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Electrical and Electronics Engineering Dept., METU

Prof. Dr. İsmet Erkmen
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ABSTRACT

IMITATION OF HUMAN BODY POSES AND HAND GESTURES USING A
PARTICLE BASED FLUIDICS METHOD

Tilki, Umut
Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. İsmet Erkmen

Co-Supervisor : Prof. Dr. Aydan M. Erkmen

October 2012, 120 pages

In this thesis, a new approach is developed, avoiding the correspondence problem

caused by the difference in embodiment between imitator and demonstrator in im-

itation learning. In our work, the imitator is a fluidic system of dynamics totally

different than the imitatee, which is a human performing hand gestures and human

body postures. The fluidic system is composed of fluid particles, which are used

for the discretization of the problem domain. In this work, we demonstrate the flu-

idics formation control so as to imitate by observation initially given human body

poses and hand gestures. Our fluidic formation control is based on setting suitable

parameters of Smoothed Particle Hydrodynamics (SPH), which is a particle based

Lagrangian method, according to imitation learning. In the controller part, we devel-

oped three approaches: In the first one, we used Artificial Neural Networks (ANN)

for training of the input-output pairs on the fluidic imitation system. We extracted

shape based feature vectors for human hand gestures as inputs of the system and for

output we took the fluid dynamics parameters. In the second approach, we employed

the Principal Component Analysis (PCA) method for human hand gesture and human
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body pose classification and imitation. Lastly, we developed a region based controller

which assigns the fluid parameters according to the human body poses and hand ges-

tures. In this controller, our algorithm determines the best fitting ellipses on human

body regions and human hand finger positions and maps ellipse parameters to the

fluid parameters.

The fluid parameters adjusted by the fluidics imitation controller are body force (f),

density, stiffness coefficient and velocity of particles (V) so as to lead formations of

fluidic swarms to human body poses and hand gestures.

Keywords: imitation learning, correspondance problem, learning by observation, flu-

idics controller, smoothed particle hydrodynamics
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ÖZ

İNSAN VÜCUT DURUŞLARININ VE EL İŞARETLERİNİN PARÇACIK
TABANLI AKIŞKANLAR DİNAMİĞİ METODU KULLANILARAK TAKLİT

EDİLMESİ

Tilki, Umut
Doktora, Elektrik Elektronik Mühendisliğ Bölümü

Tez Yöneticisi : Prof. Dr. İsmet Erkmen

Ortak Tez Yöneticisi : Prof. Dr. Aydan M. Erkmen

Ekim 2012, 120 sayfa

Bu tezde, taklit ederek öğrenme metodundaki taklit eden ve taklit edilen arasındaki

şekillenme farkından dolayı ortaya çıkan uyuşma problemine karşı yeni bir yaklaşım

geliştirilmiştir. Çalışmamızda, insan vücut duruşları, insan el hareketleri ve işaretleri

taklit edilen olarak alınmış ve taklit eden ise dinamiği taklit edilenden tamamen

farklı olan akışkan bir sistemdir. Akışkanlar dinamiği tabanlı sistem problem alanını

ayrıştırmada kullanılan akışkan parçacıklardan oluşturulmuştur. Bu çalışmada, insan

vücut duruşları ve insan el hareketleri özelliklerinin gözlenmesi ile taklit edilmesini

saglayacak akışkanlar dinamiği tabanlı biçimlendirme kontrolü gerçekleştirilmiştir.

Bu çalışmada kullanılan biçimledirme kontrolörü Lagrangian, parçacık tabanlı bir

metod olan Yumuşatılmış Parçacık Hidrodinamiği (YPH) parametrelerinin taklit ed-

erek öğrenmeye göre uygun değerlere ayarlanmasına dayanır. Kontrolör kısmında

üç farklı yaklaşım geliştirildi: Birincisinde akışkan tabanlı taklit ederek öğrenme

sisteminde giriş çıkış çiftlerinin eğitilmesinde Yapay Sinir Ağları (YSA) kullanıldı.

Sistemin girişi olarak insan el işaretlerine ait özellik vektörlerini çıkarıldı ve buna
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karşılık çıkış olarak akışkanlar dinamiğine ait parametreler akışkan parçacıklarından

oluşan koloniye uygulandı.İkinci yaklaşımda, insan vücut duruşlarının ve insan el

işaretlerinin sınıflandırılmasında ve taklit edilmesinde Temel Bileşenler Analizi (TBA)

kullanıldı. Son olarak, insan vücut duruşlarına ve el işaretlerine göre akışkan parame-

trelerini ayarlayan bölgesel bir kontrolör geliştirildi. Bu kontrolör için geliştirilen

algoritma insan vücut ve el parmak bölgelerine en iyi oturan elipsi saptayıp, elips

parametrelerini akışkan parametrelerine dönüştürmektedir.

Akışkan tabanlı taklit etme kontrolörü tarafından akışkan sürüye insan vücut duruşlarını

ve el işaretlerini biçimi verecek şekilde akışkanlar dinamiğine ait uygun değerlere

ayarlanan parametreler gövde kuvveti (f), yoğunluk, sertlik katsayıları ve parçacık

hızlarıdır.

Anahtar Kelimeler: taklit ederek öğrenme, uyumluluk problemi, gözlemliyerek öğrenme,

akışkan tabanlı kontrollör, yumuşatılmış parçacık dinamiği
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Atilla Dönük, ,Turgay Koç. I want to thank all of them for their close friendship and

motivations.

This thesis work is studied in Mechatronics, Robotics, and Control (MRC) Labo-

ratory. I would like to thank all the members of the laboratory, Sedat Doğru, Akif
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CHAPTER 1

INTRODUCTION

1.1 Imitation Learning

Imitation learning is one of the ways of social learning mechanism that enables the

human or robot agents to learn new skills. With basic words, the definition of im-

itation is a type of social behavior in which one of the agents (human, animal or

robot) copies the form of behavior or action of another agent. Imitation is a learning

mechanism for transferring knowledge from the skilled agent (demonstrator) to the

unskilled agent (imitator) using direct demonstration methods.

In imitation learning or in other words, programming by demonstration (PbD) there

are two primary goals [1]. The first one is studying human beings and exploring how

social learning process works and the second one is to see how social learning can

work in general and how to build better artifacts using that knowledge. Four funda-

mental questions are important in imitation: who, what, when, and how to imitate.

The important problem during imitation learning, is to answer the “how to imitate”

question. The answer basically is obtained by creating an appropriate mapping be-

tween the actions afforded by particular embodiments and the matching by the model

and imitator (solving the correspondence problem). In this work we focus on the

question of how to imitate when the demonstrator and imitator do not the share same

embodiment.

The traditional imitation approaches concentrate on finding the correct features of

the model and developing a controller that generates the appropriate movements of

1



the model, and the imitator maps those action sequences appropriately. Since the

demonstrator and the imitator do not share and perceive the same context, this ap-

proach limits itself to answer the question of how to imitate the demonstrator. On the

contrary, agent-based approach for imitation concentrates not only on the imitator’s

behavior but also other agents’ behaviors in the environment [2]. The agent based

approaches have a broader point of view and include important questions in the im-

plementation of imitation: who to imitate, when to imitate, what to imitate, how to

imitate and how to evaluate the imitation.

1.2 Correspondence Problem

Imitation learning, where teacher demonstrates the behaviors for the imitator to fol-

low, has been used to train agents to control complicated systems like human hand

imitation by a robot hand. Particularly an action or task is performed by the demon-

strator, and the details of this action, usually in the form of observation and action

pairs, are passed on to the learner [3]. However, most of the work puts a burden to the

teacher, since the learning process depends on the actual demonstration of the teacher

[4].

Imitation learning is a powerful and practical way of learning to develop robot be-

haviors. Even so, development remains a challenge and possible demonstration lim-

itations, for example correspondence issues between the robot (imitator) and demon-

strator, can degrade performance. The goal of imitation learning is to have the agent

(robot or human) which learns the task, by observing the demonstrator agent.

Learning by observation is an essential and noninvasive part of imitation without in-

terfering with the imitatee’s task. Many problems have to be handled for learning to

imitate without affecting the imitatee. The primary difficulty is the correspondence

problem, which is the mapping of actions or action sequences between a demonstra-

tor (imitatee) and an imitator. This difficulty can be overcome if imitatee and imitator

have similar kinematic structures. However learning to imitate by observing others

that are different kinematically, is the recent focus of machines imitating human or

animals, or machines imitating other machines [5]. For systems having kinematically
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different structures, the correspondence problem becomes an initial important issue

that prevents imitation by observation, if not solved within the imitation methodol-

ogy. Even when two human beings of the same dynamical structure imitate each

other, it has been found in the medical literature that there exists a chronic disease

called ideomotor apraxia that hampers the correspondence problem, leading to faulty

organ matching, e.g., the demonstrator lifting a hand, the imitator may lift a leg [6].

During the imitation between two kinematically different systems, this disease is in-

herent. For example, imitation of human hand motions by a 3-fingered robot hand has

an inherent correspondence problem where no one to one organ matching exists, the

imitator being under actuated with less limbs than that of the demonstrator. The cor-

respondence problem aside, many researchers speculated that imitative learning has

valuable characteristics such as being noninvasive in the learning process which may

in many cases speed up learning by not requiring communication between teacher

and student thus, not interrupting the imitatee’s task through interference [7].

In this work, we tackle the problem of imitating human hand postures by a system that

possesses completely different dynamics, thus unable to initiate an imitational organ

matching. Such an imitation is performed in nature by animals such as dolphins

imitating their trainer’s postures and gestures. We focus on developing an approach

for imitation through observation of an imitatee’s pose or gestures without the need of

any organ matching. Towards this end, we focus on imitation of human hand gestures

or body poses by a swarm having totally different dynamics than a human. More

specifically this imitation is handled as the colony formation control of the swarm so

as to resemble basic human hand preshapes. We consider in this work, a swarm that

has a strikingly different dynamics than a human, which is more specifically a colony

of fluid particles.

1.3 Objectives and Motivation

The focus of this work is the development of decentralized strategies to control very

large groups of fluid particles. We can view this work in two parts: In the first part

the human hand gesture and human body pose classifications are performed by using

different classification and control methods like artificial neural networks, principle
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component analysis, and ellipse fitting technique. In the second part, according to

the output of the controller and classifier, computational fluid parameters are set to

appropriate values that guide suitably aggregation of the fluid particles, this generat-

ing a formation resembling the human hand gesture or body pose. Thus the imitation

learning procedure is successfully realized between dynamically different structures,

namely that of human hand gestures, and body poses, and that of fluid particles.

Our motivation comes from the two different sub areas. One is solving the correspon-

dence problem when the imitator and the demonstrator do not share same dynamical

structure. In our case the demonstrator is the hand gestures and body poses performed

by the human, while the imitator is the fluid body which is composed of fluid parti-

cles. The other motivation stems from the fact that a great variety of characteristics

desirable for a group of robotic - particles can be observed in fluids.

Some of the examples of those characteristics:

• fluid particles can be deformed easily

• fluid particles can contour objects easily

• the flow field variables and also the fluid phase can be easily manipulated in

order to construct the desired behaviors and formations.

1.4 Methodology

In this thesis, we present a new approach avoiding the correspondence problem caused

by the difference in embodiment between imitator and demonstrator in imitation

learning. In our case the demonstrator is a human performing hand gestures and

having body poses, and the imitator is the swarm of fluid particles. Although we do

not mention a lower bound for the number of fluid particles in the swarm, the system

in our approach should contain approximately at least tens of fluid particles in the

simulations. For the control framework, we developed two frameworks: one is about

the motion of individual fluid particles and the other one is adjusting the fluid param-

eter values to give the desired motion to the particles. That is, the formalism that we

propose is capable of governing both the local interactions of individual particles and
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the global behavior of the whole system. The mathematical foundation of our formal-

ism is based on the physical principles governing the flow of fluids. Hence, we have

thoroughly exploited such branches of science as Fluid Mechanics, Fluid Dynamics,

and Computational Fluid Dynamics (CFD).

1.4.1 Analogy

Fluids have diffusive and selfspreading nature such that they flow in the direction of

decreasing density and spread out to fill in or pour into the space of their container. In

nature, fluids exist in two structures namely, compressible fluids (like gases), incom-

pressible fluids (like liquids). Gases diffuse into the space and achieve homogeneous

density distribution over the environment regardless of its complexity. This prop-

erty is very favorable for mobile sensor networks systems since the maximization

of covering or deployment of the environment is a very crucial factor. On the other

hand, liquids have much more directional motions than gases. For our problem, the

imitation human hand gestures and body poses is chosen to be done by a swarm of

incompressible fluid particles, since we need much more directional movements than

gases, and the equation of motion of the particles are modeled as liquid like behavior.

Another important characteristic of fluids is that any flow variation or disturbance in

one part of the fluid affects the rest of fluid by propagation.

1.4.2 SPH

Fluid dynamics is related with the flow of the fluid and its mathematical model is

based on the three fundamental physical principles:

• Conservation of mass

• Conservation of momentum

• Conservation of energy

The governing equations of the fluid dynamics are obtained by solving these princi-

ples. Due to the fact that analytical solution of these equations is not possible, compu-
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tational methods are used. Among these computational methods, Smoothed Particle

Hydrodynamics (SPH) is a meshfree particle method that models a fluid body as a

collection of moving particles and numerically analyzes the flow equations in these

particle locations. This method was originally proposed by Lucy et al. and Monaghan

[8] - [9] for solving astrophysical problems. It recently became commonly used in

fluid simulations and is very suitable for distributed and parallel computations.

SPH equations are derived from the continuum governing equations by interpolating

from a set of disordered particles. In fluid dynamics problems, each particle repre-

sents a small volume of the fluid and the interpolation is performed by using differ-

entiable interpolation kernels which approximate a delta function. The continuum

equations are converted to a set of ordinary differential equations, where each one

controls the evolution of an attribute of a specific particle.

1.4.3 A Framework for Control of Fluid Particles

The overall shape of the fluid flow highly depends on the environment. The obstacles

and the medium of the environment determine the shape of the flow. For example, gas

flows and liquid flows have different characteristics. Gases spread on the air and try to

cover homogenously. On the other hand the flow of the liquids depends on the initial

conditions, such as initial force and has directional motions in the environment. In

computational fluid dynamics and SPH there are a lot of parameters that distinguish

a particular flow from one another and result in quite different flow patterns.

Our aim in this work is to utilize these parameters to generate desired motions of the

fluid particles in ways that are similar to the human hand gestures and body poses

given as inputs to the system. These parameters are set by our controller based on

either artificial neural networks or on classification of human hand gesture and body

poses done by principal component analysis. According to the hand gestures and body

poses performed by the human trainer, the fluid particle parameter values are set, and

by controlled aggregation of fluid particles, desired flow motions are generated. There

are no limitations about the values taken by parameters even if parameter terms are

set to unphysical values.
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For the proposed system, human hand gestures and human body poses are the inputs

of the developed imitation system. These hand gestures and body poses are imitated

by fluid particles in which there is an inherent correspondence problem since no one-

to-one organ matching can be feasible. The motion of the fluid particles are modeled

by smoothed particle hydrodynamics which is a mesh free particle based approxima-

tion method. The governing equations of the fluid dynamics are adapted to our system

and each particle solves the equations to get its own velocities.

Since the proposed particle based SPH implementation is scalable with the number

of particles, the algorithm runs independently for each fluid particle. Moreover, the

decentralized approach is beneficial for the robustness of the system because central-

ized approaches suffer from partial failures that may lead to be failure of the overall

system.

