in Reference 35. The use of Lyapunov transformation is given for 

transforming the INS error model and sufficient conditions for the observability is 

analytically derived. 

 

Error analysis of transfer alignment algorithm is done, by analyzing the 

observability of the transfer alignment maneuvers in references 36 and 37. Effect 

of maneuvers on the observability is shown in these references and what type of 

maneuvers make which states observable is given. 

 

The level of host aircraft maneuver during transfer alignment affects performance 

because changes in the attitude and/or trajectory are needed to observe separately 

the states estimated by the Kalman filter. Most importantly, when the velocity and 

attitude are constant, the effects of attitude errors and accelerometer biases on the 

navigation solution cannot be separated if the relative orientation is unknown. 

When attitude and velocity measurements are used, the error sources can be 

observed separately by changing attitude. However, if only velocity 

measurements are used, a trajectory change is necessary. Once the attitude errors 

are calibrated, the gyro bias can then be estimated. Estimation of other inertial 

sensor errors such as scale factor and cross-coupling errors requires further 

maneuvers. The measurement noise can reduce the effects of dynamics on state 

estimation and system noise can degrade state estimates, thus the states become 

stochastically unobservable. Consequently, to improve the quality of state 

estimates, there must be sufficient agility in the maneuver to overcome the noise 

effects [3, 38-41]. In references 39-41, the condition for stochastic observability is 

given, which is derived from Riccati Equation of covariance time update, with the 

assumption of no process noise and a priori knowledge. Basically, if the 

covariance matrix is positive definite and bounded for some t>0, then the system 
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is uniformly completely stochastic observable. In reference 41, a different 

approach in stochastic observability is given. In references 41-43, stochastic 

observability of the transfer alignment for different maneuvers such as constant 

axial acceleration maneuvers. 

 

In reference 44, a different approach of transfer alignment is proposed by using 

artificial neural networks (ANN). For this purpose, the multilayer perceptron is 

trained using the outputs of a master IMU. Thus, the neural network filter takes 

the measurements from the slave IMU and after correction gives measurements 

close to the master IMU. The initial position and velocity vector needed by the 

slave IMU may be taken directly from the master INS. Then, the slave INS may 

start operating independently. In this reference, first some background 

information on INS initialization problem and training methodology developed 

are presented. Then, discussion on the neural network filter structure and on the 

training algorithm is given.  

 

Neural networks are used in inertial navigation system where modeling of some of 

the states or their characteristics is complex or unreliable. In reference 45, neural 

network is used to estimate the static misalignment in stationary initial alignment 

of the INS. Reference 46 uses neural network in improving the performance of the 

INS/GPS navigation system where GPS signals are temporarily unavailable. In 

reference 47, neural network is used to provide noise statistics of the states and 

thus update the Kalman Filter noise covariance matrices. In [44-47], it is shown 

that neural network is not superior to Kalman filtering in estimation if the 

mathematical model of the system is accurate, but it is powerful when there is 

lack of information in the model. In reference 48, gyro bias instability is modeled 

by neural networks and compared with traditional Markov models and shown to 

be superior. 
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1.3 Drawbacks of the Current Applications 

As explained in the previous part, almost all of the transfer alignment studies are 

done for aircraft launched systems. There are a few studies for helicopter launched 

guided munitions, which are indeed not highly detailed studies. 

 

The trajectories and estimation states are only given for aircraft launched systems. 

Especially, there is no detailed study of observability for helicopter launched 

systems. Besides that, the observability analyses are only done to determine 

whether the system is fully observable or not. A degree of observability analysis is 

not done to determine which states are specifically observable. Effect of trajectory 

dynamics of the host platform on the observability is not done for helicopter 

launched systems. 

 

There are some studies that deal with wing flexure in transfer alignment, but there 

is not any study for dynamic misalignment and vibration problem in helicopter 

launched systems. In helicopters, the dynamic misalignment has both low and 

high frequency components. Current studies in the literature never studied for 

modeling and compensation of the effects of dynamic misalignment in the 

helicopters. 

 

The helicopters have a significantly higher mechanical vibration level with respect 

to aircrafts due to rotor blade rotation. This vibration certainly affects the 

performance of MEMS inertial sensors, but there are limited studies for this error 

behavior. The inertial sensor performance can significantly change in the presence 

of mechanical vibration 

1.4 Objectives of the Thesis 

In this thesis, following contributions will be added to the rapid transfer alignment 

algorithm; 
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 Observability analysis for Helicopter based Transfer Alignment 

 Characterization and modeling of vibration environment for Helicopter 

launched Guided munitions. 

 Characterization and modeling of vibration induced errors of Inertial 

sensors 

 Characterization and modeling of flexibility in the lever arm between 

master and slave INS for Helicopter launched guided munitions 

 

Observability analysis is very critical for maneuver and state selection for 

helicopter launched guided munitions. The transfer alignment maneuver shall be 

such that total time for transfer alignment is very short while all the states in the 

transfer alignment are estimated. Also, the states that cannot be estimated under 

any condition should be eliminated from transfer alignment in order to reduce the 

computation load of the algorithm. 

 

In the literature, observability analysis of transfer alignment is either done by 

deterministic approach [13 – 24] or stochastic [38-43].  In this thesis, 

observability of transfer alignment for specific maneuvers will be analyzed by 

both approaches to see which maneuver makes which state(s) observable. Besides, 

maneuver analyzes of transfer alignment is for aircraft launched guided 

munitions, there is no study for maneuver selection and optimization for 

helicopter launched systems. In this thesis, transfer alignment maneuver and 

observability analysis will be concentrated on helicopter launched munitions 

 

In rapid transfer alignment, one of the main problems that result in degradation of 

performance and convergence speed is the dynamic misalignment between master 

and slave INS.  Attitude information is transferred to the slave INS with rigid 

body compensation, but slave INS is unaware of the dynamic misalignment, 

which results in a dynamic uncertainty in the estimation. This problem is solved in 

the literature by treating this misalignment as [3]; 

 

 White Noise 
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 Markov Process 

 

White noise modeling is a general solution to this problem; its main advantage is 

robustness in the filtering process. But, if the dynamic misalignment is treated as a 

white noise, the steady state error of attitude is increased and convergence rate is 

reduced [3]. The other method involves state augmentation of dynamic 

misalignment as a first or second order Markov process. The parameters of the 

Markov process should be arranged with experimental data. This approach is 

slightly better than white noise modeling but it can cause stability problems in the 

Kalman Filter [16-22]. 

 

In this thesis, both a neural network and state augmentation based approach in 

dynamic misalignment compensation are investigated; 

 

 A navigation grade high accuracy INS will be placed to the original place 

of slave INS with proper mass/inertia arrangements to observe the same 

mechanical vibration and flexibility profile. 

 Real flight data will be recorded by both INSs. 

 As both INSs are navigation grade, the attitude of both host platform and 

launcher is accurately obtained. 

 A proper network with sufficient layer structure will be trained by the 

difference of these two INSs 

 Order and related parameters of the linear system for state augmentation 

will be determined. 

 Trained neural network’s parameters will be recorded and used in the 

transfer alignment  

 Transfer alignment performance of uncompensated dynamic 

misalignment, white noise modeled and neural network compensated will 

be compared 

 

Comparison of state augmentation and neural network is given with respect to 

uncompensated flexible lever arm effects in helicopter. 
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Another issue in transfer alignment is the amplification of inertial sensor errors 

under high vibration levels, which is known as vibration rectification or g
2 

dependent errors [29, 30]. This error behavior has two distinct components; bias 

and noise 

 

MEMS based gyro or accelerometer’s output has an increase in the bias (offset) 

and noise level dependent on the level of (g RMS) random vibration. This shift is 

generally not dependent on a specific frequency as the natural frequency of 

MEMS inertial sensors are 10-20 KHz and most of the host platforms in transfer 

alignment does not have significant vibration level in this spectrum. 

 

Another important thing is that the vibration level of the host platform may not 

constant during flight.  Frequency components and amplitudes may be different in 

different maneuvers. Thus, noise of the inertial sensors may not be white.  

 

In this thesis; 

 

 Host platform’s launcher vibration is recorded for all flight phases. 

 Recorded data is analyzed in time and frequency domain for all the phases 

of the flight 

 Inertial sensors of the slave INS is tested on vibration table with the 

obtained profile, again for all phases of the flight 

 Bias and noise characteristics during the vibration is analyzed 

 Kalman Filter noise characteristics is designed such that noise variance of 

the inertial sensors are not constant, rather it will be changing with the 

helicopter dynamics 

 Bias shift during vibration is analyzed by vibration table experiments and 

modeled in the Kalman Filtering 

 Both Noise and bias shifts are also modeled  

 Performance of transfer alignment of uncompensated vibration effects, 

white noise modeled and adaptive variance of noise and bias is compared. 
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For the performance analysis of the designed rapid transfer alignment algorithm, 

experimental data will be used to see the effectiveness of the developed 

compensation and adaptation methods 

1.5 Outline of the Thesis 

 

Chapter 1 gives an introduction and brief information about this thesis study. 

 

In Chapter 2, fundamental information about inertial navigation systems are 

presented. Inertial navigation mechanization equations, linear error model of 

inertial navigation and inertial measurement systems are given. 

 

In Chapter 3, basic rapid transfer alignment algorithm and related modules 

(system, measurement, feedback etc.) are given. 

 

In Chapter 4, deterministic and stochastic observability methods are given and 

observability analyses of different transfer alignment maneuvers are shown. 

 

In Chapter 5, vibration dependent inertial sensor errors are introduced. Helicopter 

vibration is experimentally determined. Characterization and modeling 

approaches for vibration induced inertial sensor errors are given. 

 

In Chapter 6, dynamic misalignment problem and its effects are given. 

Characterization of the dynamic behavior is shown and different modeling 

approaches for implementation in the transfer alignment are given. 

 

In Chapter 7, the proposed improvements are implemented to the rapid transfer 

alignment and tested by experimental data 

 

In Chapter 8, discussion and conclusions for the developed rapid transfer 

alignment and improvements are given. 
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CHAPTER 2 

2    STRAPDOWN INERTIAL NAVIGATION 

SYSTEMS  

 

This chapter gives the basic of inertial measurement units (IMU) and inertial 

navigation systems (INS). IMU technologies and inertial sensors’ error sources 

are presented.   Inertial navigation mechanization equations and linear error 

models are given. 

 

2.1 Inertial Measurement Unit  

 

An inertial measurement unit (IMU) is an autonomous closed system for sensing 

linear acceleration and angular rates of a platform. A typical IMU normally 

consists of orthogonally mounted 3 accelerometers and 3 angular rate sensors 

(gyroscopes) to determine the motion of the host platform. Accelerometers and 

gyroscopes measure the specific forces [1, 2, and 3]. 

 

Typically, an IMU senses the linear acceleration and rate of change in attitude and 

navigation system then integrates them to find the total change from the initial 

position.  
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An IMU is an autonomous  measurement system; that is, it does need any kind of 

external information or signal to be operational, thus it can work in almost all 

environment. Also, an IMU cannot be jammed like other navigation systems such 

as Global Navigation Satellite Systems (GNSS). Unlike GPS, an IMU can provide 

very high output rates (~1 kHz), which makes it possible to track high dynamic 

maneuvers [3].  

 

As an inertial navigation system integrates linear acceleration and angular rates to 

obtain position, velocity and attitude, IMU errors result in cumulative navigation 

errors. Generally, accuracy of IMUs becomes better with increasing unit price.  

 

Another disadvantage of IMUs is the initialization procedure. An inertial 

navigation system is a deduced reckoning navigation system; it integrates linear 

acceleration and angular rate in a set of ordinary differential equations to obtain 

position, velocity and attitude data. Without the knowledge of the initial 

conditions, it is not possible to obtain reasonable navigation solutions. Several 

kinds of initial alignment algorithms depending on the platform of navigation 

system can be found in the literature [8, 9, 10]. 

2.1.1 IMU Technologies 

The basic sensors of an INS are configured in either of two ways [1, 2, 8, and 11], 

gimbaled (stabilized) or strapdown systems.  

 

Gimbaled inertial measurement units are old systems which are not commonly 

used recently. Basically, inertial sensors are mounted on a stable platform with 

three or two gimbals that is kept stabilized with respect to the inertial frame or a 

specific reference frame.  

 

In strapdown inertial navigation systems, the inertial sensors are rigidly attached 

to the body, where conversion of inertial sensor measurement from body to 

inertial frame is done by software. The angular rates detected by the gyroscopes 

are used to calculate the attitude of the body with respect to the reference frame 
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then the attitude of the host platform is used to resolve gravity compensated 

accelerometer outputs. Then they are integrated twice to obtain velocity and 

position of body. The advantages of the SINS compared to stabilized inertial 

navigation systems are reduced cost, weight, and mechanical complexity. In this 

work, a strapdown inertial navigation system is considered.  

 

Accelerometers are divided into two main categories: 

  

• Force feedback or pendulous rebalanced accelerometers; and  

• MEMS accelerometers  

 

Gyroscopes are generally divided as: 

 • Mechanical based dynamically tuned gyros; 

 • Optical gyros 

 • MEMS bases Coriolis vibratory gyro 

 

Sensors are often categorized by certain performance parameters, such as bias and 

scale-factor stability and repeatability or noise (random walk) [12]. The sensor 

selection is made difficult by the fact that many different sensor technologies offer 

a range of advantages and disadvantages while offering similar performances. For 

many applications, an improved accuracy/performance is required with the 

minimum cost.. Many of these newer applications require production in much 

larger quantities at much lower cost.  In recent years, three major technologies in 

inertial sensing have enabled advances in military (and commercial) capabilities. 

These are the ring laser gyro (since ~1975), fiber optic gyros (since ~1985), and 

MEMS (since ~1995). The Ring laser gyro (RLG) enabled strapdown technology 

for high dynamic environmental military applications. Fiber Optic Gyros (FOGs) 

were developed primarily as a lower-cost alternative to RLGs. FOGs and RLGs  

nowadays are similar in performance and cost,. However, apart from the potential 

of reducing the cost, the FOG did not really enable the emergence of any new 

military capabilities beyond those already serviced by RLGs. Efforts to reduce 

size and cost resulted in the development of small-path-length RLGs and short-
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fiber-length FOGs. MEMS Inertial sensors have the potential to be a technology 

for new military applications. [11]. 

 

2.1.2 Error Model of IMU 

In the literature, more than 20 different types of errors are defined for inertial 

sensor outputs [10, 11]. However, for the system point of view, most of these 

errors are out of concern. This is because, during the actual use of an IMU, the 

combined effect of most errors cannot be separated by just observing the raw IMU 

outputs [11, 12 and 13]. To localize each error sources, some specialized test 

methods and equipment (like Allen variance tests) should be used, which is not 

practical during a mission.  

 

Errors which represent similar output characteristics are modeled using just a 

single model based on the dominant error source belonging to that group. For 

instance, the quantization error of sensors is ignored and their effects on sensor 

outputs were represented by adjusting random walk variance in constructing 

models. This is because, it is impossible to distinguish these two errors by using 

sensor outputs recorded at a constant rate.   

 

The scale factor and bias are the main error parameters for accelerometer and 

gyroscopes. According to IEEE Inertial Sensor Terminology [49], the inertial 

sensor bias is defined as “the average of the sensor output over a specified time 

measured at specified operating conditions that are independent of input 

acceleration or rotation”. Scale factor error is the error in conversion of 

digital/analog output of the sensor to the physical value. Both errors include these 

components: fixed offset, temperature dependent errors, repeatability type 

variations and in-run stabilities. The fixed component of the error is deterministic 

and constant each time when the sensor is powered on and can be calibrated. 

Temperature dependent errors can to be calibrated up to certain level of accuracy 

with suitable test methods. The repeatability errors are also called turn on to turn 

on errors as these errors vary from sensor turn-on to turn-on but remain constant 
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for a given run. Therefore, their characteristics can be obtained from laboratory 

calibrations and may be estimated in the transfer alignment process. The stability 

errors are time dependent random variations, thus becoming impossible to 

calibrate and vary throughout the periods when the sensor is powered on. The in-

run random errors therefore cannot be removed from measurements using 

deterministic models and calibrations; they should be modeled by a stochastic 

process such as first or second order Markov processes.   

 

The bias of an inertial sensor is the constant output error at a specific 

environmental condition and is uncorrelated with dynamic input of the inertial 

sensor.  Bias is generally expressed in degree per hour (
o
/h) or radian per second 

(rad/s) for gyroscopes and in meter per second square (m/s
2
) or g in 

accelerometers. The bias has two distinct parts: a deterministic part called bias 

offset and a random stochastic component.  The bias offset, the offset in the 

measurement provided by the inertial sensor, is deterministic and can be easily 

removed by proper calibration methods. The random part is called as bias drift, 

and as explained above, contains several parts such as repeatability, stability, in-

stability etc. These bias errors are be modeled as stochastic processes.  

 

The scale factor error is the conversion error between physical input and sensor 

readings. The main scale factor error is deterministic in nature and can be 

determined by calibration. Scale factory repeatability is similar to bias 

repeatability and has a turn on to turn on characteristic. The scale factor 

asymmetry is the difference between the scale factor for positive and negative 

errors.. In some inertial sensor designs, the scale factor is not a linear for all 

measurement range, which is known as scale factor non-linearity, and if not 

compensated can lead to errors in measured inertial input proportional to the order 

of nonlinearity. 

 

The inertial sensor noise is the random instantaneous variation in the inertial 

sensor outputs. The noise is uncorrelated and therefore cannot be removed from 

the data using deterministic models. It can only be modeled by stochastic process. 
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The random noise is an additional signal resulting from the sensor itself or other 

electronic equipment that interfere with the output signals being measured. 

 

The axes misalignment is an error resulting from the imperfection of mounting the 

sensors. It usually results in a non-orthogonality of the axes defining the body 

frame. As a result, each axis is affected by the measurements of the other two axes 

in the body frame. The axes misalignment can, in general, be compensated or 

modeled in the INS error equation. 

 

The cross-coupling error is the error due to sensor sensitivity to inputs about axes 

normal to an input reference axis. Non-orthogonality of the sensor set is the main 

reason behind this error parameter. For even a low-cost MEMS based inertial 

sensor, the cross-coupling error parameter is negligibly small. 

