
1

SYCOPHANT WIRELESS SENSOR NETWORKS TRACKED BY SPARSE
MOBILE WIRELESS SENSOR NETWORKS WHILE COOPERATIVELY

MAPPING AN AREA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SEDAT DOĞRU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

OCTOBER 2012

Approval of the thesis:

SYCOPHANT WIRELESS SENSOR NETWORKS TRACKED BY SPARSE

MOBILE WIRELESS SENSOR NETWORKS WHILE COOPERATIVELY

MAPPING AN AREA

submitted by SEDAT DOĞRU in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Aydan M. Erkmen
Supervisor, Electrical and Electronics Eng. Dept., METU

Examining Committee Members:

Prof. Dr. Erol Kocaoğlan
Electrical and Electronics Eng. Dept., METU

Prof Dr. Aydan M. Erkmen
Electrical and Electronics Eng. Dept., METU

Prof. Dr. Veysel Gazi
Electrical and Electronics Eng. Dept., IKBU

Assoc. Prof. Dr. Duygun Erol Barkana
Electrical and Electronics Eng. Dept., Yeditepe University

Assist. Prof. Dr. Yiğit Yazıcıoğlu
Mechanical Eng. Dept., METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: SEDAT DOĞRU

Signature :

iii

ABSTRACT

SYCOPHANT WIRELESS SENSOR NETWORKS TRACKED BY SPARSE
MOBILE WIRELESS SENSOR NETWORKS WHILE COOPERATIVELY

MAPPING AN AREA

Doğru, Sedat

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Aydan M. Erkmen

October 2012, 151 pages

In this thesis the novel concept of Sycophant Wireless Sensors (SWS) is introduced.

A SWS network is a static ectoparasitic clandestine sensor network mounted incog-

nito on a mobile agent using only the agent’s mobility without intervention. SWS

networks not only communicate with each other through mobile Wireless Sensor Net-

works (WSN) but also cooperate with them to form a global hybrid Wireless Sensor

Network. Such a hybrid network has its own problems and opportunities, some of

which have been studied in this thesis work.

Assuming that direct position measurements are not always feasible tracking perfor-

mance of the sycophant using range only measurements for various communication

intervals is studied. Then this framework was used to create a hybrid 2D map of the

environment utilizing the capabilities of the mobile network the sycophant.

In order to show possible applications of a sycophant deployment, the sycophant

sensor node was equipped with a laser ranger as its sensor, and it was let to create a

2D map of its environment. This 2D map, which corresponds to a height different than

iv

the follower network, was merged with the 2D map of the mobile network forming a

novel rough 3D map.

Then by giving up from the need to properly localize the sycophant even when it is

disconnected to the rest of the network, a full 3D map of the environment is obtained

by fusing 2D map and tracking capabilities of the mobile network with the 2D vertical

scans of the environment by the sycophant.

And finally connectivity problems that arise from the hybrid sensor/actuator network

were solved. For this 2 new connectivity maintenance algorithms, one based on the

helix structures of the proteins, and the other based on the acute triangulation of the

space forming a Gabriel Graph, were introduced. In this new algorithms emphasis

has been given to sparseness in order to increase fault tolerance to regional problems.

To better asses sparseness a new measure, called Resistance was introduced, as well

as another called updistance.

Keywords: SLAM, Connectivity Maintenance, Sycophant Wireless Sensor Networks,

Protein, Graph Theory, Resistance, 3D Maps, 3D Maps from 2D maps, Gabriel

Graphs, Acute Triangulation, RSSI, Mobile Relay Networks, Leader Follower Net-

works, Range only tracking

v

ÖZ

HIBRID DUYARGA AGLARINDA ASALAK SABIT KABLOSUZ DUYARGA
ALTAGLARI ILE HAREKETLI DUYARGA ALTAGLARI ARASINDAKI

ILETISIME DAYALI VERI DENETIMI VE DUYARGA DAGILIMI

Doğru, Sedat

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Aydan M. Erkmen

Ekim 2012, 151 sayfa

Bu tezde Kablosuz Asalak Duyarga Aglari (KADA) isimli yeni bir kavram tanitilmi-

stir. KADA asalak olarak hareketli bir cisme yerlestirilen, ondan habersiz bir sekilde

onun hareket yetenegini kullanan bir kablosuz duyarga agidir. KADAlar sadece bir-

birleriyle onlari takip eden hareketli duyarga aglari uzerinden haberlesmekle kalmaz

ayni zamanda onlarla hibrid bir kablosuz duyarga agi olusturmak icin isbirliginde bu-

lunur. Boyle bir hibrid duyarga aginin problemleri oldugu gibi sundugu yeni imkanlar

da vardir. Bu tezde bunlarin bir kismi calisilmistir.

Ortamda direkt konum olcumlerinin her zaman verimli olmadigini varsayarak sadece

uzaklik olcumu kullanarak asalak duyarga agi hareketli ag tarafindan farkli haber-

lesme araliklari icin takip edildi. Devaminda bu altyapi ile hem asalagin hem de

hareketli alt agin haritalama yetenekleri birlestirilerek hibrid 2 boyutlu haritalama

yapildi.

Asalak altagin olasi kullanimlarini gostermek icin, asalaga duyarga olarak lazer mesafe

olcer takildi ve kendi seviyesinde 2 boyutlu bir harita yapmasi saglandi. Yaratilan bu

vi

harita hareketli ag tarafindan baska bir seviyede yaratilan 2 boyutlu harita ile birle-

stirilerek yeni bir cesit 3 boyutlu harita olusturuldu.

Asalagin konumunu kayboldugu zamanlarda dahi kendi haritasiyle bulma gereksin-

iminden vazgecerek, takip eden agin olusturdugu iki boyutlu harita ve onun izleme

yetenegi asalagin dik ortam taramalari ile birlestirilerek tam bir 3 boyutlu harita elde

edildi.

Ve son olarak hibrid agda ortaya cikan baglantililigin korunmasi problemini cozmek

icin 2 yeni yontem onerildi. Yontemlerden bir tanesi proteinlerin heliks yapisini

kendine ornek alirken, digeri ortami dar acili ucgenlere bolerek Gabriel graf olus-

turdu. Yeni algoritmalarda agdaki dugumlerin bolgesel problemlere karsi cozum

olarak dagitik olarak konuslanmasina ozen gosterildi. Bu cercevede Direnc diye yeni

bir olcu onerildi.

Anahtar Kelimeler: Es Zamanli Konumlama ve Haritalama, Baglantililigin Korun-

masi, Asalak Duyarga Aglari

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

TABLE OF CONTENTS . viii

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTERS

1 Introduction . 1

1.1 Motivation . 1

1.2 Objectives and Goals . 2

1.3 Methodology . 5

1.3.1 Tracking . 5

1.3.2 2D Map Merge 6

1.3.3 3D Maps from sparse horizontal 2D slices 6

1.3.4 3D Maps . 6

1.3.5 Connectivity Maintenance in Mobile Relay Net-
works . 6

1.4 Contribution of this Thesis 7

1.5 Outline of the Thesis . 8

2 Literature Survey . 9

2.1 Wireless Sensor Networks 9

2.2 Distance Measurement in Wireless Sensor Networks 11

2.3 Map Merging . 11

2.4 3D Mapping . 14

2.5 Connectivity Maintenance 16

viii

3 Theoretical Background . 21

3.1 Graph Theory . 21

3.1.1 Laplacian Matrix 22

3.1.1.1 Adjacency Matrix 22

3.1.1.2 Gabriel Graph 25

4 Tracking and 2D Map Merging . 26

4.1 RSSI for Distance Estimate 26

4.2 Hardware Framework . 30

4.3 Simulation Framework for 2D Map Merging and Tracking . . 33

4.4 Methods . 34

4.4.1 Building Blocks Of The Problem 35

4.4.2 Generating The Multi-Agent SLAM 35

4.4.3 Tracking . 37

4.4.4 Robot Navigation 37

4.4.5 Motion Control of the Mobile Robot 40

4.5 Experimental Results and Discussion 41

4.5.1 Tracking Results 41

4.5.2 2D Map Merge Results 50

5 3D Mapping . 55

5.1 3D maps out of 2D maps 55

5.1.1 Scan Matching using Hough Transform 56

5.1.1.1 Hough Transform 57

5.1.1.2 Scan Matching Using Hough Spectrum 59

5.1.2 Map Matching Using Hough Spectrum 64

5.1.3 Simulation Framework and Performance Metrics . 66

5.1.4 Simulation Results and Performance Analysis . . . 67

5.1.5 Hardware Implementation and Results 67

5.2 3D Mapping . 76

5.2.1 Method . 76

5.2.2 Hardware Implementation & Results 79

ix

6 Connectivity Maintenance . 84

6.1 Developing Novel Performance Measures 85

6.1.1 Updistance . 85

6.1.2 Resistance . 86

6.2 Go In Between Approach 88

6.2.1 Method . 88

6.2.1.1 Neighbor Selection 90

6.2.1.2 Obstacle Avoidance 91

6.2.2 Simulation Results for Go in Between and Discus-
sion . 93

6.3 Connectivity Maintenance Inspired by Protein Structures . . 93

6.3.1 Protein Background 96

6.3.2 Method . 98

6.3.3 Simulations . 100

6.4 Gabriel Virtual Force Graphs 116

6.4.1 Method . 116

6.4.2 Simulations . 119

7 Conclusion & Future Work . 140

7.1 Conclusion . 140

7.2 Future Work . 140

Bibliography . 141

Vita . 151

x

LIST OF TABLES

TABLES

Table 4.1 Average error for different measurement update intervals, where the

state update interval was chosen to be 0.064 seconds (first case in text) . . 42

Table 4.2 Average error for different measurement update intervals, where the

state update interval was chosen to be 0.064 seconds (third case in text) . . 43

Table 6.1 Mean values of updistance for different speeds of the leader 119

xi

LIST OF FIGURES

FIGURES

Figure 3.1 Example graphs, the first two have labeled vertices, whereas the

third has its vertices not labeled . 22

Figure 3.2 A sample graph . 23

Figure 3.3 A sample graph . 24

Figure 3.4 A sample graph . 24

Figure 3.5 The line AB is can be part of an acute triangle since there is no

node in the circle with diameter AB. Note that any triangle AB is part of,

is acute. However the same could not be said for the second graph. There

is a node C1 in the circle with diameter AB and the resulting triangle is

not acute. 25

Figure 3.6 (a) An acute triangle’s all three angles are less than 90◦, (b) whereas

a non-acute triangle has one of its angles larger than 90◦, note that ÂCB >

180◦ . 25

Figure 4.1 RSS measurements taken in the 1st floor corridor of METU EE’s

A building . 27

Figure 4.2 RSS measurements in the alley (only the first 18m between two

stairways) in front of METU EE’s A block 28

Figure 4.3 RSS measurements on the door side (close to the windows) of class

EA 206. The top curve corresponds to the case of no obstacle, and bottom

curve to the case of obstacle between the receiver and the sender. 29

Figure 4.4 RSS measurements on the center line of class EA 206. The top

curve corresponds to the case of no obstacle, and bottom curve to the of

obstacle between the receiver and the sender. 30

xii

Figure 4.5 RSS measurements on the center line of class EA 202. The top

curve corresponds to the case of no obstacle, and bottom curve to the of

obstacle between the receiver and the sender. 30

Figure 4.6 RSS measurements on the door side (close to the windows) of the

computer lab. The top curve corresponds to the case of no obstacle, and

bottom curve to the of obstacle between the receiver and the sender. 31

Figure 4.7 An SPI to RS232 convertor used to interface MagellanPro to the

Wireless Sensor Network. 32

Figure 4.8 Front and back view of the vest, which is part of our experimental

setup, with sensor network nodes mounted in the pocket areas 32

Figure 4.9 (a) Mobile robot Magellan, which is part of our experimental setup,

with a wireless sensor network node mounted on the top platform. (b) Lab

environment. 32

Figure 4.10 The sycophant network mounted on top of a magellan robot imi-

tating the carrying agent (left), and the follower robot (right). The syco-

phant network consists of four nodes each facing a different quadrant of

the environment, whereas the follower robot has a node facing the whole

environment. 33

Figure 4.11 Worlds used in the simulation . 34

Figure 4.12 Block decomposition of the proposed architecture. 35

Figure 4.13 A Rapidly-exploring Random Tree expanding in free space. 39

Figure 4.14 An RRT from one of the simulation runs, the green and the blue

lines form the RRT, the blue line is the path the robot will follow as it goes

down. 40

Figure 4.15 Block diagram showing algorithm for Motion Control block. zk

stands for measurements . 44

Figure 4.16 Trajectories of the mobile robot, the SWS network and its esti-

mated pose in obstacle free region. Measurement update is executed every

0.64 seconds, whereas the state update is done every 0.064 seconds. 45

Figure 4.17 Time evolution of the trajectories given in Fig. 4.16. 46

xiii

Figure 4.18 Trajectories of the mobile robot, the SWS network and its esti-

mated pose starting from region A through B to C. Time interval between

two measurement updates is 0.64 seconds and the state update interval is

0.064 seconds. 47

Figure 4.19 Trajectories of the mobile robot, the SWS network and its esti-

mated pose as it follows the trajectory KL. Measurement update is done

every 0.64 seconds, and the state update is executed every 0.064 seconds. . 48

Figure 4.20 Time evolution of the trajectories given in Fig. 4.19. 49

Figure 4.21 Starting from top, map of the SWS, map of the robot and both maps

merged. Both the sycophant and the follower robot are in the empty re-

gion. The sycophant has mapped the upper left corner whereas the bottom

parts are mapped by the follower robot. 51

Figure 4.22 Starting from top, map of the SWS, map of the robot and both

maps merged. Both the sycophant and the follower robot are still in the

empty region. The sycophant has started going to the right, mapping a

little more. And in the meantime the follower robots move a little closer

to the SWS, completing map of the missing patch (compare to figure 4.21) 52

Figure 4.23 Starting from top, map of the SWS, map of the robot and both

maps merged. The sycophant is now travelling in region B, whereas the

follower robot is still wandering in the empty region. 53

Figure 4.24 Starting from top, map of the SWS, map of the robot and both

maps merged. The SWS is finally in region C, not visible to the follower

any more. However, the tracking algorithm estimates its pose and grows

its map accordingly. Using the new map the follower is easily able to

calculate a route passing the free regions and leading to the sycophant. . . 54

Figure 5.1 Simulation environment from which the two scans are taken 61

Figure 5.2 First and second scans shown in polar coordinates 61

Figure 5.3 (a) Hough transform of the first scan given in 5.2(a), (b) Hough

transform of the second scan given in 5.2(b). 62

Figure 5.4 θ spectra of the hough transforms of the scans given in 5.2, as well

as their cross correlation. 63

xiv

Figure 5.5 X spectra of the scans given in 5.2, as well as their cross correlation. 63

Figure 5.6 Y spectra of the scans given in 5.2, as well as their cross correlation. 64

Figure 5.7 Perspective views of the simulation environment used in 3D map-

ping taken from different angles. The blue walls are obstacles with a

height of 0.6 and the red walls are on a higher level, between 0.6 and

1.0. 67

Figure 5.8 Cross sections of the simulation environment given in Fig. 5.7. (a)

corresponds to the follower robots level (blue in previous figure), where

the black thick lines correspond to benches. (b) corresponds to the syco-

phant’s level (red in previous figure), where the black thick lines corre-

spond to the bulletin boards. 67

Figure 5.9 (a) 2D map of the simulated world as created by the sycophant,

and its trajectory. (b) Extruded form of the map. 68

Figure 5.10 (a) 2D map of the simulated world as created by the follower robot,

and its trajectory. (b) Extruded form of the map. 69

Figure 5.11 (a)unaligned maps of the sycophant and the follower robot (b)

aligned maps of the sycophant and the follower robot 70

Figure 5.12 Maps of the sycophant (Fig 5.9) and the follower mobile robot (Fig

5.10) merged into a 3D map, and displayed from different angles. 71

Figure 5.13 Performance of the method in finding rotational(a) and transla-

tional(b) displacements. The measure is the error in percent between the

real and estimated displacements. 72

Figure 5.14 (a) A view of the classroom whose 3D map is obtained, (b) draft

of the classroom at the level of MagellanPro, the follower robot, (c) draft

of the classroom at the level of the sycophant sensor 73

Figure 5.15 The robot used as a follower to the sycophant (a), and the laser

used as a sycophant sensor (b) . 73

Figure 5.16 (a) 2D map of the class as seen by the sycophant. (b) Extruded

form of the map. 73

Figure 5.17 (a) 2D map of the class as seen by the follower robot. (b) Extruded

form of the map. 74

xv

Figure 5.18 (a) unaligned maps of the sycophant and the follower robot (b)

aligned maps of the sycophant and the follower robot 74

Figure 5.19 Maps of the sycophant (figure 5.16) and the follower robot (figure

5.17) in their actual scanning levels in the 3D world. 74

Figure 5.20 Maps of the sycophant (Fig 5.16) and the follower mobile robot

(Fig 5.17) merged into a 3D map, displayed from different angles. 75

Figure 5.21 Finding φ at turnings . 78

Figure 5.22 The robot used as a follower to the sycophant (a), and the laser

used as a sycophant sensor (b) . 80

Figure 5.23 The 2D map of the follower as it tracked the sycophant, and trajec-

tory of the sycophant. 81

Figure 5.24 3D map of EA211 seen from outside, above back upper right corner. 81

Figure 5.25 3D map of EA211 seen from outside, below front lower left corner.

Two of the lamps on the ceiling are encircled. 82

Figure 5.26 3D map of EA211 seen from outside, above front upper left corner.

Two of the radiators seen are encircled. 82

Figure 5.27 3D map of EA211 seen from outside, above the front middle section. 82

Figure 5.28 3D map of EA211 seen from outside, above back upper right corner. 83

Figure 5.29 3D map of EA211 seen from outside, upper left side. 83

Figure 5.30 3D map of EA211 seen from outside, upper right side. 83

Figure 6.1 Different distribution of relays, each having a different connectivity

and resistance value. 87

Figure 6.2 Two different possible placement for relays connecting nodes 1

and 6. Arrows show possible communication paths. Their exact number

of course depends on the communication range of each node. 89

Figure 6.3 Evolution of robot poses . 89

Figure 6.4 Evolution of robot poses . 90

xvi

Figure 6.5 A sample initial configuration where relays A and B have the same

two closest neighbors. Without a predefined conflict resolution approach,

the nodes could choose C and D, and D would choose A and B, and as the

leader moves away the system would get disconnected. 91

Figure 6.6 Force between two nodes around a corner 92

Figure 6.7 Force between two nodes around a corner 93

Figure 6.8 Force between two nodes, before and after redirection 93

Figure 6.9 Force between two nodes, before and after redirection 94

Figure 6.9 Force between two nodes, before and after redirection (continuing

from previous page) . 95

Figure 6.10 An amino acid [15]. 96

Figure 6.11 Formation of a dipeptide. When thousands of amino acids connect

as in here a protein is formed [15]. 96

Figure 6.12 Primary, secondary and tertiary structures of a protein molecule [2]. 97

Figure 6.13 Relays under the influence of the primary structure only (a), and

under the influence of both the primary and secondary structures of the

protein (b). The lines indicate primary connections, whereas dotted lines

indicate secondary connections. 99

Figure 6.14 Screenshot of the starting configuration of the 2 neighbor hop count

variation of the protein approach. 101

Figure 6.15 A steady state screenshot of the 2 neighbor hop count variation. . . 102

Figure 6.16 A transient state screenshot of the 2 neighbor hop count variation. 102

Figure 6.17 A steady state screenshot of the 3 neighbor hop count variation. . . 102

Figure 6.18 A steady state screenshot of the 3 neighbor hop count variation. . . 103

Figure 6.19 Updistance histograms for the base case where there are no sec-

ondary connections and protein cases where each relay makes secondary

connections to relays 2, 3 and 4 nodes away given in a, b, c, and d respec-

tively. Leader robot’s velocity is 0.5m/s. 104

xvii

Figure 6.20 µmean, mean algebraic connectivity of the base and protein struc-

tures for being in RF communication range of each other, when the leader

as traveling at 0.5m/s. 105

Figure 6.21 µmean, mean algebraic connectivity of the base and protein struc-

tures for the graph of virtual forces (a), and zoomed version of being in RF

communication range of each other for the base and protein structures(b),

when the leader as traveling at 0.5m/s. 106

Figure 6.22 Reqmean , mean equivalent resistance for the Protein Graph of virtual

forces (a), and of being in RF communication range of each other (b),

when the leader as traveling at 0.5m/s. 107

Figure 6.23 Updistance histograms for the base case where there are no sec-

ondary connections and protein cases where each relay makes secondary

connections to relays 2, 3 and 4 nodes away given in a, b, c, and d respec-

tively. Leader robot’s velocity is 2.5m/s. 109

Figure 6.24 µmean, mean algebraic connectivity for being in RF communication

range of each other, when the leader as traveling at 2.5m/s. 110

Figure 6.25 µmean, mean algebraic connectivity for the Protein Graph of virtual

forces (a), and zoomed version of being in RF communication range of

each other (b), when the leader as traveling at 2.5m/s. 111

Figure 6.26 Reqmean , mean equivalent resistance for the Protein Graph of virtual

forces (a), and of being in RF communication range of each other (b),

when the leader as traveling at 2.5m/s. 112

Figure 6.27 Screenshots taken at different times of the base protein algorithm

as the leader moves at vleader = 0.5m/s, The robots start with the initial

configuration given in (a), and connection is lost in (h). The square indi-

cates the sink, the star the leader, the black dots other mobile relays. The

lines are the connections between the robots. 113

xviii

Figure 6.28 Screenshots taken at different times of the base protein algorithm

as the leader moves at vleader = 2.5m/s, The robots start with the initial

configuration given in (a), and connection is lost in (h). It can be observed

that as the leader moves away, uniformity of the link lengths is lost (com-

pare to 6.27). This happens because the leader is moving too fast for the

network to stabilize. The square indicates the sink, the star the leader, the

black dots other mobile relays. The lines are the connections between the

robots. 113

Figure 6.29 Screenshots taken at different times of the 2 hop count protein al-

gorithm as the leader moves at vleader = 0.5m/s, The robots start with the

initial configuration given in (a), and connection is lost in (q). The square

indicates the sink, the star the leader, the black dots other mobile relays.

The lines are the connections between the robots. 114

Figure 6.30 Screenshots taken at different times of the 2 hop count protein al-

gorithm as the leader moves at vleader = 2.5m/s, The robots start with the

initial configuration given in (a), and connection is lost in (n). The net-

work does not have enough time to adept to the changes induced by the

high speed of the leader (compare to 6.29). The square indicates the sink,

the star the leader, the black dots other mobile relays. The lines are the

connections between the robots. 115

Figure 6.31 Updistance histograms for various critical l0 values at critical junc-

tions and fixed leader velocity of 0.5m/s. 120

Figure 6.32 µmean, mean algebraic connectivity for being in RF communication

range of each other, when the leader as traveling at 0.5m/s. 122

Figure 6.33 µmean, mean algebraic connectivity for the Gabriel Graph of virtual

forces (a), and zoomed version of being in RF communication range of

each other (b), when the leader as traveling at 0.5m/s. 123

Figure 6.34 Reqmean , mean equivalent resistance for the Gabriel Graph of virtual

forces (a), and of being in RF communication range of each other (b),

when the leader as traveling at 0.5m/s. 124

Figure 6.35 Updistance histograms for various critical l0 values at critical junc-

tions and fixed leader velocity of 2.5m/s. 126

xix

Figure 6.36 µmean, mean algebraic connectivity for being in RF communication

range of each other, when the leader as traveling at 2.5m/s. 127

Figure 6.37 µmean, mean algebraic connectivity for the Gabriel Graph of virtual

forces (a), and zoomed version of being in RF communication range of

each other (b), when the leader as traveling at 2.5m/s. 128

Figure 6.38 Reqmean , mean equivalent resistance for the Gabriel Graph of virtual

forces (a), and of being in RF communication range of each other (b),

when the leader as traveling at 2.5m/s. 129

Figure 6.39 Screenshots taken at different times of the acute triangulation al-

gorithm as the leader moves at vleader = 0.5m/s and critical l0 is l0. The

robots start with the initial configuration given (a), and connection is lost

in (q). See in the figure that although link lengths get non-uniform, thanks

to the slow moving leader, the network has enough time to correct this

problem. The square indicates the sink, the star the leader, the black dots

other mobile relays. The lines are the connections between the robots. . . . 131

Figure 6.40 Screenshots taken at different times of the acute triangulation al-

gorithm as the leader moves at vleader = 0.5m/s and critical l0 is l0. The

robots start with the initial configuration given (a), and connection is lost

in (j). See in the figure that link lengths get non-uniform, but this time the

network cannot adept despite the slow moving leader. The square indi-

cates the sink, the star the leader, the black dots other mobile relays. The

lines are the connections between the robots. 132

Figure 6.41 Screenshots taken at different times of the acute triangulation algo-

rithm as the leader moves at vleader = 2.5m/s and critical l0 is l0. The robots

start with the initial configuration given (a), and connection is lost in (j).

