LOCATIONS ON A LINE AND GENERALIZATION TO THE DYNAMIC P-MEDIANS

A THESIS SUBMITED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HÜSEYİN GÜDEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
INDUSTRIAL ENGINEERING

Approval of the thesis:

LOCATIONS ON A LINE AND GENERALIZATION TO THE DYNAMIC P-MEDIANS

submitted by HÜSEYİN GÜDEN in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Industrial Engineering Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Science
Prof. Dr. Sinan Kayalıgil
Head of Department, Industrial Engineering

Assoc. Prof. Dr. Haldun Süral
Supervisor, Industrial Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Ömer Kırca
Industrial Engineering Dept., METU

Assoc. Prof. Dr. Haldun Süral
Industrial Engineering Dept., METU

Assoc. Prof. Dr. Bahar Yetiş Kara
Industrial Engineering Dept., Bilkent Univ.

Assoc. Prof. Dr. Hande Yaman
Industrial Engineering Dept., Bilkent Univ.
Assist. Prof. Dr. Sinan Gürel
Industrial Engineering Dept., METU

Date :

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name : Hüseyin, GÜDEN

Signature :

ABSTRACT LOCATIONS ON A LINE AND GENERALIZATION TO THE DYNAMIC P-MEDIANS
Güden, Hüseyin
Ph.D., Department of Industrial Engineering
Supervisor: Assoc. Prof. Dr. Haldun Süral

September 2012, 173 pages

This study deals with four location problems. The first problem is a brand new location problem on a line and considers the location decisions for depots and quarries in a highway construction project. We develop optimal solution properties of the problem. Using these properties, a dynamic programming algorithm is proposed. The second problem is also a brand new dynamic location problem on a line and locates concrete batching mobile and immobile facilities for a railroad construction project. We develop two mixed integer models to solve the problem. For solving large size problems, we propose a heuristic. Performances of models and the heuristic are tested on randomly generated instances plus a case study data and results are presented. The third problem is a generalization of the second problem to network locations. It is a dynamic version of the well known p-median problem and incorporates mobile facilities. The problem is to locate predetermined number of mobile and immobile facilities over a planning horizon such that sum of facility movement and allocation costs is minimized. Three constructive heuristics and a branch-and-price algorithm are proposed. Performances of these solution
procedures are tested on randomly generated instances and results are presented. In the fourth problem we consider a special case of the third problem, allowing only conventional facilities. The algorithm for the third problem is improved so that generating columns and solving a mixed integer model are used repetitively. Performance of the algorithm is tested on randomly generated instances and results are presented.

Keywords: Dynamic location, p-median, mobile facilities, location on a line, branch and price.

HAT ÜZERİNDE YER SEÇỉMí VE DİNAMİK P-MEDYANA GENELLEŞTİRİLMESİ

Güden, Hüseyin
Doktora, Endüstri Mühendisliği Bölümü
Tez Yöneticisi: Doç. Dr. Haldun Süral

Eylül 2012, 173 sayfa

Bu çalışmada dört yer seçimi problemi işlenmiştir. İlki tamamen yeni, bir hat üzerinde yer seçimi problemidir ve bir otoban yapımı projesinin depo ve ocak yerlerinin seçilmesi kararlarını ele alır. Problemin en iyi çözümünün özellikleri belirlenmiştir. Bu özellikler kullanılarak bir dinamik programlama algoritması önerilmiştir. İkinci problem de tamamen yeni; bir dinamik, kapasiteli, hat üzerinde yer seçimi problemidir ve bir demiryolu yapımı projesinin seyyar ve sabit beton santrallerinin yerlerini belirler. Problemin çözümü için iki karışık tamsayılı matematiksel model geliştirilmiştir. Büyük boyutlu problemleri çözmek için problem boyutunu küçülten bir sezgisel önerilmiştir. Modellerin ve sezgiselin performansları rasgele oluşturulan problemler artı bir vaka çalışması verileri üzerinde test edilmiş ve sonuçları sunulmuştur. Üçüncü problem ikincinin (genel) serim üzerindeki yer seçimi problemlerine genelleştirilmisidir. Bu problem çok bilinen p-medyan probleminin dinamik halidir ve seyyar tesisler içerir. Problem bir planlama ufkunda belli sayıdaki seyyar ve sabit tesisleri, tesis taşıma ve talepleri zamanla değişen müşterilerin tesislere atanma maliyetlerinin toplamını en
küçükleyecek şekilde yerleştirmektir. Üç kurucu sezgisel ve bir dallandır-vefiyatlandır algoritması önerilmiştir. Bu çözüm yöntemlerinin performansları rasgele oluşturulan problemler üzerinde test edilmiş ve sonuçları sunulmuştur. Dördüncü problemde üçüncü problemin özel bir hali, sadece sabit tesislerin olduğu durum işlenmiştir. Üçüncü problem için geliştirilen algoritma, kolonların oluşturulmasının ve karışık tamsayılı model çözümünün tekrarlı kullanılmasıyla iyileştirilmiştir. Bu yeni algoritmanın performansı rasgele oluşturulan problemler üzerinde test edilmiş ve sonuçları sunulmuştur.

Anahtar Kelimeler: Dinamik yer seçimi, p-medyan, seyyar tesisler, hat üzerinde yerleşim, dallandır ve fiyatlandır

TABLE OF CONTENTS

ABSTRACT iv
ÖZ vi
TABLE OF CONTENTS viii
LIST OF TABLES xi
LIST OF FIGURES xiii
LIST OF ABBREVIATIONS xiv
CHAPTERS

1. INTRODUCTION 1
2. THE DEPOT-QUARRY LOCATION PROBLEM IN ROAD CONSTRUCTION 5
2.1. Problem Definition 5
2.2. Literature Review 8
2.3. Fixed Charge Network Flow Problem Formulation of the DQLP 11
2.4. Properties of the Optimal Solution of the DQLP 13
2.5. An Ideal Formulation for the DQLP and a DP Algorithm 18
2.6. Relations between the DQLP and the ULSPB over the Network 20
2.7. The Complexity of the Algorithms for the DQLP and the ULSPB 24
3. A DYNAMIC LOCATION PROBLEM IN RAILROAD CONSTRUCTION 29
3.1. Problem Definition 29
3.2. Literature Review 33
3.3. Two MIP formulations for the Problem 38
3.4. A Preprocessing Heuristic to Reduce the Number of Candidate Sites. 43
3.5. Computational Results 45
3.5.1. Case Study 45
3.5.2. Performance of the Preprocessing Heuristic 51
A. Tests on the Case Study Problem 51
B. Tests on the Randomly Generated Test Instances 52
4. THE DYNAMIC P-MEDIAN PROBLEM WITH MOBILE
FACILITIES 54
4.1. Introduction 54
4.2. Literature Review 55
4.2.1. Literature Review on the p-Median Problem 55
4.2.2. Literature Review on the Dynamic p-Median Problem 64
4.3.Mathematical Formulation of the Dynamic p-Median Problem with Mobile Facilities: Dynamic Radius Formulation (DRF) 66
4.4. Solution Methods 74
4.4.1. Heuristics 74
4.4.2. Branch and Price Algorithm (BnP) 78
4.5. Computational Results 84
4.5.1. Validation of DBnP 87
4.5.2. Experiments on the First Problem Class Involving Only Mobile Facilities 89
A. Testing Performances of Heuristics and Parameter Setting 89
B. Testing performance of DBnP 91
4.5.3. Experiments on the Second Problem Class Involving Mobile and Immobile Facilities 93
A. Testing Performances of Heuristics and Parameter Setting 93
B. Testing performance of $D B n P$ 95
5. THE DYNAMIC P-MEDIAN PROBLEM 97
5.1. Introduction 97
5.2. Mathematical Formulation of the Dynamic p-Median Problem 99
5.3. An Iterative MIP based Column Generation Algorithm for the Dynamic p-Median Problem 100
5.4. Computational Results 104
5.4.1. Performances of the Heuristics and DBnP in Chapter 4 105
A. Testing Performances of Heuristics and Parameter Setting 105
B. Testing performance of $D B n P$ 107
5.4.2. Performance of IMCA 109
A. Validation of IMCA 109
B. Testing performance of IMCA 110
6. CONCLUSION 112
REFERENCES 117
APPENDICES
A. SETTINGS FOR THE RANDOMLY GENERATED TEST PROBLEM INSTANCES AND THE PROCEDURE TO GENERATE THESE INSTANCES 124
B. DETAILS AND FLOW CHART OF THE BRANCH-AND-PRICE ALGORITHM DEVELOPED 126
C. DETAILED RESULTS OF COMPUTATIONS IN CHAPTER 4 130
D. DETAILED RESULTS OF COMPUTATIONS IN CHAPTER 5 154
E. CURRICULUM VITAE 169

LIST OF TABLES

TABLES

Table 3.1 Number of open facilities, solution values by M2, and deviation of the solution value by M2 relative to the linear solution to M2 for the case study problem with varying costs47
Table 3.2 Results for a set of facility movement cost values (1,000 TL) 48
Table 3.3 Results for different mobile facility construction costs (1,000 TL) 48
Table 3.4 Results for different immobile facility construction costs (1,000 TL) 49
Table 3.5 Results for the p-median problem with mobile facilities ($1,000 \mathrm{TL}$). 50
Table 3.6 Deviation of the solution value relative to the best lower bound andsolution time for M2 and M2(R) for the case study problem with varying costs ...51
Table 3.7 Deviation of the solution value relative to the best lower bound and solution time for M2 and M2(R) for randomly generated test problems with varying costs 53
Table 4.1 Features of present study and the related studies in the literature 66
Table 4.2 Solution times (sec.) for the p-median problem test instances in the first group 88
Table 4.3 Average solution times and relative gaps for the heuristics 90
Table 4.4 Summary of average results for the first problem class. 92
Table 4.5 Average solution times and relative gaps for the heuristics 94
Table 4.6 Summary of average results for the second type problem instances 96
Table 5.1 Average solution times and relative gaps for the heuristics 106
Table 5.2 Summary of average results for the instances in the second group andDBnP108
Table 5.3 Solution times (sec.) for the test problem instances in the first group 110
Table 5.4 Summary of average results for the dynamic p-median problem instances and IMCA 111

Table C. 1 Results for the myopic heuristic for the first problem class for the instances in the subset A of the second group of the test instances 130
Table C. 2 Results for the progressive heuristics for the first problem class for the instances in the subset A of the second group of the test instances 134
Table C. 3 Results for myopic heuristic starting from the last period and DBnP with different target values for the first problem class for the instances in the subset A of the second group of the test instances 136

Table C. 4 Results for the first problem class obtained by DBnP 139
Table C. 5 Results for the myopic heuristic for the second problem class for the instances in the subset A of the second group of the test instances 142
Table C. 6 Results for the progressive heuristics for the second problem class for the instances in the subset A of the second group of the test instances 146
Table C. 7 Results for myopic heuristic starting from the last period and DBnP with
different target values for the second problem class for the instances in the subset A
of the second group of the test instances .. 148
Table C. 8 Results for the second problem class obtained by DBnP 151
Table D. 1 Results for the myopic heuristic for the instances in the subset A of the second group of the test instances 154
Table D. 2 Results for the progressive heuristics for the instances in the subset A of the second group of the test instances 158

Table D. 3 Results for myopic heuristic starting from the last period and DBnP with different target values for the instances in the subset A of the second group of the test instances

160
Table D. 4 Results for DBnP .. 163
Table D. 5 Results for IMCA ... 166

LIST OF FIGURES

FIGURES

Figure 2.1 An illustration for a road construction Project 6
Figure 2.2 G^{\prime} for a DQLP example with $n=9$.. 11
Figure 2.3 Extreme solutions for the DQLP example given in Figure 2.2. 14
Figure 2.4 The SPP network for the DQLP with $n=4$... 19
Figure 2.5 An extreme solution example for an ULSPB instance with 9 periods
where d_{i} is the demand in period $i, i=1, \ldots, 9 \ldots . ~$ 23
Figure 3.1 Art buildings ... 30
Figure 3.2 Tunnel construction process ... 30
Figure 3.3 Viaduct construction process .. 31
Figure 3.4 A vertical cross section of a railroad ... 32
Figure 3.5 Railroad, transportation line, resource points, and demand points in a
railroad construction project .. 32
Figure 3.6 Concrete batching facilities ... 33
Figure 4.1 Illustration of z variables used in Model 6 ... 62
Figure 4.2 Illustration of the myopic heuristic ... 77
Figure B.1: Flow chart of the DBnP algorithm .. 129

LIST OF ABBREVIATIONS

BnB : branch and bound
BnC : branch and cut
BnP : branch and price
DBnP : dynamic branch and price
DP : dynamic programming
DPP : dynamic p-median problem
DQLP : depot-quarry location problem
DRF : dynamic radius formulation
FNFP : fixed charge network flow problem
IMCA : Iterative MIP based column generation algorithm
LB : lower bound
LP : linear programming
LPR : linear programming relaxation
MIP : mixed integer programming
MH: myopic heuristic
P1 : progressive heuristic 1
P2 : progressive heuristic 2
SPP : shortest path problem
UB: upper bound
UFLP : uncapacitated facility location problem
ULSPB : uncapacitated lot sizing problem with backlogging

CHAPTER 1

INTRODUCTION

This thesis deals with four rich location problems. They are rich not because we introduce two of them for the first time and consider extensively the other two problems, but because they are extended location problems with new or rare features like having dynamic nature and incorporating mobile facilities. The first problem is about the location of depots and quarries in a highway construction project. The second problem is about the location of mobile and immobile concrete batching facilities for a railroad construction project. Both problems are motivated by real life applications in construction management. The third problem generalizes our findings for the second problem to general networks under the p-median problem settings. The resultant problem is a dynamic version of the p-median problem with mobile facilities. The fourth problem is a special case of the third problem where all facilities are assumed to be immobile.

The first problem is a new location problem, called the depot-quarry location problem. The problem is to locate facilities on a line and occurs in road construction projects. There are capacitated cut (supply) and fill (demand) points on the road so that the supply amounts must be cut from the cut points and should be filled in the fill points. Moreover, there are candidate uncapacitated depot and quarry sites that can be used to heap or obtain supply if the total cut and fill amounts are not balanced or a gain is achieved because of shortening transportation distances, if possible. Besides transportation costs, there are fixed and variable costs related with depots and quarries. The problem is to determine the depot and quarry points that will be used and the material flows between cuts, fills, depots, and quarries such that total cost is minimized, and the material is removed (filled) from
(to) the cut (fill) points. The problem is tightly related with the uncapacitated lot sizing problem with backlogging. Similarities and differences between these two problems, their optimal solution properties, and their solution methods are studied in detail. We develop two types of mathematical formulations: the fixed charged network flow problem type and the shortest path problem type. A polynomial time dynamic programming algorithm is presented for solving the problem.

The second problem is a dynamic, capacitated location problem with mobile and immobile facilities and it occurs in railroad construction projects. In rail road construction projects (im)mobile concrete batching facilities are located to build viaducts and tunnels. These facilities are built on a line over a time horizon. There are fixed costs of opening and moving facilities. There are also costs of operating facilities and transportation costs of concrete from facilities to construction sites. Concrete requirements of sites are obtained from the construction schedule. The problem is to determine the number, type, and movement schedule of the facilities and to make the concrete production and allocation decisions so that all concrete requirements are satisfied, facility capacities are not violated, and the total cost is minimized. We develop two strong mixed integer models. For solving large size problems, we propose a heuristic to reduce the problem size and obtain approximate solutions. We test models and heuristic performances on a case study problem based on real life data and randomly generated small, medium, and big size test instances.

The dynamic demands and mobile facilities are two distinctive properties of the second problem. Being motivated by these properties, in the third problem the second problem is generalized to the general networks under the p-median problem settings, called the dynamic p-median problem (DPP) with mobile facilities. There are dynamic demands over a planning horizon and predetermined numbers of mobile and immobile facilities in each period. According to some external considerations the number of facilities may or may not change from period to period. If the number of facilities for a type decreases in a period compared to the previous period, then some of these facilities should be abolished in that period. If it
increases, then some of new facilities for that type must be opened. If it does not change, then there will be no opening and no abolishing for that type. Abolishing and opening cannot be realized simultaneously at a site. During the planning horizon facility opening, moving, and abolishing may occur several times over the horizon at a location. There are relocation (moving) costs (fixed or source-and-sinklocation dependent) for mobile facilities and service (allocation) costs for all types. The problem is to determine (i) the opening or abolishing periods and locations of the facilities, (ii) movement periods and routes of the mobile facilities, and (iii) allocation of the demand nodes to open facilities in each period such that total cost is minimized. Three constructive heuristics and a branch and price algorithm are proposed. Performances of these solution procedures are tested on randomly generated instances and their results are presented.

In the fourth problem we consider a special case of the third problem, allowing only conventional (immobile) facilities. There are dynamic demands over a planning horizon and a predetermined number of facilities in each period. The branch-andprice algorithm developed for the third problem is improved so that generating columns and solving a mixed integer model of a variant of the problem are used repetitively. Performance of the new modified algorithm is tested on randomly generated instances and their results are presented.

The remaining chapters are organized as follows. The depot-quarry location problem is presented in the second chapter. Related literature is also reviewed in Chapter 2. Different mathematical formulations of the problem and our solution approach based on a dynamic programming algorithm are presented. The relations between the depot-quarry location problem and the uncapacitated lot sizing problem with backlogging are studied in Chapter 2.

Chapter 3 contains the second problem. The problem and the related studies in the literature are explained in detail. Two mathematical formulations of the problem and our preprocessing heuristic that reduces the number of candidate sites (also reduces the problem size and its model size) are presented. Computational studies
are performed on a case study based on the High Speed Train Project between Ankara and İstanbul and randomly generated test problem instances. Our numerical results are presented.

Chapter 4 generalizes the railroad construction management problem of Chapter 3 as a dynamic p-median problem with mobile facilities. The problem is formulated in a way that the generalized problem is not too complex in terms of scope, but incorporates the richness of the original construction problem. Related literature is reviewed. A mathematical formulation, three heuristic methods, and a branch and price algorithm are developed for the problem. The performances of the proposed methods are evaluated by extensive computational studies on the test problem instances.

The fourth problem, the dynamic p-median problem, is studied in Chapter 5. An algorithm is developed for solving the problem which uses column generation and mixed integer programming models. The proposed algorithm and the methods presented in Chapter 4 are used to solve several test problem instances in order to evaluate their performances.

The findings of above studies are briefly concluded and future study issues are discussed in Chapter 6.

CHAPTER 2

THE DEPOT-QUARRY LOCATION PROBLEM IN ROAD CONSTRUCTION

In this chapter, a new location problem, called the Depot-Quarry Location Problem (DQLP), is introduced. It is a location problem on a line and appears in road construction projects. Some characteristics of the problem related with demandsupply relations and capacity limitations are quite different than those of the traditional location problems.

2.1 Problem Definition

In a road construction project, "smoothing" is needed after the road line and its altitude are determined. Smoothing basically includes cutting the hills and filling the holes by using the transported material (earth) from cut (supply) points to fill (demand) points. If the distance between demand and supply points is long, and/or the total amounts of supply and demand are not balanced, some additional sites are needed in order to match demand with supply. Such sites are called depots (or oversupply case) and quarries (or undersupply case) and they are usually assumed to be uncapacitated. Note that a depot is the site in which material is heaped and a quarry is the site from which the material is obtained. Figure 2.1 shows an illustration of possible sites for a road construction project.

Related with candidate depot and quarry sites there is a fixed cost to open a depot or a quarry and there is a variable cost of using a site. Fixed cost includes several expenditures for the preparations necessary that make the sites usable and slip road construction costs necessary to reach these sites. Variable cost includes
loading/unloading expenditures in depot/quarry sites and transportation costs on the slip roads to reach and to leave depots and quarries. Also, there is a variable transportation cost occurs on the main road being constructed. The problem is to determine the depot and quarry sites that will be used and the material flows between cuts, fills, depots, and quarries such that the total cost is minimized.

Figure 2.1 An illustration for a road construction project

The DQLP can be considered as if it is an aggregation of two but oppositely structured location problems on a line. Let us consider only fill points with known requirements on a line and candidate uncapacitated quarry sites with fixed and variable costs. This is exactly the same as the traditional uncapacitated facility location problem (UFLP) in terms of matching demand with supply, where fill points represent customer locations with known demands and quarries represent uncapacitated candidate facility sites. The problem is to determine the number and locations of facilities and allocations of the customers to the facilities such that the total cost is minimized. Now, let us consider the opposite case in which there are only cut points and candidate depot sites. The problem is nearly the same as the
previous one. The only difference in this case is that commodity flows are now from customers to facilities.

In the DQLP these two separate problems come together and merge on the same line in a way that one can move material from cut points and quarry sites to fill points and depot sites. However customers and facilities are not well differentiated in the DQLP. Even we consider cut points and quarry sites as candidate capacitated and uncapacitated facility locations, the cut points do not fit such a classification because we actually do not make an opening decision about a cut point but determine the material flows from these points. On the other hand, if we consider fill points and depot sites as customer locations, this time depots do not fit this classification because we actually decide to open a depot and determine the material flow to these sites.

A road construction environment can be represented on a line network. Cut and fill points and connection points of slip roads to the main road being constructed compose the node set and road segments between node pairs correspond to the edge set. Let $G=(N, E)$ be a line network where N is the node set, $N=\{1,2,3, \ldots, n\}$, and E is the edge set, $E=\{(i, i+1) \mid i=1,2,3, \ldots, n-1\}$. Let $C \subseteq N$ be the set of cut nodes, $F \subseteq N$ the set of fill nodes, $D \subseteq N$ the set of candidate depot nodes and $Q \subseteq N$ the set of candidate quarry nodes such that $N=C \cup F \cup D \cup Q$. Let $c_{i}\left(f_{i}\right)$ be the amount of material that must be sent from (to) cut (fill) node i. Let $q_{i}\left(p_{i}\right)$ be the fixed (variable) cost related with point $i \in D \cup Q$. Let $r_{i j}$ be the unit transportation cost between $i \in N$ and $j \in N$, which is assumed to be a linear function of the distance between nodes i and j. The DQLP on G is to determine $D^{\prime} \subseteq D, Q^{\prime} \subseteq Q$, and the amount of material flows between the nodes such that (a) the total material sent from Q^{\prime} and C to i is equal to f_{i} for each $i \in F$ and the total material sent from i to D^{\prime} and F is equal to c_{i} for each $i \in C$ and (b) the total cost is minimized where D^{\prime} and Q^{\prime} are the sets of open depots and quarries, respectively.

In this study, because of diverse nature of cut and fill operations, stocking function of depots, and supplying functions of quarries, we assume that C, F, D, and Q are disjoint sets without loss of generality, and those cost, distance, and supply/demand parameters are non-negative for simplicity. If "a site" contains multiple features of operations and functions in a completely different context, then by generating enough copies of that site, one can develop the disjoint sets as follows. Create a copy of the site for each different feature and set the distances between these copy sites to zero on the network representation.

2.2 Literature Review

To the best of our knowledge, neither the road construction literature nor the location literature contains a study about location decisions in road construction projects. Nevertheless, there are a few studies on the facility location problems on a line in the location literature, some of which are formulated as the p-median problem and/or the fixed charged facility location problem. There are two main properties that make these facility location problems on a line easier and lead polynomial or pseudo-polynomial algorithms to solve the problems. The first property is eligibility of non-fractional allocations of demands to facilities and the second one is to have identical capacities at all facilities. Having uncapacitated facilities guarantees the validity of the first property. Love (1976) considers the p median problem and proposes a dynamic programming (DP) algorithm to solve the problem. Brimberg and Revelle (1998) consider the uncapacitated facility location problem and p-median problem and show that the linear relaxation of their mixed integer programing (MIP) models gives the integer optimal solution. Berberler et al. (2011) study the p-median problem on a line and present a DP algorithm. Hsu et al. (1997) propose an $O\left(p n^{2}\right)$ algorithm for solving a facility location problem where n refers to the number of candidate location sites. The main characteristics of the problem are a given limit on the number of uncapacitated facilities, location based fixed costs for the facilities, a unimodal cost function for serving the customers, and non-fractional allocations of the customers to the facilities. Brimberg and Mehrez (2001) suggest a DP algorithm to solve the location and sizing problems of
facilities. The number, locations, and capacities of facilities and the allocations of customers to the facilities are determined. Facilities may reach any capacity level at the expense of a fixed cost, which is a continuous non-decreasing function of the capacity. As a result of this capacity-cost relation the first property is guaranteed. Brimberg et al. (2001) investigate the effect of capacity constraints on the locationallocation problem. In their study the second property is valid and the problem is to locate at most p homogeneous facilities and to allocate the demand points to the facilities, such that the sum of fixed and transportation costs is minimized. Demand nodes and candidate facility locations lie on a line. Facilities may be located at any point on the line. They propose a DP algorithm when the unit transportation cost between demand and facility points is an increasing convex function of the distance. They show that the problem is NP-hard under more general cost structures. Eben-Chaime et al. (2002) consider a capacitated location-allocation problem to find the number and locations of capacitated branching facilities and an allocation of customers to these facilities such that the sum of fixed and allocation costs is minimized. They propose heuristic solution methods to solve the problem. Mirchandani et al. (1996) consider a capacitated facility location problem. To serve a customer, a facility must be located within a given neighborhood of this customer. Fixed and service costs depend upon their locations on the line. They develop polynomial time DP algorithms for (i) locating minimum cost facilities to serve all customers and (ii) maximizing the profit by locating up to p facilities that serve some or all customers.

The relation between the DQLP and the UFLP is mentioned before. When the network is a line network, the UFLP is equivalent to the uncapacitated lot sizing problem with backlogging (ULSPB). So, the DQLP is related with the ULSPB. The ULSPB is polynomially solvable (see Zangwill 1969; Pochet and Wolsey 2006; Pochet and Wolsey 1988; Johnson and Montgomery 1974). Zangwill (1969) is the first to formulate the ULSPB as the network flow problem. He considers concave cost functions and proposes a backward DP algorithm for the problem. Johnson and Montgomery (1974) propose a forward DP algorithm for the problem. Pochet and Wolsey (1988) first formulate the ULSPB as the fixed charge network flow
problem. Then they reformulate the problem as the UFLP and the shortest path problem. They show that the UFLP and the shortest path problem reformulations are ideal formulations for the ULSPB, i.e., their linear programming relaxations give the integer optimal solution of the problem. They strengthen the original fixed charge network flow problem formulation by adding new constraints and propose separation algorithms for these cutting planes.

In the literature there are several studies that consider the lot sizing problem with product returns from the customers and/or disposals of excess inventory. The most generic version of this problem appears in Beltran and Krass (2002), which is a special case of the DQLP. All other studies add different features on the problem such as remanufacturing operations for returned products, production capacities, multi products etc. Note that when backlogging is allowed in the lot sizing problem with returns and disposals, the resulting problem is equivalent to the DQLP. To the best of our knowledge, there is no study that considers backlogging.

Another problem that the DQLP is related with is the transportation problem. If there were no candidate depot and quarry sites (i.e., if there are no decisions for opening depots and quarries), then the remaining problem would reduce to a transportation problem defined on a line network. The transportation problem determines the material flows from the cut points to the fill points such that supply and demand amounts are balanced and the total transportation cost is minimized. Note that the transportation problem can be formulated as a linear programming problem in general and solved by a strongly polynomial algorithm (Nemhauser and Wolsey, 1988). In our case it is linearly solvable (i.e., $O(n)$) by using the line property, given n points. There are several studies that consider the transportation problem with fixed charged transportation costs between supply and demand points (see Adlakha and Kowalski, 1999), but according to the best of our knowledge, there is no study in the literature on transportation problem with location decisions of both candidate supply and demand points in addition to the initially given (fixed) supply and demand points.

2.3 Fixed Charge Network Flow Problem Formulation of the DQLP

The depot-quarry location problem can be represented as the fixed charge network flow problem (FNFP) defined on a directed graph $G^{\prime}=\left(N^{\prime}, A\right)$ where $N^{\prime}=\{0\} \cup N$ and $A=\{(i, i+1) \mid i=1,2, \ldots, n-1\} \cup\{(i+1, i) \mid i=1,2, \ldots, n-1\} \cup\{(0, i) \mid i \in Q\} \cup\{(i, 0) \mid i \in D\}$. Fixed and variable charges of using arcs $(0, i)$ and $(i, 0)$ in G^{\prime} are equal to q_{i} and p_{i} values, respectively, where node i corresponds to candidate quarry for the former case and depot for the latter case. Variable charges of using both arcs $(i, i+1)$ and $(i+1, i)$ for $i=1,2, \ldots, n-1$ are equal to $r_{i, i+1}$. The amount of supply (demand) of $i \in C$ (F) is equal to $c_{i}\left(f_{i}\right)$. Supply $\left(c_{i}\right)$ and demand $\left(f_{i}\right)$ are zero for $i \in D \cup Q$. For node 0 , the supply amount is equal to $\max \left\{0, \sum_{i \in C} c_{i}-\sum_{i \in F} f_{i}\right\}$ and the demand amount is equal to $\max \left\{0, \sum_{i \in F} f_{i}-\sum_{i \in C} c_{i}\right\}$.

Let us define our decision variables for the DQLP. $u_{i}\left(v_{i}\right)$ is the amount of forward (backward) material flow from point i to $(i+1)\left((i+1)\right.$ to i) for $i=1, \ldots,(n-1) . Q_{i}\left(D_{i}\right)$ is the amount of material obtained (heaped) from (to) quarry (depot) node i for $i \in Q$ $(i \in D) . y_{i}$ is equal to 1 , if a depot (quarry) is open at a candidate node $i, 0$ otherwise for $i \in D(i \in Q)$. Figure 2.2 illustrates G^{\prime} for a DQLP instance with $n=9, C=\{3,8\}$, $F=\{1,6,9\}, D=\{4,7\}$ and $Q=\{2,5\}$.

Figure 2.2 G^{\prime} for a DQLP example with $n=9$.

The FNFP formulation of the DQLP is given below.

NF
$\operatorname{Min} \sum_{i=1}^{n-1} r_{i, i+1}\left(u_{i}+v_{i}\right)+\sum_{i \in D \cup Q} q_{i} y_{i}+\sum_{i \in D} p_{i} D_{i}+\sum_{i \in Q} p_{i} Q_{i}$
s.t.
$u_{i-1}+v_{i}+c_{i}=u_{i}+v_{i-1} \quad \forall i \in C$

The objective is to minimize the total cost function. Constraints (2.1)-(2.4) are basically material flow balance equations and they guarantee that the exact amount of material is removed (filled) from (to) the cut (fill) points; and if it is necessary, the amount of material is obtained (heaped) from (to) quarry (depot) points. Constraints (2.5) and (2.6) guarantee that if a shipment occurs from (to) a quarry (depot), the corresponding binary variable is set to 1 . Remaining constraints are set and integrality constraints. Note that in the above model u_{0}, v_{0}, u_{n}, and v_{n} are set to 0 and the material flow balance equation is not written for node 0 because it will be automatically satisfied as a result of constraints (2.1)-(2.4).

2.4 Properties of the Optimal Solution of the DQLP

Because the DQLP can be represented as the FNFP, the corresponding solution of the DQLP satisfies the solution properties of the FNFP. We now explore the solution properties of the FNFP to adapt them into the DQLP. It is known that when y variables are given, (i) the FNFP reduces to the minimum cost network flow problem whose optimal solution satisfies acyclic graph property and (ii) an extreme solution of the FNFP has a tree structure as shown in Figure 2.3 using the network representation. In example 1 in Figure 2.3.a, one depot (7) and one quarry (2) are open. Quarry 2 satisfies the demand at site 1 while the demand at site 6 is satisfied from the supply sites 3 and 8 , and the demand at site 9 is satisfied from the supply site 8 . The remaining supply is sent to depot at site 7. In example 2 in Figure 2.3.b, one depot (4) and one quarry (2) are open. Quarry 2 satisfies the demand at site 1 while the demands at sites 6 and 9 are satisfied from the supply site 8 and the supply at site 3 is sent to depot at site 4 .

So, as a direct result of tree structure property of extreme solutions of the FNFP, the extreme solutions of the DQLP satisfy Observation 1.
Observation 1: In an extreme solution of the DQLP the following properties are satisfied:
i) $u_{i}{ }^{*} v_{i}=0$ for all $1 \leq i<n$,
ii) if $D_{k}>0$ or $Q_{k}>0$ for any $k \in D \cup Q$ and if $D_{l}>0$ or $Q_{l}>0$ for any $l \in D \cup Q$ where $l>k$ then there is at least one $i \in N$ satisfying $k \leq i<l$ such that $u_{i}=v_{i}=0$.

Definition 1: Consider two nodes $a, b \in N$ and $a \leq b$. If an extreme solution of the DQLP satisfies

- $u_{a-1}=v_{a-1}=u_{b}=v_{b}=0$ and
- $u_{i}+v_{i}>0$ for all i, where $a \leq i<b$,
then the part of the solution on G between nodes a and b is called a "segment" and represented by $S[a, b]$.

a) Example 1

b) Example 2

Figure 2.3 Extreme solutions for the DQLP example given in Figure 2.2.

Observation 1 shows that in an extreme solution of the DQLP, material flows occur on sequential segments like $S\left[a_{1}, b_{1}\right], S\left[a_{2}, b_{2}\right], S\left[a_{3}, b_{3}\right], \ldots, S\left[a_{\mathrm{k}}, b_{\mathrm{k}}\right]$ where $a_{\alpha}, b_{\alpha} \in N$ and $a_{\alpha} \leq b_{\alpha}$ for $\alpha=1, \ldots, k ; a_{1}=1, b_{k}=n, b_{\alpha}=\mathrm{a}_{(\alpha+1)}-1$ for $\alpha=1, \ldots,(k-1)$; and there is no flow on the edges between these segments, i.e., there is no flow on the edges between b_{α} and $a_{(\alpha+1)}$ for $\alpha=1, \ldots,(k-1)$.

Note that a segment is a part of an extreme solution of the DQLP. It satisfies the properties given in Definition 1 and Observation 1, and the related constraints in the NF formulation. All are formalized in Observation 2.

Observation 2: A segment $S[a, b]$ satisfies the following properties:
i) One of the following three cases is valid:

- if $\sum_{\substack{i=a \\ i \in C}}^{b} c_{i}=\sum_{\substack{i=a \\ i \in F}}^{b} f_{i}$ then $\sum_{\substack{i=a \\ i \in D}}^{b} y_{i}=\sum_{\substack{i=a \\ i \in Q}}^{b} y_{i}=0$,
- if $\sum_{\substack{i=a \\ i \in C}}^{b} c_{i}>\sum_{\substack{i=a \\ i \in F}}^{b} f_{i}$ then $\sum_{\substack{i=a \\ i \in D}}^{b} y_{i}=1$ and $\sum_{\substack{i=a \\ i \in Q}}^{b} y_{i}=0$, or
- if $\sum_{\substack{i=a \\ i \in C}}^{b} c_{i}<\sum_{\substack{i=a \\ i \in F}}^{b} f_{i}$ then $\sum_{\substack{i=a \\ i \in D}}^{b} y_{i}=0$ and $\sum_{\substack{i=a \\ i \in Q}}^{b} y_{i}=1$.
ii) Cut and fill nodes in $S[a, b]$ can partially or entirely satisfy each other's demand.
iii) Any $i \in C \cup F$ where $a \leq i \leq b$ can receive both or one of the forward and backward flows. In Figure 2.3.a site 6 receives both of the forward and backward flows.
iv) In $S[a, b]$, forward and backward flows can be in a mixed order, i.e., they cannot be separated into two sub parts of $S[a, b]$. For instance, in Figure 2.3.a, $S[3,9]$ starts with three steps of forward flows, continue with two steps of backward flows, and ends with a forward flows, which results in three mixed orders of the flows.
v) Assume that the second or third case in Observation 2.i is valid for $S[a, b]$. Let us divide $S[a, b]$ into two parts, called left and right parts, assuming an open depot or quarry in the center of two parts. The material on $S[a, b]$ flows from one part to other part. For instance, in Figure 2.3.a, the material on $S[3,9]$ flows from the right to the left as the depot at site 7 is open.

Proposition 1: On a given $S[a, b]$, the optimal amounts of material flow (i) between its cut and fill nodes, (ii) between its cut nodes and open depot (if any), and (iii) between its fill nodes and open quarry (if any) plus (iv) the corresponding optimal total cost can be pre-determined by simple computations.

Proof: Let $D^{a b}$ and $Q^{a b}$ be the sets of candidate depot and quarry nodes on $S[a, b]$, respectively. One of the following three cases occurs according to Observation 2.i:

- If $\sum_{\substack{i=a \\ i \in C}}^{b} c_{i}=\sum_{\substack{i=a \\ i \in F}}^{b} f_{i}$, then there exists no open facility on $S[a, b]$. The amounts of material flows on $S[a, b]$ can be computed by using expressions 2.12 and 2.13 for each j where $a \leq j \leq b$, due to Observation 1.i.

$$
\begin{align*}
& v_{j}=\max \left\{0, \sum_{\substack{i=a \\
i \in F}}^{j} f_{i}-\sum_{\substack{i=a \\
i \in C}}^{j} c_{i}\right\} \tag{2.12}\\
& u_{j}=\max \left\{0, \sum_{\substack{i=a \\
i \in C}}^{j} c_{i}-\sum_{\substack{i=a \\
i \in F}}^{j} f_{i}\right\} \tag{2.13}
\end{align*}
$$

The total cost for $S[a, b], T C_{a b}$, is:

$$
T C_{a b}=\sum_{j=a}^{b-1} r_{j, j+1}\left|\sum_{\substack{i=a \\ i \in F}}^{j} f_{i}-\sum_{\substack{i=a \\ i \in C}}^{j} c_{i}\right| .
$$

- If $\sum_{\substack{i=a \\ i \in C}}^{b} c_{i}>\sum_{\substack{i=a \\ i \in F}}^{b} f_{i}$, then there exists only one open depot (say at site m). The amount of material sent to depot m is equal to the difference between the cut and fill amounts in $S[a, b]$. Consider depot m as if it would be a fill node. Thus, we have: $f_{m}=\sum_{\substack{i=a \\ i \in C}}^{b} c_{i}-\sum_{\substack{i=a \\ i \in F}}^{b} f_{i}, F^{0}=F \cup\{m\}$ and modified expressions (2.12)-(2.13) for each j where $a \leq j \leq b$ as

$$
\begin{align*}
& v_{j}=\max \left\{0, \sum_{\substack{i=a \\
i \in F^{0}}}^{j} f_{i}-\sum_{\substack{i=a \\
i \in C}}^{j} c_{i}\right\} \\
& u_{j}=\max \left\{0, \sum_{\substack{i=a \\
i \in C}}^{j} c_{i}-\sum_{\substack{i=a \\
i \in F^{0}}}^{j} f_{i}\right\}
\end{align*}
$$

The total cost for $S[a, b]$ when depot m is open, is:
$T C_{a b}^{m}=q_{m}+p_{m}\left(f_{m}\right)+\sum_{j=u}^{b-1} r_{j, j+1}\left|\sum_{\substack{i=a \\ i \in F^{0}}}^{j} f_{i}-\sum_{\substack{i=a \\ i \in C}}^{j} c_{i}\right|$.

Locating a depot on this segment can be decided by first computing $T C_{a b}^{m}$ values for all $m \in D^{a b}$ and then selecting the location site with the minimal
cost value among the computed values. If $D^{a b}$ is an empty set, then a and b cannot be the first and last nodes of a segment as a part of a candidate feasible solution and we redefine the total cost term as

$$
T C_{a b}=\left\{\begin{array}{cc}
\min _{m \in D^{a b}}\left\{T C_{a b}^{m}\right\} & \text { If } D^{a b} \neq \phi \\
M & \text { If } D^{a b}=\phi
\end{array}\right.
$$

where M is a very big positive number.

- If $\sum_{\substack{i=a \\ i \in C}}^{b} c_{i}<\sum_{\substack{i=a \\ i \in F}}^{b} f_{i}$, then there exists only one open quarry (say at site m). The amount of material obtained from quarry m is equal to the difference between the cut and fill amounts in $S[a, b]$. Consider quarry m as if it would be a cut node. Thus, we have: $c_{m}=\sum_{\substack{i=a \\ i \in F}}^{b} f_{i}-\sum_{\substack{i=a \\ i \in C}}^{b} c_{i}, C^{0}=C \cup\{m\}$ and modified expressions (2.12)-(2.13) for each j where $a \leq j \leq b$ as

$$
\begin{align*}
& v_{j}=\max \left\{0, \sum_{\substack{i=a \\
i \in F}}^{j} f_{i}-\sum_{\substack{i=a \\
i \in C^{0}}}^{j} c_{i}\right\} \quad\left(2.12^{\prime \prime}\right) \text { and } \\
& u_{j}=\max \left\{0, \sum_{\substack{i=u \\
i \in C^{0}}}^{j} c_{i}-\sum_{\substack{i=u \\
i \in F}}^{j} f_{i}\right\} \quad\left(2.13^{\prime \prime}\right) .
\end{align*}
$$

The total cost for $S[a, b]$ when quarry m is open, is:

$$
T C_{a b}^{m}=q_{m}+p_{m}\left(c_{m}\right)+\sum_{j=a}^{b-1} r_{j, j+1}\left|\sum_{\substack{i=a \\ i \in F}}^{j} f_{i}-\sum_{\substack{i=a \\ i=C^{0}}}^{j} c_{i}\right| .
$$

Whether locating a quarry on this segment or not can be decided as follows. First, compute $T C_{a b}^{m}$ values for all $m \in Q^{a b}$ and choose the location site with the minimal cost value. If $Q^{a b}$ is an empty set, then a and b cannot be the first and last nodes of a segment in a candidate feasible solution. Then, we need to redefine the total cost term as

$$
T C_{a b}=\left\{\begin{array}{cc}
\min _{m \in Q^{a b}}\left\{T C_{a b}^{m}\right\} & \text { If } Q^{a b} \neq \phi \\
M & \text { If } Q^{a b}=\phi
\end{array}\right.
$$

where M is a very big positive number.

Let us assume that the first and last nodes of all segments at the optimal solution are given. Recall that, due to Proposition 1, the "optimal" material flow and location decisions of a segment can be made. It follows that all the locations and material flows can be determined if the first and last nodes of each segment are hold by introducing a (new type) decision (variable). The problem thus reduces to a decision problem in which the first and last nodes of all segments are determined subject to minimization of the total cost and the following conditions:

- Node 1 is the first node of a segment
- Node n is the last node of a segment
- If a node is the last node of a segment then the following node is the first node of the next segment.