 

 

Figure 2.1 Inertial Sensor Error Characteristics [13] 

 

 

The fundamental mathematical model that describes the true input and erroneous 

sensor output is given in equations 2.1 and 2.2 for accelerometer and gyro 

respectively. 
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S= Scale factor errors 

 

m= Misalignment errors 

 

Bias =Constant errors 

 

Rnd= Random noise errors 

 

In the equations 2.1 and 2.2, 
acca  and 

gyr  represent the inertial sensor reading, 

Ta and 
T  denotes the actual true input values. Notice that this error model is in 

the simplest expression where detailed parameters such as temperature 

dependency, repeatability, stability nonlinearities, g
2
 dependent terms etc. are 

included in the main parameters 

2.2 Inertial Navigation System 

Inertial navigation system (INS) is the navigation unit which gives position, 

velocity and attitude information by integrating the inertial sensor data from IMU 

with mechanization equations. An INS is characterized by having high bandwidth, 

high data output rate and high accuracy in short duration. 

 

Due to its integrating based algorithm structure, an INS has distinct accumulating 

error behaviour.  Inertial sensors, Accelerometers and gyros have specific error 

parameters such as bias, noise etc. When an INS integrates inertial data, all errors 
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with non-zero mean and short integration time  in the inertial sensor reading 

accumulate, resulting in a performance decrease with respect to time. However, an 

INS is perfect for short term navigation requirements. IMU for a navigation 

system is chosen by two criteria; performance requirements and dynamics of the 

platform 

 

2.2.1 Inertial Navigation Mechanization Equations 

In this part of the thesis, fundamentals of inertial navigation system mechanization 

will be introduced. 

2.2.1.1 Coordinate Frames 

 

There are different coordinate reference frames used in inertial navigation 

systems. For example, the inertial sensor outputs are expressed in body 

coordinates, but the navigation states are generally expressed in navigation frame. 

In this section, the basic reference frames in navigation systems are given [19] 

 

2.2.1.1.1 Inertial Frame 

 

 The inertial (i) frame, is an ideal theoretic coordinate frame, with no frame 

acceleration or rotational rates. Unfortunately, an inertial frame is difficult to 

express in real world, so instead of this, a quasi-inertial frame is used. This quasi-

inertial frame has its origin at the centre of the Earth, Z axis is along the spin axis 

of the Earth, X axis points towards the mean vernal equinox, and Y axis is placed 

according to the right hand rule. 
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2.2.1.1.2 Earth frame 

 

The Earth (e) frame has its origin at the center of the Earth and axes fixed with 

respect to the Earth. X axis points toward the mean meridian of Greenwich in 

equatorial plane, Z axis is parallel to mean spin axis of the Earth and again Y axis 

completes the right hand rule. 

 

Earth frame obviously have a rotation with respect to (i) frame; 

 

[0 0 ]e

ie           (2.3) 

 

  is the rotation rate of the Earth; 

 

  =7.2921158 rad/day 

 

In the (e) frame, the position is given in latitude(L), longitude(l) and altitude(h). 

 

 

2.2.1.1.3 Navigation frame 

 

The navigation frame is a local geodetic frame with origin coinciding with IMU, 

with x axis pointing toward geodetic North, its z axis orthogonal to the reference 

ellipsoid pointing downward, and again y axis completes the right hand rule. The 

Navigation frame is also known as North East down (NED) frame. 

 

2.2.1.2 Coordinate Transformation Between Reference Frames 

 

Coordinate transformation is used to convert a express vector in different 

reference frames. Coordinate transformation matrices are orthogonal matrices 

with unity determinant.  There are different methods to transform a vector 
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between different coordinate frames, such as Euler angles, direction cosine matrix 

(DCM), quaternion etc. In this thesis, DCM is with 3-2-1 Euler angle rotation 

sequence is used. 

 

2.2.1.3 Earth Model 

 

To determine the position in (e) frame with Latitude, longitude and altitude, the 

geometric shape of Earth should be modeled. As a common method, WGS84 

Earth Model [1,2,3 and 8] is used, where the main parameters are given as 

follows; 

 

R: Semi major axis length, ~6378 km 

 

(1 )r R f  : Semi minor axis length, ~6356 km 

 

( ) /f R r R  : Ellipsoid flattening, ~1/298.25 

 

(2 )e f f  : Ellipsoid major eccentricity, ~0.08188 

 

Transverse ( ER ) and Meridian ( NR ) radius of curvature are given as; 

 

2

3

2 2 2

(1 )

(1 sin )

N

R e
R

e L






         (2.4) 

1

2 2 2(1 sin )

E

R
R

e L





        (2.5) 

2.2.1.4 Gravity Model 

 

As an accelerometer cannot measure the gravitational acceleration directly, there 

should be an accurate model to be used in navigation mechanization equations [1]. 



 

 

 

29 

In the literature, there are various gravity models used in inertial navigation 

systems. The gravity acceleration is assumed to be acting vertically downwards to 

the reference ellipsoid. In this thesis, the model given in [11] is used. In this 

model, gravity at the surface of the reference ellipsoid is stated as follows; 

3 2 6(0) 9.7803267714(1 5.3024.10 .sin 5.9.10 .sin 2 )g L L       (2.6) 

 

And the change of magnitude of gravity with respect to altitude is given by Kepler 

equation; 

 

2

(0)
( )

(1 / )

g
g h

h R



        (2.7) 

2.2.1.5 Inertial Navigation Kinematic Equations 

 

The differential equations for velocity, position and attitude can be expressed as 

follows [1-15]; 
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where; 
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n

ev : Velocity  

 L: latitude 

 l: longitude 

n

bC : Direction cosine matrix between (b) and (n) frame. 

h: altitude 

na : Acceleration to which the inertial measurement unit is subjected 

en : Transport rate,  

ie : Earth rotation rate 

pg : Plumb up gravity vector 

b

nb : The angular rate of the body with respect to the navigation frame, measured 

in (b) frame, expressed in (n) frame 

 

b

nb  can be expressed as the measured body rates (
b

ib ) and estimates of the 

components of the navigation frame rate ( in ie en    ) ; 

 

.( )b b n n n

nb ib b ie enC             (2.14) 

 

Detailed derivation of the navigation mechanization equations are given in 

Appendix A. 

 

2.2.2 Error Model of Inertial Navigation Systems 

 

As the navigation mechanization equations are highly nonlinear, they cannot be 

directly used linear estimation filter. Also, instead of using navigation states, 

estimating their error states can be more useful for filter stability [22, 34]. The 

navigation error equations are derived by first order perturbations assuming small 

attitude errors, expressed as follows; 
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n  :  Attitude error 

L : Latitude Error 

l  : Longitude Error 

V : Velocity error   

h  : Altitude error 

b

ib : Errors in gyro measurements 

n

in : Errors in 
n

in , which is expressed as; 
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ie L L L L          (2.22) 

 

The detailed derivation of the linear error equations are given in Appendix B. 
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CHAPTER 3  

3  RAPID TRANSFER ALIGNMENT 

In this chapter, fundamentals of rapid transfer alignment, i.e. attitude and velocity 

matching  is explained. Main components and details of the algorithm are given. 

The basic rapid transfer alignment algorithm is designed for ideal conditions; 

vibration and dynamic misalignment effects are not considered.  

 

The rapid transfer alignment algorithm is basically composed of; 

 

 Comparison of master and slave INS attitude and velocity data 

 Filtering the measurements 

 Feedback of estimated data 

 

3.1 Rapid Transfer Alignment Algorithm 

The rapid transfer alignment algorithm is composed of two main parts; 

 

 System model 

 Estimation algorithm 

 

System model is the mathematical model of the estimated parameters, which is 

navigation error model, describing the error characteristics of the navigation and 

IMU parameters. 
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Estimation algorithm uses the system model to estimate the navigation and IMU 

states by synchronously using master and slave INS data. The estimation 

algorithm has three main parts; 

 

 Measurement module: The relation between master and slave INS 

 Estimation module: The optimal estimation of the states 

 Feedback module: Compensation of the estimated errors to the INS 

solution 

 

In Figure 3.1, the flow diagram of the algorithm is given; 

 

 

Slave IMU INS

Lever Arm Compensation

Measurement

Feedback Estimation

Master INS

 

 

Figure 3.1 Rapid Transfer Alignment Algorithm Flow 

 

In the related literature, two implementation method for Kalman Filter exists, 

direct (total state space) and indirect (error state space) Kalman Filter. In the 

direct estimation, the states are attitude, position and velocity, which have high 

nonlinearities.  As the Kalman Filter is a linear filter, this implementation method 

may not work properly in integrated navigation. 
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KALMAN FILTER

IMU output

External Aiding

Navigation Output

 

Figure 3.2 Direct Kalman Filter 

 

 

In the indirect filter, the linearized error navigation states are used, thus the 

Kalman Filter works properly. The indirect filter has also two types, feedback and 

feed forward filters. In the feed forward type, the estimated error states are used to 

correct the INS errors but the INS is unaware of the filter, thus the error states 

grow and linearity assumption fails. In the feedback type, the estimated errors are 

fed back to INS thus error states are not allowed to grow unbounded. In this 

thesis, feedback indirect Kalman Filter is used. 

 

KALMAN FILTER

INS

EXTERNAL AIDING

Position, Velocity, Attitude

Optimal Estimates of INS 

errors

 

Figure 3.3 Indirect Feed forward Kalman Filter 
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KALMAN FILTER

INS
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Figure 3.4 Indirect Feedback Kalman Filter 

 

3.1.1 Measurement 

Measurement equations are given as follows;  
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where, 

 

mv = Platform velocity vector 

 

N

BMC  = Platform DCM 
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R
M

=  Master to Slave position vector 

 

S

MC = Master to Slave orientation 

 

3.1.2 Estimation 

Estimation algorithm with Linear Kalman Filter is given as follows; 
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x: System error parameters 

 

v: System noise parameters 

 

y: Measurement parameters 

 

: Measurement noise parameters 

 

F: System matrix 

 

H: Measurement matrix 

 

G: System noise matrix 

 

Gm: Measurement noise matrix 

 

P: System covariance matrix 

 

Q: System noise covariance matrix 

 

R: Measurement noise covariance matrix 

 

K: Kalman Filter gain 
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The states to be estimated are; 

 

 Position Error 

 Velocity Error 

 Attitude Error 

 Accelerometer bias repeatability 

 Accelerometer scale factor repeatability 

 Gyro bias repeatability 

 Gyro scale factor repeatability 

 

3.1.3 Feedback 

Feedback module simply feedbacks the estimated INS errors to the INS solution 

in order to bound the errors. It also updates the IMU error parameter database 
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CHAPTER 4  

4  OBSERVABILITY ANALYSIS 

In Chapter 3 and Appendix B, it is clearly shown that the system and 

measurement models in the Transfer Alignment Kalman Filter is not time 

invariant, rather they are dependent to velocity, acceleration, position, angular rate 

and attitude of the carrier platform. Thus, the transfer alignment estimation is 

directly dependent to the carrier’s maneuvers, and the Kalman filtering becomes a 

linear time variant problem. The ability of estimation of each state is dependent to 

the motion of the carrier, where the related motion becomes an input for the 

estimation process. 

 

The necessary input to the estimation filter, e.g. the Transfer alignment maneuver 

should be carefully chosen such that all required states can be estimated in proper 

time duration. The maneuver should be agile enough to excite the estimation of 

each state, but also short enough to have a rapid transfer alignment. The maneuver 

duration shall not exceed nominal convergence of Kalman filter in the transfer 

alignment. 

 

In the literature, there are some studies for transfer alignment maneuver selection 

for aircraft launched systems. In this thesis, maneuver selection analysis is done 

for helicopter launched systems. 
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An important tool for maneuver selection and optimization is observability 

analysis. By this tool, the observability of each state under different maneuvers 

can easily be determined without performing heavy Monte Carlo simulations.  

 

In the literature, there are studies for observability analysis applied to integrated 

navigation and transfer alignment, but their major drawback is that these studies 

only check total observability; they determine whether the system is fully 

observable or not. In this thesis, a more detailed analysis method is developed by 

introducing the concept of degree of observability. 

 

The degree of observability is relative observability of each state with respect to 

the other states. A state with a higher degree of observability means that the state 

has a higher convergence rate with respect to the other states. Theoretically, a 

state with a direct measurement has the highest degree of observability in a 

Kalman Filter system. For example, in a GPS aided Navigation systems, position 

errors have the highest degree of observability as GPS provides position 

measurement in the Kalman Filter to aid inertial navigation. 

 

One another drawback of the current studies is that stochastic factors in the 

estimation are omitted. Noisy measurements of sensors can disturb the 

observation performance of a state, thus the state cannot be estimated although it 

is seen as an observable state in the analysis. Previous studies for stochastic 

observability only show that the variance of a state should be bounded for 

observability. But, a state can have a bounden variance but still can be 

unobservable. 

 

 In this thesis, the observability analysis method is derived such that both 

deterministic and stochastic observability can be demonstrated. 

 

Another important topic in the Kalman filter design is the state selection. All 

necessary states that are necessary for the system should be included, but the 

designer should keep in mind that the unobservable states will degrade the 
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performance and accuracy of the estimation, whereas the computational load will 

unnecessarily increase. In order to have an efficient but compact system, only 

observable states should be included in the transfer alignment.  

 

In this chapter, the observability of transfer alignment states is analyzed under 

different carrier platform, helicopter maneuvers. The degree of observability of 

each state is analyzed for each maneuver. Main purpose is to choose set of 

observable states with a proper helicopter maneuver. 

 

In the first part of this chapter, the necessary observability analysis tools are 

developed and in the second part, analysis results are given. 

 

4.1 Observability Analysis Methods 

 

Observability of a system is the ability to obtain initial information of the system 

by observing the outputs for a definite interval of time. If a system is completely 

observable, in other words all the states are observable, and then all of them can 

be successfully estimated. Likewise, if a system is partially observable, some of 

the states cannot be estimated.  Observability is a property defined by system 

characteristics, i.e. dynamics of the states, input and outputs of the system.  

 

Classical approach for observability is done by checking the rank of the 

observability matrix 

 

     2 1... nQ H FH F H F H 
 

     (4.1) 

Where; 

Q      : Observability  

F         : System Matrix  

H        : Measurement matrix 
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The rank of the observability states whether the system is completely observable 

or not. Consider a system with n states; if the rank of the observability matrix is n-

m, then m states are unobservable.  But, which states are unobservable cannot be 

understood with this method. Generally, covariance analysis is done to find the 

unobservable states. The degree of observability is also a question. In a system, 

some of states can have higher convergence rate whereas others converge slowly. 

The degree of observability gives the observability difference between the states. 

 

In the following sections, the methods for analyzing the observability and degree 

of observability will be given. The first method, “ Eigen value Approach” is 

developed in this thesis. The second method, covariance analysis method is 

developed in [41], and applied as a tool for degree of observability for Transfer 

Alignment in this thesis 

 

4.1.1 Eigen Value Approach 

The difference between actual state vector and the estimated state vector  gives the 

estimation error; 

 

ˆ k k kx x x
         (4.2) 

 

Where; 

 

1 1  k k kx x G
        (4.3)

 ˆ ˆ ˆ   k k k k kx x K z Hx
       (4.4) 

1
ˆ ˆ

k kx x
         (4.5) 

1 1      k k k k k kz Hx V H x HG V
     (4.6) 

kx  : Actual state vector 

ˆ
kx  : Estimated state vector 
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kx  : Estimation error 

w : Process noise 

  : State matrix 

G : Process Noise Matrix 

K : Kalman Filter Gain 

H : Measurement matrix 

 

Thus, the estimation error becomes; 

 

 

   

 

   

 

1 1 1 1 1 1

1 1

1 0
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1 1

0 1
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0 1

ˆ ˆ
k k k k k k k k k

k k k k k k k
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k k i

i

jk

k i k j k j

j i
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k i k j k j

j i
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x I K H x
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I K H K V

 
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
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 
   
 

 
    

 

 
   

 



 

 
    (4.7) 

 

The first component of the equation gives information about the estimation error 

characteristics and the other components give the effect of noise parameters in the 

estimation accuracy. As it is seen from this equation, convergence of 

 1

1

 



 
k

k i

i

I K H

 states the stability of the estimation. Thus, the eigenvalues 

of this matrix state the observability of Kalman filter. 

 

Equation 4.7 denotes the characteristics of estimation error in the Kalman 

Filtering. For a state to be observable, the related Eigen value of state estimation 

error should be in the stable region. If a state is observable, the estimation error 

will be bounded and converge to zero in steady state. In discrete domain, the 

Eigen values should be placed in unit circle for all time duration.  
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The degree of observability is the relative convergence rate of each state. The 

state with the lowest Eigen value of state estimation error has the fastest 

convergence rate, thus being the highest observable state. 

 

As it seen from equation 4.7, there are three main factors that affect the 

observability characteristics. 

 

 Kalman Gain 

 Measurement Matrix 

 State transition matrix 

 

Kalman gain is a function of state dynamics and noise parameters, thus the 

observability analysis includes stochastic effects. State transition matrix is the 

main component that makes the observability parameters time variant. As it is 

previously explained, the transfer alignment is a time variant problem, mainly 

because of the dynamic components in state transition matrix. The trajectory of 

helicopter changes the state transition matrix, thus the observability parameters 

also change. 

 

Convergence of a specific state error to zero states the degree of observability. 

The steady state accuracy and response character states whether the state is highly 

observable or not. A sample analysis is given for a case of Transfer alignment. As 

expected, direct observable states are highly convergent, the bias states have low 

convergence rate and scale factor errors are nearly unobservable. 

 

This observability analysis is done especially for maneuver selection. The 

helicopter maneuver should be such that all required states should have a high 

convergence rate, thus obtaining a rapid transfer alignment. 
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Figure 4.1 Sample Observability for Hover case, Eigenvalue Approach 

 

Another important thing is to check the stability of estimation filter. The closed 

loop poles in z domain should be in unit circle. If all the poles are in unit circle, 

the filter is stable and states convergences in time.  For the same transfer 

alignment case, the analysis is given for t=20s; 

 

Figure 4.2 Sample Observability for Hover case, Z Domain 

 

Scale factor errors are approximately on the unit circle, which states that they 

have a very low degree of observability. 
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4.1.2 Covariance Matrix Approach 

Another possible method for observability analysis is given in [41]. In this thesis, 

this method is applied as a tool for observability and degree of observability 

analysis tool. 