See in the figure that link lengths are not uniform: part of the network that

is crowded has small links whereas leaders neighbors have longer ones,

which soon disappear, disconnecting the network. Since the leader is too

fast, the network does not have enough time to adept (compare to figure

6.39). The square indicates the sink, the star the leader, the black dots

other mobile relays. The lines are the connections between the robots. . . . 133

xx

Figure 6.42 Screenshots taken at different times of the acute triangulation al-

gorithm as the leader moves at vleader = 0.5m/s and critical l0 is l0/2. The

robots start with the initial configuration given (a), and connection is lost

in (s). See in the figure that link lengths get non-uniform, but this time not

as much as the cases for critical l0 = l0. The system stretches till all nodes

are on a straight line. The square indicates the sink, the star the leader, the

black dots other mobile relays. The lines are the connections between the

robots. 134

Figure 6.43 Screenshots taken at different times of the acute triangulation al-

gorithm as the leader moves at vleader = 0.5m/s and critical l0 is l0/2. The

robots start with the initial configuration given (a), and connection is lost

in (p). See in the figure that link lengths get non-uniform, but this time not

as much as the cases for critical l0 = l0. However here we see new prob-

lem, symmetric node quadruples are formed, which resist forces to break

any one of the links, so some other link is broken and the system is not

able to utilize its full potential. The square indicates the sink, the star the

leader, the black dots other mobile relays. The lines are the connections

between the robots. 135

Figure 6.44 Screenshots taken at different times of the acute triangulation al-

gorithm as the leader moves at vleader = 0.5m/s and critical l0 is l0/4. The

robots start with the initial configuration given (a), and connection is lost

in (n). See in the figure that link lengths get non-uniform, but not as much

as the cases for critical l0 = l0. However here we see the same problem as

in figure 6.43, symmetric node quadruples are formed, which resist forces

to break any one of the links, so some other link is broken and the sys-

tem is not able to utilize its full potential. The square indicates the sink,

the star the leader, the black dots other mobile relays. The lines are the

connections between the robots. 136

xxi

Figure 6.45 Screenshots taken at different times of the acute triangulation al-

gorithm as the leader moves at vleader = 0.5m/s and critical l0 is l0/4.

The robots start with the initial configuration given (a), and connection is

lost in (t). See in the figure that link lengths get non-uniform, but not as

much as the cases for critical l0 = l0. And there are no symmetric node

quadruples as in figures 6.43 and 6.44. So the network achieves its full

potential. The square indicates the sink, the star the leader, the black dots

other mobile relays. The lines are the connections between the robots. . . . 137

Figure 6.46 Screenshots taken at different times of the acute triangulation al-

gorithm as the leader moves at vleader = 2.5m/s and critical l0 is l0/8. The

robots start with the initial configuration given (a), and connection is lost

in (e). See in the figure that the leader fast, stretching its links far but on

the other hand due to the critical link around the sink some nodes are col-

lected around the sink. Connection is soon broken. The square indicates

the sink, the star the leader, the black dots other mobile relays. The lines

are the connections between the robots. 138

Figure 6.47 Screenshots taken at different times of the acute triangulation al-

gorithm as the leader moves at vleader = 2.5m/s and critical l0 is l0/8. The

robots start with the initial configuration given (a), and connection is lost

in (t). Contrary to the previous figure (figure 6.46), though the same pa-

rameters are used (but a different initial state), the network utilizes its full

potential. The square indicates the sink, the star the leader, the black dots

other mobile relays. The lines are the connections between the robots. . . . 139

xxii

CHAPTER 1

Introduction

1.1 Motivation

This thesis is mainly motivated by two contradictory application fields, one pertaining

to war/military operations and the other to search and rescue. However the proposed

architecture will be able to serve both fields.

The first motivation is deployment of a Wireless Sensor Network in a war-zone on

friendly troops to collect information on both friendly and enemy lines. The tradi-

tional way of collecting information about fronts is usually airplanes or reports from

the troops on the front. However such information may not always be accurate, may

be blocked by the enemy, or the operation region may not allow aerial view. An al-

ternative way utilizing technology would be deployment of various static or mobile

sensor networks. However deployment of mobile sensor nodes could require a large

number of nodes for efficient surveillance, monitoring, data harvesting and search

tasks. Deployment of static sensors on the other hand is not always possible and de-

ployment of complex nodes in a static manner is too expensive. So as a solution we

propose mounting sensor nodes directly on the soldiers, without them knowing, or

on machinery, and let those sensors form a network through which information could

be related back to a base station. Due to limited sensor power and hostility of the

environment such nodes should be supported by some mobile robots that will track

them and perform other jobs during an operation. Note that cameras are already de-

ployed on US special force soldiers during operations and live video data is sent to

their command center. However we are not aware of any complex backstage, and the

1

cameras have a satellite connection.

The second motivation is utilization of wireless Sensor Networks in Search and Res-

cue missions. Disaster, being usually unpredictable do not allow pre-deployment of

static WSN, and deployment of static nodes after a disaster is not possible. And

though Search and Rescue robots are becoming more and more complex, they are

not yet suitable for many disaster areas. However in such places we can utilize some

trained animals, like mice utilized with small cameras and/or microphones, which

would be able to traverse trough the environment and provide us with information

about their environment and state of victims. It is more difficult to find proper mobile

sensor nodes, to collect information about a disaster area. Sensors on the hosts could

form a wireless network when the mice are close enough, which could be backed up

by other mobile robot sensors that are supporting the animals and doing search &

rescue in parts allowable to them. For example in a collapsed building some paths

are only traversable by small robots, some are traversable only by some small mice.

This way we utilize mobility of the mice, hinder their motion as little as possible, and

easily gather information about the environment.

1.2 Objectives and Goals

Mobile Sensor networking requires a large number of sensor nodes to be deployed

within an environment for efficient surveillance, monitoring, data harvesting and

search tasks [33, 34, 46, 72, 16]. Deployment and adaptive coverage are energy de-

vouring processes for each mobile unit of the sensor network. Changing the mobile

wireless sensor network into a union of static sensor subnetworks and mobile subnet-

works cooperating for efficient deployment and coverage in an energy saving mode,

makes this usage of hybrid sensor networks a more tempting architecture. In this

thesis, we take the hybrid approach one step further by introducing the novel concept

of static sensor subnetworks using only, clandestinely the mobility of an agent they

hook parasitically upon. We term such networks, Sycophant Wireless Sensor Net-

works, in short SWS networks. We find necessary here to clarify the term sycophant

by stating the characteristics that the sensor network possesses: a SWS network is a

clandestine traveler that passively uses without hostility the mobility of the carrying

2

agent, to collect, process and communicate data harvested during the agent naviga-

tion. But it cannot in any circumstance guide or influence the motion of the carrying

agent: this agent performs its navigation for its own tasks without the knowledge

of the on-board ”clandestine” SWS network. Depending on the number of carrying

agents transporting each SWS subnetworks, various problems of communication be-

tween SWS subnets may arise; and difficulties in seamless coverage of a certain area

may occur since no guidance can be provided to the carrying agents by SWS subnets.

We realize connectivity in communication between SWS nets using mobile units of

the mobile sensor networks.

In similar architectures, such as wearable WSN, it is assumed that the sinks, which

are the final destinations for the data collected, are within the wireless range so that

they are connected [71, 7, 8], or in systems such as on-transporter deployment ar-

chitectures the static network has an infinite energy source and the wireless sensor

network is able to connect to far nodes like satellites [48].

In our work we assume that the sink is far enough from the sycophant WSN so that

no direct communication is possible, and the nodes of the sycophant network have

scarce energy resources: just enough for periodic data transmission as for static wire-

less nets. To solve the connectivity problem in this case, we dedicate units of a de-

ployed mobile wireless sensor network to follow the sycophant network and cooper-

ate with it at an acceptable distance. This of course introduces new problems, such

as tracking, navigation, path planning, localization and mapping, for which solutions

exist individually [69, 10, 44] in the literature. However the hybrid network that in-

cludes mobile wireless sensor subnets working cooperatively with SWS subnets has

to handle all problems at once. This means that it has to properly attack each prob-

lem, applying solutions to each, correctly without generating any interruptions of the

communication and of the navigation of mobile units. Since direct line of sight may

not always be possible, the mobile network has to be able to locate the sycophant

WSN using estimation techniques and be able to process information received from

the SWS subnets according to parameters, such as received signal strength indica-

tor, time or angle of arrival. It also has to be able to estimate the trajectory of the

sycophant network based on previous knowledge about its motion, which is actually

a tracking problem. However, it should be kept in mind that depending on the host

3

carrying the sycophant WSN, the problem may simplify if the host is a slowly moving

one, but may also become more difficult if the host has high maneuvering capabilities.

The hybrid network also has to successfully map its own environment which means

the fusion of two different mapping abilities with two different navigation capabili-

ties: that of SWS subnets and that of the mobile WSN. This also implies modeling

such collaboration of SWS nets and mobile WSN within a ”hybrid” Simultaneous

Localization and Mapping (SLAM).

In this hybrid SLAM we have on one hand an autonomous robot that is fully capable

of mapping the environment, is able to explore using its range sensors and is even able

to make decisions and take actions on how to improve the map by new explorations.

However this autonomous robot is constrained by the fact that it has to carry out

any self exploration while tracking the sycophant wireless sensor network, without

breaking its communication with it. Moreover this mobile robot tracker cannot use

its full capability of exploration and mapping while tracking, due to the fact that all

these tasks cause high energy consumption. The sycophant sensor network on the

other hand navigates completely dependent on the motion of the carrying host and

is equipped with restricted sensors so that, the SWS maps the visited portions of

the environment in an incomplete constrained manner. The major advantage of this

mapping although incomplete is that it is done in a highly energy efficient manner

since the motion is done by the hosting agent and the only energy consumption is

in data acquisition and transmission. Fusing them into an incomplete map is done

on board of the tracker, after reception by the mobile unit. In our work we aim at

an energy efficient cooperation of a sparse mobile Wireless Sensor Network and a

sycophant Wireless network to map a common area. This task is mainly to complete

the incomplete SWS map of a part of a common environment by nodes of a mobile

wireless sensor network in a decentralized manner. The mobile nodes also need to

execute further exploration for growing the map which is merged.

Though in the previous paragraphs the hybrid SLAM was mentioned for a 2D world,

the assumption was that the sycophants and the follower robots map the environment

at the same height or the map is height invariant. However this is usually not the case,

the sycophants will probably be placed at a different heights compared to teach other

and the followers, leading to rough 3D mapping. In this case we will be constructing

4

3D maps from slices. Such slices will be also used in localizing the sycophants or

mobile nodes with respect to each other. The constructed rough 3D maps could also

provide information on traversable paths, for example low height obstacles seen by

small robots but not traversable by bigger robots could easily be excluded from the

paths of the larger robots.

And placing a 3D ranger, or a 2D ranger properly on the sycophant we will be capable

of creating a full 3D map of the environment.

Meanwhile, the mobile WSN should also track the SWS using a decentralized strat-

egy. If many nodes of the mobile WSN are going to track the SWS using the same

heading strategy, at a passage in the environment that cannot be traversed by all the

nodes altogether, some nodes would get stuck in that narrow passage and backtrack-

ing by choosing another route could mean loosing the connectivity with the target

which is the sycophant network in addition to unnecessary consumption of energy.

Another problem worth mentioning, which will make the tracking problem for seam-

less communication more difficult, is the following: the sycophant network is only

able to send periodic signals due to the power scarce nature of its nodes. So localiza-

tion and tracking should be solved using this sparse information.

1.3 Methodology

1.3.1 Tracking

This thesis starts initially with the single leader single follower tracking case, and

the solution consists of estimation of the location of the leader unit and the decision

and execution of corresponding motion control for the tracker. In this initial part

of the thesis it is assumed that only distance measurements are possible between a

sycophant and a mobile robot. Trackability in such a case is highly dependent on the

observability of the unit to be tracked. To make position estimation in such a case, a

motion control approach that forces the follower to do a high order jerky motion was

proposed in order to make position of the sycophant observable.

5

1.3.2 2D Map Merge

For map merging the posterior probability for single robot SLAM was directly ex-

tended to include the sycophant agent. For 2D map merging it is assumed that the

sycophant does not have any rangers and so its map consisted of a narrow empty

corridor around itself.

1.3.3 3D Maps from sparse horizontal 2D slices

Though 2D laser scanners placed on a mobile robot, and the corresponding sycophant

are not capable of performing 3D scans, they scan horizontal cross sections of the 3D

world. Utilizing cross sections taken at different levels we can make a rough 3D

map of the environment. Concentrating on indoor environments, which usually have

orthogonal features like walls, tables, etc. Hough transform of the maps at different

levels is utilized to find the rotational differences, and then the projections of the maps

on the X and Y axis are used in order to find the displacements along the respective

axis.

1.3.4 3D Maps

Placing the 2D laser ranger of a sycophant in such a way that it does not scan in the

horizontal axis, we can get non-horizontal slices corresponding to distinct cross sec-

tions of the world. If poses of these 2D slices are known, and they are dense enough,

a full 3D map could be successfully constructed. These locations are available if a

follower robots is able to properly localize the sycophant. Then with time synchro-

nization and data fusion a full 3D map can be constructed, and is constructed in this

thesis.

1.3.5 Connectivity Maintenance in Mobile Relay Networks

Though connectivity maintenance for a single sycophant single follower scenario can

be achieved by a proper tracking algorithm, more is required for a more crowded

6

network. For this, 3 different methods were implemented and tested. The first is

based on the idea that a robot is connected only to two of its neighbors by virtual

springs. Such a system at steady state places the robots on a line/curve. However,

this approach lacks in redundancy and robustness to node failures as well as any

regional connectivity problems. In order to solve those problems two novel methods

are introduced as well as two new performance measures.

The first proposed method is an imitation of the helix structure of proteins, where

in addition to having strong connections to two neighbors, amino acid residues form

weak connections to two other neighbors. The second method is based on acute

triangulation of the plane forming a Gabriel Graph, in which relays are connected

using virtual springs. The first performance measure introduced is updistance, and it

tells us how far the sycophant can go away from the sink. The second performance

measure is resistance, which tells us how sparse the network is. The resistance is

calculated on a Gabriel Graph of the network by considering the graph as a resistive

network.

1.4 Contribution of this Thesis

In this thesis we propose a new Wireless Sensor Network deployment architecture,

called Sycophant Wireless Sensor Network (SWSN). In addition we propose a new

tracking and connectivity maintenance algorithm for a single mobile robot single

SWSN deployment.

Taking into account the fact a sycophant is probably at a different level compared

to a follower, and considering that though continuities are expected to exist between

these two or more levels, we propose a different 3D mapping approach, which is

creating 3D volumetric maps from 2D maps created at different levels of the same

environment.

In this thesis yet another use of the sycophant is shown and proved in hardware, which

is creating a full 3D map of the environment by fusing laser data from the sycophant

and tracking information from the follower robot.

7

Two new connectivity maintenance methods for mobile relay networks, one based on

imitation of protein structures, and the other based on acute triangulation of the space

are proposed. In order to judge the performance of mobile relay networks a measure

called updistance, that measure how far the leader can travel, and another measure

called resistance, which measures how sparse the network is, are proposed.

1.5 Outline of the Thesis

In this thesis, after carrying an overview of related works in chapter 2, in chapter

3 some theoretical backgrounds on SLAM and Graph theory are given. In chapter

4 range only tracking of the sycophant as well as the hybrid map created by their

coordination is given. Later in chapter 5 construction of the novel rough 3D map, as

well as the full 3D map of the environment utilizing coordination of the sycophant

and the follower robot are given. In chapter 6 two new connectivity algorithms and

two new performance measures are introduced. Simulation results are presented and

discussed for a crowded network. In the final chapter this work is concluded and

some possible future research directions based on the work of this thesis are given.

8

CHAPTER 2

Literature Survey

In the first section of this chapter we provide literature on on-body sensor deploy-

ments and compare them with Sycophant Wireless Sensor Networks in order to show

the novelty of this new deployment scheme. The second section discusses range mea-

surement methods used in Wireless Sensor Networks and justifies our choice of Time

Difference of Arrival as a distance measurement technique. Afterwards in section

three literature on map merging in 2D is reviewed. This review is necessary both for

map merging in 2D, and also map merging in 3D since methods in 3D map merging

are extensions of 2D methods and also our 3D map is an extrapolation of 2D maps.

In the fourth section a briew overview of existing 3D mapping algorithms is given. In

the fifth section we provide a detailed review of connectivity maintenance algorithms

in leader follower networks as well as a summary of work on consensus, rendezvous,

leader following, flocking and formation control.

2.1 Wireless Sensor Networks

Our SWS subnets can be placed incognito on different carrying agents: aerial, under-

water or land vehicles as well as a human being. Wearable WSN are now appearing

in the literature [7, 8, 76, 51, 41] but contrary to our conceptual approach all are there

to get human centered data from the human himself/herself and his/her environment

under his/her knowledge.

Volgyesi et al. [71] present a WSN based mobile counter-sniper system consisting

of sensor nodes placed on the helmet(s) of soldier(s) and tripods. The sensor node

9

consists of a microphone array, a custom FPGA based sensor-board for acoustic pro-

cessing of time of arrival and angle of arrival, and a MICAz [1] mote for inter-node

communication. During the test, soldiers wearing the wireless sensor nodes did not

move and the system was able to estimate the trajectories of the shots ranging from

50-300m with a 96% success rate using 10 sensor nodes. However the success rate

for single sensor nodes was 42%.

Aylward et al. [7, 8] describe a design of custom made high communication rate

wearable WSN capturing expressive gestures of dance ensembles in real time. In

their design, a sensor node consisted of three orthogonal gyroscopes and accelerom-

eters that were used for capturing load dynamics together with capacitive sensors

measuring node to node distances. The sensor nodes can be placed on various parts

of the body, like arms or shoes or an accessory worn. Sensors are able to communicate

with each other, and as a result extract information about the correlation of gesture

patterns of a group of dancers. A group of three persons each having a single sensor

node on his right arm were tested and simple correlations for simple arm movements

were calculated.

There are also other studies that use wearable wireless sensor networks, but this time

to monitor person health, identify fall detection [18], and even to learn context depen-

dent personal preferences [40].

As the most relevant tracking mobile WSN example to our case, Mahlknecht and

Madani [48] propose deploying a WSN on containers to track containers used in trans-

portation based on an architecture consisting of internal monitors, container monitors

and prime monitors. Internal monitors are sensor nodes monitoring the inside of the

containers for temperature, light, humidity, etc. Container monitors are sensor nodes

that send data from the internal monitors to prime monitors, and are placed one per

container. Prime monitors are sensor nodes having global location awareness and an

infinite amount of energy. They have global connectivity and are placed as a single

monitor per ship/train.

As our literature survey shows, the vast majority of research works concentrate on

networks collecting data related to the agent itself, where the agent is aware of the

network it is carrying, and the sink is somehow reachable, either by being in the

10

vicinity or by letting some of network nodes have a large energy source. Our seminal

contribution in this thesis is a SWS network where the agent (carrier) is not aware of

the ecto-parasitic SWS network it carries and the SWS network collects information

about the environment of the agent independent of the agent task. Moreover in our

approaches in this thesis, the sink is assumed to be far away from the sycophant net,

and there is a finite source of energy available to the SWS subnet.

2.2 Distance Measurement in Wireless Sensor Networks

In this work, we use range-only measurements to track the sycophant WSN. Received

Signal Strength Indicator (RSSI), Time of Arrival (ToA) and Time Difference of Ar-

rival (TDoA) are three methods mentioned in the literature on range measurements

for wireless sensor networks [37].

RSSI measurements utilize the fact that signal strength decreases with distance. How-

ever, as is mentioned in the literature and also verified by our indoor tests performed

using IRIS Wireless Sensor Nodes [1], RSSI is not a reliable range measure.

Time of Arrival techniques assume that the time when a signal has been transmitted

is known and use the receive time to find the duration it takes for the signal to arrive,

and then the distance is directly calculated. However this approach requires highly

synchronized clocks.

Time Difference of Arrival techniques transmit an RF and an ultrasound pulse at

the same instant. Taking the fact that an RF pulse reaches almost instantly, a clock

is started upon receiving the RF signal and the time it takes for the ultrasound to

reach is measured, giving the required range measurement. Very accurate location

measurements have been reported in the literature using TDoA [56, 59].

2.3 Map Merging

Map merging in general, assumes that the robots know or can measure their relative

poses with respect to each other at some time instants, called rendezvous, during the

11

mapping process. Then this knowledge is used to find either the transformation or an

initial guess for the transformation of the reference frames.

Thrun et al. [68] assume that a leader robot has the global map, and although robots

initial poses are not known they start within the map of their leader, and use Monte

Carlo localization to localize themselves in this map and join the mapping process.

Konolige et al. [39] use a process they call zippering, where common locations be-

tween past robot trajectories of robot pairs are found using a sequential algorithm,

and then all scans of one map are fused to the other as if all scans were collected

by a single robot. Williams et al. [74] let the robots create local maps which are

merged into the global one at regular intervals. The transformation between the maps

is found by relative robot positions if available, if not it is found by feature matching.

Howard [35] uses multi agent SLAM where each robot starts its own SLAM suc-

ceeded by their interchanging of measurements. They are first able to measure each

others positions and then subsequently extend their particle filter to include states of

other robots as well as those of virtual pairs which are assumed to move backward in

time, providing the previous measurements. The author assumes that the uncertainty

in relative pose measurements is small. Although the method is a direct extension

of single robot SLAM, it has some drawbacks: it requires the robots to be always

within communication range during mapping; it has latency and requires the robots

to move at comparable speeds. Zhou and Roumeliotis [79] use the relative robot pose

only as a first estimate of the transformation matrix and use matching landmarks as

constraints to further improve the transformation. Leon et al. [45] require very pre-

cise inter-robot pose measurements for occupancy grids, then use scan matching to

complete the merging process. Andersson and Nygards [6] use a set of synchronized

inter-robot measurements at rendezvous points as an additional constraint to the non-

linear least squares minimization problem of finding the optimum map and trajectory

to find the transformation for landmark based maps.

Other papers in map merging do not require any knowledge of robot poses and make

use of various methods that will maximize the match between two maps.

Dedeoglu and Sukhatname [23] use heuristics to select a subset of the available land-

marks and then compare properties of same type landmarks to find the matching ones.

12

Afterwards, they calculate the transformation for each pair of landmarks and choose

the one maximizing the number of landmark matches. Birk and Carpin [12] find

the transformation that maximizes the match between occupancy grid maps to be an

adaptive Gaussian random walk that generates random samples at each iteration, and

measure the fitness of these transformations by an image similarity measure. How-

ever the method is computationally expensive. Carpin [17] uses sampled cross cor-

relation of Hough spectrum of the occupancy grids to find the rotation component of

the transformation, then utilizes cross correlation of the X-, Y- spectra to find the x,

y displacements of the transformation. Although the method is brittle when X-, Y-

projections of the map are not distinctive, the method is very fast compared to the pre-

vious one. Adluru et al. [4] use a virtual robot with local maps and the shapes of real

robots as range and odometry sensors respectively. Odometry is found by structure

registration.

Our setup is slightly different than the ones in the literature; one of the mobile agents

(the SWS) does not have any odometry information and thus, its pose needs to be es-

timated by the other agents using only range measurements. Therefore our proposed

solution needs to comply with this slightly different setup by relying upon a slightly

different methodology than those existent in the literature.

In the hybrid SLAM problem we propose, we assume that the major map merging is

done on a mobile node of the WSN, receiving environmental sensory data from the

sycophant sensor network, SWS, creating the mapping of the SWS from the received

data. The mobile tracker then fuses this map with its own and grows it by added

exploration when necessary, without interrupting its tracking mission. The critical

problem in such an incomplete map merging and its subsequent completion arises

from the fact that the exact location of the sycophant sensor network is not known and

needs to be estimated at all times through the tracker. Therefore the map alignment

process has to take this uncertainty into account by using both the generated map

and the range measurements. In this work we extend the posterior probability for

multi-agent SLAM to include range measurements as well as the state and map of the

SWS.

13

2.4 3D Mapping

Since this thesis works deals with partial reconstruction of the 3D map of a volumetric

environment as well as a full 3D map, we find it useful to give an overview of 3D

mapping work in the literature, for completeness.

Directly working with 3D laser data is expensive and therefore some authors have

concentrated on improving mapping performance by reduction of data, such as re-

ducing the number of samples used in comparing successive scans. For example,

[42] extract 2D virtual scans in different planes from 3D range scans and then com-

pare virtual scans of successive measurements using Iterative Closest Point (ICP) and

a local registration algorithm to find the 6DoF transformation matrix that results in

hundreds-fold performance increase compared to ICP utilizing all 3D range scans.

The work in [13] propose using surfaces instead of point clouds for registration.

Zhang et al. [78] propose a 3D sensory system which uses a digital fringe projection

and phase shift interferometry to provide real-time 2D and 3D information about the

environment at a speed of 30 frames per second. Then at the mapping phase, the

authors make use of landmarks, which are extracted using Scale Invariant Feature

Transform (SIFT).

Puente et al. [22] develop a feature based 3D mapping approach for semistructured

environments using a laser scanner employing a nodding data acquisition system.

Geometrical features are extracted using least squares fitting. For 6D localization the

maximum incremental probability algorithm based upon the Extended Kalman Filter

(EKF) is used.

Others concentrate on improving the storage of maps like Nagatani et al. [52] where

they use 3 robots and make use of Digital Elevation Maps (DEM) [32], which are 2D

grids where the highest elevation is stored for each grid cell. Nagatani et. al. in their

setup having a 3rd robot not capable of holding a rotating laser scanner, mount its 2D

laser in a tilted angle, and so its 3D map is formed by combining successive slices at

the same angle.