2.5 An Ideal Formulation for the DQLP and a DP Algorithm

Let $Z_{a b}$ be equal to 1 if node $(a+1)$ is the first node and b is the last node of a segment, and 0 otherwise. Using the new decision variable Z, we develop a new model, called SP, to solve the DQLP:

SP

$\min \sum_{a=0}^{n-1} \sum_{b=a+1}^{n} T C_{a+1, b} Z_{a b}$
s.t.
$\sum_{b=1}^{n} Z_{0 b}=1$
$\sum_{a=0}^{n-1} Z_{a, n}=1$
$\sum_{a=0}^{j-1} Z_{a j}=\sum_{b=j+1}^{n} Z_{j b} \quad j=1,2,3, \ldots, n-1$
$Z_{a b} \in\{0,1\} \quad 0 \leq a<b \leq n$

In the above model the objective function minimizes the total cost of the selected segments that contain all nodes in the problem network. Constraints (2.12) and (2.13) guarantee that node 1 is included as the first node of a segment, and node n is included as the last node of a segment, respectively. Constraint (2.15) guarantees that if a node is the last node of a segment than the next node is the first node of the following segment. These three constraints divide the entire line into a set of sequential, separated, and inclusive segments in a way that every node is included in exactly one segment.

The above model is equivalent to the mathematical model of the shortest path problem (SPP). Its linear programming relaxation always gives the integer optimal solution because of the total unimodularity property of the constraint matrix. For $n=4$ the SPP network is given in Figure 2.4.

Figure 2.4 The SPP network for the DQLP with $n=4$.

When the SPP network is analyzed, it is clear that the DQLP can be solved by the following DP algorithm. Let G_{k} be the optimal objective function value of the subproblem including only the first k nodes.

A DP for the DQLP:

Step 1: From Proposition 1, compute $T C_{a b}$ for all $1 \leq a \leq b \leq n$.

Step 2: Let $G_{0}=0$. Compute $G_{k}=\min _{1 \leq m \leq k}\left\{G_{m-1}+T C_{m k}\right\}$ for $k=1,2,3, \ldots, n$ sequentially. G_{n} gives the optimal objective value. The optimal solution can be constructed by backtracking.

The DP algorithm is an adaptation of the forward DP algorithm designed for solving the ULSPB given in Johnson and Montgomery (1974) to the DQLP. The difference is because of computations of $T C_{a b}$ values. The DP algorithm given in Johnson and Montgomery (1974) solves the ULSPB in $O\left(n^{3}\right)$ operations, where n is the number of periods. The complexity of the above DP algorithm we propose for the DQLP is $O\left(n^{3} \max \{|D|,|Q|\}\right)$.

In addition to the DP algorithm with $O\left(n^{3}\right)$ complexity, a better DP algorithm with $O\left(n^{2}\right)$ complexity is proposed for the ULSPB in Pochet and Wolsey (1988) and Pochet and Wolsey (2006).

In the following section the relations between the DQLP and the ULSPB are analyzed in detail. We first examine the properties of extreme solutions of the problems and then provide our findings for differences between the complexities of solution algorithms.

2.6 Relations between the DQLP and the ULSPB over the Network

The relation between the DQLP and the UFLP is studied in section 2.1. It is explained that two special cases of the DQLP are equivalent to two instances of the UFLP defined on a line network with disjoint sets of customer sites and candidate facility location sites. Then in section 2.2 it is expressed that the UFLP defined on a line network and the ULSPB defined on a line network are equivalent which is a well known relation in the literature. So, those two special cases of the DQLP are also tightly related with the ULSPB defined on a line network. In this section, besides these two special cases, we deal with the relations between the DQLP and the ULSPB defined on a line network in general. It is shown that the ULSPB defined on a line network is a special case of the DQLP. Then the relations between the DP algorithms developed for these two problems are studied in the complexity basis.

In the ULSPB network, nodes represent the demand and candidate production periods. There is a fixed setup and a variable production costs related with a production in a period. Forward flows on the network represent inventories and backward flows on the network represent backlogs. There are variable (unit) inventory holding and backlogging costs.

Observation 3:

i) Suppose that $D=C=\varnothing$, i.e., there are only quarry sites and fill points, in a DQLP instance. Thus the remaining problem is equivalent to an instance of the ULSPB where the nodes in $Q(F)$ correspond to candidate production (demand) periods. Fixed opening and variable operating costs for quarry sites correspond to the fixed setup and variable production costs, respectively, while variable transportation costs on the line network correspond the variable inventory holding and backlogging costs in the USLPB. Disjoint sets Q and F of the DQLP implies that demands are zero for the candidate production periods and no production can be made in demand periods at the corresponding ULSPB. The fixed setup costs and variable production costs are set to a very big positive number M in order to prevent production in demand periods.
ii) Suppose that $Q=F=\varnothing$, i.e., there are only depot sites and cut points, in a DQLP instance. Thus, the remaining problem is equivalent to an instance of the ULSPB where material flows in the corresponding ULSPB instance can be considered as if they are from the demand periods to the production periods.

The ULSPB is solvable in $O\left(n^{2}\right)$ time where n is the number of periods. So, the DQLP instances given in Observation 3 are solvable in $O\left(n^{2}\right)$ time. If the objective function is higher than M in the optimal solution of the corresponding ULSPB instance, then it shows that there is no feasible solution for the given DQLP instance (i.e., $Q=\varnothing$ in the DQLP instance given in Observation 3.i and $D=\varnothing$ in the instance given in Observation 3.ii)

Below we explore whether the ULSPB solution methods are pertinent for the DQLP.

Any ULSPB instance can be transformed to an instance of the DQLP. Let us assume a ULSPB instance with set of periods $\{1,2, \ldots, n\}$. In the ULSPB instances demand periods and candidate production periods are not assumed to be disjoint. But they can be separated by duplicating all periods. After copying each element in the period set, the original periods can be doubled by adding copies into the original set as $\left\{1,1^{\prime}, 2,2^{\prime}, \ldots, n, n^{\prime}\right\}$. The original periods are demand periods. Setup costs and unit production costs are set to M for these periods where M is a very big positive number. The copied periods are candidate production periods and demands associated with these periods are zero. They have fixed setup and unit production costs. Inventory holding cost and backlogging cost between a period and its copy is zero. The inventory holding and backlogging costs between period $\left(i^{\prime}\right)$ and $(i+1)$ are equal to the original inventory holding and backlogging costs between periods (i) and $(i+1)$. Hence the ULSPB instance is reduced to an equivalent instance of the DQLP where original periods of the ULSPB correspond to fill (cut) points, copied periods correspond to candidate quarry (depot) sites, inventory holding and backlogging costs correspond to transportation costs on the line network of the DQLP, fixed setup costs correspond fixed quarry (depot) opening costs and unit production costs correspond unit operating costs at quarry (depot) sites. Such DQLP instances are already specified in Observation 3. By this reverse transformation it is shown that the ULSPB is a special case of the DQLP. So, solution methods for the ULSPB are only applicable to the DQLP instances satisfying Observation 3.

Parts of the extreme solution of the ULSPB corresponding to segments of the DQLP are called "regeneration interval" in the literature. Therefore, "regeneration intervals" can be considered as a special case of "segments". An extreme solution example for an ULSPB instance with 9 periods is given in Figure 2.5. Considering the DQLP instances in Observation 3.i (ii) open quarries (depots) correspond to
production periods. The corresponding properties of regeneration interval to the properties of the segment given in Observation 2 are as follows:

Figure 2.5 An extreme solution example for an ULSPB instance with 9 periods where d_{i} is the demand in period $i, i=1, \ldots, 9$.

Properties of the regeneration interval $[a, b]$:
i) There is exactly one production period.
ii) All demands in the regeneration interval $[a, b]$ are satisfied from the production period.
iii) Demand in a period is entirely satisfied by only inventory, production, or backlogging.
iv) Inventory and backlogging flows are separated on the sub parts of the regeneration interval. Backlogging flows occur only on the left of the production period and inventory flows occur only on the right of the production period for a traditional ULSPB instances. If material flows are from demand periods to production periods in the considered ULSPB instance, then backlogging flows occur only on the right of the production period and inventory flows occur only on the left of the production period
v) There is no flow from the left of production period to the right of it (or vice versa).

2.7 The Complexity of the Algorithms for the DQLP and the ULSPB

Observation 2 helps to understand the structure of the segments and gives important hints about solution methods.

Proposition 2: Consider nodes $(a-1), a, \ldots, b,(b+1) \in N$ and segment $S[a, b]$.
i) Let us assume that the material flow amounts are known in $S[a, b]$ and we explore an instance that $(b+1)$ is the last node of the segment instead of b or an instance that $(a-1)$ is the first node of the segment instead of a. Material flow amounts and hence total cost cannot be computed in a constant number of operations using the knowledge about $S[a, b]$.
ii) Let $i \in N$ be an open facility (depot or quarry) in this segment. The material flow amounts and hence the total cost in the $[i, b]$ part of the segment cannot be computed without considering the material flows in the $[a, i)$ part of the segment (or vice versa).

Proof:

i) After adding node $(b+1)$ to the original segment $S[a, b], S[a, b]$ and the new segment $S[a,(b+1)]$ can fit different cases given in Observation 2.i. Hence the material flows, open facility type, and its location can change. So, the number of the operations needed to compute the material flows and the total cost in the new segment are affected from the size of the segment (the number of the nodes in the segment). On the other hand, even if the original segment $S[a, b]$ and the new segment $S[a,(b+1)]$ are both fit the second (or third) case given in Observation 2.i, the number of operations needed to compute the material flows and the total cost in the new segment be affected from the size of the portion between the open facility (depot or quarry) and node $(b+1)$. By adding node $(b+1)$ to the original segment the material flows on the part of the segment between node a and open facility are not affected, but material flows on the portion of the segment between the open facility and node b are affected. Material flows between the nodes on this portion increase or decrease. Furthermore, they can change their directions, i.e.,
some forward flows can turn to backward flows or vice versa. So, adding the node $(b+1)$ to the segment necessitates to calculate all flows and the total cost on the portion between the open facility and node $(b+1)$. Hence, the number of the operations in these calculations be affected from the size of the portion between open facility and node $(b+1)$. For the last situation assume that original segment fits to the first case given in Observation 2.i. After adding node $(b+1)$ to the segment, the new segment cannot fit the same case if $(b+1)$ is a cut or fill point since the total cut and fill amounts cannot be equal to each other after adding $(b+1)$. This situation is considered in the initial part of this paragraph. If node $(b+1)$ is a candidate depot or quarry site, then it cannot be added to original segment $S[a, b]$ as a last node to obtain a new segment. Since the total cut and fill amounts on the $[a, b]$ part of the line network are equal to each other, no facility at node $(b+1)$ will be opened and no material flow will occur between node $(b+1)$ and the [a,b] portion of the line network. Since the number of operations to calculate the material flows and the total cost on the new segment is affected from the segment size it completes the proof for the case adding node $(b+1)$ to $S[a, b]$ as the last node of the new segment $S[a,(b+1)]$. Now, the proof for the case adding node ($a-1$) to $S[a, b]$ as the first node of the new segment $S[(a-1), b]$ is trivial.
ii) According to Observation 2.v there can be a material flow from one part of the segment to the other part. So, such a flow affects the amount of demand on the opposite part that is satisfied from the open facility (depot or quarry) and hence the total cost.

Proposition 2.i is related with the reason of having higher complexity in the DP algorithm for the DQLP than the DP algorithms for the ULSPB with $O\left(n^{3}\right)$ complexity. Proposition $2 . \mathrm{ii}$ is related with the reason of being unable to adapt the DP algorithm for the ULSPB with $O\left(n^{2}\right)$ complexity to the DQLP. In order to explain the reasons, corresponding properties for the ULSPB to the ones given in Proposition 2 should be given.

Consider an ULSPB instance with n periods. Let p_{k} and d_{k} be unit production cost and demand in period k, respectively. Let a and b be the first and last periods of a regeneration interval, respectively, in an ULSPB instance. Let i be the production period in the regeneration interval and $T C_{a b}$ be the total cost associated with the regeneration interval. Assume that node $(b+1)$ is added as a last period in the regeneration interval. In this case material flow on the original regeneration interval is not affected from adding $(b+1)$. All periods in the original regeneration interval remain as they are to satisfy their entire demands from the production period; the periods before the production period satisfy their demands by backlogging, the production period satisfies its demand from itself by production, the periods after the production period satisfy their demands by inventory. After adding period $(b+1)$ to the regeneration interval, it satisfies its entire demand from the production period by inventory. So the total cost in the new situation can be computed by adding the term $\left(d_{(b+1)} *\left(p_{i}+h_{i,(b+1)}\right)\right)$. Here, $h_{i,(b+1)}$ is the unit inventory holding cost from production period i to period $(b+1)$. So, the total cost in the new regeneration interval can be computed in a constant number of operations, which is independent of the size of the regeneration interval. The case of adding the period $(a-1)$ to the regeneration interval as the first period is very similar to the case of adding period $(b+1)$ as the last node. In this new case the additional cost term is $\left(d_{a-1} *\left(p_{i}+s_{(a-1), i}\right)\right)$ where $s_{(a-1), i}$ is the unit backlogging cost from period $(a-1)$ to production period i. These two cases are the opposite of Proposition 2.i. On the other hand, the material flows and the total cost on the $[i, b]$ part of the regeneration interval can be computed without considering the $[a, i)$ part, or vice versa as a result of fifth property given for regeneration intervals. Also, this is the opposite of Proposition 2.ii. Proposition 2.ii shows that a segment should be considered as a unique block. But a regeneration interval can be considered as two independent parts according to the production period.

According to the method explained in the proof of Proposition 1, for a fixed a and b pair, computing $T C_{a b}$ in the DP algorithm for the DQLP requires at most $K^{*}(b-a) * \max \left\{\left|D^{a b}\right|,\left|Q^{a b}\right|\right\}$ operations, where K is a constant. That is to say, the complexity of computing $T C_{a b}$ is $O\left((b-a)^{*} \max \left\{\left|D^{a b}\right|,\left|Q^{a b}\right|\right\}\right)$, which requires a
number of operations affected by the size of the segment as explained in Proposition 2.i. Since these computations are done for all pairs of a and b, where $1 \leq a \leq b \leq n$, the complexity of Step 1 is $O\left(n^{3} \max \{|D|,|Q|\}\right)$. The complexity of Step 2 is $O\left(n^{2}\right)$. Thus, the total complexity of the algorithm is $O\left(n^{3} \max \{|D|,|Q|\}\right)$, which is polynomial.

The complexity of the algorithm for the ULSPB reduces to $O\left(n^{3}\right)$ because of the difference related with Proposition 2.i. Let us reconsider the ULSPB and let a and b be the first and last nodes of a regeneration interval and i be a production period ($a \leq i \leq b$). The total cost in the regeneration interval is, $T C_{a b}^{i}= \begin{cases}q_{i}+p_{i} d_{i} & \text { if } a=i=b \\ T C_{a b-1}^{i}+\left(p_{i}+h_{i b}\right) d_{b}=T C_{a+1, b}^{i}+\left(p_{i}+s_{a i}\right) d_{a} & \text { o.w. }\end{cases}$
where q_{i} is the fixed setup cost in period t .

For fixed i, we first compute $T C_{a b}^{i}$ for $a=b=i$ and then compute $T C_{a b}^{i}$ values for fixed a and all b 's greater than i, which require $O(n)$ operations. Note that computing $T C_{a b}^{i}$ values for all a 's less than i for all (i, b) combinations requires $O\left(n^{2}\right)$ operations. Doing these computations for $1 \leq i \leq n$ requires $O\left(n^{3}\right)$ operations in total in Step 1. In Step 2, $O\left(n^{2}\right)$ operations are needed. So, the complexity of the algorithm is $O\left(n^{3}\right)$.

Pochet and Wolsey (1988) and Pochet and Wolsey (2006) use the property of the ULSPB related with Proposition 2.ii and propose another DP algorithm and another SPP reformulation. There are $O(n)$ nodes and $O\left(n^{2}\right)$ arcs in this SPP reformulation and the arcs are associated with the corresponding costs on the $[a, i),[i]$, and $(i, b]$ parts of a regeneration interval. Here, the regeneration interval is divided into three parts. Computing the costs corresponding to arc lengths requires $O\left(n^{2}\right)$ operations for all (a, i) combinations, $O(n)$ operations for all i, and $O\left(n^{2}\right)$ operations for all (i, b) combinations. So, in total, the ULSPB is converted to a SPP in $O\left(n^{2}\right)$ time. Because the SPP is solvable in $O\left(n^{2}\right)$ time, the ULSPB is also solvable in $O\left(n^{2}\right)$ time.

However, this property is not valid in the DQLP (see Proposition 2.ii). Therefore, these efficiencies are not applicable to the DQLP.

CHAPTER 3

A DYNAMIC LOCATION PROBLEM IN RAILROAD CONSTRUCTION

In this chapter another new location problem, motivated by a real life project, which appears in the railroad construction projects, is considered. The problem along with its real life occurrence is explained and studied in detail below.

3.1 Problem Definition

Railroads cannot make sharp curves and must be as smooth as a straight line in both vertical and horizontal axes because of some technical reasons. Therefore, tunnels and viaducts, called "art buildings" in the construction terminology, are widely needed in railroad projects to keep the line straight (see Figure 3.1). The series of works in a railroad construction project consist of establishing art buildings in addition to the railroad itself. These buildings are the largest concrete consumption units in the project. Construction processes of art buildings are summarized below.

Tunnels are drilled by machines. The created stone and soil are loaded on trucks by diggers and transported to unloading area. After drilling a part of land, an iron ring is put on the surface in order to prevent collapse and water leakage, and the surface and the iron ring are covered by spraying concrete. After the whole tunnel is drilled, iron bars are spread, moulds are set, and the surface is again covered by concrete. The tunnel ground is loaded and smoothed by using concrete (see Figure 3.2).

Figure 3.1 Art buildings

Figure 3.2 Tunnel construction process

For constructing a viaduct, land is excavated for the feet. Then iron bars are spread for the legs of viaduct, moulds are set, and concrete is loaded. After legs are constructed, they are connected with the upper concrete segments (see Figure 3.3).

Figure 3.3 Viaduct construction process

In construction process of a railroad, material handling and transportation activities are usually performed on a temporary road that lies around the railroad line and may go around hills and holes. Available water and aggregate (i.e., construction aggregate, including sand, and pebble) supply points near to the transportation line would be the candidate input sources while cement would possibly be supplied from the closest production facility for producing concrete. These supply points need to be connected to the line with slip roads. In Figure 3.4, an example of a vertical cross section of a railroad is presented and a panoramic picture from top of the railroad construction environment of the example is illustrated in Figure 3.5. In Figure 3.5, the nodes W , A, and C represent alternative water sources, aggregate supply points, and cement facility, respectively. The nodes labeled with numbers represent the demand points (of art buildings) of the railroad project shown in Figure 3.4. An art building can be represented with a single node. If a tunnel or a viaduct is constructed from the two end points simultaneously, its total concrete demand should be represented with two separate demand points. In Figure 3.5, for example, the tunnel on the right is represented with two different demand points, node 4 and node 5 .

Figure 3.4 A vertical cross section of a railroad

Figure 3.5 Railroad, transportation line, resource points, and demand points in a railroad construction project

Concrete requirements of the art buildings change in time according to the project schedules. These schedules are generally prepared on some discrete time periods (for example weeks or months). Concrete demands of the art buildings during a planning horizon (project time) are satisfied by concrete batching facilities. These facilities mix the inputs of concrete and load it to the mixer-trucks. There are two types of the concrete batching facilities: mobile and immobile (see Figure 3.6). It takes a week to disassemble, move, and reassemble a mobile facility at a new location. Facilities have production capacities, initial fixed opening costs, and
monthly operating costs. There are also a fixed cost of transporting a mobile facility from one site to another and transportation costs of aggregate, water, cement, and concrete to/from facilities. Generally, the input material sources are uncapacitated. So, a facility gets input materials from the nearest sources. Demand points (sites of the art buildings) are also candidate locations for the facilities. The problem is to determine the number, type, and movement schedule of the mobile facilities, and to make the concrete production and allocation decisions so that all concrete requirements are satisfied, facility capacities are not violated, and the total cost is minimized.

Figure 3.6 Concrete batching facilities

3.2 Literature Review

All studies in the literature on railroad and road construction management mainly consider scheduling issues. To the best of our knowledge there is no study that considers location-allocation related issues. There are some studies that consider road construction and harvesting machine location in timber industry (Epstein et al. 2006), but these problems are very different than the dynamic location problem discussed so far.

There are a few studies on the facility location problem on a line as discussed in Chapter 2. Some of them consider the p-median problem and/or the fixed charged facility location problem (Love 1976, Brimberg and Revelle 1998, Berberler et al. 2011, Hsu et al. 1997, Brimberg and Mehrez 2001, Brimberg et al. 2001, EbenChaime et al. 2002, Mirchandani et al. 1996). For details of the studies in this category see section 2.2 . None of these studies consider dynamic problems and mobile facilities.

Numerous studies on dynamic location problems in general networks are published in the literature since Manne $(1961,1967)$ and Ballou (1968). Time and location related decisions are mainly on facility opening, closure, reopening, and relocations (or moves), and capacity reductions, expansions, and partial capacity relocations. Different combinations of these decisions are considered in the dynamic location literature. Luss (1982) presents a survey on the capacity expansion problems, which are related with the dynamic facility location problem. Owen and Daskin (1998) present a survey on the static and dynamic facility location problems. As successive works, Melo et al. (2000) review the facility networks, including dynamic ones, under supply chain management while Klose and Drexl (2005) review studies on the facility location problems and briefly discuss the dynamic problems. Farahani et al. (2009) and Arabani and Farahani (2012) are two recent review studies on the dynamic facility location problem.

Current et al. (1997) classify dynamic location problems in two groups: implicitly dynamic and explicitly dynamic. Implicitly dynamic problems are "static" in the sense that all facilities that are to be opened at the beginning of the first period remain open during the planning horizon. These problems, however, recognize that parameters may change over time and attempt to account for the effects of these changes in the initial set of locations. In the explicitly dynamic problems, the effects of changes are suitably taken into account. For instance, it is possible to open, reopen, relocate/move, and close the facilities over the planning horizon in order to response the changes in the parameters. We consider the explicitly dynamic problems below.

We start with clarifying the meaning of some terms like 'opening and reopening a facility' and 'relocating and moving a facility' in the literature. In some studies, if there is a new facility at a location in the current period and there was not any facility in the previous period at that location, it is treated as if it is being reopening. Actually, in order to consider the reopening there must be a closed facility in the previous period and it may restart to operate in the current period. In our study, 'facility opening' refers to the situation that a new facility, which was not in the system before, is added to the system. 'Facility reopening' means that an existing facility that was being closed for a while restarts to operate now. Facility opening and reopening costs are differentiated because it is expected that opening would be expensive than reopening. Facility relocation expresses the situation that an existing facility is closed at a location and a new facility is opened at another location, and the equipments, materials, etc. in the closed facility are transported to the new facility. On the other hand, facility moving implies that there is an existing mobile facility and that existing facility is entirely moved to a new location. Although these two situations, relocation and moving, are different in semantic and practice, they can be modeled at a similar structure, which causes misuses of these terms. However, it is clear that the current locations of facilities must be kept as information in order to keep track of facility relocation or moving activities. In addition to this control the previous existence of the facility must be known.

Some studies mainly consider dynamic p-median problems. Wesolowsky (1973) and Farahani et al. (2009) consider single facility case while Wesolowsky and Truscott (1975), Galvao and Santibanez-Gonzalez (1992), and Drezner (1995) consider multi-facility case. For details of these studies see section 4.2.2.

Roodman and Schwarz (1975) study a capacitated dynamic facility location problem where there are open facilities at the beginning of the first period. It is assumed that the total demand decreases over the planning horizon and only facility closures are allowed. A branch and bound (BnB) algorithm is proposed to solve the problem. Later, Roodman, and Schwarz (1977) extend this problem to one including facility opening, however, if a facility is opened or closed, its status is
unchanged during the rest of the entire horizon. Erlenkotter (1981) considers a capacity expansion problem under continuous and discrete time assumptions and presents several heuristics. VanRoy and Erlenkotter (1982) study a dynamic uncapacitated facility location problem in which new facilities are allowed to be opened while initially existing facilities are allowed to be closed over the planning horizon. The objective is to minimize the total discounted costs, including facility location and operating costs, production and distribution costs. They propose a BnB with lower bounds obtained through solving linear programming relaxations with a dual ascent heuristic. Frantzeskakis and Watson-Gandy (1989) study a dynamic facility location problem where facility opening, closure, and relocation are allowed. A dynamic programming and BnB based heuristic is presented. Chardaire et al. (1996) consider a dynamic, uncapacitated facility location problem. Since the facilities are uncapacitated, each demand point is allocated to the nearest existing facility in the optimal solution, the problem is to find where and when the facilities are opened such that the summation of facility opening and operating costs, and allocation cost is minimized. They develop a quadratic mixed integer programming model and propose a Lagrangian relaxation in order to find a lower bound and a simulated annealing heuristic to obtain good solutions in a reasonable time. Gama and Captivo (1998) consider a problem in which only facility opening and closure is possible. They propose a two phase heuristic approach to solve the problem. The first phase is "drop" phase. In this phase, first, it is assumed that there is a facility at all nodes in all periods, then some facilities are dropped. The second phase is a local search phase. In this phase, the solution at the end of the first phase is tried to be improved. Torres-Soto and Üster (2011) consider two dynamic capacitated facility location problems. In the first problem new facilities can be opened and/or existing facilities can be closed in a period. In the second problem all facilities are to be located in the first period and open during the planning horizon. They propose Lagrangian relaxation and Bender's decomposition algorithms for the first problem and a Bender's decomposition algorithm for the second problem. Sambola et al. (2009) introduce a dynamic location problem and call it as the multi-period incremental service facility location problem. In this problem a predetermined number of facilities are to be opened in each period. In any period, there is a lower
limit on the number of customers assigned to the open facilities. All customers must be assigned to a facility until the end of horizon. The objective is to minimize the sum of assignment and facility opening costs. They propose a Lagrangian heuristic to solve the problem. Sambola et al. (2010) try to develop strong formulations for the multi-period incremental service facility location problem and propose three models for this purpose. Besides facility opening and capacity expansion, facility closure and capacity reduction are studied in Antunes and Peeters (2000 and 2001). They use a simulated annealing algorithm to solve the problem. Shulman (1991) considers a dynamic facility location/capacity expansion problem. There are multiple type facilities with different capacities. Only facility opening is allowed. The problem consists of facility opening decisions on type, time, and location basis. The author presents a Lagrangean heuristic to solve the problem. Lim and Kim (1999) consider a dynamic capacitated facility location problem in which the capacities are determined via acquisition and/or disposal of multiple type modular capacity alternatives. There are multi-type products that require different set of operations. While deciding on the facility locations and capacity plans, it is required to satisfy the needs of these operations. A heuristic procedure based on Lagrangian relaxation and branch and cut algorithm is proposed to solve the problem. Gourdin and Klopfenstein (2008) develop an integer programming model for the dynamic concentrator location problem. Several capacitated concentrators and modules between terminals and concentrators can be opened at any period, but they cannot be closed or moved. The objective is to minimize the total investment cost of concentrators and modules. They perform polyhedral analysis, develop facet defining inequalities, and present numerical results.

There are several studies that consider reopening of existing but currently being close facilities. The opening and reopening costs are distinguished. Dias et al. (2006) propose a primal-dual heuristic to solve three different dynamic facility location problems with opening, closure, and reopening of facilities. In the first problem there is an upper limit on facility capacity. In the second problem, the total demand allocated to a facility must be in between its minimum and maximum capacities. In the third problem, facilities have an initial (start up) maximum
capacity, which decreases during its operating periods. The objective is to minimize the total facility opening, reopening, and customer allocation costs. Dias et al. (2007) study a very similar problem in which facilities can be opened, closed, and reopened, but partial allocations are not allowed. Authors propose a primal-dual heuristic and a branch and bound algorithm to solve the problem.

As far as we are aware of, there is no locational study considering the application area of our problem. It has own unique properties such as having a line network structure and a dynamic demand nature. There are few studies considering mobile facilities in the literature. However, there is no study considering mobile and immobile facilities simultaneously as we are dealing with. We differentiated abolishing a facility than closing one. A closed facility is the one being not operated until reopening in future over the planning horizon. However, if a facility is abolished, then it is assumed to be permanently removed away from the system until the end of the planning horizon. We assume that opening, abolishing, or moving of a facility may occur more than once in the same location over the planning horizon. In the case study problem, we consider that a facility can be opened at a location and then can be moved to another location or abolished. Note that closing a facility in a period and then reopening in the next period can be an economic option because of changes on demand quantities. These events may repeat several times over the horizon.

In the following section, two mathematical models are given to solve the problem. Adaptation of the models to the similar problems in the literature is also discussed.

3.3 Two MIP formulations for the Problem

Consider a set of points, D, on a line representing actual demand and candidate location sites. Let T be the number of periods in the planning horizon and $d_{i t}$ be concrete demand of point $i \in D$ in period $t, t=1, \ldots, T$. Let $C S(C F)$ be a fixed construction cost of a(n) (im)mobile facility. Let TCS be a fixed moving cost of a mobile facility, including costs of disassembly, transportation to the new location,
and reassembly. Note that distance based transportation costs of mobile facilities are assumed to be negligible since the main component of moving cost is due to disassembly and reassembly operations. Since it takes time to relocate a facility, we define ρ as the percent of time on a period needed to relocate a mobile facility. It is assumed that moving a mobile facility does not take longer than a period. Let $K S$ $(K F)$ be concrete production capacity of $\mathrm{a}(\mathrm{n})$ (im)mobile facility in a period. There is a fixed facility operating cost in a period, $O C$, which includes labor costs, loader rents, maintenance costs, and rents of the facility.

Concrete should be transported from facility to demand points within two hours; otherwise it cannot be used anymore. Therefore, given $35 \mathrm{~km} /$ hour average speed of a loaded mixer-truck carrying concrete, the maximum distance from facilities to demand points cannot exceed 70 km . Let $r_{i j}$ be 1 if the distance between points i and j is equal to or less than $70 \mathrm{~km}, 0$ otherwise. Suppliers of input materials are uncapacitated. Therefore, a facility gets all needed inputs from the cheapest suppliers. The amounts of input materials to produce one ton concrete are known. Thus, the amounts of input material received from the suppliers and their total input material transportation costs can be computed for a candidate facility location. Let $G_{i j}$ be the total cost of input materials needed to produce one ton concrete at $i \in D$ and transporting the concrete from $i \in D$ to $j \in D$. Below we present the first mixed integer programming (MIP) model, called M1, to solve the problem. In this model, in order to use small number of binary variables, an artificial "pool" is assumed for mobile facilities and mobile facility movements are managed by using this pool. Thus, mobile facility movements are controlled by decision variables with two indices.

Decision Variables

$S V_{i t}: 1$ if a mobile facility is available at $i \in D$ in $t, 0$ otherwise.
$F V_{i t}: 1$ if an immobile facility is available at $i \in D$ in $t, 0$ otherwise.
$S_{i t}: 1$ if a mobile facility is opened at $i \in D$ in $t, 0$ otherwise.
$F_{i t}: 1$ if an immobile facility is opened at $i \in D$ in $t, 0$ otherwise.
$F A_{i t}: 1$ if an available immobile facility at $i \in D$ is abolished in $t, 0$ otherwise.
$S A_{t}$: the number of mobile facilities abolished in t.
SCom $_{i t}: 1$ if an available mobile facility at somewhere moves to $i \in D$ in $t, 0$ otherwise.
$S G o_{i t}: 1$ if an available mobile facility at $i \in D$ moves to somewhere in $t, 0$ otherwise.
$x_{i j t}$: the amount of concrete transported from $i \in D$ to $j \in D$ in t (ton).

M1

$$
\begin{align*}
& \min \sum_{i \in D} \sum_{t=1}^{T}\left(C S * S_{i t}+C F^{*} F_{i t}+O C^{*}\left(S V_{i t}+F V_{i t}\right)\right) \\
& \quad+\sum_{i \in D} \sum_{t=2}^{T} T C S * S \text { Com }_{i t}+\sum_{i \in D} \sum_{j \in D} \sum_{t=1}^{T} G_{i j} * x_{i j t} \tag{3.1}
\end{align*}
$$

s.t.
$S_{i 1}=S V_{i 1} \quad \forall i \in D$
$S_{i t}+S V_{i, t-1}+S$ Com $_{i t}=S V_{i t}+S G o_{i t} \quad \forall i \in D, t=2, \ldots, T$
$\sum_{i \in D} S G o_{i t}=\sum_{i \in D} S$ Com $_{i t}+S A_{t} \quad t=2, \ldots, T$
$F_{i 1}=F V_{i 1} \quad \forall i \in D$
$F_{i t}+F V_{i, t-1}=F V_{i t}+F A_{i t} \quad \forall i \in D, t=2, \ldots, T$
$\sum_{i \in D} x_{i j t} \leq K S * S V_{i t}+K F * F V_{i t}-\rho * K S *$ Com $_{i t} \quad \forall i \in D, t=1, \ldots, T$
$x_{i j t} \leq d_{j t} *\left(F V_{i t}+S V_{i t}\right)$
$\forall i, j \in D, t=1, \ldots, T$
$F V_{i t}+S V_{i t} \leq 1$
$\forall i \in D, t=1, \ldots, T$
SCom $_{i t}$, SGo $_{i t}, F A_{i t} \in\{0,1\}$
$\forall i \in D, t=2, \ldots, T$
$S A_{t} \geq 0$
$t=2, \ldots, T$
$S_{i t}, F_{i t} S V_{i t}, F V_{i t} \in\{0,1\}$
$\forall i \in D, t=1, \ldots, T$
$x_{i j t} \geq 0$
$\forall i, j \in D, t=1, \ldots, T$

In this model, (3.1) minimizes the total cost. Constraints (3.2) and (3.3) provide whether a mobile facility exists at $i \in D$ in period t or not. Constraint (3.4) ensures the balance of mobile facilities at a period. It is assumed that there is a pool of
mobile facilities. The left hand side of the constraint keeps track of the number of mobile facilities coming to the pool from the candidate locations while the right hand side accounts for the number of mobile facilities leaving the pool for the new locations or being abolished forever. Notice that it is written for $t=2, \ldots, T$ and $S A_{t}$ is defined as a continuous variable that will automatically take integer values. In order to prevent double counting SCom variables are used in the objective function. Constraints (3.5) and (3.6) provide whether an immobile facility exists at $i \in D$ in t or not. Constraint (3.7) satisfies that the amount of concrete transported from $i \in D$ in t cannot exceed the total capacity of existing facility at i. Recall that moving a mobile facility from a location to another takes time. Therefore, the production capacity in the new location should be reduced in the moving period. Constraint (3.8) ensures that demand points are satisfied by only the facilities not far from 70 km . Notice that constraint (3.9) is not needed for the integer optimum but it makes the model stronger, i.e., it improves the linear programming relaxation bound and reduces the solution time significantly. Constraint (3.10) prevents to have more than one facility at a location in a period. Constraints (3.11) and (3.13) are binary restrictions, and (3.12) and (3.14) are nonnegativity restrictions.

In general, it is easy to adapt our model to dynamic location problems mentioned in the previous section, except Dias et al. (2006) and Dias et al. (2007). For these two exceptional cases, the following adjustments are needed.

When there is a fixed cost related with a facility, which occurs only if the facility produces concrete in a period, a new binary variable should be defined. Let FPC be such a cost component and $\left(F C_{i t}\right) S C_{i t}$ be a binary variable equal to 1 if the existing (im)mobile facility at i produces concrete in period t, and 0 otherwise. Replacing constraint (3.9) with a new constraint (3.16), appending new constraints (3.17)(3.18) to the model, and adding a new cost term (3.15) to the objective function (3.1), we adopt our model to the cases presented in Dias et al. (2006) and Dias et al. (2007), where

$$
\begin{array}{ll}
\sum_{i \in D} \sum_{t=1}^{T} F P C^{*}\left(F C_{i t}+S C_{i t}\right) & \\
x_{i j t} \leq d_{j t} *\left(F C_{i t}+S C_{i t}\right) & \forall i, j \in D, t=1, \ldots T \\
F C_{i t} \leq F V_{i t} & \forall i \in D, t=1, \ldots T \\
S C_{i t} \leq S V_{i t} & \forall i \in D, t=1, \ldots T \tag{3.18}
\end{array}
$$

Note that we differentiate closing a facility from abolishing it. In Dias et al. (2006) and Dias et al. (2007) when a closed facility is reopened, a fixed reopening cost is charged. In order to capture this property (for immobile facilities) in our model, a new binary variable, $F R_{i t}$, which is equal to 1 if a closed immobile facility at i is reopened in t and 0 otherwise, is needed. Also, besides the above changes, constraint (3.19) must be added to the model.

$$
\begin{equation*}
F V_{i t}+F V_{i, t-1}+F C_{i t}-F C_{i, t-1} \leq 2+F R_{i t} \quad \forall i \in D, t=2, \ldots, T \tag{3.19}
\end{equation*}
$$

A similar modification can be made for mobile facilities, together with introducing appropriate cost components to be added to the objective function. If partial capacity relocation and/or capacity extension/reduction are allowed, it is enough to relax integrality restrictions on binary variables.

In our preliminary studies we saw that M1 solves the problems in long times and we developed a new model, called M2. Artificial mobile facility pool approach is left in the new model and movements are controlled by new decision variables with three indices. With this new manner the number of binary variables increases significantly, however, since the origin-destination node information is introduced into the definition of the decision variable, the movements are now tracked directly. M2 is given below.

Let $S K_{i j t}$ be a binary variable such that it is equal to 1 if an available mobile facility is moved from $i \in D$ to $j \in D$ in $t, 0$ otherwise. $S A_{i t}$ is 1 if an available mobile facility at $i \in D$ is abolished in $t, 0$ otherwise.

M2

$$
\begin{array}{ll}
\min \sum_{i \in D} \sum_{t=1}^{T}\left(C S^{*} S_{i t}+C F^{*} F_{i t}+O C^{*}\left(S V_{i t}+F V_{i t}\right)\right) \\
\quad+\sum_{i \in D} \sum_{j \in D \backslash \backslash i j} \sum_{t=2}^{T} T C S * S K_{i j t}+\sum_{i \in D} \sum_{j \in D} \sum_{t=1}^{T} G_{i j} * x_{i j t} & \\
\text { s.t. } & \\
\begin{array}{ll}
(3.2),(3.5),(3.6),(3.8)-(3.10),(3.13),(3.14) & \\
S_{i t}+S V_{i t-1}+\sum_{j \in D \bigvee i j} S K_{j i t}=S V_{i t}+\sum_{j \in D \backslash \backslash i j} S K_{i j t}+S A_{i t} & \forall i \in D, t=2, \ldots, T \\
\sum_{j \in D} x_{i j t} \leq K S^{*} S V_{i t}+K F^{*} F V_{i t}-\rho^{*} K S^{*} \sum_{j \in D \backslash i j} S K_{j i t} & \forall i \in D, t=1, \ldots, T \\
S K_{i j t} \in\{0,1\} & \forall i, j \in D \mid i \neq j, t=1, \ldots, T \\
S A_{i t}, F A_{i t} \in\{0,1\} & \forall i \in D, t=2, \ldots, T
\end{array}
\end{array}
$$

In this model, (3.20) minimizes the total cost. Constraints (3.2), (3.5), (3.6), (3.8)(3.10), (3.13) and (3.14) are explained before. Constraints (3.21) provide whether a mobile facility exists at $i \in D$ in period t or not. Constraint (3.22) satisfies that the amount of concrete transported from $i \in D$ in t cannot exceed the total capacity of existing facility at i. Since moving a mobile facility from a location to another takes time, the production capacity in the new location should be reduced in the moving period.

The adaptation of M1 to the similar problems in the literature is explained above. Note that these steps are related with the common parts of M1 and M2. Thus, those steps specified for M1 are also valid for M2.

3.4 A Preprocessing Heuristic to Reduce the Number of Candidate Sites

As expected, solving the large size problems using MIP formulations is not practical because it takes too much time as the problem size continues to grow. Besides it causes memory problems at the computing environment. In order to find good solutions to large size problems in reasonably short running times, a concentration heuristic is proposed. The heuristic reduces the entire candidate location set into a small "attractive" subset in order to decrease the input size of the
formulation. The heuristic first partitions the planning horizon into a set of "aggregated" periods, each of which combines a number of consecutive (original) periods into a single (whole) period. Then it solves these single period problems independently for a facility type to determine the best candidate location sites for that particular facility type. The heuristic uses a single parameter θ to set the number of consecutive periods to be aggregated into a single period. We assume that θ is set as being capable to divide T with no remainder. The new single period problem is formulated as a revised version of M1 and M2 and presented below as a part of the heuristic.

Preprocessing heuristic for any facility type

Step 1: Define S as the set of candidate sites. $S=\emptyset$;
Compute $d^{\prime}{ }_{i t}=\sum_{u=\theta(t-1)+1}^{\theta t} d_{i u}$ for all $i \in D$ and $t=1, \ldots, T / \theta$.
Step 2: $F F O C=$ Facility construction cost $+\theta^{*}$ fixed operation cost;
$P C=\theta^{*}$ Facility capacity.
Step 3: $t=1$
Step 4: Solve the following single period problem, called $\operatorname{Problem}_{t}$ for t
Problem $_{t}$
$\min \sum_{i \in D} F F O C^{*} y_{i}+\sum_{i \in D} \sum_{j \in D} G_{i j} * x_{i j t}$
s.t.
$\sum_{i \in D} r_{i j} * x_{i j t} \geq d^{\prime}{ }_{j t} \quad \forall j \in D$
$x_{i j t} \leq d^{\prime}{ }_{j t}{ }^{*} y_{i} \quad \forall i \in D$
$\sum_{j \in D} x_{i j t} \leq P C^{*} y_{i} \quad \forall i \in D$
$x_{i j t} \geq 0 \quad \forall i, j \in D$
$y_{i} \in\{0,1\} \quad \forall i \in D$
Let $Y_{t}=\left\{i \mid y_{i}=1\right.$ at the optimal solution of Problem $\left._{t}\right\}$;
$S=S \cup Y_{t}$
Step 5: If $t<T / \theta$, then $t=t+1$ and go to Step4. Otherwise, stop.

At the end of this heuristic, the set of candidate location sites, D, is reduced to a set of "attractive sites" S for a particular facility type. The union of the set of candidate sites for every facility type can be used as the entire set of candidate sites for the problem.