The important property of this particle based approach is that the behavior of the fluid

body is macroscopically modeled and predicted.

In this work, we propose three different types of controller. In the first one, we use

artificial neural networks to predict the fluid parameter values. For this purpose, first

we extract the feature vector of the human hand gesture and according to this feature

vector, the appropriate fluid parameter values are assigned. In this case the fluid

parameters we use in formation control is the body force term which directly enters

to the governing equation and has a guidance effect on the particles. These body

force values are obtained after some experiments assigning the potential fields on

the environment. The second one is based on classification of human hand gestures

which is used as the input of the system generated by principal component analysis.

According to this classification, the fluid parameter values are determined so as to

guide the aggregation of the particles in a way similar to human hand gestures. The

third one is based on the extraction of the human body and hand gesture regions of

focus. While for human body pose imitation, these focus regions are torso, head,

right and left arm locations, for imitation of hand gestures the focus regions are finger

knuckles. The developed algorithm fits ellipses to these regions of focus, and maps

ellipse parameters to the fluid parameters, which are for this third case body forces,

stiffness and viscosity coefficients.
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1.4.4 Principal Component Analysis

In the decision mechanism, for classification of the human hand gestures and body

poses, principal component analysis (PCA) method is used. PCA is a mathematical

procedure that uses an orthogonal transformation to convert a set of observations of

possibly correlated variables into a set of values of uncorrelated variables called prin-

cipal components. The number of principal components is less than or equal to the

number of original variables. This transformation is defined in such a way that the

first principal component has a variance as high as possible (that is, accounts for as

much of the variability in the data as possible), and each succeeding component in

turn has the highest variance possible under the constraint that component is orthog-

onal to (uncorrelated with) the preceding ones.

In pattern recognition, problems may occur for the classification and recognition of

data sets with high dimensional spaces. Significant improvements can be achieved by

first mapping the data into lower dimensional space. The goal of PCA is to reduce the

dimensionality of the data while retaining as much as possible the variation present in

the original dataset. PCA allows us to compute a linear transformation that maps data

from a high dimensional space to a lower dimensional space. With the dimension

reduction in PCA, information loss is inevitable. Therefore with the minimization of

the error function, much of the information is preserved. The best low-dimensional

space can be determined by the “best” eigenvectors of the covariance matrix of the

data set (i.e., the eigenvectors corresponding to the “largest” eigenvalues are called

“principal components”). Basically the objectives of the PCA are to reduce the di-

mensionality of the data set and to identify new meaningful underlying variables. It

means it allows us to reduce a set of observed variables into a smaller set of artificial

variables called principal components. The resulting principal components may then

be used in subsequent analysis which in our case is the use of these components to

set parameters of the formation control of a fluidic swarm.
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1.5 Contribution

In this thesis, we propose a fluid based controller which guides fluid particles in the

imitation of human hand gestures and body poses. We base our formalism on the

physics of fluids through some analogies that we establish between particle-based

system and fluid bodies. In the formulation of our approach we use SPH as a dis-

tributed computational method for each particle.

The contribution of this thesis is the fluidic formation control for the imitation of

human hand gestures and also body poses. This formation control is achieved by

suitably adjusting parameters of fluid dynamics approximated by Smoothed Particle

Hydrodynamics (SPH) which is a mesh free computational particle based Lagrangian

method, whose resolution can easily be adjusted by fluid variables such as density.

The most important advantage is the adaptive mesh free nature of the SPH method:

Since it is not a grid based formulation, SPH is not affected by the arbitrariness of

the particle distribution, and grid size. Therefore, it can handle the problem of large

deformations which resides at the very foundational nature of a colony of particles

imitating large deformations (curving, branching etc.) in hand gestures. We have

found that SPH is highly suitable for the fluidic formation control of a swarm imitator,

that imitates human hand posture with variable degree of resolution and can reliably

duplicate observed movements represented by features extracted from human poses.

The contributions of this thesis can be summarized as follows:

• Our approach realizes that even when there is a correspondence problem be-

tween two embodiments, a kinematically different embodiment than a human,

in our case fluid particles, can imitate human hand gestures and human body

motions.

• Development of a decentralized formation controller for fluid particles for the

imitation of human hand gestures and human body poses.

• To the best of our knowledge it is the first time such extreme embodiments (hu-

man and swarm of fluid particles) used for an imitation problem. For example

it is not like humanoid robot imitating a human (it is somehow possible to es-
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tablish one to one organ matching since humanoid robots have similar organs

with human beings, like legs, arms, heads, hands etc.)

1.6 Outline of Thesis

This thesis is organized in six chapters. In this chapter we briefly introduced the main

theme of the thesis. Our motivation and problem definition are given in this chapter.

Also we briefly explained the methodology that we use in our proposed system.

Chapter 2 reviews the related work found in literature.

In chapter 3 we give the proposed fluid based approach in details. In this chapter we

demonstrate our first approach for formation control which is a the Neural Network

based controller and imitation results are given and discussed.

Chapter 4 explains another controller strategy based on the Principal Component

Analysis (PCA) that generates a classification of hand gestures and human body mo-

tions. Also sensitivity analysis of the fluid particles are given in this chapter.

In chapter 5 the simulation results of human hand gestures and human body poses are

given and discussed.

Chapter 6 presents a controller strategy which is based on the extraction of imitational

focus regions. According to the shape and position of these regions, the best fitted

ellipses are determined, and the parameters of these ellipses are mapped to the fluid

parameters.

Concluding remarks, future works are discussed in Chapter 7. Also the summary of

the contributions of this dissertation is given in this chapter.
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CHAPTER 2

RELATED WORK AND MOTIVATION

2.1 Ongoing Works in Imitation Learning

Learning from demonstration also known as “programming by demonstration”, “im-

itation learning”, and “teaching by showing” is a topic that has received significant

attention in the field of automatic robot programming over the last 30 years.

Learning by imitation in robotics covers methods by which a robot or the agent learns

new skills through human guidance or more skilled agent [10]. Imitation learning

method explores the ways of teaching a robot, new skills by user friendly means of

interactions with other agents.

Developmental and neurophysiological studies showed that the imitative learning

takes place once gaze-following abilities are fully established and joint attention

can support the shared behavior required by imitation. Belardinelli et al. present a

methodology for learning gaze shifts based on imitation of the gaze shifts of a human

demonstrator, wearing a specially designed gaze-machine [11]. This device allows

the robot to measure gaze shifts and fixations through mutual vergence, and subse-

quently, generalizes the acquired data by learning the scene’s salient features and the

way cascaded programming is attained.

Hidden Markov Model (HMM) and Gaussian Mixture Regression (GMR) based ap-

proaches are developed by Calinon et. all. [12] in order to learn human motions. With

the proposed approach, from the multiple demonstrations redundancies are extracted

and build time-independent models to reproduce the dynamics of the demonstrated
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movements are possible. Validation of the proposed method is demonstrated on a 7

DOFs robotic arm learning and reproducing the motion of hitting a ball with a table

tennis racket.

Wood and Bryson [13] proposed in their work that skill learning in the domain of a

real-time computer game environment. In the game environment the imitator agent

learns certain tasks of an experienced agent by doing some observations. The agent

learns to classify of the actions which are observed in order to imitate. Besides,

they assumed in this work that the imitator agent partially solves the correspondence

problem which means that imitators are able to map the demonstrator’s actions into

their own action space.

Calinon et al. [14] present a programming-by-demonstration framework that extracts

the relevant features of a given task and is able to generalize the acquired knowledge

to different environments. The proposed framework is validated after some experi-

ments in which the human demonstrator teaches a humanoid robot simple manipula-

tory tasks.

Lopes and Santos-Victor present a developmental strategy for acquiring the capabil-

ity to learn by imitation. Their system follows a developmental pathway that com-

prises three levels: the first one concentrates on sensory-motor coordination and, sub-

sequently, the second one on world interaction and the last one on imitation. The

validation of the proposed method is demonstrated on a humanoid robot presenting

results on the acquisition of perceptual and motor skills [15].

2.2 Correspondence Problem

In most robotic imitation-based learning schemes the student attempts to find a cor-

respondence between the actions of the teacher and its own behavior repertoire; the

teacher’s body structure could range from being identical to similar and to very dis-

similar. However, in all these research attempts, the student assumes that it knows the

model of its body structure a priori. That is, it knows beforehand how its body parts

are attached to each other; the forward kinematics, mapping from the joint space to

the end effector space is also known a priori in most cases [17].
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In the imitation learning the demonstrator and the imitator do not have to belong to the

same species (a child imitating his/her parents, a human training a dolphin) or even

be biological and artificial agent (a humanoid robot imitation a human). The second

example is very interesting not only for computer science and the robotic community

but also for researcher from biology, psychology etc. In last decade there have been

lots of attempts for solving such a problem by designing controllers that allow robots

to be programmed and learn more easily and efficiently [18] - [22]

Learning to imitate by observing another system of totally different dynamics has the

inherent problems of understanding what to imitate, when and how to imitate. Imita-

tion by observation provides the advantage of speeding up the learning process, since

the focus is on ”learning on the flight of observation” process which is learning on-

line where the demonstrator (imitatee) is not required to spend time with the imitator,

to specifically train the imitator by leaving his/her own tasks. The demonstrator can

continue doing his/her job and the imitator usually observes and learns in parallel to

imitate without interrupting the demonstrator tasks.

In their paper, Alissandrakis et al. [23] focused on the problem of body mapping in

imitation learning when the imitator and the demonstrator does not share the same

embodiments (degrees of freedom, body morphology, action abilities etc.). They pro-

posed a mathematical perspective formalizing body mappings which is called corre-

spondence matrices between imitator and demonstrator. The correspondence matrices

are produced by capturing different types of associations between degrees of freedom

across dissimilarly embodied agents. The proposed approach is validated in a num-

ber of simulated 3-D robotic examples, using agents described by simple kinematic

models and different types of correspondence mappings.

Alissandrakis et al. [25] introduced ALICE, the “Action Learning for Imitation via

Correspondence between Embodiments,” a generic imitation framework that can be

used by an imitator agent to find corresponding actions that produce similar states and

effects as a model agent. In this agent based approach they have studied the results

of applying different metrics and different granularities to generate different corre-

sponding behaviors in the imitation of sequences of moves by differently embodied

agents. These agents are embodied as chess pieces, whose movement constraints
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provide a well-known example of dissimilar “bodies” in a simple, discrete shared

world, namely, a chess-board. A knight or bishop, for example, may imitate a zig-

zag of three moves by a demonstrator queen, but each such agent is subject to the

constraints on how it is allowed to move (its embodiment) and so can only roughly

approximate the queen’s precise behavior. Nevertheless, the knight and bishop or

other pieces can successfully imitate the behavior to varying degrees with respect to

particular granularities (e.g., end result or trajectory matching) and various metrics.

Varying the granularity and metrics for assessing attempts at imitation in this exper-

imental setting illustrates the profound influence of these factors on the qualitative

features of the resulting imitative behavior. Similarly, differently embodied animals,

robots, or other autonomous agents whose behavior matches those of others can be

modeled as using correspondences between their own states and actions and those of

a demonstrator, using various granularities and measures of dissimilarity.

2.3 Human/Robot Imitation

Such imitation learning requires a complex set of mechanisms that detect what to

learn from an imitatee by observing his/her movements and map them onto its own

movements by transforming the imitatee behavior features into its own dynamical fea-

tures. Such a process includes movement recognition, pose estimation and tracking,

body correspondence, coordinate transformation, matching of observed movements,

etc. [24].

For determining rough human body positions, body orientation and pose informa-

tion Glas et.all. [26] proposed a method in which they used laser scanner data. For

tracking and velocity control, particle filter approach is used in this research. Minato

et al. [27] use a grid-based approach on an android by mapping human posture in

three-dimensional position space. They attempt to naturally animate a robot to main-

tain social interaction. For posture transformation from human to an android they

use a motion capture system which can measure the posture of the human subject

and the android by attaching markers on the android so that all joint motions can be

discriminated. Then the same markers are attached to the human’s body.
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In another approach [28], for imitation of task dependent grasping, human subjects

were asked to reach and grasp different objects with different orientations. These

human movements were recorded using a motion capture system and analyzed offline.

Analyzed data are mapped into a robotic hand attached to a robotic arm.

There are many ongoing research about imitation of human with humanoid robots

nowadays. Mohan et al. [29] used imitation learning mechanism to teach a humanoid

robot, iCub, to draw primitive shapes. iCub robot gradually learns to draw shapes on

a drawing board after observing its human demonstrator. In another work, Calinon

et. all. [30] proposed a probabilistic approach for learning human motions through

imitation. In their hybrid approach they used Hidden Markov Model (HMM), Gaus-

sian Mixture Regression (GMR) and dynamical systems which allows extraction of

redundancies of multiple demonstrations.They built a time independent model that

reproduces the observed movements. They validated their algorithm on an iCub hu-

manoid robot.

In this kind of experimental setups, the major constraint is that there must be a large

set of sensory data, collected from data gloves, magnetic trackers, stereo vision sys-

tems etc. to track and understand the movements of the demonstrator.

2.4 Imitation in Humans

Our main objective in the present work is to deal with imitation by observation be-

tween two dynamically different systems that carries a total mismatch of organs (in-

herent ideomotor apraxia disease in the imitator system [6] ) so that imitation requires

the understanding of what to imitate, when and how to imitate without the case of pat-

tern matching for organ correspondence.

Humanlike intelligence requires an enormous amount of knowledge-solutions to the

hard problems of survival and reproduction, which for our species have come to in-

volve complex social and technological manipulations. Some of these solutions are

passed to us genetically, and some are learned by an individual through trial and error

[31].
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In our social life, we learn many new ways of using our limbs such as dancing,

cooking, driving etc. These abilities are mostly gained only by observing the other

performers (demonstrators). This procedure is called social learning in psychology.

Learning by observing is not an easy task when the demonstrator and imitator do

not the share same embodiment because of the different motion capabilities. Some-

times even when two human beings of the same dynamical structure imitate each

other, it has been found in medical literature that there exists a chronic disease called

ideomotor apraxia that hampers the correspondence problem, leading to faulty organ

matching, e.g., the demonstrator lifting a hand, the imitator may lift a leg [6].

Cognitive science research showed that the deficits in imitation is related with the

fronto-parietal or callosal brain lesions. In [32], they have developed a neurocompu-

tational model of imitation that reproduces the statistics of callosal apraxia errors. By

that model they reproduced the statistics, and the exact nature of apraxic errors, and

validated the model against a new set of experimental data.

Apraxia is generally defined as “a disorder of skilled movement not caused by weak-

ness, akinesia, deafferentation, abnormal tone or posture, movement disorders such

as tremor or chorea, intellectual deterioration, poor comprehension, or uncooperative-

ness”. Apraxia is generally defined as the inability to perform voluntary movements

meaning that it represents a deficit at the level of the sensory-motor transformations.

On one hand, patients with apraxia may perform some spontaneous gestures that they

cannot perform on command. This voluntary-automatic dissociation can be illustrated

by an apraxic patient that could use his left hand to shave and comb himself, but could

not execute a specific motor action such as opening the hand, so as to let go an object

[33].

2.5 Imitation in Animals

In social life we also see imitation examples in animals with less similar embodi-

ments, such as dolphins, chimpanzees imitating their trainer’s or model’s postures

and gestures [34]. In these cases the correspondence map between the animal and

human body is much more abstract than the similarly embodied demonstrator and
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imitator. It does not mean that the animals are aware of the correspondence problem;

they just partially solve the correspondence problem between their bodies and the

model demonstrator.