 

As it is previously explained, Stochastic Observability is important in Transfer 

Alignment process as it gives the effects of process and measurement noise to the 

observability.  Classical stochastic observability methods only deals with whether 

the system is fully observable or not by the boundness of the covariance matrix 

[39, 40]. To obtain the degree of stochastic observability, an eigenvalues based 

approach will be utilized; 

 

The method starts with the normalization of covariance matrix; 

 

         
1 1

' 0 0
 

     P k P P k P
     (4.8) 

 

Thus, 
 'P k

 becomes; 
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    (4.9) 
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Then, the eigenvalues of 
 'P k

 are bounded between 0 and n, the number of 

states; 

 

 
  

 '
'

N n
P k P k

Tr P k

 


 

      (4.10) 

 

The normalized eigenvalues of  
 NP k

 gives the degree of stochastic 

observability, small eigenvalue results in a high observability.  A sample case of 

stationary transfer alignment is given below 

 

 

Figure 4.3 Sample Observability for Hover case, Covariance Matrix Approach 

 

 

As expected, scale factor errors have the lowest observability, whereas the direct 

observable states velocity and attitude have the highest observability. The gyro 

and accelerometer biases are indirect observables and thus their observability 

transient is slightly lower than attitude and velocity. 
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4.2 Observability Analysis of Transfer Alignment Maneuvers 

 

In order to see the performance of the observability analysis methods, four 

different trajectory type is analyzed by both eigenvalue and covariance 

approaches. The trajectories used for analyses are; 

 

1. Hover: Helicopter is stationary at a certain altitude. 

2. Straight flight with longitudinal acceleration: Attitude of the helicopter is 

quasi constant and the helicopter accelerates in the longitudinal axis while 

remaining in the same horizontal plane. 

3. Level sinusoidal flight: The total velocity of the helicopter is constant, yaw 

attitude of the helicopter changes sinusoidally while remaining on the 

same horizontal plane. 

4. Sinusoidal flight with roll and yaw motion: The total velocity of the 

helicopter is constant, attitude of the helicopter changes sinouidally while 

remaining on the same horizontal plane. 

 

For each trajectory, the observability behavior of the system states with respect to 

time is analyzed. 

 

For the hover flight scenario, it is easily seen that all states except inertial sensor 

scale factor errors have an observable behavior. Gyro and accelerometer scale 

factor errors have an observability eigenvalue very close to 1, that is eigenvalues 

of these states stays in the unit circle for all the transfer alignment process. 

Eigenvalues of navigation errors states moves to origin, whereas the bias states 

have a slower eigenvalue convergence rate, and the final value of the eigenvalues 

are higher than the navigation states. 
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Figure 4.4 Observability for Hover, Analyzed by Method 1, Accelerometer Errors 

 

 

Figure 4.5 Observability for Hover, Analyzed by Method 1, Gyro Errors 
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Figure 4.6 Observability for Hover, Analyzed by Method 1, Navigation Errors 

 

 

Figure 4.7 Observability for Hover, Analyzed by Method 2, Accelerometer Errors 
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Figure 4.8 Observability for Hover, Analyzed by Method 2, Gyro Errors 

 

 

Figure 4.9 Observability for Hover, Analyzed by Method 2, Navigation Errors 
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alignment is straight level flight with longitudinal acceleration. As there is no 

change in attitude during the maneuver, the attitude and gyro error estimations are 

not improved significantly.  The accelerometer bias estimation is slightly 

improved, but the scale factor error estimation of accelerometer is not improved as 

in the case of bias estimation. The scale factor estimation is highly affected from 

sensor’s white noise, that is signal to noise ratio is very low in scale factor 

estimation, resulting in stochastically unobservable estimation. 

 

Figure 4.10 Observability for Straight Flight with Longitudinal Acceleration, 

Analyzed by Method 1, Accelerometer Errors 
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Figure 4.11 Observability for Straight Flight with Longitudinal Acceleration, 

Analyzed by Method 1, Gyro Errors 

 

 

Figure 4.12 Observability for Straight Flight with Longitudinal Acceleration, 

Analyzed by Method 1, Navigation Errors 
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Figure 4.13 Observability for Straight Flight with Longitudinal Acceleration, 

Analyzed by Method 2, Accelerometer Errors 

 

Figure 4.14 Observability for Straight Flight with Longitudinal Acceleration, 

Analyzed by Method 2, Gyro Errors 
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Figure 4.15 Observability for Straight Flight with Longitudinal Acceleration, 

Analyzed by Method 2, Navigation Errors 

 

 

In order to improve to attitude and gyro sensor estimations, attitude motion should 
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flight cases. Gyro biases also become better, but as in the previous cases, scale 

factor errors are not significantly improved. 
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Figure 4.16 Observability for Level Sinusoidal Flight, Analyzed by Method 1, 

Accelerometer Errors 

 

Figure 4.17 Observability for Level Sinusoidal Flight, Analyzed by Method 1, 

Gyro Errors 
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Figure 4.18 Observability for Level Sinusoidal Flight, Analyzed by Method 1, 

Navigation Errors 

 

 

Figure 4.19 Observability for Level Sinusoidal Flight, Analyzed by Method 2, 

Accelerometer Errors 
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Figure 4.20 Observability for Level Sinusoidal Flight, Analyzed by Method 2, 

Gyro Errors 

 

 

Figure 4.21 Observability for Level Sinusoidal Flight, Analyzed by Method 2, 

Navigation Errors 
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The optimum choice of maneuver for transfer alignment is the complete s-turn 

maneuver. Especially gyro bias estimations become significantly better as a result 

of the attitude change in the maneuver. 

 

Figure 4.22 Observability for Sinusoidal Flight with Roll, Analyzed by Method 1, 

Accelerometer Errors 

 

Figure 4.23 Observability for Sinusoidal Flight with Roll, Analyzed by Method 1, Gyro 

Errors 
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Figure 4.24 Observability for Sinusoidal Flight with Roll, Analyzed by Method 1, 

Navigation Errors 

 

 

Figure 4.25 Observability for Sinusoidal Flight with Roll, Analyzed by Method 2, 

Accelerometer Errors 
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Figure 4.26 Observability for Sinusoidal Flight with Roll, Analyzed by Method 2, Gyro 

Errors 

 

 

Figure 4.27 Observability for Sinusoidal Flight with Roll, Analyzed by Method 2, 

Navigation Errors 
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completed in approximately 1 to 5 minutes, whereas the rapid transfer alignment 

algorithm in this thesis is completed in 10 seconds. It is shown that regardless of 

the maneuver choice, gyro and accelerometers scale factor errors are not 

observable. This is an inherent result of the MEMS inertial sensor noise 

characteristics. As the noise of inertial sensors of the Slave INS are very high with 

respect to the Helicopter’s INS, the relevant noise masks the low dynamic motion 

and makes the scale factor errors stochastically unobservable. In this case, 

importance of stochastic observability analyses is shown, where a simple 

traditional observability analyses states that scale factor errors are observable with 

these maneuvers [12]. 

 

The transfer alignment maneuver duration shall be such that when the maneuver is 

finished, all states should have been converged to their steady state values. Thus, 

transfer alignment time is determined by maneuver duration for necessary state 

estimations. 
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CHAPTER 5 

5 VIBRATION DEPENDENT INERTIAL SENSOR 

ERRORS 

 

Inertial sensors, especially MEMS based gyros and accelerometers are severely 

affected from mechanical vibrations. The vibration sensitivity of MEMS sensors 

arise from their working principle; a MEMS gyro is in fact a Coriolis vibratory 

gyro. Whenever a mechanical vibration is applied to the MEMS sensor, the 

vibration is mistaken as a measurement in angular rate due to its working 

principle. 

 

In the field use of MEMS sensors, especially in guided munitions, carrier based 

vibrations arising from engine, blades or etc. are serious sources of errors. For 

example, a MEMS based gyro may have a bias repeatability of 100 deg/hr, but a 

bias shift of 600 deg/hr may occur in a vibratory environment.  Note that these 

error shifts are proportional to the vibration severity. 

 

These vibration based errors are not permanent. When the vibration level 

diminishes, the temporary bias shifts disappear. In the transfer alignment case, 

there is a significant bias difference between the pre-launch and after launch 

performance. This may result in a problem in the estimation of bias parameters. 

The vibration spectrum present at the guided munitions’ IMU is driven by the host 

platform’s environment that is captive carry environment. During this captive 
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carry process, the error levels are significantly higher relative to the free flight of 

the munitions. Thus, the vibration based errors should be modeled in order to 

calibrate the IMU in the transfer alignment phase.  

 

Vibration based inertial sensor errors are bias and noise shifts, which are also 

called g-squared shifts. In the following chapters, these error types will be 

characterized by ground tests. Then, relevant modeling will be given.  

 

In the literature, characterization of vibration environment is done to design a 

mechanical vibration damper for MEMS sensors and IMUs. The dampers can 

reduce the vibration levels that affect the performance of sensors, but they require 

a significant amount of space to be installed in a guided munition and besides, 

they may no filter out every single frequency input. In the helicopter based 

vibration, main source of vibration is rotor blade rotation, which is between 4-10 

Hz. The bandwidth of an IMU in missile applications is generally 50-80 Hz, 

which means if a damper which filters out the rotor blade vibration is applied; the 

real bandwidth of IMU will be less than ~4-10 Hz. 

 

Thus, a solution without damper should be chosen for vibration problem. Most of 

the inertial sensor errors can be factory calibrated such as bias offset, scale factor 

error and misalignment. There is no study in the literature to compensate the 

vibration dependent errors of inertial sensors. In this thesis, the vibration 

dependent errors characterization and modeling is done by vibration table tests. 

 

In order to calibrate vibration dependent errors in the flight, the vibration profile 

of the carrier platform should be known. In order to determine this profile, flight 

tests are carried out while measuring the high frequency motion of the launcher 

pod. The change of vibration level and frequency distribution is shown to be 

related with total velocity and loading configuration of the helicopter. 

 

In the vibration tests of inertial sensors, it is shown that the main parameters that 

change with vibration are bias and noise. As explained before, bias is pre 
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calibrated by the help of these tests. Noise is one of main parameters in the 

Kalman filtering. If the noise variance is not correct, the filter performance will 

certainly be non-optimum, even stability problems may occur. As the noise 

variance is a function of vibration level, the process noise matrix can easily be 

online adapted in the Kalman filter. 

5.1 Effects of Vibration on Transfer Alignment Performance 

In this chapter, effects of platform (Helicopter) vibrations, arising from main and 

tail rotor, are analyzed. Vibration test is performed according to Mil Std. 810 F – 

Method 514.5 [50]. The vibration test defined in this standard state the profile for 

ground tests using a vibration table. For the host platform in this study, the 

helicopter, the profile and relevant parameters are defined as follows; 

 

Figure 5.1 Vibration Profile for Environmental Tests [50] 
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Table 5.1  Basic Parameters for Vibration Profile 

Location Vibration Level Source Frequency Range (fx) Peak Acceleration at fx 

General 

W0= 0.0010 
g2/Hz 3 to 10 0.70 /(10.70-fx) 

W1= 0.010 g2/Hz 10 to 25 0.10 x fx 

ft= 500 Hz 25 to 40 2.5 

  40 to 50 6.50-0.10xfx 

  50 to 500 1.5 

Instrument Panel 

W0= 0.0010 
g2/Hz 3 to 10 0.70 /(10.70-fx) 

W1= 0.010 g2/Hz 10 to 25 0.070 x fx 

ft= 500 Hz 25 to 40 1.75 

  40 to 50 4.550-0.070xfx 

  50 to 500 1.05 

External Stores 

W0= 0.0020 
g2/Hz 3 to 10 0.70 /(10.70-fx) 

W1= 0.020 g2/Hz 10 to 25 0.150 x fx 

ft= 500 Hz 25 to 40 3.75 

  40 to 50 9.750-0.150xfx 

  50 to 500 2.25 

 

 

Table 5.2 Main and Tail Rotor Frequency Parameters 

f1=1P f1=1T fundamental 

f=n x1P f=mX1T blade passage 

f=2xnx1P f=2xmX1T 1st Harmonic 

f=3xnx1P f=3xmX1T 2nd Harmonic 

 

 

Table 5.3 Drive Train Component Rotation Frequency Parameters 

f=1S fundamental 

F=2x1S 1st Harmonic 

F=3x1S 2nd Harmonic 

F=4x1S 3rd Harmonic 
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Table 5.4 Main and Tail Rotor Parameters 

Helicopte
r 

Main Rotor Tail Rotor 

Rotation Speed 
(Hz) 

Number of 
Blades 

Rotation Speed 
(Hz) 

Number of 
Blades 

AH-1 5.4 2 27.7 2 

AH-6J 7.8 5 47.5 2 

AH64 4.82 4 23.4 4 

UH-1 5.4 2 27.7 2 

UH-60 4.3 4 19.8 4 

 

The vibration table used in the tests works in an open loop manner; the vibration 

profile is entered to the system at the beginning of the test and measured by its 

own accelerometers in order to see whether the vibration profile is satisfied. 

Sample measurement taken from vibration table can be seen in Figure 5.2 

 

 

 

Figure 5.2 Vibration Profile measured in the test equipment 

 

With the help of this test, the effects of Main Rotor (MR) and Tail Rotor (TR) can 

be seen without any experimental data. Notice that main purpose of Mil-Std-810F 

is to make a test to see effects of various environmental conditions for the worst 
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case that is the test profiles can be over safe. The real vibration profile may be 

different than the profile shown in Figure 5.3. The Experimental vibration data is 

given in the next part of this chapter. Besides, the vibration profile for different 

flight condition should be determined. The standard ground test is the worst 

condition, but the other conditions should also be examined in order to properly 

calibrate the inertial sensors and adjust process noise parameters in the Kalman 

Filter. But, for the initial analysis, the profile given in Mil-Std-810F is sufficient. 

 

The tests are carried given vibration profile in Table 5.1-3 to see different levels 

of the vibration. The IMU is attached to the vibration table with relevant 

mechanical fixtures and it is exposed to vibration in each 3 three axes. The IMU 

data collected from these tests are used in the Transfer Alignment Simulation. In 

the algorithm results, effects of mechanical vibration are especially seen in the 

IMU error parameters estimation. With the vibration effects inserted in the 

simulation, it is clearly seen that bias estimation is severely affected; convergence 

rates are reduced and steady state errors are increased. 

 

 

Figure 5.3 X Accelerometer Bias Estimation with Random Vibration  
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Figure 5.4 Y Accelerometer Bias Estimation with Random Vibration 

 

 

Figure 5.5 Z Accelerometer Bias Estimation with Random Vibration  
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Figure 5.6 X Gyro Bias Estimation with Different Vibration Amplitudes 

 

 

 

Figure 5.7 Y Gyro Bias Estimation with Random Vibration  
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Figure 5.8 Z Gyro Bias Estimation with Random Vibration  

 

As it seen from Figure 5.3 to Figure 5.8, the vibration arising from the host 

platform, helicopter, has a significant effect on inertial sensor bias estimations. 

The convergence rate and the steady state accuracy of both accelerometer and 

gyro bias estimations are severely affected. 

 

There are two main reasons behind these results; 

 

 The vibration applied to the guided munition by carrier platform results in 

increased noise which was not taken into consideration in the Kalman 

Filter 

 The biases of inertial sensors are shifted due to the mechanical vibration, 

resulting in faulty estimation. 

 

5.2 Characterization of Vibration Environment 

 

The vibration effects in a helicopter are driven by the main rotor, the turbo shaft 
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asymmetric distribution of the unsteady aerodynamic forces on the blades and 

depend on the number of blades and the rotation rate. The speed of the main rotor 

is generally kept constant, but the amplitude of the vibrations changes with 

different flight phases, such as hover in/out of ground effect, different cruise 

speeds etc. In most of the helicopters, vibration suppression system is designed for 

a specific cruise speed, but the transfer alignment may have to be accomplished in 

different speeds. Also, the vibration amplitude in the missile pylon can change 

with the loading configuration, i.e. the number of munitions in the launching pod.  

In order to characterize the vibration environment, accelerometer measurements 

are taken from the launcher for different flight phases with different loading 

configurations. 

 

 

 

 

Figure 5.9 Vibration Profile for Hover in Ground Effect 
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Figure 5.10 Vibration Profile for Hover in Ground Effect, Fully Loaded 

Configuration 

 

 

Figure 5.11 Vibration Profile for 50 Knots Cruise Speed 
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Figure 5.12 Vibration Profile for 50 Knots Cruise Speed, Fully Loaded 

Configuration 

 

 

 

 

 

Figure 5.13 Vibration Profile for 70 Knots Cruise Speed 
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Figure 5.14 Vibration Profile for 70 Knots Cruise Speed, Fully Loaded 

Configuration 

 

 

 

 

 

Figure 5.15 Vibration Profile for 100 Knots Cruise Speed 

 

10
1

10
2

10
3

10
-5

Frequency (Hz)

A
c
c
e

le
ra

ti
o

n
 S

p
e

c
tr

a
l 
D

e
n

s
it
y
 (

 g
 2
 /
 H

z
)

Vibration Profile for 70 Knots Cruise Speed, Fully Loaded Configuration

0 500 1000 1500 2000 2500 3000 3500 4000

10
-5

Frequency (Hz)

10
1

10
2

10
3

10
-5

Frequency (Hz)

A
c
c
e

le
ra

ti
o

n
 S

p
e

c
tr

a
l 
D

e
n

s
it
y
 (

 g
 2
 /
 H

z
)

Vibration Profile for 100 Knots Cruise Speed

0 500 1000 1500 2000 2500 3000 3500 4000

10
-5

Frequency (Hz)



 

 

 

75 

 

Figure 5.16 Vibration Profile for 100 Knots Cruise Speed, Fully Loaded 

Configuration 

 

From Figure 5.9 to Figure 5.16, it is shown that vibration profile of the Slave INS 

is dependent on two parameters, platform velocity and munition loading 

configuration. A simple look-up table gives the relation between these two 

parameters and slave INS vibration level. 

5.3 Characterization of Vibration Dependent Errors 

MEMS inertial sensors are the most severely affected sensor technology from 

platform mechanical vibrations. This is a fact of its sensing methodology, MEMS 

sensors uses a vibratory method to sense the angular rates or accelerations. For 

example, most of the MEMS gyros are also known as Coriolis vibratory gyro. 