3.5 Computational Results

The computational performance of the models and heuristic is basically discussed in two parts. The first part contains only a case study problem, based on the real life railroad project mentioned before. The second part involves the case study problem plus a set of test instances that are generated randomly considering the case study data. The smallest test instance has 50 sites and 10 periods while the largest test instance involves 250 sites and 30 periods.

3.5.1 Case Study

The case study, based on a railroad construction project which is a part of High Speed Train Transportation Program between Ankara and İstanbul, consists of constructions of 32 viaducts and 43 tunnels in 30 months. Cement is supplied from a single supplier and its transportation costs are based on the amount carried. There are more than ten natural water resources near to the transportation line. There are about 20 aggregate supplier points with identical costs. The material transportation cost is assumed to be 0.35 TL per ton per kilometer. The ratio of input materials changes according to the concrete specifications in general, but in the case study the following approximate ratios are used. In order to produce $2,500 \mathrm{~kg}$ concrete, roughly, $2,000 \mathrm{~kg}$ of aggregate, 300 kg of cement, and 150 kg of water are needed.

Initial construction cost of a(n) (im)mobile facility is $(190,000) 210,000$ TL. Operating cost is 15,000 TL per month. Transportation cost of a mobile facility is $15,000 \mathrm{TL}$. It takes a week to relocate a mobile facility. Monthly production capacities are set as $56,000 \mathrm{~m}^{3}$ and $33,600 \mathrm{~m}^{3}$ concrete for immobile and mobile facilities, respectively. The effective capacity ratio is assumed to be 85%.

In M2, there are $\left(5^{*}|D|^{*} T+|D|^{*}|D|^{*} T-|D|^{*}|D|-|D|\right)$ binary variables and $\left(|D|^{*}|D|^{*} T\right)$ continuous variables. For our case problem these numbers are 174,450 and 168,750 , respectively. On the other hand, in M1 there are only $\left(7^{*}|D|^{*} T-3^{*}|D|\right)$ binary variables and $\left(|D|^{*}|D|^{*} T+T-1\right)$ continuous variables. For our case problem these numbers are 15,525 and 168,779 , respectively.

We first test the performances of the two mixed integer programming models. Generating different facility construction costs, we formulate the case problem as M1 and M2 and solve these models using CPLEX 10.0 with default setting. Solution times for M1 has turned out to be longer than that of M2 even if M1 has significantly less number of binary variables compared to M2. We believe that balancing the number of facilities at location sites takes more time for M1 compared to M2. In the rest of our experiments we use only M2.

Table 3.1 displays the number of (im)mobile facilities to be opened and the total cost values for the case study problem for different (im)mobile facility construction costs plus the integrality gap. The integrality gaps are narrow, varying from 0 to 0.265%. The solutions are not sensitive to changes in facility construction costs as the facility costs are a small fraction (11-13\%) of the total cost. Remaining part is input material and concrete transportation costs. The average material transportation cost per ton concrete is about 4.50 TL. In all solutions the maximum distance that concrete sent is about 23 km and the amount shipped is 6,075 tons. Although we solve the case problem with different construction cost values, the total number of open facilities and the material transportation costs are not changed significantly. These results imply that in project management phase the construction schedules of tunnels and viaducts are prepared in a way that concrete demands of art buildings are sparse in time and location bases.

In the current situation, seven immobile facilities operate in the project site. The company prefers an immobile facility to a mobile one as the former is cheaper and has higher capacity, plus it is not simple to plan when and from where to where to move a mobile facility. After some detailed computations they had decided to do
so. All facilities had been constructed in the first period and would operate until the end of the horizon. For benchmarking we have fixed the locations according to the current facility configuration and found the best allocations using the same cost setting. Resulting total cost was $32,962,952 \mathrm{TL}$, and is about 10% higher than the cost of suggested solution in Table 3.1. In our solution, four mobile and two immobile facilities are located and mobile facilities are relocated 18 times over the horizon. We have examined their solution as if one of seven facilities is closed without changing facility configuration, and found out that they could save about 700,000 TL if it wasn't opened.

Table 3.1 Number of open facilities, solution values by M2, and deviation of the solution value by M2 relative to the linear solution to M2 for the case study problem with varying costs \dagger

CF	110			150			190		
	\#P	Obj	G(LP)	\#P	Obj	G(LP)	\#P	Obj	G(LP)
110	5^{m}	29,369	0.212	6	29,397*	0.265	6	29,397*	0.265
	$1{ }^{i}$			0			0		
130	4	29,460	0.196	5	29,509	0.237	6	29,517*	0.262
	2			1			0		
150	3	29,524	0.133	5	29,609	0.202	6	29,637*	0.261
	3			1			0		
170	2	29,574	0.071	4	29,700	0.179	5	29,749	0.235
	4			2			1		
190	2	29,614	0.011	3	29,764	0.012	5	29,849*	0.200
	4			3			1		
210	2	29,654	0.000	2	29,814	0.061	4	29,940	0.177
	4			4			2		

$\dagger C S(C F)$ stands for construction cost of a(n) (im)mobile facility (in 1,000 TL); \#P indicates the number of open facilities where $m(i)$ stands for the number of (im)mobile facilities; "Obj" indicates the best integer solution value by M2 (in 1,000 $T L)$; and $G(L P)=100(O b j-L S) / O b j$, where LS indicates the linear solution to M2 refers to the integrality gap (i.e., deviation of the best integer solution relative to the linear solution to M2) for M2. CPLEX 10.0 with default setting runs until the gap between the best solution and the lower bound less than or equal to 0.01% unless memory usage reaches to its limitation. Results of the runs that exceed the memory limit are indicated by *.

In the next experiment we have solved the original problem with a few different movement costs between $15,000 \mathrm{TL}$ and $9,000 \mathrm{TL}$ to see the effects of mobile facility movement cost. When fixed movement cost of a mobile facility decreases, the mobile facilities get more favorable as it is expected. The total cost reduces since facilities get closer to demand nodes as the number of movements increases. Results are given in Table 3.2, where the (im)mobile facility construction cost is $(190,000) 210,000$ TL.

Table 3.2 Results for a set of facility movement cost values (1,000 TL)

TCS	Total cost	Number of immobile facilities	Number of mobile facilities	Number of facility movements	Material transportation cost	Material transportation cost (\%)
15	29,942	2	4	18	26,130	87.3
13	29,906	2	4	19	26,120	87.3
11	29,865	1	5	24	26,030	87.1
9	29,813	1	5	26	26,015	87.3

Table 3.2 shows that small changes in movement costs affect the number of facilities to be opened and increase the number of movements. The average material transportation cost per ton concrete is 4.45 TL when TCS is $15,000 \mathrm{TL}$ and 4.43 TL when TCS is $9,000 \mathrm{TL}$. In all solutions the maximum distance that concrete sent is 22.87 km and the amount shipped is 6,075 tons. The total number of facilities is six and although the number of movements increases from 18 to 26 no significant decrease occurs in material transportation and total costs. The portion of the material transportation cost is still 87% in the total cost.

In the next experiment we have analyzed the cases as if managers would prefer to operate only one type of facilities in the project site. In Table 3.3 (3.4) the solutions are summarized when only (im)mobile facilities are preferred.

Table 3.3 Results for different mobile facility construction costs (1,000 TL)

CS	Total cost	Number of mobile facilities	Number of facility movements	Material transportation cost	Material transportation cost (\%)
210	30,000	6	20	26,125	87.1
190	29,880	6	20	26,125	87.4
170	29,760	6	20	26,125	87.8
150	29,640	6	20	26,125	88.1
130	29,520	6	20	26,125	88.5
110	29,400	6	20	26,125	88.9

Table 3.4 Results for different immobile facility construction costs (1,000 TL)

CF	Total cost	Number of immobile facilities	Material transportation cost	Material transportation cost (\%)
190	30,557	7	26,887	88
180	30,487	7	26,887	88.1
170	30,417	7	26,887	88.4
160	30,347	7	26,887	88.6
150	30,277	7	26,887	88.8
140	30,207	7	26,887	89
130	30,130	8	26,690	88.6
120	30,045	9	26,520	88.3
110	29,955	9	26,520	88.5

According to Table 3.3 (3.4) only six (seven) (im)mobile facilities are enough for the project. Average material transportation cost per ton concrete is about 4.49 (4.54) TL, the maximum distance that concrete sent is 22.87 (30.86) km, and the amount shipped is 6,075 (607) tons for the solutions with (im)mobile facilities. An important point is that when only immobile facilities are allowed, seven facilities must be located as being in the current situation, but at different location. The total cost we found is about 7.5% lower than the current one.

In all results the total cost changes approximately between 29,500 and 35,000 $(1,000 \mathrm{TL})$. Reductions generally occur as a result of the reductions in facility related costs we examine. Statistics about the material flows are almost the same and material transportation costs are always $87-89 \%$ of the total cost. All of these results support our conclusion about the sparseness of the demand.

In all these experiments the options are based on the capacitated facility location problem environment, i.e., it is assumed that there are facility and transportation related costs and the number of facilities are decided as a result of these settings. In the following experiment, we consider that the facility capacities are high enough (almost uncapacitated) and the number of facilities is assumed to be given in advance, i.e., the well-known p-median problem environment exists. Apparently, the p-median problem settings are also applicable to the case study. For instance, they omit the capacities and mobile facilities at the very beginning of their studies and examine to locate different number of facilities heuristically and chose the least
costly result in which all facilities are opened in the first period and kept open during the planning horizon. Actually, in this way, the multi-period nature of the problem is lost. For instance, demands of a site in all periods can be aggregated so that the weight of a demand site becomes equal to its total demand over the horizon. The resultant problem becomes a p-median problem instance defined on a line network, which is easy to solve (Brimberg and Revelle 1998). However, the case with the mobile facilities is an important option for the practical location projects. The generalization of such case is studied in chapters 4 and 5 . We now consider the case study under the policy that a given number p of mobile facilities are opened in the first period and they are kept open over the horizon and can move from period to period, if necessary. The solutions for different number of mobile facilities are summarized in Table 3.5.

Table 3.5 Results for the p-median problem with mobile facilities (1,000 TL)

Number of mobile facilities (\boldsymbol{p})	Total cost	Number of facility movements	Material transportation cost	Material transportation cost $(\boldsymbol{\%})$
5	30,039	17	26,484	88.2
6	30,136	18	25,906	85.9
7	30,419	19	25,514	83.8
8	30,828	20	25,248	81.8
9	31,329	17	25,134	80.2
10	31,854	17	24,999	78.4

According to Table 3.5 the total material transportation cost reduces as the number of facilities increases. When p and the number of facility movements increase, the total material transportation costs decreases as expected. However, the increase in the facility construction and operating costs is higher than the reduction in the material transportation cost. Hence, the total cost increases. When the number of mobile facilities is six, the results are similar to results in Table 3.3. The difference between the two cost values is due to the restrictions on capacity and facility opening-closing periods.

3.5.2 Performance of the Preprocessing Heuristic

A. Tests on the Case Study Problem

We solve the case study problem using the preprocessing heuristic. We choose $\theta=5$, heuristically. We refer the M2 runs on a reduced candidate set, found by the heuristic, as M2(R). Results are given in Table 3.6.

The gap G shows the deviation of the solution values of M2 and M2(R) from the lower bound obtained using M2. Solution times S for M2(R) include preprocessing and solution times of M2 with a reduced candidate set. M2(R) is solved in few minutes while M2 takes days for the case study problem. Average gaps are 0.03% and 0.76% for M 2 and $\mathrm{M} 2(\mathrm{R})$, respectively. The results with preprocessing heuristics are quite good. Solution times reduce substantially and deviations the heuristic causes are negligible. In general, solution times increase as initial construction costs of the facility types get closer to each other.

Table 3.6 Deviation of the solution value relative to the best lower bound and solution time for M2 and M2(R) for the case study problem with varying costs $\dagger \dagger$

		110		150		190	
		G	S	G	S	G	S
110	M2	0.01	103,477	0.13*	133,229	0.11*	54,668
	M2(R)	0.61	206	0.84	112	0.94	110
130	M2	0.01	237,878	0.01	147,186	0.08*	69,500
	M2(R)	0.46	92	0.67	421	0.85	115
150	M2	0.01	10,828	0.01	127,025	0.08*	98,410
	M2(R)	0.37	28	1.03	210	1.26	164
170	M2	0.01	4,844	0.01	116,910	0.01	215,981
	M2(R)	0.34	23	0.86	18	1.12	331
190	M2	0	184	0.01	8,233	0.07*	94,293
	M2(R)	0.33	6	0.78	3	1.07	220
210	M2	0	94	0.01	1,956	0.01	140,755
	M2(R)	0.44	2	0.85	2	1.00	61

\dagger †CS (CF) stands for construction cost of a(n) (im)mobile facility (in 1000 TL); G equals to $100(I S-L B) / L B$ where IS and LB refer to the best integer solution and the best lower bound, respectively, found by M2 for the test instance with original candidate sites $(M 2(R)$ for the test instance with reduced candidate sites). S refers to solution times (in second). CPLEX 10.0 with default setting runs until the gap between the best solution and the lower bound less than or equal to 0.01% unless memory usage reaches to its limitation. Results of the runs that exceed the memory limit are indicated by *. The computational platform is 2.66 GHz PC with 1.93 GB RAM.

B. Tests on the Randomly Generated Test Instances

In total 90 test problem instances are generated by the procedure explained in Appendix A. We use two stopping criteria in our computational experiment. A run is finished if its solution time exceeds 3 hours and its gap is smaller than 1.0%, or if the available memory limit is exceeded. We choose $\theta=5$ heuristically. All computational results on the randomly generated problem instances are given in Table 3.7.

According to the results given in Table 3.7, feasible solutions cannot be found 23 times out of 90 by M2 and two times by M2(R). Overall average gaps are 0.47% and 1.53% for 67 test instances solved by M2 and M2(R), respectively. Average solution times are 35 minutes and 4.3 minutes for M2 and M2(R), respectively. For larger sized problems, the size of M2 gets too large and causes memory problems on computer. The average gap is 1.75% and average solution time is about an hour for 21 test instances that are solved by M2(R) only.

Table 3．7 Deviation of the solution value relative to the best lower bound and solution time for M2 and M2（R）for randomly generated test problems with varying costs \neq

	\sum	F	Number of sites									
			50		100		150		200		250	
			M2	M2（R）	M2	M2（R）	M2	M2（R）	M2	M2（R）	M2	M2（R）
$\begin{aligned} & \underline{E} \\ & \frac{1}{8} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{8}{8} \\ & \text { ein } \end{aligned}$	θ	$0.06{ }^{\text {G }}$	0.75	0.01	0.17	0.97	0.69	NF	1.27	NF	1.68
			$3.44{ }^{\text {S }}$	0.12	19.2	3.74	113.38	16.29		163.62		288.81
		入ิ	0.11	0.26	0.13	0.66	1.00	1.26	0.56	0.97	0.69	1.05
			19.66	4.92	156.1	1.38	5，819．1	88.98	4，001．4	193.76	5，027	5，969．3
		\cdots	0.11	0.68	0.16	1.28	0.40	0.89	NF	0.95	NF＊	1.29
			130.9	1.67	206.8	22.52	847.83	248.15		264.49		7，150．4
	$\begin{aligned} & \hat{8} \\ & \hat{\theta} \\ & \text { î } \end{aligned}$	\bigcirc	0.54	1.37	0.98	2.41	1.02	4.03	1.35	2.58	1.34	2.07
			132.6	4.04	387.1	17.15	10，800	30.38	10，800	1，133．7	10，802	789.29
		へิ	0.60	1.72	0.81	1.69	NF	1.05	NF	1.59	NF＊	1.35
			50.14	16.71	4，985．7	236.9		665.85		10，504		1，568．5
		\cdots	0.65	0.29	0.75	1.28	NF	0.78	NF	1.45	NF＊	1.64
			664.9	39.28	4，447．5	539.2		8，776．3		10，710		10，830
$\frac{\underset{N}{E}}{\stackrel{B}{8}}$		θ	0.29	4.73	0.85	1.01	0.48	1.86	0.74	1.54	0.49	1.74
			11.2	0.08	180.3	5.18	38.72	2.25	533.38	19.04	6，410	51.64
		상	0.01	0.20	0.30	1.17	0.15	1.00	0.29	1.87	0.84	1.05
			3.84	0.82	2，235．4	3.29	685.98	32.97	523.52	343.4	2，341	605.24
		\cdots	0.07	0.89	0.05	0.93	0.15	1.16	NF	2.33	NF＊	1.37
			5.11	0.5	417.9	6.15	310.91	113.25		213.26		2，044．9
	$\begin{aligned} & 8 \\ & \hat{8} \\ & \text { î } \end{aligned}$	Q	0.88	1.38	0.49	2.73	0.92	1.61	0.36	2.51	1.34	2.25
			4.48	0.22	46	3.77	3，858．5	245.96	2，100．5	53.61	10，802	222.69
		入	0.08	0.72	0.48	2.06	0.68	1.32	NF	2.22	1.04	1.41
			123.1	3.42	1，157．1	619.8	9，145．4	533.09		160.48	10，802	1，215．2
		¢	0.39	0.74	0.66	1.19	NF	2.13	NF	NF	NF＊	NF
			128.5	76.79	1，268．4	228.3		2，776．3				
$\begin{aligned} & \frac{E}{\underline{n}} \\ & \frac{10}{7} \end{aligned}$	$\begin{aligned} & \text { 8. } \\ & \text { è } \end{aligned}$	θ	0.07	0.73	0.17	3.39	0.30	2.32	0.15	2.11	0.56	3.68
			0.94	0.1	13.33	14.86	112.77	7.82	157.39	10.83	3，543．9	16.88
		लิ	0	0.20	0.13	5.95	0.02	0.83	0.13	1.51	0.20	0.70
			2.14	0.19	131.4	18.29	235.55	24.14	3，149．8	155.9	1，665．7	176.55
			0	1.87	0.15	0.41	0.11	1.46	0.15	0.51	NF＊	1.14
		ल	32.88	0.47	296.9	188.4	267.67	80.72	419.02	179.64		6，716．3
	$\begin{aligned} & \text { Oิ } \\ & \text { ồ } \end{aligned}$	θ	0.70	3.13	0.85	2.17	0.43	2.58	NF	5.52	NF	2.41
			9.34	0.36	324.1	7.42	1，650．7	4.28		38.16		107.94
		సి	0.68	1.52	0.46	0.46	0.58	0.84	NF	3.32	NF	1.52
			91.14	18.65	927.3	45.09	6，325．1	359.14		1，410．5		2，506．7
		ल	0.02	0.21	0.51	0.99	0.76	2.00	NF	0.52	NF＊	1.22
			50.89	32.52	867.9	135.5	8，988．9	2，063．5		7，956．8		3，362．1

\ddagger equals to $100(I S-L B) / L B$ where $I S$ and $L B$ refer to the best integer solution and the best lower bound，respectively，found by M2 for the test instance with original candidate sites $(M 2(R)$ for the test instance with reduced candidate sites）．S refers to solution times（in second）．CPLEX 10.0 runs until the gap between the best solution and the lower bound less than or equal to 1% unless memory usage reaches to its limitation or 3 hour time limit is exceeded．Results of the runs that exceed the memory limit are indicated by＊．The case where a feasible solution cannot be found in allowable time is marked by NF．The computational platform is 2.66 GHz PC with 1.93 GB RAM．MD refers to maximum demand，see Appendix A for details．

CHAPTER 4

THE DYNAMIC P-MEDIAN PROBLEM WITH MOBILE FACILITIES

In this chapter, a dynamic version of the p-median problem, which is motivated by the problem considered in Chapter 3 is studied. The problem consists of dynamic demands over the planning horizon and mobile facilities. Heuristic and exact solution methods are proposed and their performances are evaluated by the computational studies on the p-median problem instances taken from the literature and randomly generated test problem instances.

4.1 Introduction

The dynamic demands and mobile facilities are two rich and distinctive properties of the problem studied in Chapter 3. Being motivated by these properties, in this chapter, we generalize this problem to the general networks under the p-median problem settings, called the dynamic p-median problem (DPP) with mobile facilities. There are dynamic demands over a planning horizon, T, and predetermined numbers (p) of mobile and immobile facilities in each period of T. According to some external considerations the number of facilities may decrease, increase, or not change from one period to another period. If the predetermined number of facilities from a type is fewer in a period compared to its previous period, then some of these facilities are abolished in this period. If it is more, then new facilities from that type must be opened. Abolishing and opening cannot be realized simultaneously at a site. However, facility opening, moving, and abolishing may occur many times at a location during the planning horizon. There are relocation (moving) costs (fixed or source-and-sink dependent) for mobile facilities and service (allocation) costs for customers. The problem is to determine the
opening-abolishing times and the locations of facilities, the movement times and routes of mobile facilities, and the allocation of demands to open facilities in each period such that the total cost is minimized.

Note that if the relocation costs are close to zero, then the DPP with mobile facilities reduces to the T independent (classical) p-median problems (which will be considered in detail in section 4.2.1). If the relocation costs are high, then it will not be beneficial to relocate or to move the facilities anymore and the problem reduces to the dynamic p-median problem (which will be studied in detail in Chapter 5).

4.2 Literature Review

4.2.1 Literature Review on the \boldsymbol{p}-Median Problem

The Weber problem is to find p median points on a plane such that the total distance between n weighted points and their nearest medians is minimized. Hakimi (1964) considers a similar problem to the Weber problem in which one median is restricted to the locations defined on a graph where there are a set of demand nodes and a set of edges between the demand nodes. He shows that, in the optimal solution, the median is located at a demand node. In other words, according to this result, considering only nodes of the graph as candidate facility (median) locations is enough to solve the problem to optimality. This property is called node optimality property and makes the problem a discrete location problem. Hakimi (1965) generalizes this problem to find p medians and proves that the node optimality property is also valid for a more general problem, called "the p-median problem". Since we consider the dynamic p-median problem, below we review the mathematical models developed for the p-median problem.

Mixed Integer Linear Programming Formulations

Let us consider a graph $G=(N, E)$ where N is the set of demand nodes and E is the set of edges between the demand nodes. Let P be the set of facilities, $P \subseteq N$, w_{i} be
a weight (demand) of node i, and $d_{i j}$ be the minimum distance between nodes i and j. It can be shown that a demand node satisfies its entire demand from the nearest facility. It is an important result for the services provided by an uncapacitated facility. The p-median problem is to find the locations of p facilities such that the total weighted distance between the nodes and the nearest facilities is minimized, i.e.,
$\min _{\substack{P \subset N \\|P|=p}}\left\{\sum_{i \in N} w_{i} \min _{k \in P}\left\{d_{i k}\right\}\right\}$.

ReVelle and Swain (1970) present the following first integer-linear programming formulation of the p-median problem.

Model 1 (ReVelle and Swain, 1970):
$\operatorname{Min} \sum_{i \in N} \sum_{j \in N} w_{i} d_{i j} x_{i j}$
s.t.
$\sum_{j \in N} x_{i j}=1 \quad \forall i \in N$
$x_{i j} \leq x_{i j} \quad \forall i \neq j \in N$
$\sum_{j \in N} x_{i j}=p$
$x_{i j} \in\{0,1\} \quad \forall i, j \in N$

In Model 1, binary decision variable $x_{i j}$ is equal to 1 if demand node i is assigned to a facility located at node j, and 0 otherwise. The objective is to minimize the total weighted distance between the nodes and the facilities they are assigned to. Constraint (4.1) forces each demand node to be assigned to a facility. Constraint (4.2) guarantees to have a facility at node j if there is any demand node assigned to this node. Constraint (4.3) sets the number of located facilities equal to p. Constraint (4.2) is known as "Balinski" constraint since he was the first to write such type constraints in 1965 when studying on the simple facility location problem.

Garfinkel et al. (1974) show that it is not needed to define $x_{i j}$ as binary variables for $i \neq j$ in Model 1. Because facilities are uncapacitated and, as we discussed before, each demand point automatically supplies its whole demand from the nearest open facility. It follows that the assignment variables in Model 1 take only 0 or 1 value in the optimal solution even their integrality constraint is relaxed. In order to prevent fractional facility openings, however it is still needed to define location variables, $x_{j j}$, as binary variables. Authors also formulated the problem as a set partitioning problem. The main observation is that the node subsets consisting of a median node and the demand nodes assigned to that median node are disjoint subsets. In a solution, N is partitioned into p such disjoint subsets. Notice that the cardinality of such subsets can take a value between 1 and ($n-p+1$) where n is the cardinality of N. The problem is to determine the p subsets of N such that each node in N belongs to exactly one of the subsets and the total cost is minimized.

Let $S_{k} \subseteq N c^{c_{k}}=\min _{j \in S_{k}}\left\{\sum_{i \in S_{k}} w_{i} d_{i j}\right\}$ and $\alpha_{i k}=1$ if node $i \in S_{k}$, and 0 otherwise. Let m be the number of node subsets. The binary decision variable x_{k} is equal to 1 if S_{k} is selected as one of p disjoint node subsets, and 0 otherwise. The set partitioning type model of the p-median problem is then,

Model 2 (Garfinkel et al., 1974):
$\min \sum_{k=1}^{m} c_{k} x_{k}$
s.t.
$\sum_{k=1}^{m} \alpha_{i k} x_{k}=1 \quad \forall i \in N$
$\sum_{k=1}^{m} x_{k}=p$
$x_{k} \in\{0,1\} \quad k=1, \ldots, m$

In Model 2, constraint (4.5) satisfies that each node belongs to exactly one subset and constraint (4.6) forces to select exactly p subsets. So, the constraints
simultaneously guarantee that N is divided into p nonempty disjoint subsets. The objective is to minimize the total cost.

Rosing et al. (1979) are the first to use Efroymson-Ray type constraint instead of Balinski constraint in Model 1. Efroymson-Ray type constraint is given below and such constraints are proposed by Efroymson and Ray (1966) for the simple facility location problem.
$\sum_{i \in N} x_{i j} \leq n * x_{j j} \quad \forall j \in N$

Replacing constraint (4.2) with constraint (4.8) reduces to the number of constraints by $\left(n^{2}-n\right)$ but the resultant model is weaker than Model 1 in terms of linear relaxation assessment, i.e., the linear programming relaxation of the new model gives worse lower bounds, which also badly affects the solution time while solving the model. Authors propose to add Balinski constraints to the model with constraint (8) only for first r closest nodes j to node i to make the model stronger. They also show that for each node, assignment variables to the farthest ($p-1$) nodes can be set to 0 and reduced from the model. The resultant model is given below.

Model 3 (Rosing et al., 1979):
$\operatorname{Min} \sum_{i \in N} \sum_{j \in F_{i}} w_{i} d_{i j} x_{i j}$
s.t.
$\sum_{j \in F_{i}} x_{i j}=1 \quad \forall i \in N$
$\sum_{i \in N} x_{i j} \leq(n-p+1) x_{i j} \quad \forall j \in N$
$\sum_{j \in N}^{i \in N} x_{j j}=p$
$x_{i j} \leq x_{i j} \quad \forall i \in N, j \in K_{i r} \backslash\{i\}$
$x_{i j} \geq 0 \quad \forall i \in N, j \in F_{i} \backslash\{i\}$
$x_{i j} \in\{0,1\}$
$\forall j \in N$

In Model $3 F_{i}$ is the set of nodes except the ($p-1$) farthest nodes from node i and $K_{i r}$ is the set of r-closest nodes to node i. In the objective function and constraints (4.1') and (4.4'), the decision variables between the nodes and the farthest ($p-1$) nodes to each node is eliminated. Constraint (4.8) is tightened, using $(n-p+1)$ as the coefficient in the right hand side instead of n in (4.8^{\prime}). Such a tightening is valid as the number of nodes assigned to a median cannot exceed ($n-p+1$) because the number of medians is set to p and each median is assigned to itself in the optimal solution (also see explanation of Model 2).

Avella and Sassano (2001) present a new model using the fact that the assignment of median nodes to themselves costs zero. The problem thus is to determine remaining ($n-p$) assignment variables that take value 1 . If a node is assigned to another node, then no node can be assigned to this node because it is not a median site. Similarly, if a node serves another node, then this node should be a median and it cannot be assigned to another node. The new model is given below.

Model 4 (Avella and Sassano, 2001):

$$
\begin{align*}
& \min \sum_{i \in N} \sum_{j \in N \backslash\{i\}} w_{i} d_{i j} x_{i j} \\
& \text { s.t. } \\
& \sum_{j \in N, i j} x_{i j}+x_{k i} \leq 1 \quad \forall i \in N, k \in N \backslash\{i\} \tag{4.10}\\
& \sum_{i \in N} \sum_{j \in N\{i,} x_{i j}=n-p \\
& x_{i j} \in\{0,1\} \quad \forall i \in N, j \in N \backslash\{i\}
\end{align*}
$$

Note that $x_{j j}$ variables are reduced from the above model. But this time, if the remaining variables (i.e., the variables used in Model 4) are not defined as binary, then fractional facility openings can occur (i.e., it is not guaranteed that each assignment variable takes value of 1 or 0 automatically in the optimal solution). So, the assignment variables are defined as binary variables. In Model 4, constraint (4.10) guarantees that if there is a node assigned to a node (say node i) than node i cannot be assigned to another node, or if node i is assigned to another node than no
node can be assigned to node i. Constraint (4.11) guarantees that exactly ($n-p$) assignment is made between different nodes.

Recently, Elloumi (2010) presents a new model, which is the adaptation of the model developed for the uncapacitated facility location problem in Cornuejols et al. (1980) and Cornuejols et al. (1990) to the p-median problem.

Let G_{i} be the number of different distances from node i. It follows that $G_{i} \leq|N|$. Let $D_{i}^{1}<D_{i}^{2}<\ldots<D_{i}^{G_{i}}$ be these distances, sorted in increasing order.

Model 5 (Elloumi, 2010):

$$
\begin{array}{ll}
\min \sum_{i \in N}\left\{w_{i} D_{i}^{1}+\sum_{k=1}^{G_{i}-1} w_{i}\left(D_{i}^{k+1}-D_{i}^{k}\right) z_{i}^{k}\right\} \\
\text { s.t. } \\
\sum_{j \in N} x_{i j}=p & \\
z_{i}^{k}+\sum_{\substack{j \in N \\
d_{i j} \leq D_{i}^{k}}} x_{i j} \geq 1 & \forall i \in N, k=1, \ldots, G_{i} \\
z_{i}^{G_{i}}=0 & \forall i \in N \\
z_{i}^{k} \geq 0 & \forall i \in N, k=1, \ldots, G_{i} \\
x_{i j} \in\{0,1\} & \forall j \in N \tag{4.9}
\end{array}
$$

In Model 5 a new type decision variable, z_{i}^{k}, is introduced. z_{i}^{k} is equal to 1 if there is no open facility at the nodes within the distance D_{i}^{k} (distance D_{i}^{k} is included) from node i, and 0 otherwise. Constraint (4.13) ensure that for any node i, either at least one facility is opened at the nodes within the distance D_{i}^{k} or z_{i}^{k} is equal to 1 . Although z_{i}^{k} is defined as a binary variable, it is not needed to force it to be binary in the model because it has a positive coefficient at the minimization type objective function. This property, constraint (4.3) and constraint (4.9) all together guarantee that z_{i}^{k} is either 1 or 0 at the optimal solution.

Elloumi (2010) replaces constraint (4.13) with the following two constraints to do the same work with constraint (4.13) and obtains an alternative model that has the same linear programming value with Model 5.

$$
\begin{array}{ll}
z_{i}^{1}+\sum_{\substack{j \in N \\
d_{i j}=D_{i}^{\prime}}} x_{i j} \geq 1 & \forall i \in N \\
z_{i}^{k}+\sum_{\substack{j \in N \\
d_{i j}=D_{i}^{k}}} x_{j j} \geq z_{i}^{k-1} & \forall i \in N, k=2, \ldots, K_{i} \tag{13'}
\end{array}
$$

Garcia et al. (2011) use a modified version of Model 5. The main difference is that this time distance D_{i}^{k} is excluded in the definition of z variables.

Model 6 (Garcia et al. 2011): Radius Model

$$
\begin{array}{ll}
\min \sum_{i \in N} \sum_{k=2}^{G_{i}} w_{i}\left(D_{i}^{k}-D_{i}^{k-1}\right) z_{i}^{k} \\
\text { s.t. } \\
\sum_{j \in N} x_{j j}=p & \\
z_{i}^{k}+\sum_{\substack{j \in N \\
d_{i j}<D_{i}^{k}}} x_{i j} \geq 1 & \forall i \in N, k=2, \ldots, G_{i} \\
x_{i j} \in\{0,1\} & \forall i \in N \\
z_{i}^{k} \geq 0 & \forall i \in N, k=2, \ldots, G_{i} \tag{4.15}
\end{array}
$$

In Model 6, the objective is to minimize the total allocation cost. Constraint (4.13"') does the same task with constraint (4.13) in Model 5. Figure 4.1 illustrates how variables are used in Model 6 using an example.

Let's consider the nodes i, a, b, c, d, and e on a graph, where $d_{i i}=0<d_{i a}<d_{i b}=d_{i c}<d_{i d}<d_{i e}$. Assume that the nearest facility to node i be located to node c, as shown in Figure 4.1. Note that in this solution $z_{i}^{1}=z_{i}^{2}=\ldots=z_{i}^{k}=1$ and $z_{i}^{k+1}=z_{i}^{k+2}=\ldots=z_{i}^{G_{i}}=0$.

Figure 4.1 Illustration of z variables used in Model 6

Besides the above studies, a few studies are available in the literature, dealing with the mathematical formulations of the problem. All use either Model 1 or Model 3 and try to reduce the number of variables.

Rosing and ReVelle (1997) propose a heuristic to reduce the candidate facility location nodes. Church (2003) presents a model, called COBRA. He reduces the number of decision variables based on so called the existence of equivalent decision variables. He presents a methodology to determine such variables and combines them without loss of generality. Church (2008) proposes a new model, called BEAMR, in which the number of decision variables is reduced by defining assignment variables only between nodes and some nearest nodes to them. He proposes two heuristic procedures to determine how many nearest nodes will be used for each node.

Christofides and Beasley (1982) use a Lagrangian heuristic to obtain lower bounds. These bounds and the heuristic procedure incorporated into a branch and bound (BnB) algorithm. Beasley (1985) solves p-median problem instances with up to 900 nodes on a Cray supercomputer, using BnB.

Galvao (1980) develops a heuristic similar to the dual ascent algorithm, proposed by Erlenkotter (1978) for the uncapacitated facility location problem, in order to solve the dual of the LP relaxation of Model 1 and to obtain a lower bound. Galvao solves the instances with up to 30 nodes faster than El-Shaieb (1973) and Jarvinen et al. (1972).

There are several exact algorithms in the literature, using Lagrangian relaxation, LP relaxation, and primal-dual relation in BnB algorithms (for example, see Cornuejols et al. 1977; El-Shaieb 1973; Jarvinen et al. 1972; Narula et al. 1977; Revelle and Swain 1970; Hanjoul and Peeters 1985; Mirchandani et al. 1985; Galvao and Raggi 1989). According to the best of our knowledge, several studies are carried out after 1989 but almost all of them offer heuristics.

Senne et al. (2005) present a branch and price algorithm that combines column generation with Lagrangian relaxation in order to produce productive columns. They solve the test instances taken from OR-Library, with up to 900 nodes. de Farias (2001) proposes a branch and cut (BnC) algorithm while Elloumi and Plateau (2010) and Garcia et al. (2011) propose a branch and price (BnP) algorithm to solve Model 5.

Decomposition Methods

Garfinkel et al. (1974) use Dantzing-Wolfe decomposition to solve the LP relaxation of Model 2 and combine group theory and dynamic programming (DP)
in order to handle the non-integer solutions. They solve test instances with up to 33 nodes.

Heuristics

Kariv and Hakimi (1979) prove that the p-median problem is $N P$-hard on a general network for an arbitrary p. This result justifies many heuristic methods proposed in the literature to find good solutions in reasonable times. Some selected heuristics from Reese (2006) and Mladenovic et al. (2007), the most recent literature surveys, are addressed below and the reader is referred to these surveys for the details of heuristics listed.

Greedy heuristic (Kuehn and Hamburger 1963; Whitaker 1983), Stingy heuristic (Feldman et al. 1966; Salhi and Atkinson 1995), dual-ascent heuristic (Galvao 1980; Galvao 1993; Captivo 1991), node substitution heuristic (Resende and Werneck 2003), DP based heuristics (Hribar and Daskin 1997), Lagrangian relaxation based heuristics (Beasley 1993), and node aggregation heuristics (Francis et al. 2000). See also Reese (2006) and Mladenovic et al. (2007) for different metaheuristics such as genetic, tabu search, simulated annealing, variable neighborhood search, heuristic concentration, scatter search, ant colony, neural networks, hybrids, etc..

Avella et al. (2007) propose a complicated heuristic based on Lagrangian relaxation, and branch and cut and price.

4.2.2 Literature Review on the Dynamic \boldsymbol{p}-Median Problem

The p-median problems considered in the literature come with various extensions such as with demand/distances uncertainty, multiple commodities/objectives, capacities, etc.. Unfortunately, the dynamic version of the problem does not get a lot attention in the literature.

Wesolowsky (1973) presents an integer formulation of the dynamic, continuous single facility location problem and proposes a BnB based enumeration procedure to solve it. The problem is to determine the locations of an uncapacitated mobile facility on a plane at each discrete time period such that the total of customer allocation and fixed facility relocation costs is minimized. Farahani et al. (2009) study the dynamic, continuous single facility location problem with time dependent customer weights. Facility relocations can occur at pre-determined time periods and the objective is to minimize the total location and relocation cost. They present an algorithm that first finds the optimal locations using constant weights and then finds their relocation times.

Wesolowsky and Truscott (1975) fix the number of facilities to be run over the planning horizon, limit the number of facility relocations in a period, and consider fixed facility relocation costs for their dynamic p-median problem. They propose two solution methods based on BnB and DP. Galvao and Santibanez-Gonzalez (1992) study the problem in which the number of facilities to be open changes according to a predetermined setting over the planning horizon. They propose a Lagrangian heuristic to minimize the sum of allocation and facility installation costs. Drezner (1995) considers p facilities to be located one by one over a p-period planning horizon, called "the progressive p-median problem". A heuristic method is presented to minimize the allocation costs. These three studies and our study are summarized in Table 4.1 for comparison purposes to highlight the similarities and differences between the dynamic p-median problems that are studied in the literature up to now.

According to Table 4.1, note that the present study is the only study considering mobile and immobile facilities simultaneously and wholly relaxed relations between the numbers of facilities to be open in sequential periods, and therefore, it can be regarded as a generalization of the studies in the literature.

Table 4.1 Features of present study and the related studies in the literature.

	Wesolowsky and Truscott (1975)	Galvao and Santibanez- Gonzalez (1992)	Drezner (1995)	Present
Underlying structure	graph	graph	plane	graph
Number of facilities	$p_{t}=p$	$p_{t} \geq p_{t-1}$	$p_{t}=p_{t-1}+1$	$p_{t}<,=$, or $>p_{t-1}$
Immobile facility	No	Yes	Yes	Yes
Facility opening cost	No	Yes	No	No
Mobility, relocation, and related costs	Yes	No	No	Yes
Limit on the facility relocations (moving)	In each period	No	No	No
Solution method	a MIP and a DP	Lagrangean heuristic	A non-linear model and a solver program	Heuristics and a BnP algorithm
Test instances	Instances with up to 10 nodes and 10 periods.	Randomly generated test problems with up to 50 nodes and 7 periods.	Randomly generated test problems with up to 100 nodes and 7 periods.	$p-m e d i a n ~ p r o b l e m ~$ instances from the literature and randomly generated test problems with up to 1000 nodes and 10 periods.

4.3 Mathematical Formulation of the Dynamic \boldsymbol{p}-Median Problem with Mobile Facilities: Dynamic Radius Formulation (DRF)

We discussed major formulation types for the p-median problem in section 4.2.1. Model 2 has binary decision variables defined over the subsets of the node set, which imply that the exponential number of binary variables are needed. Models 1 , 3 , and 4 are actually very similar to each other while Model 1 is the most widely used in the literature. Model 5 and Model 6 are the best for BnP since the column generation works well for z variables and requires shorter times compared to column generation for x variables in the remaining models. We adapt Model 6 to the DDP with mobile facilities, called dynamic radius formulation, since it has less decision variables and constraints than Model 5 and we use branch and price to solve the problem.

We again assume an underlying graph $G=(N, E)$ where N is the set of nodes and E is the set of edges to represent the demand and facility sites and the connections between these sites, and T is the number of periods. Let $K_{i j}$ be the facility relocation cost if facility at node i is moved to node $j, w_{i t}$ is the demand of node i at period $t, d_{i j}$ is the distance between nodes i and j, and c is the unit service cost for satisfying
unit demand per unit distance. Let p_{t}^{1} and p_{t}^{2} be the number of mobile and immobile median facilities in period t, respectively.

Let G_{i} be the number of distinct $d_{i j}$ values between node i and all other nodes j 's $(j \in N)$. It follows that $G_{i} \leq|N|$. Let $0=D_{i}^{1}<D_{i}^{2}<\ldots<D_{i}^{G_{i}}$ be the sorted distance values for customer i.

Decision variables:

$z_{i t}^{k}$ is equal to 1 if there is no open facility within the distance D_{i}^{k} from i at period t, and 0 otherwise.
$s_{i j t}$ is equal to 1 if facility at i is moved to j in $t, 0$ otherwise.
$y_{i t}^{1}\left(y_{i t}^{2}\right)$ is equal to 1 if there is $\mathrm{a}(\mathrm{n})(\mathrm{im})$ mobile facility at i in $t, 0$ otherwise.
$u_{i t}^{1}\left(u_{i t}^{2}\right)$ is equal to 1 if a new (im)mobile facility is opened at i in $t, 0$ otherwise.
$v_{i t}^{1}\left(v_{i t}^{2}\right)$ is equal to 1 if the existing (im)mobile facility is abolished at i in $t, 0$ otherwise.