Welle et al. [73] concentrate on improving memory efficiency of a 3D SLAM based

14

on Rao-Blackwellized Particle Filter (RBPF), where the 2D concept is transferred to

3D. For this, they store obstacle points, without making use of a grid, in a DeltaOctree.

This tree stores deltas with respect to the center of the octree instead of absolute

positions, and do further improvements when storing the values, such as storing only

2 bytes instead of 4 whenever possible. They use a 2D laser scanner mounted so that

it is rotating in the yaw axis (scanning perpendicular to the yaw axis). They test in

gazebo an indoor environment, and a large outdoor area, around a building. In both

tests the particle filter closes loops successfully, although using 1000 particles are

used in a second case, and the best match particle is displayed.

Dryanovski et al. [27] present a multi-volume occupancy grid representation for 3D

maps of micro air vehicles, which consists of a grid of cells, each cell containing a

list of positive and negative readings corresponding to the starting and ending heights

of obstacles and free space respectively at that particular grid cell.

Marder-Eppstein et al. [49] use a full 3D voxel grid representing the whole 3D map

for an indoor autonomous robot, but instead of storing probabilities, they store a

ternary state at each voxel. The ternary state has occupied, free and unexplored as

values and therefore requires only two bits per voxel, which are packed in an integer

array.

Song and Jo [63] use Vanishing Points to rectify the perspective images obtained from

a stereo camera system. The vanishing points are found from the line features, like

doors, bulletin boards etc, of the image. 3D position is found by triangulation of the

corresponding lines between the stereo images.

Ryde and Hu [58] use multi resolution occupied voxel lists to represent the map of

the environment. In this representation, only the occupied pixels are stored as a hash-

list and the value of the pixel corresponds to the times the pixel has been marked as

occupied. The authors also mention extracting 2D level maps from 3D maps for use

by other robots.

15

2.5 Connectivity Maintenance

Connectivity maintenance is critical for search & rescue robotics as well as for Syco-

phant Wireless Sensor Networks. In search & rescue, the robots may loose connec-

tivity with the base station and even with each other due to cluttered highly irregular

environment and thus may not be able to convey information to the rescue base sta-

tion, or may even be trapped without being able to ask for help. To prevent such

situations, and increase collaboration between robots, it is necessary that the robots

maintain connectivity with each other, as well as with the base station. In Sycophant

WSN deployments, the sycophant nodes usually do not have strong RF transceivers

and it is also possible that the agent carrying the sycophant subnet wander in a diffi-

cult terrain, for example rubbles of an earthquake disaster area for search & rescue,

penetrating collapsed buildings. At that point, the communication with the SWS may

be highly likley to be lost. We had then to propose in our research work, a hybrid

architecture to supplement the sycophant subnet with mobile robots, acting as relays

to maintain connectivity with a base station.

Connectivity related issues have been discussed widely both in Wireless Sensor Net-

works in general, as well as in Mobile Ad Hoc Networks (MANET) more specifi-

cally. In this subsection, we overview works on connectivity maintenance in mobile

robot networks, and give detailed descriptions of works on leader-follower networks.

Search & rescue operations that include some leading robots or sycophant subnets

doing the exploration could be classified as leader-follower networks and therefore

connectivity maintenance in such networks requires special attention. Connectiv-

ity maintenance in leader-follower networks could also be seen as a mobile relaying

problem, due to the fact that non-leading robots act as relays.

Nguyen et al. [53] use a convoying strategy where all the relay robots convoy the

leading robot as it advances in the environment until the need for a relay shows up,

which is detected as the signal level dropping below a predefined threshold. At this

point the last robot in the convoy remains at that point, and the rest of the convoy

goes on following the leading robot. As the leading robot moves, RF shortcuts may

be detected causing a relocalization of the robots that do not relay anymore, which

happens by mobbing the robots through the path of the leading robot till they join the

16

convoy again. The authors show that this strategy, although consuming more power

compared to the case when robots are called from a base station as needed, lets the

leading robot reach its destination faster, with fewer pauses.

Dynia et al. [29] propose a strategy where mobile relays are placed equidistant to

each other along the line connecting the leader and the base station. The authors

assume that the terrain is obstacle free. In this strategy the line is formed by each

relay moving to the middle of its neighbors using a ”look, compute, move” strategy.

Connectivity is maintained by attaching a partner to each mobile relay and the leader.

As soon as the leader moves too far away from its neighbors, its partner moves to the

middle point between the leader and it neighbors. This strategy requires 2n robots

where n is the number of relays + the leader.

Then Dynia et al. [28] improve their previous strategy reported in [29] by injecting

new relays directly between their base station and the leader, removing the need for

partner robots. This strategy is called Chase Explorer. In this strategy, in addition to

keeping close to the line connecting the leader and the base, a relay tries to maintain

a predefined distance to its neighbor and to the leader. Authors also handle obstacles,

by taking the relay at the obstacle point as a base station for relaying between that

relay and the leader.

Chen et al. [19] use a potential field approach consisting of repulsive and propul-

sive parts where received signal strength is used as the distance measure between the

robots for the placement the relays. They also handle obstacles by a virtual potential

field between the relays and the obstacles.

Correl et al. [20] propose a probabilistic approach that does not need robot localiza-

tion and assumes that the relays are able to estimate the number of their neighbors and

can avoid obstacles in a bounded environment. In their approach, a relay node makes

Brownian motion if either the robot is not connected to the gateway or its neighbors

are too much or too few. So the robots mobbing randomly and avoiding each other in

a bounded environment are able to uniformly cover the environment.

Dixon and Frew [26] propose using the signal to noise ratio of the communication

links instead of the distance between the relays and find the optimum location for the

17

relays by moving the robots, autonomous aircrafts, on a globally stable limit cycle

produced by a Lyapunov Guidance Vector Field.

Stump et al. [66] solve mobile relaying in a leader-follower network in indoor en-

vironments by trying to maximize the second largest eigenvalue (Fiedler value) of

the weighted Laplacian describing the connectivity of the robot network. During this

process, they also aim at keeping the hop count between any two robots below a de-

sired value, which is done using a centralized algorithm. The authors utilize work

of Kim and Mesbahi [38], where connectivity constraints are expressed in algebraic

terms expressed as a function of the adjacency matrix, in order to maintain connec-

tivity despite obstacles and combine both the connectivity and the obstacle constraint

in a convex optimization problem solved at each step.

Tekdas and Isler [67] solve the same problem by providing wireless network con-

nectivity to a mobile user in mind. They utilize dynamic programming to generate

relay trajectories that establish a continuous communication link between the base

station and the user. The running time of the proposed algorithm is exponential, and

processing is central.

Authors of [54, 55, 65], propose using relay bricks that are deployed by the leading

robot which is actually the only robot in their scenario, instead of using multiple

mobile relays. This deployment is done as soon as received signal strength is below

a certain threshold. Nguyen et al take the idea of bricks one step further and propose

a system called Automatically Deployed Communication Relays (ADCR) system,

where the relay bricks are intelligent and are capable of correcting their position and

opening their antenna after being dropped from the leading robot. Although such a

relaying using exclusively this way of relay deployment is usually infeasible, mixing

mobile deployment of static relays with mobile relays provides new opportunities.

Although not directly related to connectivity maintenance in leader-follower net-

works, perspectives of works on other multi-agent systems such as consensus, ren-

dezvous [21, 25, 36], leader following [77], flocking and formation control [36], also

provide good insight for connectivity. Therefore a brief overview of the methods used

in the literature towards the aforementioned connectivity maintenance is appropriate.

In such systems, decisions and actions are generally based on local observations and

18

actions of a connected network, therefore research works focus upon connectivity of

the whole robot network. Most research on connectivity maintenance use potential

fields assuming large values for the potentials at the boundaries. Work in [24] takes

into account agent constraints and proposes a solution based on bounded potential

functions. [60] takes into account delays in communication when robots determine

actions that would prevent loss of connectivity. [31] still uses potential functions

in formation control but take also into account visibility problems caused by obsta-

cles. In [38] instead of using potential functions, authors maximize the second largest

eigenvalue of the graph Laplacian to maintain connectivity. In [77] connections be-

tween nodes are formed and deleted dynamically using an auction algorithm, whereas

other studies assume that any two nodes are connected as soon as one node is within

the sensing range of another.

Another distinct class of methods uses virtual springs between robot nodes. Virtual

springs approach has been previously used for connectivity management in forma-

tion control by [5, 30, 47, 57, 61, 70]. Reif and Wang [57] use a spring based graph

to reach a predefined structure. They initially adjust each spring’s equilibrium length

such that the desired structure is the only equilibrium point. Under local disturbances,

robot nodes are found to reach the equilibrium state and the graph achieves a final de-

sired structure. Esin et al. [30] use virtual springs between robots to prevent collisions

and keep a desired distance between them during shape formation. MacArthur and

Crane [47] use a virtual spring damper system between robots in order to maintain a

wedge or vee formation when the formation is following a trajectory. Urcola et al.

[70] use linear spring-damper to maintain distance between the nodes, and torsional

springs to maintain a given angle between them during leader following, allowing a

deformable structure which can comply with the environment. Aizawa and Kubota

[5] use directional springs to avoid some equilibrium points during leader following

in a triangular formation. Shucker and Bennett [61] use a mesh made of spring edges

between selected vertices and the robots are allowed to move under the influence of

forces due to these springs that provide damping for motion control during target

tracking. However forces are allowed only if the nodes are close enough and they

form one side of an acute triangle. In other words, a robot A is allowed to make

connections with another robot B, if and only if the triangle formed by ACB where C

19

is any other robot neighbor, is acute. Later on, Shucker and Bennett [62] extend the

approach to track point or diffuse targets where the equilibrium length of the virtual

springs connecting nodes that are close to the target is decreased, pulling the mesh

towards the target. Such tracking problems are similar to our mobile relaying prob-

lem and as will be explained in chapter connectivity, one of our methods will be the

application of this approach to connectivity maintenance.

20

CHAPTER 3

Theoretical Background

3.1 Graph Theory

In this thesis work, graph structures such as Laplacian matrix, algebraic connectivity

and Gabriel Graph have been used as a backbone to one of our proposed connectivity

maintenance algorithms. These concepts have also been used to develop an evalu-

ation criterion to compare performance. Therefore for the sake of completeness a

small introduction to Graph Theory is given in this section. The definitions have been

mainly compiled from [9] and [14].

A graph G is an ordered pair (V(G), E(G)) consisting of a set V(G) of vertices and a

set E(G) of edges consisting of distinct unordered pairs of vertices.

Order and size of a graph are defined as the number of vertices and edges respectively.

A vertex could stand for a robot, a city, a point whereas an edge could stand for a

communication link between two robots, a road between two cities, a line between

two points.

In this thesis vertices correspond to robots, and edges correspond to either commu-

nication links connecting neighboring robots or forces applied by neighboring robots

to each other.

21

1

2

3

4 a

b

c

de

Figure 3.1: Example graphs, the first two have labeled vertices, whereas the third has
its vertices not labeled

3.1.1 Laplacian Matrix

Definition 3.1.1 Let G be a graph with V(G) = {1, ..., n} and E(G) = {e1, ..., em}.

The Laplacian Matrix of G, denoted by L(G), is defined as the nxn matrix whose

columns and rows are indexed by V(G) and (i, j)th entries are defined as −1 if vertices

i and j are adjacent, 0 if not. And the (i, i)th entry is defined as the degree of the

corresponding vertex, namely vertex i.

Let D(G) be the diagonal matrix of vertex degrees, and A(G) be the adjacency matrix

of G, then obviously L(G) = D(G) − A(G)

3.1.1.1 Adjacency Matrix

Definition 3.1.2 Let G be a graph with V(G) = {1, ..., n} and E(G) = {e1, ..., em}.

The Adjacency Matrix of G, denoted by A(G), is defined as the nxn matrix whose

columns and rows are indexed by V(G) and (i, j)th entry is 1 if vertices i and j are

adjacent, 0 if not. (i, i)th entry is 0.

Definition 3.1.3 If vertices i and j are endpoints of an edge in a graph, then they are

said to be adjacent to each other. In other words they are neighbors of each other.

Adjacency of two vertices i and j is usually denoted by i ∼ j.

Definition 3.1.4 A graph G is called disconnected iff its vertex set V(G) can be par-

titioned into two disjoint sets V1 and V2 in such a way that there is no edge in E with

22

one vertex from V1 and another from V2. A graph that is not disconnected is called

connected.

Definition 3.1.5 The degree d(i) of a vertex i is defined as the number of vertices its

adjacent to, or equivalently the number of edges in which the vertex i is an endpoint.

Definition 3.1.6 Let G be a graph with the Laplacian Matrix L(G) whose sorted

eigenvalues are 0 = λ1 ≤ λ2 ≤ ... ≤ λn. The second smallest eigenvalue λ2 is

called the algebraic connectivity of G, and is denoted by µ(G), or simply µ. The term

algebraic connectivity was introduced by Fiedler [].

A value of 0 for µ means that the graph is disconnected, whereas a value of n means

the graph is fully connected, in other words there is an edge from every vertex to

every other.

1

2

3 4

5

6 7

Figure 3.2: A sample graph

Below the adjacency matrix of graph of figure 3.2 is given as an example.

A(G) =



0 0 1 0 0 0 0

0 0 1 0 0 0 0

1 1 0 1 0 0 0

0 0 1 0 1 1 0

0 0 0 1 0 1 1

0 0 0 1 1 0 0

0 0 0 0 1 0 0



23

1

2 3 4

5 6

7

8

Figure 3.3: A sample graph

1

2

3

4

5

6

7

8

Figure 3.4: A sample graph

Below the Laplacian matrix of graph of figure 3.4 is given as an example.

L(G) =



2 −1 −1 0 0 0 0 0

−1 2 0 −1 0 0 0 0

−1 0 2 −1 0 0 0 0

0 −1 −1 4 −1 −1 0 0

0 0 −1 0 2 −1 0 0

0 0 0 −1 −1 4 −1 −1

0 0 0 0 0 −1 2 −1

0 0 0 0 0 −1 −1 2


Eigenvalues of the graph given in figure 3.3 are [0.00, 0.15, 0.58, 1.23, 2.00, 2.76, 3.41, 3.85]

and its algebraic connectivity is µ = 0.15

Eigenvalues of the graph given in figure 3.4 are [0.00, 0.46, 1.75, 2.00, 3.00, 3.00, 4.24, 5.54]

and its algebraic connectivity is µ = 0.46

Comparing the algebraic connectivities of the graphs given in figures 3.3 and 3.4, it is

seen that the first graph has a smaller algebraic connectivity meaning its connectivity

is easier to be lost. Removing any single edge from the first graph makes it discon-

nected. However the same cannot be said for the second graph. In order to make it

disconnected, at least two edges have to be removed.

24

3.1.1.2 Gabriel Graph

A

B

C1

C2

C3

(a)

A

B

C1

C2

C3

(b)

Figure 3.5: The line AB is can be part of an acute triangle since there is no node in
the circle with diameter AB. Note that any triangle AB is part of, is acute. However
the same could not be said for the second graph. There is a node C1 in the circle with
diameter AB and the resulting triangle is not acute.

A Gabriel Graph G(V, E), is the graph in which a pair of nodes constitute an edge

of that graph if and only if the circle whose diameter is that pair does not encircle

any vertex of G. In figure 3.5(b) vertex C1 is in the circle whose diameter is the line

AB, therefore AB is not an edge of a Gabriel Graph. However in figure 3.5(a), the

circle does not contain any vertex and therefore AB is an edge of a Gabriel Graph.

Construction of a Gabriel Graph and acute triangulation of the space, where edges

on a vertex set are created in such a way that only acute triangles are formed, are the

same. An easy way of acute triangulation of the space is the circle test (figure 3.5).

A B

C

(a)

A B

C

(b)

Figure 3.6: (a) An acute triangle’s all three angles are less than 90◦, (b) whereas a
non-acute triangle has one of its angles larger than 90◦, note that ÂCB > 180◦

25

CHAPTER 4

Tracking and 2D Map Merging

As an initial part of this thesis work, a network consisting of a single follower and

a single leader agent carrying four sycophant sensors is developed and tested in the

simulator. Tracking performance of the system as well as its 2D hybrid mapping

capabilities are analyzed and presented in this chapter. For a more realistic simula-

tion and realizable hardware implementation, one of the available distance measure-

ment methods, namely the Received Signal Strength Indicator (RSSI), is tested for

efficiency indoors and outdoors using wireless Sensor Nodes. However, measure-

ments showed that RSSI is not a good measure of distance in indoors and therefore

it is dropped from our approach in favor of the Time Difference of Arrival (TDoA)

method.

In the next section, RSSI measurements taken indoors and outdoors are presented

and discussed. Then in the second section the hardware framework for this scenario

is given, followed by methodology and experimental results for tracking as wells as

2D hybrid mapping.

4.1 RSSI for Distance Estimate

Received Signal Strength Indicator (RSSI) is a measure of the strength of a received

RF signal. The farther we go away from a point source, the weaker its received RF

signal becomes. And in free space they are correlated by

RSSI ∝ Remitted
1
rβ

26

where r is the distance between the emitter and the receiver, Remitted is the signal

strength of the emitted signal, and β is an environment dependent constant. We use

Crossbow sensors which are able to report the received signal strength in units of dBm

and therefore it was decided to take measurements in different indoor environments

to see if there is any relationship indoors between RSSI and the distance between the

receiver and emitter.

In order to reduce experimental errors in any given indoor/outdoor environment, 5

to 8 RSSI measurements were performed at each distance between the receiver and

the emitter. Then mean of the collected data as well as its standard deviation and the

corresponding number of measurements for the respective run are given in respective

figures.

Data was first collected in a corridor of METU EE’s A building, placing the receiver

on one of the the centerline and moving the emitter along the center line away from

the receiver. The centerline is a virtual line passing through the middle of the corridor

and extending from one end to the other. As the plot in figure 4.1 shows, in long

corridor like environments, the corridor behaves like a waveguide, and results in a

somehow constant signal strength beyond approximately 5 meters. In other words,

RSS does not give sufficient information about the distance after 5 meters.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60
EA building 1st floor corridor (5 samples per data point)

A
v
e

ra
g

e
 R

S
S

 v
a

lu
e

 (
d

B
m

)

Distance between the sender and the receiver (meters)

Figure 4.1: RSS measurements taken in the 1st floor corridor of METU EE’s A build-
ing

The second experiment was done in the alley in front of METU EE’s A block. As fig-

27

ure 4.2 shows, although the resolution is low, RSS provides distance information for

a longer range than for the case of the indoor corridor like environment. It is possible

to be informed about distance based on RSS values in this outdoor experiment up to

16 m, after which signal strength drops considerably.

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60
Alley in front of EA building (7 samples per data point)

A
v
e

ra
g

e
 R

S
S

 v
a

lu
e

 (
d

B
m

)

Distance between the sender and the receiver (meters)

Figure 4.2: RSS measurements in the alley (only the first 18m between two stairways)
in front of METU EE’s A block

In subsequent experiments data was collected in three different classrooms, for two

different configurations. In the first configuration data was collected when the sender

and receiver were in direct line of sight of each other. And in the second configura-

tion, an obstacle (my body) was placed between the sender and receiver, and motion

started from the end of the class (the motion was a continuation of the motion in the

first configuration). First data was collected in two different places of a classroom

(EA206) , one on the centerline of the class (figure 4.4), and the others on a line close

to the window (figure 4.3). When an obstacle is placed in between, signal strength is

found to drop considerably, and measurements become almost unusable for distance

information, especially beyond 5 meters away from the receiver.

Then similar measurements were done in another classrom (EA202) and our com-

puter laboratory and the measurements are presented in figures 4.5 and 4.6 respec-

tively. In EA202, the data was collected from the center line of the classroom whereas

in the laboratory the data was collected from a line close to the windows. The conclu-

28

sion is similar: signal strength drops considerably and the measurements are almost

unusable for distance estimattion when an obstacle is placed between the receiver and

the emitter, and when there is no obstacle usability though the data is usable for the

first few meters, it is not usable afterwards.

0 5 10 15
0

10

20

30

40

50

60
EA 206, close to window (8 samples per data point)

A
v
e

ra
g

e
 R

S
S

 v
a

lu
e

 (
d

B
m

)

Distance between the sender and the receiver (meters)

No obstacle in between

Obstacle in between

Figure 4.3: RSS measurements on the door side (close to the windows) of class EA
206. The top curve corresponds to the case of no obstacle, and bottom curve to the
case of obstacle between the receiver and the sender.

Although RSS is able to provide us with a measure of distance, even in outdoor envi-

ronments where information is preserved for a longer distance despite reductions of

signal strength, the resolution is quite low. In indoor environments on the other hand,

RSS revealed to be partially useful, since we got only a very rough approximation

of the distance between the receiver and emitter, and the worse case occured for an

obstacle in between which did easily upset our estimation of the distance. This made

our implementation of RSS to wearable SWS not feasible. And with these measure-

ments we concluded that in order to estimate the distance between an emitter and a

receiver in addition to RSS based distance measurements we needed to exploit other

methods .

The next section introduces our finalized wearable SWS configuration mounted on a

jacket that resulted from the experiments carried in this section.

29

0 5 10 15
0

10

20

30

40

50

60
EA 206, on the center line of the class (8 samples per data point)

A
v
e

ra
g

e
 R

S
S

 v
a

lu
e

 (
d

B
m

)

Distance between the sender and the receiver (meters)

No obstacle in between

Obstacle in between

Figure 4.4: RSS measurements on the center line of class EA 206. The top curve
corresponds to the case of no obstacle, and bottom curve to the of obstacle between
the receiver and the sender.

0 5 10 15
0

10

20

30

40

50

60
EA 202, on the center line of the class (6 samples per data point)

A
v
e

ra
g

e
 R

S
S

 v
a

lu
e

 (
d

B
m

)

Distance between the sender and the receiver (meters)

No obstacle in between

Obstacle in between

Figure 4.5: RSS measurements on the center line of class EA 202. The top curve
corresponds to the case of no obstacle, and bottom curve to the of obstacle between
the receiver and the sender.

4.2 Hardware Framework

In this work our sycophant WSN consists of four IRIS nodes [1] mounted on a vest,

two on the front two on the back (Fig. 4.8), and a mobile WSN node consisting of

30

0 2 4 6 8 10 12
0

10

20

30

40

50

60
EA Computer Lab (8 samples per data point)

A
v
e

ra
g

e
 R

S
S

 v
a

lu
e

 (
d

B
m

)

Distance between the sender and the receiver (meters)

No obstacle in between

Obstacle in between

Figure 4.6: RSS measurements on the door side (close to the windows) of the com-
puter lab. The top curve corresponds to the case of no obstacle, and bottom curve to
the of obstacle between the receiver and the sender.

Magellan (Fig. 4.9), a differential-drive mobile robot having 16 infrared, and 16 tac-

tile sensors. The IRIS nodes contain temperature, humidity, barometric pressure and

ambient light sensors as well as a dual-axis accelerometer. The nodes run TinyOS [3],

an open source operating system designed for wireless embedded sensor networks,

and are able to run custom programs written in nesC. The wireless communication

protocol used is IEEE 802.15.4 and communication occurs at 2.4GHz. To overcome

the difficulties of interfacing the mobile node and the sycophant WSN, the mobile

robot is connected to an on-top IRIS node through the serial communication chan-

nel. The nodes of our Wireless Sensor Network provide SPI or I2C communication

protocol interfaces. However our MagellanPro mobile robot provides only an RS232

interface. In order to communicate the robot and the WSN one of the nodes was se-

lected and it was interfaced through an SPI to RS232 converter that was implemented

as part of this thesis (figure 4.7). Afterwards a small driver software was implemented

to receive and parse the data that comes from the selected sensor node.

On the other hand the simulations are run in Webots [50] simulation environment.

31

Figure 4.7: An SPI to RS232 convertor used to interface MagellanPro to the Wireless
Sensor Network.

Figure 4.8: Front and back view of the vest, which is part of our experimental setup,
with sensor network nodes mounted in the pocket areas

(a) (b)

Figure 4.9: (a) Mobile robot Magellan, which is part of our experimental setup, with
a wireless sensor network node mounted on the top platform. (b) Lab environment.

32

4.3 Simulation Framework for 2D Map Merging and Tracking

For 2D map merging and tracking we have used the world given in Fig 4.11. Here

both the host carrying the sycophant network and the follower were modeled as Mag-

ellanPro robots. The sycophant robot had four transmitters each seeing a different

quadrant, and the follower robot had a transmitter seeing all quadrants, imitating de-

ployment of a TDoA hardware (figure 4.10). In figure 4.11 the SWS is represented

symbolically as a trio of cicles in a triangular configuration, representative of the SWS

nodes of a wearable SWS for example, and the Magellan mobile robot is represented

by a single square. Numbered gray rectangles denote obstacles, and the dashed line

connecting K and L stands for one of the trajectories that the SWS follows during the

simulations. Letters A, B, C, D stand for different positions of the environment and

are used below to describe the experimental scenarios.

Figure 4.10: The sycophant network mounted on top of a magellan robot imitating
the carrying agent (left), and the follower robot (right). The sycophant network con-
sists of four nodes each facing a different quadrant of the environment, whereas the
follower robot has a node facing the whole environment.