In [34], three female dolphins and one male dolphin were tested for imitation of hu-

man demonstrators using an unstated correspondence and showed that they are largely

able to imitate their trainers after approximately 8 - 10 hours of dolphin human con-

tacts each day: human forearms waving with bent elbow relate to wiggling pectoral

fins; a human propelling her body partially out of water corresponds to a leap out of

the water by the dolphin; human underwater somersaults correspond to that of the

dolphin underwater too. Human head and dolphin head correspond, but human legs

correspond to the dolphin’s tail when raising them out of the water or slapping them

on its surface. It can be speculated that possibly the dolphin understands how its body

plan relates to that of a human.

Figure 2.1 shows the dolphin imitating its trainer at different body poses. This re-

search was performed in Kewalo Basin Marine Mammal Laboratory in Honolulu

[34]. Each action is characterized by the human demonstrator and the dolphin im-

itates those actions in real time. As we can see from Figure 2.1, the dolphin can relate

its body to trainer’s body by adopting postural or behavioral responses analogous to

those of the trainer. As we can see easily, the body shapes of the two species (dolphin

and human) differ considerably, the dolphin has to establish the analogy between its

body and the trainer’s body.

In particular, in Figure 2.1-a, the dolphin is imitating the human trainer who is leaning

over backwards. In Figure 2.1-b, the human trainer stands facing the dolphin and

leans her body and head backward. The dolphin imitates that posture, standing on its

tail and leaning its own body and head backwards. In Figure 2.1-c, the human first

faces sideways with her arms bent and raised at chest level. The dolphin also assumes

this sideways posture, its body erected and pectoral fins out of water. In Figure 2.1-d,

the human trainer raised her leg, and as the correspondence the dolphin raises its tail

in the air. In Figure 2.1-e, the human leans forward and bends her head and upper

body downward. The dolphin lowers its own head, hunching forward at the water

surface. In Figure 2.1-f, the human jumps into the air. The human trainer’s knees are

17



 
(a)

 
(b)

 
(c)

 
(d)

 
(e)

 
(f)

Figure 2.1: Examples of motor imitation of a human by a dolphin

about the level of the top of the tank wall. In correspondence, the dolphin quickly

jumps itself upward, raising its body well above the surface of the water.

2.6 Fluidics in Robotics

2.6.1 Controlling the swarms

In our life we see swarm of biological creatures such as ants, fishes, birds etc. All of

these swarms have aims on being together or working in a colony. The leaf cutter ants

work together to harvest fresh plant matter to grow food, to sustain and expand the

colony. The fish swim in schools as a defense mechanism from predators and to aid in

foraging for food, and the birds fly in formation to reduce the drag force that each bird

experiences compared to if each bird was flying alone. While the objectives of each

group of organisms are quite different, they share the same underlying theme. That

is, by working together, the task or objective at hand can be completed more quickly

and efficiently than if the task were undertaken alone. Recognizing these benefits, re-

searchers have applied the lessons learned from nature to the control and coordination

of multiple agents which include robots and unmanned aerial vehicles (UAVs), and

the coordination of multiple agents has become known as robotic formation control

where each robot or UAV in the group seeks to orient itself relative to its neighbor or
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a leader.

The multi-robot systems (MRS) or cooperative robotic systems are used for solving

the great variety of the tasks. These systems are dedicated to study techniques that

allow robots in a team to cooperate with the other robots in the team or with humans

in order to complete given task. The reason of using such a collective robotic system,

for the solution of the given task can be summarized as follows:

• might be more reliable,

• more fault-tolerant,

• more flexible and

• less expensive.

Controlling multi-robot systems has a growing interest among the robotics commu-

nity over the past decade [35]-[40]. We have seen recently the creation of a number

of closely related research areas under the name of cooperative robotics, collective

robotics and swarm robotics. Most of approaches can be categorized into centralized

or decentralized approaches. Centralized approaches assume the existence of a cen-

tral entity which is able to plan actions for each robot and also to obtain information

of the whole group in order to perform the required task in an optimal way. Although

centralized approaches, in general, guarantee completeness of the task, they are not

scalable to large groups of robots due to computational limitations. On the other

hand, decentralized approaches may use a divide-and-conquer strategy to provide

more scalable solutions. In fact, decentralized approaches advocate that each robot

should be responsible for planning its own actions based only on the local information

available.

In swarm robotics or swarm of autonomous agents, the main idea is to control very

large groups of primitive robots (ten to hundreds). The robots or agents in the swarm

have limited capacity of communication, sensation and actuation. The important char-

acteristics of the swarm are

• being flexible in order to overcome different tasks by using different coordina-

tion mechanisms
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• being decentralized methodology, in the swarm all robots are anonymous

• being robust for dynamical change of the environment or addition/deletion of

new robots.

The main application areas of the swarm robotics are search and rescue operations in

hazardous environments or in places where humans cannot have access, contention

of oil spills in the ocean, transport of heavy objects, environment monitoring, surveil-

lance, etc. Moreover with the development of nanotechnology, the application areas

of the swarm robotics are increasing in the nanorobotics field such as insect inspired

robots.

The other application area of the swarm robotics is mobile sensor networks. The ulti-

mate goal of such a system is to do surveillance by distributing sensor nodes over the

environment. Starting from an initial configuration of the nodes, sensors are deployed

in such a way as to maximize the total area covered by the network [41].

2.6.2 Fluidics Approaches

Robotics finds a grooving interest all over the world in the last half century as a

response to the evolution of human social needs, from the industrial robotics that

released the human operator from dangerous or risky tasks to the recent explosion

of field and service robotics to assist human [42]. The researchers in robotics are

generally working on making human life easier. For this purpose they design hu-

manoid robots for helping older or disabled people, robotic manipulators and dex-

terous robotic hands for grasping and manipulating dangerous objects. Since the

robotics has a growing interest, most of the other scientific branches are trying to

contribute to this area new idea like biology (biologically inspired robotics), physics,

and philosophy (cognitive science) etc.

Fluidics approaches have appeared recently in robotics. In the literature, most of the

works about both robotics and fluidics are related with the hydro-mechanic or hydro-

elastic actuators that are used in robot manipulators.

Fluid based modeling has been used in robotics, generally for swarms and recently in

20



the formation of geometric patterns with multiple robots [43] - [44]. In these works,

mobile robots are modeled as fluid particles and are controlled by the help of fluid

dynamics parameters. To avoid particles from colliding with obstacles they generate

some external forces by the help of finite element method (FEM) [44]. FEM is used

for the computation of a vector field which models the external forces applied to the

fluid. The particle approximation is done by Smoothed Particle Hydrodynamics in

the model. SPH algorithm is solved for each particle robot in the colony and the ve-

locity control input is applied after that external forces are calculated. They assumed

that each robot in the colony is a SPH particle. Since the derived controller is decen-

tralized, for solving the governing equation of the particle robots, local information

is necessary: the external field at the location of the robot (computed using FEM) and

position and velocity of neighboring robots. Since each robot in the colony has the

information of itself and of neighboring robots, it is able to compute its own external

force to escape from the obstacle. In other words they established a weak coupling

between SPH and FEM, where FEM is used to compute static external forces to SPH

equations. Their main contributions are pattern generation in the not obstacle free

environment like circle, star, square etc. and maximization of the coverage in an un-

known environment, solving the deployment problem. The clear advantage of the

proposed method is that, there is no need for labeling robots. Therefore, all the robots

run the same software and the success of the given task execution does not depend on

specific members of the group.

In another work in which the fluid particles are modeled as a member of the colony,

particle robots are controlled by the help of fluid dynamics parameters [43]. They

mentioned in their work a way to optimally cover an environment by mobile sensor

networks. The nodes in the mobile sensor networks are modeled as fluid particles.

The motion of the particles are modeled both in compressible and incompressible

fluid dynamics. There are various characteristics of fluid flows which are desirable in

swarm robotics, such as obstacle avoidance and source to sink optimal path finding,

path following behaviors of the fluid.

In grasping, for determining the continuum between hand preshape and the object,

the fluidic approach is introduced in [45]. They modeled the human hand, medium

and fluid by SPH to see the effect of the human hand on fluid particles while the hand
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is entering the fluidic environment.

Another research area related with fluids in robotics is underwater robotics. During

the last few years, the use of underwater robotic vehicles has rapidly increased since

such vehicles can be operated in deeper, riskier areas unreachable by divers. The po-

tential applications of such vehicles include fishing, underwater pollution monitoring,

rescue, and waste cleaning and handling in the ocean as well as at nuclear sites.
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CHAPTER 3

FLUIDIC FORMATION CONTROL

3.1 Control Architecture

The formation control architecture of the fluidic swarm that has dynamics modeled

by SPH is shown in Figure 3.1. This architecture realizes the mimicking human hand

gestures and body poses captured from a camera.

 
Figure 3.1: Fluidic formation controller for swarms

The need for imitation by swarm is triggered upon comparison of the initial forma-

tion of the swarm with the hand shape captured by a camera. The difference between

these two shapes needs to be eliminated by imitation. After this triggering,feature

extraction (section 3.2) is performed on the hand posture image that needs to be im-

itated. Feature extraction generates the feature vector which forms the input to the

formation controller. The fluidic formation controller adjusts the parameters of the

SPH swarm dynamic model (the plant, section 3.3) according to the input and the
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supervisor. The supervisor of the controller is based on an Artificial Neural Network

(ANN) based learning module that is a feed forward neural network with single hid-

den layer composed of 5 nodes. Its input layer has as many neurons as the feature

vector components. The number of neurons in its output layer represents the number

of parameter to be controlled in the plant. In this work we only control the body

force parameter, thus the ANN has only a single output. Examples of training sets

and controller behavior are introduced in section 3.4.

3.2 Feature vector extraction of human hand postures

In this section we introduce examples of feature extractions based on captured im-

ages of hand preshapes. Consider the case where the colony has to imitate different

branching of the fingers, corresponding to different hand postures, as shown in Fig-

ure 3.2. Images of the hand are skeletonized by first-filtering to avoid noisy artifacts

coming from skin texture, then passing the hand images through a sobel operator for a

binary output on which edge detection can easily be conducted. The obtained binary

image is then dilated in order to obtain continuous distinct edges. Then skeleton of the

hand preshapes is determined by finding the equidistant pixels from the boundaries.

After skeletonizing, the characteristic features differentiating each hand postures are

extracted. As an example we give in Figure 3.2 the feature vector extracted from

scissor like behaviors.

 
Figure 3.2: Feature extraction of scissor movement-like hand behavior
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The general heuristic template we determined at the initial phase of this thesis work

is given below.The constructed feature vector for scissor like had preshape is given

below.

fv =



Line-edge

U shape fitting

V shape fitting

Two curves fitting

One curve fitting

Distance between branches


This template summarizes the characteristics that can be found in human hand pre-

shapes in general. The feature vectors corresponding to the hand preshapes given in

Figure 3.2 and 3.3 (a to c) are given bellow respectively.

f va =



1

0

0

0

0

0


, f vb =



0

1

0

0

0

a


, f vc =



0

0

1

0

0

b


In Figure 3.2-a, the fingers are positioned as a fat line and no other characteristic of

the preshape can be evaluated other than the presence of a line edge in the skeleton.

In Figure 3.2-b, a U-shape characteristic appears with an aperture of a units which

become the second entry and the last entry of the feature vector. The orientation of

the hand has not changed. In Figure 3.2-c, the hand preshape turns into a clear V-

shape that determines its apparition by a 1 in the third entry of the feature vector.

Its aperture changes to b units while the hand direction of the base finger has not

changed.

The feature vectors of the pinching fingers and C-shaped finger postures are given

in Figure 3.3, after skeletonizing the preshapes. The feature vector template for this
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case is developed as characterized by curve fitting parameters and aperture of curved

fingers.

 
 

 
Figure 3.3: Feature extraction for pinching and C-shaped hand gestures

For the pinching and C-shaped hand gesture, the created feature vector is given below.

fv =



Line-edge

U shape fitting

V shape fitting

Two curves fitting

One curve fitting

Distance between branches


The feature vectors corresponding to each frame a, b, or c of Figure 3.3 are given

individually as:
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f va =



0

0

0

1

1

ap1


, f vb =



0

0

0

1

1

0


, f vc =



1

0

0

0

1

ap2


In this preshape of Figure 3.3-c only 1 curve can be fitted for the upper finger, the

lower one being a line. Therefor for this preshape the first and fifth entries are 1. ap2

represents the value of the aperture in pixels. These feature vectors f va,b,c form the

input of the ANN either in training mode or testing mode (which is the case for an

actual imitation run).

3.3 Modeling the swarm imitator as a colony of fluid particles

While compressible fluids (like gases) are spread around the environment homoge-

neously, incompressible fluid motions (like liquids) have directional characteristics.

Since in human hand gestures, preshape features are generated from directional move-

ments, we model our fluid particles as element of an incompressible fluid flow. We

control these incompressible fluid particles by changing parameters of the fluid flow

dynamics to get the desired hand preshapes. The fluid flow dynamical formalism

based on SPH is introduced in detail in this section, in which parameters are con-

trolled by the fluidics controller architecture introduced in section 3.1. In Section 3.4

the training sets of the controller will demonstrate which parameter change of SPH

will guide the colony of particles into mimicking features of human finger behav-

iors such as the scissor-like or pinching behaviors analyzed by their feature vector in

section 3.2.

Our SPH formulation of the dynamics of our fluid based imitator is adapted from

[46], solving the momentum equation to determine the particle accelerations based

on parameters, such as density, pressure viscosity, obtained from neighbor particles

in the support domain.
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In the SPH method, the problem domain is represented by a set of arbitrary dis-

tributed particles and no specific discretization connectivity for these particles is

needed (mesh-free). In our work, these particles are controlled by the help of fluid pa-

rameters to get the desired shapes looking like human hand preshapes. In our colony

each particle is affected by a finite set of neighboring particles forming the “support

domain” of that particle (Figure 3.4).

 
Figure 3.4: The support domain for particle i and 1D projection of a smoothing func-
tion over it.

All calculation of the field variables depend on these neighboring particles with the

support domain that determines the resolution of discretization. Since SPH is an ap-

proximation method, integrals are approximated based on field functions. This is also

known as kernel approximation in the SPH method. The kernel approximation is then

discretized based on particle units (particle approximation). It is done by replacing

the integration in the integral representation of the field function with summations

over all the corresponding values at the neighboring particles in the support domain.

More specifically, consider the integral representation of a function f (x) in the SPH

method:

f (x) =
∫
Ω

f (x
′
) δ(x − x

′
)dx

′
(3.1)

where Ω is the volume of integration, f is a field function like viscosity or pressure,

and δ(x − x
′
) is the Dirac delta function. For the approximation of the integral rep-

resentation in equation 3.1, Dirac delta function is replaced by a smoothing (kernel)

function W such as:
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< f (xi) >=
∫
Ωw

f (x
′
) W(x − x

′
, h)dx

′
(3.2)

where the angle brackets indicate the approximation and W is the smoothing function

which not only determines the pattern for the function approximation but also defines

the dimensions of the support domain of particles.Ωw is the volume of integration

confined to W. Parameter h is the smoothing length defining the influence area of

the smoothing function. This smoothing function is used in the calculation of fluid

variables approximation. The smoothing function plays a very important role in the

SPH approximations, as it determines the accuracy of the function and efficiency

of the computation. For the smoothing function, there are various choices such as

Gaussian kernel, the cubic spline kernel, the quadratic smoothing function etc. Due

to its smoothness, stability, and accuracy we choose in this thesis work the Gaussian

kernel given in Equation 3.3:

W(Ri j) =

 αde−R2
i j Ri j ≤ κh

0 otherwise
(3.3)

Here αd =
(

1
πh2

)
for a two-dimensional space, κ = 2, Ri j = |xi − x j|/h. For the particle

approximation, the continuous integral representation of the kernel approximation is

converted to a discretized form of summation over all the particles in the support

domain shown in Figure 3.4.