DRF

$\min \sum_{i \in N} \sum_{k=2}^{G_{i}} \sum_{t=1}^{T} c^{*} w_{i t}\left(D_{i}^{k}-D_{i}^{k-1}\right) z_{i t}^{k}+\sum_{i \in N} \sum_{j \in N} \sum_{t=2}^{T} K_{i j} s_{i j t}$
s.t.
$\sum_{i \in N} y_{j t}^{1}=p_{t}^{1} \quad t=1, \ldots, T$
$\sum_{j \in N} y_{j t}^{2}=p_{t}^{2} \quad t=1, \ldots, T$
$z_{i t}^{k}+\sum_{\substack{j \in N \\ d_{j i}<D_{i}^{k}}}\left(y_{j t}^{1}+y_{j t}^{2}\right) \geq 1 \quad \forall i \in N, k=2, \ldots, G_{i}, t=1, \ldots, T$
$u_{j t}^{1}+y_{j, t-1}^{1}+\sum_{i \in N /\{j\}} s_{i j t}=y_{j t}^{1}+\sum_{i \in N /\{j\}} s_{j i t}+v_{j t}^{1} \quad \forall j \in N, t=2, \ldots, T$
$u_{j t}^{2}+y_{j, t-1}^{2}=y_{j t}^{2}+v_{j t}^{2} \quad \forall j \in N, t=2, \ldots, T$
$\begin{array}{ll}\sum_{i \in N} v_{i t}^{1}=\max \left\{0, p_{t-1}^{1}-p_{t}^{1}\right\} & t=2, \ldots, T \\ \sum_{i \in N} u_{i t}^{1}=\max \left\{0, p_{t}^{1}-p_{t-1}^{1}\right\} & t=2, \ldots, T \\ \sum_{i \in N} v_{i t}^{2}=\max \left\{0, p_{t-1}^{2}-p_{t}^{2}\right\} & t=2, \ldots, T\end{array}$

$$
\begin{array}{ll}
\sum_{i \in N} u_{i t}^{2}=\max \left\{0, p_{t}^{2}-p_{t-1}^{2}\right\} & T=2, \ldots, T \\
u_{j t}^{1}, v_{j t}^{1} \geq 0 & \forall j \in N, t=2, \ldots, T \\
u_{j t}^{2}, v_{j t}^{2} \geq 0 & \forall j \in N, t=2, \ldots, T \\
z_{i t}^{k} \geq 0 & \forall i \in N, t=1, \ldots, T, k=2, \ldots, G_{i} \\
s_{i j t} \geq 0 & \forall i \neq j \in N, t=2, \ldots, T \\
y_{j t}^{1}, y_{j t}^{2} \in\{0,1\} & \forall j \in N, t=1, \ldots, T \tag{4.29}
\end{array}
$$

In the above model the objective is to minimize the sum of service and facility movement costs. Constraints (4.16) and (4.17) guarantee that there are open p_{t}^{1} mobile and p_{t}^{2} immobile facilities in period t. Constraint (4.18) ensures that for any customer i, either there is at least one open facility within the distance D_{i}^{k} or $z_{i t}^{k}$ is equal to 1 at period t. This constraint manages the allocations of demand nodes to open facilities. Constraints (4.19) and (4.20) balance the number of mobile and immobile facilities at a location in a period. Constraints (4.21) and (4.22) prevent to abolish more mobile facilities than it should be and open new mobile facilities at some other locations to meet the target mobile median, which can be considered as an 'illegal way' to relocate the facilities at this problem context. Constraints (4.23) and (4.24) do the same work with constraints (4.21) and (4.22) for the immobile facilities. Note that, for instance, median configuration can change legally in period t only through moving facilities when $p_{t-1}^{l}=p_{t}^{l}, l=1,2$. Also note that there exists at most one open facility at a node in a period at the optimal solution to DRF since the facilities are uncapacitated. Futhermore, although all the decision variables are defined as binary variables, it is not needed to force all except y to be integral due to the following Proposition.

Proposition 1: When y^{1} and y^{2} are fixed at 0 or 1 , there exists an optimal solution to DRF with integral values of u, v, z, and s variables.

Proof: Given fixed binary values of y^{1} and y^{2} variables decomposes a few subproblems of DRF. In this proof, we consider these subproblems in three groups
and show that their optimal solutions satisfy the integrality of u, v, z, and s variables. Let $y^{1^{*}}$ and $y^{2^{*}}$ be the given fixed values of y^{1} and y^{2} variables, respectively.

Group 1: In this group, the following subproblem arises for each $i \in N, k=2, \ldots, G_{i}$ and period $t, t=1, \ldots, T$.
$\min c^{*} w_{i t}\left(D_{i}^{k}-D_{i}^{k-1}\right) z_{i t}^{k}$
s.t.
$z_{i t}^{k} \geq 1-\sum_{\substack{j \in N \\ d_{j i}<D_{i}^{k}}}\left(y_{j t}^{1^{*}}+y_{j t}^{2^{*}}\right)$
$z_{i t}^{k} \geq 0$

Mainly, the allocation decisions are represented in this subproblem. Each decomposed part of the subproblem consists of only one decision variable: $z_{i t}^{k}$. Given $y^{1^{*}}$ and $y^{2^{*}}$ values, the right hand side of constraint (4.18') is 1 or nonpositive integer down to (1-p). This constraint together with constraint (4.27') produces a lower bound for $z_{i t}^{k}$ which is either 0 or 1 . Since the objective is minimization type and the objective function coefficient of the variable is positive, it would take the smallest binary value at the optimal solution.

Group 2: In this group, the following subproblem arises for immobile facilities and period $t, t=2, \ldots, T$.
$\min 0$
s.t.
$u_{j t}^{2}-v_{j t}^{2}=y_{j t}^{2^{*}}-y_{j, t-1}^{2^{*}} \quad \forall j \in N$
$\sum_{i \in N} v_{i t}^{2}=\max \left\{0, p_{t-1}^{2}-p_{t}^{2}\right\}$
$u_{j t}^{2}, v_{j t}^{2} \geq 0 \quad \forall j \in N$

Note that immobile facility opening and abolishing decisions are represented in this subproblem. Let us first consider the case that $p_{t}^{2}>p_{t-1}^{2}$. Constraint (4.23') together with constraint (4.26') fixes all v^{2} variables to 0 , i.e., abolishing an existing facility is forbidden; $y_{i t}^{2^{*}} \geq y_{i, t-1}^{2^{*}}$ for all $i \in N$. If $y_{i t}^{2^{*}}=y_{i, t-1}^{2^{*}}$, then constraint (4.20') fixes $u_{i t}^{2}$ to 0 , otherwise to 1 . So, all u^{2} and v^{2} variables are equal to 0 or 1 at the optimal solution of the decomposed problem. Now, consider the cases that $p_{t}^{2}=p_{t-1}^{2}$ and $p_{t}^{2}<p_{t-1}^{2}$. In the former case, constraints (4.23') and (4.24') together with (4.26') fix all u^{2} and v^{2} variables to zero. In the latter case constraint (4.24') together with (4.26') fix all u^{2} variables to zero and constraint (4.20') fixes v^{2} variables to 0 or 1 .

Group 3: In this group, the following subproblem arises for mobile facilities and period $t, t=2, \ldots, T$.

$$
\begin{array}{ll}
\min \sum_{i \in N} \sum_{j \in N} K_{i j} s_{i j t} & \\
\text { s.t. } & \\
u_{j t}^{1}+\sum_{i \in N /\{j\}} s_{j i t}-\sum_{i \in N /\{j\}_{j i t}} s_{j i t}-v_{j t}^{1}=y_{j t}^{1^{*}}-y_{j, t-1}^{1^{*}} & \forall j \in N \\
\sum_{i \in N} v_{i t}^{1}=\max \left\{0, p_{t-1}^{1}-p_{t}^{1}\right\} & \\
\sum_{i \in N} u_{i t}^{1}=\max \left\{0, p_{t}^{1}-p_{t-1}^{1}\right\} & \\
u_{j t}^{1}, v_{j t}^{1} \geq 0 & \forall j \in N \\
s_{i j t} \geq 0 & \forall i \neq j \in N \tag{4.28'}
\end{array}
$$

Basically, mobile facility opening, abolishing, and moving decisions are represented in this subproblem. For proof, we will deal with three cases: (a) $p_{t}^{1}=p_{t-1}^{1}$, (b) $p_{t}^{1}>p_{t-1}^{1}$, and (c) $p_{t}^{1}<p_{t-1}^{1}$. Below we present several properties that are valid at the optimal solution of the subproblem. \ddagger
(i) Since constructing a facility at node i and then moving it to node j in the same period is always expensive than directly constructing it at j,

[^0]$u_{i t}^{1} * s_{i j t}=0$ for all $i, j \in N$. As a consequence $u_{i t}^{1} * \sum_{j \in N} s_{i j t}=0$ for all $i \in N$.
(ii) Since moving an existing facility from node i to node j via another node is always expensive than moving it directly from i to $j, s_{i k t} *_{k j t}=0$ for all $i, j, k \in N$. If $s_{i k t}$ takes a positive value then $s_{k j t}$ is equal to zero for all $j \in N$. So, $s_{i k t} * \sum_{j \in N} s_{k j t}=0$. Now, if $\sum_{j \in N} s_{k j t}>0$ then $s_{i k t}$ is equal to zero for all $i \in N$. As a consequence $\sum_{j \in N} s_{k j t} * \sum_{j \in N} s_{j k t}=0$ for all $k \in N$.
(iii) Since moving an existing facility from node i to node j and abolishing it at j in the same period is always expensive than directly abolishing at i, $v_{i t}^{1} *_{i j t}=0$ for all $i, j \in N$. As a consequence $v_{i t}^{1} * \sum_{j \in N} s_{i j t}=0$ for all $i \in N$.
(a) $p_{t}^{1}=p_{t-1}^{1}$

Constraints $\left(4.21^{\prime}\right)$ and (4.22') together with (4.25') fix all u^{1} and v^{1} variables to zero. This result means that no new facility can be opened or no existing facility can be closed. Only s variables remain at (4.19^{\prime}). Let us consider any $i \in N$ such that $y_{i t}^{1^{*}}=y_{i, t-1}^{1^{*}}$. It follows that the right hand side of constraint (4.19') is zero. Property (ii) shows that both $\sum_{j \in N} s_{i j t}$ and $\sum_{j \in N} s_{j i t}$ cannot be positive at the optimal solution. In this case, a zero right hand side is possible only if all s variables are zero for i. It means that no facility can move via the nodes in which there was no (was a) facility at the previous period and there is no (is a) facility at the current period at the optimal solution. Now, consider nodes $i \in N$ where $y_{i t}^{1^{*}} \neq y_{i, t-1}^{1^{*}}$. Let $\quad E F 1=\left\{i \in N \mid y_{i, t-1}^{1^{*}}=1 \wedge y_{i t}^{1^{*}}=0\right\}$ and $E F 2=\left\{i \in N \mid y_{i, t-1}^{1^{*}}=0 \wedge y_{i t}^{1^{*}}=1\right\}$. Notice that $|E F 1|=|E F 2|$. As a result of property (ii) all $s_{j i t}$ variables for all $i \in E F 1$ and all $s_{i j t}$ variables for all $i \in E F 2$ will be 0 at the optimal solution. The resulting submodel is given below.

$$
\begin{align*}
& \min \sum_{i \in E F 1} \sum_{j \in E F 2} K_{i j} s_{j i t} \\
& \text { s.t. } \\
& \sum_{i \in E F F_{2}} s_{j i t}=1 \quad \forall j \in E F 1 \tag{4.19'}\\
& \sum_{i \in E F F_{1 j t}} s_{1} \quad \forall j \in E F 2 \tag{4.19"'}\\
& s_{i j t} \geq 0 \tag{4.28'}
\end{align*} \quad \forall i \in E F 1, \forall j \in E F 2 \quad\left(4.28^{\prime \prime}\right)
$$

This is the well known assignment problem where $E F 1$ corresponds the set of tasks, EF2 corresponds the set of machines, and one to one assignment must be done between the tasks and machines such that the total assignment cost is minimized. Since the LP relaxation of the assignment problem gives an integral optimum solution, all s variables in the above part are equal to 0 or 1 at the optimal solution.
(b) $p_{t}^{1}>p_{t-1}^{1}$

Constraints $\left(4.21^{\prime}\right)$ together with (4.25') fix all v^{1} variables to zero. It follows that no existing facility can be closed. For variables u^{1} and s let us consider any $i \in N$ such that $y_{i t}^{\mathrm{l}^{*}}=y_{i, t-1}^{\mathrm{l}^{*}}$. This makes the right hand side of constraint (4.19') zero. Due to properties (i) and (ii), a zero right hand side is possible only if all u^{1} and s variables are zero for i. It means that no new facility can be opened at or no facility can move via the nodes in which there was no (was a) facility at the previous period and there is no (is a) facility at the current period at the optimal solution. Now, consider nodes $i \in N$ where $y_{i t}^{1^{*}} \neq y_{i, t-1}^{1^{*}}$. Let $E F 1=\left\{i \in N \mid y_{i, t-1}^{1^{*}}=1 \wedge y_{i t}^{1^{*}}=0\right\}$ and $E F 2=\left\{i \in N \mid y_{i, t-1}^{1^{*}}=0 \wedge y_{i t}^{1^{*}}=1\right\}$. As a result of properties (i) and (ii) all $u_{i t}^{1}$ and $s_{j i t}$ variables for all $i \in E F 1$, and all $s_{i j t}$ variables for all $i \in E F 2$ will be 0 at the optimal solution. The remaining submodel is given below.
$\min \sum_{i \in E F 1} \sum_{j \in E F 2} K_{i j} s_{i j t}$
s.t.
$u_{j t}^{1}+\sum_{i \in E F 1} s_{i j t}=1 \quad \forall j \in E F 2$
$\sum_{i \in E F 2} s_{j i t}=1 \quad \forall j \in E F 1$
$\sum_{i \in E F 2} u_{i t}^{1 \in E F)^{2}} p_{t}^{1}-p_{t-1}^{1}$
$u_{j t}^{1} \geq 0 \quad \forall j \in E F 2$
$s_{i j t} \geq 0 \quad \forall i \in E F 1, \forall j \in E F 2$

Notice that $|E F 2|=|E F 1|+\left(p_{t}^{1}-p_{t-1}^{1}\right)$. The above submodel is the formulation of the well known balanced transportation problem. Constraint (4.19*) is the demand constraint and constraints (4.19") and (4.22") are the supply constraints. As long as the right hand side values of the demand and supply constraints are integer, which is the case here, the LP relaxation of the transportation problem gives an integral optimum solution.
(c) $p_{t}^{1}<p_{t-1}^{1}$

Constraint (4.22') together with (4.25') fixes all u^{1} variables to zero. This result means that no new facility can be opened. For v^{1} and s variables at (4.19') let us consider an $i \in N$ such that $y_{i t}^{1^{*}}=y_{i, t-1}^{1^{*}}$. This makes the right hand side of constraint (4.19') zero. Due to properties (ii) and (iii), a zero right hand side is possible only if all v^{1} and s variables are zero for i. It means that no existing facility can be closed at or no facility can move via the nodes in which there was no (was a) facility at the previous period and there is no (is a) facility at the current period at the optimal solution. Now, consider node $i \in N \quad$ where $\quad y_{i t}^{1^{*}} \neq y_{i, t-1}^{1^{*}}$. Let $\quad E F 1=\left\{i \in N \mid y_{i, t-1}^{1^{*}}=1 \wedge y_{i t}^{1^{*}}=0\right\} \quad$ and $E F 2=\left\{i \in N \mid y_{i, t-1}^{1^{*}}=0 \wedge y_{i t}^{1^{*}}=1\right\}$. As a result of properties (ii) and (iii) all $s_{j i t}$ variables for all $i \in E F 1$, and all $v_{i t}^{1}$ and $s_{i j t}$ variables for all $i \in E F 2$ will be 0 at the optimal solution. The resulting submodel is given below.

$$
\begin{array}{ll}
\min \sum_{i \in E F 1} \sum_{j \in E F 2} K_{i j} s_{i j t} & \\
\text { s.t. } & \\
v_{j t}^{1}+\sum_{i \in E F 2} s_{j i t}=1 & \forall j \in E F 1 \\
\sum_{i \in E F F_{i t t}} s_{i t}=1 & \forall j \in E F 2 \\
\sum_{i \in E F 1}^{1} v_{i t}^{1}=p_{t-1}^{1}-p_{t}^{1} & \\
v_{j t}^{1} \geq 0 & \forall j \in E F 1 \\
s_{i j t} \geq 0 & \forall i \in E F 1, \forall j \in E F 2 \tag{4.28"}
\end{array}
$$

Notice that $|E F 1|=|E F 2|+\left(p_{t-1}^{1}-p_{t}^{1}\right)$. The above submodel is also the formulation of the well known balanced transportation problem. Constraint (4.19**) is the supply constraint and constraints (4.19"') and (4.23") are the demand constraints. Recall that when the supply and demand values at the right hand side are integer, the LP relaxation of the transportation problem gives an integral optimum solution. \square

4.4 Solution Methods

4.4.1 Heuristics

The first heuristic we propose is a myopic heuristic (MH). It solves a variety of single period p-median problem iteratively. The main step of the myopic heuristic is as follows. A period $h, h=1, \ldots, T$, is randomly selected and the p-median problem is solved for the period h. Next, these median locations are used as an input to a variety of the single period p-median problem to be solved for the period $(h+1)$. Then its median locations are used as an input to find the median locations for the period $(h+2)$, and so on. The main step is implemented period by period successively until all periods up to T are examined. Once the main step is applied at T, the same logic is applied to the left part of the period k, starting from the period ($h-1$) until the very first period, at the same manner as it is defined for the right part of the period h. The steps of the myopic heuristic are given below.

Step 1: Choose a period h randomly, $1 \leq h \leq T$. Solve the following model.
$\min \sum_{i \in N} \sum_{k=2}^{G_{i}} c^{*} w_{i h}\left(D_{i}^{k}-D_{i}^{k-1}\right) z_{i h}^{k}$
s.t.
$\sum_{j \in N} y_{i h}^{1}=p_{h}^{1}$
$\sum_{j \in N} y_{i h}^{2}=p_{h}^{2}$
$z_{i h}^{k}+\sum_{\substack{j \in N \\ d_{i j}<D_{i}^{k}}}\left(y_{i h}^{1}+y_{i h}^{2}\right) \geq 1 \quad \forall i \in N, k=2, \ldots, G_{i}$
$y_{i h}^{1}, y_{i h}^{2} \in\{0,1\} \quad \forall i \in N$
$z_{i h}^{k} \geq 0 \quad \forall i \in N, k=2, \ldots, G_{i}$
Let $\left(y_{h}^{1^{*}}, y_{h}^{2^{*}}\right)$ be the values of y variables in the optimal solution. Set $t=h$.
Step 2: If $t=T$ then go to Step 4 else $t=t+1$.
Step 3: Solve the following model.

$$
\min \sum_{i \in N} \sum_{k=2}^{G_{i}} c * w_{i t}\left(D_{i}^{k}-D_{i}^{k-1}\right) z_{i t}^{k}+\sum_{i \in N} \sum_{j \in N} K_{i j} s_{i j t}
$$

s.t.
$\sum_{j \in N} y_{j t}^{1}=p_{t}^{1}$
$\sum_{j \in N} y_{j t}^{2}=p_{t}^{2}$
$z_{i t}^{k}+\sum_{\substack{j \in N \\ d_{j i} i D_{i}^{k}}}\left(y_{j t}^{1}+y_{j t}^{2}\right) \geq 1 \quad \forall i \in N, k=2, \ldots, G_{i}$
$u_{j t}^{1}+y_{j, t-1}^{1 *}+\sum_{i \in N /\{j,} s_{i j t}=y_{j t}^{1}+\sum_{i \in N /\{j\}\}} s_{j i t}+v_{j t}^{1} \quad \forall j \in N$
$u_{j t}^{2}+y_{j, t-1}^{2^{*}}=y_{j t}^{2}+v_{j t}^{2} \quad \forall j \in N$
$\sum_{i \in N} v_{i t}^{1}=\max \left\{0, p_{t-1}^{1}-p_{t}^{1}\right\}$
$\sum_{i \in N} u_{i t}^{1}=\max \left\{0, p_{t}^{1}-p_{t-1}^{1}\right\}$
$\sum_{i \in N} v_{i t}^{2}=\max \left\{0, p_{t-1}^{2}-p_{t}^{2}\right\}$
$\sum_{i \in N} u_{i t}^{2}=\max \left\{0, p_{t}^{2}-p_{t-1}^{2}\right\}$
$u_{j t}^{1}, v_{j t}^{1}, u_{j t}^{2}, v_{j t}^{2} \geq 0 \quad \forall j \in N$
$z_{i t}^{k} \geq 0 \quad \forall i \in N, k=2, \ldots, G_{i}$
$s_{i j t} \geq 0 \quad \forall i \neq j \in N$
$y_{j t}^{1}, y_{j t}^{2} \in\{0,1\} \quad \forall j \in N$
Let $\left(y_{t}^{1^{*}}, y_{t}^{2^{*}}\right)$ be the values of y variables in the optimal solution. Go to Step 2.

Step 4: $t=h$.
Step 5: If $t=1$ then STOP else $t=t-1$.
Step 6: Solve the following model.
$\min \sum_{i \in N} \sum_{k=2}^{G_{i}} c^{*} w_{i t}\left(D_{i}^{k}-D_{i}^{k-1}\right) z_{i t}^{k}+\sum_{i \in N} \sum_{j \in N} K_{i j} s_{i j t+1}$
s.t.
$\sum_{j \in N} y_{j t}^{1}=p_{t}^{1}$
$\sum_{j \in N} y_{j t}^{2}=p_{t}^{2}$
$z_{i t}^{k}+\sum_{\substack{j \in N \\ d_{j i}<D_{i}^{k}}}\left(y_{j t}^{1}+y_{j t}^{2}\right) \geq 1 \quad \forall i \in N, k=2, \ldots, G_{i}$
$u_{j t+1}^{1}+y_{j, t}^{1}+\sum_{i \in N /\{j\}} s_{i j t+1}=y_{j t+1}^{1^{*}}+\sum_{i \in N /\{j\}} s_{j i t+1}+v_{j t+1}^{1} \quad \forall j \in N$
$u_{j t+1}^{2}+y_{j, t}^{2}=y_{j t+1}^{2^{*}}+v_{j t+1}^{2} \quad \forall j \in N$
$\sum_{i \in N} v_{i t+1}^{1}=\max \left\{0, p_{t}^{1}-p_{t+1}^{1}\right\}$
$\sum_{i \in N} u_{i t+1}^{1}=\max \left\{0, p_{t+1}^{1}-p_{t}^{1}\right\}$
$\sum_{i \in N} v_{i t+1}^{2}=\max \left\{0, p_{t}^{2}-p_{t+1}^{2}\right\}$
$\sum_{i \in N} u_{i t+1}^{2}=\max \left\{0, p_{t+1}^{2}-p_{t}^{2}\right\}$
$u_{j t+1}^{1}, v_{j t+1}^{1}, u_{j t+1}^{2}, v_{j t+1}^{2} \geq 0 \quad \forall j \in N$
$z_{i t}^{k} \geq 0 \quad \forall i \in N, k=2, \ldots, G_{i}$
$s_{i j t+1} \geq 0 \quad \forall i \neq j \in N$
$y_{j t}^{1}, y_{j t}^{2} \in\{0,1\} \quad \forall j \in N$
Let $\left(y_{t}^{1^{*}}, y_{t}^{2^{*}}\right)$ be the values of y variables in the optimal solution. Go to Step 5.

The myopic heuristic is illustrated in Figure 4.2. In this figure, each box represents a time period t in the problem, $t=1, \ldots, T$. Period h denotes the starting period randomly chosen in the myopic heuristic. Order of iterations of the heuristic is given at the bottom line of each box.

Figure 4.2 Illustration of the myopic heuristic

The second and third heuristics are called progressive heuristics. In these heuristics, the first step is a kind of preprocessing step to reduce the problem size. All facilities are assumed to be immobile. The periods are reordered according to the number of facilities in a non-decreasing order. After this reordering, if the number of facilities is same (constant) for some successive periods, demands of these successive periods are aggregated and these periods are combined into a single period with the resulting aggregated demand. In the second step, two alternative approaches are considered, both of which form our progressive heuristics: progressive heuristic 1 and progressive heuristic 2 (P 1 and P 2). In the first approach, the myopic heuristic is applied on this reorganized problem by starting from the first or from the last period. In the second approach, we use the remaining cumulative demand for a period as a demand of that period, i.e., the total demand of the periods from t (in the reordered and combined periods) to the last period $T^{*}, T^{*} \leq T$, is taken as the demand in period t (T^{*} is the number of periods after combining periods). Then, the myopic heuristic is applied by starting from the first or from the last period. The steps of progressive heuristic 1 are given below.

Step 1: $p_{t}^{2}=p_{t}^{1}+p_{t}^{2}$ and $p_{t}^{1}=0$ for $t=1, \ldots, T$.
Step 2: Reorder the periods in a non-decreasing order of p_{t}^{2} values.
Step 3: $t=1, T^{*}=T$.
Step 4: If $p_{t}^{2}=p_{t+1}^{2}$ then $T^{*}=T^{*}-1$ and go to Step 5 else $t:=t+1$ and go to Step 6.

Step 5: Combine periods t and $t+1$ into a single period t by setting their weights as $w_{i t}:=w_{i t}+w_{i t+1}$ for all $i \in N$. Reindex all periods from $t+2$ to T^{*} so that period $t+2$ is labeled as $t+1$, period $t+3$ is labeled as $t+2$, and so on until the last period. Set $T^{*}:=T^{*}-1$.

Step 6: If $t<T^{*}$ then go to Step 4.
Step 7: Apply myopic heuristic by choosing $h=1$ or $h=T^{*}$ in the first step of the myopic algorithm.

For progressive heuristic 2 , we perform same iterations of progressive heuristic 1 until Step 7. In Step 7, we use the cumulative demand of periods from t to T^{*} as "demand" of period t to find the median locations of period t (i.e., use $w_{i t}:=\sum_{m=t}^{T^{*}} w_{i m}$ for all $i \in N$ and $\left.t=1, \ldots, T^{*}\right)$.

4.4.2 Branch and Price Algorithm (BnP)

In general, Balinski Constraint type constraints strengthen the models and shorten solution times for the location problems with uncapacitated facilities. By today's technology even the middle size p-median problem instances (having some hundreds of nodes) are solvable by general purpose MIP solver programs in very short times. The main problem is that when the problem size is large, the MIP solver programs are not able to solve the corresponding models mainly because of the memory limitation at the reasonable individual computers. Especially, in the complex models, like ours, decision variables with three indices cause dramatic increases in the number of decision variables. It may result in memory related problems in the root node of the search tree even for the middle size problems although a memory space with some gigabyte size is available. For instance, when the model size is too big, solving the relaxed problems in each node of the search tree requires longer times since holding such a big model in memory makes the computer slower. Thus, the total search time increases significantly. Fortunately, a branch and price algorithm is an excellent method to overcome these difficulties. As expected, that is why many recent and outstanding studies use BnP for solving
the p-median problem. Some of such studies are Avella et al. (2007), Garcia et al. (2011), and Elloumi and Plateau (2010). This summarizes how we decided to develop a branch and price algorithm as our solution procedure.

Column Generation and Branch and Price Algorithm

Column generation is a nice approach to deal with linear programming (LP) models with a large number of decision variables. Assume that the LP solver is the simplex algorithm. The main motivation of the method is that, if the basic decision variables at the optimal solution were known, the reduction of the nonbasic variables at the optimal solution from the LP model at the very beginning does not change the optimal solution while providing significant savings in the total number of operations. Here, the main difficulty is that the basic variables at the optimal solution are not known at the beginning of the solution. Therefore, the main logic is based on the fact that all decision variables are not needed in each iteration of the solution algorithm. The search can be started with a subset of the decision variables and, in each iteration of the algorithm, among the remaining variables only the ones yielding improvement in the objective function value can be added to the subset of the decision variables at the simplex table. Since the reduced costs of non basic variables can be computed by using the values of dual variables, promising non basic decision variables can be determined and the method continue to run in this manner until finding the optimal LP solution.

When a mixed integer programming model is solved by a branch and bound algorithm, in each node of the branch and bound (BnB) search tree, a linearly relaxed model is solved. If the MIP model consists of too many decision variables, solving these linear programming models in each node of the search tree may necessitate enormous computational efforts. In order to overcome this matter, a column generation method can be used in each node. The LP model in a node initially consists of the decision variables that its parent node involves. For the root node of the BnB tree, however, the initial subset of the entire decision variable set
must be determined externally. Hence, the whole procedure, which is a combination of BnB and column generation, is called branch and price (BnP) algorithm.

Let D be the set of decision variables and $U B$ be an upper bound on the optimal objective value of our MIP under consideration. Let V_{m} be the LP problem at node m in the search tree and L be the set of V s. Let $Z\left(V_{m}\right)$ be the optimal objective function value of V_{m} and $S\left(V_{m}\right) \subseteq D$ be the set of decision variables in V_{m}. Let $m=0$ for the root node of the search tree. For a minimization type MIP (assuming V_{0} has a nonempty feasible solution space) a framework of the BnP algorithm is given below (see Pochet and Wolsey, 2006, page 104 for further information).

BnP Algorithm

Step 1: Initialization

$L=\mathrm{V}_{0}, U B=\infty$.
Step 2: Termination
If $L=\varnothing$ then STOP:
If $U B=\infty$, then there is no feasible solution for the MIP.
If $U B=-\infty$, then there is unbounded solution for the MIP.
If $-\infty<U B<\infty$, then the solution that $Z\left(V_{m}\right)=U B$ is optimal solution for the MIP.

Step 3: Node selection from the search tree and column generation Select a $V_{m} \in L$ by any selection method and let $L=L \backslash V_{m}$.

Step 3.a: Solve V_{m} and find $Z\left(V_{m}\right)$. Let the solution be X_{m}. $\left\{Z\left(V_{m}\right)=\infty\right.$ if V_{m} has no feasible solution, $Z\left(V_{m}\right)=-\infty$ if V_{m} has unbounded solution\}

Step 3.b: If $-\infty<Z\left(V_{m}\right)<\infty$, check whether there is any promising decision variable in $D \backslash\left(V_{m}\right)$. If the answer is "yes", add these decision variables to $S\left(V_{m}\right)$, adjust V_{m}, and go to Step 3.a.
Step 4: Pruning
If $Z\left(V_{m}\right)=-\infty$, then $U B=-\infty, L=\emptyset$, and go to Step 2. If $Z\left(V_{m}\right) \geq U B$, then go to Step 2.

If $-\infty<Z\left(V_{m}\right)<U B$ and X_{m} satisfies integrality constraints in the MIP, then $U B=Z\left(V_{m}\right), L=L \backslash\left\{V_{i}: Z\left(V_{i}\right) \geq U B\right\}$, and go to Step 2.

Step 5: Branching
By branching generate new nodes from not pruned ones and $L=L \cup$ \{the new generated nodes $\}$. Go to Step 2.

Note that Step 5 is performed after Step 4 when $-\infty<Z\left(V_{m}\right)<U B$ but X_{m} does not satisfy integrality constraints in the MIP.

The skeleton of our solution procedure

The main reason of dramatic increases in the size of DRF is the three indices decision variables, z and s. Thus, we start our BnP algorithm with subsets of these decision variables and add the promising z and s variables, among the remaining variables, one by one into the BnP algorithm. The initial S set is given below.

$$
\begin{aligned}
S\left(V_{0}\right)= & \left\{u_{i t}^{1}, u_{i t}^{2}, v_{i t}^{1}, v_{i t}^{2} \mid i \in N, t=2, \ldots, T\right\} \cup\left\{y_{i t}^{1}, y_{i t}^{2} \mid i \in N, t=1, \ldots, T\right\} \\
& \cup\left\{z_{i t}^{k} \mid i \in N, t=1, \ldots, T, k=2, \ldots, s d_{i t}\right\}
\end{aligned}
$$

Note that $S\left(V_{0}\right)$ contains no s variables and contains z variables for all nodes and periods but only for $k=2, \ldots, s d_{i t}$, where $s d_{i t}$ is any integer for node i and period t between 2 and G_{i} and indicates the starting depth of z variables for node i and period t. Determination of $s d_{i t}$ values is explained later in this section.

In Step 3 of the BnP algorithm, we select node m according to depth first search strategy. The number of the nodes on the path between node m and the root node of the BnB tree shows the depth of node m. Note that each edge on this path means a constraint on a variable, i.e., restriction on the branching variable. So, the deepest node is the most restricted node. We select node m which is the one in the deepest level in the search tree and having the branching variable fixed to its upper bound (or lower bound). We use variable upper bound in our BnP algorithm. In Step 3.b, we determine the promising z and s variables in $D \backslash\left(V_{m}\right)$ and adjust V_{m} as follows.

Let $S\left(V_{m}\right)$ include $z_{i t}^{k}$ variables for $i \in N, t=1, \ldots, T$, and $k=2, \ldots, r_{i t}$, where $s d_{i t} \leq r_{i t}<G_{i}$. If $z_{i t}^{r_{i t}}$ is positive in the optimal solution of V_{m}, then the next z variable, $z_{i t}^{r_{i t}+1}$, is added to $S\left(V_{m}\right)$. So, only checking the positive values of $z_{i t}^{r_{i t}}$ variables at the optimal solution of V_{m} is enough to determine the variables that must be added to V_{m}. This type of column generation fits the formulations like Model 5 and Model 6 (Radius Formulation, see section 4.2.1). This method is a generalization of the method used for the p-median problem in Garcia et al. (2011) and Elloumi and Plateu (2010) to the dynamic p-median problems.

We should remind the reader that adjusting V_{m} implies not only adding a new decision variable to the existing model of the problem but also adding a new constraint to the existing model. Note that when $z_{i t}^{r_{i t}+1}$ is added to the model, also the following constraint, a member of constraint (4.18), is added to the model.

$$
z_{i t}^{r_{i t}+1}+\sum_{\substack{j \in N \\ d_{j i}<D_{i} p_{i t}+1}}\left(y_{j t}^{1}+y_{j t}^{2}\right) \geq 1
$$

On the other hand, we need dual variable values to determine the promising s variables. Let $\beta_{j t}$ be a dual variable of constraint (4.19) for j and t. Note that s variables are only used in constraint (4.19) and the objective function. Let us consider two different nodes i and j and write the corresponding dual variables and constraints belonging to (4.19) and for these nodes for a period t.

$$
\begin{aligned}
& u_{i t}^{1}+y_{i, t-1}^{1}+\sum_{k \in N /\{\{j\} \cup\{i\}} s_{k i t}+s_{j i t}-y_{i t}^{1}-\sum_{k \in N /\{j, j\} \cup\{i\}} s_{i k t}-s_{i j t}-v_{i t}^{1}=0(4.19-i)\left(\beta_{i t}\right) \\
& u_{j t}^{1}+y_{j, t-1}^{1}+\sum_{k \in N /\{j\} \cup\{i\}} s_{k j t}+s_{i j t}-y_{j t}^{1}-\sum_{k \in N /\{j, j \cup\{i\}} s_{j k t}-s_{j i t}-v_{j t}^{1}=0(4.19-j)\left(\beta_{j t}\right)
\end{aligned}
$$

Now, let us write the dual constraint for variable $s_{j i t}$.
$\left(\beta_{i t}-\beta_{j t}\right) \leq K_{j i}$

So, if $\left(\beta_{i t}-\beta_{j t}\right)>K_{j i}$, then the dual constraint for the decision variable $s_{j i t}$ is violated. In this case decision variable $s_{j i t}$ is added to $S\left(V_{m}\right)$.

In Step 5 of the above algorithm, we choose our branching variable from the fractional valued y^{1} and y^{2} variables. We choose the variable whose value is closest to a predetermined target value, which is one of the values $0.7,0.8$, and 0.9 . We calculate the absolute differences between values of fractional valued y^{1} and y^{2} variables and the target value, and choose the variable having the minimum difference. The flow chart of our BnP algorithm and explanations about how it works are given in Appendix B.

From now on, we call our algorithm as the dynamic branch and price algorithm, denoted by DBnP, specifically designed to solve the dynamic p-median problem with mobile facilities.

Initialization for DBnP

Before starting to solve the DRF by DBnP, we need to solve the problem with one of our heuristics to find an upper bound on the objective value of the dynamic p median problem. Recall that, in our heuristics, we solve the p-median like problems for individual periods. We solve each of these problems by our BnP algorithm as well. Since we do not have any particular idea about the promising starting depth values $\left(s d_{i s} s\right)$ and not want to start the algorithm with undesirable z variables, we fix all $s d_{i t}$ parameters to 2 (i.e., $k=2$). Thus we start with only the first z variables for each node and period, which indicates the closest node for each node.

Note that, after solving the problem with our heuristics, we have a solution at our hand for the DRF and it provides some useful information to us for shortening the solution time of DRF. Let X_{h} be the solution found by the heuristic and $Z\left(X_{h}\right)$ be the objective function value of this solution. While solving the DRF, in Step 1 of the

BnP algorithm we naturally use $U B=Z\left(X_{h}\right)$ instead of $U B=\infty$ in order to start with a better upper bound to shorten the solution time. Furthermore, we determine the starting depths for z variables using X_{h} in order not to start with a too small subset of z variables that cause long solution times. Let $z\left(X_{h}\right)_{i t}^{k}$ be the value of $z_{i t}^{k}$ at the solution X_{h}. Here we determine the starting depth for node i and period t by the expression: $s d_{i t}=\arg \min _{k}\left\{z\left(X_{h}\right)_{i t}^{k} \mid z\left(X_{h}\right)_{i t}^{k}=0\right\}$.

4.5 Computational Results

Test problem Instances

Our computational experiments are mainly performed to assess the performances of the dynamic branch and price algorithm DBnP and the heuristics, myopic heuristic MH and progressive heuristics P1 and P2, in solving relatively large practical dynamic p-median problems with mobile facilities. Our computational experiments are based on the test instances taken from the literature to generate dynamic problem test instances. We use two platforms during our computations: (1) a 3.10 GHz PC with 6 GB RAM, (2) a 2.66 GHz PC with 1.93 GB RAM. In all computations CPLEX 12.3 solver program is used as an LP solver and our heuristics and DBnP algorithm are coded with $\mathrm{C}++$ programming language.

We perform our computations on two groups of test problem instances: (1) benchmarking p-median problem instances from the literature, (2) randomly generated dynamic p-median problem instances. The instances in the second group partitioned into two disjoint subsets, A and B, which will be explained later.

The first group of our test problem instances consists of 27 benchmarking p-median problem instances with 900 nodes from the literature. The networks of the pmed38, pmed39, and pmed40 test instances are used to generate the underlying structure of these test instances. In total, $27 p$-median problem instances are defined on these
networks with different p values and they are also tested in Avella et. al (2007) and Garcia et al. (2011).

The second group consists of 160 randomly generated dynamic p-median problem instances. In order to generate dynamic p-median test problem instances we use the network and demand distribution of the following single period test problem instances taken from the location literature:

- SJC1 (100 demand and candidate facility location nodes), SJC2 (200 demand and candidate facility location nodes), SJC3 (300 demand and candidate facility location nodes), and SJC4 (402 demand and candidate facility location nodes) from the capacitated p-median problem literature (http://www.lac.inpe.br/~lorena/instancias.html),
- CAPA (1000 demand nodes, 100 candidate facility location nodes), CAPB (1000 demand nodes, 100 candidate facility location nodes), and CAPC (1000 demand nodes, 100 candidate facility location nodes) from the capacitated warehouse location problem literature (http://people.brunel.ac.uk/~mastijb/jeb/info.html),
- Australian Post (AP) data from the hub location problem literature (original name of the problem is phub1) where the total amount of material sent from a node to other nodes is taken as its demand (200 demand and candidate facility location nodes
(http://people.brunel.ac.uk/~mastijb/jeb/info.html).

These eight single period problem instances are converted to the dynamic problem instances by using the method in Contrares et al. (2011). The obvious reason of using single period test problem instances is the absence of dynamic test problem instances in the literature.

Let N be the node set and d_{i} be the demand of node i in the (static) problem instance. According to Contrares et. al. (2011), first a subset of N is randomly chosen for the first period. Their demands are set to their original demands, $d_{i} \mathrm{~s}$. The demands of remaining nodes in the first period are set to zero. Then, a subset of
remaining nodes is randomly chosen for the second period and their demands are set to their original demands. The demands of previously chosen nodes in the current period are obtained by increasing their demands in the previous period by a randomly generated ratio, which is set between 0 and 0.3 , with a probability of 0.9 , or by decreasing their demands in the previous period by a randomly generated ratio, which is set between 0 and 0.25 , with a probability of 0.1 . The demands of not chosen nodes are set to zero. This setting is repeated for the succeeding periods such that the entire node set, N, is covered at the last periods.

Planning horizon (T) is set to 5 and 10 . For each combination of these levels and above test problems, five dynamic test problem instances are generated based on the number of facilities that are randomly generated from two different discrete uniform distributions, $\mathrm{U}[5,15]$ and $\mathrm{U}[5-30]$. Thus, in total, 160 test problem instances (i.e., $8 * 2 * 2 * 5$) are generated.

The test problem instances in the second group are partitioned into two disjoint subsets: A and B. Set A consists of 60 dynamic p-median problem instances generated from SJC1, SJC2 and SJC3 test problem instances. Set B consists of remaining 100 instances in the second group of test problem instances.

Since we consider the dynamic p-median problem with mobile facilities in this chapter we assume two different problem classes according to facility type combinations. In the first problem class, it is assumed that all facilities are mobile. In the second problem class, the numbers of mobile facilities are randomly determined and the remaining facilities are assumed to be immobile facilities.

Performance measures

In general the main reason to develop heuristic methods is to find "good" solutions in "short" times to the problems that usually require too long times for optimal solutions. So, a heuristic basically can be evaluated according to these two criteria: "goodness of the solutions found" and "solution time". Goodness of a solution is
measured by the objective function. Since direct use of the objective function values of heuristic solutions can be misleading, they are scaled by finding their relative deviations from the lower bound (for minimization type problems) or optimal values. So, the relative gaps between the objective function values of heuristic solutions and lower bounds are used to measure the performances of heuristic methods for goodness criterion.

For the exact solution methods the main performance evaluation criterion is the solution time. But if a time limit is applied on solution time optimal solutions would not be found in that limited time. In such a case some other criteria like relative gaps between the best solutions found and lower bound values (for minimization type problems), number of instances solved optimally in the limited time, etc. may be used to evaluate the performances of the exact solution methods. In this study we use the above criteria to evaluate the performances of our heuristics and DBnP algorithm.

Our computational studies consist of three parts: (i) validation of DBnP , (ii) deciding on parameter setting for the algorithm on a subset of our dynamic test problem instances, and (iii) assessments of our algorithm's performance on a larger set of dynamic test problem instances.

4.5.1 Validation of DBnP

Before dealing with the dynamic problems, we first solve the (single period) p median test problem instances in the first group in order to validate our algorithm. Although these computations are mainly for validation purpose, the solution times also show that our algorithm competes with Avella et al. (2007) and Garcia et al. (2011), which are two benchmarking studies for us. Solution times are given in Table 4.2.