33

(a) (b)

Figure 4.11: Worlds used in the simulation

4.4 Methods

In this section, in order to develop the tracking methodology we restrict ourselves to a

single mobile node (in our implementation: Magellan) and four SWS nodes mounted

on a vest that a person wears. The sensors are placed in different quadrants of the vest,

namely front left, front right, back left and back right. This way we make sure that

not all ultrasound signals used for Time Difference of Arrival (TDoA) are blocked,

and distance measurements in all directions are possible, letting the human move in

any directions.

Having a single mobile node and therefore not being able to trilaterate to locate per-

fectly the SWS subnet we assume that the initial location of the SWS subnet relative

to the mobile node is known. Then we use the range measurements obtained using

TDoA to detect changes in the location of the SWS subnet.

A small variation in the range measurement would mean that the SWS network is ei-

ther approaching or receding depending on the gradient of the change. So the mobile

node has to either approach or recede. On the other hand an abrupt change in the

range measurement, which could also mean completely loosing the signal, would be

generated by an obstacle in-between causing high attenuation and the mobile node

should then relocate such that the effect of the in-between obstacle is removed and

communication with the SWS subnet is re-established.

34

4.4.1 Building Blocks Of The Problem

In this thesis work, the follower robot is given the task of integrating SWS data with its

own data. The tracker therefore takes upon itself most of the computations. The SWS

collects data as the carrying agent follows an uncontrollable path. For the sake of

efficient discusssions of the results we chose to have a predefined path for the carrying

agent. The SWS transmits the collected data to the mobile robot periodically. The

block decomposition of the proposed architecture, which runs on the mobile robot, is

given in figure 4.12. The algorithms used in each block are explained in the following

subsections.

Figure 4.12: Block decomposition of the proposed architecture.

4.4.2 Generating The Multi-Agent SLAM

Having noisy odometry, and being in a crowded environment with obstacles, the mo-

bile agent has to properly localize itself and map the environment. Consequently, it

has to be able to plan paths to be taken during navigation and reason about them when

modifications are needed. Uncorrected odometry will certainly degrade tracking per-

formance, adversely affecting the on-board mapping of the mobile unit. To improve

mapping performance, we also take into account the mapping capability of the SWS

subnet during the map building process. This capability is highly constrained but en-

ergy efficient. In the context of this thesis the SWS subnet is only deployed on one

host (carrying agent), so that the sycophant subnet is assumed to be a single node for

35

mapping purposes. In order to join the maps created by the sycophant as well as the

mobile robot we develop the following approach.

The single robot full SLAM problem is defined as finding the conditional posterior

probability p(x1:t,m|z1:t, u1:t) where x is the robot state, m is the map, z is the vector

of sensor measurements, and u is the input. This posterior probability is decomposed

into:

p(x1:t,m|z1:t, u1:t) = η · p(zt|xt,m) · p(m|x1:t, z1:t−1)

· p(xt|xt−1, ut−1)

· p(x1:t−1,m|z1:t−1, u1:t−1)

where p(m|x1:t, z1:t−1) and p(xt|xt−1, u1:t−1) are state updates, and p(zt|xt,m) is the mea-

surement update.

The posterior probability to be used when solving a two robot SLAM problem is

p(1x1:t,
2x1:t,m|1z1:t,

2z1:t,
1u1:t,

2u1:t) . However, in our own scenario, there is another

measurement r, which is the distance between the tracker and the SWS. r is measured

using TDoA, and is the only measurement between the tracker and the SWS. Taking

also into account that the SWS does not have any odometry, the posterior probability

for this problem becomes p(1x1:t,
2x1:t,m|1z1:t,

2z1:t,
1u1:t, r1:t) where 1x and 2x belong

to the mobile robot and the SWS respectively. Decomposing this posterior probability

we get:

p(1x1:t,
2x1:t,m|1z1:t,

2z1:t,
1u1:t, r1:t) =

η·p(1zt|
1xt,m) · p(2zt|

2xt,m)

·p(rt|
1xt,

2xt) · p(m|1x1:t,
2x1:t,

1z1:t−1,
2z1:t−1)

·p(1xt|
1xt−1,

1ut−1) · p(2xt|
2xt−1)

·p(1x1:t−1,
2x1:t−1,m|1z1:t−1,

2z1:t−1,
1u1:t−1, r1:t−1)

In this thesis this expression is implemented by extending the grid based SLAM [69]

algorithm to include the new terms; such as the state and measurement updates for

the SWS, which are p(2xt|
2xt−1) and p(rt|

1xt,
2xt) respectively. Since in this work we

do not possess any heading information due to the fact that the sycophant network

does not have any node with a ranger/camera, we assume that its mapping consists of

marking a rectangular area around its pose as empty.

36

4.4.3 Tracking

In this work two different types of tracking algorithms are used. The first one, which is

utilized to find tracking performance in the first two cases to be described in section

on experimental results, is a simple Kalman Filter. The second tracking algorithm

is done within the multi-agent SLAM framework described in the previous section.

When tracking the SWS we are trying to find the posterior probability p(2x1:t|
1x1:t, r1:t)

, which can be further decomposed as

p(2x1:t|
1x1:t, r1:t) = η · p(rt|

2xt,
1xt) · p(2xt|

2xt−1,
1xt)

· p(2x1:t−1|
1x1:t−1, r1:t−1)

where p(rt|
2xt,

1xt) and p(2xt|
2xt−1,

1xt) are respectively measurement and state up-

dates of the tracking problem. Since 2xt and 1xt can be taken as independent, the state

update becomes p(2xt|
2xt−1)

These state and measurement updates are terms included in the posterior probabil-

ity generated for the Multi-Agent SLAM. This inclusion is also intuitively expected,

because the posterior probability for Multi-Agent SLAM aims to find the robot and

SWS trajectories as well as the map, given the sensor measurements and robot con-

trols as well as the relative distance measurement between the robot and the SWS

node.

Tracking using range-only measurements is possible only if the corresponding track-

ing system is fully observable. Full observability for a range-only tracking system is

achievable only if the tracker’s dynamic equations are at least one degree higher than

that of the targets’, as is shown by Song [64]. For example, if the target is following a

constant velocity trajectory, the tracker has to have an acceleration. In our implemen-

tation, the tracker dynamics was considered jerky (3rd order) in order to follow any

type of acceleration/deceleration of the human wearing the SWS built-in vest.

4.4.4 Robot Navigation

In this block we use Rapidly-exploring Random Trees (RRT) [43] to generate the path

that the robot units will follow using motion control commands. RRT are randomized

37

data structure designed for a broad class of path planning problems. RRT explore the

free space by randomly selecting points and adding them to the tree. The exploration

is biased towards unexplored regions of the space and is able to quickly cover the

empty space. RRT are able to handle nonholonomic constraints, including dynamics,

and high degrees of freedom.

RRT are fast and being a random path generation technique can automatically cre-

ate jerky paths that satisfy the observability requirement mentioned in the previous

subsection.

Though there are many different variations on generating RRT, the following algo-

rithm was used throughout this work. To speed up path generation and avoid prob-

lems related to incompatibilities between the ideal RRT control inputs and noisy robot

control inputs, dynamic and kinematic parameters were not included in the state. The

state had only three components: x and y position as well as the heading of the robot.

The algorithm given in algorithm 1 starts with an empty tree of vertices where each

vertex stores the state and a link to its previous state so that by back-tracing through

these back-links, one can get all the intermediate states leading to the current one.

Then the initial state is added as a vertex to the tree. Afterwards, the following steps

are undertaken untill the maximum iteration count is reached or a vertex close enough

to the final state is obtained: First a random state is selected from the configuration

space. Then a node from the tree that is closest to this random state or the final state

is selected depending on the outcome of a random number which is compared to a

value, called GOAL BIAS. This bias value is used to grow an RRT towards the final

state, so that the algorithm converges quicker. After this, a new node that is between

the random node and the new node is created. This final node created is added to the

tree if it does not fall into an obstacle space. After enough iterations the algorithm

outputs the tree which can then be traced to read out the desired path.

A few words about the parameters used in the algorithm are as follows: Selection of

the goal bias is environment dependent and having a large value is usually not recom-

mended because it can degrade the performance in a crowded environment. Distance

of the final node to its closest node depends on RANDOM EPS, and this parameter

also affects convergence speed. It is generally taken as a uniform random number

38

between 0 and an εmax. If εmax is taken too large, then the steps of the algorithm will

be large and the algorithm may never get close enough to the final state. On the other

hand if it is too small, one would need many iterations to reach the final state.

Algorithm 1 A Basic RRT Algorithm
1: procedure Basic RRT(x0, x f ,mapobstacle) . Initial and destination states, map of

the environment

2: Tree.add(x0);

3: i← 0

4: repeat

5: xr ← RANDOM S T AT E()

6: if (rand ≤ GOAL BIAS) then

7: xc ← Tree.getClosestTo(x f)

8: else

9: xc ← Tree.getClosestTo(xr)

10: end if

11: xn ← xc + RANDOM EPS ∗ (xr − xc)

12: if (xn < mapobstacle) then

13: Tree.add(xi)

14: end if

15: until (i ≥ MAX IT ERAT ION COUNT) or (‖xn − x f ‖ < ε)

16: return Tree

17: end procedure

An RRT expanding in free space could be seen in Fig 4.13, and an RRT generated to

connect two points in a simulation environment could be seen in Fig 4.14

Figure 4.13: A Rapidly-exploring Random Tree expanding in free space.

39

Figure 4.14: An RRT from one of the simulation runs, the green and the blue lines
form the RRT, the blue line is the path the robot will follow as it goes down.

4.4.5 Motion Control of the Mobile Robot

This block contains our proposed motion control methodology as the main high level

loop in our framework. The methodology that integrates the hybrid multi agent

SLAM, RRT based path generation and tracking is best explained using the block

diagram of figure 4.15.

Note that, the SWS network sends periodic signals to the tracker which may have

a large period due to scarcity of energy, so that getting a distance measurement for

the SWS (target) by the tracker at every time step is not possible, thus decreasing the

quality of target state estimation.

The solution in obstacle free regions is straightforward: as the signal strength de-

creases, the mobile robot moves closer to the SWS network. Getting closer is allowed

when the distance is above a predefined threshold and this allowance stops when the

distance is below another predefined threshold. When the mobile robot is too close,

instead of standing still, the mobile robot begins to explore its surrounding without

40

loosing contact with the SWS. This exploration increases tracking performance as

well as mapping performance. In order to avoid high oscillations and prevent quick

maneuvers of the follower robot, the interval between thresholds should be kept large

enough. In our implementation the lower and higher thresholds were varied for dif-

ferent scenarios between 0.5 to 2 meters and 2 to 4 meters respectively.

When obstacles are present in the medium, the behavior of the tracker becomes a bit

different. Assuming that range measurements are interrupted due to an obstacle in the

communication path, the mobile robot does not have to go on performing a complex

motion (here 1 degree higher than the SWS dynamics) to preserve observability of

the system, instead it goes to the just estimated position of the SWS using the shortest

path, not to loose the SWS due to missing data that are causing missing measure-

ment updates in the tracker. When communication is reestablished the mobile agent

resumes its standard tracking and map building operations.

So the main motion characteristic of the mobile tracking unit is to keep the SWS

always within a predefined distance range and be visible to it for uninterrupted com-

munication, to make jerky motions for everlasting observability of the SWS, and to

explore its immediate neighborhood when possible.

4.5 Experimental Results and Discussion

In this thesis four different cases were run on the same simulation environment of our

mechatronics lab (figure 4.11). The first three cases whose results are presented in the

next subsection were run to demonstrate tracking performance, and therefore a high

quality mapping with little sensor and odometry noise was assumed.

4.5.1 Tracking Results

In the first case the SWS network and the mobile robot are in an obstacle free portion

of the environment (denoted as empty region D in figure 4.11), and there is no adverse

effects for their mutual communication. The agent carrying the SWS network moves

and stands still for certain time slots. For a pictorial description of the scenario and

41

the results, the real trajectories of the mobile node and the SWS subnet as well as the

SWS trajectory as it is estimated by the mobile tracking robot are given in figure 4.16,

and time evolution of these trajectories are given in figure 4.17.

As can be seen in the figures, the tracker follows a random trajectory which is the out-

come of the RRT algorithm that guides the robot motion. The path has intentionally

not been smoothed in order to provide the jerky motion required to make the SWS

system observable. The estimated trajectory of the SWS by the tracker is seen to be

close to the original one in form, while the average measurement error is 0.31 meters.

Wireless sensor nodes do not continuously broadcast RF signals, making it necessary

to run the experiments using different broadcast intervals. Therefore, this scenario

was also run using different measurement update intervals in order to find a correla-

tion between the error and measurement update intervals. The results are presented

on table 4.1.

Table 4.1: Average error for different measurement update intervals, where the state
update interval was chosen to be 0.064 seconds (first case in text)

Measurement
update interval

(seconds)

Average Error
after 10 runs

(meters)

Standard
devia-
tion

0.064 0.25 0.05
0.320 0.34 0.09
0.640 0.46 0.09

The first column of table 4.1 gives the measurement update interval in seconds; the

second column shows the average error of 10 standard runs in meters. As the table

shows by comparing its first and third rows, having a measurement update interval 10

times that of the state update causes larger errors.

In the second case, the SWS network starts from region A and goes through region

B to region C. The mobile node follows the SWS network but communication is

deliberately and randomly blocked in region B for a distance of approximately 1

meter in the y-axis. The trajectories of the mobile node, the SWS subnet, and its

estimated position for a sample run are given on figure 4.18.

Despite the interruption in communication the tracker is able to successfully estimate

42

SWS network’s trajectory. The form of the estimated trajectory is very close to the

real one and the average error is 0.22 meters. The average error in many runs of the

simulations was found to be 0.22 meters with a very small standard deviation, which

is 0.01.

Simulations were also run for different maximum minimum allowed proximity val-

ues. For the first case described above, the maximum allowed distance between the

SWS and its tracker was increased from 1.5 meters to 3 meters, and then it was ob-

served that the mean error increased upto 0.6 meters. And as communication is bro-

ken, the SWS is easily lost. Although following the target at a close distance is the

best option in terms of tracking, the allowed distance thresholds certainly depend on

the mission for which an efficient proximity value interval is to be assigned.

In the third case, the SWS moves in a more complex environment incorporating more

obstacles, following the trajectory KL(figure 4.11). The mobile unit (Magellan) fol-

lows it as a tracker. For a pictorial description of the scenario and the results, we

provide the x-y trajectories of the mobile node and SWS subnet as well as its esti-

mated position by the tracker for one of the simulation runs in figure 4.19, and the

time evolution of each trajectory in figure 4.20. The average errors for various mea-

surement update intervals for this case are given on table 4.2. Comparing the results

of the third and first two scenarios, the average error is larger due to the fact that

the tracker has to adapt to more maneuvers in the 3rd case compared to the previous

ones. The results are still satisfactory: the robot can properly track the SWS using

range measurements only.

Table 4.2: Average error for different measurement update intervals, where the state
update interval was chosen to be 0.064 seconds (third case in text)

Measurement
update interval

(seconds)

Average Error
after 20 runs

(meters)

Standard
devia-
tion

0.064 0.33 0.07
0.320 0.51 0.11
0.640 0.68 0.11

43

Estimate New SWS Pose

Get measurement if available

Enough z
k
 in last

N seconds?

Generate new path

Sycophant
net too far

 SLAM

Next Step

Sycophant
net too close

state=approch SWS

state=explore surrounding

No

Yes

No

Yes

NoYes

state=previous state

Figure 4.15: Block diagram showing algorithm for Motion Control block. zk stands
for measurements 44

0 0.5 1 1.5 2 2.5 3 3.5 4
−6

−5

−4

−3

−2

−1

0

1

x coordinate (m)

y
 c

o
o

rd
in

a
te

 (
m

)

Motion in the x−y plane

SWS

Estimated SWS

Mobile Robot

Figure 4.16: Trajectories of the mobile robot, the SWS network and its estimated pose
in obstacle free region. Measurement update is executed every 0.64 seconds, whereas
the state update is done every 0.064 seconds.

45

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

M
o

ti
o

n
 o

n
 x

−
a

x
is

 (
m

)

Time (s)

SWS

Estimated SWS

Mobile Robot

0 10 20 30 40 50 60 70 80 90
−6

−5

−4

−3

−2

−1

M
o

ti
o

n
 o

n
 y

−
a

x
is

 (
m

)

Time (s)

SWS

Estimated SWS

Mobile Robot

Figure 4.17: Time evolution of the trajectories given in Fig. 4.16.

46

Figure 4.18: Trajectories of the mobile robot, the SWS network and its estimated
pose starting from region A through B to C. Time interval between two measurement
updates is 0.64 seconds and the state update interval is 0.064 seconds.

47

−1 0 1 2 3 4 5 6
−6

−5

−4

−3

−2

−1

0

1

2

3

4

x coordinate

y
 c

o
o

rd
in

a
te

Motion in the x−y plane

SWS

Estimated SWS

Mobile Robot

Figure 4.19: Trajectories of the mobile robot, the SWS network and its estimated
pose as it follows the trajectory KL. Measurement update is done every 0.64 seconds,
and the state update is executed every 0.064 seconds.

48

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

M
o

ti
o

n
 o

n
 x

−
a

x
is

Time (s)

SWS

Estimated SWS

Mobile Robot

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

M
o

ti
o

n
 o

n
 y

−
a

x
is

Time (s)

Figure 4.20: Time evolution of the trajectories given in Fig. 4.19.

49

4.5.2 2D Map Merge Results

In the fourth case, we show how hybrid SLAM (multi agent SLAM) improves map-

ping using the world in figure 4.11(a) and a minimum allowed proximity of 2 meters

between the two agents.

In this section we dwell on extending the primary mission of the mobile robot which

is to properly track the SWS that we analyzed in previous sections by improving the

generated map of the environment, utilizing mapping capabilities of the SWS too.

This way a larger area is covered using less energy, and areas traversable only by

the SWS are mapped too. Results in this section are obtained using the multi agent

SLAM approach described in section 4.4.2. Note that the map term in the SLAM

algorithm described in section 4.4.2 contains the merged 2D map of the environment

created by the SWS and the follower robot. However in order to show the advantages

of this hybrid mapping approach, non merged separate maps were also created, and

they are shown together with the merged map in the figures of this subsection (figures

4.21, 4.22, 4.23 and 4.24).

In figure 4.21 the top left region is not yet explored by the mobile robot, but this

region is already traversed and partially mapped by the SWS. This partial map is

merged with the mobile robot’s map, and as could be seen in figure 4.22, a little later

the mobile robot explores the small region left between the SWS and itself.

Due to large proximity constraint, the follower robot keeps exploring the empty region

as the SWS traverses region B in figure 4.23. A few steps later, the SWS enters region

C, in which it is not visible to the follower but the tracking algorithm estimates its pose

properly and its map is growed accordingly (figure 4.24). With the knowledge of this

extra map patch at hand, the mobile robot can easily generate a path that will lead

it to the SWS. This obstacle free extra patch easies path pllaning by telling possible

directions of growth for RRT during path planning.

Results presented in this section are preliminary. A large hybrid WSN with many

mobile robots and many SWS networks will make advantages of hybrid mapping

more obvious.

50

(a)

(b)

(c)

Figure 4.21: Starting from top, map of the SWS, map of the robot and both maps
merged. Both the sycophant and the follower robot are in the empty region. The
sycophant has mapped the upper left corner whereas the bottom parts are mapped by
the follower robot.

51

(a)

(b)

(c)

Figure 4.22: Starting from top, map of the SWS, map of the robot and both maps
merged. Both the sycophant and the follower robot are still in the empty region. The
sycophant has started going to the right, mapping a little more. And in the meantime
the follower robots move a little closer to the SWS, completing map of the missing
patch (compare to figure 4.21)

52

(a)

(b)

(c)

Figure 4.23: Starting from top, map of the SWS, map of the robot and both maps
merged. The sycophant is now travelling in region B, whereas the follower robot is
still wandering in the empty region.

53

(a)

(b)

(c)

Figure 4.24: Starting from top, map of the SWS, map of the robot and both maps
merged. The SWS is finally in region C, not visible to the follower any more. How-
ever, the tracking algorithm estimates its pose and grows its map accordingly. Using
the new map the follower is easily able to calculate a route passing the free regions
and leading to the sycophant.

54

CHAPTER 5

3D Mapping

In this chapter, we introduce two approaches in the generation of 3D maps: the first

one is a novel 3D map constructed out of 2D map slices created from different levels

of the corresponding 3D environment. The 2D slices are aligned by the aid of com-

mon features present at the individual levels where each of the 2D map slices were

created. In the scenarios of the first type one map is created at the sycophant level,

and the other one at the follower mobile robot level and then merged. The second

approach is a complete 3D map created again by the cooperation of the tracking mo-

bile robot with the sycophant. This time the sycophant, instead of scanning the world

parallel to the follower, scans the environment at slanted angles and more specifically

perpendicular. Though this way the SWS maps loose their correlation at each of their

time steps and it is only by the aid of the 2D horizontal map of the follower, that is

the follower is able to construct the complete 3D map of the visited places.

5.1 3D maps out of 2D maps

For 3D mapping we assume that the sycophant has a laser ranger, and is able to take

high resolution range scans of its environment. We also assume that the environment

is indoors, having enough line features for both laser rangers of the individual scans

done at two different heights, namely at the levels of the sycophant and that of the

follower robot’s. Under these assumptions we can create a rough 3D map of the

environment by comparing the common features. In this work we merge complete

2D maps instead of continuously growing a 3D map. This decreases the uncertainty

55

in map merging.

While the map at the robot level could be generated using odometry and laser scans,

since there is no odometry available to the sycophant, its map could be generated

only from the laser scans. In order to create the 2D map of the sycophant, and also

improve the odometry of the follower robot, laser scan matching was used. The scan

matching method used is based on hough transform and its details are explained in the

next section. The same scan matching method is also used with some modifications

to merge the 2D maps into a 3D map. The modifications are sub-sampling to improve

the matching speed as well as the inputs.

5.1.1 Scan Matching using Hough Transform

In scan matching the aim is to find the displacement of a robot, usually equipped

with a laser ranger, by comparing scans from its two successive poses. For the scan

matching algorithm to work properly the scans compared should have considerable

overlap, in other words those two scans should correspond roughly to the same part

of the environment. Due to this overlap by comparing the scans it is possible to

find the transformation matrix T (∆X,∆Y,∆θ), or in other words the displacement,

between the two poses. This displacement could be used instead of odometry in

a robot, or it could be used to improve available odometry considerably. A high

quality odometry increases the performance of SLAM algorithms by improving the

quality and increasing the speed of processing by decreasing the number of particles

necessary. Since our sycophants do not have any odometer, scan matching is an

indispensable tool for mapping using the sycophant.

Various methods have been proposed in the literature for scan matching. The meth-

ods could be roughly classified as ones operating on point clouds, i.e. the raw laser

scan, and ones operating on features like lines and corners extracted from the raw

laser scan. To keep the implementation simple we have decided to utilize a method

based on point clouds. Again with the aim of simplicity and traceability, but without

compromising from accuracy we decided to utilize a Hough Transform based method

for scan matching. In this method the rotational component, ∆θ, is found by cross

correlations of the Hough Spectrum, and then translational components, ∆X,∆Y , are

56

found by cross correlation of the X and Y spectrums of the rotationally aligned raw

scans.

5.1.1.1 Hough Transform

Scans expressed in Cartesian coordinates allow us to construct, draw and understand

the world. However transforming the scans from one reference frame to another, rota-

tion and translation become coupled. Hough Transform, instead of working on points

in the Cartesian coordinate system, it works in the polar coordinate system, utilizing

decoupling of translation and rotation in the new domain. Let us now introduce the

well known methodology for the sake of completeness.

Equation of a line in 2D Cartesian space is given by:

y = mx + b

where x and y are the Cartesian coordinates, m is lines slope and b is the point the

line crosses the y axis.

In 2D Hough space a line is expressed as

ρ = x cos(θ) + y sin(θ)

where ρ is the distance of the line to the origin, and θ is the angle between the x-axis

and the distance vector of the line.

In Cartesian space we need an infinite set

S c
L = {(x, y) : y = mx + b}

to represent a line, but this set reduces to a single point in the Hough domain

S p
L = {(ρ, θ) : ρ = x cos(θ) + y sin(θ) & (x, y) ∈ S c

L}

However a point represented by a single tuple in Cartesian space

S c
P = {(x, y) : x = x0andy = y0}

is represented by an infinite set representing a sinusoid in Hough space

S p
P = {(ρ, θ) : ρ = x cos(θ) + y sin(θ) & (x, y) ∈ S c

P}

57

If instead of the Cartesian line S c
L, each of its points is transformed into Hough do-

main, represented by S i, we get a collection of sinusoids

S p
S =

∞⋃
i=1

S i

This set of sinusoids intersects at a single (ρ, θ), which is the corresponding Cartesian

line’s Hough representation. Of course this holds for a subset of the points of the line,

a line segment, even their discretized version, where they are expressed as a finite set

of points. However lines from laser scans are not that perfect due to both noise and

discretization error. Taking into account those errors lines can be represented as

y = (m + m̃)x + (b + b̃)

where m̃ and b̃ are random variables. Therefore when the output of a laser ranger

corresponding to a line is transformed into Hough domain, sinusoids do not intersect

at a single (ρ, θ) but in a region (ρ + ρ̃, θ + θ̃). Based on these observations the Hough

transform is implemented as a 2D accumulator array whose rows and columns cor-

respond to the discretized θ and ρ. This version is also called the Discrete Hough

Transform.