The particle approximation of the function is obtained as

< f (xi) >=
∑
jϵΩi

m j

ρ j
f (x j)W(xi − x j, h) (3.4)

where m j and ρ j are the mass and density of particle j. Equation (3.4) states that the

value of a function at particle i is approximated using the average of function values at

all particles in the support domain of particle i, weighted by the smoothing function.

Density approximation is computed via the relation
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ρi =

N∑
j=1

m jWi j (3.5)

where ρ is density, N is the number of particles which are in the support domain of

particle i, m j is the mass of particle j and Wi j is the smoothing function of particle i

evaluated at particle j computed as

Wi j = W(xi − x j, h) = W(|xi − x j|, h) = W(Ri j, h) (3.6)

where Ri j is the relative distance between particle i and j . Since density approxi-

mation (equation (3.5)) determines the particle distribution and the smoothing length

evolution, it is really important in the SPH method, and simply states that the den-

sity of a particle can be approximated by the weighted average of the densities of the

particles in the support domain of that particle.

As the density equation is one of the important equations for fluid flow, so is accel-

eration and momentum. The momentum equations calculate the time rate of change

of velocity using substantial derivative D/Dt. Momentum and acceleration couple to

density via the relations

Dui

Dt
= −

N∑
j=1

m j(
pi + p j

ρiρ j
+Πi j)

dWi j

dxi
+

N∑
j=1

m j(
µiε

xx
i + µ jε

xx
j

ρiρ j

dWi j

dxi
+
µiε

xy
i + µ jε

xy
j

ρiρ j

dWi j

dyi
+ f x

i )

(3.7)

Dvi

Dt
= −

N∑
j=1

m j(
pi + p j

ρiρ j
+Πi j)

dWi j

dyi
+

N∑
j=1

m j(
µiε

xy
i + µ jε

xx
j

ρiρ j

dWi j

dxi
+
µiε

yy
i + µ jε

yy
j

ρiρ j

dWi j

dyi
+ f y

i )

(3.8)

where ui and vi denote velocities for particle i along the x- and y- directions, respec-

tively. p is the pressure, ρ is the density of the specified particle, Πi j is the artificial

viscosity (equation 3.9), Wi j is the smoothing kernel, and ε denotes the stress factor.

In momentum equations (eq.3.7) and (eq.3.8) we have three terms on the right hand

side. The first term is the major portion of the equations due to the pressure gradient
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with the dissipative artificial viscosity which is mainly used in order to model the

shock waves in a tube in fluid flow simulations. The second term shows the viscosity

and stress parameters. One of the particles starts to move, the other particles are

affected because of this motion. εxx and εyy denote normal stress, and εxy denotes

shearing deformation, for generating dragging effect (equation 3.11). The last term,

f , is the body force. Since it directly enters to the momentum equation, it has a

direct effect on the flow. In fluid physics the typical body force is the gravitational

force. It is suitable for the guidance of the particles. In this thesis we demonstrate the

control of the body force to get the desired trajectories of the particles in the imitation

learning of human hand gestures.

The artificial viscosity term in equations (3.7) and (3.8) can be written as

Πi j =


βπφ

2
i j

ρi j
vi jxi j < 0

0 vi jxi j ≥ 0
(3.9)

where

φi j =
hi jvi jxi j

|xi j|2 + ϕ2 , ϕ = 0.1hi j, ρi j =
1
2

(ρi+ρ j), hi j =
1
2

(hi+h j) (3.10)

The shear stress rates in equations (3.7) and (3.8) have a form similar to

εxx
i =

2
3

∑
jϵΩi

m j

ρ j

(
2u ji

dWi j

dxi
− v ji

dWi j

dyi

)
ε

xy
i =
∑

jϵΩi

m j

ρ j

(
v ji

dWi j

dxi
+ u ji

dWi j

dyi

)
ε

yy
i =

2
3

∑
jϵΩi

m j

ρ j

(
2v ji

dWi j

dyi
− u ji

dWi j

dxi

) (3.11)

Besides these differential equations, there is a suitable state equation between pressure

p and density ρ for modeling compressible and incompressible fluid flow in the form

of the equations

pi = ρiRiTi for compressible (gas like behavior) flow (3.12)

pi = βi
(
(
ρi

ρ0
)γ − 1

)
for incompressible (liquid like behavior) flow (3.13)

31



where R is the specific gas constant, T is the temperature, β is the stiffness constant,

ρ0 is the reference density and γ is a constant around 7.

As a state equation, we use equation (3.13), since incompressible flow is much more

suitable for our purpose. We are mainly interested in the directional trajectories of

the particles, to get the desired shapes. The particle acceleration is calculated from

the momentum equation (3.7) and (3.8) by using equations (3.9)-(3.11). Since the

Navier-Stokes Equations do not have any analytical solution, time marching method

is used for calculation of the particle velocity.

Up to this point we gave the mathematical background about our swarm modified

SPH methodology. These equations are based on the Navier-Stokes equations and

since the Navier-Stokes equations cannot be solved analytically, the SPH kernel and

particle approximations are used for discretization of partial differential equations.

The aforementioned SPH formulation is derived by discretizing the Navier-Stokes

equations spatially, leading to a set of ordinary differential equations with respect to

time that can be solved via time integration.

Our ultimate goal is to learn to control the SPH-based flow model parameters for the

colony to resemble the hand gesture features of a human.
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Figure 3.5: Flow chart diagramming the instance of control algorithm, performed for
each particle i.
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An example of formation control action performed by the controller which is given

here for demonstration purposes is the flow chart of Figure 3.5. Here, the controller

uses the body force term in the momentum equations. After updating the particle

positions, the output of the controller gives the body force set for all particles for that

iteration.

The flow chart of this instance of control action algorithm is provided here as an

example in Figure 3.5. First, for particle i , the controller initializes its fluid dynamic

parameters for setting the control commands. Then particle i needs to know the fluid

variables of its neighbor particles which are inside the support domain. To solve the

governing equations, it collects the information of position, velocity, and density of its

neighboring particles. To solve the momentum equations in (Eq. 3.7), and (Eq. 3.8),

particle i needs the values of pressure (Eq. 3.13), density (Eq. 3.5), and viscous stress

(Eq. 3.11) and collects these information from its neighboring particles which are

within the smoothing function volume. After calculation of these fluid variables, the

acceleration of particle i is calculated from the momentum equation. After updating

the position of the particle with time integration, the flow chart goes back and gets

new commands from the controller to form the desired formation.

3.4 Generating the training sets of our controller

The ANN shown in Figure 3.1 has been trained by I/O pairs which are preshape

features and fluid parameters. The principal fluid parameter demonstrated in this work

is the body force. The body forces are generated with the idea of artificial potential

fields in the training mood. Some attraction waypoints are determined on the hand

images, and the whole particles are attracted by these potential field locations. After

particles reach one of them, the next waypoint is activated and generated body forces

are stored in a matrix. The function of a body force is given in the following equation

(3.14):
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Fx,y =



Fx = α(d − r).cos(θ)

Fy = α(d − r)sin(θ) r ≤ d ≤ s + r

Fx = αscos(θ)

Fy = αssin(θ) d > s + r

(3.14)

In this equation, d is the distance between particle position and waypoint, θ is the

angle between particle and the waypoint, r is the waypoint radius, s represents the

spread of the field, α is the scaling factor which scales the magnitude of the body

force vector. If particle i has a journey every point in a two-dimensional simulation

environment, the collection of the body force vectors would look something like the

diagram illustrated in Figure 3.6.
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Figure 3.6: Body force vectors for an attraction point.

The body force generation approach is valid for the rest of this thesis work.

The results given in Figures 3.7, 3.8 and 3.11 demonstrate the importance of control-
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ling body force in fluid flow and the influence that this parameter has, in the orien-

tation and fingering effects of formation control. In each example, first we show the

captured hand posture image for which a feature vector is extracted. Then the fluidic

controller output in terms of body force value is given. And finally the fluidic swarm

formation outcome of the system is given. The I / O training pairs of the ANN is fv

feature vector and body force vector.

3.4.1 Example-1:Horizontal Hand Gesture

In Figure 3.7-a, the captured human hand preshape is given. In this human hand

preshape, tip of the human finger points a horizontal point.

(a) Horizontal hand preshape
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(b) Horizontal hand behavior with particles

Figure 3.7: Horizontal Pointing Training Set

Since there is only 1-line edge in this hand preshape, the generated feature vector for

this hand preshape is
[
1 0 0 0 0 0

]T .

The corresponding ANN output in terms of the body forces is
[
2 0
]T giving an inten-

sity of 2 for force in the same orientation x as the finger and no force in y direction.

The fluidic swarm formation outcome of the system is given in Figure 3.7-b where

the horizontal axis is the position in x direction and the perpendicular one represents

position in y direction.
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3.4.2 Example-2:Pointing at angle hand preshape

In this example we use a human hand preshape that points at angle. The captured

human hand with one finger points at an angle α. In Figure 3.8-a, the captured human

hand preshape is given.

(a) Pointing hand preshape
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(b) Pointing at angle behavior with particles

Figure 3.8: Pointing at angle training set

The generated feature vector for this hand preshape is
[

1 0 0 0 0 α
]T . The corre-

sponding ANN output in terms of the body forces is
[
1 0.3

]T where now force fx has

reduced intensity and fy is now small but no zero to generate a linear angular flow.

The fluidic swarm formation outcome of the system is given in Figure 3.8-b.

3.4.3 Example-3:Separation of fingers training set

Here we use a two finger preshape where the hand motion separates the two fingers

in a V shaped alignment. Figure 3.9 gives the captured human hand preshape.

The feature vector template is the one given in section 3.2. Since this hand preshape

looks like a V-shape, the third entity of the feature vector is 1. Another property of

the hand preshape is the approach distance between fingers. The generated feature

vector for separation like behavior of hand preshape is
[
0 0 1 0 0 b

]T .

The corresponding ANN output in terms of the body forces along x and y directions
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Figure 3.9: Separation of fingers

are given in Figure 3.10.
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Figure 3.10: Body force distribution for separation

As we can see from the plot of the body forces, after simulation is started, we applied

the corresponding forces. In order to generate two different pathways, applied body

forces are changed and the particles are divided into two branches for fingering effect.

After dividing the particles into two branches, we applied again constant body forces

which give the particles a directional motion along x-axis.

The fluidic swarm formation outcome of the system is given in Figure 3.11.
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Figure 3.11: Separation of fingers with particles

3.4.4 Example-4:Pinching of fingers training set

The next example is shown in Figure 3.12 as a pinching grasp.In this grasping pre-

shape the hand has a posture where the two fingers close at the tip. Thus the swarm

particles have to be separate first into two groups and then converge at a further point.

As we can see from the Figure 3.12 the aperture between finger tips is ap3, there

is 1 line edge with θ angle for thumb, and 1 curve can be fitted on the index fin-

ger. The corresponding feature vector for this hand preshape is then extracted as[
1 0 0 0 1 ap3

]T .

To get the desired hand preshape given in Figure 3.12 ANN output sequences in

terms of body forces can be seen on graphs 3.13. After starting of the simulation, first

particles are divide into two groups, and then two branches are collected in a point

with the applied body forces.

The fluidic swarm formation outcome of the system is given in Figure 3.14.

39



Figure 3.12: Pinching hand gesture
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Figure 3.13: Body force distribution for pinching hand preshape

3.5 Imitation Results

We provide here simulation results of an SPH fluid swarm formation that mimics

some basic hand preshapes based on body force control commands.

We give here full sequence from preshape feature vectors to swarm imitation for two

examples, namely that of scissor like hand behavior and that of pinching preshape.

Figure 3.15-a gives the captured hand preshape image together with its skeletonized

rendering in Figure 3.15-b. In this hand preshape we see a U shape separation behav-

ior of the human fingers.
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Figure 3.14: Pinching hand preshape with particles

(a) Test Image: Separation of two finges (b) Skeleton of separation of fingers

Figure 3.15: Imitation: Separation of fingers

For this hand preshape, using the previous approach developed in section 3.2, the

generated feature vector is
[

0 1 0 0 0 ap4

]T . As we understand from this feature vec-

tor, there is one U-shape finger posture, and the aperture between two finger tips is

demonstrated by ap4.

Particle distribution imitating the hand preshape is given in Figure 3.16-a together

with the particle force distributions 3.16-b.

In another imitation test, pinching like hand preshape is used given in Figure 3.18-a

and the skeleton of this hand preshape is given in Figure 3.18-b.

The force distribution that corresponds to the scissor like behavior clearly shows a
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(a) Particle distribution for separation

(b) Force distribution for separation

Figure 3.16: Imitation of separation of fingers

close imitation of the skeleton of the captured image, imitating the basic feature of

the hand posture.

For a pinching example, its hand preshape, and skeletonized hand preshape are given

in Figure 3.17a-b, particle and force distribution figures are given in figure below

respectively Figure 3.18-a, and 3.18-b, the desired imitation should lead to separation

of particles in two opposing curve like feature converting to a point at each tip of the

curves.

The force distribution of the particles found for the pinching hand preshape shows a
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(a) Test Image: Pinching hand preshape (b) Skeleton of separation of fingers

Figure 3.17: Pinching hand posture

(a) Particle distribution for pinching (b) Force distribution for pinching hand preshape

Figure 3.18: Imitation of pinching hand preshape

close resemblance to feature of the hand posture where an aperture error only occurs.

This error is easily minimized if more particles are injected in the swarm colony.
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CHAPTER 4

HUMAN HAND PRESHAPE CLASSIFICATION WITH

PRINCIPAL COMPONENT ANALYSIS FOR IMITATION

4.1 Principal Component Analysis

In pattern recognition, the performance of a system heavily depends on the choice

of the classifier, grouping feature vectors. And for this classification, efficiency is

critically based on the feature extraction process for a good recognition process. A

feature extraction method usually starts with a given set of features and then attempts

to derive an optimal subset of features while maintaining the classification accuracy.

It means that the process of feature selection should involve the derivation of salient

features while reducing the redundant information of data and providing enhanced

discriminatory power [47].

Among various feature extraction approaches for feature selection and dimensional-

ity reduction, principal component analysis (PCA) is an effective method of linear

dimensional reduction, which seeks to find the orthonormal transformation to maxi-

mize the scatter of all the samples, i.e., to generate a set of orthonormal basis vectors

and use the projection onto the bases to represent the data.

Because of its simplicity in theory and implementation, besides decreasing redun-

dancy information and computational burden, it is widely used in object recognition

or classification. However, due to utilizing only the global information of images, it is

inadequate for PCA to describe the complex nonlinear variations of real images, such

as illumination, distortion. To overcome such ineffectiveness, many kernel-based
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methods have been proposed to describe nonlinear relations of input data during the

last decade. The idea of the kernel approaches is to map the input data into a higher-

dimensional implicit feature space in a nonlinear way and then use linear techniques

to processing the new data.

Geometrical interpretation of PCA method can be summarized as follows:

• PCA projects the data along the directions where the data varies the most.

• These directions are determined by the eigenvectors of the covariance matrix

corresponding to the largest eigenvalues.