Since there are many factors affecting the computational performances such as running programs, type-model of the RAM components, processor type-model,
version of the used solver programs, etc., it is hard to make certain comparisons. Roughly speaking, our computer, the first one, is 1.7 times faster than the one in Avella et al. (2007) and 1.3 times faster than the one in Garcia et al. (2011) according to the number of operations done in a second. Therefore, in Table 4.2, adjusted results are given. According to overall results, we solved 26 of 27 instances faster than Avella et al. (2007) and 18 of 27 instances faster than Garcia et al. (2011). On the other hand, average solution times are 40 seconds for Avella et al. (2007), 6.13 seconds for Garcia et al. (2007) and 19.2 seconds for the current study. So, on average Garcia et al. (2011) is the best.

Table 4.2 Solution times (sec.) for the p-median problem test instances in the first
group ${ }^{\dagger}$

Instance	Avella et al. $\mathbf{(2 0 0 7)}$	Garcia et al. $\mathbf{(2 0 1 1)}$	DBnP
Pmed38-5	188.24	23.08	81
Pmed38-10	236.47	20.77	136
Pmed38-20	24.12	6.92	8
Pmed38-50	18.82	3.85	1
Pmed38-100	4.71	1.54	0.01
Pmed38-200	4.71	2.31	0.01
Pmed38-300	4.71	2.31	0.01
Pmed38-400	4.12	2.31	0.01
Pmed38-500	4.12	2.31	0.01
Pmed39-5	104.12	21.54	57
Pmed39-10	159.41	15.38	59
Pmed39-20	10.00	2.31	2
Pmed39-50	21.76	4.62	4
Pmed39-100	4.71	3.08	0.01
Pmed39-200	4.71	2.31	0.01
Pmed39-300	4.12	2.31	0.01
Pmed39-400	4.12	2.31	0.01
Pmed39-500	4.12	2.31	0.01
Pmed40-5	72.94	10.77	16
Pmed40-10	94.12	10.77	36
Pmed40-20	42.35	5.38	9
Pmed40-50	38.82	6.15	126
Pmed40-90	5.29	1.54	0.01
Pmed40-200	4.71	2.31	0.01
Pmed40-300	4.71	2.31	0.01
Pmed40-400	5.29	2.31	0.01
Pmed40-500	4.71	2.31	0.01

\dagger Our computer is roughly 1.7 and 1.3 times faster compared to Avella et al. (2007) and Garcia et al. (2011), respectively, according to the number of the operations done per second. Therefore, the solution times for benchmarking studies are adjusted accordingly.

4.5.2 Experiments on the First Problem Class Involving Only Mobile Facilities

In this section all facilities are assumed to be mobile. Computations in this part are performed on a 2.66 GHz PC with 1.93 GB RAM, i.e., the second computer.

A. Testing Performances of Heuristics and Parameter Setting

We use test instances in set A of the second group to evaluate the performances of heuristics and to determine the target value for DBnP procedure. We choose period 1, period 3 and period 5 as the starting period h for myopic heuristic MH for the instances with five periods. We choose period 1, period 4, period 7 and period 10 as the starting period h for the instances with ten periods. For our progressive heuristics P1 and P2, we start with the first and last periods of the reordered and combined periods of the original problem instances.

Average solution times and average relative gaps between the upper bounds (UB) obtained by the heuristics and the lower bounds obtained by the linear programming relaxations (LPR) of the models are given in Table 4.3. The reason of using the LPR values in these experiments is the absence of the optimal solutions yet. In order to measure the performances we solve the LP relaxations in this experiment. Note that each row in Table 4.3 displays average values of 30 test problem instances.

Table 4.3 Average solution times and relative gaps for the heuristics $广 \dagger$

Heuristic	\boldsymbol{T}	Starting Period \boldsymbol{h}	Gap $(\%)$	Time (sec)
MH	5	1	0.665	8.4
MH	5	3	0.426	7.9
MH	5	5	0.381	7
MH	10	1	0.438	15.3
MH	10	4	0.251	15.1
MH	10	7	0.287	14.6
MH	10	10	0.277	14.4
P1	5	1	4.554	10.3
P1	5	T *	9.582	17.2
P1	10	1	5.405	15.3
P1	10	T *	8.310	29
P2	5	1	5.099	8.2
P2	5	T *	9.533	11.8
P2	10	1	5.723	10.9
P2	10	T *	9.503	20

$\dagger T^{*}$ is the number of periods after preprocessing. Gap $=100 *(U B-L P R) / L P R$.

According to the results in Table 4.3, the myopic heuristic MH finds approximately 0.4% (on average 0.38%) worse solutions than the theoretical minimum in a few (on average 11.8) seconds, which is a very promising result. Average gap is 6.96\% and average solution time is 17.5 seconds for the first progressive heuristic P1 and these values are 7.46% and 12.72 seconds for the second progressive heuristic P2, respectively. Note that MH solves T individual p -median like problems while progressive heuristics solve T* individual p-median like problems. For five period instances the average of T^{*} is 4.33 . For ten period instances it is 7.73 . This difference may shorten solution times of the progressive heuristics. For the progressive heuristics, the results for starting from the initial period are better than the results for starting from the last period. According to these results, the solution times of three heuristics cannot be significantly differentiated and the myopic heuristic among them seems better in terms of approaching to the theoretical minimum. Therefore, we decided to use the myopic heuristic in order to obtain an initial feasible solution for the remaining computational experiments. Note that the gap decreases when the last periods are selected as the starting period of the myopic heuristic for the test instances with $T=5$ while the gap values fluctuate for the test instances with $T=10$. Nevertheless, we set the starting period for the heuristic MH as the last period.

Below our aim is to determine the best target value for DBnP and solve the remaining instances with these settings and evaluate the performance of DBnP. We solve the 60 test instances in set A of the second group by DBnP with target values of $0.7,0.8$, and 0.9 , where initial feasible solution is found by the MH starting with the last period. We set 5 hour time limit $(18,000 \mathrm{sec})$ on total computational time for a test instance. All instances are solved at optimality when the target value is 0.7 and 0.8 . Only one out of 60 instances was not solved at optimality with the target value of 0.9 . Average solution time is 138.8 seconds, 147.5 seconds, and 433.8 seconds for the target values of $0.7,0.8$, and 0.9 , respectively. Average number of nodes searched in the DBnP tree is 5.8, 6.7, and 10.8 for the target values of 0.7 , 0.8 , and 0.9 , respectively. According to these results, the target value 0.7 outperforms the others in these experiments.

B. Testing performance of DBnP

In the last part of our computational experiment on the first problem class, we solve test instances in set B of the second group plus the test instances in set A that are not solved in 5 hour time limit in the previous experiments. We set 10 hour limit $(36,000 \mathrm{sec})$ to each run. Average results for the entire set of second group are given in Table 4.4.

145 of 160 instances are solved optimally in 10 hours. The overall average relative gap between the best solution and LPR values is 0.05%. The overall average total solution time is 4890 seconds. The overall average relative gap between the heuristic solution and LPR values is 0.24%. The overall average solution time is 51 seconds for the heuristic. The reason of using LPR values in performance evaluating is the existence of unsolved instances. According to these results myopic heuristic has a good performance. As expected total solution time increases as the problem size (number of the nodes, length of the planning horizon) increases. Small instances (instances having 100, 200 nodes) are solved in some seconds or few minutes. 13 of the unsolved problems belong to instances having 1,000 nodes.

Average relative gap between best solutions and LPR values for these instances is 0.18%. According to these results the performance of the DBnP is very well.

Table 4.4 Summary of average results for the first problem class \neq

Instances	UB	Best	NN	$\begin{gathered} \text { UB } \\ \text { tıme } \\ \text { (sec) } \end{gathered}$	Total time (sec)	$\begin{gathered} \hline \text { GAP1 } \\ \text { (UB- } \\ \text { LPR)* } \\ \text { 100/LPR } \\ \hline \end{gathered}$	$\begin{gathered} \text { GAP2 } \\ (\text { Best-LPR } * * \\ 100 / L P R \end{gathered}$
SJC1-100-5-5-15-1...5	$2.80735 \mathrm{E}+8$	$2.79419 \mathrm{E}+8$	1	0	0	0.471	0
SJC1-100-5-5-30-1...5	$1.60711 \mathrm{E}+8$	$1.60128 \mathrm{E}+8$	1	0	0.2	0.364	0
SJC2-200-5-5-15-1...5	$6.90432 \mathrm{E}+8$	$6.89172 \mathrm{E}+8$	2.8	4.4	13.6	0.183	0.001
SJC2-200-5-5-30-1..5	$5.86568 \mathrm{E}+8$	$5.85333 \mathrm{E}+8$	13.4	3	17.2	0.225	0.014
SJC3-300-5-5-15-1..5	$1.172 \mathrm{E}+9$	$1.17 \mathrm{E}+9$	1.4	25.4	161	0.363	0
SJC3-300-5-5-30-1..5	$7.438 \mathrm{E}+8$	$7.39 \mathrm{E}+8$	4.2	9	37	0.688	0.003
SJC4-402-5-5-15-1...5	$1.72 \mathrm{E}+9$	$1.72 \mathrm{E}+9$	3.8	212.2	1683.8	0.194	0.008
SJC4-402-5-5-30-1...5	$1.27 \mathrm{E}+9$	$1.27 \mathrm{E}+9$	4.2	91.8	326.2	0.293	0.001
CAPA-1000-5-5-15-1...5	$1.33 \mathrm{E}+11$	$1.33 \mathrm{E}+11$	1036.6	48.4	9272	0.162	0.135
CAPA-1000-5-5-30-1... 5	$8.86 \mathrm{E}+10$	$8.85 \mathrm{E}+10$	740.6	20.4	3298.4	0.346	0.204
CAPB-1000-5-5-15-1...5	$1.28 \mathrm{E}+11$	$1.28 \mathrm{E}+11$	30.2	26.6	229.4	0.129	0.079
CAPB-1000-5-5-30-1...5	$1.06 \mathrm{E}+11$	$1.06 \mathrm{E}+11$	17	23	124	0.092	0.069
CAPC-1000-5-5-15-1...5	$1.28 \mathrm{E}+11$	$1.28 \mathrm{E}+11$	196.2	44.4	2243.6	0.199	0.171
CAPC-1000-5-5-30-1...5	$1.05 \mathrm{E}+11$	$1.05 \mathrm{E}+11$	1103	34.4	8743.4	0.259	0.161
AP-200-5-5-15-1... 5	$5.3406 \mathrm{E}+12$	$5.336 \mathrm{E}+12$	1.4	7.6	43	0.094	0.001
AP-200-5-5-30-1..5	$3.068 \mathrm{E}+12$	$3.064 \mathrm{E}+12$	2.6	2	6.6	0.138	0.003
SJC1-100-10-5-15-1...5	$7.41264 \mathrm{E}+8$	$7.3786 \mathrm{E}+8$	2.2	0.8	1.6	0.479	0.018
SJC1-100-10-5-30-1...5	$4.42509 \mathrm{E}+8$	$4.3968 \mathrm{E}+8$	1	0.001	0.4	0.642	0
SJC2-200-10-5-15-1...5	$1.76642 \mathrm{E}+9$	$1.76356 \mathrm{E}+9$	8.6	8.6	76.8	0.159	0.002
SJC2-200-10-5-30-1...5	$1.26271 \mathrm{E}+9$	$1.25724 \mathrm{E}+9$	11.8	4.4	16	0.443	0.008
SJC3-300-10-5-15-1...5	$2.949 \mathrm{E}+9$	$2.95 \mathrm{E}+9$	16.6	48.4	1021.6	0.15	0.007
SJC3-300-10-5-30-1...5	$2.121 \mathrm{E}+9$	$2.11 \mathrm{E}+9$	6.4	25	320	0.304	0.003
SJC4-402-10-5-15-1...5	$4.44 \mathrm{E}+09$	$4.44 \mathrm{E}+09$	25.6	330.6	11271.6	0.074	0.005
SJC4-402-10-5-30-1...5	$3.36 \mathrm{E}+09$	$3.35 \mathrm{E}+09$	174.2	167	15014.4	0.197	0.009
CAPA-1000-10-5-15-1..5	$3.55 \mathrm{E}+11$	$3.55 \mathrm{E}+11$	1016.8	98	14719.2	0.128	0.095
CAPA-1000-10-5-30-1...5	$2.57 \mathrm{E}+11$	$2.57 \mathrm{E}+11$	1796	63.2	17783.8	0.185	0.134
CAPB-1000-10-5-15-1...5	$3.61 \mathrm{E}+11$	$3.61 \mathrm{E}+11$	1066.2	90.2	14698.6	0.133	0.11
CAPB-1000-10-5-30-1..5	$2.54 \mathrm{E}+11$	$2.54 \mathrm{E}+11$	1037	37.4	11060.6	0.155	0.117
CAPC-1000-10-5-15-1..5	$3.65 \mathrm{E}+11$	$3.65 \mathrm{E}+11$	1098.6	110.4	21881.4	0.161	0.14
CAPC-1000-10-5-30-1...5	$2.96 \mathrm{E}+11$	$2.96 \mathrm{E}+11$	1358.8	70	22067.4	0.145	0.094
AP-200-10-5-15-1... 5	$1.3852 \mathrm{E}+13$	$1.385 \mathrm{E}+13$	10.2	16.8	276.4	0.03	0.005
AP-200-10-5-30-1...5	$1.1144 \mathrm{E}+13$	$1.114 \mathrm{E}+13$	3.4	12.4	84	0.054	0.003

\neq Test problem instances are given in the first column. Test problem instances are labeled as NAME-Number of the nodes $(|N|)$-Length of the planning horizon (T)-Lower bound parameter of the discrete uniform distribution that the numbers of medians are generated from-Upper bound parameter of the discrete uniform distribution that the numbers of medians are generated fromInstance number. Instance number 1... 5 shows that average values are given in the corresponding row and obtained from the solutions of instances $1, \ldots, 5$. In the second column upper bound values obtained by the myopic heuristic are given. In the third column best solution values are given, found by DBnP in 36,000 seconds. In the fourth column the numbers of nodes of the BnB tree explored are given. In the next two columns, solution time for myopic heuristic and the total solution time (including the solution time of the heuristic) are given, respectively.

4.5.3 Experiments on the Second Problem Class Involving Mobile and Immobile Facilities

In this section the numbers of mobile facilities are randomly determined and the remaining facilities are assumed to be immobile facilities. Computations are performed on our second computer.

A. Testing Performances of Heuristics and Parameter Setting

We use test instances in set A of the second group to evaluate the performances of heuristics and to determine the target value for DBnP procedure. We choose period 1, period 3 and period 5 as the starting period h for myopic heuristic MH for the instances with five periods. We choose period 1, period 4, period 7 and period 10 as the starting period h for the instances with ten periods. For our progressive heuristics P1 and P2, we start with the first and last periods of the reordered and combined periods of the original problem instances.

The solution time was very high (approximately 75 minutes) for only one instance while almost all the remaining solution times were under 100 seconds for the myopic heuristic. For the same instance when the starting period is different the time is about 3 seconds. Because we use depth first search if fractional solution cause to select a wrong variable as branching variable it may completely change the search direction and would cause such a situation. Since it is an extreme situation we omitted this instance when we are deciding. The average solution times and the average relative gaps between the upper bounds (UB) obtained by the heuristics and the lower bounds obtained by the linear relaxations (LPR) of the models are given in Table 4.5. The reason of using the LPR values in these experiments is the absence of the optimal solutions yet. In order to measure the performances we solve the LP relaxations in this experiment. Note that each row of the Table 4.5 displays average values of 30 test problem instances.

Table 4.5 Average solution times and relative gaps for the heuristics $\dagger 广$

Heuristic	T	Starting Period \boldsymbol{h}	Gap $(\boldsymbol{\%})$	Time $(\mathbf{s e c})$
MH	5	1	1.807	16.4
MH	5	3	1.954	15.6
MH §	5	5	2.574	150.7
MH $^{\text {M }}$	10	1	1.93	46.2
MH	10	4	2.22	42.8
MH	10	7	1.981	27.4
MH	10	10	1.991	38.5
P1	5	1	5.017	10.4
P1	5	$\mathrm{~T}^{*}$	10.067	17.3
P1	10	1	5.709	15.4
P1	10	$\mathrm{~T}^{*}$	8.623	29.2
P2	5	1	5.564	8.3
P2	5	$\mathrm{~T}^{*}$	10.018	11.8
P2	10	1	6.029	11
P2	10	$\mathrm{~T}^{*}$	9.819	20

$\dagger \dagger T^{*}$ is the number of periods after preprocessing. Gap $=100 *(U B-L P R) / L P R$.
${ }^{\S}$ There is an outlier in this row. When the outlier is extracted Gap=2.41 and Time $=15.5 \mathrm{sec}$.

According to the results in Table 4.5, the myopic heuristic MH finds approximately 2% (on average 1.9%) worse solutions than the theoretical minimum in a half minute (on average 28.9 seconds). Average gap is 7.35% and average solution time is 18 seconds for the first progressive heuristic and these values are 7.85% and 12.78 seconds for the second heuristic, respectively. Note that MH solves T individual p-median like problems while progressive heuristics solve T^{*} individual p -median like problems. For five period instances the average of T^{*} is 4.33 . For ten period instances it is 7.73 . This difference may shorten solution times of the progressive heuristics. For the progressive heuristics, the results for starting from the initial period are better than the results for starting from the last period. According to these results, myopic heuristic is better in terms of the gap between the upper bound and the lower bound but it has longer solution times. Since the solution times of the heuristics are very small portion of the total time for the DBnP we thought that the difference between the gap values is more important than the solution times. Thus, we decided to use the myopic heuristic in order to obtain an initial feasible solution for DBnP . Note that the gap decreases when the last periods are selected as the starting period for the test instances with $T=5$ while the gap values fluctuate for the test instances with $T=10$. Nevertheless, we set the starting period for myopic heuristic MH as the last period.

We solve the same 60 instances by DBnP with target values of $0.7,0.8$, and 0.9 , where initial feasible solution is found by the MH starting with the last period. We set 5 hour time limit $(18,000 \mathrm{sec})$ on total computational time for a test instance. 54 , 53 and 53 instances are solved at optimality when the target value is $0.7,0.8$, and 0.9 , respectively. Average solution time is 2329 seconds, 2672 seconds and 2712 seconds for the target values of $0.7,0.8$, and 0.9 , respectively. Average number of the nodes searched in the DBnP tree is $43.5,115.1$, and 152.3 for the target values of $0.7,0.8$ and 0.9 , respectively. According to these results, the target value 0.7 outperforms the others in these experiments.

B. Testing performance of DBnP

In the last part of our computational experiment on the second problem class, we solve test instances in set B of the second group plus the instances in set A that are not solved in 5 hour time limit in the previous experiments. We set 10 hour limit $(36,000 \mathrm{sec})$ to each run. Average results for the entire set of second group are given in Table 4.6.

107 of 160 instances are solved optimally in 10 hours. The overall average relative gap between the best solution and LPR values is 0.1%. The overall average total solution time is 14,196 seconds. The overall average relative gap between the heuristic solution and LPR values is 0.19%. The overall average total solution time is 123 seconds for the heuristic. The reason of using LPR values in performance evaluating is the existence of unsolved instances. According to these results myopic heuristic has a good performance. As expected total solution time increases as the problem size (number of the nodes, length of the planning horizon) increases. Small instances (instances having 100, 200 nodes) are solved in some seconds or few minutes. 44 of the unsolved problems belong to instances having 1,000 nodes. Average relative gap between best solutions and LPR values for these instances is 0.31%. According to these results the performance of the DBnP is very well.

Table 4.6 Summary of average results for the second type problem instances \neq

Instances	UB	Best	NN	$\begin{array}{\|c\|} \hline \text { UB } \\ \text { time } \\ (\text { sec }) \end{array}$	Total time (sec)	$\begin{gathered} \text { GAP1 } \\ \text { (UB-LPR)* } \\ \text { 100/LPR } \end{gathered}$	$\begin{gathered} \text { GAP2 } \\ \text { (Best-LPR)* } \\ \text { 100/LPR } \end{gathered}$
SJC1-100-5-5-15-1...5	$2.81 \mathrm{E}+08$	$2.78 \mathrm{E}+08$	2.6	0	0.4	1.26	0.001
SJC1-100-5-5-30-1...5	$1.68 \mathrm{E}+08$	$1.59 \mathrm{E}+08$	11.8	0	0.2	6.085	0.005
SJC2-200-5-5-15-1...5	$6.94 \mathrm{E}+08$	$6.86 \mathrm{E}+08$	6	8	50.6	1.216	0.023
SJC2-200-5-5-30-1...5	$6.01 \mathrm{E}+08$	$5.86 \mathrm{E}+08$	80.2	821	916.2	2.462	0.012
SJC3-300-5-5-15-1...5	$1.19 \mathrm{E}+09$	$1.16 \mathrm{E}+09$	12.6	56	662.6	1.884	0.008
SJC3-300-5-5-30-1... 5	$7.39 \mathrm{E}+08$	$7.33 \mathrm{E}+08$	15	19.2	100.2	0.888	0.01
SJC4-402-5-5-15-1...5	$1.73 \mathrm{E}+09$	$1.72 \mathrm{E}+09$	77.4	152.8	6545	0.58	0.017
SJC4-402-5-5-30-1...5	$1.31 \mathrm{E}+09$	$1.26 \mathrm{E}+09$	181.2	96	7477.4	3.307	0.033
CAPA-1000-5-5-15-1...5	$1.34 \mathrm{E}+11$	$1.33 \mathrm{E}+11$	1292.2	124.8	17167.8	1.074	0.212
CAPA-1000-5-5-30-1...5	$9.24 \mathrm{E}+10$	$8.87 \mathrm{E}+10$	11577.6	412.8	36025.4	4.678	0.463
CAPB-1000-5-5-15-1... 5	$1.3 \mathrm{E}+11$	$1.28 \mathrm{E}+11$	1446.4	30	13787.4	1.283	0.202
CAPB-1000-5-5-30-1...5	$1.07 \mathrm{E}+11$	$1.06 \mathrm{E}+11$	171.4	59.6	1950.4	0.836	0.062
CAPC-1000-5-5-15-1...	$1.3 \mathrm{E}+11$	$1.28 \mathrm{E}+11$	1397.6	31.2	29230.6	1.768	0.523
CAPC-1000-5-5-30-1...5	$1.07 \mathrm{E}+11$	$1.05 \mathrm{E}+11$	7593.4	49.6	36027	2.349	0.872
AP-200-5-5-15-1... 5	$5.36 \mathrm{E}+12$	$5.31 \mathrm{E}+12$	105	9	1529.2	0.958	0.007
AP-200-5-5-30-1... 5	$3.13 \mathrm{E}+12$	$3.03 \mathrm{E}+12$	1	2.4	11.4	3.21	0
SJC1-100-10-5-15-1... 5	$7.37 \mathrm{E}+08$	$7.31 \mathrm{E}+08$	2.6	0.6	2.4	0.799	0.006
SJC1-100-10-5-30-1... 5	$4.42 \mathrm{E}+08$	$4.36 \mathrm{E}+08$	1	0	0.6	1.484	0
SJC2-200-10-5-15-1...5	$1.78 \mathrm{E}+09$	$1.75 \mathrm{E}+09$	26.6	12.8	251.2	1.717	0.009
SJC2-200-10-5-30-1...5	$1.3 \mathrm{E}+09$	$1.25 \mathrm{E}+09$	3.4	7.4	21.6	3.598	0
SJC3-300-10-5-15-1...5	$2.99 \mathrm{E}+09$	$2.94 \mathrm{E}+09$	82.4	146.4	22207	1.788	0.023
SJC3-300-10-5-30-1...5	$2.17 \mathrm{E}+09$	$2.11 \mathrm{E}+09$	359.4	49.2	20361.2	2.831	0.02
SJC4-402-10-5-15-1... 5	$4.49 \mathrm{E}+09$	$4.43 \mathrm{E}+09$	11.6	354.8	32331.2	1.251	0.01
SJC4-402-10-5-30-1...5	$3.4 \mathrm{E}+09$	$3.35 \mathrm{E}+09$	133.8	194.2	24777.2	1.767	0.046
CAPA-1000-10-5-15-1...5	$3.59 \mathrm{E}+11$	$3.56 \mathrm{E}+11$	1127.2	90.6	28942	1.308	0.368
CAPA-1000-10-5-30-1...5	$2.61 \mathrm{E}+11$	$2.57 \mathrm{E}+11$	4048.2	217.4	33351.6	1.688	0.183
CAPB-1000-10-5-15-1...5	$3.69 \mathrm{E}+11$	$3.62 \mathrm{E}+11$	1469	719.8	36122.4	2.124	0.213
CAPB-1000-10-5-30-1...5	$2.6 \mathrm{E}+11$	$2.54 \mathrm{E}+11$	6904.6	60.8	36010	2.428	0.197
CAPC-1000-10-5-15-1...5	$3.7 \mathrm{E}+11$	$3.65 \mathrm{E}+11$	718.8	105.4	30461.4	1.589	0.224
CAPC-1000-10-5-30-1...5	$2.97 \mathrm{E}+11$	$2.96 \mathrm{E}+11$	2438.8	62.8	36035	0.764	0.176
AP-200-10-5-15-1...5	$1.39 \mathrm{E}+13$	$1.38 \mathrm{E}+13$	65	34.2	1825.4	0.563	0.002
AP-200-10-5-30-1...5	$1.13 \mathrm{E}+13$	$1.11 \mathrm{E}+13$	2.6	18.6	91.2	1.325	0.001

\neq Please see Table 4.4 for necessary explanations for the table format.

Comparing the above results with the results of Table 4.4 one can say that the problem gets harder when it involves immobile facilities.

The detailed results related with computations in this chapter are given in Appendix C.

CHAPTER 5

THE DYNAMIC P-MEDIAN PROBLEM

In this chapter the dynamic p-median problem is studied. A mixed integer mathematical programming (MIP) formulation is presented and an iterative solution algorithm which combines column generation and solving MIP models is proposed for the problem. The heuristics and DBnP presented in the previous chapter are also applicable for solving the dynamic p-median problem in addition to the iterative algorithm. We solve several test problem instances in order to evaluate the performances of our proposed solution procedures. The computational results are discussed.

5.1 Introduction

In this chapter dynamic version of the p-median problem is studied. The p median problem is to find the locations of p uncapacitated facilities on a graph where nodes represent the demand sites and candidate facility location sites such that the total allocation cost of demand nodes to open facilities is minimized. Demand amounts change over a planning horizon as a result of many dynamic factors in time. For a predictable planning horizon these changes can be responded by opening new facilities or abolishing some of the existing ones. So, the dynamic p-median problem is to determine the locations of predetermined numbers of facilities in each period such that the total allocation cost over the planning horizon is minimized and only opening new facilities or abolishing existing ones is allowed in a period. Note that if the number of the facilities at a period is same with the one at the successive period then these two periods can be aggregated and represented as a unique period. If the numbers of the facilities at all periods are equal to each other then the
problem reduces to the classical p-median problem. In Chapter 4, the classical p-median problem is explained in detail, its related literature is reviewed, and basic modeling approaches are presented. Also, the dynamic p-median problem with mobile facilities is studied in Chapter 4. Recall that a mathematical model, three heuristics and a BnP algorithm are developed to solve the problem. That problem includes the dynamic p-median problem defined above as a special case. All these available methods can also be used for solving the dynamic p-median problem. In this chapter the dynamic p-median problem is studied in detail. An iterative solution algorithm, called iterative MIP based column generation algorithm (IMCA), which is not applicable to the dynamic p-median problem with mobile facilities, is developed for the dynamic p-median problem. The methods presented in Chapter 4 and IMCA are used to solve the randomly generated test problem instances. The experimental results are given.

To our best knowledge, there are two studies considering dynamic p-median problem in the literature, one of which is a continuous location problem. Galvao and Santibanez-Gonzalez (1992) study the problem in which the number of facilities to be open changes according to a predetermined setting over the planning horizon. They consider non-decreasing array of the number of the facilities and propose a Lagrangian heuristic to minimize the sum of allocation and facility installation costs. Drezner (1995) considers p facilities to be located one by one on a plane over a p-period planning horizon, called "the progressive p-median problem". A heuristic method is presented to minimize the allocation costs. The details of these studies are given in section 4.2.2. In the current study, no limitation is applied on the number of the facilities, therefore it is a generalization of these two problems.

In the following section a mathematical formulation of the dynamic p-median problem is given. Then IMCA is presented. In the last section, computational results are given and discussed.

5.2 Mathematical Formulation of the Dynamic p-Median Problem

As it is mentioned in the previous section the mathematical model DRF presented in Chapter 4 covers the model of the dynamic p-median problem. Reducing mobile facility related decision variables and constraints from DRF yields a mathematical formulation for the dynamic p-median problem. For more detail, readers are referred to Chapter 4.

We assume an underlying graph $G=(N, E)$ where N is the set of nodes and E is the set of edges to represent demand and facility sites and the connections between these sites, and T periods. Let $w_{i t}$ be demand amount of node i at period $t, d_{i j}$ the distance between nodes i and j, and c the unit service cost for satisfying unit demand per unit distance. Let p_{t}^{2} be the number of median facilities in period t.

Let G_{i} be the number of distinct $d_{i j}$ values between node i and all other nodes j 's $(j \in N)$. It follows that $G_{i} \leq|N|$. Let $0=D_{i}^{1}<D_{i}^{2}<\ldots<D_{i}^{G_{i}}$ be the sorted distance values for customer i.

Decision variables:

$z_{i t}^{k}$ is equal to 1 if there is no open facility within the distance D_{i}^{k} from i at period t, and 0 otherwise.
$y_{i t}^{2}$ is equal to 1 if there is a facility at i in $t, 0$ otherwise.
$u_{i t}^{2}$ is equal to 1 if a new facility is opened at i in $t, 0$ otherwise.
$v_{i t}^{2}$ is equal to 1 if the existing facility is abolished at i in $t, 0$ otherwise.

DRF-IM
$\min \sum_{i \in N} \sum_{k=2}^{G_{i}} \sum_{t=1}^{T} c^{*} w_{i t}\left(D_{i}^{k}-D_{i}^{k-1}\right) z_{i t}^{k}$
s.t.
$\sum_{j \in N} y_{j t}^{2}=p_{t}^{2} \quad t=1, \ldots, T$
$z_{i t}^{k}+\sum_{\substack{j \in N \\ d_{j i}<D_{i}^{k}}} y_{j t}^{2} \geq 1 \quad \forall i \in N, k=2, \ldots, G_{i}, t=1, \ldots, T$
$u_{j t}^{2}+y_{j, t-1}^{2}=y_{j t}^{2}+v_{j t}^{2} \quad \forall j \in N, t=2, \ldots, T$
$\sum_{i \in N} v_{i t}^{2}=\max \left\{0, p_{t-1}^{2}-p_{t}^{2}\right\} \quad t=2, \ldots, T$
$\sum_{i \in N} u_{i t}^{2}=\max \left\{0, p_{t}^{2}-p_{t-1}^{2}\right\} \quad t=2, \ldots, T$
$u_{j t}^{2}, v_{j t}^{2} \geq 0 \quad \forall j \in N, t=2, \ldots, T$
$z_{i t}^{k} \geq 0 \quad \forall i \in N, t=1, \ldots, T, k=2, \ldots, G_{i}$
$y_{j t}^{2} \in\{0,1\} \quad \forall j \in N, t=1, \ldots, T$

In the above model the objective is to minimize the sum of service costs. Constraint (4.17) guarantees that there are open p_{t}^{2} facilities in period t. Constraint (4.18) ensures that for any customer i, either there is at least one open facility within the distance D_{i}^{k} or $z_{i t}^{k}$ is equal to 1 at period t. This constraint manages the allocations of demand nodes to open facilities. Constraint (4.20) balances the number of facilities at a location in a period. Constraints (4.23) and (4.24) prevent to abolish more facilities than it should be and open new facilities at some other locations to meet the target median.

5.3 An Iterative MIP based Column Generation Algorithm for the Dynamic p-

Median Problem

In today's technology there are commercial MIP solver programs such as CPLEX or open source MIP solvers that consists of many heuristics, cutting planes and separation algorithms, branching strategies, branching node selection alternatives, advanced programming (coding) structures, and intelligent ways of memory usage
to improve bounds and shorten solution times. These solvers are running very fast and they can be used directly if there is no user defined special cutting planes, heuristics, etc.. The following proposition and observation are developed to benefit from the mentioned advantages of the MIP solver programs in our solution process. It is called an iterative MIP based column generation algorithm (IMCA).

Let Z be the set of z variables: $Z=\left\{z_{i t}^{k} \mid i \in N, t=1, \ldots, T, k=2, \ldots, G_{i}\right\}$. Let $r_{i t}$ be a positive integer parameter for $i \in N$ and $t=1, \ldots, T$ such that $r_{i t} \leq G_{i}$ and $R \subseteq Z$ where $R=\left\{z_{i t}^{k} \mid i \in N, t=1, \ldots, T, k=2, \ldots, r_{i t}\right\}$. DRF-IM ${ }_{R}$ denotes the MIP model obtained by removing all $z \in Z \backslash R$ from DRF-IM. Let $\left(y^{2 R}, z^{R *}\right)$ be the optimal solution of DRFIM_{R} and $T C^{R *}$ be the objective function value of $\left(y^{2 R *}, z^{R}\right)$. Notice that $z_{i t}^{r_{i t}^{R^{*}}}=1$ if there is no open facility within the distance $D_{i}^{r_{i}}$ for node i and period t at the optimal solution of DRF-IM ${ }_{R}$. On the other hand, at a feasible solution of $\mathrm{DRF}^{2} \mathrm{IM}_{Z}$, which is equivalent to DRF-IM, $z_{i t}^{G_{i}}=0$ for all $i \in N$ and $t=1, \ldots, T$ since distance $D_{i}^{G_{i}}$ from node i covers N and constraint (4.17) guarantees the existence of an open facility within the distance G_{i} from node i at all periods.
$o_{i t}=\underset{k}{\arg \min }\left\{z_{i t}^{k Z^{*}}=0\right\} \quad$ and $\quad O=\left\{z_{i t}^{k} \mid i \in N, t=1, \ldots, T, k=2, \ldots, o_{i t}\right\} . \quad$ So, $T C^{Z^{*}}=T C^{O^{*}}=\sum_{t=1}^{T} \sum_{i \in N}^{o_{i t}-1} \sum_{k=2}^{*} c^{*} w_{i t}\left(D_{i}^{k}-D_{i}^{k-1}\right)$.

Proposition 1: Consider a set R. If $R \supseteq O$ then $z_{i t}^{r_{i} R^{*}}=0$ for all $i \in N$ and $t=1, \ldots, T$ otherwise there is at least one node i and period t such that $z_{i t}^{\gamma_{i t} R^{*}}=1$.

Proof: Let's first consider the "if" part. There is at least one open facility within the distance $D_{i}^{o_{i i}}$ for all $i \in N$ and $t=1, \ldots, T$ because $z_{i t}^{o_{i t} O^{*}}=z_{i t}^{o_{i t} Z^{*}}=0$ at the optimal solution of DRF-IM ${ }_{O}$ and DRF-IM I_{Z}. So, $z_{i t}^{k Z^{*}}=0$ for all $i \in N, t=1, \ldots, T$ and $k=\left(o_{i t}+1\right), \ldots, G_{i}$. Since they are equal to zero at the optimal solution, removing all $z \in Z \backslash R$ from DRF-IM, which yields $\operatorname{DRF}-\mathrm{IM}_{R}$, does not change the optimal
solution. Because $z_{i t}^{o_{i t} O^{*}}=0$ and $r_{i t} \geq o_{i t}, z_{i t}^{r_{i t} R^{*}}=0$ for all $i \in N$ and $t=1, \ldots, T$, and it completes the proof of "if" part.

Now, let's consider the "otherwise" part. Let's consider two feasible solutions of DRF-IM R $^{\prime}\left(y^{2 R v}, z^{R v}\right)$ and $\left(y^{2 R *}, z^{R \bullet}\right)$ such that $y^{2 R v}=y^{2 Z_{*}}$ and $z_{i t}^{r_{i t} R \bullet}=0$ for all $i \in N$ and $t=1, \ldots, T$. Then, $T C^{R \boldsymbol{v}}=\sum_{t=1}^{T} \sum_{i \in N}^{i} \sum_{r_{i} \geq o_{i t}}^{s_{i t}-1} c^{*} w_{i t}\left(D_{i}^{k}-D_{i}^{k-1}\right)+\sum_{\substack{t=1}}^{T} \sum_{i \in N} \sum_{\substack{i t \\ r_{i}<o_{i t}}}^{r_{i t}} c^{r_{i t}} w_{i t}\left(D_{i}^{k}-D_{i}^{k-1}\right) \leq T C^{O_{*}}=T C^{Z_{*}}$.

Let's consider a feasible solution for DRF-IM: $\left(y^{2 Z *}, z^{Z \bullet}\right)$ such that $y^{2 Z *}=y^{2 R *}$ for all $i \in N$ and $t=1, \ldots, T ; z_{i t}^{k}=z_{i t}^{k R *}$ for all $i \in N, t=1, \ldots, T$ and $k=2, \ldots, r_{i t}$; and $z_{i t}^{k}=0$ for all $i \in N, t=1, \ldots, T$ and $k=\left(r_{i t}+1\right), \ldots, G_{i}$. Then, $T C^{R \bullet}=T C^{Z}$. There is at least one $i \in N$ and $t, 1 \leq \mathrm{t} \leq T$ such that $r_{i t}<o_{i t},\left(y^{2 R *}, z^{R *}\right) \neq\left(y^{2 Z_{*}}, z^{Z_{*}}\right)$ and $T C^{R *}>T C^{Z_{*}}=T C^{O^{*}} \geq T C^{R}$. So, any solution of DRF-IM ${ }_{R}$ in which all last z variables are equal to zero cannot be optimal.

Observation 1: According to Proposition 1, for a given set R, if $z_{i t}^{r_{i t} R^{*}}=0$ for all $i \in N$
 $t=1, \ldots, T$ and $k=2, \ldots, r_{i t} ; z_{i t}^{k} Z_{*}=0$ for all $i \in N, t=1, \ldots, T$ and $k=\left(r_{i t}+1\right), \ldots, G_{i} ;$ and $T C^{Z^{*}}=T C^{R}$.

Observation 1 yields the following solution algorithm for DRF-IM.

Iterative MIP Based Column Generation Algorithm (IMCA)

Step 1: Choose a positive integer $r_{i t}, r_{i t} \leq G_{i}$, for all $i \in N$ and $t=1, \ldots, T$.
Step 2: Let $R=\left\{z_{i t}^{k} \mid i \in N, t=1, \ldots, T, k=2, \ldots, r_{i t}\right\}$ and DRF-IM $_{R}$ be the MIP model obtained by removing all $z \in Z \backslash R$ from DRF-IM. Solve DRF-IM ${ }_{R}$. Let $\left(y^{2 R_{*}}, z^{R_{*}}\right)$ be
the optimal solution of DRF-IM ${ }_{R}$ and $T C^{R *}$ be the objective function value of $\left(y^{2 R *}, z^{R *}\right)$.

Step 3: For all $z_{i t}^{r_{i} R^{*}}=1$, increase $r_{i t}$ sy 1 and go to Step 2.
Step 4: STOP. The optimal solution of DRF-IM, $\left(y^{2 Z_{*}}, z^{Z_{*}}\right)$, and its objective function value $T C^{Z_{*}}$ is: $y^{2 Z_{*}}=y^{2 R *}$ for all $i \in N$ and $t=1, \ldots, T ; z_{i t}^{k} Z_{*}=z_{i t}^{k R *}$ for all $i \in N, t=1, \ldots, T$, and $k=2, \ldots, r_{i t} ; z_{i t}^{k} Z_{*}=0$ for all $i \in N, t=1, \ldots, T$, and $k=\left(r_{i t}+1\right), \ldots, G_{i} ;$ and $T C^{Z_{*}}=T C^{R} *$.

Note that in each iteration of IMCA a MIP model (DRF-IM ${ }_{R}$) is solved first and then column generation is applied by using the integer optimal solution. The MIP model is adjusted using the generated columns for the next iteration.

Choosing very small r values in step 1 of IMCA may cause too many iterations and long solution times. Since in each iteration of IMCA a MIP model is solved, such an act may cause significant increases in solution times. In order to shorten the solution times and benefit from the advantages of the commercial MIP solvers, initial r values will be very important on the performance of IMCA. As mentioned in Chapter 4 for the location problems with uncapacitated facilities, generally linear relaxations of the MIP models consisting of Balinski type constraints give good lower bounds and the relaxed solutions are close to the integer optimal solutions.

Solution of the LP relaxation of the Model 5 and Model 6 in section 4.2.1 is same as the solution of the LP relaxation of Model 1 in that section. (Elloumi 2010; Garcia et al. 2011) When $T=1$, the resultant dynamic p-median problem is the p median problem and DRF-IM reduces to Model 6. Although DRF-IM does not involve Balinski constraints, its LP relaxation gives the same solution with the model consisting of Balinski constraints. Given that the LP relaxation of DRF-IM generally gives good lower bounds and the solution of the LP relaxation of DRFIM is close to the integer optimal solution of DRF-IM. We determine initial r values in step 1 of IMCA by using the solution of LP relaxation of DRF-IM.

Let $z^{L P}$ be the solution of LP relaxation of DRF-IM. For node i and period t the initial $r_{i t}$ value in step 1 of IMCA is determined by $r_{i t}=\underset{k}{\arg \min }\left\{z_{i t}^{k L P}>0\right\}$.

In order to solve the LP relaxation of DRF-IM the BnP procedure presented in Chapter 4 is used only for the root node of the search tree.

5.4 Computational Results

We perform our computations on the test problem instances used in Chapter 4. These test problem instances are considered in two groups: (1) benchmarking p median problem instances from the literature, and (2) randomly generated dynamic p-median problem instances. The instances in the second group are partitioned into two disjoint subsets, A and B. The first group consists of 27 instances with 900 nodes. The set A of the second group consists of 60 instances with 100, 200, and 300 nodes and 5 and 10 periods. The set B of the second group consists of 100 instances with 200, 402, and 1,000 nodes and 5 and 10 periods (for details see section 4.5).

We use two platforms during our computations: (1) a 3.10 GHz PC with 6 GB RAM, (2) a 2.66 GHz PC with 1.93 GB RAM. In all computations CPLEX 12.3 is used as an LP and MIP solver. Our heuristics and DBnP algorithm are coded with $\mathrm{C}++$ programming language.