The transform works by calculating the discretized (ρ, θ) set for each Cartesian point

of the laser scan. Then after each calculation the accumulators corresponding to the

(ρ, θ) pair are incremented. When all points of the scan have been processed, we have

a 2D array with many sinusoids where Cartesian lines are visible here as intersection

of many sinusoids, in other words as the maxima of the 2D accumulator array.

Then the Hough Spectrum, HS (θ), which will be used to find rotational difference

between two successive scans, is calculated by summing over the columns of the

Hough transform, in other words the 2D accumulator array DHT (ρ, θ), obtaining a

transform than depends only on θ, which is invariant to translations.

HS [i](θ) =

M∑
k=1

DHT [k, i](ρ, θ)2

58

Algorithm 2 Hough Transform
1: procedure HoughTransform(M) . Grid map as a list of occupied pixels

2: HT (ρ, θ)← 0 . 2D MxN array of the transform is initialized

3: θk ← k 2∗π
N k = 1..N . N: Number of θ cells

4: for i← 1..n do . n:Number of pixels

5: for k ← 1..N do

6: ρ← x cos(θk) + y sin(θk)

7: ρ← ρ/ρmax ∗ M . ρ is discretized

8: HT (ρ, k)← HT (ρ, k) + 1

9: end for

10: end for

11: return HT

12: end procedure

5.1.1.2 Scan Matching Using Hough Spectrum

In scan matching, two given laser scans S 1 and S 2 are first converted into grid maps,

M1 and M2 respectively. Then the Hough transform and the hough spectra HS 1,HS 2

of each are calculated. Afterwards these two hough spectra are cross-correlated as

∆Θ = arg max
φ

π∑
θ=−π

HS 1(θ)HS 2(θ − φ)

and the peak value ∆Θ is found as the rotational displacement of the two given

laser scans. Note that Hough Spectrum is circularly periodic and therefore cross-

correlation has to unwrap properly. After ∆Θ is found the second map is back-rotated,

so that we have a new map M′
2. Then X and Y spectra of the grid maps are calculated

by summing column and row wise respectively.

S M
x (i) =

N∑
k=1

M(k, i)

S M
Y (i) =

N∑
k=1

M(i, k)

Finally cross-correlating the spectra

∆X = dx ∗ arg max
j

N∑
i=1

S M1
x (i)S M2

x (i − j)

59

∆Y = dy ∗ arg max
j

N∑
i=1

S M1
Y (i)S M2

Y (i − j)

the loci of the maxima are found as the translational displacements ∆X and ∆Y . dx

and dy are the quantization steps.

Algorithm 3 Scan Matching Using Hough Spectrum
1: procedure ScanMatch(S 1, S 2)

2: M1 ← OccupancyGridMap(S 1)

3: M2 ← OccupancyGridMap(S 2)

4: HS 1 ← HoughS pectrum(M1)

5: HS 2 ← HoughS pectrum(M2)

6: CHS ← CrossCorrelation(HS 1,HS 2)

7: ∆θ ← arg maxθ CHS

8: M′
2 ← Rotation(∆θ)M2

9: S M1
x ← XS pectrum(M1)

10: S M1
y ← YS pectrum(M1)

11: S M2
x ← XS pectrum(M2)

12: S M2
y ← YS pectrum(M2)

13: ∆X ← arg maxx CrossCorrelate(S M1
x , S M2

x)

14: ∆Y ← arg maxy CrossCorrelate(S M1
Y , S M2

Y)

15: return ∆X, ∆Y, ∆θ

16: end procedure

To visualize the method lets apply it on a sample scan taken from the simulation en-

vironment given in figure 5.1. Here we compare two scans taken close to each other,

figures 5.2(a) 5.2(b). In the first step we find the hough domain representation of the

given scans (figure 5.3). Then θ spectra are calculated and are cross correlated as

given in figure 5.4. From here we find the translational component of the transforma-

tion matrix. Then the second map is back-rotated, and the X and Y spectra of each

map (figures 5.5 and 5.6) are calculated and crosscorrelated, finding the loci of the

maxima, which are the displacement between the two scans in the x and y axes.

60

Figure 5.1: Simulation environment from which the two scans are taken

 2

 4

 6

 8

30

210

60

240

90

270

120

300

150

330

180 0

Scan at timestep 22, robot at (X Y θ) −4.05 −5.09 1.00 in world coordinates

(a)

 2

 4

 6

 8

30

210

60

240

90

270

120

300

150

330

180 0

Scan at timestep 30, robot at (X Y θ) −3.28 −3.57 1.10 in world coordinates

(b)

 2

 4

 6

 8

30

210

60

240

90

270

120

300

150

330

180 0

Scan at timesteps 22 and 30

Scan at 22

Scan at 30

(c)

Figure 5.2: First and second scans shown in polar coordinates

61

ρ

θ

Hough Transform of the 1st scan

100 110 120 130 140 150 160 170 180 190 200

0

100

200

300

400

500

600

700

2

4

6

8

10

12

14

16

18

20

(a)

ρ

θ

Hough Transform of the 2nd scan

100 110 120 130 140 150 160 170 180 190 200

0

100

200

300

400

500

600

700

2

4

6

8

10

12

14

16

18

20

(b)

Figure 5.3: (a) Hough transform of the first scan given in 5.2(a), (b) Hough transform
of the second scan given in 5.2(b).

62

0 50 100 150 200 250 300 350 400
0

0.5

1

θ spectrum of 1st scan

0 50 100 150 200 250 300 350 400
0

0.5

1

θ spectrum of 2nd scan

0 50 100 150 200 250 300 350 400

0.7

0.8

0.9

1

Crosscorrelation of the θ spectra

Figure 5.4: θ spectra of the hough transforms of the scans given in 5.2, as well as their
cross correlation.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1
X spectrum of 1st scan

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1
X spectrum of 2nd scan

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.5

1
Cross correlation of the X Spectra

Figure 5.5: X spectra of the scans given in 5.2, as well as their cross correlation.

63

0 1 2 3 4 5 6 7
0

0.5

1
Y spectrum of 1st scan

0 1 2 3 4 5 6 7
0

0.5

1
Y spectrum of 2nd scan

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1
Cross correlation of the Y Spectra

Figure 5.6: Y spectra of the scans given in 5.2, as well as their cross correlation.

5.1.2 Map Matching Using Hough Spectrum

As mentioned previously our maps have line features visible at both levels of the

sycophant and the follower. Having common features we can apply available map

merging methods. Since our indoor,rather structured environment has many orthog-

onal features, methods based on hough spectrum and introduced by Carpin [17] are

applicable. Since we have large 2D maps, in order to improve time performance of

the algorithm a subset of the points available are used. The used algorithm is given

below and is almost the same as the one used for scan matching, except for the usage

of a subset of the available pixels rather than directly using the created maps.

64

Algorithm 4 Map Matching Using Hough Spectrum
1: procedure MapMatch(M1,M2) . Occupancy grids

2: M1 ← subsample(M1)

3: M2 ← subsample(M2)

4: HS 1 ← HoughS pectrum(M1)

5: HS 2 ← HoughS pectrum(M2)

6: CHS ← CrossCorrelation(HS 1,HS 2)

7: ∆θ ← arg maxθ CHS

8: M′
2 ← Rotation(∆θ)M2

9: S M1
x ← XS pectrum(M1)

10: S M1
y ← YS pectrum(M1)

11: S M2
x ← XS pectrum(M2)

12: S M2
y ← YS pectrum(M2)

13: ∆X ← arg maxx CrossCorrelate(S M1
x , S M2

x)

14: ∆Y ← arg maxy CrossCorrelate(S M1
Y , S M2

Y)

15: return ∆X, ∆Y, ∆θ

16: end procedure

65

5.1.3 Simulation Framework and Performance Metrics

Inspired by one of the corridors of our department, the simulation was run for a corri-

dor like structure with long benches visible to the follower only, exaggerated bulletin

boards visible only to the sycophant as well as walls and open doors visible to both

the sycophant and the follower. In the simulation the host carrying the sycophant was

required to visit some preset way-points, while traversing the whole corridor, and the

follower was required to keep an approximate distance of 2m to the sycophant, and

localizing it using its laser ranger. In figure 5.7 two views from different angles of

the simulation environment are given. In figure 5.8 cross sections at the height of the

sycophant’s and that of the follower’s laser scan level are given respectively. These

cross sections are the worlds that they can see with their laser rangers. It can be seen

from the figures that, the two levels have many common walls, making 3D mapping

possible and plausible.

In the simulations the sycophant was imitated by a high robot with a ranger following

a preset way-points, imitating our independently moving agent not being guided by

the SWS it carries, which is scanning at a height of 0.8m, whereas the follower, whose

objective is to keep an approximate distance of 2m to the sycophant, is another robot

with a ranger scanning at a height of 0.3m.

In order to test the performance for different initial conditions, i.e. different orienta-

tions, obtained maps are rotated upto 15 degrees in both directions, and independently

translated as much as 5m in both directions for a set angle. The percent error which

is defined as

abs(real displacement − estimated displacement)
real displacement

∗ 100

is given both for the rotation and displacement in fig 5.13. As can be seen in the graphs

the hough transform method is quite immune to rotations, the error being almost

zero. As for the performance in finding the translational component, the method is

successful, keeping the error in the order of few per one thousand.

66

(a) (b)

Figure 5.7: Perspective views of the simulation environment used in 3D mapping
taken from different angles. The blue walls are obstacles with a height of 0.6 and the
red walls are on a higher level, between 0.6 and 1.0.

(a) (b)

Figure 5.8: Cross sections of the simulation environment given in Fig. 5.7. (a) cor-
responds to the follower robots level (blue in previous figure), where the black thick
lines correspond to benches. (b) corresponds to the sycophant’s level (red in previous
figure), where the black thick lines correspond to the bulletin boards.

5.1.4 Simulation Results and Performance Analysis

Obtained maps of the sycophant and the follower are given in figure 5.9 and figure

5.10 respectively, together with their extruded version for illustrative purposes. To

assess performance of the alignment, the maps were aligned using only the described

hough transform method, without using knowledge of the sycophant’s pose in the

followers reference frame. As can be comparatively seen in figure 5.11 the maps

align quite well. The merged 3D map is given in figure 5.12, which is quite close to

the simulated world of figure 5.8.

5.1.5 Hardware Implementation and Results

In order to prove the usability of the 3D map as well as its construction technique

we now run the hardware system in a classroom of our department (figure 5.14). The

67

(a)

(b)

Figure 5.9: (a) 2D map of the simulated world as created by the sycophant, and its
trajectory. (b) Extruded form of the map.

classroom has windows and window frames visible only to the sycophant (carried by

me), under-window walls and radiators visible only to the follower robot and wall

segments as well as pillars visible to both the follower and the sycophant. The syco-

phant sensor was a hokuyo RB-Hok-07 laser ranger (figure 5.15(a)) scanning an area

of 270 degrees, with a range of 5.6m, scanning at a height of 155cm. The follower

was a MagellanPro (figure 5.15(b)) mobile robot equipped with a SICK ranger scan-

ning an area of 180 degrees, with a range of 25m, scanning at a height of 35cm. The

sycophant ranger was attached to the shoulder of a human host, which traversed a

large rectangle in the classroom. The follower was required to follow the sycophant

at an approximate distance of 2m using its ranger. The maps obtained by the syco-

phant (figure 5.16) and the follower mobile robot (figure 5.17) were merged at the end

of the mission using the described algorithm. Figure 5.18 shows that map alignment

performed well.

68

(a)

(b)

Figure 5.10: (a) 2D map of the simulated world as created by the follower robot, and
its trajectory. (b) Extruded form of the map.

69

(a)

(b)

Figure 5.11: (a)unaligned maps of the sycophant and the follower robot (b) aligned
maps of the sycophant and the follower robot

As could be seen the common wall segments at the beginning middle and end of

the maps coincide well whereas some of the window frames are misaligned, which

is mainly due to the noise and inaccuracy of the 2D maps. What the 2D maps re-

ally tell us is given in fig 5.19. But since our indoor environment is regular we can

easily extrude each level and obtain the 3D map given in figure 5.20, which is quite

informative of the classroom, yielding an approximated view of the actual structured

environment.

70

(a)

(b)

(c)

Figure 5.12: Maps of the sycophant (Fig 5.9) and the follower mobile robot (Fig 5.10)
merged into a 3D map, and displayed from different angles.

71

(a)

(b)

Figure 5.13: Performance of the method in finding rotational(a) and translational(b)
displacements. The measure is the error in percent between the real and estimated
displacements.

72

(a) (b) (c)

Figure 5.14: (a) A view of the classroom whose 3D map is obtained, (b) draft of the
classroom at the level of MagellanPro, the follower robot, (c) draft of the classroom
at the level of the sycophant sensor

(a) (b)

Figure 5.15: The robot used as a follower to the sycophant (a), and the laser used as
a sycophant sensor (b)

(a) (b)

Figure 5.16: (a) 2D map of the class as seen by the sycophant. (b) Extruded form of
the map.

73

(a) (b)

Figure 5.17: (a) 2D map of the class as seen by the follower robot. (b) Extruded form
of the map.

(a) (b)

Figure 5.18: (a) unaligned maps of the sycophant and the follower robot (b) aligned
maps of the sycophant and the follower robot

Figure 5.19: Maps of the sycophant (figure 5.16) and the follower robot (figure 5.17)
in their actual scanning levels in the 3D world.

74

(a)

(b)

Figure 5.20: Maps of the sycophant (Fig 5.16) and the follower mobile robot (Fig
5.17) merged into a 3D map, displayed from different angles.

75

5.2 3D Mapping

In this section we describe yet another 3D mapping achievable using a sycophant

and a follower robot. Although we make use of the same hardware, we are able

to reconstruct much more 3D features compared to the previous section. This time

sycophant’s laser ranger is placed perpendicular to the ground, which is parallel to

the scanning plane of the follower’s robot, as well as perpendicular to the direction

of its own motion. This way it is possible to scan extra features that are not com-

pletely visible by the mobile robot, which are walls for example, then it is possible

to use map of the follower and its belief on the pose of the sycophant together with

its 2D perpendicular scans to create complete 3D maps of the environment. How-

ever this comes at a price: we loose the 2D map of the sycophant thus loosing the

opportunity to improve map of the follower robot based on common features. The

follower also looses the chance to localize the sycophant at times when the SWS is

not visible to the follower by comparing the 2D maps, and the scans obtained during

non-communication or non-visibility.

5.2.1 Method

The method is customized to fit the hardware available. In our setup the Sycophant

has a small and new ranger that is capable of scanning at 10Hz, whereas the follower

robot is able to scan only at 2.5Hz. Although we are able to localize the SWS carrier

properly, there is still a considerable amount of error in the localization, which can

distort the 3D map. To prevent this distortion, the 3D mapping algorithm has to be run

at an even lower frequency in order to wait for enough data whose average combined

with motion knowledge can prevent misalignments of the 3D scans. So the algorithm

has four different loops and corresponding repetition intervals. The follower robot

is able to scan the environment every ∆tF
S can seconds, the sycophant is able to scan

the environment every ∆tS
S can seconds and relay this information every ∆tS F

Communication

seconds. The follower runs the 3D map growing algorithm every ∆3Dmap seconds.

∆tS F
Communication is not necessarily the same as ∆tS

S can, and it is allowed to be larger to

preserve RF power. And ∆3Dmap is larger than all time constants, large enough to

show the average behavior of the system.

76

The follower robot reads its ranger and odometry data every ∆tF
S can seconds. Af-

ter every reading the follower scan matches the last two laser scans to improve the

odometry. Then it uses its final odometry and scan data to grow its own 2D map.

Afterwards it localizes the sycophant in its current scan by using a human detector

algorithm, whose detail are explained later. After the carrying agent is localized in

the scan, the location is transformed into the reference frame of the 2D map.

The human detector algorithm works by finding a hole in the 2D scan of the environ-

ment. This hole is a close obstacle with predefined angular widths for varying ranges.

So if there is a narrow obstacle of with say 20 degrees at 2 meters, it is identified as

a human in the algorithm. Apparently the algorithm has the disadvantage that other

similar objects may be present in the environment. There are two ways to handle

other obstacles. The first one is to compare location of the human candidate objects

in different scans, and choose the candidate object which seems to be moving across

various scans. However this alone has the disadvantage that it can fail if the human

stands still for a while. This can be remedied by marking and keeping track of the

object in various frames. Human detector works under the assumption that the human

is not too close to walls or other obstacles, which would kill its laser signature in the

environment.

Algorithm 5 Follower robots 2D map growing
1: procedure Grow 2D FollowerMap

2: every ∆tF
S can seconds do

3: S F
Current ← Read Laser Scan

4: T (∆X,∆Y,∆θ)F ← ScanMatch(S Previous, S Current)

5: MF ← MF + T (∆X,∆Y,∆θ)S F
Current

6: S x(t), S y(t), S t(t)← HumanDetector((S F
current))

7: S x(t), S y(t), S t(t)← T (∆X,∆Y,∆θ)[S x(t), S y(t), S t(t)]

8: S F
Previous ← S F

Current

9: end every

10: end procedure

Another time loop runs every ∆tFS
Communication seconds and receives all the ranger data

collected since the last time a connection was established.

77

Algorithm 6 Collect data from sycophant
1: procedure Collect data from sycophant

2: N ← ∆tFS
Communication

∆tSS can

3: every ∆tFS
Communication seconds do

4: S S
t−∆tFS

Communication:t
← Read Last N Laser Scans

5: end every

6: end procedure

A B
C D

O

a0 a jφ

.

Figure 5.21: Finding φ at turnings

A final loop running on the follower every ∆t3DMap seconds grows the 3D map of

the sycophant. At every iteration it calculates the mean velocity for the last part of

the route as well as the average heading. It also checks whether any turning action

has been taken by the sycophant. This is detected by checking first the speed of

the sycophant, which should be zero at turning points, as well as the time derivative

of the scans. At a turning point, successive scans are going to get either shorter or

longer depending on the direction of the turning with respect to the current wall.

If no turnings are detected, the algorithm calculates the pose of each scan of the

sycophant by a uniform velocity model, and it also calculates the direction of the

laser scans as the direction perpendicular to the heading. If turnings are detected, the

amount is calculated, as described in the next paragraph. in order to find the speed

and the amount of turning, which is calculated for each scan of the last scans of the

sycophant. Then this amount is used to adjust the direction of the corresponding laser

scan. After the final angle and position are calculated, either with or without turning,

the transformation matrix is calculated and applied to each laser scan, which are then

added to the existing 3D map.

The amount of rotation at a turning is calculated by simple trigonometry: Assume that

point O in figure 5.21 is the agent carrying the sycophant and it is rotating around its

own axis in the direction shown by the angle φ. Assume that ‖OC‖ and ‖OD‖ are

78

planes of the laser scans taken at times t0, the last time the scan was perpendicular

to the wall, and t j, the current time. Also assume that a0 and a j are distances of the

robot to the wall it is scanning at respective times t0 and t j. Then φ, direction of the

scan at t j can be easily found as

φ = arccos(
a0

a j
)

Algorithm 7 Create 3D Map
1: procedure Grow 3D Map of the Sycophant

2: N ← ∆t3DMap/∆tS
S can

3: every ∆t3DMap seconds do

4: vS
mean ← average(S (t − ∆t3DMap : t)/∆t3DMap)

5: if no rotation then

6: for i← 1,N do

7: (∆X,∆Y)← vmean ∗ ∆tS
S can ∗ i

8: (∆θ)← AverageHeading

9: end for

10: else

11: (∆X,∆Y)← 0

12: ∆θ ← φ

13: end if

14: S ← T (∆X,∆Y,∆θ)S

15: MS
3D ← MS

3D + S

16: end every

17: end procedure

5.2.2 Hardware Implementation & Results

The 3D map is implemented in the same class using the same hardware as the previous

section. However this time the sycophant is not scanning parallel to the ground,

but perpendicular both to the ground and its own direction of motion. This way the

sycophant is scanning the walls, and MagellanPro is following it by using the human

detector algorithm and trying to keep a constant distance to it. The 2D map of the

follower robot as well as the sycophant’s estimated location during the test run are

79

(a) (b) (c)

Figure 5.22: The robot used as a follower to the sycophant (a), and the laser used as
a sycophant sensor (b)

given in figure 5.23. As seen in the figure the agent carrying the sycophant traverses a

rectangular trajectory parallel to the walls of the classroom, and although the motion

of the sycophant is smoother than the one seen in the figure, it was not reflected due

to the errors in human detection, as well as the map.

Screenshots of the 3D map of the classroom taken from different angles are given in

figures 5.24, 5.25, 5.26, 5.27, 5.28, 5.29, 5.30. Note that one side of the classroom

is not visible in the created 3D maps, this is due to the path taken by the sycophant,

which does not include a path seeing the corresponding walls. Despite some irregu-

larities the 3D map resembles the classroom quite closely. Not only the ground and

the ceiling are visible, but also details like the radiators on the walls (figure 5.26,

encircled by red), the window frames with all their structures are visible. Even the

lamps at the ceiling of the classroom are visible (figure 5.25, encircled by red).

80

−8 −6 −4 −2 0 2 4 6

−10

−8

−6

−4

−2

0

2D map of the follower

Path of the follower

Path of the sycophant

Figure 5.23: The 2D map of the follower as it tracked the sycophant, and trajectory
of the sycophant.

Figure 5.24: 3D map of EA211 seen from outside, above back upper right corner.

81

Figure 5.25: 3D map of EA211 seen from outside, below front lower left corner. Two
of the lamps on the ceiling are encircled.

Figure 5.26: 3D map of EA211 seen from outside, above front upper left corner. Two
of the radiators seen are encircled.

Figure 5.27: 3D map of EA211 seen from outside, above the front middle section.

82

Figure 5.28: 3D map of EA211 seen from outside, above back upper right corner.

Figure 5.29: 3D map of EA211 seen from outside, upper left side.

Figure 5.30: 3D map of EA211 seen from outside, upper right side.

83

CHAPTER 6

Connectivity Maintenance

In the previous chapters we have concentrated more on the first step of our scenario,

namely a single sycophant and a single mobile robot network. The next step is the

problem involving many sycophants and many mobile robots. Utilization of many

mobile robots in a robot network is necessary both due to redundancy and connec-

tivity as well as mission requirements. However deployment of those mobile agents

poses another problem, that of achieving a fault tolerant network providing a continu-

ous communication link from the sycophants to a fixed base station. Note that the mo-

bile robots’ sole mission is not mobile relaying; at the same time they will be required

to participate in search and rescue missions with individual mapping, surveillance and

monitoring duties. The robot and sycophant network in this chapter is called a mobile

relay network or leader follower network. This network has a leader that is free to

move and which in the context of this thesis corresponds to the sycophant, whereas in

the general sense it could refer to any agent capable of communication with the rest

of the network, and even a tracked target which pulls the network behind itself. Other

agents of the mobile relay network are robots whose mission is to relay information

gathered from the sycophant to a base station, and a spatially fixed base station, which

is also called a sink, collecting all gathered information.

In order to provide the necessary fault tolerant network three different approaches

are implemented and tested. The first approach is called ”Go In Between”, and in

this approach each relay robot is asked to move to the middle point of its two closest

neighbors using spring forces. The second approach is ”Protein imitation”, where the

robots form a primary chain by connecting to the closest neighbors and a secondary

84

chain by connecting to some nodes further away, by this way imitating the α-helix

structure of proteins. The third approach is based on acute-triangulation of the space

forming a Gabriel Graph where robots connect and apply force to their neighbors

only if the line connecting the robots is one side of an acute triangle. As will be

discussed in the corresponding subsections, each approach has its own advantages

and disadvantages. The thesis work in this chapter starts with the implementation and

test of the simplest algorithm, which is the Go In Between. Then to remedy its main

disadvantage, which is low redundancy, the other two approaches are developed.

In the next section two new performance measures developed for the evaluation of

the performance of connectivity maintenance algorithms are discussed. Then in their

own sections the three methods of connectivity maintenance are described and related

simulations results are given and discussed.

6.1 Developing Novel Performance Measures

Deciding which algorithm works better requires well defined measures. Towards this

aim we define two new measures: the updistance, which tells us how far a leader can

go, and the resistance, which tells us how much redundancy the robot network has.

Both will be explained in the following subsections.

6.1.1 Updistance

Updistance is a measure proposed in this thesis and inspired by a term called up-

time, which is used in computer server business, where it means the time the server

has been up without any reboot. In our connectivity context, updistance means the

normalized maximum distance between the leader and the base station in a network

of robots. The normalized distance is the distance divided by the theoretical maxi-

mum coverable distance by the network without loosing connectivity. For example

if you have 10 nodes, and each has a communication range of 100 meters, than the

maximum coverable distance would be 1000 meters, which could only be achieved

by placing the relays side by side along a straight line. If at some time instant, the

distance between the base station and the leader has reached at most 680 meters, the

85

updistance would be 0.68. Although ideally we ask for an updistance value of 1, it

is not always achievable for some of our methods, as will be seen in the following

sections.

As will be seen specially in the section on Gabriel Virtual Force Graphs, updistance

changes depending on the initial configuration. Therefore updistances are given as

histogram graphs. However in order to be able to compare updistance of different

algorithms using just a single value we will also use the mean value. When the fre-

quency based approach to probability is taken, histograms could be used as a proba-

bility density function. And as is seen in figure 6.31 updistance histograms look like

probability density functions where the updistance is our random variable. The mean

updistance is then calculated using the first moment as

λupdistance =

∫ 1

0
xp(x)dx

where p(x) is the normalized histogram, which is

p(x) =
h(x)∫ 1

0
h(x)dx

where h(x) is the updistance histogram.