• The magnitude of the eigenvalues corresponds to the variance of the data along

the directions of eigenvectors.

Before giving the mathematical bases of the PCA method, we will first provide and

intuitive explanation. We assume that now we have a multi dimensional data set. In

our case, multi dimensional data set is composed of human hand preshape images.

Traditionally, principal component analysis is performed on symmetric covariance

matrices or on symmetric correlation matrices. These matrices can be calculated

from the data matrix. The covariance matrix contains scaled sums of squares and

cross products. A correlation matrix is like a covariance matrix but first the variables,

in the columns, are standardized. Thus we will have to standardize the data first if

the variances of variables differ much, or if the units of measurement of the variables

differ. One them solves for the eigenvalues and eigenvectors of a square symmetric

matrix with sums of squares and cross products. The eigenvector associated with

the largest eigenvalue has the same direction as the first principal component. The

eigenvector associated with the second largest eigenvalue determines the direction of

the second principal component. The sum of the eigenvalues equals the trace of the

square matrix and the maximum number of eigenvectors equals the number of rows

(or columns) of this matrix.
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4.2 Related Works

Principal Component Analysis (PCA) is a useful statistical technique that has found

application in fields such as face recognition and image compression, and is a com-

mon technique for finding patterns in data of high dimension. This technique is gen-

erally used for human face recognition. Besides face recognition problem, PCA is

applied to different problems such as human body and gesture recognition, face ex-

pression recognition, classification of unknown objects etc.

Since PCA is a method that reduces the dimension of the data by performing a covari-

ance analysis, this technique is useful, when there is some redundancy in the data set,

where, redundancy means that some of the variables are correlated with one another,

possibly because they are measuring the same construct. Minimizing this redundancy

is to reduce the observed variables into a smaller number of principal components (ar-

tificial variables) that will account for most of the variance in the observed variables.

Face recognition has attracted research community during the last few decades as it is

the most common visual pattern in our environment. Significant development in this

area has facilitated emergence of a wide range of recognition systems for commer-

cial and law enforcement applications. Typical applications include driver’s license,

passports, voter registration card, human-computer interaction, database security, law

enforcement, and virtual reality. Developing a computational model for human face

recognition is quite difficult, because faces are complex, multidimensional, and mean-

ingful visual stimuli. The PCA method is widely used for detection and identification

of human faces [48]-[52].

Turk et. all. [53] introduced the eigenfaces which are the small set of characteristic

feature images. These eigenfaces are the principal components of the training set

of human face images. Recognition process is performed by projecting test image

into the subspace whose bases are the eigenfaces and the classification of human face

images is done by comparing the position of the test image with the position of known

images.

In [54], Tzimiropoulos et al. employed the PCA for face recognition, but instead of

making the operation on pixel intensities in the images, they replaced pixel intensi-
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ties with gradient orientation. The proposed approach provides a consistent way to

measure the image dissimilarity which is then used for face classification.

Another human face recognition method is developed recently by A.A. Mohammed

et al. [55]. Their approach is based on bidirectional two dimensional principal Com-

ponent Analysis (B2DPCA) and extreme learning machine (ELM). The dimension of

the feature vectors is reduced by using B2DPCA. And these feature vectors are input

to an ELM to analytically learn an optimal model. Experimental results demonstrated

that the proposed method achieves improved recognition at a substantially faster rate

against existing techniques.

PCA is not only used for the face recognition or pattern recognition problem in the

literature. With the help of the abovementioned benefits about dimension reduction,

PCA is also used in different areas. In [56], human grasping behaviors are analyzed

by means of PCA. The aim of that work is to obtain a space with lower dimensionality

from the most important degrees of freedom (DoF) involved in the human grasping

behavior. By the help of this analysis it is easier to decide which DoF is the most

important to control simplified hand models. As experiments, 200 samples of human

hand model with 24 DoF are used. A significant simplification is done by PCA, for

the obtain 5 principal components of each sample.

In another work [57] a distance kernel PCA used for object recognition problem is

proposed. The distance kernel is a kernel function which sets up a distance based

correspondence relation between the higher-dimensional feature space and the input

space. In the validation of this work, two data sets are employed: one comprises of

real face images with complex variations by means of illumination, pose and expres-

sion, and the other one is made of object images collected by robot camera containing

slight variations of translation, rotations, scale and other imaging parameters.

Another dimension reduction approach with PCA is used for determining good grasp-

ing points from images [58]. The author’s approach learns to identify good grasping

points in the image-space of a novel object by computing a high dimensional feature

vector for every pixel in the image, and applying logistic regression for classification.

Since the dimension reduction with PCA decreases the number of feature vectors

which need to be computed for classifying whether the given pixels in the image is
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associated with a good or bad grasping point, it significantly improves the speed while

retaining classification accuracy.

Obtaining a realistic hand model which is suitable for manipulation tasks is an im-

portant issue. The hand model which is defined by Cabos et. all. [59] has 24 DoF

and is based upon a morphological, physiological and anatomical study of the human

hand. The hand model is used for developing a gesture recognition procedure which

uses principal component analysis. By means of PCA, it is possible to identify how

many variables are required to represent the information of the 24 DoF. Therefore,

PCA analysis was used to identify the effective DoF more precisely.

4.3 Mathematical Background of PCA

PCA is mathematically defined as an orthogonal linear transformation that transforms

the data into a new coordinate system such that the largest variance of any projection

of the data lies on the first coordinate (called the first principal component), the second

largest variance on the second coordinate, and so on.

In the first step of PCA, the training data set is generated. Since we employed this

method for classification of human hand preshapes, in the training set we have human

hand gestures where gestures are sequences of hand presahpes defined by horizontal

and vertical line edges of fingers, separation of fingers, 1-line with 1 curvature hand

preshape (semi pinch posture), and 2 curves hand preshape (pinching posture). The

training data matrix (S ) is composed of vectors of training images in each of its

columns as:

S =
[
img1 img2 · · · imgM

]

where imgi corresponds to each image in the training data. M is the number of images

in the training set.

After we obtain the training set, we need to calculate the mean image as:
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ψ =
1
M

M∑
n=1

imgi

Taking the difference between the input image and mean image, we determine the

“difference image”. Mean subtraction is necessary for performing PCA to ensure that

the first principal component describes the direction of maximum variance. If mean

subtraction is not performed, the first principal component might instead correspond

more or less to the mean of the data. A mean of zero is needed for finding a basis that

minimizes the mean square error of the approximation of the data.

ϕi = imgi − ψ

In the next step, we need to find a set of M orthonormal vectors, un, which best

describes the distribution of the training data set. The kth vector, uk, is chosen such

that

λk =
1
M

M∑
n=1

(
uT

k ϕn

)2
is maximum, subject to

uT
l uk = δlk =

 1 if l=k

0 otherwise

where uk and λk are respectively the eigenvectors and eigenvalues of the Covariance

matrix, C which is defined as.

C =
1
M

M∑
n=1

(
ϕnϕ

T
n

)
= AAT

where

A =
[
ϕ1 ϕ2 · · · ϕn

]
and ϕi is the difference image.

Since this technique is generally used for human face recognition or face expression

recognition problems in image processing, the set of images generated by using Prin-

cipal Component Analysis is called “eigenfaces”. Recently, this algorithm is also
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used for handwriting analysis, lip reading, voice recognition, sign language, hand

gesture interpretation, and medical imaging analysis. Therefore, instead of the term

“eigenfaces”, we can call it “eigenimages”. The eigenvectors of the covariance ma-

trix C are the eigenimages of the training data set. These eigenimages are used for the

recognition process. The recognition process based on the minimum distance from

the projected data and training sets.

A new test image Γ is transformed into its eigenimage components. First the com-

parison between test image and mean image is performed. Multiplication of this

difference with eigenvector of covariance matrix gives the weight values for the test

image.

ωk = uT
k
(
Γ − ψ)

And the Ω matrix contains the weight values of test images.

ΩT =

[
ω1 ω2 · · · ωm

]
Determination of the class of the test image is done by minimization of the Euclidean

Distance.

εk = ∥Ω −Ωk∥

The class which has the minimum Euclidean distance is labeled as the image in that

class.

4.4 Hand Preshape Classification

PCA is performed to reduce the dimension of the data set from higher dimensional

space to lower dimensional space for hand preshape images and then, for decision

mechanism, the nearest neighbor strategy is used.

Our aim here is to classify the human hand preshapes by using the PCA technique.

In the previous chapter, this classification is done by Artificial Neural Networks. The

input-set of the neural network was the feature vectors of the skeleton of the human
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hand gestures. These input sets (feature vectors) are based on the shapes of the skele-

tons like U-shape, V-shape, curvatures etc. and generated by the user in a binary

manner. By the help of the PCA we do not need to extract a feature vector based on

the shapes of the human hand gestures. The feature vector is composed of eigenvec-

tors of the covariance matrix starting from the most significant to the least significant.

To demonstrate the validation of the PCA algorithm that we used, we generated our

training data set from the human hand preshape images. In the training data set we

have 5 different human hand preshapes classes (horizontal, vertical, separation, 2

curvatures, and 1 line with curvature). For each hand preshape class, we used 10

different human hand images. The difference of the hand images are for separation

the distance between fingers, for 1 line with curvature and 2 curvatures the aperture

distance between finger tips, for horizontal and vertical finger shapes the thickness of

the fingers. All the images are taken under the white background, same illumination

conditions, and same image size.

The training data set is composed of two distinct persons hand preshapes. Some of

the example training hand images are shown in Figure 4.1. We take 50 hand images

for each person’s hand, and used 40 of them for training and the rest images are used

for testing. So, in the training data set, we have 80 hand images and in the test data

set 20 hand images.

51



(a) Horizontal 2 fingers pointing (b) Vertical 2 fingers pointing

(c) Scissor like hand preshape (d) Hook preshape

(e) Cylindrical preshape

Figure 4.1: Examples of hand preshape classes

The algorithm for classification of the human hand preshapes is given in Figure 4.2.

The modules in the flow chart are subsequently explained.
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between Weight 
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Class of Test Image

New Test Image

Figure 4.2: Flowchart of the PCA for classification
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4.4.1 Preprocessing Module

In this module, the training images are collected in a matrix S . Each column of the

matrix corresponds to a training image. The pixel resolution of each image in the

training set is 240 × 320. Those images are taken under the same lighting condition.

S =
[
img1 img2 · · · imgM

]
Image normalization to reduce the error because of the lighting condition is also done

in the preprocessing step. All the training images in the training set are normalized.

After that a mean image M is obtained from the training data set. An example of the

training set and normalized version of this training set can be seen in Figure 4.3 - a

and b.

4.4.2 PCA Module

In this module, first the covariance matrix, C, for the training data set,S , is calculated.

After that, the eigenvectors and eigenvalues of the covariance matrix is determined.

The eigenvectors associated with the highest eigenvalues are taken as the feature vec-

tors.

The rest of the eigenvectors are neglected. Since this step is computationally heavy,

only some of the eigenvectors are taken as the feature vector. These eigenvectors

called as eigenimages and some of the examples of the eigenimages for different

classes can be seen in Figure 4.4. They are used for the classification step for com-

parison.
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(a) Training set

(b) Normalized training set

Figure 4.3: Example of training set
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Eigenimages for horizontal line

(a) Horizontal 2 fingers pointing

Eigenimages for vertical line

(b) Vertical 2 fingers pointing

Eigenimages for separation

(c) Scissor like preshape

Eigenimages for line with curve

(d) Hook preshape

Eigenimages for 2 curves

(e) Two curvatures

Figure 4.4: Cylindrical preshape

Second, the weight matrix is found for each image by simply taking the dot product

of the images in the training set and eigenimages (i.e. feature vectors).

4.4.3 Test Module

For testing the algorithm, a new test image is used. For test images, the steps which

are in the preprocessing step are repeated. First the test image is converted into a
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single vector, and then normalized version of test image is calculated. After that,

difference image is constructed by taking the difference between input image and the

mean image of the training set. In the second step, weight matrix for test image is

calculated by taking the dot product of difference image and eigenimages.

4.4.4 Classification

This step is the decision making step, based on the Euclidean distance between the

weight matrix of the training data set and weight matrix of the test image. The class

name which has the minimum euclidean distance is given as the label of that test

image.

An example of the test image is shown in Figure 4.5 below. When we compare the

test image with the training image set, some similar images can be found but not

an identical one. Our algorithm determines the most similar image which is in the

training data set.

Figure 4.5: Test image: closed hook

As discussed previously, for decision of the hand preshape, we have to look the Eu-

clidean distances between test image and the eigenimages. Euclidean distance of the

test image is shown in Figure 4.6. As we can see from Figure 4.6, the minimum eu-

clidean distance is for 8th image in the training set. When we compare the test image

with the 8th image from the training set, we see that it is the most similar image to

the test image. The most similar image to the test image and the least similar image

(5th image in the training set) according to the graphic given in Figure 4.6 are given

in Figure 4.7
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Figure 4.6: Euclidean distances for the test image

 
(a) Minimum Euclidean Distance Image

 
(b) Maximum Euclidean Distance Image

Figure 4.7: Most and Least Similar Images

4.5 Statistical Analysis of Principal Components for Classification

In this section, we demonstrate the results of statistical analysis of principal compo-

nents which are used for classification. This statistical analysis is independent from

the previous classification test. In this experiment, we used 50 hand preshape images

which belong to 5 different classes given in previous section. The training data set is

constructed from hand images which are collected from two distinct persons with 25

images per person. The test images, which are used for demonstration of the impor-
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tance of the number of principal components, are taken one day later from the training

data set. In the test images, again the same 2 persons are used. The image size both

in the training data set and test data set is set to 240 × 320.
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Figure 4.8: Recognition rate for classification

The experimental results are shown in Figure 4.8 and tables 4.1 and 4.2. Figure 4.8

shows the classification accuracy of human hand preshapes based on the number of

principal components that are used for classification. The recognition rate is improved

with the increase of the number of principal components. After the usage of 70% of

the principal components, the wrong classified number of image is only 1. From Fig-

ure 4.8, we can also see that the best classification performance (%93.33) is attained

with at least 35 principal components.

Table 4.1 shows the recognition rate of the test data implicitly for some principal

components.

The results of the average consumed training time, testing time and total time are

shown in Table 4.2. In the recognition process, the computing time is an important

performance measure to evaluate the recognition system’s performance. It includes

both the training time and the testing time. Another important performance measure

is recognition accuracy.
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Table 4.1: PCA Recognition Rate

# of Principal
Components # Wrong Classified # Correct Classified Recognition Rate(%)

5 8 7 46.67
15 5 10 66.67
30 2 13 86.67
35 1 14 93.33
50 1 14 93.33

Table 4.2: Average Consumed Time for Training and Testing

# of Principal
Components Training Time Testing Time Total Time (sec)

5 9.91 0.49 10.40
15 10.92 0.51 11.43
30 13.00 0.52 13.52
50 16.12 0.64 16.76

Finally, by analyzing these performance criteria, we can conclude that the perfor-

mance of the PCA for hand gesture classification is much more efficient than the pre-

viously discussed Artificial Neural Network based classification: higher recognition

accuracy and less feature extraction time.

4.6 Imitation of Hand Gestures with Stiffness Coefficient

In the previous imitations of human hand gestures, as the output of the controller we

used body force term. The body force term directly enters the equation of motion

which can be seen in (3.7) and (3.8) and this term has a direct effect on the flow of the

fluid body. Therefore it is suitable to use this term for guiding the motion of particles

toward desired formation.