The solution times, the relative deviations from the lower bounds and the numbers of optimally solved instances in a limited time are used as our criteria to evaluate the performances of proposed methods.

Our computational study consists of two parts for the methods presented in Chapter 4: (1) deciding on parameter setting for the algorithm on a subset of our dynamic test problem instances, and (2) assessments of performances of our algorithms on a larger set of dynamic test problem instances. Similarly, our computational study
consists of two parts for IMCA: (1) validation, and (2) assessment of performance of IMCA on a set of dynamic test problem instances.

Below, first we perform our computations by the previously presented heuristics and DBnP , and then we apply IMCA.

5.4.1 Performances of the Heuristics and DBnP in Chapter 4

Computations are performed on our first computer.

A. Testing Performances of Heuristics and Parameter Setting

We use test instances in the set A of second group to evaluate performances of heuristics and to determine the target value for DBnP procedure. We choose period 1 , period 3, and period 5 as the starting period h for myopic heuristic MH for the instances with five periods. We choose period 1 , period 4 , period 7 , and period 10 as the starting period h for the instances with ten periods. For our progressive heuristics P1 and P2, we start with the first and last periods of the reordered and combined periods of the original problem instances.

Average solution times and average relative gaps between the upper bounds (UB) obtained by the heuristics and the lower bounds obtained by the linear relaxations (LPR) of the models are given in Table 5.1. Note that each row of Table 5.1 displays average values of 30 test problem instances.

Table 5.1 Average solution times and relative gaps for the heuristics $广 \dagger$

Heuristic	T	Starting Period \boldsymbol{h}	Gap $(\%)$	Time $(\mathbf{s e c})$
MH	5	1	4.873	4.9
MH	5	3	2.572	4.9
MH	5	5	1.523	4.9
MH	10	1	3.582	18.5
MH	10	4	1.919	21
MH	10	7	1.388	18.9
MH	10	10	1.803	19
P1	5	1	3.479	10.4
P1	5	$\mathrm{~T}^{*}$	8.456	17.1
P1	10	1	4.454	15.3
P1	10	$\mathrm{~T}^{*}$	7.333	29.2
P2	5	1	4.019	8.3
P2	5	$\mathrm{~T}^{*}$	8.408	11.9
P2	10	1	4.77	11
P2	10	$\mathrm{~T}^{*}$	8.515	19.9

$\dagger T^{*}$ is the number of periods after preprocessing. Gap $=100^{*}(U B-L P R) / L P R$.

According to the results in Table 5.1, on average myopic heuristic (MH) finds 2.5\% worse solutions than the theoretical minimums in 13 seconds. Average gap is 5.9\% and average solution time is 18 seconds for the first progressive heuristic (P1) and these values are 6.4% and 12.7 seconds for the second progressive heuristic (P2), respectively. Note that MH solves T individual p-median like problems while progressive heuristics solve T^{*} individual p-median like problems. For five period instances, the average of T^{*} is 4.33 . For ten period instances, it is 7.73 . This difference may shorten solution times of progressive heuristics. Progressive heuristics give better results when starting from the initial periods, but they are still worse than the myopic heuristic. According to these results we decided to use myopic heuristic in order to obtain an initial feasible solution for the remaining computational experiments. Note that the gap decreases when the last periods are selected as the starting period of the myopic heuristic for the test instances with $T=5$ while the gap values fluctuate for the test instances with $T=10$. Nevertheless, we set the starting period for MH as the last periods.

Below our aim is to determine the best target value for DBnP , solve the remaining instances with these settings, and evaluate the performance of DBnP. We solve the same 60 test instances by DBnP with target values of $0.7,0.8$, and 0.9 , where initial feasible solution is found by MH starting with the last period. We set 5 hour time
limit $(18,000 \mathrm{sec})$ on the total computational time for a test instance. 56 out of 60 instances are solved at optimality for each of the target values. Average solution times are 1599.3 seconds, 2143.9 seconds, and 1617.5 seconds for the target values of $0.7,0.8$, and 0.9 , respectively. Average numbers of nodes searched in the DBnP tree are $53.38,63.7$, and 75.08 for the target values of $0.7,0.8$, and 0.9 , respectively. According to these results the target value 0.7 outperforms the others.

B. Testing performance of DBnP

In the second part of our computational experiment on the dynamic p-median problem instances, we solve instances in the set B of second group plus the instances in set A that are not solved in 5 hour time limit in the previous experiments. We set 10 hour limit for each run. Average results are given in Table 5.2.

120 out of 160 instances are solved optimally in 10 hours. The overall average relative gap between the best solution and LPR values is 0.29%. The overall average total solution time is 11,165 seconds. The overall average relative gap between the heuristic solution and LPR values is 1.75%. The overall average total solution time is 30 seconds for the heuristic. According to these results myopic heuristic has a good performance. Expected total solution time increases as the problem size (number of the nodes, length of the planning horizon) increases. Small instances (instances having 100 and 200 nodes) are solved in some seconds or few minutes. 60 of the unsolved problems belong to instances having 1,000 nodes. According to these results the performance of the DBnP is very well.

Table 5.2 Summary of average results for the instances in the second group and DBnP $/$

Instances	UB	Best	NN	$\begin{array}{\|c\|} \hline \text { UB } \\ \text { tıme } \\ \text { (sec) } \\ \hline \end{array}$	Total time (sec)	$\begin{gathered} \text { GAP1 } \\ \text { (UB-LPR)* } \\ \text { 100/LPR } \end{gathered}$	$\begin{gathered} \text { GAP2 } \\ \text { (Best-LPR)* } \\ \text { 100/LPR } \end{gathered}$
SJC1-100-5-5-15-1...5	$2.85 \mathrm{E}+08$	$2.81 \mathrm{E}+08$	1.8	0.01	0.2	1.311	0.002
SJC1-100-5-5-30-1...5	$1.62 \mathrm{E}+08$	$1.62 \mathrm{E}+08$	1	0.01	0.02	0.589	0
SJC2-200-5-5-15-1...5	$7.06 \mathrm{E}+08$	$6.99 \mathrm{E}+08$	190.6	3.6	263.8	1.043	0.06
SJC2-200-5-5-30-1...5	$5.99 \mathrm{E}+08$	$5.92 \mathrm{E}+08$	7.4	2.6	6	1.252	0.004
SJC3-300-5-5-15-1...5	$1.2 \mathrm{E}+09$	$1.18 \mathrm{E}+09$	5	16.6	177.6	1.587	0.003
SJC3-300-5-5-30-1..5	$7.63 \mathrm{E}+08$	$7.46 \mathrm{E}+08$	123	6.6	400.6	2.368	0.036
SJC4-402-5-5-15-1...5	$1.77 \mathrm{E}+09$	$1.75 \mathrm{E}+09$	18	112.2	3594	1.359	0.045
SJC4-402-5-5-30-1..5	$1.3 \mathrm{E}+09$	$1.28 \mathrm{E}+09$	12.4	79.6	1078.8	1.609	0.016
CAPA-1000-5-5-15-1..5	$1.37 \mathrm{E}+11$	$1.36 \mathrm{E}+11$	1503.2	30.6	16614.6	1.566	0.84
CAPA-1000-5-5-30-1...5	$9.09 \mathrm{E}+10$	$8.94 \mathrm{E}+10$	1462.6	14.8	6389.6	2.021	0.38
CAPB-1000-5-5-15-1..5	$1.31 \mathrm{E}+11$	$1.3 \mathrm{E}+11$	292.6	19	3410.4	1.175	0.31
CAPB-1000-5-5-30-1..5	$1.09 \mathrm{E}+11$	$1.08 \mathrm{E}+11$	1960.4	20.4	12045.6	1.204	0.388
CAPC-1000-5-5-15-1...5	$1.32 \mathrm{E}+11$	$1.31 \mathrm{E}+11$	1457.2	19.6	22519.8	2.042	1.176
CAPC-1000-5-5-30-1...5	$1.08 \mathrm{E}+11$	$1.06 \mathrm{E}+11$	7005.8	25.4	36014.6	2.588	0.571
AP-200-5-5-15-1..5	$5.51 \mathrm{E}+12$	$5.41 \mathrm{E}+12$	2.6	6.2	37.4	1.993	0.042
AP-200-5-5-30-1..5	$3.16 \mathrm{E}+12$	$3.1 \mathrm{E}+12$	1	1.8	4	1.804	0
SJC1-100-10-5-15-1...5	$7.55 \mathrm{E}+08$	$7.42 \mathrm{E}+08$	80.4	0.4	14.6	1.818	0.048
SJC1-100-10-5-30-1..5	$4.49 \mathrm{E}+08$	$4.43 \mathrm{E}+08$	1.4	0	0.2	1.487	0.001
SJC2-200-10-5-15-1...5	$1.8 \mathrm{E}+09$	$1.77 \mathrm{E}+09$	15	6.6	177.8	1.535	0.007
SJC2-200-10-5-30-1...5	$1.29 \mathrm{E}+09$	$1.27 \mathrm{E}+09$	3.4	4.8	12.6	1.749	0.002
SJC3-300-10-5-15-1..5	$3.02 \mathrm{E}+09$	$2.98 \mathrm{E}+09$	197	65.8	22926.2	1.71	0.244
SJC3-300-10-5-30-1...5	$2.17 \mathrm{E}+09$	$2.13 \mathrm{E}+09$	398.2	37.4	9439.2	1.876	0.074
SJC4-402-10-5-15-1...5	$4.56 \mathrm{E}+09$	$4.49 \mathrm{E}+09$	18.4	139.8	29687	1.585	0.075
SJC4-402-10-5-30-1...5	$3.43 \mathrm{E}+09$	$3.39 \mathrm{E}+09$	186.8	77.2	20007.8	1.396	0.081
CAPA-1000-10-5-15-1..5	$3.67 \mathrm{E}+11$	$3.62 \mathrm{E}+11$	484.4	47.4	27571.8	2.398	1.003
CAPA-1000-10-5-30-1...5	$2.64 \mathrm{E}+11$	$2.61 \mathrm{E}+11$	2149.6	21.4	28885.4	1.764	0.568
CAPB-1000-10-5-15-1...5	$3.72 \mathrm{E}+11$	$3.67 \mathrm{E}+11$	356.8	48.6	29431.6	2.09	0.586
САРВ-1000-10-5-30-1...5	$2.62 \mathrm{E}+11$	$2.57 \mathrm{E}+11$	873.8	23.4	21952.8	2.052	0.193
CAPC-1000-10-5-15-1...5	$3.77 \mathrm{E}+11$	$3.72 \mathrm{E}+11$	283.8	65	28987.6	2.201	0.962
CAPC-1000-10-5-30-1..5	$3.07 \mathrm{E}+11$	$3.02 \mathrm{E}+11$	1893.8	41.2	35386	2.557	0.813
AP-200-10-5-15-1...5	$1.43 \mathrm{E}+13$	$1.4 \mathrm{E}+13$	2.2	11.6	197.8	2.483	0.001
AP-200-10-5-30-1...5	$1.13 \mathrm{E}+13$	$1.12 \mathrm{E}+13$	4.2	9.4	71.4	1.038	0.002

\neq Test problem instances are given in the first column. Test problem instances are labeled as NAME-Number of the nodes $(|N|)$-Length of the planning horizon (T)-Lower bound parameter of the discrete uniform distribution that the numbers of medians are generated from-Upper bound parameter of the discrete uniform distribution that the numbers of medians are generated fromInstance number. Instance number 1... 5 shows that average values are given in the corresponding row and obtained from the solutions of instances 1, ..., 5. In the second column upper bound values obtained by the myopic heuristic are given. In the third column best solution values are given, found by DBnP in 36,000 seconds. In the fourth column the numbers of nodes of the BnB tree explored are given. In the next two columns, solution time for myopic heuristic and the total solution time (including the solution time of the heuristic) are given, respectively.

5.4.2 Performance of IMCA

A. Validation of IMCA

Before dealing with the dynamic problems, we first solve the test problem instances in the first group in order to validate IMCA. Although these computations are mainly for validation purpose, solution times show that our algorithm competes with Avella et al. (2007) and Garcia et al. (2011), which are two recent and outstanding studies in the literature. Solution times are given in Table 5.3. Computations are performed on our first computer platform.

Roughly speaking, our computer is 1.7 times faster than Avella et al. (2007) and 1.3 times faster than Garcia et al. (2011). According to the overall results, we solve all instances faster than Avella et al. (2007) and 21 of the 27 instances faster than Garcia et al. (2011) by IMCA. IMCA dominates the DBnP. Average solution times are 40 seconds for Avella et al. (2007), 6.13 seconds for Garcia et al. (2007), 19.2 seconds for DBnP, and 4.6 seconds for IMCA. So, on average IMCA is the best. Although these computations are mainly for validation purpose of IMCA, the solution times show that it competes with outstanding studies in the literature.

Table 5.3 Solution times (sec.) for the test problem instances in the first group \dagger

Instance	Avella et al. $\mathbf{(2 0 0 7)}$	Garcia et al. $\mathbf{(2 0 1 1)}$	DBnP	IMCA
Pmed38-5	188.24	23.08	81	15
Pmed38-10	236.47	20.77	136	18
Pmed38-20	24.12	6.92	8	6
Pmed38-50	18.82	3.85	1	3
Pmed38-100	4.71	1.54	0.01	0.01
Pmed38-200	4.71	2.31	0.01	0.01
Pmed38-300	4.71	2.31	0.01	0.01
Pmed38-400	4.12	2.31	0.01	0.01
Pmed38-500	4.12	2.31	0.01	0.01
Pmed39-5	104.12	21.54	57	17
Pmed39-10	159.41	15.38	59	17
Pmed39-20	10.00	2.31	2	3
Pmed39-50	21.76	4.62	4	5
Pmed39-100	4.71	3.08	0.01	0.01
Pmed39-200	4.71	2.31	0.01	0.01
Pmed39-300	4.12	2.31	0.01	0.01
Pmed39-400	4.12	2.31	0.01	0.01
Pmed39-500	4.12	2.31	0.01	0.01
Pmed40-5	72.94	10.77	16	13
Pmed40-10	94.12	10.77	36	15
Pmed40-20	42.35	5.38	9	7
Pmed40-50	38.82	6.15	126	5
Pmed40-90	5.29	1.54	0.01	0.01
Pmed40-200	4.71	2.31	0.01	0.01
Pmed40-300	4.71	2.31	0.01	0.01
Pmed40-400	5.29	2.31	0.01	0.01
Pmed40-500	4.71	2.31	0.01	0.01

\dagger Our computer is roughly 1.7 and 1.3 times faster compared to Avella et al. (2007) and Garcia et al. (2011), respectively, according to the number of operations done per second. Therefore, the solution times for benchmarking studies are adjusted accordingly.

B. Testing performance of IMCA

In the last part of our computational study we solve instances in the second group by IMCA. We set 10 hour limit $(36,000 \mathrm{sec})$ to each run. Average results for the entire set of second group are given in Table 5.4.

Table 5.4 Summary of average results for the dynamic p-median problem instances and IMCA \ddagger

Instances	UB	Best	NN	$\begin{array}{\|c\|} \hline \text { UB } \\ \text { tıme } \\ (\text { sec }) \end{array}$	Total time (sec)	$\begin{array}{\|c} \hline \text { GAP1 } \\ \text { (UB-LPR)* } \\ \text { 100/LPR } \\ \hline \end{array}$	$\begin{gathered} \hline \text { GAP2 } \\ \text { (Best-LPR)* } \\ \text { 100/LPR } \\ \hline \end{gathered}$
SJC1-100-5-5-15-1...5	$2.84 \mathrm{E}+08$	$2.81 \mathrm{E}+08$	1	0.6	1.4	1.154	0.002
SJC1-100-5-5-30-1...5	$1.64 \mathrm{E}+08$	$1.62 \mathrm{E}+08$	1	0	0.4	1.234	0
SJC2-200-5-5-15-1... 5	$7.08 \mathrm{E}+08$	$6.99 \mathrm{E}+08$	3.4	7	55.4	1.312	0.061
SJC2-200-5-5-30-1... 5	$5.99 \mathrm{E}+08$	$5.92 \mathrm{E}+08$	1	5	15.2	1.226	0.004
SJC3-300-5-5-15-1...5	$1.19 \mathrm{E}+09$	$1.18 \mathrm{E}+09$	1	32.8	296.4	1.191	0.003
SJC3-300-5-5-30-1...5	$7.64 \mathrm{E}+08$	$7.46 \mathrm{E}+08$	22	15.2	149.6	2.517	0.036
SJC4-402-5-5-15-1...5	$1.77 \mathrm{E}+09$	$1.75 \mathrm{E}+09$	14.8	105.6	2027.8	1.365	0.045
SJC4-402-5-5-30-1...5	$1.3 \mathrm{E}+09$	$1.28 \mathrm{E}+09$	5	73.4	259.4	1.21	0.017
CAPA-1000-5-5-15-1... 5	$1.37 \mathrm{E}+11$	$1.33 \mathrm{E}+11$	731.2	32.2	3764	2.795	0.144
CAPA-1000-5-5-30-1...5	$9.09 \mathrm{E}+10$	$8.84 \mathrm{E}+10$	120.8	15.2	419.4	2.843	0.203
CAPB-1000-5-5-15-1...5	$1.32 \mathrm{E}+11$	$1.28 \mathrm{E}+11$	70.8	21.2	861.4	2.594	0.080
CAPB-1000-5-5-30-1...5	$1.09 \mathrm{E}+11$	$1.06 \mathrm{E}+11$	175.8	20	819.2	2.937	0.070
CAPC-1000-5-5-15-1...5	$1.32 \mathrm{E}+11$	$1.28 \mathrm{E}+11$	2611	20.4	11048.8	3.026	0.813
CAPC-1000-5-5-30-1...	$1.08 \mathrm{E}+11$	$1.04 \mathrm{E}+11$	550.8	27.4	1458.8	3.395	0.153
AP-200-5-5-15-1...5	$5.53 \mathrm{E}+12$	$5.41 \mathrm{E}+12$	4	6	38.4	2.248	0.042
AP-200-5-5-30-1... 5	$3.15 \mathrm{E}+12$	$3.1 \mathrm{E}+12$	1	1.8	3.4	1.344	0
SJC1-100-10-5-15-1...5	$7.56 \mathrm{E}+08$	$7.42 \mathrm{E}+08$	4.6	1.4	5.6	1.93	0.048
SJC1-100-10-5-30-1...5	$4.5 \mathrm{E}+08$	$4.43 \mathrm{E}+08$	1	0.6	1.8	1.615	0.001
SJC2-200-10-5-15-1...5	$1.81 \mathrm{E}+09$	$1.79 \mathrm{E}+09$	33.2	14	220.8	1.625	0.06
SJC2-200-10-5-30-1...5	$1.29 \mathrm{E}+09$	$1.27 \mathrm{E}+09$	1	7.4	27.2	1.71	0.002
SJC3-300-10-5-15-1...5	$3.02 \mathrm{E}+09$	$2.98 \mathrm{E}+09$	722.2	67	11466.4	1.642	0.144
SJC3-300-10-5-30-1...5	$2.16 \mathrm{E}+09$	$2.13 \mathrm{E}+09$	153	38.8	2302.4	1.42	0.061
SJC4-402-10-5-15-1...5	$4.54 \mathrm{E}+09$	$4.49 \mathrm{E}+09$	55.6	180.2	16254.2	1.163	0.047
SJC4-402-10-5-30-1...5	$3.42 \mathrm{E}+09$	$3.38 \mathrm{E}+09$	118.4	104.4	6861.4	1.079	0.055
CAPA-1000-10-5-15-1...5	$3.66 \mathrm{E}+11$	$3.62 \mathrm{E}+11$	1911.2	40.4	23958.8	3.138	2.127
CAPA-1000-10-5-30-1...5	$2.65 \mathrm{E}+11$	$2.59 \mathrm{E}+11$	977.2	23.4	9827	2.789	0.841
CAPB-1000-10-5-15-1...5	$3.72 \mathrm{E}+11$	$3.64 \mathrm{E}+11$	230.6	47.4	12173.4	2.984	1.012
CAPB-1000-10-5-30-1...5	$2.61 \mathrm{E}+11$	$2.54 \mathrm{E}+11$	56.8	23.6	1057.2	2.702	0.116
CAPC-1000-10-5-15-1...5	$3.76 \mathrm{E}+11$	$3.73 \mathrm{E}+11$	1031.8	50	16410.8	3.153	2.279
CAPC-1000-10-5-30-1...5	$3.05 \mathrm{E}+11$	$3.02 \mathrm{E}+11$	3984	28.8	19354.2	3.225	2.109
AP-200-10-5-15-1...5	$1.42 \mathrm{E}+13$	$1.4 \mathrm{E}+13$	1	12.2	145	1.5	0.002
AP-200-10-5-30-1...5	$1.13 \mathrm{E}+13$	$1.12 \mathrm{E}+13$	1	9.6	41.8	0.955	0.002

\neq Since the table format is same with see the explanation of Table 5.2.

148 of 160 instances are solved optimally in 10 hours. The overall average total solution time is 4416 seconds. According to these results, the performance of IMCA is better than the performance of DBnP . So, the main motivation for developing IMCA, benefit from the advantages of the today's technology and MIP solver programs, is validated by these results.

The detailed results are given in Appendix D.

CHAPTER 6

CONCLUSION

In this thesis four location problems are studied. The first problem is about the location of depots and quarries in a highway construction project. The second problem is about the location of mobile and immobile concrete batching facilities for a railroad construction project. Both problems are motivated by real life applications. The third problem generalizes our findings for the second problem to general networks under the p-median problem settings. The resultant problem is a dynamic version of the p-median problem with mobile facilities. The fourth problem is a special case of the third problem where all facilities are assumed to be immobile.

The first problem is a new location problem, called the depot-quarry location problem, and occurs in road construction projects. Two mixed integer programming formulations for the problem are developed. The first formulation is the fixed charge network flow problem formulation. Using the optimal solution properties of the fixed charge network flow problem, the shortest path problem formulation of the problems is developed. A dynamic programming algorithm is presented for the depot-quarry location problem.

The depot-quarry location problem is tightly related with the uncapacitated lot sizing problem with backlogging. Although its dynamic programming algorithm runs in polynomial time, its running complexity is higher than that of dynamic programming algorithm of the uncapacitated lot sizing problem with backlogging. It is shown that the depot-quarry location problem is a generalization of the uncapacitated lot sizing problem with backlogging.

The second problem is also a new problem, called the dynamic, capacitated location problem with mobile and immobile facilities. It occurs in railroad construction projects. A mixed integer linear programming model is developed to solve the problem. It is also shown how the model can be used to solve similar problems in the literature with simple modifications.

We provide computational results for a case study problem based on a real project data. A sensitivity analysis is carried on the solution of the case problem. It is seen that a larger percent of the total cost is due to transportation costs and the solution remains almost unchanged even after facility costs are substantially changed. Observing the demand planned in the project schedule is sparse in location and time basis, it is concluded that more reductions in the total cost would be achieved if location-allocation and project scheduling decisions had been made simultaneously.

If construction schedules in the projects are prepared in weekly bases, which is preferable in terms of better planning and managing work and workforce, the number of periods can increase up to hundreds even for a small scale project. In order to solve such larger sized problems in reasonable times, a fast preprocessing heuristic is proposed to reduce the number of candidate location sites. The performance of the heuristic is tested on a set of test problem instances, including the case problem. The heuristic reduces running times of the model substantially with a slight change on the solution quality.

The dynamic demands and mobile facilities are two distinctive properties of the second problem. Being motivated by these rich properties, the second problem is generalized to the general networks under the p-median problem settings, called the dynamic p-median problem with mobile facilities. To the best of our knowledge, this is the first study in the location literature that combines important decision components of the known dynamic p-median problems into a single decision framework. Two classes of the problem are considered. In the first problem class, all facilities are assumed to be mobile while facilities are assumed to be mobile, immobile, or both types in the second class. Three constructive heuristics and a
branch and price algorithm are proposed to solve the problem. Performances of these solution procedures are tested on randomly generated instances with up to 1000 nodes and 10 periods. It is shown that the heuristics' performances change according to the problem classes and the first heuristic, called the myopic heuristic, outperforms other two progressive heuristics with 0.2% and 1.8% deviations from the lower bound in 54 seconds and 2 minutes computation times on average for the first and second classes, respectively.

The proposed branch and price algorithm is validated over the well-known p median problem instances from the literature. Besides the validation, it is shown that the algorithm competes with the best p-median algorithms in the literature. The algorithm's performance is assessed on the dynamic problem test instances, which are generated systematically and introduced for the first time as the benchmark test instances into the computational literature. Our empirical results show that the algorithm performs well. Most large instances are solved at optimality within a given time limit of 10 hours. The average solution times are approximately 1 hour for the first problem class and 4 hours for the second problem class.

According to our numerical results for the performance of the first heuristic and the branch and price algorithm, it may be concluded that the second problem class is harder than the first problem class. This result can easily be justified because one should consider later periods of the planning horizon when deciding on the locations of immobile facilities for the second class. The mobile facilities are flexible for responding the changes in demand over time.

In the fourth problem, we consider a special case of the third problem, allowing only conventional (immobile) facilities. Although the heuristics and the branch and price algorithm presented for the third problem are also applicable to the current problem, the branch and price algorithm is modified to take advantage of single type immobile facility. That iterative algorithm combines column generation and mixed integer programming solutions in an iterative way. The algorithms' performances are evaluated by the computational experiments on the randomly
generated problem instances and results are presented. 120 of 160 instances are solved optimally by the branch and price method. The average solution time is approximately 3 hours. The iterative algorithm is validated over the p-median problem instances from the literature. It is seen that the new algorithm is better than the best studies in the literature. Then it is tested on the randomly generated dynamic problem instances. 147 of 160 instances are solved optimally. The average solution time is about 75 minutes. As a result it outperforms the branch and price algorithm.

Even the proposed branch and price algorithm competes with the best studies in the literature on the p-median problem instances, on average Garcia et al. (2011) is approximately 3 times faster than the present branch and price algorithm. The modules in the C++ code of the algorithm may be improved. Furthermore, instead of depth first search breath first search may be used. Some other node and branching variable selection strategies may be explored in order to improve the performance of the branch and price algorithm.

Future Study Directions

Including some rich features to the depot-quarry location problem such as a general cost structure, capacity levels for depots and quarries, and capacitated trucks for transportation of materials might be an interesting future research area.

More effective solution procedures might be developed by using the line property of the second problem. After production schedules are prepared for the art buildings, starting periods to construct buildings and location-allocation decisions might be considered simultaneously. Vehicle scheduling and routing decisions might also be included to these studies.

An apparent extension of the dynamic p-median problem with mobile facilities is to consider the dynamic fixed charge facility location problem with mobile facilities. The proposed solution methods for the dynamic p-median problem can be adapted
to the fixed charge version of the problem. Instead of facility abolishing, only facility closure and reopening cases can be considered in all of these problems.

REFERENCES

Adlakha, V. and Kpwalski, K., 1999. "On the fixed charge transportation problem", Omega, Int. J. Mgmt. Sci., 27, 381-388.

Antunes, A. and Peeters, D., 2000. "A dynamic optimization model for school network planning", Socio-Economic Planning Sciences, 34, 101-120.

Antunes, A. and Peeters, D., 2001. "On solving complex multi-period location models using simulated annealing", European Journal of Operational Research, 130,190-201.

Arabani, A.B. and Farahani, R.Z., 2012. "Facility location dynamics: an overview of classifications and applications", Computers and Industrial Engineering, 62, 408-420.

Avella, P. and Sassano, A., 2001. "On the p-median polytope", Mathematical Programming, 89, 395-411.

Avella, P., Sassano, A. and Vasil'ev, I., 2007. "Computational study of large-scale p-median problems", Mathematical Programming (Ser. A), 109, 89-114.

Balinski, M., 1965. "Integer programming methods, uses and computation", Management Science (Ser. A), 12, 253-313.

Ballou, R. H., 1968. "Dynamic warehouse location analysis", Journal of Marketing Research, 5, 271-276.

Beasley, J.E., 1985. "A note on solving large p-median problems", European Journal of Operational Research, 21, 270-273.

Beasley, J.E., 1988. "An algorithm for solving large capacitated warehouse location problems", European Journal of Operational Research, 33, 314-325.

Beasley, J.E., 1993. "Lagrangian heuristics for location problems", European Journal of Operational Research, 65, 383-399.

Beltran, J. L. and Krass, D., 2002. "Dynamic lot sizing with returning items and disposals", IIE Transactions, 34, 437-448.

Berberler, M.E., Çalışkan, A., Nuriyev, U.G. and Şahiner., B., 2011. "Algorithm to facility location problem on a line", World Applied Sciences Journal, 13(12), 24362443.

Brimberg, J. and M., Mehrez, A., 2001. "Location and sizing of facilities on a line", Top, 9(2), 271-280.

Brimberg, J., Korach, E., Eben-Chaime, M., Mehrez, A., 2001. "The capacitated pfacility location problem on the real line", International TraIMCActions in operational Research, 8, 727-738.

Brimberg, J. and ReVelle, C., 1998. "Solving the plant location problem on a line by linear prograsmming", Top, 6 (2), 277-286.

Canel, C., and Khumawala, B. M. (1997). Multi-period international facilities location: an algorithm and application. International Journal of Production Research, 35(7), 1891-1910.

Captivo, E.M., 1991. "Fast primal and dual heuristics for the p-median location problem", European Journal of Operational Research, 52, 65-74.

Chardaire P., Sutter A., and Costa M. (1996). Solving the dynamic facility location problem. Networks, 28, 117-124.

Christofides, N. and Beasley, J.E., 1982. "A tree search algorithm for the p-median problem", European Journal of Operational Research, 10, 196-204.

Church, R.L., 2003. "COBRA: a new formulation of the classical p-median location problem", Annals of Operations Research, 122, 103-120.

Church, R.L., 2008. "BEAMR: an exact and approximate model for the p-median problem", Computers and Operations Research, 35, 417-426.

Contreras, I., Cordeau, J. and Laporte, G., 2011. "The dynamic uncapacitated hub location problem", Transportation Science, 45, 18-32.

Cornuejols, G., Fisher, M.L. and Nemhauser, G.L., 1977. "Location of bank accounts to optimize float: an analytic study of exact and approximate algorithms", Management Science, 23, 789-810.

Cornuejols, G., Nemhauser, G. and Wolsey, L.A., 1980. "A canonical representation of simple plant location problems and its applications", SIMAX 1(3),261-272

Cornuejols, G., Nemhauser, G. and Wolsey, L.A., 1990. "The uncapacitated facility location problem", In: Mirchandani PB, Francis RL (eds) Discrete location theory, Wiley, New York.

Current, J., Ratick, S. and ReVelle, C., 1997. "Dynamic facility location when the total number of facilities uncertain: a decision analysis approach", European Journal of Operational Research, 110, 597-609.
de Farias (Jr.), I.R., 2001. "A family of facets for the uncapacitated p-median polytope", Operations Research Letters, 28, 161-167.

Dias, J., Captivo, M.E., and Climaco, J. (2006). Capacitated dynamic location problems with opening, closure and reopening of facilities. IMA Journal of Management Mathematics, 17 (4), 317-348.

Dias J, Captivo M. E., and Climaco J. (2007). Efficient primal-dual heuristic for a dynamic location problem. Computers and Operations Research, 34, 1800-1823.

Drezner, Z., 1995. "Dynamic Location Problem: The progressive p-median problem", Location Science, 3 (1), 1-7.

Eben-Chaime, M., Mehrez, A., Markovich, G., 2002. "Capacitated locationallocation problems on a line", Computers and Operations Research, 29, 459-470.

Efroymson, M. and Ray, T., 1966. "A branch and bound algorithm for plant location", Operations Research, 14, 361-368.

Elloumi, S., 2010. "A tighter formulation of the p-median problem", J. Combin. Optim., 19 (1), 69-83.

Elloumi, S. and Plateau, A., 2010. "A computational study for the p-median problem", Electronic Notes in Discrete Mathematics, 36, 455-462.

El-Shaieb, A.M., 1973. "A new algorithm for locating sources among destinations", Management Science, 20, 221-231.

Epstein R., Weintraub A., Sapunar P., Nieto E., Sessions J. B., Sessions J., Bustamante F., and Musante H. (2006). A combinatorial heuristic approach for solving real-sized machinery location and road design problems in forestry planning. Operations Research, 54(6), 1017-1027.

Erlenkotter, D., 1978. "A dual-based procedure for uncapacitated facility location", Operations Research, 26, 992-1009.

Erlenkotter, D., 1981. "A comparative study of approaches to dynamic location problems", European Journal of Operational Research, 6, 133-143.

Farahani, R.Z., Drezner, Z. and Asgari, N., 2009. "Single facility location and relocation problem with time dependent weights and discrete planning horizon", Annals of Operations Research, 167, 353-368.

Federgün, A. and Truz, M., 1991. "A simple forward algorithm to solve general dynami lot sizing models with n periods in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ or $\mathrm{O}(\mathrm{n})$ time", Management Science, 37, 1067-1087.

Feldman, E., Lehrer, F.A. and Ray, T.L., 1966. "Warehouse locations under continuous economies of scale", Management Science, 12, 670-684.

Francis, R.L., Lowe, T.J. and Tamir, A., 2000. "Aggregation error bounds for a class of location models", Operations Research, 48, 294-307.

Frantzeskakis, M. and Watson-Gandy, C.D.T., 1989. "The use of state space relaxation for the dynamic facility location problem", Annals of Operations Research, 18, 189-212.

Galvao, R.D., 1980. "A dual-bounded algorithm for the p-median problem", Operations Research, 28(5), 1112-1121.

Galvao, R.D., 1993. "Use of Lagrangean relaxation in the solution of uncapacitated facility location problems", Location Science, 1, 57-70.

Galvao, R.D. and Santibanez-Gonzales, E., 1992. "A Lagrangean heuristic for the p_{k}-median dynamic location problem", European Journal of Operational Research, 58, 250-262.

Galvao, R.D. and Raggi, L.A., 1989. "A method for solving to optimality uncapacitated location problems", Annals of Operations Research, 18, 225-244.

Garcia, S., Labbe, M. and Marin, A., 2011. "Solving large p-median problems with a radius formulation", INFORMS Journal on Computing, 23 (4), 546-556.

Garfinkel, R.S., Neebe, A.W. and Rao, M.R., 1974. "An algorithm for the mmedian plant location problem", Transportation Science, 8, 217-236.

Gourdin, E., and Klopfenstein, O. (2008). Multi-period capacitated location with modular equipments. Computers and Operations Research, 35, 661-682.

Hakimi, S. L., 1964. "Optimum locations of switching centers and the absolute centers and medians of a graph", Operations Research, 12, 450-459.

Hakimi, S. L., 1965. "Optimum distribution of switching centers in a communication network and some related graph theoretic problems", Operations Research, 13, 462-475.

Hanjoul, P., and Peeters, D., 1985. "A comparison of two dual-based procedures for solving the p-median problem", European Journal of Operational Research, 20, 387-396.

Hribar, M. and Daskin, M., 1997. "A dynamic programming heuristic for the pmedian problem", European Journal of Operational Research, 101, 499-508.

Hsu, V. N., Lowe, T. J., Tamir, A., 1997. "Structured p-facility location problems on the line solvable in polynomial time", Operations Research Letters, 21, 159164.

Jarvinen, P., Rajala., J. and Sinervo, H., 1972. "A branch and bound algorithm for seeking the p-median", Operations Research, 20, 173-178.

Johnson, L. and Montgomery, D.C., 1974. "Operations research in production planning, scheduling and inventory control", New York: Wiley.

Kariv, O. and Hakimi, S.L., 1979. "An algorithmic approach to network location problems: part 2. The p-medians", SIAM Journal on Applied Mathematics, 37, 539560.

Klose, A. and Drexl, A., 2005. "Facility location models for distribution system design", European Journal of Operational Research, 162, 4-29.

Kuehn, A.A. and Hamburger, M.J., 1963. "A heuristic program for locating warehouses", Management Science, 9, 643-666.

Lee, S.B., and Luss, H., 1987. "Multifacility-type capacity expansion planning: algorithms and complexities" Operations Research, 35(2), 249-253.

Lim, S. K. and Kim, Y. D., 1999. "An integrated approach to dynamic plant location and capacity planning", The Journal of the Operational Research Society, 50 (12), 1205-1216.

Lorena, L.A.N. and Senne, E.L.F., 2004. "A column generation approach to capacitated p-median problems", Computers and Operations Research, 31, 863876.

Love, R.F., 1976. "One dimensional facility location-allocation using dynamic programming", Management Science, 22 (5), 614-617.

Luss, H., 1982. "Operations research and capacity expansion problems: a survey" Operations Research, 30(5), 907-947.

Manne, A.S., 1961. "Capacity expansion and probabilistic growth", Econometrica, 29, 632-649.

Manne, A.S., 1967. "Investments for capacity expansion: size, location and time phasing", Manne, A.S. (Ed.), MIT Press, Cambridge.

Melo, M.T., Nickel, S., and Saldanha-da-Gama, F., 2009. "Facility location and supply chain management: a review", European Journal of Operational Research, 196, 401-412.

Mirchandani, P., Kohli, R., and Tamir, A., 1996. "Capacitated location problems on a line", Transportation Science, 30(1), 75-80.

Mirchandani, P., Oudjit, A. and Wong, R.T. 1985. "Multidimensional extensions and e nested dual approach for the m-median problem", European Journal of Operational Research, 21, 121-137.

Mladenovic, N., Brimberg, J., Hansen, P. and Moreno-Perez, J.A., 2007. "The pmedian problem: a survey of metaheuristic approaches", European Journal of Operational Research, 179, 927-939.

Narula, S.C., Ogbu, U.I. and Samuelson, H.M., 1977. "An algorithm for the pmedian problem", Operations Research, 25, 709-713.

Nemhauser, G. and Wolsey, L., 1988. Integer and combinatorial optimization, John Wiley and Sons, New York.

Owen, S.H. and Daskin, M.S., 1998. "Strategic facility location: a review", European Journal of Operational Research, 111, 423-447.

Pochet, Y. and Wolsey, L.A., 1988. "Lot size models with backlogging: Strong formulations and cutting planes", Mathematical Programming, 40, 317-335.

Pochet, Y. and Wolsey, L.A., 2006. "Production planning by mixed integer programming", Springer, USA.

Reese, J., 2006. "Solution methods for the p-median problem: an annotated bibliography", Networks, 48(3), 125-142.

Resende, M. and Werneck, R.F., 2003. "On the implementation of a swap-based local search procedure for the p-median problem", Ladner, Richard E. (Ed.), Proceedings of the $5^{\text {th }}$ workshop on algorithm engineering and experiments, SIAM, Philadelphia, 119-127.

ReVelle, C.S. and Swain, R., 1970. "Central facilities location", Geographical Analysis, 2, 30-42.

Roodman, G.M. and Schwarz, L.B., 1975. "Optimal and heuristic facility phase-out strategies", AIIE TraIMCActions, 7 (2), 177-184.

Roodman, G.M. and Schwarz, L.B., 1977. "Extensions of the multi-period facility phase-out model: new procedures and applications to a phase-in/phase-out problem", AIIE TraIMCActions, 9 (1), 103-107.

Rosing, K.E. and ReVelle, C.S., 1997. "Heuristic concentration: two-stage solution concentration", European Journal of Operational Research, 97, 75-86.

Rosing, K.E., ReVelle, C.S. and Rosing-Vogelaar, H., 1979. "The p-median and its linear programming relaxation: an approach to large problems", Journal of the Operational Research Society, 30, 815-822.

Saldanha-da-Gama, F. and Captivo, M.E., 1998. "A heuristic approach for the discrete dynamic location problem", Location Science, 6, 211-223.

Salhi, S. and Atkinson, R.A., 1995. "Subdrop: a modified drop heuristic for location problems", Location Science, 3, 267-273.

Sambola, M.A., Ayuso, A.A., Escudero, L.F., Fernandez, E., Hinojosa, Y. and Romero, C.P., 2010. "A computational comparison of several formulations for the multi-period incremental service facility location problem", Top, 18, 62-80.

Sambola, M.A., Fernandez, E., Hinojosa, Y. and Puerto, J., 2009. "The multi-period incremental service facility location problem", Computers and Operations Research, 36, 1356-1375.

Senne, E.L.F., Lorena, L.A.N. and Pereira, M.A., 2005. "A branch and price approach to p-median location problems", Computers and Operations Research, 32, 1655-1664.

Shulman, A., 1991. "An algorithm for solving dynamic capacitated plant location problems with discrete expansion sizes", Operations Research, 39 (3), 423-436.

Torres-Soto, J.E. and Üster, H., 2011. "Dynamic-demand capacitated facility location problems with and without relocation", International Journal of Production Research, 49 (13), 3979-4005.

Uğur, C.C., 2010. "A location and transportation model for earthworks and other hauls in a road construction", EM599 Term Project, Dept. of Industrial Eng., Middle East Technical University, Ankara, TURKEY.

Van Roy, T. J., and Erlenkotter, D., 1982. "A dual-based procedure for dynamic facility location", Management Science, 28(10), 1091-1105.

Wesolowsky, G.O., 1973. "Dynamic facility location", Management Science, 19, 1241-1247.

Wesolowsky, G.O., and Truscott, W.G., 1975. "The multiperiod location-allocation problem with relocation of facilities", Management Science, 22(1), 57-65.

Whitaker, R., 1983. "A fast algorithm for the greedy interchange for large-scale clustering and median location problems", INFOR, 21, 95-108.

Zangwill, W.I., 1969. "A backlogging model and a multi-echelon model of a dynamic economic lot size production system-a network approach", Management Science, 15(9), 506-527.

APPENDIX A

SETTINGS FOR THE RANDOMLY GENERATED TEST PROBLEM INSTANCES AND THE PROCEDURE TO GENERATE THESE INSTANCES

In test instance generations, we fixed all cost components to their original values given in section 3.5 .1 in addition to using the same facility capacities and concrete input ratios. In the case study problem, 10% of sites (including water and aggregate resources) are water resources, 15% of sites are aggregate resources, and the remaining sites are demand candidate facility locations sites. We also kept this point distribution as it is. Number of sites, number of periods, site density, and demand magnitude are considered as factors for our analysis. We generate instances with $50,100,150,200$, and 250 sites and with 10,20 , and 30 planning periods. The length of railroad is set as 150,300 , or 450 km . Demands at sites (ton per period) are randomly selected from uniform distribution $\mathrm{U}[100, \mathrm{MD}]$ where $\mathrm{MD}=\{30,000$, $60,000\}$. The construction schedules of art buildings in the test instances do not contain periods with zero demands from starting to finishing periods, which are same as the schedule in the case study. Test problem instances are generated by using the following procedure.