 

Almost all of the MEMS sensors have resonant frequency of approximately 

14Khz. In the military standard Mil-Std-810, the platform vibration is defined as a 

random vibration profile with a frequency range between 20Hz and 2.6 Khz. In 

order to see the effect of these vibration profile, several tests are done with 

different vibration spectrum, 2.1g RMS, 4.2g RMS and 7.6g RMS. Sample test 

results for gyros are given below, where bias and noise shift can easily be seen. 
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Figure 5.17 Pitch Gyro Output for Vibration Profile, 4.2 g  RMS 

 

 

Figure 5.18 Pitch Gyro Output for Vibration Profile, 7.6 g  RMS 
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Figure 5.19 Roll Gyro Output for Vibration Profile, 4.2 g  RMS 

 

 

 

Figure 5.20 Roll Gyro Output for Vibration Profile, 7.6 g  RMS 
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Figure 5.21 Yaw Gyro Output for Vibration Profile, 4.2 g  RMS 

 

 

Figure 5.22 Yaw Gyro Output for Vibration Profile, 7.6 g  RMS 
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nominal condition can easily be found, where vibration level can be obtained for a 

given velocity and loading configuration.  

 

Figure 5.23 Gyro Noise Shift with respect to vibration level 



 

 

 

80 

 

Figure 5.24 Accelerometer Noise Shift with respect to vibration level 

 

Figure 5.25 Gyro Bias Shift with respect to vibration level 
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Figure 5.26 Accelerometer Bias Shift with respect to vibration level 

 

With the help of these tests, the vibration induced bias shift can now be in flight 

calibrated for a given flight velocity, thus the bias estimation errors in the Transfer 

Alignment can be significantly reduced. Another important outcome of these tests 

is the noise variance modeling. The process noise in the Kalman Filter of Transfer 

Alignment can now be adaptively changed for a given flight condition, thus 

keeping the estimation in an optimum manner. 
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CHAPTER 6 

6 FLEXIBLE LEVER ARM                                                 

IN TRANSFER ALIGNMENT 

6.1 Characterization of Flexible Lever Arm  

In rapid transfer alignment, attitude matching between master and slave INSs is 

done with rigid body lever arm compensation. This compensation of relative 

orientation can be easily done as the rigid body lever arm is measured and entered 

to the database of transfer alignment algorithm in the design phase. There will be 

static errors arising from manufacturing and mounting errors in the platform, 

which are small enough to be neglected in transfer alignment 

 

But, for most of the platforms in the transfer alignment, this relative orientation is 

not rigid, instead it is highly flexible. The flexure in the host platform is generally 

is a function of aerodynamics and structural forcers, thus the complete dynamics 

of this flexible lever arm becomes highly complicated.  In the literature, most of 

the rapid transfer alignment studies deals with this effect by increasing the 

measurement noise covariance, thus reducing the steady state accuracy in the 

transfer alignment.  Another method is to model this flexible lever arm effect as a 

first or second order Markov process and augmenting it as filter states in the 

transfer alignment.  
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In this thesis, the flexible lever arm will be modeled in two different manners, 

with Markov process state augmentation and a artificial neural network approach. 

Details are given in the following parts of the thesis.  

 

The first step in the modeling of flexible lever arm modeling is the 

characterization stage. Experimental data is collected in order to characterize the 

dynamics of the level arm. In the data acquisition, high accuracy navigation grade 

INS is added to the munition pod. Basically, the difference between the two INSs 

gives the lever arm orientation; 

 

 
n Platform n

b Munition Munition b PlatformC C C        (6.1) 

1( )Platform n n

Munition b Munition b PlatformC C C        (6.2) 

 

As both INSs are navigation grade, their attitude error can be easily neglected. 

One of the trajectories used in data acquisition is described in Table 6.1 as an 

example. 

 

Table 6.1 Segments of the Trajectory 

Segment Number Maneuver Type 

1 Ground Run 

2 Take off 

3 Hover 

4 Climb 

5 Straight Climb 

6 Cruise 

7 Heading Change 

8 Cruise 

9 Climbing Turn 

10 Straight Descend 

11 Cruise 

12 Level  Flight Turn 

13 Racetrack 

14 Cruise 

15 Hover 

16 Landing 
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The second high accuracy INS is very crucial in order to get a reasonable model. 

The Slave INS is relatively noisy and have distinct bias and scale factor errors, 

Thus if the slave INS was used instead of the second Master INS, the obtained 

model would include all of  Slave INS errors. Figure 6.2 represents an example of 

the rate and acceleration measurements collected from the two master INSs and 

the slave INS 

 
 

 
 

Figure 6.1 Experiment Setup of Dynamic Misalignment Characterization 

 
 
 
In the data acquisition process, all three navigation system data (position, velocity, 

attitude, linear acceleration, angular rates and time) is simultaneously collected 

and recorded by portable data acquisition systems. In order to synchronize all 
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three navigation systems, time data of each system is also recorded. Data 

acquisition is done several times for different maneuver agilities and loading 

configurations. 

 

Once the data acquisition is completed, the dynamic misalignment is analyzed 

separately for each trajectory segment, maneuvers and loading configurations. 

 

As it is stated in the previous chapter, the captive carry vibration characteristics of 

a helicopter launched guided munition is dependent on the platform velocity and 

the loading configuration.  Same situation occurs for dynamic misalignment. In 

order to characterize the dynamic misalignment and model it accurately, 

experimental data is collected for different cruise speeds and loading 

configurations.  

 

Figure 6.2 to Figure 6.20 illustrates the flexible orientation dynamics for different 

flight phases and velocities. 

 

 

Figure 6.2 Dynamic Roll Misalignment for Hover  
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Figure 6.3 Dynamic Roll Misalignment for Hover, Fully Loaded Configuration  

 

Figure 6.4 Dynamic Pitch Misalignment for Hover 
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Figure 6.5 Dynamic Pitch Misalignment for Hover, Fully Loaded Configuration  

 

 

Figure 6.6 Dynamic Yaw Misalignment for Hover 
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Figure 6.7 Dynamic Roll Misalignment for 50 Knots Cruise Speed 

 

Figure 6.8 Dynamic Roll Misalignment for 50 Knots Cruise Speed, Fully Loaded 

Configuration 
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Figure 6.9 Dynamic Pitch Misalignment for 50 Knots Cruise Speed 

 

Figure 6.10 Dynamic Pitch Misalignment for 50 Knots Cruise Speed, Fully 

Loaded Configuration 
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Figure 6.11 Dynamic Yaw Misalignment for 50 Knots Cruise Speed 

 

 

 

Figure 6.12 Dynamic Roll Misalignment for 70 Knots Cruise Speed 
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Figure 6.13 Dynamic Roll Misalignment for 70 Knots Cruise Speed, Fully Loaded 

Configuration 

 

 

 

Figure 6.14 Dynamic Pitch Misalignment for 70 Knots Cruise Speed 
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Figure 6.15 Dynamic Pitch Misalignment for 70 Knots Cruise Speed, Fully 

Loaded Configuration 

 

 

 

Figure 6.16 Dynamic Yaw Misalignment for 70 Knots Cruise Speed 
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Figure 6.17 Dynamic Roll Misalignment for 100 Knots Cruise Speed 

 

Figure 6.18 Dynamic Roll Misalignment for 100 Knots Cruise Speed, Fully 

Loaded Configuration 
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Figure 6.19 Dynamic Pitch Misalignment for 100 Knots Cruise Speed 

 

Figure 6.20 Dynamic Pitch  Misalignment for 100 Knots Cruise Speed, Fully 

Loaded Configuration 

 

The experimental data shows that roll and pitch attitude are severely affected from 

the low frequency vibrations, whereas the flexibility in yaw channel is almost 

negligible.  As in the high frequency vibration profiles, the frequency distribution 

is almost constant for different flight phases, but the amplitude changes. 
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Throughout the experiments, the dynamic misalignment between the helicopter’s 

(master) and munition’s (slave) INSs have the same frequency profile for different 

trajectory segments. Also, there is no significant transient motion between the 

transition of two trajectory segments. It is shown that the dynamic misalignment 

have a constant frequency distribution for a given total velocity and loading 

configuration, similar to high frequency vibration shown in Chapter 5. This is an 

important outcome especially for modeling approaches. In the aircraft based 

transfer alignment studies, it is shown that transient effects are serious problem 

for modeling of dynamic misalignment. In the aircrafts, especially on the 

coordinated turn maneuvers, the force loading on the wings increase, thus both 

static and dynamic wing deflection changes. In the helicopter based transfer 

alignment, the force loading on launcher pod is almost constant as the forcing 

sources, main and tail rotor vibration, are constant. This is an important advantage 

compared to aircraft transfer alignment, where modeling of dynamic 

misalignment is very complicated due to the transient effects. 

 

6.2 Error Modeling Approaches 

Dynamic misalignment compensation is important to improve the accuracy and 

speed of the transfer alignment process. The flight data showed that the 

misalignment between master and slave INSs have a distinct characteristic which 

directly depends on the host platform’s mission profile. 

 

In the literature, the modeling of dynamic misalignment is generally handled as 

simple white noise [3, 4, 5, 7, 8, 10, and 11]. By this approach, the computational 

load of the Kalman filter is kept in minimum level, but the accuracy is severely 

reduced [22, 23, 24, 26]. As showed in part 6.1, the misalignment is certainly not 

white noise; it is correlated by different frequencies. In the aircraft based transfer 

alignment studies, there is no detailed characterization of dynamic misalignment 

for transfer alignment. Reference 26 is the unique study that deals with this 

flexibility effect by an analytical modeling approach. The wing deflection is 



 

 

 

96 

modeled by finite element method for different flight conditions and this model is 

applied in transfer alignment to compensate the dynamic and static misalignment 

based errors. 

 

Modeling of dynamic misalignment as only white noise is only done for filter 

stability [7, 8, 10, and 24]. This approach results in reduced steady state error and 

convergence rate. 

 

As stated in Chapter 1, there is no detailed study for helicopter based transfer 

alignment, especially for dynamic misalignment. Different from aircraft based 

transfer alignment; the misalignment has a steady frequency characteristic, 

transient effects are negligible as shown in Chapter 6.1  

 

Dynamic misalignment compensation is handled by two different methods; 

 

 State augmentation 

 Artificial Neural Network 

 

As stated previously, some of the transfer alignment studies [3,4,7,8 and 17] 

models the flexible orientation between the master and slave INS as Markov 

processes. In these studies, the Markov processes are used only for analysis, not 

for accurate compensation. The dynamic misalignment is not characterized by 

experiments or analytical methods. A simple first or second order Markov process 

is used to model the possible effects on Transfer Alignment. In this thesis, 

experimental data is used to find an accurate model. 

 

The second method is to use artificial neural network to compensate dynamic 

misalignment outside of the Kalman Filter. Artificial neural network is trained 

offline by experimental data. ANNs are generally trained online by back 

propagation technique, which may not be practical in Transfer Alignment. The 

required training data is the dynamic misalignment data between the helicopter 

and launcher INSs, which is recorded by the experimental setup described in 
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Chapter 6.1. In order to do the neural network training online, slave INS data 

instead of 2
nd

 master INS should be used. In this case, all errors present in guided 

munition’s INS will be integrated into ANN, thus the final performance and 

accuracy of transfer alignment will be severely affected. By using offline training 

method, these errors are avoided. 

 

Note that the dynamic misalignment values are less than 1-2 degrees in all flight 

cases; roll and pitch  misalignment can be taken as uncoupled. Thus, instead of 

having one complex model, there will be two simple model for pitch and roll 

misalignment, both in state augmentation and neural network. 

6.2.1 State Augmentation 

In the literature [3-8, 17, 23 and 34], state augmentation for dynamic 

misalignment is generally used for offline analysis. For online estimation and 

compensation of dynamic misalignments, experimental data shown in Chapter 6.1 

is used. 

 

As it is easily seen from the experimental data, the flexibility in roll and pitch 

channels are near harmonic, thus at least second order model is required. In the 

yaw channel, the dynamics is distinctly lower than the others, so it can be 

neglected. In order to obtain an accurate model; 

 

 Order of the Markov Process is to be determined. 

 Parameters of Markov Process should be tuned with experimental data. 

 

Order determination of Markov processes for a given data is the important part in 

state estimation. The order of the model should be high enough to model the 

system accurately, but should not be very high in order to augment it to the 

Kalman Filter without high computational load.  

 

In the literature, first or second order Markov processes are used. But, these 

studies are only done for aircraft launched systems. In the helicopter based 
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transfer alignment, the dynamics of this flexibility effect is totally different, thus a 

higher order model may be required. After the determination of the sufficient 

order, parameters of the related model can be identified. If a higher than necessary 

model is used, parameter identification may result in errors, which may also 

induce stability problems [51, 53 and 54] 

 

In the literature [51-56], there are various methods for order selection, where most 

common methods are; 

 

 Akaike Information Criteria (AIC) 

 Akaike Information Criteria- Corrected (AICC) 

 Bayes Information Criteria (BIC) 

 Kullback Information Criteria (KIC) 

 

These methods are based on minimizing the error in parameter estimation with the 

already available data. Details of the algorithms can be found in References 51-

56. 

 

These order determination methods estimate the order of the system n by 

minimizing the function [51]; 

 

2( ) log ( , )kk C m k          (6.3) 

 

Where m is the sample size, k is the candidate order for the model,  
2

k  is the 

estimate of the innovation variance for the candidate model. ( , )C m k  is different 

for each order determination method; 

 

2
( , )

k
C m k

m
   for AIC       (6.4) 

2( 1)
( , )

( 2)

k
C m k

m k




 
 for AICC      (6.5) 
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log( )
( , )

m k
C m k

m
  for BIC      (6.6) 

2log log( )
( , ) ,

m k
C m k KIC

m
       (6.7) 

 

The penalty factor C(m,k) is the main difference between the order determination 

methods. For example, AIC and AICC are derived or unbiased estimation, while 

KIC minimizes the final prediction error [56]. 

 

 

The summary of the order determination results are as follows; 

 

Table 6.2 Order Determination for State Augmentation 

Method 
Model Order 

1 2 3 4 5 

AIC 2.8 56.1 23.1 4.1 2.5 

AICC 1.8 49.1 10.7 4.8 3.9 

BIC 1.6 35.9 12.5 5.7 3.2 

KIC 3.7 65.7 8.6 5.4 1.2 

 

The appropriate order is determined by the maximum value of e equation 6.3. The 

relative comparison of orders for the result of equation 6.3 indicates the difference 

of probable error between different model orders.  The criterion is the maximum 

value of equation 6.3 between possible orders of model.  

 

As stated above, there are different methods for C(m,k) in equation 6.3, in which 

all dedicates minimization of different error criterions. Thus, possible four 

different penalty functions are used (AIC, AICC, BIC and KIC) and the results are 

compared. Table 6.2 summarizes the results of equation 6.3 by these methods for 

model orders up to 5. It is seen that all four methods gives consistent results. As it 

is seen from Table 6.2, second order model is the optimum choice for state 

augmentation, indicated by all four methods. The resulting equation is given 

below; 
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1 1 2 2t t t ty a y a y            (6.8) 

 

Where a1 and a2 are model parameters and t  is the estimated innovation. 

 

Next step in state augmentation is the parameter identification in the Markov 

Process.  There are three common methods that are used to determine the model 

parameters [54-56]; 

 

 Least Squares 

 Yule Walker 

 Burg 

 

Generally, a sufficiently large data cluster yields approximately same parameter 

estimation with these three methods [53, 55]. But it is shown in reference 54 that a 

noisy harmonic data may result to incorrect parameter estimation or the final 

system may be unstable. 

 

In the following part, these three methods ( least squares, Yule walker and Burg) 

are summarized; 

 

Least squares methods results in a linear system of equation  

 

11 1 1 01

1 0

p

p pp p p

c c a c

c c a c

    
    

    
    
    

       (6.9) 

Where, 

1

1 N

ij t i t j

t p

c y y
N p

 

 




        (6.10) 
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Yule Walker method differs from Least squares by including  first and last point 

in equation (6.10) in order to obtain an unbiased estimation; 

 

0 1 1 1

1 0

p

p p p

R R a R

R R a R





    
    

    
    
    

      (6.11) 

Where; 

1

1 N

t t

t

R y y
N

 




 

          (6.12) 

 

Usually, least squares or Yule-Walker method is used to determine the model 

parameters, but as stated in [53,54,56], for periodic data, these methods lead to 

incorrect estimation of parameters. For harmonic signals Burg’s method should be 

used. 

 

Burg’s method [56] does not directly estimate model parameters, instead of this, 

the method estimates the reflection coefficients, the last model parameter estimate 

for each model order p. Details of the Burg method can be found in Reference 56. 

 

Least squares method is not used as it can result in an unstable Markov process. In 

order to choose between Burg and Yule Walker methods, a sample analysis is 

done. Comparison of Burg and Yule Walker Method’s are given in the following 

figures. Same experimental data is used to find the parameters of the second order 

Markov process, where their performance is as follows; 
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Figure 6.21 Performance Comparison of Yule Walker and Burg Method 

 

 

The mean errors are nearly same for Yule Walker and Burg’s method, 0.003 and 

0.00027 degrees, but the standard deviations of the errors are quite different. The 

Yule walker method results in 0.17 degrees errors for standard deviation, while 

Burg method results in 0.086 degrees. The accuracy of Burg method is nearly 

twice of the Yule walker method. 

 

As expected, Burg method results in a better Markov Model performance as the 

experimental data is quite periodic. 

 

In chapter 6.1, it was shown that the dynamic misalignment is dependent on two 

different factors; the total speed of the helicopter and the loading configuration of 

the launcher. The parameters a1 and a2 for the second order model given by 

equation 6.8 are identified for these different flight conditions, given in the 

following figures 
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Figure 6.22 a1 Parameter vs. Flight Velocity and Loading Configuration 

 

 

Figure 6.23 a2 Parameter vs. Flight Velocity and Loading Configuration 

 

As it can be seen from Figure 6.22 and Figure 6.23, a1 parameter heavily depends 

on flight conditions, where a2 parameter is almost constant 
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6.2.2 Artificial Neural Network 

 

Artificial neural networks are (ANN) used in many applications in the literature. 

In this study, ANN is used to model and compensate dynamic misalignment. With 

the pre-recorded data, ANN will be trained to obtain an estimation of flexible 

misalignment. Thus, the lever arm compensation will be adaptively improved. 

 

There are two important steps in the design of an artificial neural network; the 

input / outputs of ANN and training method. As given in Chapter 6.1, there are 

various dynamic misalignment data collected by experiments for different 

trajectories and maneuvers. By installing the second master INS, the dynamic 

misalignment data is collected for different flight conditions. 

 

As stated in the previous parts, the flexible lever arm between the master and 

slave IMUs in the helicopters has a velocity dependent behavior.  