Since the solutions of these equations of motions or in other words momentum equa-

tions give the accelerations of each particle along x and y directions, each terms in

these equations have important effect on the formation generation. The first term

on the right-hand-side (RHS) of the momentum equation has an effect on particles

due to pressure gradient along with the dissipative artificial viscosity in the specified
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direction. Because of the minus sign in front of this term, increasing the stiffness co-

efficient causes decreasing the velocity and it also provides particle directions along

perpendicular direction. It means that this term slows down the particles. When we

consider this term, there are two pressure components, one is for the particle itself and

the other one is for the neighboring particle. We know that the pressure component is

related with the stiffness coefficient β from equation 3.13.

In Chapter 3, in the training part of the Artificial Neural Network, we experienced

the importance of the body forces. When we applied constant body force along x

direction, we saw that particles move on the surface without showing any branching

effect. In order to generate branching of the particles to mimic the separation of fin-

gers, we changed the applied body forces at moments suitable for branching (Chapter

3). Now we want to show this branching effect without using any body forces. In

this implementation, we employ the stiffness coefficient instead of the body forces.

We applied a constant velocity along the x-direction to all the particles. This time the

stiffness coefficient is not same for all particles. For showing the branching effect on

the particles, we need to slow down the middle particles and the rest will move faster

that the middle ones, so the fluid body has a formation that undergoes a division into

two branches.

The initial fluid particle distribution is given in Figure 4.9. For mimicking scissor

like hand gesture, we have to achieve this branching in the fluid body. During the

simulation, if we slow down the middle particles while they are moving along the x

axis, the particles which are above and under the middle particles move faster and

these particles will construct the two branches.

When we applied the stiffness coefficient to the middle particles much larger than the

edge particles, the middle particles move slowly and the edge particles generate the

scissor like fingering effect on this fluid body. Specifically we choose the stiffness

coefficient for this formation, for middle particles as;

βmiddle = 2
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Figure 4.9: Initial particle distribution

and for the edge particles we set this coefficient to

βedge = 20.

The result of this effect can be seen in the Figures 4.10 given below . We take the

snapshots to see the effect of the stiffness coefficient during the simulation in the

following figure when t = 80, t = 120, and at the end of the simulation.
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(b) t = 120
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(c) t = 300 end of the simulation

Figure 4.10: Separation of particles with stiffness coefficient

As we can see from the simulation results, in Figure 4.10-c, the scissor like fingers

gesture is imitated using only the stiffness coefficient. The cause is mainly the slowing

down of the middle particles while the faster edge particles generate the fingering
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effect.

After observing the effect of the stiffness coefficient, this time the value of this coef-

ficient is set to numerically β = 50. Again we applied constant velocity along the x

direction with the same initial particle distribution, since we want a motion on the x

direction. Our aim is to increase the stiffness in the x direction and make the particles

escape to other directions, namely the y direction.

The result of this implementation can be seen in Figure 4.11. The snapshots are taken

from t = 100, t = 160, and from the end of simulation (t = 300).

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

(a) t = 100

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

(b) t = 160
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(c) t = 300 end of the simulation

Figure 4.11: Curving of two fingers with stiffness coefficient

The simulation results showed us that, by increasing the stiffness coefficient for all

particles, we make the particles escape along y direction and in this way we obtained

the cylindrical preshape alike a corresponding human hand gesture.
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4.7 Sensitivity Analysis

Although there are some widely used fluid simulation platforms such as Fluent from

ANSYS cooperation, ANSYS CFX simulator for solving the computational fluid dy-

namics equations in mesh based environment etc., they are not suitable for our aim,

to imitate human gestures with fluid body. They are mainly physical based fluid sim-

ulator to solve the physical problems, and visualize the simulation environment. We

preferred to develop our own simulator to implement the proposed fluid dynamics

model to imitate human hand gestures.

In this section, we give the results of how the other parameters change while the

fluid particles imitate human hand gestures. In other words we conduct a sensitivity

analysis of the fluid parameters. In the previous section we showed both scissor like

shaping of fluid particles and the formation imitating cylindrical preshape using only

the stiffness coefficient β. In this section first we demonstrate the average velocity of

particles during the separation simulation.

Figure 4.12-a and 4.12-b are the average velocities of middle particles and edge

particles. As we expected, the average velocity of the middle particles are less

than the edge particles. Numerically the average velocity for middle particles is

Vmiddle = 0.832m/s and for edge particles it is Vedge = 1.052m/s.

When we compare both graphics, we see that at the end of the simulation (exactly

starting from time t = 250) the average velocity for edge particles has a sudden

decrease although this decrease cannot be seen in middle particles. The reason of this

sudden decrease is when the fluid particles exceeds the environment borders, the fluid

parameters are set to 0 for that particles.
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(a) Average velocity for middle particles
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(b) Average velocity for edge particles

Figure 4.12: Average particle velocity for separation hand gesture

For cylindrical hand gesture, we set the stiffness coefficient β = 50 for all particles.

The initial velocity is 1m/s along x direction and 0 for y direction. Since the particle

motions is along x direction and we set the stiffness coefficient to high value, the par-

ticles have a high resistance to move on x axis. So the particles escape and construct

the curvature of fingers in the cylindrical hand gesture.

In Figure 4.13 average velocities of the particles are given for the imitation of the

cylindrical hand gesture where 2 curvatures are fitted to the human fingers. This

time average particle velocity is lower than the previous case since the higher valued
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stiffness coefficient is applied for all particles.
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Figure 4.13: Average particle velocity for curving hand gesture

When we look at the equation of motion given in (3.7) and (3.8), another fluid param-

eter besides pressure gradient and body force is the physical viscosity. This parameter

provides interactions and coherence among fluid particles such that when one of the

particle in the system starts to move, then the rest of the fluid particles is affected by

this motion and the neighboring particles also start accelerating in the same direction.

To illustrate this effect in a simulation environment, we used the following fluid

swarm of Figure 4.14. We applied (1, 0) body force to the middle particle whose

coordinate is (5, 4) in order to start the swarm to move (shown by a symbolic hori-

zontal line in the figure).

After the simulation run, the middle particle in the swarm starts to move along the x

direction because of the body force that we applied to that particle. The velocity field

of the swarm and also the physical viscosity field distributions are given in Figure

4.15 and 4.16, respectively.

These results demonstrate that movement of one particle in the fluid swarm gener-

ates a similar motions on the surrounding particles. This similar motion is result of

the physical viscosity term in the equation of motion. Physical viscosity is effective

among neighboring particles which are inside the smoothing kernel such that move-
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Figure 4.14: Initial particle position
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Figure 4.15: Velocity field of the particles

ment of one particle induces a similar motion on the surrounding particles. On the

other hand, movement of that specific particle causes a dragging effects along the

perpendicular axis. This effect can be seen in Figure 4.15, all the particles have small

amount of velocity field along y direction (upward drifts), although the motion is

along x direction.

Therefore, viscosity demonstrates an implicit coordination mechanism among parti-

cles which is used to generate a desired collective motion of the system such as in

formation control.
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Figure 4.16: Physical viscosity field on the particles

Moreover, in the previous section, it is mentioned that if we increase the stiffness

coefficient β, we start loosing the coherence between fluid particles. The following

Figures 4.17 and 4.18 show that higher value of stiffness coefficient causes the loss

of the particle coherence. And no directional drag can be seen in the directions of the

velocity fields. In the first experiment, we applied constant stiffness coefficient β = 2

and in the second case, we applied β = 50 to the fluid particles during the simulation.

From the velocity field of the particles, we see that the coherence between particles

also depends on the stiffness coefficient.
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Figure 4.17: Velocity field for β = 2
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Figure 4.18: Velocity field for β = 50

70



CHAPTER 5

HAND GESTURE AND HUMAN BODY POSE IMITATON

5.1 Human Hand Gesture Imitation

In the previous sections we showed the examples of imitation of human hand pre-

shapes. As the input data set we used the single hand preshape images, and those

hand preshapes are imitated by the body of fluid particles by adjusting appropriately

fluid parameters. Mainly two fluid parameters are used for those examples: One is

the fluid body forces and the other one is the stiffness coefficient.

In the first part of this section we give the examples of human hand gesture imitation.

In these examples we used the previously generated human hand preshapes as the

training set. But this time, as the test image we use a sequence of hand gestures.

We will hereby demonstrate the frame by frame imitation by a fluidic swarm of a

sequence of hand gestures as well as a sequence of body poses. The hand gestures

and body poses considered in the sequence is a combination of more than one basic

hand preshapes that we have considered in the training sets.

5.1.1 Example-1

In the first example we combined 2 hand preshapes, namely the scissor like hand

behavior, with the hook preshape. This hand gesture resembles the gesture made for

grasping an object placed on the table by a 2 fingers pinching grasp and then putting

the object forward on the table. The following Figures 5.1 and 5.3 explain this hand

gesture clearly. In the first frames of this hand gesture (Figure 5.1), the hand gesture
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is scissor like then hook preshape towards the object lying on the table. These images

are captured from the video of a human hand grasping an object and they are used for

testing our algorithm.

(a) frame-85 (b) frame-95

(c) frame-105

Figure 5.1: Hand preshapes combining scissor + hook basic preshapes.

The images, which are taken randomly in different frames, are tested with PCA dis-

cussed in previous chapter and the appropriate fluid parameters, namely body forces

and stiffness coefficients are applied to the particles during the simulation.

In the first part, since the test images correspond to the scissor like hand behavior, for

the middle particles the stiffness coefficient of the fluid parameters are set to higher

value than the edge particles. By the help of this parameter, the middle particles move

slowly, and we get scissor like hand gesture. The imitation result of this hand gesture

is given in Figure 5.2. It can be seen from the figure that the fluid particles start to

separating in to two sub-branches.

72



0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

20

(a) Separation of particles-1
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(b) Separation of particles-2
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(c) Separation of particles-3

Figure 5.2: Separation of particles
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After the scissor like separation of the fingers, when we get close to the object lying

on the table we close the finger tips on the object. In Figure 5.3 the hand images

which are taken from the testing video are given.

(a) frame-120 (b) frame-130

(c) frame-150

Figure 5.3: Closing of the finger tips on the object

As we told previously we see that finger tips are closing on the object. These hand

images again used as the testing images, according to the class of this test group, the

body force term which is in the equation of motion are set to appropriate values and

the fluid particles imitate this hand gesture as seen in Figure 5.4.
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(a) Aggregation of particles-1
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(b) Aggregation of particles-2
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(c) Aggregation of particles-3

Figure 5.4: Aggregation of particles
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After aggregation of the fluid particles on a point in the environment, the next testing

images are given in Figure 5.5. In these images the object is grasped and it is put at a

further point on the table.

(a) frame-160 (b) frame-170

(c) frame-190

Figure 5.5: Moving forward of the object

This hand gesture looks like the previously given example, hook preshape with a hand

motion along the x axis like horizontal pointing of fingers. If we use the previously

given fluid parameters for horizontal pointing of fingers we get the following particle

positions during the simulation (Figure 5.6). After the aggregation of the particles,

particles need to flow along the x axis and this motion corresponds to the movement

on horizontal edge.
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(a) Moving forward of particles-1
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(b) Moving forward of particles-2
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(c) Moving forward of particles-3

Figure 5.6: Moving forward of particles
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5.1.2 Example-2

In the second example, we take another imitation demonstration with fluid particles.

This time, the human hand moves with the aim of grasping an object lying on the

table. The grasping strategy for this purpose is the cylindrical preshape followed by

a pinching like grasping of the object. When we analyze this grasp strategy we see

that the first thumb and the rest of the fingers (index, middle, ring and little fingers)

are separated into two branches. This hand gesture looks like the previously given

cylindrical preshape. After a while when the human hand get close to the object

lying on the table, the aperture between the thumb and the rest of fingers decreases.

Thumb finger has a horizontal line edge preshape and the other fingers have curving

like behavior and wrap around the object. This hand gesture looks like the previously

given “hook” preshape.

(a) frame-80 (b) frame-100

(c) frame-110

Figure 5.7: First group frames of hand gesture
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Again with the same manner as in example-1 we constructed the test images from the

video input. The following figures, in Figure 5.7 and Figure 5.9, are used for the test

images of our system. And according to the classes of the test images, we set the fluid

parameters to imitate the human hand gesture.

In the first group of images (Figure 5.7), which are taken early frames from the video

input, the fingers are starting to show the branching effect of the hook hand gesture.

Human hand starts to move towards the object. There are two sub-branches in the

human hand gestures and between these branches there is a certain amount of aper-

tures. This hand gesture corresponds to the branching effect in the hook preshape.

To imitate this hand gesture, we need to divide the fluid particles into two groups. In

previous sections we generated this hand preshape by using the stiffness coefficient.

In order to slow down the middle particles, we used higher valued stiffness coefficient

for them, and for edge particles since they need to flow faster than the edge particles,

we assigned lower valued stiffness coefficient. Moreover, in order to prevent penetra-

tion of the middle particles we applied constant body forces to the middle particles

along −x direction so we obtain empty space between the finger branches.

The following Figure 5.8 demonstrates the branching effect of the particles, the snap

shots which are taken during the simulation. In the first snap shot, the particles have

just started to separate, by the controller applying higher valued stiffness coefficient to

the middle particles. Besides that by the help of body force along −x direction, middle

particles are taken close to the initial positions and the empty space is created between

finger branches. The following snapshots demonstrates the complete separation of the

fluid particles.
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(a) Snapshot-1
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(b) Snapshot-2
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(c) Snapshot-3

Figure 5.8: Snapshots for separation of particles
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In the second part of this hand gesture, the following images which are given in Figure

5.9 are taken from the video input. These images are used for testing the proposed

system. The principal component analysis based classifier decide the class name of

the test image according to the minimum euclidean distance between test images and

the training data sets. As we can see from the figure, when the human hand gets close

to the object, the index finger (upper branch of the finger set) has a curvy feature.

The thumb finger has a line edge shape. The combination of these two branches one

is curvature of index finger and the other one is line edge correspond to the “hook

preshape”.

(a) frame-125 (b) frame-135

(c) frame-155

Figure 5.9: Second phase of the hand gesture

In the simulation part of the particles (Figure 5.10), to show these curving like be-

havior of the index finger and horizontal line edge for thumb, we again used the body

forces. In here we need curvature for index finger and the tip of the index finger

get close the tip of the thumb. Initially mentioned aperture distance between two

branches disappears.
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(a) Snapshot-1

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

20

(b) Snapshot-2
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(c) Snapshot-3

Figure 5.10: Snapshots for curvature with horizontal edge with particles
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For this purpose to construct directional motion of the thumb finger the controller

applies constant body force along x direction, and for index finger body forces along

x and −y directions as given in Figures 5.11 and 5.12.
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(a) Body forces along x direction
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(b) Body forces along y direction

Figure 5.11: Body force distribution for line edge hand gesture

To construct the horizontal line edge for thumb finger, the applied body forces along

x and y directions are given in Figure 5.11 a and b, respectively. On the other hand

to construct the curving like behavior for index finger, the applied body forces to the

particles along x and y directions are given in Figure 5.12 a and b, respectively.
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Figure 5.12: Body force distribution for curvature hand gesture

5.2 Human Body Pose Imitation

In the previous sections, we gave the examples of imitation of human hand gestures

and preshapes with fluid particles by adjusting the computational fluid dynamic pa-

rameters according to the classification of the human hand gestures. In this part of

the thesis, we use the human body motions as the test image to be imitated by fluid

particles. The test images are taken from a video, in which a person is performing

body motions. Namely these movements are standing up, bending to the right and

left, opening the arms, opening the arms and moving them upside and can be clas-

sified into six different group. In Figure 5.13 examples for different classes can be

seen.
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(a) Standing up (b) Bending to the right

(c) Bending to the left (d) Opening the arms

(e) Opening the arms towards upside

Figure 5.13: Human body pose classes

Instead of using the whole images as both training and testing images, we tracked

the human body poses and used them in our system. For detecting and tracking the

human body motions from the video sequence, we used a stationary background. The

steps of the procedure as follows:

1. Use the first few frames of the video to estimate the background image.

2. Separate the pixels that represent the people from the pixels that represent the

background.