Step 1: Generate NS (number of the sites) numbers between 0 and line length, randomly. Arrange these numbers in an increasing order. These are locations of our sites on the line.

Step 2: Generate $\operatorname{int}\left(0.10^{*} N S\right)$ integer numbers between 1 and $N S$ randomly such that they are different than each other. Select the sites whose orders are equal to
these integers as water resources. Generate a random number between 0 and 15 for each of these sites as the length of the slip road between water resource and main transportation line (See Figure 3.5)

Step 3: Generate $\operatorname{int}\left(0.15^{*} N S\right)$ integer numbers between 1 and $N S$ such that they are different than each other and water resources, randomly. Select the sites whose orders are equal to these integers as aggregate resources. Generate a random number between 0 and 15 for each of these sites as the length of the slip road between aggregate resource and main transportation line (See Figure 3.5).

Step 4: Remaining sites are demand points. For each demand point, randomly generate two integer numbers between 1 and number of the periods. These numbers correspond to the starting and finishing periods of the art buildings. For each construction period randomly generate demands between 100 and MD.

Step 5: For each period find the summation of demands at that period. If this summation is zero for any period, then go to Step 4, else STOP.

APPENDIX B

DETAILS AND FLOW CHART OF THE DYNAMIC BRANCH AND PRICE ALGORITHM (DBnP)

There are three situations for pruning a node in the BnP tree. When (1) no feasible solution, (2) an integer optimal solution, or (3) a worse LB than the UB is obtained during the tree exploring.

Consider Figure B. 1 that illustrates how DBnP works. Note that each box in the figure is labeled by a bold number. Pruning is made in boxes 12 and 14 , and level is decreased by one. Branching is made in boxes 8 and 16, and level is increased by one. Level shows the depth of the current node at the DBnP tree. Level of the root node is 0 .

Box 1 initiates the algorithm.

In box 2 for the root node of DBnP tree, the reduced dynamic radius formulation (RDRF) is constructed. Note that reduction is due to s and z variables. All s variables are eliminated from DRF and only first $s d_{i t}$ of z variables of DRF are put into RDRF. In box 3, RDRF is solved. In box 4, it is checked whether there is a feasible solution to the current LP of RDRF or not. If the answer is "No", means that there is no feasible solution, and then the current node of DBnP tree is pruned in box 12. Otherwise, it is checked whether there is any s and z variables that must be added to the model in box 5 or not.

If it is required to add some variables into RDRF, all those variables and related constraints are added to RDRF in box 6 . The cycle through boxes $3,4,5,6$, and 3 is
rotated until pruning the current node because of infeasibility or attaining the optimal LP solution to RDRF at the current node of DBnP tree.

In box 5 , if the LP relaxation of RDRF is solved optimally at the current node, then it is checked whether the solution satisfies integrality or not in box 7 .

If integrality holds, then this time it is checked whether the integer solution is better than the best solution found so far in box 9 . If the solution is better than the best solution found so far, then the current node is pruned because of obtaining an integer solution after updating the UB and the best solution in box 10 ; otherwise, it is pruned without updating the UB and the best solution.

If integrality is not satisfied and answer is "No" in box 7, then the branching variable is determined, and it is set to one and passed to one level deeper node in the DBnP tree (i.e., branching is made).

Before pruning the current node in box 12 , it is checked whether the level in the BnP tree is 0 or not. If the level is 0 , then the algorithm halts. Otherwise, a pruning is performed because of having a worse LB than the UB in box 14. Through the cycle of boxes 13-14 this type of pruning is repeated until finding out a node of DBnP tree, which is eligible for branching, with a better (smaller) LB than UB. The level of the tree is decreased through 0 by pruning.

After pruning, it is checked whether the level is 0 and branching variable is set to 0 at the last branching from this node in box 15. If the answer is "Yes", then the algorithm halts. If the answer is "No", then the decision variables and constraints that are added to RDRF at the children of this node are cleaned. The branching variable of this node is set to 0 and the search is continued from that branch.

Recall that the DBnP algorithm is the generalization of the BnP algorithm in Garcia et. al. (2011) developed for the p-median problem to the dynamic p-median problem with mobile facilities. Determining z variables that must be added to

RDRF is same as the one in Garcia et al. (2011). However, the management of s variables that must be added to the RDRF is one of brand new ideas at our algorithm.

In the mechanism of BnP algorithm, they use a breadth first like search. They use the best-first strategy for determining the node of tree to branch on. They use dynamic reliability rule to determine the branching variable and GRASP to obtain an initial upper bound. In our study we use the depth first search and our heuristics to obtain an initial upper bound. Branching variable is selected as the variable y having a fractional solution value closest to a predetermined threshold value of f, such as $f=0.7$.

APPENDIX C

DETAILED RESULTS OF COMPUTATIONS IN CHAPTER 4

FIRST PROBLEM CLASS

Table C. 1 Results for the myopic heuristic for the first problem class for the instances in the subset A of the second group of the test instances

Instance	$\begin{gathered} \text { LPR } \\ (\mathbf{1 0 0 0}) \end{gathered}$	\boldsymbol{h}	$\begin{gathered} \text { UB } \\ (\mathbf{1 0 0 0}) \end{gathered}$	UB Time (sec)
SJC1-100-5-5-15-1	239996	1	246524	0
		3	244702	0
		5	243109	0
SJC1-100-5-5-15-2	250250	1	252699	0
		3	251702	0
		5	250250	0
SJC1-100-5-5-15-3	307672	1	310820	0
		3	308490	0
		5	309433	0
SJC1-100-5-5-15-4	322351	1	325192	0
		3	323763	0
		5	323244	0
SJC1-100-5-5-15-5	276830	1	277467	0
		3	277095	0
		5	277642	0
SJC1-100-10-5-15-1	710450	1	717726	1
		4	713447	1
		7	713447	1
		10	713051	1
SJC1-100-10-5-15-2	683637	1	688706	0
		4	687114	0
		7	689341	0
		10	689325	0
SJC1-100-10-5-15-3	769260	1	776257	1
		4	771114	1
		7	771618	1
		10	771773	1
SJC1-100-10-5-15-4	743768	1	747455	1
		4	747239	1
		7	747161	1
		10	746682	1
SJC1-100-10-5-15-5	781528	1	788700	1
		4	785196	1
		7	785490	1
		10	785490	1
SJC1-100-5-5-30-1	155090	1	168542	0
		3	157578	0
		5	155229	0

Table C. 1 (Cont.)

SJC1-100-5-5-30-2	81480.1	1	92830.1	0
		3	84298.3	0
		5	83853.4	0
SJC1-100-5-5-30-3	161836	1	162166	0
		3	161841	0
		5	161841	0
SJC1-100-5-5-30-4	242616	1	244258	0
		3	244469	0
		5	243014	0
SJC1-100-5-5-30-5	159621	1	163863	0
		3	159621	0
		5	159621	0
SJC1-100-10-5-30-1	319889	1	324379	0
		4	321221	0
		7	321384	0
		10	322786	0
SJC1-100-10-5-30-2	547685	1	561167	0
		4	551632	0
		7	549644	0
		10	550898	0
SJC1-100-10-5-30-3	564485	1	573551	0
		4	569346	0
		7	570646	0
		10	570009	0
SJC1-100-10-5-30-4	445619	1	447299	0
		4	446168	0
		7	447807	0
		10	446268	0
SJC1-100-10-5-30-5	320747	1	328352	0
		4	323419	0
		7	324805	0
		10	322585	0
SJC2-200-5-5-15-1	545286	1	549931	2
		3	547455	2
		5	547090	2
SJC2-200-5-5-15-2	750563	1	750896	4
		3	750582	4
		5	750582	4
SJC2-200-5-5-15-3	776983	1	779468	6
		3	778809	6
		5	779812	6
SJC2-200-5-5-15-4	533134	1	535896	3
		3	537007	3
		5	534771	3
SJC2-200-5-5-15-5	839878	1	845138	9
		3	841030	7
		5	839909	7
SJC2-200-10-5-15-1	1948380	1	1949920	12
		4	1950810	12
		7	1950750	12
		10	1950800	12
SJC2-200-10-5-15-2	1627960	1	1634110	9
		4	1632260	9
		7	1635120	8
		10	1630810	8
SJC2-200-10-5-15-3	1829110	1	1835770	9
		4	1833300	8
		7	1830320	8
		10	1830950	8
SJC2-200-10-5-15-4	1769090	1	1775990	9
		4	1771560	8
		7	1775790	8
		10	1772960	8

Table C. 1 (Cont.)

SJC2-200-10-5-15-5	1575870	1	1581840	7
		4	1579650	5
		7	1579660	6
		10	1578780	6
SJC2-200-5-5-30-1	707220	1	708498	5
		3	710428	4
		5	708155	4
SJC2-200-5-5-30-2	441991	1	443968	2
		3	445041	2
		5	445466	1
SJC2-200-5-5-30-3	407197	1	409632	1
		3	407769	1
		5	407197	1
SJC2-200-5-5-30-4	743608	1	746242	6
		3	746007	6
		5	745225	6
SJC2-200-5-5-30-5	626238	1	626761	4
		3	627842	3
		5	626800	3
SJC2-200-10-5-30-1	1636560	1	1644130	8
		4	1640550	8
		7	1642810	8
		10	1642980	8
SJC2-200-10-5-30-2	1286130	1	1291830	4
		4	1287810	4
		7	1289520	4
		10	1291660	5
SJC2-200-10-5-30-3	1179740	1	1185670	4
		4	1187300	4
		7	1186890	4
		10	1187490	3
SJC2-200-10-5-30-4	1153260	1	1162040	4
		4	1156980	4
		7	1156060	3
		10	1156160	3
SJC2-200-10-5-30-5	1030060	1	1039390	2
		4	1035460	2
		7	1040130	2
		10	1035300	3
SJC3-300-5-5-15-1	1104020	1	1106510	24
		3	1110450	23
		5	1109050	18
SJC3-300-5-5-15-2	967640	1	971235	19
		3	972705	19
		5	974207	18
SJC3-300-5-5-15-3	1216780	1	1217690	32
		3	1217510	30
		5	1218980	29
SJC3-300-5-5-15-4	1325290	1	1326590	41
		3	1330120	38
		5	1330970	33
SJC3-300-5-5-15-5	1225150	1	1228380	38
		3	1225960	36
		5	1226850	29
SJC3-300-10-5-15-1	2982250	1	2988990	59
		4	2984800	61
		7	2984220	58
		10	2985360	48
SJC3-300-10-5-15-2	2661330	1	2672780	41
		4	2666420	41
		7	2665840	40
		10	2672390	41
SJC3-300-10-5-15-3	3001280	1	3005970	54
		4	3004960	54
		7	3005440	51
		10	3003550	50

Table C. 1 (Cont.)

SJC3-300-10-5-15-4	3287360	1	3296360	65
		4	3291810	66
		7	3288150	59
		10	3289590	67
SJC3-300-10-5-15-5	2792670	1	2796340	40
		4	2796560	36
		7	2795820	34
		10	2796160	36
SJC3-300-5-5-30-1	577993	1	583570	4
		3	582611	4
		5	581549	4
SJC3-300-5-5-30-2	603527	1	609794	5
		3	612952	5
		5	610644	3
SJC3-300-5-5-30-3	786640	1	789264	9
		3	787978	8
		5	789735	8
SJC3-300-5-5-30-4	769035	1	781016	14
		3	772375	12
		5	777242	8
SJC3-300-5-5-30-5	956705	1	968093	25
		3	961459	25
		5	960126	22
SJC3-300-10-5-30-1	2286980	1	2292720	31
		4	2290220	30
		7	2299110	29
		10	2298250	23
SJC3-300-10-5-30-2	2014790	1	2021110	23
		4	2018370	24
		7	2019950	25
		10	2021090	30
SJC3-300-10-5-30-3	2462820	1	2468030	34
		4	2467770	33
		7	2466080	32
		10	2467280	36
SJC3-300-10-5-30-4	2112250	1	2122170	27
		4	2121040	27
		7	2116560	24
		10	2116030	25
SJC3-300-10-5-30-5	1695500	1	1704330	13
		4	1703020	13
		7	1703560	12
		10	1701830	11

Table C. 2 Results for the progressive heuristics for the first problem class for the instances in the subset A of the second group of the test instances

Instance	$\begin{gathered} \text { LPR } \\ (\mathbf{1 0 0 0}) \end{gathered}$	h	Progressive-1		Progressive-2	
			$\begin{gathered} \text { UB } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \text { UB } \\ \text { Time } \\ (\mathbf{s e c}) \end{gathered}$	$\begin{gathered} \text { UB } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \text { UB } \\ \text { Time } \\ (\mathbf{s e c}) \end{gathered}$
SJC1-100-5-5-15-1	239996	1	256061	0	257625	0
		T*	248456	0	252511	0
SJC1-100-5-5-15-2	250250	1	261363	0	279087	0
		T*	271713	0	273360	0
SJC1-100-5-5-15-3	307672	1	326257	0	331730	0
		T*	322957	0	334958	0
SJC1-100-5-5-15-4	322351	1	341413	0	334226	0
		T*	361217	0	366707	0
SJC1-100-5-5-15-5	276830	1	300361	0	290959	0
		T*	303263	0	305978	0
SJC1-100-10-5-15-1	710450	1	744914	0	761553	0
		T*	758701	0	750232	1
SJC1-100-10-5-15-2	683637	1	738309	0	741972	0
		T*	801409	0	774831	1
SJC1-100-10-5-15-3	769260	1	818043	0	812174	0
		T*	780896	0	782762	1
SJC1-100-10-5-15-4	743768	1	807516	0	805099	0
		T*	780320	0	771543	1
SJC1-100-10-5-15-5	781528	1	820077	0	812245	0
		T*	859165	0	859165	1
SJC1-100-5-5-30-1	155090	1	166110	0	165993	0
		T*	274287	0	274298	0
SJC1-100-5-5-30-2	81480.1	1	111472	0	91647.2	0
		T*	85970.4	0	88380.3	0
SJC1-100-5-5-30-3	161836	1	181795	0	176227	0
		T*	181855	0	176118	0
SJC1-100-5-5-30-4	242616	1	310110	0	253647	0
		T*	287069	0	287069	0
SJC1-100-5-5-30-5	159621	1	165224	0	173484	0
		T*	230019	0	231525	0
SJC1-100-10-5-30-1	319889	1	476279	0	364222	0
		T*	351189	0	356418	0
SJC1-100-10-5-30-2	547685	1	588894	0	587361	0
		T*	713853	0	681699	0
SJC1-100-10-5-30-3	564485	1	614636	0	602661	0
		T*	646395	0	589094	0
SJC1-100-10-5-30-4	445619	1	491822	0	499196	0
		T*	493478	0	484840	0
SJC1-100-10-5-30-5	320747	1	338038	0	349475	0
		T*	388990	0	358428	0
SJC2-200-5-5-15-1	545286	1	566968	1	564539	2
		T*	698165	2	699561	6
SJC2-200-5-5-15-2	750563	1	789367	5	791668	6
		T*	805866	10	805109	11
SJC2-200-5-5-15-3	776983	1	804348	4	803903	6
		T*	846824	8	837896	15
SJC2-200-5-5-15-4	533134	1	576338	2	584099	4
		T*	570445	5	578795	9
SJC2-200-5-5-15-5	839878	1	876962	6	862601	10
		T*	922491	12	928521	20
SJC2-200-10-5-15-1	1948380	1	2078330	7	2088890	10
		T*	2079120	13	2118420	29
SJC2-200-10-5-15-2	1627960	1	1717970	4	1716510	5
		T*	1720350	10	1728540	15
SJC2-200-10-5-15-3	1829110	1	1948230	6	1948230	7
		T*	1952580	15	1923920	16
SJC2-200-10-5-15-4	1769090	1	1856320	5	1843000	7
		T*	1883900	15	1864420	20
SJC2-200-10-5-15-5	1575870	1	1681290	1	1634400	4
		T*	1661050	5	1663260	9

Table C. 2 (Cont.)

SJC2-200-5-5-30-1	707220	1	729886	4	730177	4
		T*	865128	10	813023	10
SJC2-200-5-5-30-2	441991	1	471115	2	466105	2
		T*	512766	3	493982	4
SJC2-200-5-5-30-3	407197	1	451521	2	446130	4
		T*	438981	2	426839	6
SJC2-200-5-5-30-4	743608	1	776174	5	783878	7
		T*	832786	12	835549	14
SJC2-200-5-5-30-5	626238	1	669047	5	656677	8
		T*	710315	12	710315	10
SJC2-200-10-5-30-1	1636560	1	1740210	8	1743240	9
		T*	1860490	21	1862190	18
SJC2-200-10-5-30-2	1286130	1	1350940	3	1401010	7
		T*	1399570	14	1375210	17
SJC2-200-10-5-30-3	1179740	1	1267400	3	1299980	6
		T*	1277790	6	1240470	14
SJC2-200-10-5-30-4	1153260	1	1209380	4	1208150	4
		T*	1555080	4	1555810	5
SJC2-200-10-5-30-5	1030060	1	1128640	2	1102620	4
		T*	1137810	4	1131500	6
SJC3-300-5-5-15-1	1104020	1	1132810	23	1151370	25
		T*	1148910	34	1148910	51
SJC3-300-5-5-15-2	967640	1	1037030	11	1010560	30
		T*	1001500	29	1018580	69
SJC3-300-5-5-15-3	1216780	1	1236930	31	1236930	32
		T*	1243690	46	1243690	69
SJC3-300-5-5-15-4	1325290	1	1358090	37	1369190	36
		T*	1397150	37	1399370	47
SJC3-300-5-5-15-5	1225150	1	1263330	43	1257180	46
		T*	1315840	46	1323490	59
SJC3-300-10-5-15-1	2982250	1	3102980	35	3116530	46
		T*	3526200	53	3456630	89
SJC3-300-10-5-15-2	2661330	1	2810590	35	2789170	49
		T*	2790590	53	2789930	97
SJC3-300-10-5-15-3	3001280	1	3096470	40	3093040	38
		T*	3103080	74	3119050	81
SJC3-300-10-5-15-4	3287360		3437250	45	3423730	55
		T*	3459320	76	3465090	100
SJC3-300-10-5-15-5	2792670	1	2903540	18	2877900	45
		T*	2912610	45	2933510	76
SJC3-300-5-5-30-1	577993	1	596280	3	619429	4
		T*	605070	5	612988	11
SJC3-300-5-5-30-2	603527	1	664316	3	635833	7
		T*	643792	10	647095	19
SJC3-300-5-5-30-3	786640	1	814533	7	812308	22
		T*	852779	17	870398	29
SJC3-300-5-5-30-4	769035	1	805157	17	807294	20
		T*	799702	12	800837	23
SJC3-300-5-5-30-5	956705	1	985224	35	982458	36
		T*	1049370	43	1051310	35
SJC3-300-10-5-30-1	2286980	1	2433430	33	2424680	43
		T*	2499250	46	2446540	74
SJC3-300-10-5-30-2	2014790	1	2126600	27	2107850	36
		T*	2360700	46	2352080	45
SJC3-300-10-5-30-3	2462820	1	2558620	32	2548960	53
		T*	2587750	57	2569360	77
SJC3-300-10-5-30-4	2112250	1	2194440	11	2201510	19
		T*	2356900	23	2209960	47
SJC3-300-10-5-30-5	1695500	1	1784690	9	1813400	13
		T*	1914200	19	1846480	30

Table C. 3 Results for the myopic heuristic starting from the last period and DBnP with different target values for the first problem class for the instances in the subset A of the second group of the test instances

Instance	$\begin{gathered} \text { LPR } \\ (\mathbf{1 0 0 0}) \end{gathered}$	Target	$\begin{gathered} \text { UB } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \text { Best } \\ (1000) \end{gathered}$	$\begin{gathered} \hline \text { UB } \\ \text { Time } \\ (\mathrm{sec}) \end{gathered}$	Total Time (sec)
SJC1-100-5-5-15-1	239996	0.7	243109	239996	0	0
		0.8	243109	239996	0	0
		0.9	243109	239996	0	0
SJC1-100-5-5-15-2	250250	0.7	250250	250250	0	0
		0.8	250250	250250	0	0
		0.9	250250	250250	0	0
SJC1-100-5-5-15-3	307672	0.7	309433	307672	0	0
		0.8	309433	307672	0	0
		0.9	309433	307672	0	0
SJC1-100-5-5-15-4	322351	0.7	323244	322351	0	0
		0.8	323244	322351	0	0
		0.9	323244	322351	0	0
SJC1-100-5-5-15-5	276830	0.7	277642	276830	0	0
		0.8	277642	276830	0	0
		0.9	277642	276830	0	0
SJC1-100-10-5-15-1	710450	0.7	713051	710450	1	2
		0.8	713051	710450	1	2
		0.9	713051	710450	1	2
SJC1-100-10-5-15-2	683637	0.7	689325	683637	0	1
		0.8	689325	683637	0	1
		0.9	689325	683637	0	1
SJC1-100-10-5-15-3	769260	0.7	771773	769260	1	1
		0.8	771773	769260	1	1
		0.9	771773	769260	1	1
SJC1-100-10-5-15-4	743768	0.7	746682	743768	1	1
		0.8	746682	743768	1	1
		0.9	746682	743768	0	1
SJC1-100-10-5-15-5	781528	0.7	785490	782205	1	3
		0.8	785490	782205	1	3
		0.9	785490	782205	1	3
SJC1-100-5-5-30-1	155090	0.7	155229	155090	0	0
		0.8	155229	155090	0	0
		0.9	155229	155090	0	0
SJC1-100-5-5-30-2	81480.1	0.7	83853.4	81480.1	0	0
		0.8	83853.4	81480.1	0	0
		0.9	83853.4	81480.1	0	0
SJC1-100-5-5-30-3	161836	0.7	161841	161836	0	0
		0.8	161841	161836	0	0
		0.9	161841	161836	0	0
SJC1-100-5-5-30-4	242616	0.7	243014	242616	0	1
		0.8	243014	242616	0	1
		0.9	243014	242616	0	1
SJC1-100-5-5-30-5	159621	0.7	159621	159621	0	0
		0.8	159621	159621	0	0
		0.9	159621	159621	0	0
SJC1-100-10-5-30-1	319889	0.7	322786	319889	0	0
		0.8	322786	319889	0	0
		0.9	322786	319889	0	0
SJC1-100-10-5-30-2	547685	0.7	550898	547685	0	1
		0.8	550898	547685	0	1
		0.9	550898	547685	0	1
SJC1-100-10-5-30-3	564485	0.7	570009	564485	0	1
		0.8	570009	564485	0	1
		0.9	570009	564485	0	1
SJC1-100-10-5-30-4	445619	0.7	446268	445619	0	0
		0.8	446268	445619	0	0
		0.9	446268	445619	0	0

Table C. 3 (Cont.)

SJC1-100-10-5-30-5	320747	0.7	322585	320747	0	0
		0.8	322585	320747	0	0
		0.9	322585	320747	0	0
SJC2-200-5-5-15-1	545286	0.7	547090	545286	2	11
		0.8	547090	545286	2	11
		0.9	547090	545286	2	11
SJC2-200-5-5-15-2	750563	0.7	750582	750582	4	8
		0.8	750582	750582	4	8
		0.9	750582	750582	4	8
SJC2-200-5-5-15-3	776983	0.7	779812	776983	6	19
		0.8	779812	776983	6	19
		0.9	779812	776983	6	19
SJC2-200-5-5-15-4	533134	0.7	534771	533134	3	8
		0.8	534771	533134	3	8
		0.9	534771	533134	3	8
SJC2-200-5-5-15-5	839878	0.7	839909	839878	7	22
		0.8	839909	839878	7	22
		0.9	839909	839878	7	22
SJC2-200-10-5-15-1	1948380	0.7	1950800	1948380	12	27
		0.8	1950800	1948380	12	27
		0.9	1950800	1948380	12	27
SJC2-200-10-5-15-2	1627960	0.7	1630810	1627960	8	25
		0.8	1630810	1627960	8	24
		0.9	1630810	1627960	8	24
SJC2-200-10-5-15-3	1829110	0.7	1830950	1829110	8	85
		0.8	1830950	1829110	8	84
		0.9	1830950	1829110	8	85
SJC2-200-10-5-15-4	1769090	0.7	1772960	1769240	8	210
		0.8	1772960	1769240	8	211
		0.9	1772960	1769240	8	210
SJC2-200-10-5-15-5	1575870	0.7	1578780	1575870	6	38
		0.8	1578780	1575870	6	39
		0.9	1578780	1575870	6	38
SJC2-200-5-5-30-1	707220	0.7	708155	707220	4	10
		0.8	708155	707220	4	10
		0.9	708155	707220	4	10
SJC2-200-5-5-30-2	441991	0.7	445466	442212	1	10
		0.8	445466	442212	1	11
		0.9	445466	442212	1	10
SJC2-200-5-5-30-3	407197	0.7	407197	407197	1	2
		0.8	407197	407197	1	2
		0.9	407197	407197	1	2
SJC2-200-5-5-30-4	743608	0.7	745225	743800	6	58
		0.8	745225	743800	6	58
		0.9	745225	743800	6	58
SJC2-200-5-5-30-5	626238	0.7	626800	626238	3	6
		0.8	626800	626238	3	6
		0.9	626800	626238	3	6
SJC2-200-10-5-30-1	1636560	0.7	1642980	1636590	8	19
		0.8	1642980	1636590	8	21
		0.9	1642980	1636590	8	20
SJC2-200-10-5-30-2	1286130	0.7	1291660	1286410	5	15
		0.8	1291660	1286410	5	31
		0.9	1291660	1286410	5	52
SJC2-200-10-5-30-3	1179740	0.7	1187490	1179740	3	11
		0.8	1187490	1179740	3	11
		0.9	1187490	1179740	3	11
SJC2-200-10-5-30-4	1153260	0.7	1156160	1153420	3	12
		0.8	1156160	1153420	3	12
		0.9	1156160	1153420	3	12
SJC2-200-10-5-30-5	1030060	0.7	1035300	1030070	3	23
		0.8	1035300	1030070	3	23
		0.9	1035300	1030070	3	23
SJC3-300-5-5-15-1	1104020	0.7	1109050	1104020	18	155
		0.8	1109050	1104020	18	155
		0.9	1109050	1104020	18	155

Table C. 3 (Cont.)

SJC3-300-5-5-15-2	967640	0.7	974207	967650	18	128
		0.8	974207	967650	18	128
		0.9	974207	967650	18	128
SJC3-300-5-5-15-3	1216780	0.7	1218980	1216780	29	101
		0.8	1218980	1216780	30	103
		0.9	1218980	1216780	29	101
SJC3-300-5-5-15-4	1325290	0.7	1330970	1325290	33	265
		0.8	1330970	1325290	33	264
		0.9	1330970	1325290	33	265
SJC3-300-5-5-15-5	1225150	0.7	1226850	1225150	29	156
		0.8	1226850	1225150	29	155
		0.9	1226850	1225150	29	156
SJC3-300-10-5-15-1	2982250	0.7	2985360	2982250	48	692
		0.8	2985360	2982250	48	691
		0.9	2985360	2982250	48	693
SJC3-300-10-5-15-2	2661330	0.7	2672390	2662220	41	2975
		0.8	2672390	2662220	40	3034
		0.9	2672390	2662220	40	20184
SJC3-300-10-5-15-3	3001280	0.7	3003550	3001280	50	711
		0.8	3003550	3001280	50	710
		0.9	3003550	3001280	50	711
SJC3-300-10-5-15-4	3287360	0.7	3289590	3287360	67	370
		0.8	3289590	3287360	67	371
		0.9	3289590	3287360	67	370
SJC3-300-10-5-15-5	2792670	0.7	2796160	2792840	36	360
		0.8	2796160	2792840	36	478
		0.9	2796160	2792840	37	479
SJC3-300-5-5-30-1	577993	0.7	581549	577993	4	13
		0.8	581549	577993	4	13
		0.9	581549	577993	4	13
SJC3-300-5-5-30-2	603527	0.7	610644	603590	3	57
		0.8	610644	603590	3	59
		0.9	610644	603590	3	58
SJC3-300-5-5-30-3	786640	0.7	789735	786668	8	24
		0.8	789735	786668	8	50
		0.9	789735	786668	8	49
SJC3-300-5-5-30-4	769035	0.7	777242	769041	8	40
		0.8	777242	769041	8	46
		0.9	777242	769041	8	46
SJC3-300-5-5-30-5	956705	0.7	960126	956705	22	51
		0.8	960126	956705	22	51
		0.9	960126	956705	22	51
SJC3-300-10-5-30-1	2286980	0.7	2298250	2286990	23	661
		0.8	2298250	2286990	23	662
		0.9	2298250	2286990	23	661
SJC3-300-10-5-30-2	2014790	0.7	2021090	2014790	30	97
		0.8	2021090	2014790	30	97
		0.9	2021090	2014790	30	97
SJC3-300-10-5-30-3	2462820	0.7	2467280	2462990	36	441
		0.8	2467280	2462990	36	467
		0.9	2467280	2462990	35	476
SJC3-300-10-5-30-4	2112250	0.7	2116030	2112250	25	336
		0.8	2116030	2112250	24	335
		0.9	2116030	2112250	25	335
SJC3-300-10-5-30-5	1695500	0.7	1701830	1695620	11	65
		0.8	1701830	1695620	11	331
		0.9	1701830	1695620	11	331

Table C. 4 Results for the first problem class obtained by DBnP

Instance	$\begin{gathered} \text { UB } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \text { Best } \\ (1000) \end{gathered}$	$\begin{gathered} \text { LPR } \\ (\mathbf{1 0 0 0}) \end{gathered}$	UB Time (sec)	NN	Total Time (sec)
SJC1-100-5-5-15-1	243109	239996	239996	0	1	0
SJC1-100-5-5-15-2	250250	250250	250250	0	1	0
SJC1-100-5-5-15-3	309433	307672	307672	0	1	0
SJC1-100-5-5-15-4	323244	322351	322351	0	1	0
SJC1-100-5-5-15-5	277642	276830	276830	0	1	0
SJC1-100-5-5-30-1	155229	155090	155090	0	1	0
SJC1-100-5-5-30-2	83853.4	81480.1	81480.1	0	1	0
SJC1-100-5-5-30-3	161841	161836	161836	0	1	0
SJC1-100-5-5-30-4	243014	242616	242616	0	1	1
SJC1-100-5-5-30-5	159621	159621	159621	0	1	0
SJC1-100-10-5-15-1	713051	710450	710450	1	1	2
SJC1-100-10-5-15-2	689325	683637	683637	0	1	1
SJC1-100-10-5-15-3	771773	769260	769260	1	1	1
SJC1-100-10-5-15-4	746682	743768	743768	1	1	1
SJC1-100-10-5-15-5	785490	782205	781528	1	7	3
SJC1-100-10-5-30-1	322786	319889	319889	0	1	0
SJC1-100-10-5-30-2	550898	547685	547685	0	1	1
SJC1-100-10-5-30-3	570009	564485	564485	0	1	1
SJC1-100-10-5-30-4	446268	445619	445619	0	1	0
SJC1-100-10-5-30-5	322585	320747	320747	0	1	0
SJC2-200-5-5-15-1	547090	545286	545286	2	8	11
SJC2-200-5-5-15-2	750582	750582	750563	4	3	8
SJC2-200-5-5-15-3	779812	776983	776983	6	1	19
SJC2-200-5-5-15-4	534771	533134	533134	3	1	8
SJC2-200-5-5-15-5	839909	839878	839878	7	1	22
SJC2-200-5-5-30-1	708155	707220	707220	4	1	10
SJC2-200-5-5-30-2	445466	442212	441991	1	45	10
SJC2-200-5-5-30-3	407197	407197	407197	1	1	2
SJC2-200-5-5-30-4	745225	743800	743608	6	19	58
SJC2-200-5-5-30-5	626800	626238	626238	3	1	6
SJC2-200-10-5-15-1	1950800	1948380	1948380	12	1	27
SJC2-200-10-5-15-2	1630810	1627960	1627960	8	1	25
SJC2-200-10-5-15-3	1830950	1829110	1829110	8	3	85
SJC2-200-10-5-15-4	1772960	1769240	1769090	8	33	210
SJC2-200-10-5-15-5	1578780	1575870	1575870	6	1	38
SJC2-200-10-5-30-1	1642980	1636590	1636560	8	15	19
SJC2-200-10-5-30-2	1291660	1286410	1286130	5	13	15
SJC2-200-10-5-30-3	1187490	1179740	1179740	3	1	11
SJC2-200-10-5-30-4	1156160	1153420	1153260	3	11	12
SJC2-200-10-5-30-5	1035300	1030070	1030060	3	19	23
SJC3-300-5-5-15-1	1109050	1104020	1104020	18	1	155
SJC3-300-5-5-15-2	974207	967650	967640	18	3	128
SJC3-300-5-5-15-3	1218980	1216780	1216780	29	1	101
SJC3-300-5-5-15-4	1330970	1325290	1325290	33	1	265
SJC3-300-5-5-15-5	1226850	1225150	1225150	29	1	156
SJC3-300-5-5-30-1	581549	577993	577993	4	1	13
SJC3-300-5-5-30-2	610644	603590	603527	3	5	57
SJC3-300-5-5-30-3	789735	786668	786640	8	11	24
SJC3-300-5-5-30-4	777242	769041	769035	8	3	40
SJC3-300-5-5-30-5	960126	956705	956705	22	1	51
SJC3-300-10-5-15-1	2985360	2982250	2982250	48	12	692
SJC3-300-10-5-15-2	2672390	2662220	2661330	41	59	2975
SJC3-300-10-5-15-3	3003550	3001280	3001280	50	1	711
SJC3-300-10-5-15-4	3289590	3287360	3287360	67	1	370
SJC3-300-10-5-15-5	2796160	2792840	2792670	36	10	360
SJC3-300-10-5-30-1	2298250	2286990	2286980	23	6	661
SJC3-300-10-5-30-2	2021090	2014790	2014790	30	1	97
SJC3-300-10-5-30-3	2467280	2462990	2462820	36	19	441
SJC3-300-10-5-30-4	2116030	2112250	2112250	25	1	336
SJC3-300-10-5-30-5	1701830	1695620	1695500	11	5	65
SJC4-402-5-5-15-1	1510960	1504030	1503660	136	5	2707
SJC4-402-5-5-15-2	1868060	1866350	1866350	259	1	1410
SJC4-402-5-5-15-3	1800900	1797500	1797500	232	1	1025

Table C. 4 (Cont.)

SJC4-402-5-5-15-4	1705570	1702900	1702580	157	7	2032
SJC4-402-5-5-15-5	1721030	1719800	1719790	277	5	1245
SJC4-402-5-5-30-1	1068210	1065680	1065680	56	1	227
SJC4-402-5-5-30-2	1130940	1126200	1126200	76	1	165
SJC4-402-5-5-30-3	1269070	1264750	1264730	67	3	496
SJC4-402-5-5-30-4	1402390	1398140	1398140	135	1	232
SJC4-402-5-5-30-5	1491980	1489310	1489240	125	15	511
SJC4-402-10-5-15-1	4056270	4051010	4051010	316	5	3692
SJC4-402-10-5-15-2	5067660	5064430	5064410	543	5	5336
SJC4-402-10-5-15-3	3718160	3715100	3715100	220	4	5068
SJC4-402-10-5-15-4	4828820	4826850	4825850	216	104	36161
SJC4-402-10-5-15-5	4526950	4525240	4525060	358	10	6101
SJC4-402-10-5-30-1	3316030	3309010	3308960	242	3	970
SJC4-402-10-5-30-2	3337080	3332510	3331960	117	444	36339
SJC4-402-10-5-30-3	3562430	3554690	3554590	242	16	1919
SJC4-402-10-5-30-4	3496360	3486530	3485790	86	401	34276
SJC4-402-10-5-30-5	3080070	3077690	3077660	148	7	1568
AP-200-5-5-15-1	6205220000	6187870000	6187870000	11	1	76
AP-200-5-5-15-2	5607840000	5604590000	5604590000	7	1	41
AP-200-5-5-15-3	5077120000	5076630000	5076630000	8	1	33
AP-200-5-5-15-4	5860900000	5857510000	5857280000	9	3	47
AP-200-5-5-15-5	3951740000	3951460000	3951460000	3	1	18
AP-200-5-5-30-1	3217260000	3214620000	3214620000	2	1	7
AP-200-5-5-30-2	3289450000	3284170000	3284170000	3	1	7
AP-200-5-5-30-3	2505310000	2503140000	2503140000	2	1	4
AP-200-5-5-30-4	3314780000	3307490000	3307490000	2	1	7
AP-200-5-5-30-5	3013130000	3009720000	3009310000	1	9	8
AP-200-10-5-15-1	14536300000	14535200000	14535200000	16	1	88
AP-200-10-5-15-2	11995500000	11988100000	11988100000	13	1	88
AP-200-10-5-15-3	12891800000	12891100000	12891100000	14	1	97
AP-200-10-5-15-4	14201400000	14201200000	14201200000	18	1	153
AP-200-10-5-15-5	15633700000	15625600000	15622000000	23	47	956
AP-200-10-5-30-1	16615000000	16610700000	16610700000	26	1	229
AP-200-10-5-30-2	11006900000	11006500000	11006300000	10	3	50
AP-200-10-5-30-3	9777930000	9775510000	9775500000	10	3	26
AP-200-10-5-30-4	8160810000	8153200000	8153200000	8	1	29
AP-200-10-5-30-5	10159300000	10145500000	10144300000	8	9	86
CAPA-1000-5-5-15-1	148280000	148276000	148242000	44	7	151
CAPA-1000-5-5-15-2	150225000	150179000	149981000	86	725	8232
CAPA-1000-5-5-15-3	133982000	133952000	133952000	33	1	119
CAPA-1000-5-5-15-4	119525000	119486000	119047000	57	4105	36014
CAPA-1000-5-5-15-5	113766000	113704000	113477000	22	345	1844
CAPA-1000-5-5-30-1	86142700	85943400	85654600	21	3035	14471
CAPA-1000-5-5-30-2	111895000	111762000	111671000	41	135	709
CAPA-1000-5-5-30-3	66854100	66746400	66710800	5	155	159
CAPA-1000-5-5-30-4	93185100	93114700	92875300	21	21	123
CAPA-1000-5-5-30-5	84918800	84799700	84555600	14	357	1030
CAPA-1000-10-5-15-1	387224000	387162000	386902000	134	215	4269
CAPA-1000-10-5-15-2	317080000	317047000	317047000	44	1	288
CAPA-1000-10-5-15-3	341414000	341356000	341061000	80	165	3471
CAPA-1000-10-5-15-4	407829000	407574000	407187000	122	1299	29566
CAPA-1000-10-5-15-5	320630000	320464000	319718000	110	3404	36002
CAPA-1000-10-5-30-1	309475000	309125000	308745000	84	3329	36018
CAPA-1000-10-5-30-2	273748000	273597000	273453000	44	61	495
CAPA-1000-10-5-30-3	260797000	260783000	260662000	61	2271	15536
CAPA-1000-10-5-30-4	201243000	201103000	200940000	20	101	851
CAPA-1000-10-5-30-5	242045000	242045000	241126000	107	3218	36019
CAPB-1000-5-5-15-1	136096000	136041000	135961000	33	67	469
CAPB-1000-5-5-15-2	148221000	148218000	148099000	35	35	253
CAPB-1000-5-5-15-3	120090000	120024000	119944000	21	21	144
CAPB-1000-5-5-15-4	110500000	110461000	110339000	15	23	173
CAPB-1000-5-5-15-5	125946000	125790000	125683000	29	5	108
CAPB-1000-5-5-30-1	126651000	126651000	126595000	28	11	132
CAPB-1000-5-5-30-2	92673200	92587000	92405400	35	37	213
CAPB-1000-5-5-30-3	131543000	131543000	131437000	29	9	135
CAPB-1000-5-5-30-4	86508500	86507200	86481800	13	27	98

Table C. 4 (Cont.)

CAPB-1000-5-5-30-5	94301400	94268500	94268500	10	1	42
CAPB-1000-10-5-15-1	345803000	345722000	345200000	78	2925	36003
CAPB-1000-10-5-15-2	340441000	340358000	340091000	71	189	2180
CAPB-1000-10-5-15-3	371312000	371308000	370779000	109	169	3568
CAPB-1000-10-5-15-4	399976000	399964000	399487000	138	1245	23379
CAPB-1000-10-5-15-5	347184000	346943000	346756000	55	803	8363
CAPB-1000-10-5-30-1	264348000	264348000	263572000	43	2289	36009
CAPB-1000-10-5-30-2	251090000	250920000	250464000	48	597	3616
CAPB-1000-10-5-30-3	236650000	236650000	236594000	22	9	170
CAPB-1000-10-5-30-4	237833000	237665000	237470000	38	2289	15308
CAPB-1000-10-5-30-5	281992000	281845000	281845000	36	1	200
CAPC-1000-5-5-15-1	121411000	121411000	121339000	22	53	538
CAPC-1000-5-5-15-2	133716000	133660000	133349000	52	265	3962
CAPC-1000-5-5-15-3	110869000	110861000	110777000	16	41	451
CAPC-1000-5-5-15-4	124092000	123989000	123798000	58	279	2404
CAPC-1000-5-5-15-5	149242000	149234000	148799000	74	343	3863
CAPC-1000-5-5-30-1	93942700	93891900	93748800	16	693	3593
CAPC-1000-5-5-30-2	112787000	112749000	112713000	25	9	110
CAPC-1000-5-5-30-3	89508600	89382500	89233100	15	461	1991
CAPC-1000-5-5-30-4	92206900	92013600	91911700	12	961	1966
CAPC-1000-5-5-30-5	135006000	134899000	134490000	104	3391	36057
CAPC-1000-10-5-15-1	380418000	380337000	379939000	133	1348	36012
CAPC-1000-10-5-15-2	354532000	354477000	353465000	114	2577	36030
CAPC-1000-10-5-15-3	384051000	383924000	383050000	157	1540	36046
CAPC-1000-10-5-15-4	323873000	323835000	323637000	57	15	717
CAPC-1000-10-5-15-5	382444000	382364000	382294000	91	13	602
CAPC-1000-10-5-30-1	237512000	237265000	237066000	54	263	1656
CAPC-1000-10-5-30-2	296009000	295894000	295496000	78	2344	36002
CAPC-1000-10-5-30-3	374279000	374166000	374048000	82	1647	36001
CAPC-1000-10-5-30-4	280428000	280332000	280133000	40	35	662
CAPC-1000-10-5-30-5	292320000	292150000	291667000	96	2505	36016

SECOND PROBLEM CLASS

Table C. 5 Results for the myopic heuristic for the second problem class for the instances in the subset A of the second group of the test instances

Instance	$\begin{gathered} \text { LPR } \\ (1000) \end{gathered}$	\boldsymbol{h}	$\begin{gathered} \text { UB } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \hline \text { UB } \\ \text { Time } \\ (\mathrm{sec}) \end{gathered}$
SJC1-100-5-5-15-1	238486	1	249060	0
		3	244392	0
		5	240882	0
SJC1-100-5-5-15-2	246667	1	254493	0
		3	258912	0
		5	248025	0
SJC1-100-5-5-15-3	306493	1	312173	0
		3	312107	0
		5	309025	0
SJC1-100-5-5-15-4	319954	1	324199	0
		3	323378	0
		5	323389	0
SJC1-100-5-5-15-5	276360	1	280824	1
		3	284865	0
		5	284134	0
SJC1-100-10-5-15-1	704514	1	707778	1
		4	712885	1
		7	716368	1
		10	705328	1
SJC1-100-10-5-15-2	673772	1	675706	0
		4	676254	0
		7	677481	0
		10	686228	0
SJC1-100-10-5-15-3	763588	1	814493	0
		4	813934	0
		7	779044	1
		10	767286	1
SJC1-100-10-5-15-4	743681	1	813911	1
		4	807617	1
		7	816121	1
		10	753918	0
SJC1-100-10-5-15-5	770627	1	777656	1
		4	780830	1
		7	779673	1
		10	772653	1
SJC1-100-5-5-30-1	154269	1	167163	0
		3	166742	0
		5	159946	0
SJC1-100-5-5-30-2	77849	1	79614.2	0
		3	83195.7	0
		5	88932.3	0
SJC1-100-5-5-30-3	163523	1	177516	0
		3	200532	0
		5	192358	0
SJC1-100-5-5-30-4	238154	1	238222	0
		3	238154	0
		5	240840	0
SJC1-100-5-5-30-5	159621	1	210988	0
		3	159621	0
		5	159621	0
SJC1-100-10-5-30-1	315286	1	325461	0
		4	325175	0
		7	321109	0
		10	322872	0

Table C. 5 (Cont.)