 

Figure 6.24 Artificial Neural Network Input Output Structure 

 

 

Mainly, the amplitude and frequency distribution of this flexibility has a periodic 

sinusoidal type character. The frequency characteristic of this motion does not 

change with respect to the flight profile but the amplitude is proportional to the 

helicopter’s velocity. Note that another input to the artificial neural network is the 

loading configuration of the helicopter. As shown in the previous parts, loading of 

the pylons directly affects the vibration amplitude of the slave IMUs. Most of the 
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guided munition launcher pods can host up to 24 low caliber munitions. The 

weight of the launcher pod is proportional to the number of hosted munitions and 

the vibration amplitude level is increased with the weight of the pod. Thus, an 

ANN will be used to compensate the flexible lever arm effect. Prerecorded flight 

data is used to train the ANN.  

 

Thus, there are three inputs and one output for dynamic misalignment estimation. 

The inputs are Helicopter (platform) velocity, slave IMU measurement and 

loading configurations. Helicopter velocity and loading configuration is directly 

transferred from Helicopter to the guided munition. The important part in the 

input structure is the use of Slave IMU measurements. The ANN may be 

configured such that there is no need for slave IMU measurements, but there may 

be synchronization problem for the estimation. The offline trained neural network 

would have no information about the instantaneous motion of the launcher pod, 

thus this phase difference would result in reduced accuracy. Thus, in order to keep 

this phase difference in minimum Slave IMU inputs are included in the ANN 

input structure. 

 

For estimation purposes, usually Multilayer feed forward structure [44-48] is used 

in ANN. The number of nodes and layers in ANN depends on the detail level and 

complexity of estimated system. There is no specific method to determine these 

parameters.  ANNs used in navigation systems generally implements a 2 layer 

structure. In  order to determine the layer and node number, namely the topology 

of ANN, different combinations are compared, shown in Table 6.4. In Table 6.4, 

the results of a sample analysis of dynamic misalignment estimation are given; 

similar to the analysis of parameter identification method case given in Chapter 

6.2.1. In Table 6.4, the estimation errors for different layer structures of ANN are 

given. The purpose of this analysis is to determine the sufficient artificial neural 

network layer and node numbers. A less than sufficient layer and node number 

may not be able to estimate the dynamic misalignment with the required accuracy, 

whereas an unnecessary number of layers may results in an untrainable system; 
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that the training data may not be enough to train all the weights in the artificial 

neural network. 

 

Table 6.4 Structure combinations for ANN 

Number of Layers Structure Error(1 , deg) 

1 3x3x1 0.0976 

1 3x2x1 0.113 

2 3x3x3x1 0.0714 

2 3x3x2x1 0.0742 

2 3x2x3x1 0.0736 

2 3x2x2x1 0.0753 

 

As it is shown in Table 2, 2 layer combinations perform better than 1 layer 

combinations. There is a difference of approximately %20 in the estimation error 

between one and two layer artificial neural networks. The second part to examine 

in the ANN design is the structure determination. As it is seen from Table 6.4, the 

difference between the 2 layer structures is less than %5. Thus, in order to 

optimize the artificial neural network, 3x2x2x1 structure is used, having optimum 

accuracy with the minimum node number.  The resulting configuration is shown 

below; 

 

 

Figure 6.25 Artificial Neural Structure for Dynamic Misalignment Estimation 

 

For learning algorithm, different methods can be used such as; 
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 Gradient Descent with Adaptive Step Size 

 Simulated Annealing 

 Conjugate Gradient 

 Levenberg- Marquardt 

 

These methods’ performance mainly differs in convergence rate [44, 47].  For 

dynamic misalignment estimation, the training will be done offline, so 

convergence rate is not a criterion for selection.  Levenberg – Marquardt is chosed 

as back propagation learning algorithm. 

 

Briefly, 2 layer feedforward ANN will be utilized for this purpose. Details of the 

ANN algorithm is given in Appendix C. Pre recorded flight data will be used for 

training. Levenberg –Marquadt is used for learning algorithm. 

 

 

6.2.3 Comparison of Methods 

 

The difference between the neural network and state augmentation approaches are 

shown in the below example cases; 

 

 Hover 

 50 Knots Cruise 

 70 Knots Cruise 

 100 Knots Cruise 

 

Note that, these are the experiment cases defined in Table 6.1 for dynamic 

misalignment data acquisition.  
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Figure 6.26 Estimation of Dynamic roll misalignment for Hover Case 

 

 

Figure 6.27 Estimation Error of Dynamic roll misalignment for Hover Case- Fully 

Loaded Configuration 
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Figure 6.28 Estimation of Dynamic roll misalignment for Hover Case, Fully 

Loaded Configuration 

 

Figure 6.29 Estimation Error of Dynamic roll misalignment for Hover Case, Fully 

Loaded Configuration 
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Figure 6.30 Estimation of Dynamic pitch misalignment for Hover Case 

 

 

Figure 6.31 Estimation Error of Dynamic pitch misalignment for Hover Case 
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Figure 6.32 Estimation of Dynamic pitch misalignment for Hover Case, Fully 

Loaded Configuration 

 

Figure 6.33 Estimation Error of Dynamic pitch misalignment for Hover Case, 

Fully Loaded Configuration 
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Figure 6.34 Estimation of Dynamic roll misalignment for 50 Knots Cruise  

 

Figure 6.35 Estimation Error of Dynamic roll misalignment for 50 Knots Cruise 
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Figure 6.36 Estimation of Dynamic roll misalignment for 50 Knots Cruise, Fully 

Loaded Configuration 

 

Figure 6.37 Estimation Error of Dynamic roll misalignment for 50 Knots Cruise, 

Fully Loaded Configuration 
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Figure 6.38 Estimation of Dynamic pitch misalignment for 50 Knots Cruise  

 

 

Figure 6.39 Estimation Error of Dynamic pitch misalignment for 50 Knots Cruise 
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Figure 6.40 Estimation of Dynamic pitch misalignment for 50 Knots Cruise, Fully 

Loaded Configuration 

 

Figure 6.41 Estimation Error of Dynamic pitch misalignment for 50 Knots Cruise, 

Fully Loaded Configuration 
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Figure 6.42 Estimation of Dynamic roll misalignment for 70 Knots Cruise  

 

 

Figure 6.43 Estimation Error of Dynamic roll misalignment for 70 Knots Cruise 
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Figure 6.44 Estimation of Dynamic roll misalignment for 70 Knots Cruise, Fully 

Loaded Configuration 

 

Figure 6.45 Estimation Error of Dynamic roll misalignment for 70 Knots Cruise, 

Fully Loaded Configuration 
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Figure 6.46 Estimation of Dynamic pitch misalignment for 70 Knots Cruise  

 

Figure 6.47 Estimation Error of Dynamic pitch misalignment for 70 Knots Cruise 
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Figure 6.48 Estimation of Dynamic pitch misalignment for 70 Knots Cruise, Fully 

Loaded Configuration 

 

Figure 6.49 Estimation Error of Dynamic pitch misalignment for 70 Knots Cruise, 

Fully Loaded Configuration 
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Figure 6.50 Estimation of Dynamic roll misalignment for 100 Knots Cruise  

 

Figure 6.51 Estimation Error of Dynamic roll misalignment for 100 Knots Cruise 

 

0 5 10 15 20 25 30 35 40 45 50
-1

0

1
 Roll Attitude Misalignment between Master and Slave

R
o

ll 
D

if
fe

re
n

c
e

,d
e

g

0 5 10 15 20 25 30 35 40 45 50
-1

0

1
 Roll Attitude Misalignment estimation by Neural Network

R
o

ll 
D

if
fe

re
n

c
e

,d
e

g

0 5 10 15 20 25 30 35 40 45 50
-1

0

1
 Roll Attitude Misalignment estimation with 2nd Order Markov

Time, seconds

R
o

ll 
D

if
fe

re
n

c
e

,d
e

g

0 5 10 15 20 25 30 35 40 45 50
-0.5

0

0.5
 Roll Attitude Misalignment estimation Error with 2nd Order Markov

Time, seconds

R
o

ll 
 M

is
a

lig
n

m
e

n
t 
E

rr
o

r 
,d

e
g

0 5 10 15 20 25 30 35 40 45 50
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 Roll Attitude Misalignment estimation Error with Neural Network

Time, secondsR
o

ll 
 M

is
a

lig
n

m
e

n
t 
E

rr
o

r 
,d

e
g



 

 

 

121 

 

Figure 6.52 Estimation of Dynamic roll misalignment for 100 Knots Cruise, Fully 

Loaded Configuration 

 

Figure 6.53 Estimation Error of Dynamic roll misalignment for 100 Knots Cruise, 

Fully Loaded Configuration 
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Figure 6.54 Estimation of Dynamic pitch misalignment for 100 Knots Cruise  

 

Figure 6.55 Estimation Error of Dynamic pitch misalignment for 100 Knots 

Cruise 
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Figure 6.56 Estimation of Dynamic pitch misalignment for 100 Knots Cruise, 

Fully Loaded Configuration 

 

Figure 6.57 Estimation Error of Dynamic pitch misalignment for 100 Knots 

Cruise, Fully Loaded Configuration 
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The estimation results are summarized in Table 6.5 and Table 6.6 for pitch and 

roll dynamic misalignment estimation for all flight cases. 

 

Table 6.5 Comparison of State Augmentation and ANN, Pitch Error Standard 

Deviations 

Flight Scenario 
Residual Pitch Error (1 deg) 

Difference 
(deg) 

Difference  
(%) 

State 
Augmentation 

Neural 
Network 

Hover Flight 0,081 0,056 0,025 44,6 

Hover Full Loaded  0,087 0,059 0,028 47,5 

50 Knots Cruise 0,099 0,063 0,036 57,1 

50 Knots Cruise Full 
Loaded 0,103 0,052 0,051 98,1 

70 Knots Cruise 0,099 0,057 0,042 73,7 

70 Knots Cruise Full 
Loaded 0,107 0,055 0,052 94,5 

100 Knots Cruise 0,114 0,061 0,053 86,9 

100 Knots Cruise Full 
Loaded 0,123 0,06 0,063 105,0 

 

Table 6.6 Comparison of State Augmentation and ANN, Roll Error Standard 

Deviations 

Flight Scenario 
Residual Roll Error (1 deg) 

Difference 
(deg) 

Difference  
(%) 

State 
Augmentation 

Neural 
Network 

Hover Flight 0,085 0,0614 0,0236 38,4 

Hover Full Loaded  0,088 0,0578 0,0302 52,2 

50 Knots Cruise 0,102 0,062 0,04 64,5 

50 Knots Cruise Full 
Loaded 0,096 0,059 0,037 62,7 

70 Knots Cruise 0,103 0,061 0,042 68,9 

70 Knots Cruise Full 
Loaded 0,105 0,064 0,041 64,1 

100 Knots Cruise 0,115 0,058 0,057 98,3 

100 Knots Cruise Full 
Loaded 0,118 0,062 0,056 90,3 
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Table 6.7 Comparison of State Augmentation and ANN, Pitch Error Mean 

 

Flight Scenario 
Residual Pitch Error (Meandeg) 

Difference 
(deg) 

Difference  
(%) State 

Augmentation 
Neural 

Network 

Hover Flight 0,001 0,0006 0,0004 66,7 

Hover Full Loaded  0,0007 0,0003 0,0004 133,3 

50 Knots Cruise 0,0016 0,0005 0,0011 220,0 

50 Knots Cruise Full 
Loaded 0,0015 0,0008 0,0007 87,5 

70 Knots Cruise 0,0019 0,0009 0,001 111,1 

70 Knots Cruise Full 
Loaded 0,003 0,0004 0,0026 650,0 

100 Knots Cruise 0,0024 0,0005 0,0019 380,0 

100 Knots Cruise Full 
Loaded 0,0018 0,0005 0,0013 260,0 

 

Table 6.8 Comparison of State Augmentation and ANN, Roll Error Mean 

Flight Scenario 
Residual Roll Error (Meandeg) 

Difference 
(deg) 

Difference  
(%) 

State 
Augmentation 

Neural 
Network 

Hover Flight 0,0015 0,001 0,0005 50,0 

Hover Full Loaded  0,0014 0,0008 0,0006 75,0 

50 Knots Cruise 0,0028 0,0012 0,0016 133,3 

50 Knots Cruise Full 
Loaded 0,0021 0,0009 0,0012 133,3 

70 Knots Cruise 0,0023 0,0008 0,0015 187,5 

70 Knots Cruise Full 
Loaded 0,0008 0,0007 0,0001 14,3 

100 Knots Cruise 0,004 0,0012 0,0028 233,3 

100 Knots Cruise Full 
Loaded 0,0027 0,0011 0,0016 145,5 

 

 

The results that are summarized in Table 6.5 to Table 6.8 have two important 

outcomes; the dynamic misalignment estimation made by state augmentation and 

neural network have almost zero mean errors; that is the estimations are unbiased. 

Main difference between the two methods is seen by examining the standard 
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deviations of the estimations. The estimation accuracy of ANN is up to two times 

better than state augmentation is some cases. In some cases such as hover flight 

where the helicopter is kept stationary on a certain altitude, the difference is less 

than %40.  It is obvious that ANN performs better in the estimation, but 

nevertheless state augmentation is better than not estimating the dynamic 

misalignment.  

 

Briefly, as it is seen from Figure 6.26 to Figure 6.57, ANN estimation performs 

better than state augmentation. This performance difference is due to usage of 

experimental data in the training phase of ANN. ANN trained for a specific 

platform surely performs better than state augmentation. Nevertheless, state 

augmentation is better than no compensation of dynamic misalignment. Whenever 

there is not enough data to train ANN, i.e. detailed data for dynamic misalignment 

cannot be obtained; state augmentation is a good choice. Briefly, ANN is the 

optimum compensation method with higher offline effort, but when there is 

limited pre-recorded data, state augmentation can be integrated to the rapid 

transfer alignment to have a stable system. 
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CHAPTER 7 

7 IMPROVED RAPID TRANSFER ALIGNMENT 

 

7.1 Improvements in Transfer Alignment 

Transfer alignment is shown to be affected from environmental conditions, i.e. 

mechanical vibrations. As it is shown in the previous chapters, compensation 

methods are designed in order to increase the speed and accuracy of the transfer 

alignment in real world conditions. Major improvements in the design of transfer 

alignment algorithm are listed below; 

 

 Observability Analysis: In the initial design phase of the transfer 

alignment algorithm, state selection and trajectory planning is done 

analytically by observability analysis rather than heuristically. 

 Inertial Sensor Error Compensation: The vibration dependent errors of 

inertial sensors are characterized by ground tests. Bias errors are 

compensated in the transfer alignment. Noise variances are modeled to be 

dynamic with the vibration environment, thus optimal Kalman Filtering 

configuration is obtained. 

 Dynamic Lever arm compensation: The attitude difference between master 

and slave INS is shown to have harmonic characteristic. The dynamic 

lever arm compensation is done by experimentally tuned algorithms. 
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The improved rapid transfer alignment algorithm is analyzed in two different 

ways; by simulation and experimental data. All simulations are done in Matlab®. 

7.2 Rapid Transfer Alignment Simulation Results 

In order to analyze the effectiveness and performance of the improved transfer 

alignment algorithm, following simulation model is used 

Trajectory Input 
Perfect Trajectory 

Generation

Initial errorsRigid body Effect Master INS errors

Vibration effects

Flexible Body 

Effect

IMU error Module

Slave INS module
Rigid body 

compensation

Measurement

Feedback

Estimation filter

Flexible body 

Compensation

Filter Covariance 

Online Adaptation
Outputs

 

Figure 7.1 Rapid Transfer Alignment Flow Chart 
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As it is already mentioned, there are two implementations. To see the performance 

of each improvement, following simulation configurations are used; 

 

1. Only high frequency vibration effects 

2. Only low frequency flexible lever arm effects 

 

Both vibration and flexibility effects are generated from the experimental data 

shown in previous chapter. 

 

Finally, all environmental effects are included with experimental flight data, and 

the performance of the proposed implementations are tested 

 

7.2.1 Simulation with Vibration Effects 

 

The first step in the performance analysis is the inclusion of vibration effects to 

the simulations as shown in Figure 7.1. With the inclusion of mechanical vibration 

to the simulation, bias and noise shifts of inertial sensors are triggered. Also, the 

high frequency components of launcher pod motion are also excited. The results 

of simulations for vibration effects are given in Figure 7.2 to Figure 7.11 for 

attitude (roll, pitch and yaw), gyro and accelerometer bias estimations. Note that 

in this analysis, only vibration effects are included, dynamic misalignment is 

analyzed in a separate case. 
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Figure 7.2 Estimation of Roll Attitude with Vibration Effects 

 

Figure 7.3 Estimation of Roll Attitude with Vibration Effects 
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Figure 7.4 Estimation of Pitch Attitude with Vibration Effects 

 

Figure 7.5 Estimation of Azimuth Attitude with Vibration Effects 
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Figure 7.6 Estimation of Azimuth Attitude with Vibration Effects 

 

 

Figure 7.7 Estimation of X Accelerometer Bias with Vibration Effects 
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Figure 7.8 Estimation of Y Accelerometer Bias with Vibration Effects 

 

Figure 7.9 Estimation of Z Accelerometer Bias with Vibration Effects 
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Figure 7.10 Estimation of X Gyro Bias with Vibration Effects 

 

Figure 7.11 Estimation of Y Gyro Bias with Vibration Effects 

0 5 10 15 20 25 30
-100

-50

0

50
  X Gyro Bias Estimation Error

Time, s

 B
ia

s
 E

rr
o

r,
 d

e
g

/h
r

 

 

 Ideal TA

 Real uncompensated TA

Compensated

0 5 10 15 20 25 30
-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20
  Y Gyro Bias Estimation Error

Time, s

 B
ia

s
 E

rr
o

r,
 d

e
g

/h
r

 

 

 Ideal TA

 Real uncompensated TA

Compensated



 

 

 

135 

 

Figure 7.12 Estimation of Z Gyro Bias with Vibration Effects 

 

The simulation results are summarized in Table 7.1 

 

Table 7.1 Summary of Results - Vibration Effects 

  Ideal Uncompensated Compensated 

Roll Estimation Error (mrad) 0.1 2.76 0.22 

Pitch Estimation Error (mrad) 0.1 3.24 0.6 

Azimuth Estimation Error (mrad) 0.1 0.95 0.14 

X Gyro Bias Estimation Error 10 150 20 

Y Gyro Bias Estimation Error 10 90 12 

Z Gyro Bias Estimation Error 10 85 15 

X Accelerometer Bias Estimation 
Error 1 10 3 

Y Accelerometer Bias Estimation 
Error 1 12 4 

Z Accelerometer Bias Estimation 
Error 1 9 4 

 

 

From Figure 7.2 to Figure 7.12, the effects of uncompensated vibration effects are 

easily seen. The vibration in the host platform directly affects gyro and 

accelerometer bias and noise characteristics. As stated in Chapter 5, bias and noise 

of an inertial sensor changes for a given vibration level. If this change is not 
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compensated in rapid transfer alignment, especially bias estimation becomes 

unusable. 