3. Group pixels that represent the person and calculate the appropriate bounding

box for human body.
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4. Match the people in the current frame with those in the previous frame by com-

paring the bounding boxes between frames.

The system for detecting and tracking person movements can be seen in Figure 5.14.

 Figure 5.14: Human body tracking system on Simulink

In the Segmentation subsystem, the Autothreshold block uses the difference in pixel

values between the normalized input image and the background image to determine

which pixels correspond to the moving objects in the scene.

In the Detection subsystem, the Close block merges object pixels that are close to

each other to create blobs. For example, pixels that represent a portion of a person’s

body are grouped together. Next, the Blob Analysis block calculates the bounding

boxes of these blobs. In the final step, the Detection subsystem merges the individual

bounding boxes so that each person is enclosed by a single bounding box.

In the Tracking subsystem, a Kalman Filter block uses the locations of the bounding

boxes detected in the previous frames to predict the locations of these bounding boxes

in the current frame. To determine the locations of specific people from one frame to

another, the system compares the predicted locations of the bounding boxes with the

detected locations. This enables the system to assign a unique color to each person.

The system also uses the Kalman Filter block to reduce the effect of noise in the

detection of the bounding box locations.
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Figure 5.15: Examples of detected human body motions

In Figure 5.15 some examples of the tracked and detected human body motions can

be seen. These images which are taken during the system is processed and used for

training and testing data for the system. For the training data set, we used 6 images

from each classes. Since we have 5 different classes, in the training data set we

have 30 human body pose images. Also from the same video, we generated the test

images. These test images are classified according to the euclidean distance between

test images and the training data set, which is discussed in Chapter 4.

For training of the system we used the images which are given in Figure 5.16 a, and

the normalized version of the training data set is given in Figure 5.16 b.
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(a) Training data set

(b) Normalized version of the training data set

Figure 5.16: Training data set for human body poses

In the testing step, we used the images which are taken during the human body mo-

tion. For some examples of the test images, classification of the PCA based decision

mechanism done according to the Euclidean distances is given in the following fig-

ures. On the left hand side of each figure the test image can be seen, in the middle

resides the Euclidean distance graph, and on the right hand side the particle based

simulation of the detected human poses. In the fist example (Figure 5.17), we take

the test image as bending towards right.
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(a) Test image
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(c) Imitation of the test image with fluid parti-
cles

Figure 5.17: Training data set for human body poses

As we can see from the Euclidean distance graph, minimum distanced image is the

10th image from the training data set which is given in Figure 5.17. The fluid particles

are first accelerated along y direction and after some time steps, they bend towards

right by the help of the appropriate body forces. The fluid particle motion is given in

Figure 5.17 c and this motion is closely resemble the test image for this example 5.17

a.

In the second example, this time the human torso undergoes a bending towards left

hand side is considered. This test image is symmetrical to the previous example.

Again in the following figure, firstly we give the test image on the left hand side in

Figure 5.18, secondly, in the middle the euclidean distance graph is given in order

to see the minimum distance and decide which training image is close to the test

image, and thirdly, on the right hand side the result of imitation can be seen with fluid

particles.
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(a) Test image
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(c) Imitation of the test image with fluid parti-
cles

Figure 5.18: Training data set for human body poses

In this example, to imitate human body movement with fluid particles again the guid-

ance effect of the body forces is employed. First the particles are accelerated along y

axis with the initial velocity, after a while to bend the particle toward left hand side,

body force is applied along −x direction.
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CHAPTER 6

IMITATION OF HUMAN BODY POSES AND HAND

GESTURES BY REGIONAL CONTROLLER

6.1 Introduction

Up to know, different control algorithms were introduced, in order to generate desired

fluid particle motions according to images that used as the input of the system. In

chapter 3 ANN based controller strategy is introduced. In this controller, the user

defined the feature vectors according to skeleton version of the human hand images.

In chapter 4, the PCA was used for classification of the human hand gestures and body

poses. This type of classifier generate its feature vector from the eigenvectors of the

training set. According to the class of the test image, corresponding fluid parameters

are applied to the fluid particles during the simulation. But this time, the proposed

controller is not an adaptive strategy.

In this chapter, we introduced our region based controller which adaptively adjusts

fluid parameters according to the shapes of the input images (desired images).

6.2 Fluidic Control Layer

6.2.1 Control Architecture

In this section, a region based formation control architecture of the swarm of fluid

particles having an SPH modeled dynamics when imitating human body poses and

hand gestures which are captured from a camera is developed and introduced. The
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Figure 6.1: Flow chart of the proposed approach
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algorithm of the proposed method is demonstrated in Figure 6.1. The modules of this

flow chart is explained in the following subsections.

6.2.2 Module 1: Focus Region Extraction

Module 1 is the responsible for extraction of the human body regions for torso, head,

left and right arms and critical hand gesture points like center of image and center of

hand in the image. In order to extract the regions of focus that has to capture attention

in the imitation of human poses, background subtraction is first performed to filter out

only human body poses and hand gestures in each video frame. In this work, we use

a single camera to get the human motions videos of the upper body of that human.

More specifically for upper body human pose imitation in that videos, first the human

is standing and his/her arms are closed upon his/her torso. This standing human image

is taken as the reference image which is given in Figure 6.2-a. A sequence sample

of human upper body poses are given in Figure 6.2 b to f. There, the person extends

both arms to the sides one right and left at shoulder level, and then extends both arms

to the ceiling. The sequence continues with two arms descending along two sides in

a slanted manner, the right arm stays horizontal at shoulder level while the left arm

moves down at an angle then this extended arm draws a curve to approach the right

arm. The representation of these motions are demonstrated in Figures 6.2 d, e and f.

In the human hand gesture example, the human hand performs different hand pre-

shapes as a sequence of beginning with different variants of scissor like preshapes

moving into a closed pinching that opens up into a hook preshpe. Similar to the hu-

man body posture, first background subtraction is performed. The representation of

the this sequence is demonstrated in Figure 6.3.

Module 1 is responsible for the generation of focus regions for both human body

poses and human hand gestures. Focus regions are subparts of the pose either body or

hand to imitate that can undergo change in action sequences. For human body pose

focus regions, first we subtract the reference image from the input image. In seg-

mentation of human body poses, Fig 6.2-a is used as the reference image. Since the

maximum movement in this video frames occur around two arms, we need to deter-

mine two biggest connected component of this subtracted image. These two biggest
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Figure 6.2: Human body movements for imitation
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Figure 6.3: Hand gesture movements for imitation
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Figure 6.4: Left and right arm segmentation for different human poses

regions that belong to the left and right arms that undergo the largest movements be-

come the focus regions of the imitation. In Figure 6.4 the two biggest component

regions which are found to belong to the left and right arm can be seen for the two

frames of the video (Figure 6.2 a and b). The further elevation upward of both arms

(Figure 6.2 c and d) became a change in the focus regions defined as the 2 arm re-

gions. After determining the left and right arms of the human body which are the

initial focus frames capturing the attention of the imitator, for frames sequences in

Figure 6.2 a to d, the torso and the head become the next region of attention in the

frames in Figure 6.2 d to f together with the arms, since the head and torso also move

along with the arm. To determine these new regions of focus, our algorithm this time

calculates the common regions of the reference image and the input image. Again

in this case, there are two biggest connected component regions, one is for human

torso and the other is for human head. The other connected component regions are

negligible because of their small size which can be thought as the noisy regions. The

example of segmented human body torso and head regions can be seen in Figure 6.5

a and b respectively.

Segmentation of human hand gestures is also done according to generated focus re-

gions. Here again the focus regions are connected components undergoing changes

relative to the each other in a gesture sequence. Focus regions are determined around

critical points in terms of fitted ellipses. Module 1 extracts these critical hand posi-

tion points which are demonstrated in Fig 6.6. The red star represents center of the

gravity of the human hand, the center of the whole image is demonstrated as cyan star

in same figure. The blue stars represent first ellipse fitting point which are correspond
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(a) TORSO REGION

 

(b) HEAD REGION

Figure 6.5: Human body torso and head regions

Figure 6.6: Focus region extraction for hand gesture

to the first joint of index and thumb fingers and the green stars represents finger tip

locations. The blue star critical location is found by taking the derivative of the col-

umn which has the image center location. The green starts for finger tips are found

by taking the derivative along the minus y-axis of the image. First intensity changed

pixels which are below and upper side of the image center are taken as the finger tip

locations.

6.2.3 Module 2: Ellipse Fitting to the Regions of Focus

This module fits ellipses to the focus regions determined in module 1.

Ellipse fitting technique is widely applied in the analyses of human body motions
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and hand gestures. Lee et. all. [61] used ellipse parameters in their gait analysis

for human gender classification. 3D ellipse fitting is also used for extraction of the

gait features [62]. These gait features are again used for classification of the human

gender. Moreover McColl et. all. [63] used ellipse model for interpretation and

classification of the human hand gestures in human-robot interactions for socially

assistive robots.

The best ellipse covering each of these regions is however not possible for all cases

because of noisy parts of the extracted regions. Our proposed algorithm first finds

the extreme pixels for arm regions along the x-direction (horizontal) while for head

and torso regions along y direction (vertical) since the orientation of the head and

torso regions of focused is perpendicular to the orientation of the arms. After that it

calculates the distance between these extreme pixels. This distance corresponds to

the major axis of the ellipse. And then the middle point is calculated between these

extreme pixels. The pixels which are perpendicular to the middle points give the

minor axis length of the ellipse. Finally we can calculate the orientation of the ellipse

simply by comparing the major axis with the minor axis. Now we have 4 parameters,

to represent an ellipse given in equation 6.1 which are namely length of major and

minor axis (lma jor, lminor), the orientation of major axis of the ellipse (m), and center

point of the ellipse (xc, yc), to represent an ellipse given by 6.1.

f (ri) = (lma jor, lminor,m, xc, yc) (6.1)

In Figure 6.7 the best matching ellipses are given for the regions demonstrated in

Figure 6.4 and 6.5 for a human body pose sequence. In these figures, the green small

circles demonstrate the extreme pixels of the ellipses and the red stars show the center

pixel of the ellipses. With the same manner, the algorithm fits ellipses on human

hand gesture images as shown in Figure 6.8. Now that the imitator has determined

the regions to focus its attention by module 1 and the parameters of the best fitting

ellipses by module 2. We will introduce the fluidic based swarm layer in module 4 in

which the motions of the fluid particles are modeled by the equations of the Smoothed

Particle Hydrodynamics (SPH).
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Figure 6.7: Fitted ellipses to the segmented human body regions

6.2.4 Module 4 Swarm Layer: Modeling The Fluid Particles With SPH

In nature, the fluid flow exists in 2 structures. One is compressible fluids (like gases)

whose structure spreading around the environment and the other one is incompress-

ible fluids (like liquids) whose structure having directional motions. We model the

fluid particles as the elements of an incompressible fluid flow since human body mo-

tions and hand gestures are composed of directional movements. Our formation con-

trol algorithm is based on the mapping of the parameters of ellipses which are fitted

on the focus regions of the human body and the parameters of fluid flow. In this work

we do not consider a controller based on boundaries of regions of focus rather than

the swarm flow is guided by critical points of the fitted ellipses. Filling a cavity with

a fluid particles is not a strategy to solving the correspondence problems or in other

words organ matching problem between human and fluid body. If it was the case,

modeling the fluid particles as an element of the compressible fluid might be useful.

In this work, formation control of these fluid particles as considers by assigning ap-

propriate parameters according to the ellipse parameters which were discussed in the

previous section. Formation control is accomplished by the modules 3 and 4.
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Figure 6.8: Focus region extraction for hand gesture

Our SPH formulation for fluid flow is adopted from [46] solving the momentum equa-

tion to determine the particle accelerations by using fluid parameters, such as density,

pressure viscosity, obtained from neighbor particles in the support domain. In this

method, the problem domain is represented by an arbitrary distributed particles and

no specific discretization connectivity for these particles is needed. In our fluidic

swarm, each particle is affected by a finite set of neighboring particles which are

inside a “support domain” of that particle so the computational burden is decreased.

All calculation of the field variables depend on these neighboring particles. Since

SPH is an approximation method, integrals are approximated based on field func-

tions representation method is used for field function approximation. Details of SPH

method to drive fluid particle colony were given in Chapter 3.

6.2.5 Module 3: Mapping Between Ellipse Parameters and SPH Parameters

Now that all the focus regions have been marked by the fitted ellipses, automatically

to extracted human body and hand gesture regions (Module 1-2), and for all these

regions we have the ellipse parameters, we then need to map to the SPH parameters.

The algorithm converts the ellipse parameters to appropriate fluid parameters which

are body forces, viscosity, stiffness coefficient according to the input image.

As mentioned earlier, the body forces have a guiding effect on the fluid particles
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since they directly enters the momentum equation. This property is useful for the

construction of directional characteristics to imitate in human body poses or gestures.

In imitation of the human body poses, since we have 4 ellipses for 4 different body

regions (head, torso, left and right arms), in the simulation environment we have to

divide our fluid swarm into 4 classes. Each swarm class will be responsible for the

generation of the focus regions. The centers of the ellipses are used as waypoints,

which are attractors so that the body forces are generated towards these locations by

using the idea of potential field in order to pull the fluid particles. The used body

force function is given in the following equation 6.2.

Fx,y =



Fx = α(d − r).cos(θ)

Fy = α(d − r)sin(θ) r ≤ d ≤ s + r

Fx = αscos(θ)

Fy = αssin(θ) d > s + r

(6.2)

In this equation, d is the distance between particle position and waypoint, θ is the

angle between particle and the waypoint, r is the waypoint radius, s represents the

spread of the field, α is the scaling factor which scales the magnitude of the body

force vector. For example, since the starting point of the particles is below the human

torso in human body pose imitation, the center of the ellipse for torso, is a common

waypoint for all particles which are responsible for construction of head, left and

right arm regions. This is how we map the ellipse centers to the SPH parameter. So

center pixels of the ellipses are associated with the waypoints, in other words with

the body forces. By completing the construction of the torso for human body pose

imitation, fluid particles which are responsible for construction of the head, left and

right arms reach the extreme pixel for torso. At this point, the particles for right

and left arms need to be divided into two by the help of the higher valued stiffness

coefficient while the particles for head, use the next waypoint which is the center of

the ellipse for head region. Since the torso region is the common focus region, when

the particles reach top of the torso, the stiffness coefficient β is changed form 2 to 20

for middle particles. While the middle particles slow down, the edge particles moves

faster in both direction, namely the x and y axis. The edge particles are responsible

for construction of the right and left arm regions, and middle particles are used for
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generation of the head region. After dividing the swarm flow into two for the arms,

the particles for left and right arms use the center points of the ellipses forming the

left and right arm focus regions as the next waypoints that attract them using the body

force or in other words attractive potential function.