6.1.2 Resistance

Although algebraic graph connectivity (µ) is a good measure by itself, as could be

seen from figure 6.1, closeness of the values makes comparison difficult, and also

un-intuitive. A better measure can be developed when the graph is considered as

a resistive network, where each connection between two relays has a resistance of 1

ohms. As could be seen in figure 6.1 resistance varies a lot for different configurations

and it gives us a more intuitive way of looking at the system. In all three configura-

tions of figure 6.1 we have 9 nodes. The diagram in figure 6.1(a) has an equivalent

resistance (between the leader, numbered 9, and the base station, numbered 1) of 8

ohms. By looking at this resistance value in a stable network we can conclude that

the system is somewhere at the boundary of breaking down. On the other hand the

86

1 2 3 4 5 6 7 8 9

(a) µ = 0.1206 R = 8

1 2

3

4

5

6

7 8 9

(b) µ = 0.1673 R = 6

1 2

3

4

5

6

7

8 9

(c) µ = 0.3249 R = 4

Figure 6.1: Different distribution of relays, each having a different connectivity and
resistance value.

diagram in figure 6.1(c) has a resistance of 4, meaning there is more redundancy, thus

the system can tolerate loosing some nodes, and is able to stretch further. Comparing

figures 6.1(b) and 6.1(c), we see that the latter having a smaller resistance compared

to the previous has more redundant nodes compared to the previous.

In this thesis, the mobile relay networks are studied using three different graphs. The

first is connectivity graph, whose edges correspond directly to communication links

between any relay, in other words an edge exist between two relays, if they are in the

communication range of each other. The second graph is just a neighborhood graph,

whose edges are selected according to the connectivity maintenance algorithm used.

As will be seen, each algorithm has a different neighborhood selection method. The

third graph is called Gabriel Neighborhood Graph, or Acute Triangulation Graph,

whose edges are determined according to the rules of acute triangulation. When

comparing performance, resistance for both the connectivity graph and the Gabriel

Neighborhood graph will be given.

Each algorithm below has different rules for neighbor selection, resulting in a differ-

ent distribution of the relays. Although on one side we are interested in a strongly

connected graph, with a high connectivity, or low resistance, we are also interested

87

in a sparsely distributed graph. Sparseness of the nodes contradicts the requirement

of high connectivity on the one hand, but it increases redundancy and fault tolerance

on the other. If for example node 7 in figure 6.1(a) fails for some reason, the network

immediately looses connectivity. But such a thing would not happen in 6.1(c), node

6 would keep the system connected. So minimizing redundancy resistance does not

necessarily mean minimizing the connectivity resistance, and vice-versa. Minimiz-

ing connectivity resistance requires putting all the nodes as close as possible to each

other, so that more nodes see each other. However such an approach does decrease

the spread of the relays, which means breaking the Gabriel graph and increasing re-

sistance. Similarly, to decrease Gabriel virtual force resistance one has to spread the

nodes as much as possible so that more acute triangles are formed, but this causes the

relays go away from each other, which means increasing RF equivalent resistance.

Though calculation of resistance diagrams for neighborhood could be done in various

different ways, we choose to use neighborhood diagrams created according to Gabriel

Graphs. There are two reasons for this, one is this graph structure is already imple-

mented as a connectivity maintenance method in this thesis, and the second reason is

its results on sparseness are plausible.

Although similar to the algebraic connectivity we calculate two different equivalent

resistance values for a network of relays: the first one is for the RF connected graph,

the smaller the resistance, the better connected the system is. The second resistance

is defined for the Gabriel Virtual Force Graph, which also favors smaller values for

the resistance due to the fact that smaller resistance means a better connected system.

6.2 Go In Between Approach

6.2.1 Method

Although at short distances many different placements of the relays can provide fea-

sible solutions (check fig 6.2 for two examples), at long distances the solution will

usually be relays placed on a virtual line/curve connecting the sink and the leader. A

straightforward positioning would be for a robot to keep equal distance to its neigh-

88

1

2

3

4

5

6

(a)

1

2

3

4 5

6

(b)

Figure 6.2: Two different possible placement for relays connecting nodes 1 and 6.
Arrows show possible communication paths. Their exact number of course depends
on the communication range of each node.

S

R

L

(a) Initial pose

S R L

(b) Final pose

Figure 6.3: Evolution of robot poses

bors on both sides (one to the sink one to the leader). Such a positioning can easily

be achieved if we have springs and dampers connecting a node to its neighbors. Due

to the force from both sides the relay will eventually move to a location where the net

force cancels out. In case of three nodes the final location is directly in the middle of

the two neighbors (figure 6.3). In the case of more nodes, the solution would be an

extension of this simple case and nodes starting from an arbitrary initial configuration

would eventually be placed at equally spaced intervals (figure 6.4). When connected

with a virtual spring to its neighbors, the spring force acting on a node i by another

node j is given by

fi j = −k(di j − d0)
d̄i j

di j

where k is the spring constant between nodes i and j , d0 is the equilibrium distance

where the nodes do not apply any force to each other, di j is the distance and d̄i j is the

distance vector between nodes i and j . The net force on node i when it is not under

89

S

1

2
3

4

L

(a) Initial pose

S 1 2 3 4 L

(b) Final pose

S 1 2 3 4 L

(c) Final pose

Figure 6.4: Evolution of robot poses

the influence of any obstacle is

Finet =
∑
j∈Ni

fi j − bẋi

where b is the damping coefficient that will damp the oscillations , Ni is the set of

neighbors selected as described below, and xi is pose robot i.

6.2.1.1 Neighbor Selection

Starting from an arbitrary but connected initial configuration, selection of proper

neighbors to bind to is very critical. Choosing the two closest neighbors is not always

a good idea because of the following reasons. There may be more than two neighbors

at the same distance when taking into account localization uncertainty: this case may

happen more often than expected. The same nodes may be selected by different nodes

and the result is a set of nodes at steady state far from the expected line. Although the

leader or sink are a little further apart then the rest, they may even be completely left

out leading to a disconnected network (figure 6.5). For example in figure 6.5 without

a predefined conflict resolution both nodes A and B would choose C and D as their

neighbors, and as the distance between S and L grows, connectivity of the network

will be lost. Therefore a sequence based selection of neighbors is preferred. We as-

sume that each robot has a unique integer identifier. The sink’s identifier being the

90

S

A

B

C D L

Figure 6.5: A sample initial configuration where relays A and B have the same two
closest neighbors. Without a predefined conflict resolution approach, the nodes could
choose C and D, and D would choose A and B, and as the leader moves away the
system would get disconnected.

smallest and the leader’s the largest (the opposite would work too). Then each node

selects a neighbor that has the smallest id greater than its own, and another that has

the largest id smaller than its own. And then assumes that these nodes are applying a

force to that selecting node.

6.2.1.2 Obstacle Avoidance

For obstacle avoidance, we use again virtual springs, where the force applied by an

obstacle to a node is given by

fobst =


−kobst(d − d0)n̂ if d ≤ d0

0 if d > d0

Here kobst is the spring constant of the node obstacle pair, d0 is the safety distance,

d is the distance between the object and the surface of the obstacle, and n̂ is the

unit normal vector of the obstacle surface. This force is applied only when d < d0.

Obstacle avoidance is not a sufficient measure by itself and requires counter measures

to prevent loosing connectivity. The reason is best explained graphically.

In fig 6.6 let node B be moving downwards, and A be connected to it by a virtual

spring. As B moves down, the force acting on node A will increase, but since the

vertical component of the force is going to increase more, node A will tend to move

more in the vertical direction, and less in the horizontal direction. However due to

collision avoidance the wall is going to neutralize the vertical component of the force.

91

A

B

Figure 6.6: Force between two nodes around a corner

So node A will at best move slowly in the horizontal direction. And at the end,

connectivity will broken.

To remedy this problem the force link could be seen as a rubber band (figure 6.7),

which as B moves would eventually look like two connected straight bands. So the

force acting on node A will be redirected towards the corner, removing the problem

mentioned in the previous paragraph. However taking this redirection one step fur-

ther, we assume that the obstacles are able to redirect the force, changing its direction

not only till it is non-intersecting with the obstacle but till it is completely parallel to

the obstacle surface (Fig. 6.8), so that it can slide over the surface due to the force

acting from the other side. Having made a map of the neighboring, the robots can

detect that there is an obstacle on the link between its neighbors. Note that when

passing over corners due to the low thickness communication would not be immedi-

ately blocked but received signal strength would be reduced. And even if the link is

lost, a robot can easily locate its neighbor using a state estimator like a Kalman Filter.

So a node close to a corner experiences a force equal to

f = −k(di j − d0)R(α)d̂i j

where R(α) is a rotation matrix with

α = π − arccos(n̂ . d̂i j)

92

Figure 6.7: Force between two nodes around a corner

Figure 6.8: Force between two nodes, before and after redirection

6.2.2 Simulation Results for Go in Between and Discussion

Evolution of the network for a sample scenario where the leader is moved using a

mouse around a few corners in player/stage simulator is given in figure 6.9. The

network successfully goes around the obstacles without bumping to the walls, and

also avoids the corners.

Although the described algorithm is able to properly follow the sycophant, it is not

fault tolerant. This is due to the deployment of the relays, all on a sequence of lines. If

communication blocking obstacles randomly appear, or some of the nodes suddenly

fail for any reason, the network will become disconnected, loosing connectivity. To

increase robustness of the relay network alternative methods that can induce redun-

dancy are now developed.

6.3 Connectivity Maintenance Inspired by Protein Structures

To increase robustness of a mobile relaying network to node failures as well as to

obstacles in the communication path, it is necessary to distribute the nodes in a non-

93

(a) t=0s, initial
state

(b) (c) (d)

(e) (f)

Figure 6.9: Force between two nodes, before and after redirection

94

(a) t=20s (b)

(c) (d)

(e) (f) t=100s, final state

Figure 6.9: Force between two nodes, before and after redirection (continuing from
previous page)

95

C

N+H3

R

C

O

O−

Figure 6.10: An amino acid [15].

C

N+H3

R

C

O

O−

amino acid

+ C

N+H3

R′

C

O

O−

another amino acid

C

N+H3

R

C

O

NH

C

R′

C

O

O−

Dipeptide

+ H2O

Water

Figure 6.11: Formation of a dipeptide. When thousands of amino acids connect as in
here a protein is formed [15].

collinear manner. Inspired by the α-helix of protein structures (figure 6.12(b)), the

non-collinear distribution of relays is achieved in this section by placing the nodes on

a 2D zigzag, the 2D projection of the α-helix. Since proteins do not communicate

with each other before applying any force, and they apply force only to nodes that

are in their range, the protein approach is an efficient candidate able to provide a

decentralized solution to the connectivity maintenance problem.

6.3.1 Protein Background

Proteins are made of amino acid residues (figure 6.10) connected by strong peptide

bonds (figure 6.11), which form between two amino acids by one denoting its C=O

96

(a) Primary structure

(b) Secondary structure, α-helix (c) Secondary
structure, β-sheet

(d) Tertiary structure, β-sheet

Figure 6.12: Primary, secondary and tertiary structures of a protein molecule [2].

97

from its carboxyl group and the other its NH from its amino group ([11]). Since each

amino acid has both a carboxyl and an amino group it is able to connect to two amino

acids. In this way amino acids are able to make very long chains, which are called

proteins. The peptide bonds create a structure called the primary structure (6.12(a)).

Proteins having initially only the primary structure look like unfolded long chains.

Proteins also have a secondary structure which forms by hydrogen bonding between

the amide N-H and carboxyl C=O groups along the backbone (primary structure).

Depending on the alignment of the protein segments either helix (figure 6.12(b)) or

sheet (figure 6.12(c)) like structures are observed, which are the most common sec-

ondary structures. Since only the helix like structure is stretchy and resembles the

structure we are after, we are interested only with the helix like structure. The α-helix

structure is like a ”coiled spring” and forms by hydrogen bonding between the N-H

group of one residue and C=O group of another residue 4 residues further along the

chain.

In addition to the primary and secondary structures proteins have a tertiary structure

(fig 6.12(d))which determines their 3-D shape. This structure is formed by the folding

of the secondary structures on themselves. The primary structure determines how the

secondary and tertiary structures will be. However the environment of the protein also

affects the tertiary structure. For example in an aqueous environment the proteins fold

in a way to keep nonpolar side chains to the inside, but polar side chains to the outside,

so that polar side chains on the outer surface interact with water.

6.3.2 Method

In this work, the analogy between the protein and our proposed architecture is as

follows. We assume that each mobile relay corresponds to an amino acid residue,

and is able to make two strong connections to other mobile relays, like peptide bonds

formed by the exchange of N-H and C=O groups. The leader and the sink are also

assumed to be amino acid residues but they are the beginning and end residues of the

poly-peptide chain (protein). We also assume that each mobile relay makes a weak

connection to another relay a few relays further in the chain, like the weak hydrogen

bonds between the residues that form the secondary structure. Normally in proteins

98

1

2

3

4

5 6

7

(a)

1

2

3

4

5

6

7

(b)

Figure 6.13: Relays under the influence of the primary structure only (a), and under
the influence of both the primary and secondary structures of the protein (b). The lines
indicate primary connections, whereas dotted lines indicate secondary connections.

the start and end residues are free to move, but in our relay chain we fix the sink end,

and let the leader end move under own control commands. The analogy between our

relay network and protein structure could be seen in figure 6.13.

To calculate the motion of the above mentioned system we assume that all interacting

nodes are connected by a Hookean potential as is done also in the Elastic Network

Model used for Normal Mode Analysis of globular protein structures [75]. So the

weak forces forming the secondary structures are modeled as loose springs with small

spring constants and the strong forces forming the backbone (primary structure) as

stiff springs with large spring constants. This allows us to have a redundant network

at the beginning. And as the leader moves farther away it allows us to stretch/unfold

the chain, resulting in greater coverage,

In summary, the force on a robot j acting under the influence of the protein approach

is:

F j =
∑
i∈S P j

−kP(‖xi − x j‖ − lP
0)

xi − x j

‖xi − x j‖
+
∑
i∈S S j

−kS (‖xi − x j‖ − lS
0)

xi − x j

‖xi − x j‖
− bẋ

S P: Set of primary neighbors

S S : Set of secondary neighbors

kP: Spring constant of primary connections

99

kS : Spring constant of secondary connections

lP
0 : Neutral spring length of primary connections

lS
0 : Neutral spring length of secondary connections

b: Friction coefficient x: Pose of the corresponding robot

Algorithm 8 Neighbor Selection for Protein
1: procedure SelectNeighbors

2: S p ← 0 . Initialize set of primary neighbors

3: S s ← 0 . Initialize set of secondary neighbors

4: S ← Query all neighbors . Initialize set of all neighbors

5: for all n ∈ S do

6: if ‖n.id − my.id‖ == 1 then

7: S P ← S P + n

8: else if ‖n.id − my.id‖ == secondary hop count then

9: S S ← S S + n

10: end if

11: end for

12: end procedure

Neighbor sets S P j and S S j are formed independently by each node according to al-

gorithm 8, before each time the node calculates the virtual forces acting on it. The

first step in the construction of the neighborhood sets is to scan the environment for

all available relays. Then if a neighbors id is one more or one less than its own, it is

added to S p. If the difference of the ids is equal to the secondary hop count, which

is the hop distance to the next residue to which a secondary connection is made, then

the node is added to S s. If neither criteria is satisfied by a node, then it is discarded.

6.3.3 Simulations

The simulations were run both in player/stage and a connectivity simulator developed

during this thesis. Player/stage was not stable with a large number of robots, so

all performance runs were done on my connectivity simulator. The simulator is a

simple physics simulator that is able to move the robots under the influence of forces

applied by different algorithms, as well as calculate connectivity, query neighbors and

100

calculate communication routes in a distributed manner.

The following parameters affect the final shape of a protein, and they should carefully

be adjusted for proper shapes:

• Communication range

• Number of robots, or the density of robots in the communication range

• Neutral spring lengths of the springs in the primary structure

• Neutral spring lengths of the secondary structure

• Spring constants of the springs in the primary structure

• Spring constants of the springs in the secondary structure

• Maximum velocity of the nodes

• Dynamic Friction coefficient of nodes

Player/Stage Results

The steady state network configurations that are converged to, as well as the initial

network configuration are given as the leader is moved on the horizontal axis using

the mouse. We start with the following initial structure for protein like modeling with

secondary structures connecting every 2 and every 3 neighbors:

Figure 6.14: Screenshot of the starting configuration of the 2 neighbor hop count
variation of the protein approach.

The black(leftmost) and red(rightmost) robots denote the sink and the leader respec-

tively, whereas the other robots denote the relays. The lines between the robots denote

connections of the primary structure.

101

If a mobile relay is let to make secondary connections to relays 2 nodes away we get

a very nice zigzag like structure (figure 6.15):

Figure 6.15: A steady state screenshot of the 2 neighbor hop count variation.

This structure could be preserved if the neutral lengths of primary and secondary

spring connections are set inversely proportional to the number of robots.

If the leader is moving too fast the following transient shape (figure 6.16)is observed,

but at steady state again the above shape (figure 6.15) is recovered.

Figure 6.16: A transient state screenshot of the 2 neighbor hop count variation.

If a relay is asked to connect to relays 3 nodes away, depending on final pose of

the leader the two different steady state shapes given in figures 6.17 and 6.18 were

obtained:

Figure 6.17: A steady state screenshot of the 3 neighbor hop count variation.

As could be seen in the figures, given enough time and properly selected parameters,

we get a structure that looks more like a zig zag, which means a more redundant

network deployment.

Although some desired shapes are obtained using the protein like approach, the method

still requires improvements so that the nodes are uniformly distributed in the region

between the sink and the leader, and they are also properly spaced.

102

Figure 6.18: A steady state screenshot of the 3 neighbor hop count variation.

Performance runs

Simulations were run for two different speeds of the leader, 0.5m/s (1.8km/h) and

2.5m/s (9km/h). The relays were allowed a maximum speed of 2.78m/s(10km/h).

In this section we also give results for Go In Between algorithm in free space. The

Go In Between algorithm is a base case, against which improvements could be com-

pared. Also note that the protein approach with secondary spring constants set to zero

reduces to Go In Between.

vleader = 0.5m/s

As seen in figure 6.19(a), with a 0.5m/s leader velocity the base case is able to cover

the whole maximum path achievable, connection is maintained till the last meter .

However the protein algorithm does not perform that well in terms of updistance,

though it reaches 0.9 (figures 6.19 b,c,d). The 2 neighbors hop count variation as

could be seen in figure 6.19(b), has occasional early down-times, at around 0.3, 0.4.

However as could be seen in figures 6.21(a), 6.22(a), this is the price paid for the

sparseness of the network. As could be observed in 6.22(a) acute resistance for the

two hop count variation is considerable smaller compared to the others, which could

also be seen in figure 6.29, is due to the spread of the nodes compared to the other

cases. The base case has an acute resistance of 18 since the nodes always keep a

straight line, so there is no redundancy in the spread of the nodes. Variations with 3

or 4 neighbor hop counts are able to increase redundancy only slightly and only for

the first half of the maximum coverable distance.

vleader = 2.5m/s

Updistance performance of even the base case decreases (figure 6.23(a)) as the leader

103

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (secondary hc=none, v

leader
=0.5m/s, with settling time)

(a) Base case, Go In Between

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (secondary hc=2, v

leader
=0.5m/s, with settling time)

(b) Secondary structure’s hop count is 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (secondary hc=3, v

leader
=0.5m/s, with settling time)

(c) Secondary structure’s hop count is 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (secondary hc=4, v

leader
=0.5m/s, with settling time)

(d) Secondary structure’s hop count is 4

Figure 6.19: Updistance histograms for the base case where there are no secondary
connections and protein cases where each relay makes secondary connections to re-
lays 2, 3 and 4 nodes away given in a, b, c, and d respectively. Leader robot’s velocity
is 0.5m/s.

104

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Normalized Distance

C
o

n
n

e
c
ti
v
it
y

Mean Communication Connectivity vs.Normalized distance
(v

leader
=0.5m/s)

secondary hc=none

secondary hc=2

secondary hc=3

secondary hc=4

Figure 6.20: µmean, mean algebraic connectivity of the base and protein structures
for being in RF communication range of each other, when the leader as traveling at
0.5m/s.

105

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Normalized Distance

C
o

n
n

e
c
ti
v
it
y

Mean Acute Connectivity vs.Normalized distance
(v

leader
=0.5m/s)

secondary hc=none

secondary hc=2

secondary hc=3

secondary hc=4

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Normalized Distance

C
o

n
n

e
c
ti
v
it
y

Mean Communication Connectivity vs.Normalized distance(Zoomed)
(v

leader
=0.5m/s)

secondary hc=none

secondary hc=2

secondary hc=3

secondary hc=4

(b)

Figure 6.21: µmean, mean algebraic connectivity of the base and protein structures
for the graph of virtual forces (a), and zoomed version of being in RF communication
range of each other for the base and protein structures(b), when the leader as traveling
at 0.5m/s.

106

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Normalized Distance

R
e

s
is

ta
n

c
e

Mean Acute Resistance vs.Normalized distance
(v

leader
=0.5m/s)

secondary hc=none

secondary hc=2

secondary hc=3

secondary hc=4

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Normalized Distance

R
e

s
is

ta
n

c
e

Mean Communication Resistance vs.Normalized distance
(v

leader
=0.5m/s)

secondary hc=none

secondary hc=2

secondary hc=3

secondary hc=4

(b)

Figure 6.22: Reqmean , mean equivalent resistance for the Protein Graph of virtual forces
(a), and of being in RF communication range of each other (b), when the leader as
traveling at 0.5m/s.

107

is set to travel at a speed of 2.5m/s. Now the maximum updistance achievable is 0.7

units for the base case. This drop in performance is due to the limited speed of the

relays, 2.78m/s, which do not have the chance to detect and react to the changes suf-

ficiently fast. Note that nodes away from the leader do not know its speed and the

only way for a node to detect it is through its neighbor, which notices it through an-

other neighbor. In short, it takes time till the velocity propagates through the whole

network, and since the nodes are already not fast enough to overcompensate the time

delay the connection is broken sooner. And again the 2 neighbors hop count for sec-

ondary connections has better deployment performance(figures 6.25(a), and 6.26(a)),

but this time at a higher price (figure 6.23(b)), the leader is not allowed to cover

more than 0.5 units of distance, where other variations as well as the base case can

cover upto 0.7 units. Note that RF connectivity is adversely affected too (figures 6.24,

6.25(b) and 6.26(b))

Time Evolution of Protein Structures

To understand better how the algorithm works and as guidance for improvements few

screenshots of the algorithm are given in figures 6.27, 6.28, 6.29, 6.30. In figures 6.27,

6.28 time evolution of the base case is given for the two different leader velocities

studied. In both figures the starting states are close to a line, and as the leader moves

away the shape turns to a line. Due to the mechanism in effect changes at the leader

need some time to arrive at the base station. Therefore a node that is closest to the

leader will be pulled first, then it will pull its neighbor, and so on, till the sink is

reached. Due to this time delay spring lengths vary from the leader to the sink, being

longest at the leader. The difference between the lengths becomes larger as the leader

moves faster, compare 6.27 (d) and 6.28 (d) for example. This goes on till the distance

between the leader and its neighbor relay becomes large enough to make them out of

range, breaking connectivity of the network.

In figures 6.29 and 6.30 we see how the 2 hop count protein approach works. The

graphs are acute triangle graphs and are intended to show the distribution of nodes

as time goes on. As seen in the figures the 2 hop count protein algoritm is able to

keep the network redundant, and when the leader is slow, it is able to transfer itself

to the base case, utilizing full potential of the network for connectivity. However, its

108

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (secondary hc=none, v

leader
=2.5m/s, with settling time)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (secondary hc=2, v

leader
=2.5m/s, with settling time)

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (secondary hc=3, v

leader
=2.5m/s, with settling time)

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (secondary hc=4, v

leader
=2.5m/s, with settling time)

(d)

Figure 6.23: Updistance histograms for the base case where there are no secondary
connections and protein cases where each relay makes secondary connections to re-
lays 2, 3 and 4 nodes away given in a, b, c, and d respectively. Leader robot’s velocity
is 2.5m/s.

performance is not that good when it comes to a fast moving leader, the network is

disconnected at a quite early stage.

109

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Normalized Distance

C
o

n
n

e
c
ti
v
it
y

Mean Communication Connectivity vs.Normalized distance
(v

leader
=2.5m/s)

secondary hc=none

secondary hc=2

secondary hc=3

secondary hc=4

(a)

Figure 6.24: µmean, mean algebraic connectivity for being in RF communication range
of each other, when the leader as traveling at 2.5m/s.

110

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Normalized Distance

C
o

n
n

e
c
ti
v
it
y

Mean Acute Connectivity vs.Normalized distance
(v

leader
=2.5m/s)

secondary hc=none

secondary hc=2

secondary hc=3

secondary hc=4

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Normalized Distance

C
o

n
n

e
c
ti
v
it
y

Mean Communication Connectivity vs.Normalized distance(Zoomed)
(v

leader
=2.5m/s)

secondary hc=none

secondary hc=2

secondary hc=3

secondary hc=4

(b)

Figure 6.25: µmean, mean algebraic connectivity for the Protein Graph of virtual forces
(a), and zoomed version of being in RF communication range of each other (b), when
the leader as traveling at 2.5m/s.