 

Roll, pitch and yaw errors are also increased in the presence of vibration; while 

the ideal estimation error was 0.1 mrad  (without mechanical vibration effects), 

the uncompensated errors increase up to 3 mrads. The adaptation of inertial noise 

parameters of Kalman filter increases the transfer alignment algorithm 

7.2.2 Simulation with Flexibility Effects 

The second part of the performance analysis is done for dynamic misalignment 

effects. Similar to previous part, dynamic misalignment data is generated and 

integrated into the simulations, where mechanical vibrations are omitted. The 

results are given in Figure 7.13 to Figure 7.19 

 

 

Figure 7.13 Estimation of Pitch Attitude with Flexibility Effects 
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Figure 7.14 Estimation of Pitch Attitude with Flexibility Effects 

 

 

Figure 7.15 Estimation of Roll Attitude with Flexibility Effects 
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Figure 7.16 Estimation of Roll Attitude with Flexibility Effects 

 

 

 

Figure 7.17 Estimation of X Gyro Bias with Flexibility Effects 
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Figure 7.18 Estimation of Y Gyro Bias with Flexibility Effects 

 

Figure 7.19 Estimation of Z Gyro Bias with Flexibility Effects 

 

The results are summarized in Table 7.2 for attitude and inertial sensor bias 
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Table 7.2 Summary of Results - Flexibility Effects 

  Ideal Uncompensated 
State 

Augmentation 
Neural 

Network 

Roll Estimation Error (mrad) 0.1 9.8 1.1 0.15 

Pitch Estimation Error (mrad) 0.1 8.6 2.5 0.44 

Azimuth Estimation Error 
(mrad) 0.1 0.2 0.14 0.15 

X Gyro Bias Estimation Error 10 90 35 12 

Y Gyro Bias Estimation Error 10 210 70 14 

Z Gyro Bias Estimation Error 10 28 22 20 

X Accelerometer Bias 
Estimation Error 1 10 3 2 

Y Accelerometer Bias 
Estimation Error 1 12 3 3 

Z Accelerometer Bias 
Estimation Error 1 9 4 2 

 

As explained in Chapter 6, the dynamic misalignment is effective in roll and pitch 

attitudes, where azimuth channel flexibility is negligible with respect to the 

others. Roll and pitch errors are seriously increased, up to 10 mrads when there is 

not compensation for dynamic misalignment. State augmentation reduces the error 

in roll and pitch smaller than 2.5 mrads, where ANN performs superior and have a 

performance near to the ideal transfer alignment case. 

 

Inertial sensor bias estimations are also affected by the inclusion of dynamic 

misalignment. The bias estimations of gyro and accelerometers are ten times 

worse than the ideal transfer alignment. For state augmentation, the error between 

ideal case is less than 3 mg for accelerometer, where the neural network performs 

similar.  In gyro bias estimation, neural network performs significantly better than 

state augmentation. 

 

In Figure 7.13 to Figure 7.18, it is easily seen that ANN compensation performing 

near to the ideal rapid transfer alignment with no dynamic misalignment problem. 

When there is no compensation of dynamic misalignment, roll and pitch attitude 

estimation become very oscillatory. This oscillatory estimation directly effects the 

related gyro bias estimations. 
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7.3 Rapid Transfer Alignment Experimental Results 

 

The final step in the performance analysis in the transfer alignment improvements 

is using experimental data instead of synthetically generated data. Recorded 

Master, Slave and 2
nd

 master INS data is used in the analysis. The results are 

given in Figure 7.20 to 7.28 

 

 

 

Figure 7.20 Estimation of Pitch Attitude with Experimental Data 
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Figure 7.21 Estimation of Roll Attitude with Experimental Data 
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Figure 7.22 Estimation of Azimuth Attitude with Experimental Data 
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Figure 7.23 Estimation of X Accelerometer Bias with Experimental Data 
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Figure 7.24 Estimation of Y Accelerometer Bias with Experimental Data 
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Figure 7.25 Estimation of Z Accelerometer Bias with Experimental Data 
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Figure 7.26 Estimation of X Gyro Bias with Experimental Data 

 

Figure 7.27 Estimation of Y Gyro Bias with Experimental Data 
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Figure 7.28 Estimation of Z Gyro Bias with Experimental Data 

 

Table 7.3 Summary of Results – Experiment 

  Uncompensated 
State 

Augmentation 
Neural 

Network 

Roll Estimation Error (mrad) 14.4 2.3 1.2 

Pitch Estimation Error (mrad) 15.8 2.4 0.84 

Azimuth Estimation Error (mrad) 4.6 1.4 0.45 

X Gyro Bias Estimation Error 220 48 25 

Y Gyro Bias Estimation Error 170 54 38 

Z Gyro Bias Estimation Error 185 57 26 

X Accelerometer Bias Estimation 
Error 15 4 3 

Y Accelerometer Bias Estimation 
Error 17 6 5 

Z Accelerometer Bias Estimation 
Error 14 4 5 

 

 

 

The real performance of the proposed implementations is shown in Table 7.3. 

Both vibration and dynamic misalignment compensations are implemented. As in 

the previous case, ANN performs better than state augmentation, but state 

augmentation is also a good choice for dynamic misalignment compensation. 
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As it is also seen from Figure 7.20 to 7.28, both  state augmentation and neural 

network have a distinguishable error compensation performance for 

environmental effects. When combined with the adaptation of inertial and noise 

parameters for flight vibration, both methods results in a very good accuracy. The 

uncompensated roll, pitch and azimuth errors are about 15 mrads, where state 

augmentation results in 2.4 mrad error and neural network has less than 1 mrad 

error in the end of the transfer alignment. Also, the uncompensated transfer 

alignment gives oscillatory results in attitude estimations, especially on roll and 

pitch attitudes. Neural network performs two times better than state augmentation 

in terms of steady state accuracy.  Both methods have better convergence time 

than uncompensated alignment. The uncompensated alignment have a 

convergence time of at least 25-30 seconds, while both state augmentation and 

neural network have 5-10 second convergence for bias estimations and 1-2 

seconds for attitude estimations 

 

The gyro bias estimations for uncompensated transfer alignment have an 

unacceptable accuracy that cannot be used for online calibration. The gyros have a 

bias repeatability of 100 deg/hr, while uncompensated transfer alignment has up 

to 220 deg/hr estimation error. The state augmentation reduces the bias estimation 

error to 50 deg/hr, while neural network further reduces it to 25 deg/hr. 

 

The accelerometer bias estimations are also unacceptable for uncompensated 

transfer alignment. The original bias repeatability of accelerometers is 10mg, but 

the bias estimation error in transfer alignment is up to 17 mg. Both state 

augmentation and neural network have similar estimation errors, approximately 

5mg steady state error. 

 

Briefly, both compensation methods have an important role for the rapid transfer 

alignment under real environmental conditions.  Especially bias estimations are 

almost non-usable for online calibration for uncompensated alignment. Overall 

performance of artificial neural network is obviously better than state 
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augmentation, but nevertheless state augmentation provides a significantly better 

accuracy compared to the uncompensated transfer alignment 

 

Vibration induced errors of inertial sensors have also an important role in the 

transfer alignment. Vibration induced bias of gyros and accelerometers are pre-

calibrated, thus improving the bias estimation accuracy in the transfer alignment. 

As stated in Chapter 5, the vibration induced errors are not permanent, when 

vibration level is reduced, the vibration rectification will also be reduced. When 

vibration induced bias is not taken into consideration in the transfer alignment, the 

bias estimation will be faulty and will result in serious navigation performance 

after launch phase  

 

Vibration induced noise also affects the transfer alignment accuracy. Inertial 

sensor noises are used in Kalman Filter process matrix, which directly affects the 

steady state accuracy and convergence rate. Kalman filter is an optimal filter only 

when the noise levels are entered correctly in the process noise matrix. In the 

helicopter based transfer alignment, noises of gyros and accelerometers seriously 

increases and this shift changes for different flight and loading configurations. In 

the improved transfer alignment, accelerometer and gyro noises are adaptively 

changed for different loading and flight conditions, thus optimizing the 

performance of transfer alignment for all conditions.  
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CHAPTER 8 

8 DISCUSSION and CONCLUSION 

 

Almost all guided munitions require initial position, velocity and attitude data to 

perform midcourse guidance.  Initialization of an inertial navigation system is one 

of the most challenging research area in this field, especially where the initialized 

system is on the move. Transfer alignment is the process of aligning an inertial 

navigation system with the aid of a higher accuracy navigation system. Transfer 

alignment is done by parameter matching between master and slave INS through 

Kalman Filter. In transfer alignment, primary goal is to align the slave INS, but 

slave INS can also be pre-launch calibrated, thus increasing the midcourse 

performance of the guided munition. 

 

In an ideal environment, the final alignment accuracy of the slave inertial 

navigation system depends only on the accuracy of the master INS. In real 

alignment case, the transferred alignment information is degraded by host 

platform’s structure. In the ideal transfer alignment, the velocity and attitude 

information from master navigation system is directly transferred to the slave INS 

by an only rigid body coordinate transformation as the attitude between master 

and slave INS is perfectly known. In the real case, this coordinate transformation 

has uncertainties due to the dynamic behavior of the slave INS location. For most 

of the guided munitions, the launcher has high and low frequency motions with 

respect to the main navigation system. For aircrafts, high frequency motion, 
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namely mechanical vibrations have negligible effect, but the low frequency 

motion, the wing distortion severely degrades the attitude accuracy of the 

alignment. In order to align the guided munition under these effects, the attitude 

information is usually not used in the parameter matching phase of the transfer 

alignment. Attitude is used only in the one shot transfer phase, but in the 

estimation phase, only velocity data is transferred, becoming velocity matching 

transfer alignment. In velocity matching, the uncertainties due to vibration and 

wing distortion is eliminated, thus a higher accuracy can be achieved with respect 

to the attitude matching. With these uncertainties present in the alignment 

environment, velocity matching is more robust and stable. But, observability of 

the transfer alignment is dependent to the input motion of the system, i.e. the 

maneuver of the host platform. While velocity is direct observable, attitude and 

related inertial sensor errors are indirect observables. In order to obtain complete 

observability of the main navigation states and inertial sensor errors, the platform 

needs to make specific maneuvers. These maneuvers are s or c shaped maneuvers 

which takes a time of 1-3 minutes depending on the platform. Also, this type of 

maneuvers makes a tactical constraint to the pilot of the platform. 

 

In order to align the slave INS within a smaller time interval, attitude information 

should be included in the parameter matching. Rapid transfer alignment is the 

parameter matching method where both velocity and attitude information is used 

in the estimation phase. 

 

Main goal of this thesis is to design a rapid transfer alignment algorithm with 

proper compensation of the dynamic relative motion of the launcher. The 

improvements are in three different parts; 

 

 Stochastic observability analysis 

 Vibration compensation 

 Flexibility compensation 
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Generally, observability of states in transfer alignment or in integrated navigation 

system is done by classical deterministic observability approach; by checking the 

rank of the observability matrix. This approach has two disadvantages; 

 

 Effects of stochastic components, noises are not included in the 

observability analysis 

 The degree of observability is not analyzed. 

 

Observability analysis is used for two purposes; determining an optimum 

maneuver for the platform and selecting proper system states. Two different 

observability methods are used; eigenvalue and covariance matrix approach. In 

the eigenvalue approach, the eigenvalues of the system states with respect to time 

is analyzed, whereas in the covariance matrix approach, the eigenvalues of the 

related variance states are analyzed. Both methods investigate the degree of 

observability with noise effects.  In order to see the convergence rate of each state, 

detailed Monte Carlo simulations should be done, where the observability and 

convergence characteristics are heuristically analyzed. The proposed methods 

provide an easier way for this.  Stochastic observability is also important in 

system state selection. A system can be seen as fully observable, as the related 

observability matrix has full rank, but certain states cannot be estimated. The 

reason of this unobservability is the noise characteristics of the states. In Chapter 

4, the observability characteristics of the system states of rapid transfer alignment 

are demonstrated for different maneuvers. The main parameters, velocity and 

attitude have a distinctly higher degree of observability with respect to inertial 

sensor biases regardless of the maneuver performed. There is only slight change 

in the degree of observability of velocity and attitude for different maneuvers, 

which means that for very rapid transfer alignment, the completion of a tactical 

maneuver is not necessary. It is showed that in rapid transfer alignment, a 

maneuver is required to increase the observability of inertial sensor error 

estimations. It is also showed that the scale factor errors are always unobservable 

regardless of the maneuver. This unobservability arises from the nature of the 

Slave INS sensors, MEMS gyros and accelerometers have such a noise profile 
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that is masks the scale factor error. The observability analysis summarizes that an 

s or c shaped maneuver is sufficient to obtain complete high rate observability. 

Also, depending on observability analysis, the scale factor errors are omitted from 

transfer alignment, thus reducing the computational load of the algorithm. 

 

High frequency mechanical vibration in a helicopter launched guided munition is 

serious problem. In most of guided munitions, MEMS type inertial sensors are 

used. Especially, MEMS gyros have a distinct sensitivity to the vibrations in the 

platform as they are basically Coriolis Vibratory Gyros. In the literature, vibration 

sensitivity of the MEMS sensors are analyzed in detail to be used in any 

compensation algorithm. Chapter 5 is divided into two sections, characterization 

of the vibration environment and investigation of inertial sensor performance 

under these vibrations. In the beginning of the chapter, effects of vibration to the 

transfer alignment is shown, the steady state and convergence rate is severely 

degraded. The characterization of the vibration environment is done by two 

different ways; from military standards and experimental data. The military 

standard for environmental considerations, Mil-Std-810F gives vibration profile 

for almost all type of platforms, but these profiles are over safe. The main purpose 

of this military standard is to define environmental conditions and profiles for 

operational durability, i.e. a munition or its component which can stand the profile 

defined in Mil-Std-810F is certain to work in the related platform. In order to 

make a more realistic vibration profile, experimental data is collected for different 

flight conditions. It is shown that vibration amplitude directly depends on the 

cruise speed of the helicopter. In the second part of the thesis, vibration effects on 

inertial sensor performance are shown. Main error parameters that are affected 

form vibration are bias and noise. It is known that any vibration rectification in 

bias and noise depends on the amplitude of vibration, not frequency. This is a 

result of the specific resonant frequency of the MEMS sensors, about 14 kHz. The 

variation of bias and noise is determined by ground test with a vibration table. As 

it is shown, vibration profile of the launcher pod in the helicopter depends on 

velocity and loading configuration. Thus vibration rectification of bias and noise 
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can be handled in transfer alignment as the velocity and loading configuration is 

known. 

 

Dynamic misalignment, namely flexibility between master and slave INS is 

known to be a problem mostly in aircraft launched munitions, but it also appears 

as a serious effect in helicopters. As in the vibration characterization and 

compensation, Chapter 6 is divided into two parts as characterization and 

modeling.  In order to characterize the dynamic misalignment, real flight data is 

collected. In data acquisition, a second high accuracy navigation grade inertial 

navigation system is implemented in the launcher pod, thus the attitude between 

master INS and launcher pod can be accurately tracked.  With these experimental 

data, two different modeling approaches are considered; state augmentation and 

artificial neural network. In state augmentation, a Markov model is used to online 

compensate the dynamic misalignment in the transfer alignment. The model order 

and related parameters are determined by the real flight data and augmented into 

the Kalman filter.  The second method, artificial neural network is trained by the 

experimental flight data in an offline manner. The offline trained ANN is used to 

compensate the dynamic misalignment with respect to the platform velocity and 

loading configuration. When two methods are compared for their estimation 

performance, it is easily seen that ANN approach performs better. ANN is the 

optimum compensation method for dynamic misalignment whenever detailed data 

of launcher pod dynamics is available. State augmentation also provides a usable 

estimation of dynamic misalignment. When there is limited offline data, state 

augmentation should be used for compensation. 

 

In Chapter 7, performance of the proposed implementations is tested in transfer 

alignment. In order to test each implementation; three different test method is 

used; 

 

 Only Vibration Effects 

 Only Flexibility Effects 

 All effects with complete experimental data. 
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In first two cases, vibration and flexibility data is generated from the previously 

collected data, shown in Chapter 5 and 6. 

 

Characterization and modeling of inertial sensors’ vibration sensitivity is shown to 

be very effective in the simulations. Without the vibration effect compensation, 

the accuracy of attitude estimation is severely degraded, whereas the inertial 

sensor bias estimation nearly becomes unusable without any compensation. With 

the experimental data, the bias and noise rectification for a given platform velocity 

and loading configuration can be found. 

 

Both state augmentation and artificial neural network is shown to be effective in 

dynamic misalignment compensation. ANN performs better than state 

augmentation. When no dynamic misalignment compensation is done in the 

transfer alignment, the dynamic behavior of the launcher pod is directly seen in 

the estimation results; attitude estimations have a distinct oscillatory error, and 

gyro bias estimation are so degraded that they become unusable. 

 

Finally, in order to see the integrated performance, the proposed implementations 

are tested in real flight environment with experimental flight records. The results 

for; 

 

 No Compensation  

 Inertial sensor vibration compensation + state augmentation 

 Inertial sensor vibration compensation + artificial neural network 

 

The results are similar to the previous analysis; if there is not any compensation 

for relative motion of the launcher pod, the alignment performance is severely 

degraded, also in flight calibration is not possible. Artificial neural network and 

state augmentation performs similar, where ANN is slightly better than Markov 

model 
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Briefly, the main contributions of this thesis are; 

 

 Stochastic Observability analysis methods for maneuver and state 

selection in Rapid Transfer Alignment are derived, where the degree of 

observability of each state can be analyzed. 

 Vibration sensitivity of MEMS inertial sensors is characterized and 

modeled in the Transfer Alignment. Bias and noise shifts for a given flight 

and launch configuration is shown. 

 Dynamic misalignment between master and slave INS is characterized and 

modeled into the rapid transfer alignment algorithm. Two different 

methods are derived and tested with experimental data. 