Similarly for hand gesture imitation, since human hand is represented by 4 ellipses

according to the position of the fingers, the fluid swarm is divided into 4 classes

again. During the imitation of hand gesture, the first critical point is used as the initial

attraction point for all particles. After particles reach this point, the fluid colony is

divided into 2 by applying higher valued stiffness and viscosity coefficients in order

to generate fingering effect. When the particles reach first initial attraction point, in

the algorithm the stiffness coefficient β is changed now from 2 to 50, since we want

here there is no middle particles like imitation of human body poses. After that fluid

separate into 2, the upper and lower ellipse center points are used as the waypoints for

the fluid particle swarm. In order to generate closely similar hand gesture imitation

with the input image, we use the second lower and upper ellipse center and finger tip

locations as the waypoints. After dividing the fluid particles into 2, second ellipse

center points and the finger tip waypoints are activated as the waypoints respectively.

Our algorithm generates body forces to reach these waypoints with the same function

given in equation 6.2.

6.3 Simulation Results

In the previous section we gave the mathematical background of our swarm modified

SPH methodology. These equations are based on the Navier-Stokes equations and

since the Navier-Stokes equations cannot be solved analytically, the SPH kernel and

particle approximations are used for discretization of partial differential equations.

The aforementioned SPH formulation is derived by discretizing the Navier-Stokes

equations spatially, leading to a set of ordinary differential equations with respect to

time that can be solved via time integration. Our ultimate goal is to learn to con-

trol the SPH-based flow model parameters by mapping the ellipse parameters to the

simulation environment for the colony to resemble the human body poses and hand

gestures.
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Figure 6.9: Separation of arms two sides

In this section, the result of the imitation of the human body poses and human hand

gestures with fluid particles are given. In Figures 6.9, 6.10, and 6.11, the input image

that has to be imitated and the imitation result of the fluid swarms are given. In the first

example, the characteristic of the input image to be imitated is the extension of the

left and right arm to two opposite sides. After fitting the ellipses of the human body

regions, ellipse parameters are mapped to the fluid parameters. The ellipse parameters

which are the length of the major and minor axes, center point of the ellipse and

orientation of the major axis of the ellipse, are mapped to the body forces and stiffness

coefficient in SPH parameters. According to the number of ellipses, the particles are

assigned for generation of the ellipses. In each example, there are 4 ellipses, so in the

simulation environment there are 4 classes of particles. The center point of the ellipse

which is fitted on the torso is the initial common waypoints for all ellipses for all

particles. According to these waypoints, body forces are generated by the algorithm

using the idea of potential field as given analytically in the previous section. After

forming the torso, for construction of left and right arms the particles need to be

divided into two branches. In this case, higher values of the stiffness coefficient whose

numerical examples are given in the previous section and used for the separation of

the fluid colony particles into two to imitate the arms. After separation, again the

center points of the corresponding arm ellipses are attractors generating appropriate

body forces values. In a similar way, the head portion is constructed by the fluid

particles. In the second and third examples, the left arm goes down and stays in the

close vicinity of the right arm as seen in Figures 6.10 and 6.11.

Similarly, for imitation of hand gestures, each hand gesture is represented by 4 el-
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Figure 6.10: Moving left arm down side
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Figure 6.11: Left arm close to the right arm

lipses. The first critical ellipse point is used as the initial attraction point of the fluid

particles. It means that all fluid particles start to move towards this first ellipse point

and this motion generates the wrist and forehand of the imitated hand gesture. When

the particles reach this critical location, fluid colony is divided into 2 by high values

of stiffness coefficient, which is 50 numerically at this location. For conservation and

generation of the formation, body forces play a vital importance. After division of

particles and demonstration of the fingering effect next ellipse center points are acti-

vated as waypoints which are generated by using the idea of potential field given in

equation 6.2. In Figures 6.12, 6.13, and 6.14 the desired hand gestures that have to be

imitated are represented on the left, and the imitation results are given on right. In the

first example scissor like hand gesture is imitated. First fluid particles are attracted

by the first ellipse center, and every particle start to move on that direction. This is

the critical point for the particles. Then they start to separate into 2 different paths

to construct the middle and index finger due to applied higher valued stiffness coeffi-
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cient. After fluid particles are divided into 2 different branches, they are attracted by

the closest ellipse center point and generate the separate into index and middle fingers

as seen in Figure 6.12-b. In Figure 6.13 the desired hand gesture is the hook preshape

with a certain amount of aperture between thumb and index finger. The following

hand gesture that has to be imitated and the imitation result are given in Figure 6.14-a

and b, respectively. As seen in Figure 6.14-a the hand gesture is constructed by 1 line

edge of thumb and the rest of the fingers are closing upon the thumb.

The sensitivity analysis of the fluid particles is done for the average particle velocities,

and the average particle pressure values during the imitation of human body poses.

In the three examples for human body postures, for separation of the human arms

higher valued stiffness coefficient β is used. The effect of such a high valued stiffness

coefficient occurs in the increase of the pressure value term which yields the slowing

down of fluid particles. It also generates a velocity in a perpendicular direction to the

motion due to the pressure gradient term in the momentum equation (eq:3.8).

Figure 6.15 - a demonstrates the average pressure graph during the branching into

the left and right arm imitation. As we expected, the average pressure is getting

higher and stay almost at that level during the application of high value of the stiffness

coefficient to the particles during the separation into the left and right arms. The

average particle velocities for imitation of the left, right arms and for torso and head

regions are given in Figure 6.15 - b and c respectively. It is clear that the average

velocity for the focus region of the arm is less than the torso and head regions. Again

the reason of these differences is that for the arm region stiffness coefficient is set to

a higher value (β = 20) than for that of torso and head (β = 2) by the algorithm.

Interparticle distance analysis is done for imitation of hand gestures whose fluid

swarm results are demonstrated in Figures 6.12, 6.13 and 6.14 while the interpar-

ticle distance results are given in Figure 6.16. The highest average distance which

is 16.7, occurs during the imitation of scissor like hand gesture. The interparticle

distances in the imitation of cylindrical to hook hand gesture and hook like pinching

closing upon a thumb are 14.6 and 14.4, respectively. They are found to be close to

each other since the finger tips closing upon themselves become similar to a pinching

like preshape.
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(a) (b)

Figure 6.12: Scissor like hand gesture

(a) (b)

Figure 6.13: Cylindrical to hook preshape

(a) (b)

Figure 6.14: Pinching like hand gesture

The pressure distributions during the imitation of hand gestures in scissor like pre-
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(b) Average velocity for arm particles
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(c) Average velocity for head and torso particles

Figure 6.15: Sensitivity analysis of fluid parameters

shape, pinching like grasping and hook preshape closing upon an erected thumb

which are given in Figures 6.12, 6.13, and 6.14 respectively, are graphically demon-

strated in Figure 6.17. If we compare the graphics in Figure 6.16 and Figure 6.17

we see that, when the average interparticle distance decreases, the pressure of fluid

particles increase. As we aforementioned, the maximum interparticle distance occurs

during the imitation of scissor like hand gesture and the average pressure is found to

be 1.6124 for this hand gesture. For comparison purpose, the minimum interparticle

distance is 14.4 when imitating hook preshape and the average pressure for this hand

gesture is 1.8030. These results confirm what pressure equation (3.13) demonstrates

which is that the particle pressure is directly proportional to the stiffness coefficient β

and density ρ. When we consider the density equation (3.5), we can drive from that

equation that when particles are close to each other, the density is higher than the case

when the particles flow branch out into 2 directions.
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(a) Scissor like hand gesture
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(b) Cylindrical hook hand gesture
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(c) Pinching like grasping

Figure 6.16: Interparticle distances for different hand gestures
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(a) Pressure distribution for scissor like preshape
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(b) Pressure distribution for cylindrical hook hand gesture
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(c) Pressure distribution for pinching like hand gesture

Figure 6.17: Pressure distributions for different hand gestures

108



Another sensitivity analysis for imitation of human hand gestures is performed with

respect to the number of fluid particles and step size of the algorithm. When the num-

ber of particles is approximately more than 300 it is not possible to see the branching

effect for imitation and also the simulation results may not resemble the initially given

hand gestures. For scissor like hand gesture, cylindrical and pinching like hand ges-

tures, imitation results are given in Figure 6.18. At the end of the first imitation results

of scissor like hand gesture in Figure 6.18-a use 351 fluid particles. As one can see

from this result, the separation of particles into two branches cannot be seen as clearly

as in Figure 6.12. Large number of fluid particles should then be used such that the

branching can be clearly visible in imitations.

However, in the second and third imitation examples given in Figure 6.18-b and c,

the problem is the thick wrist region because of the large number of fluid particles.

When we compare these two imitation results with the first one of Figure 6.18-a, the

branching is much more clearer. During the imitation of these two hand gestures, 321

and 319 fluid particles are used in each case.

When the step size of the algorithm is decreased, the simulation time increases rapidly.

Even in some cases, when especially the step size is less than 5 iterations, the sim-

ulation gets stuck before any convergence. The elapsed times towards solution for

imitation of the above mentioned hand gestures are given in table (6.1).

Table 6.1: Elapsed Time According to the Step Size(sec)

Step Size Scissor like Hand Gesture Cylindrical preshape Pinching preshape
7 187 214 219

10 126 136 141
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(c) Pinching like grasping hand gesture

Figure 6.18: Particle number sensitivity for hand gestures
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

There are various characteristics of fluid flows which are desirable in swarm robotics,

such as obstacle avoidance and source to sink optimal path finding behaviors of the

fluid. In this work, we combine these behaviors to get the desired shape of a colony

of particles for mimicking human hand postures based on fluidic formation control.

Such a formation control is nonexistent in the literature where the work that resembles

our approach by far is [43] In this reference work the swarm group is controlled by the

help of the SPH parameters,for only obstacle avoidance issue, without considering at

all swarm formation.

Our imitator is a fluid body imitating through sensing, the human body poses and

hand gestures. We provide in this thesis, the “proof of concept” demonstration that

our proposed fluidic formation control can make the fluid body assume postures that

mimic basic human hand gestures and body poses. Our approach is based on gener-

ating the control of flow field variables in order to get desired behaviors and shapes

of the fluid body, by observing human hand and body pose behaviors.

In this work, we tackled the problem of imitating human hand postures and body

poses by a system that possesses a completely different dynamics, thus unable to

initiate an imitational organ matching. In the balance of this thesis work, we introduce

the novel architecture of a fluidics formation controller to tune fluid flow parameters

to get the desired colony formations which resemble human hand gestures and human

body motions.
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The fluidics formation controller commands on SPH approximated dynamics of a

fluidic swarm, and has the ability to learn imitation based on hand and body pose

feature/fluid parameters I/O pairs which form its training sets.

This thesis provides the proof of concept imitating human body poses and hand ges-

tures with different type of controllers commanding the body force vector and stiffness

coefficient of swarm particles. Our present research work resides on incorporating

more fluid parameters with the control action of the fluidics formation controller so

as to imitate complex human hand postures and body poses.

The main contributions of this thesis work can be summarized in the following items.

• The main contribution of this thesis is imitation of human hand gestures and

human body motions in the presence of correspondence problem. In our work,

the imitator is the fluid particles which are used for the discretization of the

problem domain.

• In this work we introduced the decentralized controller for fluid particles which

imitate human hand gestures and human body motions.

• To the best of our knowledge it is the first time such an extreme embodiments

are used for imitation problem. For example it is not like humanoid robot imi-

tating a human (it is somehow possible to establish one to one organ matching

since humanoid robots have similar organs with human beings like legs, arms,

heads, hands etc.)

7.2 Future Work

In this dissertation, a novel method is proposed to eliminate the effect of the cor-

respondence problems which are caused by the difference in embodiments. In our

case, the correspondence problem is initially exist since as the demonstrator, human

body poses and hand gestures are taken, while the imitator is the fluid body which is

considered as combination of fluid particles.

Possible future work directions can be summarized as follows.
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Imitation can be performed between two swarm of small sized robot colonies. These

colonies can be composed of small sized robots which have different properties or

they might have partially organ matching. By the help of imitation learning, the

learning time between two robots can be decreased.

Another possible future direction might be usage of small sized robots as the member

of fluid particles. These robots can be used for rescue operations in the unstructured

environments. They might behave incompressible like fluid if they need to move

faster, and in some cases for example if the maximization of the coverage area in

order to reach to the all of the collapsed regions, they might behave like compressible

fluid.

113



REFERENCES

[1] Thomas Cederborg, Ming Li, Adrien Baranes and Pierre-Yves Oudeyer, “In-
cremental Local Online Gaussian Mixture Regression for Imitation Learning of
Multiple Tasks”, IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) 2010, Taipei.

[2] K. Dautenhahn and C. L. Nehaniv., “An agent-based perspective on imitation” In
K. Dautenhahn and C. L. Nehaniv, editors, ”Imitation in Animals and Artifacts”,
pages 1-40. MIT Press, 2002.

[3] Brenna Argall, Brett Browning, Manuela Veloso, “Learning by Demonstration
with Critique from a Human Teacher” HRI ’07 Proceedings of the ACM/IEEE
international conference on Human-robot interaction.

[4] Pieter Abbeel and Andrew Y. Ng., “Exploration and apprenticeship learning in
reinforcement learning”, In ICML ’05, Proceedings of the 22nd international
conference on Machine learning 2005.

[5] A. Billard, “Learning motor skills by imitation: a biologically inspired robotic
model”, in cybernetics & Systems , special issue on ”Imitation in animals and
artifacts”, C. Nehaniv & K. Dautenhahn editors. Summer 2000.

[6] Raffaella I. Rumiati, Joana C. Carmo, Corrado Corradi-Dell’Acqua, “Neuropsy-
chological perspectives on the mechanisms of imitation”, Phil.Trans. Soc. B
2009, 2337 - 2347.

[7] J. Demiris and G. Hayes, “Imitative Learning Mechanism in Robots and Hu-
mans”, in Proceedings of the 5th European Workshop on Learning Robots, pp.
9-16, Bari, Italy, July 1996.

[8] Lucy, L. B., “Numerical approach to testing the fission hypothesis”, Astronom-
ical Journal, 82:1013-1024 1977.

[9] Gingold, R. A. and Monaghan, J. J., “Smoothed particle hydrodynamics: The-
ory and application to nonspherical stars.”, Monthly Notices of the Royal Astro-
nomical Society, 181:375-389 1977.

[10] Billard, A., Siegwart, R. “Robot learning from demonstration”, Robotics and
Autonomous Systems 47 (2-3), pp. 65-67.

[11] Anna Belardinelli, Fiora Pirri, “Bottom-Up Gaze Shifts and Fixations Learning
by Imitation”, IEEE Transactions on Systems, Man, and Cybernetics-Part B:
Cybernetics, Vol. 37, No. 2, April 2007.

[12] Calinon, S. and Sauser, E. and Billard, A. and Caldwell, D., “Evaluation of a
probabilistic approach to learn and reproduce gestures by imitation”, Proceed-
ings of the IEEE Intl Conf. on Robotics and Automation (ICRA), 2010 Alaska
USA.

114



[13] Mark A. Wood, “Skill Acquisition Through Program-Level Imitation in a Real-
Time Domain”, IEEE Transactions on Systems, Man, and Cybernetics-Part B:
Cybernetics, Vol. 37, No. 2, April 2007.

[14] Sylvain Calinon, Florent Guenter, and Aude Billard, “On Learning, Represent-
ing, and Generalizing a Task in a Humanoid Robot” IEEE Transactions on Sys-
tems, Man, and Cybernetics-Part B: Cybernetics, Vol. 37, No. 2, April 2007.
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