111

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Normalized Distance

R
e

s
is

ta
n

c
e

Mean Acute Resistance vs.Normalized distance
(v

leader
=2.5m/s)

secondary hc=none

secondary hc=2

secondary hc=3

secondary hc=4

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Normalized Distance

R
e

s
is

ta
n

c
e

Mean Communication Resistance vs.Normalized distance
(v

leader
=2.5m/s)

secondary hc=none

secondary hc=2

secondary hc=3

secondary hc=4

(b)

Figure 6.26: Reqmean , mean equivalent resistance for the Protein Graph of virtual forces
(a), and of being in RF communication range of each other (b), when the leader as
traveling at 2.5m/s.

112

µ:0.0304	R:17.00

(a) t=0

µ:0.0304	R:17.00

(b) t=1

µ:0.0304	R:17.00

(c) t=2

µ:0.0304	R:17.00

(d) t=8

µ:0.0304	R:17.00

(e) t=12

µ:0.0304	R:17.00

(f) t=15

µ:0.0304	R:17.00

(g) t=18

µ:0.0000	R:Inf

(h) t=21

Figure 6.27: Screenshots taken at different times of the base protein algorithm as the
leader moves at vleader = 0.5m/s, The robots start with the initial configuration given
in (a), and connection is lost in (h). The square indicates the sink, the star the leader,
the black dots other mobile relays. The lines are the connections between the robots.

µ:0.0304	R:17.00

(a) t=0

µ:0.0304	R:17.00

(b) t=1

µ:0.0304	R:17.00

(c) t=2

µ:0.0304	R:17.00

(d) t=8

µ:0.0304	R:17.00

(e) t=12

µ:0.0304	R:17.00

(f) t=15

µ:0.0304	R:17.00

(g) t=18

µ:0.0000	R:Inf

(h) t=21

Figure 6.28: Screenshots taken at different times of the base protein algorithm as the
leader moves at vleader = 2.5m/s, The robots start with the initial configuration given
in (a), and connection is lost in (h). It can be observed that as the leader moves away,
uniformity of the link lengths is lost (compare to 6.27). This happens because the
leader is moving too fast for the network to stabilize. The square indicates the sink,
the star the leader, the black dots other mobile relays. The lines are the connections
between the robots.

113

µ:0.1414	R:4.04

(a)

µ:0.1162	R:6.28

(b)

µ:0.1101	R:6.14

(c)

µ:0.0757	R:7.99

(d)

µ:0.0935	R:7.01

(e)

µ:0.0938	R:7.45

(f)

µ:0.0794	R:7.24

(g)

µ:0.0641	R:8.48

(h)

µ:0.0477	R:10.08

(i)

µ:0.0385	R:11.87

(j)

µ:0.0337	R:13.36

(k)

µ:0.0337	R:13.36

(l)

µ:0.0312	R:15.00

(m)

µ:0.0304	R:17.00

(n)

µ:0.0304	R:17.00

(o)

µ:0.0304	R:17.00

(p)

µ:0.0000	R:Inf

(q)

Figure 6.29: Screenshots taken at different times of the 2 hop count protein algorithm
as the leader moves at vleader = 0.5m/s, The robots start with the initial configuration
given in (a), and connection is lost in (q). The square indicates the sink, the star the
leader, the black dots other mobile relays. The lines are the connections between the
robots.

114

µ:0.1297	R:3.99

(a)

µ:0.0947	R:5.00

(b)

µ:0.1239	R:4.47

(c)

µ:0.1096	R:6.28

(d)

µ:0.0749	R:7.64

(e)

µ:0.0792	R:7.24

(f)

µ:0.0780	R:6.97

(g)

µ:0.0775	R:7.11

(h)

µ:0.0758	R:7.25

(i)

µ:0.0768	R:7.67

(j)

µ:0.0770	R:8.12

(k)

µ:0.0759	R:7.18

(l)

µ:0.0633	R:8.00

(m)

µ:0.0000	R:Inf

(n)

Figure 6.30: Screenshots taken at different times of the 2 hop count protein algorithm
as the leader moves at vleader = 2.5m/s, The robots start with the initial configuration
given in (a), and connection is lost in (n). The network does not have enough time to
adept to the changes induced by the high speed of the leader (compare to 6.29). The
square indicates the sink, the star the leader, the black dots other mobile relays. The
lines are the connections between the robots.

115

6.4 Gabriel Virtual Force Graphs

Another way to improve robustness and redundancy of a mobile relay network is to

cover the available space uniformly with the available relays, without loosing con-

nectivity. For this the relays should be somehow pushed or directed to proper places,

and this should be done in a decentralized manner. If the nodes are connected to each

other using virtual springs where the neighbors to which they connect are chosen in

such a way that the resulting global graph is a Gabriel Graph, the network eventually

becomes uniformly distributed. And depending on the parameters used it can be-

come sparsely distributed. This graph is also referred as Gabriel Virtual Force Graph

(GVFG) in the text.

6.4.1 Method

Algorithm 9 Neighbor selection to create a Gabriel Graph
1: procedure Select Neighbors

2: S ← Query all neighbors . Initialize set of all neighbors

3: S 2 ← S . Copy of all neighbors

4: S a ← 0 . Initialize set of acute neighbors

5: for all n ∈ S do

6: x← (n.pose + my.pose)/2

7: r ← my.distanceTo(n)/2

8: for all nn ∈ S 2 do

9: d ← x.distanceTo(nn)

10: if d < r then

11: f lag← true

12: end if

13: end for

14: if f lag then

15: S a ← S a + n

16: end if

17: end for

18: end procedure

116

A mobile robot j in a GVFG moves under the influence of the following force, which

is the total spring force acting on it through its neighbors, selected according to algo-

rithm 9, minus the damping coefficient.

F j =
∑
i∈S j

−k(‖xi − x j‖ − l0)
xi − x j

‖xi − x j‖
− bẋ

S j: Set of neighbors forming an acute triangle with the current node

The neighborhood algorithm (algorithm 9) is straightforward and is run periodically

and independently by each node, just before calculating the force acting on it. The

first step in the neighborhood algorithm is to find all the neighbors that are in range.

After these neighbors are found, it is checked whether a link between the robot and its

neighbor could be one side of an acute triangle. This check is easily done by finding if

there is any other node in the circle whose diameter is the link in question. If there is

any, then this link could not be one side of an acute triangle in the graph and therefore

it is discarded, else it is added to the set S .

Assuming that all the nodes are close enough to form a connected graph, acute trian-

gulation of the workspace will create a connected Graph. This graph is not uniform

at the beginning. However due to the virtual springs connecting the nodes, the graph

converges soon to a steady state with a uniform distribution of the nodes. This uni-

form distribution is going to both help equi-distribute the load of communication and

add redundancy to the system. Of course this happens when the nodes are initially

dense enough. If they are not dense enough, we may get a graph that does not cover

the space uniformly. The connected crowded distribution of nodes is usually what

we can expect at the beginning of a mission, where all the relays and the sycophant

are around the base station. However as the leader (sycophant) moves away from

the base station, due to restricted communication range, the robots ability to keep a

highly connected network will degrade and we will end with a chain, and if the range

and number of relays are not sufficient we will loose connectivity between the leader

and the base station. Aim of a connectivity maintenance algorithm should be to keep

the system connected and redundant as much as (in terms of redundant paths, and in

terms of algebraic connectivity) and as long as (in terms of distance) possible.

117

Gabriel Graphs have the advantage that in a naive implementation they do not require

communication between the nodes, so the network does not have to reach a consensus,

can act quickly and allocate the available network bandwidth to relay information

from the sycophant as well as themselves instead of wasting it for formation control.

Neighborhood selection, and the forces nodes apply to each other are all symmetric.

The spring constants, the damping coefficients as well as the neutral lengths of the

connecting springs determine how fast the system reacts, how stable it is and for how

long robustness and redundancy are kept. Yet another parameter not evident in the

equations but still in effect is communication interval. Although having continuous

communication is the best, it is a power-hungry process and may be unwanted in

some mission since it would reveal locations of the nodes.

In the Gabriel Graph algorithm, spring constants, damping coefficients as well as the

neutral lengths of the springs do not have to be the same over all the graph or over

all times, and they have been varied in the simulations. Some variations degraded

the performance of the network, while some improved. We got different results for

different initial distribution of the relays and therefore when judging the performance

I had to run the algorithms many times. Performance was presented in terms of mean

connectivity, mean resistance and updistance.

The spring constant parameters determines how fast the system reaches a steady state

or how fast it responds to change in the configuration of the system. A high k may

even result in an oscillatory system, whereas a very small one means a sluggish sys-

tem.

The neutral spring length of the springs determines how spread the relays are. A

small l0 means a dense system whereas a large one means a sparse system. And

although a network that is too sparse is not preferred, a sparse system is able to keep

communication longer compared to a dense one. l0 was varied geographically, i.e.

depending on the neighborhood of the relays to critical nodes, namely the sycophant,

the sink and nodes that have a single connection. In such critical places if nodes are

loosely connected the connection may easily break, so by reducing l0 in these areas

we are able to both make those links stronger and increase the chance that new links

are formed here, avoiding a disconnected graph. l0 in these areas is called critical l0

118

critical l0 0.5m/s 2.5m/s
l0/1 0.6564 0.3432
l0/2 0.7292 0.4191
l0/4 0.7920 0.5643
l0/8 0.8128 0.5761
l0/16 0.8244 0.6219
l0/∞ 0.8340 0.6003

Table 6.1: Mean values of updistance for different speeds of the leader

in this text.

6.4.2 Simulations

In order to have a more realistic simulation, the parameters were set with examples

from the real world in mind. The communication range between the robots was taken

to be 100m, which is the default maximum range of wireless devices (access points,

modems etc.). The sycophant’s speed was taken to be between 0.5m/s and 2.5m/s,

which is in range of a walking or running human leader. The relays’ maximum ve-

locity was fixed to 2.78m/s (10km/h).

vleader = 0.5m/s

As could easily be seen in the updistance histograms given in figure 6.31, algorithms

ability to keep up with a leader that is moving away gets better as critical l0 de-

creases. When critical l0 is the same as l0, the algorithm fails sometimes even at a

very close distance of 0.3 units (figure 6.31(a)), which is approximately the initial

distance between the leader and the base station. As critical l0 decreases the algo-

rithm’s early failure rate decreases and it’s ability to cover longer distances improves

as could be seen by comparing figures 6.31(a) and the others. In figure 6.31(a) maxi-

mum covered distance is 0.7 whereas it reaches 0.9 in figure 6.31(c) and afterwards.

Comparing 6.31 c d e it is also observed that the smaller critical l0 is the more items

are accumulated towards 0.9.

Mean algebraic connectivity of the RF communication range could be seen in 6.32,

and 6.33(b) where it is zoomed both to see more detail and easily compare with the

algebraic connectivity for the Gabriel Virtual Force Graph, which is given in 6.33(a).

119

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (l

0
/1, v

leader
=0.5m/s)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (l

0
/2, v

leader
=0.5m/s)

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (l

0
/4, v

leader
=0.5m/s)

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (l

0
/8, v

leader
=0.5m/s)

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (l

0
/16, v

leader
=0.5m/s)

(e)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (l

0
/∞, v

leader
=0.5m/s)

(f)

Figure 6.31: Updistance histograms for various critical l0 values at critical junctions
and fixed leader velocity of 0.5m/s.

120

Mean algebraic connectivities of the communication range for different critical l0 val-

ues drop quickly as the leader moves away from the sink. For example the difference

of connectivity values at 0.2 updistance for l0/1 and l0/∞ is 0.25 and this difference is

almost zero at 0.5 updistance. Comparing mean communication and acute algebraic

connectivities to each other (comparing figures 6.33(a) and 6.33(b)), although initially

quite different, after a distance of approximately 0.6, they become quite alike. The

initial difference is due to the fact that µ for the communication range is calculated by

checking all neighbors in the RF communication range. However µ for the Gabriel

graph is calculated only by taking into account neighbors to whom/by who force is

applied, which is relatively fewer since many of the links do not satisfy the acute tri-

angle condition. However as the distance between the leader and the sink gets larger,

both the RF connectivity graph and the Gabriel virtual force graph become almost

identical. This is because much fewer nodes are seeing each other (being in range

of each other), and when they see each other they have to somehow connect, either

forming an acute triangle or just two links one to the neighbor on the right, and the

other to the one on the left, which still lets them be part of a Gabriel graph. The few

that stay together, cause the slight difference between the algebraic connectivities.

As had been mentioned in the section on performance measures, there is a contra-

diction between the need for a better connected system and a sparse system, which

could easily be seen in figure 6.34. Order of curves of acute resistance for normalized

distance less than 0.4 units is the reverse of the order of curves of the RF resistance.

In the acute resistance the curve corresponding to l0/1 is on the top, whereas it is

on the bottom for RF equivalent resistance, and the acute resistance at the bottom of

the graph which corresponds to l0/∞ goes to the top as RF resistance. However this

changes after µ = 0.45, because after a certain distance the relays have to get closer

to the line connecting the leader and the sink to keep connected, increasing equivalent

acute resistance. This could also be seen as convergence of the acute resistance to the

RF resistance as the distance between the sink and the leader increases.

vleader = 2.5m/s

Our observations for a different leader velocity (2.5m/s) are similar: the smaller the

critical l0 the better updistance we have, although the difference is not as obvious as

121

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Normalized Distance

C
o

n
n

e
c
ti
v
it
y

Mean Communication Connectivity vs.Normalized distance
(l

0
:30m, v

leader
=0.5m/s)

l
0
/1

l
0
/2

l
0
/4

l
0
/8

l
0
/16

l
0
/∞

(a)

Figure 6.32: µmean, mean algebraic connectivity for being in RF communication range
of each other, when the leader as traveling at 0.5m/s.

122

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Normalized Distance

C
o

n
n

e
c
ti
v
it
y

Mean Acute Connectivity vs.Normalized distance
(l

0
:30m, v

leader
=0.5m/s)

l
0
/1

l
0
/2

l
0
/4

l
0
/8

l
0
/16

l
0
/∞

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Normalized Distance

C
o

n
n

e
c
ti
v
it
y

Mean Communication Connectivity vs.Normalized distance(Zoomed)
(l

0
:30m, v

leader
=0.5m/s)

l
0
/1

l
0
/2

l
0
/4

l
0
/8

l
0
/16

l
0
/∞

(b)

Figure 6.33: µmean, mean algebraic connectivity for the Gabriel Graph of virtual forces
(a), and zoomed version of being in RF communication range of each other (b), when
the leader as traveling at 0.5m/s.

123

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Normalized Distance

R
e

s
is

ta
n

c
e

Mean Acute Resistance vs.Normalized distance
(l

0
:30m, v

leader
=0.5m/s)

l
0
/1

l
0
/2

l
0
/4

l
0
/8

l
0
/16

l
0
/∞

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Normalized Distance

R
e

s
is

ta
n

c
e

Mean Communication Resistance vs.Normalized distance
(l

0
:30m, v

leader
=0.5m/s)

l
0
/1

l
0
/2

l
0
/4

l
0
/8

l
0
/16

l
0
/∞

(b)

Figure 6.34: Reqmean , mean equivalent resistance for the Gabriel Graph of virtual forces
(a), and of being in RF communication range of each other (b), when the leader as
traveling at 0.5m/s.

124

the previous case. This time the network cannot keep to high updistance as was in the

previous case. This is mainly caused by the high velocity of the leader compared to

the previous case and relays maximum allowed velocity of 2.78m/s. A leader moving

too fast does not give the relays enough time to follow it while also trying to establish

a stable network. Note that this time the algorithm is not even able to keep the system

connected for a distance greater than 0.7 units.

Time Evolution Of The Gabriel Graph Time evolution of the mobile relay net-

work for different speeds and different critical l0 is given in figures 6.39, 6.41, 6.40,

6.42, 6.43, 6.46, 6.47. Note that evolution of the network depends not only on the

parameters but also the initial state. Evolutions put here are randomly selected with

the only criteria to display what is happening when an algorithm reaches maximum

updistance, what is happening when it does not. When updistance performance of a

variation of the algorithm increases, it means that the good cases start occuring more

frequently, and the bad cases less.

As has already been mentioned, updistance depends on the initial state, and this could

be seen in figures 6.39 and 6.40 which are both for the same critical l0 of l0 and the

same leader velocity of vleader = 0.5m/s. In figure 6.39 although link lengths get non-

uniform, thanks to the slow moving leader, the network has enough time and suitable

initial state to correct this problem. However note the existance of the quadrupole

nodes close to the sink, which due to symmetry do not let any of its links disappear.

However with the same leader speed and critical l0, the network in figure 6.40 cannot

reach its full extend, mainly due to distribution of the nodes. This is similar to what

happens in figure 6.40 where the leader is moving at 2.5m/s.

In figures 6.42 and 6.43 critical l0 is reduced to l0/2. In figure 6.42 the network

stretches till all nodes are on a straight line, achieving full potential. But in figure

6.43 we have again formation of symmetric node quadruples, fixing two extra nodes

to a region where they are not needed any more, and as a result preventing full stretch

of the network.

Reducing critical l0 to l0/4 in 6.44 and 6.45 does not change the global outlook:

the network may reach its full potential, or some node qudrupoles may prevent the

125

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (l

0
/1, v

leader
=2.5m/s)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (l

0
/2, v

leader
=2.5m/s)

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (l

0
/4, v

leader
=2.5m/s)

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (l

0
/8, v

leader
=2.5m/s)

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (l

0
/16, v

leader
=2.5m/s)

(e)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

Normalized Distance

F
re

q
u

e
n

c
y

Histogram of updistances
 (l

0
/∞, v

leader
=2.5m/s)

(f)

Figure 6.35: Updistance histograms for various critical l0 values at critical junctions
and fixed leader velocity of 2.5m/s.

126

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Normalized Distance

C
o

n
n

e
c
ti
v
it
y

Mean Communication Connectivity vs.Normalized distance
(l

0
:30m, v

leader
=2.5m/s)

l
0
/1

l
0
/2

l
0
/4

l
0
/8

l
0
/16

l
0
/∞

(a)

Figure 6.36: µmean, mean algebraic connectivity for being in RF communication range
of each other, when the leader as traveling at 2.5m/s.

127

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Normalized Distance

C
o

n
n

e
c
ti
v
it
y

Mean Acute Connectivity vs.Normalized distance
(l

0
:30m, v

leader
=2.5m/s)

l
0
/1

l
0
/2

l
0
/4

l
0
/8

l
0
/16

l
0
/∞

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Normalized Distance

C
o

n
n

e
c
ti
v
it
y

Mean Communication Connectivity vs.Normalized distance(Zoomed)
(l

0
:30m, v

leader
=2.5m/s)

l
0
/1

l
0
/2

l
0
/4

l
0
/8

l
0
/16

l
0
/∞

(b)

Figure 6.37: µmean, mean algebraic connectivity for the Gabriel Graph of virtual forces
(a), and zoomed version of being in RF communication range of each other (b), when
the leader as traveling at 2.5m/s.

128

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Normalized Distance

R
e

s
is

ta
n

c
e

Mean Acute Resistance vs.Normalized distance
(l

0
:30m, v

leader
=2.5m/s)

l
0
/1

l
0
/2

l
0
/4

l
0
/8

l
0
/16

l
0
/∞

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Normalized Distance

R
e

s
is

ta
n

c
e

Mean Communication Resistance vs.Normalized distance
(l

0
:30m, v

leader
=2.5m/s)

l
0
/1

l
0
/2

l
0
/4

l
0
/8

l
0
/16

l
0
/∞

(b)

Figure 6.38: Reqmean , mean equivalent resistance for the Gabriel Graph of virtual forces
(a), and of being in RF communication range of each other (b), when the leader as
traveling at 2.5m/s.

129

network from achieving its full potential.

In figures 6.46 and 6.47 critical l0 is reduced to l0/8 and the leader is set to move

at vleader = 2.5m/s. In figure 6.46 the network is not able to adapt, connectivity is

broken quite at an early stage, however in figure 6.47 the network (the relays not the

individual links) stretches fully. Note that although the relays are fully stretched, due

to the high speed of the leader links closer to the sink do not have enough time to

stretch to full length whereas the link to the leader stretches fully, so connection is

broken at an earlier time step.

130

µ:0.5644	R:1.55

(a)

µ:0.1829	R:4.19

(b)

µ:0.1604	R:4.52

(c)

µ:0.1608	R:4.72

(d)

µ:0.1565	R:4.92

(e)

µ:0.1360	R:5.34

(f)

µ:0.0569	R:8.86

(g)

µ:0.0569	R:8.86

(h)

µ:0.0569	R:8.86

(i)

µ:0.0569	R:8.86

(j)

µ:0.0479	R:10.03

(k)

µ:0.0387	R:11.69

(l)

µ:0.0321	R:15.00

(m)

µ:0.0321	R:15.00

(n)

µ:0.0321	R:15.00

(o)

µ:0.0321	R:15.00

(p)

µ:0.0000	R:Inf

(q)

Figure 6.39: Screenshots taken at different times of the acute triangulation algorithm
as the leader moves at vleader = 0.5m/s and critical l0 is l0. The robots start with the
initial configuration given (a), and connection is lost in (q). See in the figure that
although link lengths get non-uniform, thanks to the slow moving leader, the network
has enough time to correct this problem. The square indicates the sink, the star the
leader, the black dots other mobile relays. The lines are the connections between the
robots.

131

µ:0.5069	R:1.66

(a)

µ:0.2618	R:3.32

(b)

µ:0.1288	R:4.95

(c)

µ:0.1178	R:5.25

(d)

µ:0.0739	R:7.00

(e)

µ:0.0739	R:7.00

(f)

µ:0.0739	R:7.00

(g)

µ:0.0688	R:7.74

(h)

µ:0.0684	R:7.81

(i)

µ:0.0000	R:Inf

(j)

Figure 6.40: Screenshots taken at different times of the acute triangulation algorithm
as the leader moves at vleader = 0.5m/s and critical l0 is l0. The robots start with
the initial configuration given (a), and connection is lost in (j). See in the figure that
link lengths get non-uniform, but this time the network cannot adept despite the slow
moving leader. The square indicates the sink, the star the leader, the black dots other
mobile relays. The lines are the connections between the robots.

132

µ:0.6591	R:1.49

(a)

µ:0.4740	R:2.34

(b)

µ:0.2626	R:3.35

(c)

µ:0.1842	R:4.08

(d)

µ:0.1515	R:4.59

(e)

µ:0.1123	R:5.46

(f)

µ:0.0871	R:6.31

(g)

µ:0.0840	R:6.51

(h)

µ:0.0827	R:6.65

(i)

µ:0.0000	R:Inf

(j)

Figure 6.41: Screenshots taken at different times of the acute triangulation algorithm
as the leader moves at vleader = 2.5m/s and critical l0 is l0. The robots start with the
initial configuration given (a), and connection is lost in (j). See in the figure that link
lengths are not uniform: part of the network that is crowded has small links whereas
leaders neighbors have longer ones, which soon disappear, disconnecting the network.
Since the leader is too fast, the network does not have enough time to adept (compare
to figure 6.39). The square indicates the sink, the star the leader, the black dots other
mobile relays. The lines are the connections between the robots.

133

µ:0.5411	R:2.14

(a)

µ:0.1614	R:4.68

(b)

µ:0.1606	R:4.76

(c)

µ:0.1592	R:5.65

(d)

µ:0.0852	R:7.72

(e)

µ:0.0852	R:7.72

(f)

µ:0.0546	R:10.08

(g)

µ:0.0425	R:11.69

(h)

µ:0.0356	R:13.36

(i)

µ:0.0356	R:13.36

(j)

µ:0.0304	R:17.00

(k)

µ:0.0304	R:17.00

(l)

µ:0.0304	R:17.00

(m)

µ:0.0304	R:17.00

(n)

µ:0.0304	R:17.00

(o)

µ:0.0304	R:17.00

(p)

µ:0.0304	R:17.00

(q)

µ:0.0304	R:17.00

(r)

µ:0.0000	R:Inf

(s)

Figure 6.42: Screenshots taken at different times of the acute triangulation algorithm
as the leader moves at vleader = 0.5m/s and critical l0 is l0/2. The robots start with the
initial configuration given (a), and connection is lost in (s). See in the figure that link
lengths get non-uniform, but this time not as much as the cases for critical l0 = l0.
The system stretches till all nodes are on a straight line. The square indicates the sink,
the star the leader, the black dots other mobile relays. The lines are the connections
between the robots.

134

µ:0.5691	R:1.79

(a)

µ:0.1791	R:4.44

(b)

µ:0.1144	R:5.66

(c)

µ:0.1063	R:6.08

(d)

µ:0.0682	R:7.83

(e)

µ:0.0648	R:8.41

(f)

µ:0.0430	R:11.36

(g)

µ:0.0430	R:11.36

(h)

µ:0.0422	R:13.00

(i)

µ:0.0422	R:13.00

(j)

µ:0.0422	R:13.00

(k)

µ:0.0422	R:13.00

(l)

µ:0.0422	R:13.00

(m)

µ:0.0422	R:13.00

(n)

µ:0.0422	R:13.00

(o)

µ:0.0000	R:Inf

(p)

Figure 6.43: Screenshots taken at different times of the acute triangulation algorithm
as the leader moves at vleader = 0.5m/s and critical l0 is l0/2. The robots start with the
initial configuration given (a), and connection is lost in (p). See in the figure that link
lengths get non-uniform, but this time not as much as the cases for critical l0 = l0.
However here we see new problem, symmetric node quadruples are formed, which
resist forces to break any one of the links, so some other link is broken and the system
is not able to utilize its full potential. The square indicates the sink, the star the leader,
the black dots other mobile relays. The lines are the connections between the robots.