 

For future work, following studies can be done; 

 

 An analytical model the launcher pod’s dynamic motion can be derived. 

The results of analytical and estimated dynamic misalignment can be 

compared 

 An online training method for ANN can be designed, thus the offline work 

load can be reduced. 
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APPENDIX A 

A               DERIVATION OF INS EQUATIONS 

 

In an inertial navigation system, the platform’s position, velocity and attitude with 

respect to Earth in inertial axis is required. The basic navigation mechanization 

equation is given by [1,2]; 

 

2

2

i

d r
f

dt
          (A.1)  

 

And 

 

2

2

i

d r
a g

dt
           (A.2) 

 

where  

 

f: Rigid body acceleration in inertial axis frame 

 

a: Accelerometer measurements 

 

g: gravitational acceleration 
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r: position vector 

 

Remember that accelerometers are unable to sense gravitational acceleration 

directly 

 

Coriolis equation is included in order to find the velocity relative to Earth 

 

  ie

i e

dr dr
r

dt dt
         (A.3) 

 

Differentiating A.3 and including e

e

dr
v

dt
 ; 

 

2

2

( )
 e ie

i ii

dv d rd r

dt dt dt


       (A.4) 

 

2

2
( )     e

ie e ie ie

ii

dvd r
v r

dt dt
         (A.5) 

 

where the angular rotation rate of Earth is assumed to be constant, i.e. 0ied

dt


   

 

Rearranging equations A.4 and A.5; 

 

( )      ne
ie e ie ie

i

dv
a v r g

dt
        (A.6) 

 

Where; 

 

 

na : Inertial sensor acceleration measurement in navigation frame 
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ie exv :  Transport rate 

 

( )ie iex xr  : Centrifugal acceleration due to the the rotational rate of Earth, which 

cannot be separate the gravitational acceleration.  The sum of this centrifugal 

acceleration and gravitational acceleration is known as plumb-up gravity 

 

( )p ie ieg g x xr           (A.7) 

 

Navigation (local geographic) axis frame is required to navigate all around the 

Earth. In navigation frame, position is given in latitude, longitude and altitude, 

whereas velocity is given in North-East-Down components. 

 

In navigation frame, ground speed is denoted as 
n

ev .  The rate of change of ground 

speed with respect to local geographic frame written in inertial frame is given by; 

 

 

( )   e e
ie en e

n i

dv dv
v

dt dt
         (A.8) 

 

Substituting e

i

dv

dt
; 

 

(2. )    ne
ie en e p

n

dv
a v g

dt
        (A.9) 

 

which can be rearranged as; 

 

. (2. )    n n b n

e b ie en e pv C a v g        (A.10) 
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n

bC :  Body to navigation frame transformation direction cosine matrix.  

 

Direction cosine matrix is mechanized as follows; 

 

 

( )n n b

b b nbC C           

 

b

nb :The angular  rotation rate of a body with respect to the navigation frame 

 

b

nb : Skew symmetric matrix form of 
b

nb  

 

b

nb  can also be written as the measured body rates (
b

ib ) and estimates of the 

navigation frame rotation rate components ( in ie en    ) ; 

 

.( )b b n n n

nb ib b ie enC             (A.11) 

 

Remember that local geographic frame is required to have a continuous rotation as 

the navigated platform moves in Earth in order to have an x axis parallel to Earth 

Surface. This rotation rate of the local geographic frame is also known as 

transport rate, expressed by (A.12); 

 

[ /( ) /( ) .tan( ) /( )]n

en E e N n E eV R h V R h V L R h          (A.12) 

 

The coordinate transformation between navigation and earth frames can be 

expressed by; 

 

( )e e n

n n enC C           (A.13) 
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The dynamic change of position states; latitude, longitude  and altitude is given 

by; 

 




N

N

V
L

R h
          (A.14) 

 

sec( )




E

N

V L
l

R h
         (A.15) 

 

  Dh V          (A.16) 
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 APPENDIX B 

B DERIVATION OF INS ERROR EQUATIONS 

In this section, error propagation model of a full inertial navigation system is 

derived.  The related error equations are expressed in navigation axis frame [1, 22 

and 23].  

 

B.1 Attitude Errors 

 

The attitude between the navigation and erroneous navigation) axis frame is  

given asas; 

 

ˆ .n n n

b b bC C C         (B.1) 

 

where 

 

ˆ n

bC : Ideal navigation frame 

n

bC : Real navigation frema 

n

bC : Attitude transformation matrix between ideal and real navigation frame 

 

Remember that the attitude kinematics is given as; 
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.( ) ( ). n n b n n

b b ib in bC C C         (B.2) 

 

Differentiating this equation; 

 

.( ) .( ) ( ). ( ).   n n b n b n n n n

b b ib b ib in b in bC C C C C           (B.3) 

 

 where  attitude difference between ideal and real navigation frame is assumed to 

small, 
n

bC  is stated as a vector; 

( ). n n n

b bC C          (B.5) 

 

n  : Attitude error vector 

 

Taking this equation’s derivative with respect to time; 

 

( ). ( ).  n n n n n

b b bC C C          (B.5) 

 

Include 
n

bC  

 

( ). ( ).( .( ) ( ). )   n n n n n b n n

b b b ib in bC C C C          (B.6) 

 

Equating both equations; 

 

.( ) .( ) ( ). ( ).

( ). ( ).( .( ) ( ). )

   

  

n b n b n n n n

b ib b ib in b in b

n n n n b n n

b b ib in b

C C C C

C C C

    

   
    (B.7) 

And solving for attitude error vector rate 

 

( ). .( ) ( ).( ).

( ).( ). ( ).

  

 

n n n b n n n

b b ib in b

n n n n n

in b in b

C C C

C C

   

  
      (B.8) 
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Multiplying on the right by the inverse of
n

bC ; 

 

( ) .( )( ) ( ).( ) ( ).( ) ( )    n n b n T n n n n n

b ib b in in inC C          (B.9) 

 

 

.    n n b n n n

b ib in inC           (B.10) 

 

Remember that 
n

en  and 
n

ie  are given by; 

 

. tan( )
[ ]




  

n TN NE
en

E N E

V V LV

R h R h R h
       (B.11) 

 

and 

 

[ cos( ) 0 sin( )]n T

ie L L          (B.12) 

 

n

in is defined by; 

 

n n n

in ie en             (B.13) 

 

n n n

in ie en            (B.14) 

 

where  

 

.n e e

ie n ieC            (B.15) 

 

Note that 
e

ie  does not change with respect to time. 

  

Position error is given by 
n  
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.n n e e

ie n iexC             (B.16) 

 

n  : Position Error given in navigation frame 

 

Rearranging the equation results in; 

 

n n n n n

ie ie iex x              (B.17) 

 

Alternatively, 
n

en  and 
n

ie  is given by; 
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 


 

    (B.18) 

[ sin( ) 0 cos( ) ]n T

ie L L L L          (B.19) 

 

 

 

B.2 Velocity Errors 

 

Note that velocity mechanization equation is expressed as; 

 

. (2. )    n n b n

e b ie en e pv C a v g        (B.20) 

 

Differentiating this equation; 



 

 

 

173 

. .

(2. ) (2. )

 

      

n n b n b

e b b

n n

ie en e ie en e p

v C a C a

v v g

  

     
    (B.21) 

 

Including attitude error, 
n

bC  and neglecting second order effects results in; 

 

( . ) . (2. )

(2. )

      
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n n b n n b n n n n

e b b e ie en

n n n

ie en e p

v C a C a v

v g

     

   
    (B.22) 

 

 

B.3 Position Errors 

 

Position  mechanization equation is given as; 

 

( )e e n

n n enC C           (B.23) 

 

Differentiating this equation 

 

( ) ( ) e e n e n

n n en n enC C C             (B.24) 

 

Defining; 

 

( )e e n

n nC C           (B.25) 

 

n  : Position error vector 

 

Differentiating with respect to time; 

 

( ) ( ) e e n e n

n n nC C C          (B.26) 
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Rearranging; 

 

( )( ) ( ) e e n n e n

n n en nC C C           (B.27) 

 

Equating these equations 

 

( )( ) ( ) ( ) ( )  e n n e n e n e n

n en n n en n enC C C C           (B.29) 

 

Solving for n  

 

( ) ( ) ( ) ( )( )  e n e n e n e n n

n n en n en n enC C C C           (B.29) 

 

Multiply on the left by the inverse of 
e

nC  

 

( ) ( )( ) ( ) ( )( )  n n n n n n

en en en            (B.30) 

 

Rearranging; 

 

n n n n

en enx              (B.31) 

 

Altitude error is given by taking derivative with respect to time  

 

 Dh V           (B.32) 

 

 Dh V           (B.33) 

 

Alternatively, position errors in latitude and longitude can be expressed as 

follows; 
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/( ) . /( )   N n N nL V R h V h R h         (B.34) 

 

.sec( ) /( ) .sec( ).tan( ). /( )

.sec( ). /( )

   

 

E e E e

E e

l V L R h V L L L R h

V L h R h

   

 
   (B.35) 
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APPENDIX C 

C ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Network (ANN) is an alternative solution methodused in various 

fields of engineering such as estimation, system identification, guidance, control, 

optimization, classification, pattern recognition etc. A neural networks consists of 

several neurons which are computing components connected to other neurons in 

several layers [44-48, 57, 58].  

 

ANN is inspired by biological neural systems; basically they are simplified model 

of the brain. The fundamental element of ANN is a neuron as in the case of a 

biological neural network. ANN is composed of many neurons that work in co-

operation in order to complete the necessary function. Biological neuron and a 

simple neuron model for ANN is shown in Figure C.1 and Figure C.2; 

 

 

 

 

Figure C.1 Biological Neuron Model [57] 
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Figure C.2 Neuron Model [57] 

Every neuron has a multi input-output structure.  Main property of an ANN is its 

learning property,that is it can adapt itself to the dynamics of the system and 

environment by the neurons connected to each other. [58] 

 

Main property of ANN is the ability to learn; they figure out the way to perform 

the required function by themselves and they determine their function based on 

sample inputs. 

  

Inputs to the neuron are separately weighted. The output is the addition process 

with a nonlinear activation function, in other words the output of a neuron is a 

function of weighted sum of the inputs. 

 

The basic neuron is defined by; 

1

N

i i

i

u w x 


          (C.1) 

 

And  

 

( )y f u          (C.2) 

 

x: Inputs for neuron 

w: Weight for synapses 

u: Neuron activation 
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 : Threshold 

y: Output of the neuron 

f(): Activation function 

 

Taking w0=  and threshold input as x0=-1, equation B.2 is rearranged as; 

 

0

( )
N

i i

i

y f w x


          (C.3) 

 

There are different kinds of activation functions for different applications [45]. 

Most common ones are linear, hard limit and log sigmoid functions. In 

classification applications, hard limit activation is used, which simply makes a 

quantization of the output to 0 or 1. In linear filter design, linear function is 

preferred. In back propagation algorithms, sigmoid function is used. The sigmoid 

function is given as; 

 

( ) 1/ (1 )uf u e          (C.4) 

 

As it is seen from equation B.4, main difference between sigmoid and other 

activation functions is that the sigmoid function is differentiable, which is 

fundamental for learning in ANN. 

 

Multilayer perceptron (MLP) with feed forward property is one of the most 

common neural network type used in engineering. The multilayer feed forward 

neural network structures with proper layers (input, output and hidden layers) are 

accepted as general approximation functions.  

 

In multilayer feed forward networks, there are multiple layers; additional hidden 

layers are present between input and output layers. Also, the information in 

multilayer feed forward network proceeds in one direction, each layers output is 

the input for the next one. There may be more than one hidden layer. 
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Main function of multilayer perceptron is to make an approximation and 

estimation for a given input and output profile [44, 45]. 

 

 

Figure C.3 Multilayer Feedforward Network Architecture [57] 

 

In the output layer, the weighted sum of all layers’ output is processed by a 

nonlinear activation function, 
[ ]s

jf  

 

1

[ ] [ ] [ ]

[ ] [ ] [ 1]

0

( )

s

s s s

j j j

n
s s s

j ji i

i

o f u

u w o









        (C.5) 

 

[ ]s

jiw : Synaptic weight for multiplication of the j
th

 neuron of the s
th 

layer multiplies 

the i
th

  output from preceding layer 
[ 1]s

io 
. Each weighting is tuned by the training 

in the ANN learning phase. 

 

ns: Number of neurons present in  s
th 

layer 

 

Back propagation learning is the training and learning process in multilayer feed 

forward neural networks.  With the learning process, ANN can adapt itself for 

input output mapping. Back propagation is a supervised form of training. The 

fundamental of back propagation is based on ANN’s error minimization. 
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Figure C.4 ANN with back propogation [57] 

 

In back propagation algorithm [57,58],  input processed to the layers of the ANN 

and resulting output is compared to the sample output. This comparison results in 

the output error, which is back propagated in reverse; from output to the input 

layer in order to tune the synaptic weights with a proper learning algorithm, thus 

minimizing the output error. This back propagation procedure is done in a loop 

unless the final output error is below the specified level. 

 

Back propagation can either be done offline or online. In offline training, 

predetermined or recorded input output mapping is used, whereas real time input 

outputs are used in online training. 

 

One of the most common methods for training is to use gradient descent algorithm 

for error minimizations.  Error function is given by; 

 

2 2

2 2

1 1

1
( ) ( )

2

n n

p jp jp jp

j j

E d y e
 

          (C.6) 
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p: The learning step 

djp : Desired output of ANN 

yjp : Actual output of ANN 

 

For over all learning process, error function is expressed as; 

 

2

2

0...

( )p p jp jp

p p j n

E E d y


           (C.7) 

 

n2 : Number of neurons in the output layer 

 

In the learning process, the changing of each weighting is given by; 

 

[ ]

[ ]
, 0

ps

ji s

ji

E
w

w
 


   


       (C.8) 

 

 : Learning parameter. 

 

Delta weighting in the output layer is expressed as; 

[2] [2] [1]

ji j iw o          (C.9) 

Where 

[2]

[2]

[2]
( )

jp

j jp jp

j

f
d y

u



 


        (C.10) 

 

For the hidden layer, 

 

[1] [1] [0]

ji j iw o          (C.11) 

 

Where 
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2
[1]

[2] [2] [2]

[1]
1

n
jp

j k kj

kj

f
w

u
 







         (C.12) 

 

Have been obtained. 

 

Gradient descent is a common and simple method used in many back propagation 

applications, but it has some important disadvantages such s learning rate 

sensitivity, slow convergence and lower accuracy with respect to the other 

methods such simulated annealing, Levenberg Marquardt. 
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APPENDIX D 

D KALMAN FILTERING 

Kalman filter is the most common integration and estimation method used in 

inertial navigation systems, where navigation states (position, velocity and 

attitude) should be updated in order to obtain a bounded, usable solution. Kalman 

filter is the most common estimation method  used to update inertial navigation 

data with redundant information from external sources, GPS, magnetometer, 

terrain data, or like the case in this thesis, master INS. There are different types of 

Kalman filter for different system applications, such as Extended Kalman Filter, 

Unscented Kalman Filter etc. which are all practical to be applied in real time. 

 

The basic Kalman Filter is a linear estimation algorithm. For most of the inertial 

navigation system applications, linearized error equations of navigation states are 

used in linear Kalman filter as the navigation states themselves are highly 

nonlinear. The navigation error states should be bounded in small numerical 

interval for valid linearity assumption. 

 

Kalman filter uses state space model of the estimated and measured systems. In 

the remaining parts of Appendix C,  the fundamentals of the discrete time Kalman 

filter is derived and explained in detail. [26, 27, 28, 29]. 
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Main problems and questions for the inertial navigation data are listed as follows; 

 

 Navigation errors should be corrected in motion so that navigation data is 

useful even with limited initial navigation data  

 Measurements from various aiding system (GPS, altimeter, magnetometer 

etc.) with different time intervals should be optimally combined 

 Covariance of the navigation states should be estimated to see the 

confidence level of the noisy system. 

 All navigation and inertial sensor states should be estimated even if only 

some of the states are observed, that is the system is a reduced order 

observer. 

 

The Kalman filter is the optimum solution for the above problems. The flow of 

this minimum variance linear estimation algorithm is as follows;  

 

 Kalman filter is initialized by ox̂ , the statistical estimates for the initial 

navigation error states, P(t0), the covariance matrix of the estimated states, 

and Q0, the process noise covariance. 