135

µ:0.4858	R:2.49

(a)

µ:0.3926	R:2.82

(b)

µ:0.1208	R:4.71

(c)

µ:0.0836	R:6.04

(d)

µ:0.0562	R:7.64

(e)

µ:0.0562	R:7.64

(f)

µ:0.0562	R:7.64

(g)

µ:0.0474	R:8.79

(h)

µ:0.0341	R:13.00

(i)

µ:0.0341	R:13.00

(j)

µ:0.0341	R:13.00

(k)

µ:0.0341	R:13.00

(l)

µ:0.0341	R:13.00

(m)

µ:0.0000	R:Inf

(n)

Figure 6.44: Screenshots taken at different times of the acute triangulation algorithm
as the leader moves at vleader = 0.5m/s and critical l0 is l0/4. The robots start with
the initial configuration given (a), and connection is lost in (n). See in the figure
that link lengths get non-uniform, but not as much as the cases for critical l0 = l0.
However here we see the same problem as in figure 6.43, symmetric node quadruples
are formed, which resist forces to break any one of the links, so some other link is
broken and the system is not able to utilize its full potential. The square indicates
the sink, the star the leader, the black dots other mobile relays. The lines are the
connections between the robots.

136

µ:0.3447	R:3.00

(a)

µ:0.3447	R:3.00

(b)

µ:0.1005	R:6.40

(c)

µ:0.0666	R:8.00

(d)

µ:0.0490	R:9.64

(e)

µ:0.0490	R:9.64

(f)

µ:0.0426	R:10.79

(g)

µ:0.0312	R:15.00

(h)

µ:0.0312	R:15.00

(i)

µ:0.0312	R:15.00

(j)

µ:0.0312	R:15.00

(k)

µ:0.0312	R:15.00

(l)

µ:0.0312	R:15.00

(m)

µ:0.0304	R:17.00

(n)

µ:0.0304	R:17.00

(o)

µ:0.0304	R:17.00

(p)

µ:0.0304	R:17.00

(q)

µ:0.0304	R:17.00

(r)

µ:0.0304	R:17.00

(s)

µ:0.0000	R:Inf

(t)

Figure 6.45: Screenshots taken at different times of the acute triangulation algorithm
as the leader moves at vleader = 0.5m/s and critical l0 is l0/4. The robots start with
the initial configuration given (a), and connection is lost in (t). See in the figure that
link lengths get non-uniform, but not as much as the cases for critical l0 = l0. And
there are no symmetric node quadruples as in figures 6.43 and 6.44. So the network
achieves its full potential. The square indicates the sink, the star the leader, the black
dots other mobile relays. The lines are the connections between the robots.

137

µ:0.2976	R:2.89

(a)

µ:0.3407	R:2.73

(b)

µ:0.3407	R:2.73

(c)

µ:0.2344	R:3.65

(d)

µ:0.0000	R:Inf

(e)

Figure 6.46: Screenshots taken at different times of the acute triangulation algorithm
as the leader moves at vleader = 2.5m/s and critical l0 is l0/8. The robots start with the
initial configuration given (a), and connection is lost in (e). See in the figure that the
leader fast, stretching its links far but on the other hand due to the critical link around
the sink some nodes are collected around the sink. Connection is soon broken. The
square indicates the sink, the star the leader, the black dots other mobile relays. The
lines are the connections between the robots.

138

µ:0.2462	R:3.80

(a)

µ:0.2416	R:3.94

(b)

µ:0.2429	R:3.93

(c)

µ:0.1478	R:5.12

(d)

µ:0.0697	R:7.60

(e)

µ:0.0684	R:7.87

(f)

µ:0.0688	R:7.72

(g)

µ:0.0688	R:7.73

(h)

µ:0.0682	R:7.83

(i)

µ:0.0648	R:8.42

(j)

µ:0.0477	R:10.08

(k)

µ:0.0387	R:11.69

(l)

µ:0.0337	R:13.36

(m)

µ:0.0312	R:15.00

(n)

µ:0.0304	R:17.00

(o)

µ:0.0304	R:17.00

(p)

µ:0.0304	R:17.00

(q)

µ:0.0304	R:17.00

(r)

µ:0.0304	R:17.00

(s)

µ:0.0000	R:Inf

(t)

Figure 6.47: Screenshots taken at different times of the acute triangulation algorithm
as the leader moves at vleader = 2.5m/s and critical l0 is l0/8. The robots start with the
initial configuration given (a), and connection is lost in (t). Contrary to the previous
figure (figure 6.46), though the same parameters are used (but a different initial state),
the network utilizes its full potential. The square indicates the sink, the star the leader,
the black dots other mobile relays. The lines are the connections between the robots.

139

CHAPTER 7

Conclusion & Future Work

7.1 Conclusion

In this thesis we have proposed a new Wireless Sensor Network deployment archi-

tecture, and called it Sycophant Wireless Sensor Networks. In order to improve the

usability of SWS networks we proposed using them in combination with sparse Mo-

bile Sensor Networks consisting of mainly mobile robots, although in addition to

mobile robots some stationary sensors or other types of mobile agents are welcome.

This hybrid architecture has led us to create hybrid 2D maps. Then as a further ap-

plication of the hybrid network, novel 3D maps using horizontal 2D map slices were

created. Simulation as well as hardware results for these maps were given. Then

full 3D maps were created fusing vertical 2D scans of the sycophant and 2D map as

well as the tracking performance of the follower robot. Afterwards three connectivity

maintenance methods, two of which novel, were implemented and related simulation

results were presented and discussed. In order to judge the performance, two new

performance metrics were presented. The first one was updistance and it tells us how

far a leader can go without breaking connectivity of the network. The second one was

resistance and it tells us how sparse a relay network is.

7.2 Future Work

Theoretical bounds on tracking performance should be found, and simulations be run

in more complicated, more crowded, totally unstructured larger areas. Although in

140

this work jerky paths have been chosen to make the system observable, finding an

energy efficient smooth path planner that still makes the system observable is a pos-

sible way to go. Another way to go is utilizing more data from the SWS in order to

relax the constraint of motion for observability. Even if this information is available

partially or for certain time slots, it is for sure going to increase tracking performance

and contribute more to an energy efficient tracking. Using hybrid SLAM, as is men-

tioned in this thesis would be a nice starting point to improve tracking too, since extra

sensor data would transform the problem from tracking to multi-agent SLAM where

poses of the sycophants are corrected through the measurement update of the Par-

ticle/Kalman Filter. Experimenting with different sensors and deciding on optimal

ones for the SWS network is a critical step that deserves attention in a hybrid SLAM

architecture. Although not mentioned in this thesis, there is considerable research on

Personal Dead Reckoning (PDR) systems. Integration of PDR to the SWS network

would be still another possible way to increase tracking performance considerably

and improve abilities and usability of the SWS network. Large scale hardware im-

plementation is a necessary but big step to take, requiring solutions to some of the

problems mentioned.

2D horizontal maps based 3D mapping should be improved to be more real-time. This

would also help improve map of the follower robot. Inclusion of more sycophants or

followers at different levels can improve the created 3D maps.

The restriction of a predefined angle for the full 3D maps should be relaxed. That

will allow the carrying agent of the sycophant move more freely and naturally in the

environment. But the scanning angle of the SWS will need to be estimated at every

step.

The two new connectivity maintenance methods should be improved to take into ac-

count obstacles present in the environment. The theoretical bounds for sparseness

should be found and compared to simulations results.

141

Bibliography

[1] Crossbow technology : MICAz 2.4GHz - wireless module.

http://www.xbow.com/Products/productdetails.aspx?sid=164.

[2] Main protein structure levels. http://en.wikipedia.org/.

[3] TinyOS community forum || an open-source OS for the networked sensor

regime. http://www.tinyos.net/.

[4] N. Adluru, L. J Latecki, M. Sobel, and R. Lakaemper. Merging maps of multiple

robots. In Pattern Recognition, 2008. ICPR 2008. 19th International Conference

on, pages 1 –4, 2008.

[5] N. Aizawa and N. Kubota. Intelligent formation control based on directionality

of multi-agent system. In Robotic Intelligence in Informationally Structured

Space, 2009. RIISS ’09. IEEE Workshop on, pages 87–92, April 2009.

[6] L. A.A Andersson and J. Nygards. On multi-robot map fusion by inter-robot

observations. In Information Fusion, 2009. FUSION ’09. 12th International

Conference on, pages 1712 –1721, 2009.

[7] R. Aylward, S. D Lovell, and J. A Paradiso. A compact, wireless, wearable sen-

sor network for interactive dance ensembles. Wearable and Implantable Body

Sensor Networks, 2006. BSN 2006. International Workshop on, pages 4 pp.–70,

April 2006.

[8] R. Aylward and J. A Paradiso. A compact, High-Speed, wearable sensor net-

work for biomotion capture and interactive media. Information Processing in

Sensor Networks, 2007. IPSN 2007. 6th International Symposium on, pages

380–389, April 2007.

[9] R. B. Bapat. Graphs and Matrices. Springer, 1st edition. edition, March 2011.

142

[10] Yaakov Bar-Shalom and Thomas E Fortmann. Tracking and data association,

volume 179 of Mathematics in Science and Engineering. Academic Press Pro-

fessional, Inc., San Diego, CA, USA, 1987.

[11] Frederick A. Bettelheim, William H. Brown, and Jerry March. Introduction to

General, Organic & Biochemistry. Harcourt College Publishers, 2001.

[12] A. Birk and S. Carpin. Merging occupancy grid maps from multiple robots.

Proceedings of the IEEE, 94(7):1384 –1397, July 2006.

[13] Andreas Birk, Kaustubh Pathak, Narunas Vaskevicius, Max Pfingsthorn, Jann

Poppinga, and Soren Schwertfeger. Surface representations for 3d mapping. KI

- Kunstliche Intelligenz, 24:249–254, 2010. 10.1007/s13218-010-0035-1.

[14] J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.

[15] Engelbert Buxbaum. Fundamentals of protein structure and function. Springer,

2007.

[16] M. Cardei, Yinying Yang, and Jie Wu. Non-uniform sensor deployment in mo-

bile wireless sensor networks. World of Wireless, Mobile and Multimedia Net-

works, 2008. WoWMoM 2008. 2008 International Symposium on a, pages 1–8,

June 2008.

[17] S. Carpin. Merging maps via hough transform. In Intelligent Robots and Sys-

tems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages 1878 –

1883, 2008.

[18] J. Chen, Karric Kwong, D. Chang, J. Luk, and R. Bajcsy. Wearable sensors

for reliable fall detection. Engineering in Medicine and Biology Society, 2005.

IEEE-EMBS 2005. 27th Annual International Conference of the, pages 3551–

3554, January 2005.

[19] Xi Chen, Wei Zhuang, and Jindong Tan. The maintaining of communication

links quality in unknown environment. In Information and Automation, 2009.

ICIA ’09. International Conference on, pages 218–223, June 2009.

[20] N. Correll, J. Bachrach, D. Vickery, and D. Rus. Ad-hoc wireless network cov-

erage with networked robots that cannot localize. In Robotics and Automation,

143

2009. ICRA ’09. IEEE International Conference on, pages 3878–3885, May

2009.

[21] J. Cortes, S. Martinez, and F. Bullo. Robust rendezvous for mobile autonomous

agents via proximity graphs in arbitrary dimensions. Automatic Control, IEEE

Transactions on, 51(8):1289–1298, August 2006.

[22] P. de la Puente, D. Rodriguez-Losada, A. Valero, and F. Matia. 3d feature based

mapping towards mobile robots’ enhanced performance in rescue missions. In

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Con-

ference on, pages 1138 –1143, oct. 2009.

[23] Goksel Dedeoglu and Gaurav Sukhatme. Landmark-based matching algorithm

for cooperative mapping by autonomous robots. In Distributed Autonomous

Robotics Systems, pages 251–260. Springer-Verlag, 2000.

[24] D. V Dimarogonas and K. H Johansson. Decentralized connectivity mainte-

nance in mobile networks with bounded inputs. In Robotics and Automation,

2008. ICRA 2008. IEEE International Conference on, pages 1507–1512, May

2008.

[25] D. V Dimarogonas and K. J Kyriakopoulos. On the rendezvous problem for

multiple nonholonomic agents. Automatic Control, IEEE Transactions on,

52(5):916–922, May 2007.

[26] Cory Dixon and Eric W. Frew. Maintaining optimal communication chains in

robotic sensor networks using mobility control. In Proceedings of the 1st in-

ternational conference on Robot communication and coordination, pages 1–8,

Athens, Greece, 2007. IEEE Press.

[27] I. Dryanovski, W. Morris, and Jizhong Xiao. Multi-volume occupancy grids: An

efficient probabilistic 3d mapping model for micro aerial vehicles. In Intelligent

Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages

1553 –1559, oct. 2010.

[28] Miroslaw Dynia, Jaroslaw Kutylowski, Friedhelm Meyer auf der Heide, and

Jonas Schrieb. Local strategies for maintaining a chain of relay stations be-

tween an explorer and a base station. In Proceedings of the nineteenth annual

144

ACM symposium on Parallel algorithms and architectures, pages 260–269, San

Diego, California, USA, 2007. ACM.

[29] Miroslaw Dynia, Jaroslaw Kutylowski, Pawel Lorek, and Friedhelm auf der

Heide. Maintaining communication between an explorer and a base station.

In Biologically Inspired Cooperative Computing. 2006.

[30] Yesim H Esin, Mustafa Unel, and Mehmet Yildiz. Formation control of multiple

robots using parametric and implicit representations. In ICIC ’08: Proceedings

of the 4th international conference on Intelligent Computing, pages 558–565,

Berlin, Heidelberg, 2008. Springer-Verlag.

[31] J. M Esposito and T. W Dunbar. Maintaining wireless connectivity constraints

for swarms in the presence of obstacles. In Robotics and Automation, 2006.

ICRA 2006. Proceedings 2006 IEEE International Conference on, pages 946–

951, May 2006.

[32] E.H.L. Fong, W. Adams, F.L. Crabbe, and A.C. Schultz. Representing a 3-d

environment with a 2 1/2 -d map structure. In Intelligent Robots and Systems,

2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on,

volume 3, pages 2986 – 2991 vol.3, oct. 2003.

[33] N. Heo and P. K Varshney. A distributed self spreading algorithm for mobile

wireless sensor networks. Wireless Communications and Networking, 2003.

WCNC 2003. 2003 IEEE, 3:1597–1602 vol.3, March 2003.

[34] Nojeong Heo and P. K Varshney. An intelligent deployment and clustering algo-

rithm for a distributed mobile sensor network. Systems, Man and Cybernetics,

2003. IEEE International Conference on, 5:4576–4581 vol.5, October 2003.

[35] A. Howard. Multi-robot simultaneous localization and mapping using particle

filters. International Journal of Robotics Research, 25(12):1243–1256, 2006.

[36] Meng Ji and M. Egerstedt. Distributed coordination control of multiagent

systems while preserving connectedness. Robotics, IEEE Transactions on,

23(4):693–703, August 2007.

[37] Holger Karl and Andreas Willig. Protocols and Architectures for Wireless Sen-

sor Networks. John Wiley & Sons, 2005.

145

[38] Yoonsoo Kim and M. Mesbahi. On maximizing the second smallest eigenvalue

of a state-dependent graph laplacian. Automatic Control, IEEE Transactions on,

51(1):116–120, January 2006.

[39] K. Konolige. Centibots: Very large scale distributed robotic teams. Springer

Tracts in Advanced Robotics, 21:131–140, 2006. cited By (since 1996) 0.

[40] A. Krause, A. Smailagic, and D. P Siewiorek. Context-aware mobile computing:

learning context- dependent personal preferences from a wearable sensor array.

Mobile Computing, IEEE Transactions on, 5(2):113–127, February 2006.

[41] S. Kroc and V. Delic. Personal wireless sensor network for mobile health care

monitoring. Telecommunications in Modern Satellite, Cable and Broadcast-

ing Service, 2003. TELSIKS 2003. 6th International Conference on, 2:471–474

vol.2, October 2003.

[42] M. Langerwisch. Registration of indoor 3D range images using virtual 2D scans.

In ICINCO 2010 - Proceedings of the 7th International Conference on Informat-

ics in Control, Automation and Robotics, volume 2, pages 327–332, 2010. cited

By (since 1996) 0.

[43] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path plan-

ning. Technical report, 1998.

[44] Steven M Lavalle. Planning Algorithms. Cambridge University Press, May

2006. Published: Hardcover.

[45] A. Leon. SLAM and map merging. Journal of Physical Agents, 3(1):13–23,

2009. cited By (since 1996) 0.

[46] Kian Hsiang Low, W. K Leow, and M. H Ang. Autonomic mobile sensor

network with self-coordinated task allocation and execution. Systems, Man,

and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,

36(3):315–327, May 2006.

[47] E. Z MacArthur and C. D Crane. Compliant formation control of a Multi-

Vehicle system. In Computational Intelligence in Robotics and Automation,

2007. CIRA 2007. International Symposium on, pages 479–484, June 2007.

146

[48] S. Mahlknecht and S. A Madani. On architecture of low power wireless sensor

networks for container tracking and monitoring applications. Industrial Infor-

matics, 2007 5th IEEE International Conference on, 1:353–358, June 2007.

[49] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige. The office

marathon: Robust navigation in an indoor office environment. In Robotics and

Automation (ICRA), 2010 IEEE International Conference on, pages 300 –307,

may 2010.

[50] O. Michel. Webots: Professional mobile robot simulation. Journal of Advanced

Robotics Systems, 1(1):39–42, 2004.

[51] H. Mizuno, H. Nagai, K. Sasaki, H. Hosaka, C. Sugimoto, K. Khalil, and S. Tat-

suta. Wearable sensor system for human behavior recognition (First report: Ba-

sic architecture and behavior prediction method). Solid-State Sensors, Actua-

tors and Microsystems Conference, 2007. TRANSDUCERS 2007. International,

pages 435–438, June 2007.

[52] Keiji Nagatani, Yoshito Okada, Naoki Tokunaga, Seiga Kiribayashi, Kazuya

Yoshida, Kazunori Ohno, Eijiro Takeuchi, Satoshi Tadokoro, Hidehisa

Akiyama, Itsuki Noda, Tomoaki Yoshida, and Eiji Koyanagi. Multirobot explo-

ration for search and rescue missions: A report on map building in robocupres-

cue 2009. Journal of Field Robotics, 28(3):373–387, 2011.

[53] Hoa G. Nguyen, H. R. Everett, Narek Manouk, and Ambrish Verma. Au-

tonomous mobile communication relays. Orlando, FL, April 2002.

[54] Hoa G. Nguyen, Nathan Farrington, and Narek Pezeshkian. Maintaining com-

munication link for tactical ground robots. Anaheim, CA,, August 2004.

[55] Narek Pezeshkian, Hoa G. Nguyen, and Aaron Burmeister. Unmanned ground

vehicle non-line-of-sight operations using relaying radios. In Proceedings of

the IASTED International Conference on Robotics and Applications, pages 1–6,

2006. cited By (since 1996) 3.

[56] Nissanka Bodhi Priyantha, Anit Chakraborty, and Hari Balakrishnan. The

cricket Location-Support system. In 6th ACM MOBICOM, Boston, MA, Au-

gust 2000.

147

[57] John H Reif and Hongyan Wang. Social potential fields: a distributed behav-

ioral control for autonomous robots. In WAFR: Proceedings of the workshop on

Algorithmic foundations of robotics, pages 331–345, Natick, MA, USA, 1995.

A. K. Peters, Ltd.

[58] Julian Ryde and Huosheng Hu. 3d mapping with multi-resolution occupied

voxel lists. Autonomous Robots, 28:169–185, 2010. 10.1007/s10514-009-9158-

3.

[59] Andreas Savvides, Chih-Chieh Han, and Mani B Strivastava. Dynamic fine-

grained localization in Ad-Hoc networks of sensors. In MobiCom ’01: Pro-

ceedings of the 7th annual international conference on Mobile computing and

networking, pages 166–179, New York, NY, USA, 2001. ACM Press.

[60] M. Schuresko and J. Cortes. Distributed motion constraints for algebraic con-

nectivity of robotic networks. In Decision and Control, 2008. CDC 2008. 47th

IEEE Conference on, pages 5482–5487, December 2008.

[61] B. Shucker and J. K Bennett. Target tracking with distributed robotic macrosen-

sors. In Military Communications Conference, 2005. MILCOM 2005. IEEE,

pages 2617–2623 Vol. 4, October 2005.

[62] B. Shucker, T. Murphey, and J.K. Bennett. Switching rules for decentralized

control with simple control laws. In American Control Conference, 2007. ACC

’07, pages 1485–1492, 2007.

[63] Sung-Woo Song and Kang-Hyun Jo. 3d mapping and estimation from moving

direction of indoor mobile robot using vanishing points. In ICCAS-SICE, 2009,

pages 3504 –3508, aug. 2009.

[64] Taek Lyul Song. Observability of target tracking with range-only measurements.

Oceanic Engineering, IEEE Journal of, 24(3):383–387, July 1999.

[65] Michael R. Souryal, Johannes Geissbuehler, Leonard E. Miller, and Nader

Moayeri. Real-time deployment of multihop relays for range extension. In Pro-

ceedings of the 5th international conference on Mobile systems, applications

and services, pages 85–98, San Juan, Puerto Rico, 2007. ACM.

148

[66] E. Stump, A. Jadbabaie, and V. Kumar. Connectivity management in mobile

robot teams. In Robotics and Automation, 2008. ICRA 2008. IEEE International

Conference on, pages 1525–1530, May 2008.

[67] O. Tekdas and V. Isler. Robotic routers. In Robotics and Automation, 2008.

ICRA 2008. IEEE International Conference on, pages 1513–1518, May 2008.

[68] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile robot

mapping with applications to multi-robot and 3D mapping. In Robotics and

Automation, 2000. Proceedings. ICRA ’00. IEEE International Conference on,

volume 1, pages 321 –328 vol.1, 2000.

[69] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (In-

telligent Robotics and Autonomous Agents). The MIT Press, September 2005.

Published: Hardcover.

[70] P. Urcola, L. Riazuelo, M. T Lazaro, and L. Montano. Cooperative naviga-

tion using environment compliant robot formations. In Intelligent Robots and

Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages 2789–

2794, September 2008.

[71] Volgyesi, Balogh, Nadas, Nash, and Ledeczi. Shooter localization and weapon

classification with soldier-wearable networked sensors. In MobiSys ’07: Pro-

ceedings of the 5th international conference on Mobile systems, applications

and services, pages 113–126, New York, NY, USA, 2007. ACM.

[72] You-Chiun Wang and Yu-Chee Tseng. Distributed deployment schemes for mo-

bile wireless sensor networks to ensure multilevel coverage. Parallel and Dis-

tributed Systems, IEEE Transactions on, 19(9):1280–1294, September 2008.

[73] J. Welle, D. Schulz, T. Bachran, and A.B. Cremers. Optimization techniques for

laser-based 3d particle filter slam. In Robotics and Automation (ICRA), 2010

IEEE International Conference on, pages 3525 –3530, may 2010.

[74] S. B. Williams. Towards multi-vehicle simultaneous localisation and mapping.

In Proceedings - IEEE International Conference on Robotics and Automation,

volume 3, pages 2743–2748, 2002. cited By (since 1996) 13.

149

[75] Lei Yang, Guang Song, and Robert L. Jernigan. Protein elastic network mod-

els and the ranges of cooperativity. Proceedings of the National Academy of

Sciences, 106(30):12347–12352, July 2009.

[76] Weizhong Ye, Yangsheng Xu, and Ka Keung Lee. Shoe-Mouse: an integrated

intelligent shoe. Intelligent Robots and Systems, 2005. (IROS 2005). 2005

IEEE/RSJ International Conference on, pages 1163–1167, August 2005.

[77] M. M Zavlanos and G. J Pappas. Distributed connectivity control of mobile

networks. Robotics, IEEE Transactions on, 24(6):1416–1428, December 2008.

[78] Zhe Zhang, Goldie Nejat, Hong Guo, and Peisen Huang. A novel 3d sensory

system for robot-assisted mapping of cluttered urban search and rescue envi-

ronments. Intelligent Service Robotics, 4:119–134, 2011. 10.1007/s11370-010-

0082-3.

[79] X. S Zhou and S. I Roumeliotis. Multi-robot SLAM with unknown initial corre-

spondence: The robot rendezvous case. In Intelligent Robots and Systems, 2006

IEEE/RSJ International Conference on, pages 1785 –1792, 2006.

150

Vita

Sedat Dogru received from Middle East Technical University Turkey his B.Sc. degree

in Electrical and Electronics Engineering and B.Sc. degree in Physics (double major)

in 2000 and 2001 respectively. He has served in the industry as software developer

and project leader for almost 4 years. He is currently a Ph.D. student at the Depart-

ment of Electrical and Electronics Engineering of Middle East Technical University

Turkey. His research interests are mainly Wireless Sensor Networks, SLAM, path

and motion planning, and connectivity maintenance.

151