 States ox̂  and their covariance P(t0) are propagated to the measurement 

update 

 Measurement and the related innovation term is calculated 

 Kalman gain is calculated in order to obtain minimum mean square error 

estimate 

 Estimates of navigation states are calculated by measurement zk through 

Kalman gain 

 

 

 

With the convergence of the filter, all states (both navigation errors and inertial 

sensor calibration parameters) are estimated on the move. Also, the uncertainty of 

each state is found. With each measurement update, covariance values are  
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In the inertial navigation systems, there exists two different implementation way 

for Kalman filtering; 

 

 Direct estimation by including the navigation states (position, velocity and 

attitude) in the Kalman Filter, resulting in a highly nonlinear system 

 Indirect estimation by using navigation error states, which are linearized 

with small attitude error assumption 

 

Considering the fact that the Kalman Filter is a linear filter, direct Kalman 

Filtering may not be a good choice for integrated navigation sytems 

 

 

 

KALMAN FILTER

IMU output

External Aiding

Navigation Output

 

Figure D.1 Kalman Filter with Direct Estimation 

 

The indirect estimation is a better choice in inertial navigation systems as it uses 

the linearized error navigation states. There are two types of indirect estimation, 

open loop and closed loop; 

 

In the open loop estimation, the estimated error states are not fed back to the 

inertial navigation system, thus the navigation errors grows in time. After a certain 

navigation duration, the linearity assumption may fail because of this growth in 

the error. In close loop estimation, the errors are reset by the feedback, resulting in 

a bounded estimation. Closed loop estimation is used in most of the navigation 

systems 
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KALMAN FILTER

INS

EXTERNAL AIDING

Position, Velocity, Attitude

Optimal Estimates of INS 

errors

 

Figure D.2 Indirect Open Loop Kalman Filter 

 

 

 

KALMAN FILTER

INS

EXTERNAL AIDING

Position, Velocity, Attitude

Optimal Estimates of INS 

errors

 

Figure D.3 Indirect Close Loop Kalman Filter 

 

 

Discrete Time Kalman Filter equations are given in table D.1 
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Table D.1 Discrete Time Kalman Filter [26] 

Noisy system dynamics equation in 

discrete time 

k 1 k k kx A x w     

Process Noise covariance T

k k kE(w w ) Q  

Measurement equation in discrete 

time 

k k k kz H x v   

Measurement noise covariance T

k k kE(v v ) R  

A priori estimate of the states  '

k k k k k
ˆ ˆx ( ) K x ( ) K z       

'

k k kK (I K H )   

A posteriori estimate of the states 

 

k k k k k k
ˆ ˆ ˆx ( ) x ( ) K [z H x ( )]     

 

T T 1

k k k k k k kK P ( )H [H P ( )H R ]   

 

Propagated covariance matrix with 

measurements 

k k k kP ( ) (I K H )P ( )     

1 1 T 1

k k k k kP ( ) P ( ) H R H       

Time update Equations  

 

k 1 k k
ˆ ˆx ( ) A x ( )     

T

k 1 k k k k

T

k k k

P ( ) A P ( )A Q

       Q E(w w )

    


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APPENDIX E 

E INERTIAL SENSOR SPECIFICATIONS 

Table E.1 Slave INS Performance Specifications 

PERFORMANCE (1) 

Gyros   

Measurement Range >  500 deg/sec 

Dynamic Bandwidth 50 Hz 

Scale Factor Repeatability < 1000 ppm 

Nonlinearity < 1000 ppm 

Bias Repeatability < 100 deg/hr 

Axis Misalignment  3 mrad 

Random Walk  1 deg/hr 

g Sensitivity < 100 deg/hr/g 

Accelerometers   

Measurement Range 30g 

Dynamic Bandwidth 50 Hz 

Scale Factor Repeatability < 1000 ppm 

Nonlinearity < 1000 ppm 

Bias Repeatability < 10 mg 

Axis Misalignment  3 mrad 

Random Walk 0.5 m/s/hr 

Start-up Time  100 ms 
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Table E.2 Master INS Performance Specifications 

 

PERFORMANCE (1) 

Gyros   

Measurement Range >  1000 deg/sec 

Dynamic Bandwidth 50 Hz 

Scale Factor Repeatability < 10 ppm 

Nonlinearity < 10 ppm 

Bias Repeatability < 0.01 deg/hr 

Axis Misalignment  0.1 mrad 

Random Walk  0.01 deg/hr 

g Sensitivity < 0 deg/hr/g 

Accelerometers   

Measurement Range 50g 

Dynamic Bandwidth 50 Hz 

Scale Factor Repeatability < 50 ppm 

Nonlinearity < 10 ppm 

Bias Repeatability < 0.05 mg 

Axis Misalignment  0.1 mrad 

Random Walk 0.05 m/s/hr 

GPS Aided Navigation   

Position  10m 

Velocity 0.08 m/s 

Attitude < 0.2 deg 

Free Navigation   

Position  0.8 Nmi/hr 

Velocity 0.8 m/s 

Attitude < 0.5 deg 
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APPENDIX F 

F SIMULINK MODELS FOR RAPID TRANSFER 

ALIGNMENT  

F.1 INPUT FILE FOR ALGORITHM 

dt=0.05; 

  

acc1BiasInstabErrTC_db          = 0 ;                                      % 1 / a_xb bias 

instability error time constant (1/s) 

acc1BiasInstabErrTC = acc1BiasInstabErrTC_db; 

acc2BiasInstabErrTC_db          =0 ;                                       % 1 / a_yb_IMU bias 

instability error time constant (1/s) 

acc2BiasInstabErrTC = acc2BiasInstabErrTC_db; 

acc3BiasInstabErrTC_db          = 0  ;                                       % 1 / a_zb_IMU bias 

instability error time constant (1/s) 

acc3BiasInstabErrTC = acc3BiasInstabErrTC_db; 

acc1SFInstabErrTC_db            = 0 ;                                       % 1 / a_xb scale 

factor instability error time constant (1/s) 

acc1SFInstabErrTC = acc1SFInstabErrTC_db; 

acc2SFInstabErrTC_db            = 0 ;                                       % 1 / a_yb_IMU scale 

factor instability error time constant (1/s) 

acc2SFInstabErrTC = acc2SFInstabErrTC_db; 
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acc3SFInstabErrTC_db            =0  ;                                       % 1 / a_zb_IMU scale 

factor instability error time constant (1/s) 

acc3SFInstabErrTC = acc3SFInstabErrTC_db; 

gyr1BiasInstabErrTC_db         = 0  ;                                        % 1 / p_IMU bias 

instability error time constant (1/s) 

gyr1BiasInstabErrTC = gyr1BiasInstabErrTC_db; 

gyr2BiasInstabErrTC_db         = 0  ;                                        % 1 / q_IMU bias 

instability error time constant (1/s) 

gyr2BiasInstabErrTC = gyr2BiasInstabErrTC_db; 

gyr3BiasInstabErrTC_db         = 0  ;                                        % 1 / r_IMU bias 

instability error time constant (1/s) 

gyr3BiasInstabErrTC = gyr3BiasInstabErrTC_db; 

gyr1SFInstabErrTC_db           = 0  ;                                        % 1 / p_IMU scale 

factor instability error time constant (1/s) 

gyr1SFInstabErrTC = gyr1SFInstabErrTC_db; 

gyr2SFInstabErrTC_db           =0  ;                                        % 1 / q_IMU scale 

factor instability error time constant (1/s) 

gyr2SFInstabErrTC = gyr2SFInstabErrTC_db; 

gyr3SFInstabErrTC_db           = 0  ;                                        % 1 / r_IMU scale 

factor instability error time constant (1/s) 

gyr3SFInstabErrTC = gyr3SFInstabErrTC_db; 

  

vxSigma_db                          = 25 ;                                   % std of Vx (m/s) ( std : 

standard deviation ) 

vxSigma = vxSigma_db; 

vxVar = vxSigma^2; 

  

vySigma_db                          = 25 ;                                  % std of Vy (m/s) 

vySigma = vySigma_db; 

vyVar = vySigma^2; 

  

vzSigma_db                          = 25 ;                                  % std of Vz (m/s) 
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vzSigma = vzSigma_db; 

vzVar = vzSigma^2; 

  

phiSigma_db                         = 15 ;                                   % std of phi (deg) 

phiSigma = phiSigma_db * pi/180;                                            % (deg --> rad) 

phiVar = phiSigma^2; 

  

thetaSigma_db                       = 15 ;                                   % std of theta (deg) 

thetaSigma = thetaSigma_db * pi/180;                                        % (deg --> rad) 

thetaVar = thetaSigma^2; 

  

psiSigma_db                         = 15 ;                                   % std of psi (deg) 

psiSigma = psiSigma_db * pi/180;                                            % (deg --> rad) 

psiVar = psiSigma^2; 

  

% accBiasSigma_db                   = 20 ;                                  % std of accelerometer 

bias repeatability error (g) 

accBiasSigma_db                     = 40e-3; %20; %0;                     

accBiasSigma = accBiasSigma_db * 9.81;                                      % (g --> m/s^2) 

accBiasVar = accBiasSigma^2; 

  

% accSFSigma_db                     =  10000;                               % std of 

accelerometer scale factor repeatability error (ppm) 

accSFSigma_db                       = 2000; %0; 

accSFSigma = accSFSigma_db * 10^-6 ;                                        % (ppm --> non 

dimension) 

accSFVar = accSFSigma^2; 

  

% gyrBiasSigma_db                   = 150  ;                                % std of gyro bias 

repeatability error (deg/hr) 

gyrBiasSigma_db                     = 150*1.2; %125; % 0; 
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gyrBiasSigma = gyrBiasSigma_db * (pi/180) * (1/3600) ;                      % (deg/hr 

--> rad/s) 

gyrBiasVar = gyrBiasSigma^2; 

  

% gyrSFSigma_db                      = 10000  ;                             % std of gyro scale 

factor repeatability error (ppm) 

gyrSFSigma_db                        = 2000; %1000; % 0; 

gyrSFSigma = gyrSFSigma_db * 10^-6;                                         % (ppm --> non 

dimension) 

gyrSFVar = gyrSFSigma^2; 

  

% accNoiseSigma_db                    = 0.01 ;                                % std of 

accelerometer noise (g) 

% accNoiseSigma = accNoiseSigma_db * 9.81 ;                                   % (g --> 

m/s^2) 

accNoiseSigma =0.01 * sqrt(1/dt); 

accNoiseVar = accNoiseSigma^2; 

  

gyrNoiseSigma_db                    =0.02*0.15; %0.001 ;                               % std of 

gyro noise (deg/s) 

gyrNoiseSigma = gyrNoiseSigma_db * pi/180 * sqrt(1/dt) ;                                 % 

(deg --> rad) 

gyrNoiseVar = gyrNoiseSigma^2; 

  

accBiasNoiseSigma_db                = 0 ;                                   % std of 

accelerometer bias noise (g) 

accBiasNoiseSigma = accBiasNoiseSigma_db * 9.81; 

accBiasNoiseVar = accBiasNoiseSigma^2; 

  

accSFNoiseSigma_db                  = 0 ;                                   % std of acclerometer 

scale factor noise (ppm) 
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accSFNoiseSigma = accSFNoiseSigma_db * 10e-6;                               % (ppm --

> non dimension) 

accSFNoiseVar = accSFNoiseSigma^2; 

  

gyrBiasNoiseSigma_db                = 0;                                   % std of gyro bias 

noise (deg/hr) 

gyrBiasNoiseSigma = gyrBiasNoiseSigma_db * (pi/180) * (1/3600);             % 

(deg/hr --> rad/s) 

gyrBiasNoiseVar = gyrBiasNoiseSigma^2; 

  

gyrSFNoiseSigma_db                  = 0 ;                                   % std of gyro scale 

factor noise (ppm) 

gyrSFNoiseSigma = gyrSFNoiseSigma_db * 10e-6 ;                              % (ppm --

> non dimension) 

gyrSFNoiseVar = gyrSFNoiseSigma^2; 

  

gravityDeviationSigma_db            = 0 ;                                   % std of gravitational 

acceleration anomaly (mg) 

gravityDeviationSigma = gravityDeviationSigma_db * 10e-3 * 9.81;            % 

(mg --> m/s^2) 

gravityDeviationVar = gravityDeviationSigma^2; 

  

pltVelNoiseSigma_db                 =  0.001*10 ;             %0.001                  % std of 

noise in platform velocity data (m/s) 

pltVelNoiseSigma = pltVelNoiseSigma_db ; 

pltVelNoiseVar = pltVelNoiseSigma^2; 

  

pltEulerNoiseSigma_db               =  0.0001*200*2;       %0.0001                       % 

std of noise in platform euler angle data (deg) 

pltEulerNoiseSigma = pltEulerNoiseSigma_db * pi/180 ;                       % (deg --> 

rad) 

pltEulerNoiseVar = pltEulerNoiseSigma^2; 
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rLncPltNoiseSigma_db                = 0.05; %0.001 ;                               % std of 

variation in platform INS - pod distance (m) 

rLncPltNoiseSigma = rLncPltNoiseSigma_db ; 

rLncPltNoiseVar = rLncPltNoiseSigma^2; 

  

pltAngVelNoiseSigma_db              = 0.0001*10 ;                              % std of noise 

in platform angular velocity data (deg/s) 

pltAngVelNoiseSigma = pltAngVelNoiseSigma_db * pi/180;                      % (deg 

--> rad) 

pltAngVelNoiseVar = pltAngVelNoiseSigma^2; 

  

latencyLimit1 = 0.02 ; 

latencyLimit2 = 0.05 ; 

  

dtTfralignEst = 0.05; 

tfralignDelay = 0;  

  

velocity_sigma_limit_db             = 1 ;                                   % limit for std of 

velocity estimation (m/s)    

velocityVarLimit = velocity_sigma_limit_db^2 ; 

  

euler_sigma_limit_db                = 0.1 ;                                 % limit for std or euler 

angle estimation (deg) 

euler_sigma_limit = euler_sigma_limit_db * pi/180; 

eulerVarLimit = euler_sigma_limit^2 ; 

  

aXbBiasSigmaLimit_db = 0.01;     %g                                         %variance 

degerinin 1/5i... 

aXbBiasSigmaLimit = aXbBiasSigmaLimit_db * 9.81; 

aXbBiasVarLimit = aXbBiasSigmaLimit^2; 

aYbBiasSigmaLimit_db = 0.01; 
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aYbBiasSigmaLimit = aYbBiasSigmaLimit_db * 9.81; 

aYbBiasVarLimit = aYbBiasSigmaLimit^2; 

aZbBiasSigmaLimit_db = 0.01; 

aZbBiasSigmaLimit = aZbBiasSigmaLimit_db * 9.81; 

aZbBiasVarLimit = aZbBiasSigmaLimit^2; 

  

aXbSFSigmaLimit_db = 1000;  %ppm 

aXbSFSigmaLimit = aXbSFSigmaLimit_db * 10e-6; 

aXbSFVarLimit = aXbSFSigmaLimit^2; 

aYbSFSigmaLimit_db = 1000; 

aYbSFSigmaLimit = aYbSFSigmaLimit_db * 10e-6; 

aYbSFVarLimit = aYbSFSigmaLimit^2; 

aZbSFSigmaLimit_db = 1000 ; 

aZbSFSigmaLimit = aZbSFSigmaLimit_db * 10e-6; 

aZbSFVarLimit = aZbSFSigmaLimit^2; 

  

  

pBiasSigmaLimit_db = 3;  %deg/hr 

pBiasSigmaLimit = pBiasSigmaLimit_db * pi/180 * 1/3600; 

pBiasVarLimit = pBiasSigmaLimit^2; 

qBiasSigmaLimit_db = 3;  %deg/hr 

qBiasSigmaLimit = qBiasSigmaLimit_db * pi/180 * 1/3600; 

qBiasVarLimit = qBiasSigmaLimit^2; 

rBiasSigmaLimit_db = 3;  %deg/hr 

rBiasSigmaLimit = rBiasSigmaLimit_db * pi/180 * 1/3600; 

rBiasVarLimit = rBiasSigmaLimit^2; 

  

pSFSigmaLimit_db = 1000;  %ppm 

pSFSigmaLimit = pSFSigmaLimit_db * 10e-6; 

pSFVarLimit = pSFSigmaLimit^2; 

qSFSigmaLimit_db = 1000;  %ppm 

qSFSigmaLimit = qSFSigmaLimit_db * 10e-6; 
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qSFVarLimit = qSFSigmaLimit^2; 

rSFSigmaLimit_db = 1000;  %ppm 

rSFSigmaLimit = rSFSigmaLimit_db * 10e-6; 

rSFVarLimit = rSFSigmaLimit^2; 

  

% aXbBiasVarLimit = accBiasVar/5; 

%  

% aYbBiasVarLimit = accBiasVar/5; 

% aZbBiasVarLimit = accBiasVar/5; 

%  

% aXbSFVarLimit = accSFVar/5; 

% aYbSFVarLimit = accSFVar/5; 

% aZbSFVarLimit = accSFVar/5; 

%  

% pBiasVarLimit = gyrBiasVar/5; 

% qBiasVarLimit = gyrBiasVar/5; 

% rBiasVarLimit = gyrBiasVar/5; 

%  

% pSFVarLimit = gyrSFVar/5; 

% qSFVarLimit = gyrSFVar/5; 

% rSFVarLimit = gyrSFVar/5; 

  

deltaHPltSLLimit_db = 15;  %m 

deltaHPltSLLimit = deltaHPltSLLimit_db; 

deltaHPltGLLimit_db = 15;  %m 

deltaHPltGLLimit = deltaHPltGLLimit_db; 

deltaLatPltLimit_db = 2 ; %arc sec 

deltaLatPltLimit = deltaLatPltLimit_db /3600 * pi/180 ; 

deltaLonPltLimit_db = 2;  %arc sec 

deltaLonPltLimit = deltaLonPltLimit_db /3600 * pi/180 ; 

  

biasAccXUpper = 0; 
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SFAccXUpper = 0; 

  

biasAccYUpper = 0; 

  

SFAccYUpper = 0; 

  

biasAccZUpper = 0; 

  

SFAccZUpper = 0; 

  

biasGyrXUpper = 0; 

  

SFGyrXUpper = 0; 

  

biasGyrYUpper = 0; 

  

SFGyrYUpper = 0; 

  

biasGyrZUpper = 0; 

  

SFGyrZUpper = 0; 
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F.2 SIMULINK BLOCKS 

 

Figure F.1 Main Rapid Transfer Alignment Algorithm 
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Figure F.2 Missile INS Algorithm 

 

Figure F.3 Host INS Algorithm 
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Figure F.4 Measurement and Estimation Module 

 

 

 

Figure F.5 Measurement Module 
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Figure F.6 Attitude Measurement Module 

 

Figure F.7 Velocity Measurement Module 

 

Figure F.8 Kalman Filter Module 

 

 

3

C_NED2N

2

C_N2plt

1

w_plt

u
T

a b

Skew-Symmetric form

u
T

phi

theta

psi

C_b2n

Initial DCM

0

Gain1

Matrix

Multiply

C_plt_2_N Calculation

a b

C_NED2N Calculation

2

Euler_plt

1

pqr_plt

v _Az_plt

w_plt

C_NED2plt

C_NED2N

1

vel_diff

Matrix

Multiply

Matrix

Multiply

Matrix

Multiply

V_plt_N

u
T

6

ins_velocity_vector

5

rLncPlt

4

w_plt

3

C_N2plt

2

C_NED2N

1

V_plt_NED

(wxr)_N

V_plt_N

(wxr)_plt

C_plt2N

1

Euler_diff

U( : )U( : )

Reshape

Matrix

Multiply

3

C_N2plt

2

DCM_plt2lnc

1

C_B2N

(1,3)

(3,2)

CB2N_dif f

9

varianceVector

8

r_update

7

q_update

6

p_update

5

a_zb_update

4

a_yb_update

3

a_xb_update

2

euler_corr

1

velocity_corr

  X

  P

  g_ins

v elocity _corr

euler_corr

a_xb_update

a_y b_update

a_zb_update

p_update

q_update

r_update

v ariance_v ector

Module Outputs

Yk

C_N2plt

sf ib

wib

C_B2N

rLncPlt

X_state

P_cov ariance

Kalman

7

g_ins

6

rLncPlt

5

C_B2N

4

wib

3

sfib

2

C_N2plt

1

Yk



 

 

 

203 

 

Figure F.9 Kalman Filter Updates Module 

 

 

Figure F.10 Output Module 
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