SJC1-100-10-5-30-2	542355	1	583677	0
		4	589066	0
		7	552881	0
		10	543539	0
SJC1-100-10-5-30-3	559955	1	568262	0
		4	569216	0
		7	574427	0
		10	567425	0
SJC1-100-10-5-30-4	441952	1	452184	0
		4	447773	0
		7	455324	0
		10	452360	0
SJC1-100-10-5-30-5	318805	1	327734	0
		4	328026	0
		7	323643	0
		10	324482	0
SJC2-200-5-5-15-1	540157	1	543103	5
		3	549903	4
		5	544075	5
SJC2-200-5-5-15-2	749572	1	760364	8
		3	755484	6
		5	760259	9
SJC2-200-5-5-15-3	774283	1	779905	15
		3	777773	10
		5	787738	10
SJC2-200-5-5-15-4	526088	1	526899	6
		3	528519	5
		5	536832	5
SJC2-200-5-5-15-5	836620	1	843181	20
		3	843763	23
		5	839484	11
SJC2-200-10-5-15-1	1957640	1	1974660	21
		4	1985710	18
		7	1987950	16
		10	2033200	19
SJC2-200-10-5-15-2	1619710	1	1628990	14
		4	1627870	14
		7	1630230	25
		10	1631750	12
SJC2-200-10-5-15-3	1824750	1	1850990	16
		4	1864960	14
		7	1873880	15
		10	1858380	19
SJC2-200-10-5-15-4	1771860	1	1846530	7
		4	1951210	7
		7	1778470	7
		10	1779630	8
SJC2-200-10-5-15-5	1573460	1	1627060	6
		4	1602840	7
		7	1597640	7
		10	1594690	6
SJC2-200-5-5-30-1	707899	1	721542	9
		3	746132	10
		5	715683	10
SJC2-200-5-5-30-2	437824	1	439813	3
		3	441559	3
		5	469577	4071
SJC2-200-5-5-30-3	410289	1	424692	3
		3	425879	3
		5	427849	2
SJC2-200-5-5-30-4	742331	1	748446	11
		3	764433	12
		5	745984	12
SJC2-200-5-5-30-5	632574	1	655222	10
		3	684079	8
		5	643993	10

Table C. 5 (Cont.)

SJC2-200-10-5-30-1	1627260	1	1681410	14
		4	1682300	13
		7	1639210	15
		10	1714130	15
SJC2-200-10-5-30-2	1283660	1	1300070	8
		4	1291000	11
		7	1305040	10
		10	1331330	10
SJC2-200-10-5-30-3	1168220	1	1189010	8
		4	1189200	6
		7	1197220	7
		10	1176940	6
SJC2-200-10-5-30-4	1146500	1	1180150	3
		4	1173650	5
		7	1180920	3
		10	1175370	3
SJC2-200-10-5-30-5	1027940	1	1060290	4
		4	1146820	5
		7	1069270	11
		10	1080820	3
SJC3-300-5-5-15-1	1096180	1	1106910	58
		3	1102840	63
		5	1100700	33
SJC3-300-5-5-15-2	962181	1	977908	38
		3	966829	31
		5	969259	42
SJC3-300-5-5-15-3	1214680	1	1218670	50
		3	1226740	49
		5	1228470	62
SJC3-300-5-5-15-4	1323320	1	1330390	59
		3	1329600	49
		5	1395450	77
SJC3-300-5-5-15-5	1224260	1	1228210	85
		3	1249600	76
		5	1236390	66
SJC3-300-10-5-15-1	2970600	1	3023250	106
		4	3030610	115
		7	3006860	120
		10	3009660	106
SJC3-300-10-5-15-2	2657210	1	2708060	86
		4	2669440	75
		7	2666370	70
		10	2672660	67
SJC3-300-10-5-15-3	2990380	1	3005550	601
		4	3000550	561
		7	2998970	105
		10	3050210	80
SJC3-300-10-5-15-4	3280360	1	3313820	106
		4	3305640	101
		7	3345940	94
		10	3377080	420
SJC3-300-10-5-15-5	2795230	1	2820950	72
		4	2832410	76
		7	2815240	57
		10	2888960	77
SJC3-300-5-5-30-1	574042	1	581500	5
		3	581562	7
		5	581980	10
SJC3-300-5-5-30-2	592962	1	597934	9
		3	599774	18
		5	595964	9
SJC3-300-5-5-30-3	784820	1	799849	16
		3	789605	13
		5	790295	17

Table C. 5 (Cont.)

SJC3-300-5-5-30-4	758524	1	777138	27
		3	764734	28
		5	761333	17
SJC3-300-5-5-30-5	952841	1	992633	54
		3	974354	50
		5	966130	43
SJC3-300-10-5-30-1	2292200	1	2367220	103
		4	2313820	63
		7	2544120	58
		10	2368220	37
SJC3-300-10-5-30-2	2015440	1	2028070	57
		4	2072260	50
		7	2063570	46
		10	2072180	106
SJC3-300-10-5-30-3	2462190	1	2487510	78
		4	2502110	72
		7	2476100	71
		10	2485760	71
SJC3-300-10-5-30-4	2099690	1	2114190	51
		4	2103890	47
		7	2105170	57
		10	2104890	57
SJC3-300-10-5-30-5	1688620	1	1722150	23
		4	1713370	23
		7	1722120	24
		10	1702970	22

Table C. 6 Results for the progressive heuristics for the second problem class for the instances in the subset A of the second group of the test instances

Instance	$\begin{gathered} \text { LPR } \\ (\mathbf{1 0 0 0}) \end{gathered}$	\boldsymbol{h}	Progressive-1		Progressive-2	
			$\begin{gathered} \text { UB } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \hline \text { UB } \\ \text { Time } \\ (\mathrm{sec}) \end{gathered}$	$\begin{gathered} \text { UB } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \hline \text { UB } \\ \text { Time } \\ \text { (sec) } \\ \hline \end{gathered}$
SJC1-100-5-5-15-1	238486	1	256061	0	257625	0
		T*	248456	0	252511	0
SJC1-100-5-5-15-2	246667	1	261363	0	279087	0
		T*	271713	0	273360	0
SJC1-100-5-5-15-3	306493	1	326257	0	331730	0
		T*	322957	0	334958	0
SJC1-100-5-5-15-4	319954	1	341413	0	334226	0
		T*	361217	0	366707	0
SJC1-100-5-5-15-5	276360	1	300361	0	290959	0
		T*	303263	0	305978	0
SJC1-100-10-5-15-1	704514	1	744914	0	761553	0
		T*	758701	0	750232	1
SJC1-100-10-5-15-2	673772	,	738309	0	741972	0
		T*	801409	0	774831	0
SJC1-100-10-5-15-3	763588	1	818043	0	812174	0
		T*	780896	0	782762	1
SJC1-100-10-5-15-4	743681	1	807516	0	805099	0
		T*	780320	0	771543	1
SJC1-100-10-5-15-5	770627	1	820077	0	812245	0
		T*	859165	0	859165	1
SJC1-100-5-5-30-1	154269	1	166110	0	165993	0
		T*	274287	0	274298	0
SJC1-100-5-5-30-2	77849	1	111472	0	91647.2	0
		T*	85970.4	0	88380.3	0
SJC1-100-5-5-30-3	16352	1	181795	0	176227	0
		T*	181855	0	176118	0
SJC1-100-5-5-30-4	238154	1	310110	0	253647	0
		T*	287069	0	287069	0
SJC1-100-5-5-30-5	159621	1	165224	0	173484	0
		T*	230019	0	231525	0
SJC1-100-10-5-30-1	315286	1	476279	0	364222	0
		T*	351189	0	356418	0
SJC1-100-10-5-30-2	542355	1	588894	0	587361	0
		T*	713853	0	681699	0
SJC1-100-10-5-30-3	559955	1	614636	0	602661	0
		T*	646395	0	589094	0
SJC1-100-10-5-30-4	441952	1	491822	0	499196	0
		T*	493478	0	484840	1
SJC1-100-10-5-30-5	318805	1	338038	0	349475	0
		T*	388990	0	358428	0
SJC2-200-5-5-15-1	540157	1	566968	1	564539	2
		T*	698165	2	699561	6
SJC2-200-5-5-15-2	749572	1	789367	5	791668	6
		T*	805866	10	805109	11
SJC2-200-5-5-15-3	774283	1	804348	4	803903	6
		T*	846824	8	837896	15
SJC2-200-5-5-15-4	526088	1	576338	2	584099	5
		T*	570445	5	578795	9
SJC2-200-5-5-15-5	836620	1	876962	6	862601	10
		T*	922491	12	928521	20
SJC2-200-10-5-15-1	1957640	1	2078330	7	2088890	10
		T*	2079120	13	2118420	29
SJC2-200-10-5-15-2	1619710	1	1717970	4	1716510	5
		T*	1720350	10	1728540	14
SJC2-200-10-5-15-3	1824750	1	1948230	6	1948230	7
		T*	1952580	15	1923920	17
SJC2-200-10-5-15-4	1771860	1	1856320	5	1843000	7
		T*	1883900	15	1864420	20
SJC2-200-10-5-15-5	1573460	1	1681290	1	1634400	4
		T*	1661050	5	1663260	9

Table C. 6 (Cont.)

SJC2-200-5-5-30-1	707899	1	729886	4	730177	4
		T*	865128	10	813023	10
SJC2-200-5-5-30-2	437824	1	471115	2	466105	2
		T*	512766	3	493982	4
SJC2-200-5-5-30-3	410289	1	451521	2	446130	4
		T*	438981	2	426839	6
SJC2-200-5-5-30-4	742331	1	776174	5	783878	7
		T*	832786	12	835549	14
SJC2-200-5-5-30-5	632574	1	669047	5	656677	8
		T*	710315	12	710315	10
SJC2-200-10-5-30-1	1627260	1	1740210	7	1743240	9
		T*	1860490	21	1862190	18
SJC2-200-10-5-30-2	1283660	1	1350940	3	1401010	7
		T*	1399570	14	1375210	17
SJC2-200-10-5-30-3	1168220	1	1267400	3	1299980	5
		T*	1277790	6	1240470	14
SJC2-200-10-5-30-4	1146500	1	1209380	4	1208150	4
		T*	1555080	4	1555810	5
SJC2-200-10-5-30-5	1027940	1	1128640	1	1102620	4
		T*	1137810	4	1131500	7
SJC3-300-5-5-15-1	1096180	1	1132810	23	1151370	25
		T*	1148910	34	1148910	51
SJC3-300-5-5-15-2	962181	1	1037030	11	1010560	30
		T*	1001500	30	1018580	69
SJC3-300-5-5-15-3	1214680	1	1236930	31	1236930	32
		T*	1243690	46	1243690	69
SJC3-300-5-5-15-4	1323320	1	1358090	37	1369190	36
		T*	1397150	37	1399370	47
SJC3-300-5-5-15-5	1224260	1	1263330	44	1257180	45
		T*	1315840	45	1323490	59
SJC3-300-10-5-15-1	2970600	1	3102980	36	3116530	45
		T*	3526200	54	3456630	88
SJC3-300-10-5-15-2	2657210	1	2810590	35	2789170	49
		T*	2790590	54	2789930	97
SJC3-300-10-5-15-3	2990380	1	3096470	40	3093040	38
		T*	3103080	75	3119050	82
SJC3-300-10-5-15-4	3280360		3437250	45	3423730	55
		T*	3459320	77	3465090	102
SJC3-300-10-5-15-5	2795230	1	2903540	20	2877900	46
		T*	2912610	45	2933510	77
SJC3-300-5-5-30-1	574042	1	596280	3	619429	4
		T*	605070	5	612988	11
SJC3-300-5-5-30-2	592962	1	664316	3	635833	7
		T*	643792	10	647095	20
SJC3-300-5-5-30-3	784820	1	814533	7	812308	22
		T*	852779	17	870398	29
SJC3-300-5-5-30-4	758524	1	805157	17	807294	20
		T*	799702	12	800837	23
SJC3-300-5-5-30-5	952841	1	985224	36	982458	36
		T*	1049370	43	1051310	35
SJC3-300-10-5-30-1	2292200	1	2433430	33	2424680	43
		T*	2499250	45	2446540	74
SJC3-300-10-5-30-2	2015440	1	2126600	26	2107850	36
		T*	2360700	45	2352080	45
SJC3-300-10-5-30-3	2462190	1	2558620	32	2548960	53
		T*	2587750	57	2569360	75
SJC3-300-10-5-30-4	2099690	1	2194440	11	2201510	19
		T*	2356900	23	2209960	48
SJC3-300-10-5-30-5	1688620	1	1784690	9	1813400	13
		T*	1914200	19	1846480	30

Table C. 7 Results for the myopic heuristic starting from the last period and DBnP with different target values for the second problem class for the instances in the subset A of the second group of the test instances

Instance	$\begin{gathered} \text { LPR } \\ (\mathbf{1 0 0 0}) \end{gathered}$	Target	$\begin{gathered} \text { UB } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \text { Best } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \hline \text { UB } \\ \text { Time } \\ (\mathrm{sec}) \end{gathered}$	Total Time (sec)
SJC1-100-5-5-15-1	238486	0.7	240882	238486	0	0
		0.8	240882	238486	0	0
		0.9	240882	238486	0	0
SJC1-100-5-5-15-2	246667	0.7	248025	246667	0	0
		0.8	248025	246667	0	0
		0.9	248025	246667	0	0
SJC1-100-5-5-15-3	306493	0.7	309025	306493	0	1
		0.8	309025	306493	0	1
		0.9	309025	306493	0	1
SJC1-100-5-5-15-4	319954	0.7	323389	319954	0	0
		0.8	323389	319954	0	0
		0.9	323389	319954	0	0
SJC1-100-5-5-15-5	276360	0.7	284134	276380	0	1
		0.8	284134	276380	0	1
		0.9	284134	276380	0	1
SJC1-100-10-5-15-1	704514	0.7	705328	704514	1	3
		0.8	705328	704514	1	3
		0.9	705328	704514	1	3
SJC1-100-10-5-15-2	673772	0.7	686228	673772	0	1
		0.8	686228	673772	0	1
		0.9	686228	673772	0	1
SJC1-100-10-5-15-3	763588	0.7	767286	763588	1	1
		0.8	767286	763588	1	1
		0.9	767286	763588	1	1
SJC1-100-10-5-15-4	743681	0.7	753918	743681	0	4
		0.8	753918	743681	0	4
		0.9	753918	743681	0	4
SJC1-100-10-5-15-5	770627	0.7	772653	770831	1	3
		0.8	772653	770831	1	3
		0.9	772653	770831	1	3
SJC1-100-5-5-30-1	154269	0.7	159946	154269	0	0
		0.8	159946	154269	0	0
		0.9	159946	154269	0	0
SJC1-100-5-5-30-2	77849	0.7	88932.3	77886.7	0	1
		0.8	88932.3	77886.7	0	1
		0.9	88932.3	77886.7	0	1
SJC1-100-5-5-30-3	163523	0.7	192358	163523	0	0
		0.8	192358	163523	0	0
		0.9	192358	163523	0	0
SJC1-100-5-5-30-4	238154	0.7	240840	238154	0	0
		0.8	240840	238154	0	0
		0.9	240840	238154	0	0
SJC1-100-5-5-30-5	159621	0.7	159621	159621	0	0
		0.8	159621	159621	0	0
		0.9	159621	159621	0	0
SJC1-100-10-5-30-1	315286	0.7	322872	315286	0	0
		0.8	322872	315286	0	0
		0.9	322872	315286	0	0
SJC1-100-10-5-30-2	542355	0.7	543539	542355	0	1
		0.8	543539	542355	0	1
		0.9	543539	542355	0	1
SJC1-100-10-5-30-3	559955	0.7	567425	559955	0	1
		0.8	567425	559955	0	1
		0.9	567425	559955	0	1
SJC1-100-10-5-30-4	441952	0.7	452360	441952	0	1
		0.8	452360	441952	0	1
		0.9	452360	441952	0	1

Table C. 7 (Cont.)

SJC1-100-10-5-30-5	318805	0.7	324482	318805	0	0
		0.8	324482	318805	0	0
		0.9	324482	318805	0	0
SJC2-200-5-5-15-1	540157	0.7	544075	540158	5	28
		0.8	544075	540158	5	28
		0.9	544075	540158	5	28
SJC2-200-5-5-15-2	749572	0.7	760259	750156	9	91
		0.8	760259	750156	8	93
		0.9	760259	750156	8	153
SJC2-200-5-5-15-3	774283	0.7	787738	774283	10	37
		0.8	787738	774283	10	37
		0.9	787738	774283	10	37
SJC2-200-5-5-15-4	526088	0.7	536832	526216	5	10
		0.8	536832	526216	6	11
		0.9	536832	526216	5	10
SJC2-200-5-5-15-5	836620	0.7	839484	836711	11	87
		0.8	839484	836711	11	87
		0.9	839484	836711	11	86
SJC2-200-10-5-15-1	1957640	0.7	2033200	1957640	19	92
		0.8	2033200	1957640	19	92
		0.9	2033200	1957640	19	92
SJC2-200-10-5-15-2	1619710	0.7	1631750	1619710	12	58
		0.8	1631750	1619710	12	58
		0.9	1631750	1619710	12	58
SJC2-200-10-5-15-3	1824750	0.7	1858380	1824990	19	311
		0.8	1858380	1824990	19	360
		0.9	1858380	1824990	19	398
SJC2-200-10-5-15-4	1771860	0.7	1779630	1772380	8	741
		0.8	1779630	1772380	8	456
		0.9	1779630	1772380	8	892
SJC2-200-10-5-15-5	1573460	0.7	1594690	1573460	6	54
		0.8	1594690	1573460	6	53
		0.9	1594690	1573460	6	53
SJC2-200-5-5-30-1	707899	0.7	715683	708005	10	31
		0.8	715683	708005	10	31
		0.9	715683	708005	10	31
SJC2-200-5-5-30-2	437824	0.7	469577	437869	4071	4076
		0.8	469577	437869	4214	4219
		0.9	469577	437869	4300	4305
SJC2-200-5-5-30-3	410289	0.7	427849	410503	2	372
		0.8	427849	410503	2	754
		0.9	427849	410503	2	1160
SJC2-200-5-5-30-4	742331	0.7	745984	742331	12	68
		0.8	745984	742331	12	68
		0.9	745984	742331	12	67
SJC2-200-5-5-30-5	632574	0.7	643993	632574	10	34
		0.8	643993	632574	10	34
		0.9	643993	632574	10	34
SJC2-200-10-5-30-1	1627260	0.7	1714130	1627260	15	35
		0.8	1714130	1627260	15	35
		0.9	1714130	1627260	15	35
SJC2-200-10-5-30-2	1283660	0.7	1331330	1283670	10	31
		0.8	1331330	1283670	10	30
		0.9	1331330	1283670	10	30
SJC2-200-10-5-30-3	1168220	0.7	1176940	1168220	6	19
		0.8	1176940	1168220	6	19
		0.9	1176940	1168220	6	19
SJC2-200-10-5-30-4	1146500	0.7	1175370	1146500	3	7
		0.8	1175370	1146500	3	7
		0.9	1175370	1146500	3	7
SJC2-200-10-5-30-5	1027940	0.7	1080820	1027940	3	16
		0.8	1080820	1027940	3	16
		0.9	1080820	1027940	3	16
SJC3-300-5-5-15-1	1096180	0.7	1100700	1096180	33	239
		0.8	1100700	1096180	33	240
		0.9	1100700	1096180	33	238

Table C. 7 (Cont.)

SJC3-300-5-5-15-2	962181	0.7	969259	962181	42	237
		0.8	969259	962181	41	235
		0.9	969259	962181	42	236
SJC3-300-5-5-15-3	1214680	0.7	1228470	1214680	62	373
		0.8	1228470	1214680	62	374
		0.9	1228470	1214680	63	374
SJC3-300-5-5-15-4	1323320	0.7	1395450	1323320	77	166
		0.8	1395450	1323320	76	165
		0.9	1395450	1323320	77	166
SJC3-300-5-5-15-5	1224260	0.7	1236390	1224730	66	2298
		0.8	1236390	1224730	66	3268
		0.9	1236390	1224730	65	2245
SJC3-300-10-5-15-1	2970600	0.7	3009660	2972760	106	18301
		0.8	3009660	2973760	106	23825
		0.9	3009660	2973670	107	21589
SJC3-300-10-5-15-2	2657210	0.7	2672660	2658140	67	18156
		0.8	2672660	2657760	67	18467
		0.9	2672660	2657790	68	18376
SJC3-300-10-5-15-3	2990380	0.7	3050210	2990380	80	3469
		0.8	3050210	2990380	81	3478
		0.9	3050210	2990380	80	3478
SJC3-300-10-5-15-4	3280360	0.7	3377080	3280690	420	4210
		0.8	3377080	3280690	421	4060
		0.9	3377080	3280690	422	4834
SJC3-300-10-5-15-5	2795230	0.7	2888960	2795880	77	18105
		0.8	2888960	2795770	77	19385
		0.9	2888960	2796510	77	18043
SJC3-300-5-5-30-1	574042	0.7	581980	574239	10	167
		0.8	581980	574239	10	9955
		0.9	581980	574239	10	13716
SJC3-300-5-5-30-2	592962	0.7	595964	593119	9	62
		0.8	595964	593119	9	86
		0.9	595964	593119	9	86
SJC3-300-5-5-30-3	784820	0.7	790295	784820	17	52
		0.8	790295	784820	17	51
		0.9	790295	784820	17	51
SJC3-300-5-5-30-4	758524	0.7	761333	758524	17	49
		0.8	761333	758524	16	49
		0.9	761333	758524	17	50
SJC3-300-5-5-30-5	952841	0.7	966130	952841	43	171
		0.8	966130	952841	43	170
		0.9	966130	952841	44	171
SJC3-300-10-5-30-1	2292200	0.7	2368220	2293480	37	18023
		0.8	2368220	2292910	37	18004
		0.9	2368220	2292910	37	18413
SJC3-300-10-5-30-2	2015440	0.7	2072180	2016360	106	18016
		0.8	2072380	2015560	113	18001
		0.9	2072380	2015560	112	18084
SJC3-300-10-5-30-3	2462190	0.7	2485760	2463130	71	18136
		0.8	2485760	2463050	72	18127
		0.9	2485760	2463090	71	18032
SJC3-300-10-5-30-4	2099690	0.7	2104890	2099910	57	15723
		0.8	2104890	2100300	58	18064
		0.9	2104890	2099910	58	19172
SJC3-300-10-5-30-5	1688620	0.7	1702970	1688840	22	1491
		0.8	1702970	1688840	22	1492
		0.9	1702970	1688840	23	1496

Table C. 8 Results for the second problem class obtained by DBnP

Instance	$\begin{gathered} \text { UB } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \text { Best } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \text { LPR } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \hline \text { UB } \\ \text { Time } \\ \text { (sec) } \end{gathered}$	NN	Total Time (sec)
SJC1-100-5-5-15-1	240882	238486	238486	0	1	0
SJC1-100-5-5-15-2	248025	246667	246667	0	1	0
SJC1-100-5-5-15-3	309025	306493	306493	0	1	1
SJC1-100-5-5-15-4	323389	319954	319954	0	1	0
SJC1-100-5-5-15-5	284134	276380	276360	0	9	1
SJC1-100-5-5-30-1	159946	154269	154269	0	1	0
SJC1-100-5-5-30-2	88932.3	77886.7	77849	0	55	1
SJC1-100-5-5-30-3	192358	163523	163523	0	1	0
SJC1-100-5-5-30-4	240840	238154	238154	0	1	0
SJC1-100-5-5-30-5	159621	159621	159621	0	1	0
SJC1-100-10-5-15-1	705328	704514	704514	1	1	3
SJC1-100-10-5-15-2	686228	673772	673772	0	1	1
SJC1-100-10-5-15-3	767286	763588	763588	1	1	1
SJC1-100-10-5-15-4	753918	743681	743681	0	1	4
SJC1-100-10-5-15-5	772653	770831	770627	1	9	3
SJC1-100-10-5-30-1	322872	315286	315286	0	1	0
SJC1-100-10-5-30-2	543539	542355	542355	0	1	1
SJC1-100-10-5-30-3	567425	559955	559955	0	1	1
SJC1-100-10-5-30-4	452360	441952	441952	0	1	1
SJC1-100-10-5-30-5	324482	318805	318805	0	1	0
SJC2-200-5-5-15-1	544075	540158	540157	5	5	28
SJC2-200-5-5-15-2	760259	750156	749572	9	15	91
SJC2-200-5-5-15-3	787738	774283	774283	10	1	37
SJC2-200-5-5-15-4	536832	526216	526088	5	5	10
SJC2-200-5-5-15-5	839484	836711	836620	11	4	87
SJC2-200-5-5-30-1	715683	708005	707899	10	5	31
SJC2-200-5-5-30-2	469577	437869	437824	4071	3	4076
SJC2-200-5-5-30-3	427849	410503	410289	2	389	372
SJC2-200-5-5-30-4	745984	742331	742331	12	3	68
SJC2-200-5-5-30-5	643993	632574	632574	10	1	34
SJC2-200-10-5-15-1	2033200	1957640	1957640	19	1	92
SJC2-200-10-5-15-2	1631750	1619710	1619710	12	1	58
SJC2-200-10-5-15-3	1858380	1824990	1824750	19	13	311
SJC2-200-10-5-15-4	1779630	1772380	1771860	8	117	741
SJC2-200-10-5-15-5	1594690	1573460	1573460	6	1	54
SJC2-200-10-5-30-1	1714130	1627260	1627260	15	1	35
SJC2-200-10-5-30-2	1331330	1283670	1283660	10	13	31
SJC2-200-10-5-30-3	1176940	1168220	1168220	6	1	19
SJC2-200-10-5-30-4	1175370	1146500	1146500	3	1	7
SJC2-200-10-5-30-5	1080820	1027940	1027940	3	1	16
SJC3-300-5-5-15-1	1100700	1096180	1096180	33	1	239
SJC3-300-5-5-15-2	969259	962181	962181	42	5	237
SJC3-300-5-5-15-3	1228470	1214680	1214680	62	1	373
SJC3-300-5-5-15-4	1395450	1323320	1323320	77	1	166
SJC3-300-5-5-15-5	1236390	1224730	1224260	66	55	2298
SJC3-300-5-5-30-1	581980	574239	574042	10	57	167
SJC3-300-5-5-30-2	595964	593119	592962	9	10	62
SJC3-300-5-5-30-3	790295	784820	784820	17	1	52
SJC3-300-5-5-30-4	761333	758524	758524	17	1	49
SJC3-300-5-5-30-5	966130	952841	952841	43	6	171
SJC3-300-10-5-15-1	2993790	2972490	2970600	91	43	36020
SJC3-300-10-5-15-2	2666370	2657790	2657210	69	298	36180
SJC3-300-10-5-15-3	3050210	2990380	2990380	80	1	3469
SJC3-300-10-5-15-4	3377080	3280690	3280360	420	17	4210
SJC3-300-10-5-15-5	2869020	2795770	2795230	72	53	31156
SJC3-300-10-5-30-1	2507950	2292910	2292200	58	466	36017
SJC3-300-10-5-30-2	2063570	2015560	2015440	46	169	12560
SJC3-300-10-5-30-3	2477630	2463050	2462190	63	803	36015
SJC3-300-10-5-30-4	2104890	2099910	2099690	57	305	15723
SJC3-300-10-5-30-5	1702970	1688840	1688620	22	54	1491
SJC4-402-5-5-15-1	1497700	1491880	1491360	66	335	11375
SJC4-402-5-5-15-2	1871670	1862560	1862250	296	17	7389
SJC4-402-5-5-15-3	1810240	1798890	1798350	111	27	7979

Table C. 8 (Cont.)

SJC4-402-5-5-15-4	1720250	1700440	1700320	107	5	3912
SJC4-402-5-5-15-5	1731120	1728930	1728930	184	3	2070
SJC4-402-5-5-30-1	1075950	1059550	1059510	42	63	513
SJC4-402-5-5-30-2	1119240	1114200	1114100	55	9	153
SJC4-402-5-5-30-3	1276860	1260830	1259230	50	240	18107
SJC4-402-5-5-30-4	1464710	1398670	1398670	103	1	705
SJC4-402-5-5-30-5	1594220	1490730	1490390	230	593	17909
SJC4-402-10-5-15-1	4136690	4042570	4042430	258	3	34986
SJC4-402-10-5-15-2	5121370	5058470	5058460	557	3	15013
SJC4-402-10-5-15-3	3792350	3715390	3714100	254	26	36683
SJC4-402-10-5-15-4	4830870	4813450	4813000	390	11	39436
SJC4-402-10-5-15-5	4547520	4523990	4523760	315	15	35538
SJC4-402-10-5-30-1	3355940	3299480	3298890	271	294	37864
SJC4-402-10-5-30-2	3343980	3327570	3326560	283	171	36630
SJC4-402-10-5-30-3	3565160	3541410	3541310	191	37	7482
SJC4-402-10-5-30-4	3658880	3491980	3486130	119	124	36034
SJC4-402-10-5-30-5	3088850	3064640	3064540	107	43	5876
AP-200-5-5-15-1	6166050000	6166050000	6166050000	12	1	21
AP-200-5-5-15-2	5602420000	5581490000	5581490000	9	1	29
AP-200-5-5-15-3	5137570000	5062290000	5060330000	5	521	7488
AP-200-5-5-15-4	5901600000	5851990000	5851990000	12	1	68
AP-200-5-5-15-5	4003700000	3897060000	3897060000	7	1	40
AP-200-5-5-30-1	3272280000	3184400000	3184400000	2	1	15
AP-200-5-5-30-2	3331330000	3264360000	3264360000	2	1	10
AP-200-5-5-30-3	2530130000	2486970000	2486970000	2	1	5
AP-200-5-5-30-4	3384390000	3265900000	3265900000	4	1	21
AP-200-5-5-30-5	3143570000	2973030000	2973030000	2	1	6
AP-200-10-5-15-1	14540100000	14488600000	14488600000	19	1	128
AP-200-10-5-15-2	11960400000	11946300000	11946100000	15	3	70
AP-200-10-5-15-3	13055100000	12847500000	12847500000	14	1	157
AP-200-10-5-15-4	14189700000	14156900000	14156900000	27	1	266
AP-200-10-5-15-5	15682100000	15601100000	15599800000	96	319	8506
AP-200-10-5-30-1	16587000000	16574200000	16574200000	32	1	173
AP-200-10-5-30-2	11441200000	11010000000	11010000000	29	1	115
AP-200-10-5-30-3	9881990000	9730340000	9730340000	9	1	44
AP-200-10-5-30-4	8215520000	8121020000	8121020000	14	1	79
AP-200-10-5-30-5	10149500000	10104500000	10104000000	9	9	45
CAPA-1000-5-5-15-1	149103000	148149000	148054000	47	25	444
CAPA-1000-5-5-15-2	151547000	150119000	149810000	90	2607	36024
CAPA-1000-5-5-15-3	134053000	133679000	133678000	46	13	185
CAPA-1000-5-5-15-4	121342000	119404000	118681000	406	3119	36015
CAPA-1000-5-5-15-5	114680000	113650000	113374000	35	697	13171
CAPA-1000-5-5-30-1	86030000	85826600	85441500	239	8189	36011
CAPA-1000-5-5-30-2	127886000	113377000	112306000	22	5135	36005
CAPA-1000-5-5-30-3	68392400	66722800	66581300	1656	29651	36029
CAPA-1000-5-5-30-4	94040600	92881500	92630300	84	9110	36007
CAPA-1000-5-5-30-5	85606900	84544600	84352200	63	5803	36075
CAPA-1000-10-5-15-1	388458000	386521000	386303000	114	2463	36024
CAPA-1000-10-5-15-2	319577000	316638000	316633000	54	5	530
CAPA-1000-10-5-15-3	344721000	342472000	340958000	74	964	36039
CAPA-1000-10-5-15-4	417614000	411349000	407923000	140	1473	36078
CAPA-1000-10-5-15-5	323893000	320635000	319284000	71	731	36039
CAPA-1000-10-5-30-1	314611000	309615000	308685000	319	4665	36063
CAPA-1000-10-5-30-2	277778000	273323000	273188000	284	2159	22618
CAPA-1000-10-5-30-3	261702000	260699000	260437000	82	4458	36021
CAPA-1000-10-5-30-4	207935000	200446000	200252000	12	6153	36003
CAPA-1000-10-5-30-5	242872000	241500000	240673000	390	2806	36053
CAPB-1000-5-5-15-1	136114000	135771000	135677000	37	89	813
CAPB-1000-5-5-15-2	151369000	149084000	149037000	22	17	956
CAPB-1000-5-5-15-3	122399000	120884000	120029000	18	1374	36063
CAPB-1000-5-5-15-4	112301000	110242000	110122000	42	5441	27634
CAPB-1000-5-5-15-5	126073000	125356000	125179000	31	311	3471
CAPB-1000-5-5-30-1	127512000	126114000	126073000	172	9	344
CAPB-1000-5-5-30-2	94475000	92513100	92513100	72	1	124
CAPB-1000-5-5-30-3	132571000	131876000	131605000	28	781	9110
CAPB-1000-5-5-30-4	85986300	85986300	85985100	15	29	115

Table C. 8 (Cont.)

CAPB-1000-5-5-30-5	94015000	93968500	93950800	11	37	59
CAPB-1000-10-5-15-1	346954000	345429000	344742000	109	1540	36004
CAPB-1000-10-5-15-2	365378000	344754000	342951000	3132	457	36116
CAPB-1000-10-5-15-3	375863000	371666000	371219000	57	308	36182
CAPB-1000-10-5-15-4	400692000	399935000	399142000	178	3176	36003
CAPB-1000-10-5-15-5	353735000	346361000	346248000	123	1864	36307
CAPB-1000-10-5-30-1	271870000	264495000	263612000	136	5001	36009
CAPB-1000-10-5-30-2	253439000	250359000	249807000	26	10967	36012
CAPB-1000-10-5-30-3	248054000	237012000	236604000	18	5829	36009
CAPB-1000-10-5-30-4	239185000	237319000	237064000	69	6595	36019
CAPB-1000-10-5-30-5	287412000	282455000	282052000	55	6131	36001
CAPC-1000-5-5-15-1	124711000	121864000	121301000	16	1450	36029
CAPC-1000-5-5-15-2	134440000	133962000	133099000	54	1886	36032
CAPC-1000-5-5-15-3	111961000	111199000	110653000	17	2427	36012
CAPC-1000-5-5-15-4	126228000	123941000	123759000	28	49	2045
CAPC-1000-5-5-15-5	151730000	150164000	148980000	41	1176	36035
CAPC-1000-5-5-30-1	94339300	93424200	93212500	101	12893	36028
CAPC-1000-5-5-30-2	118369000	114930000	113115000	12	2507	36025
CAPC-1000-5-5-30-3	89738500	89344500	89166700	12	11171	36004
CAPC-1000-5-5-30-4	91607600	91364600	91283500	13	9022	36006
CAPC-1000-5-5-30-5	139945000	137230000	134965000	110	2374	36072
CAPC-1000-10-5-15-1	383280000	380784000	379820000	135	792	36016
CAPC-1000-10-5-15-2	361696000	355135000	353375000	78	1044	36043
CAPC-1000-10-5-15-3	384475000	383386000	382475000	177	1358	36055
CAPC-1000-10-5-15-4	327672000	323842000	323515000	69	135	7834
CAPC-1000-10-5-15-5	393682000	382785000	382672000	68	265	36359
CAPC-1000-10-5-30-1	237794000	236886000	236241000	15	2908	36022
CAPC-1000-10-5-30-2	296996000	295788000	295228000	93	3567	36032
CAPC-1000-10-5-30-3	379802000	374584000	374058000	98	597	36030
CAPC-1000-10-5-30-4	279684000	279267000	278991000	52	2124	36088
CAPC-1000-10-5-30-5	292284000	291355000	290766000	56	2998	36003

APPENDIX D

DETAILED RESULTS OF COMPUTATIONS IN CHAPTER 5

Table D. 1 Results for the myopic heuristic for the instances in the subset A of the second group of the test instances

Instance	$\begin{gathered} \text { LPR } \\ (\mathbf{1 0 0 0}) \end{gathered}$	\boldsymbol{h}	$\begin{gathered} \text { UB } \\ (1000) \end{gathered}$	$\begin{gathered} \text { UB } \\ \text { Time } \\ \text { (sec) } \end{gathered}$
SJC1-100-5-5-15-1	241785	1	261529	0
		3	251240	0
		5	248399	0
SJC1-100-5-5-15-2	252912	1	265375	0
		3	262910	0
		5	252912	0
SJC1-100-5-5-15-3	308872	1	329449	0
		3	313553	0
		5	310905	0
SJC1-100-5-5-15-4	323052	1	325713	0
		3	328119	0
		5	325322	0
SJC1-100-5-5-15-5	277694	1	297220	0
		3	282988	0
		5	285188	0
SJC1-100-10-5-15-1	711770	1	769098	0
		4	716831	0
		7	720468	1
		10	717191	1
SJC1-100-10-5-15-2	690616	1	738499	0
		4	736683	0
		7	710580	0
		10	711207	0
SJC1-100-10-5-15-3	772218	1	822527	1
		4	779086	1
		7	801351	0
		10	779884	0
SJC1-100-10-5-15-4	748921	1	776694	1
		4	754280	1
		7	763342	1
		10	753258	0
SJC1-100-10-5-15-5	785570	1	862369	0
		4	788967	0
		7	788739	0
		10	815001	1
SJC1-100-5-5-30-1	158240	1	201802	0
		3	163722	0
		5	160136	0
SJC1-100-5-5-30-2	82389.1	1	128512	0
		3	91523.3	0
		5	84189.9	0

Table D. 1 (Cont)

SJC1-100-5-5-30-3	161836	1	162166	0
		3	162394	0
		5	162394	0
SJC1-100-5-5-30-4	245473	1	281058	0
		3	251802	0
		5	245975	0
SJC1-100-5-5-30-5	159621	1	168221	0
		3	159621	0
		5	159621	0
SJC1-100-10-5-30-1	320506	1	333630	0
		4	322592	0
		7	322615	0
		10	325766	0
SJC1-100-10-5-30-2	556427	1	623972	0
		4	598596	0
		7	563929	0
		10	568519	0
SJC1-100-10-5-30-3	567070	1	612301	0
		4	572353	0
		7	574916	0
		10	573818	0
SJC1-100-10-5-30-4	447455	1	462597	0
		4	458389	0
		7	453029	0
		10	451264	0
SJC1-100-10-5-30-5	321096	1	341964	0
		4	324943	0
		7	332574	0
		10	326081	0
SJC2-200-5-5-15-1	553710	1	666760	2
		3	575129	1
		5	556608	2
SJC2-200-5-5-15-2	755008	1	762608	3
		3	759094	3
		5	757877	3
SJC2-200-5-5-15-3	789996	1	820417	5
		3	796335	4
		5	796335	5
SJC2-200-5-5-15-4	539626	1	577850	2
		3	551907	2
		5	543624	2
SJC2-200-5-5-15-5	853995	1	875745	5
		3	890656	7
		5	874330	6
SJC2-200-10-5-15-1	1972970	1	2058280	9
		4	2034810	9
		7	1991440	10
		10	1984900	9
SJC2-200-10-5-15-2	1649590	1	1703780	6
		4	1669160	6
		7	1679930	6
		10	1687040	6
SJC2-200-10-5-15-3	1851590	1	1978600	5
		4	1886280	7
		7	1866040	6
		10	1904870	8
SJC2-200-10-5-15-4	1785670	1	1827480	6
		4	1792680	6
		7	1819670	7
		10	1787590	5
SJC2-200-10-5-15-5	1597890	1	1635050	4
		4	1660670	4
		7	1615490	5
		10	1629300	5

Table D. 1 (Cont)

SJC2-200-5-5-30-1	712009	1	735612	3
		3	760388	4
		5	718494	4
SJC2-200-5-5-30-2	447000	1	465540	1
		3	456152	1
		5	463834	1
SJC2-200-5-5-30-3	408556	1	415741	1
		3	411392	1
		5	410510	1
SJC2-200-5-5-30-4	750011	1	773337	5
		3	779919	5
		5	757345	3
SJC2-200-5-5-30-5	640846	1	667661	3
		3	669798	4
		5	645285	4
SJC2-200-10-5-30-1	1655580	1	1731760	6
		4	1690650	6
		7	1681280	7
		10	1671630	7
SJC2-200-10-5-30-2	1298480	1	1322130	3
		4	1311830	3
		7	1310570	4
		10	1322790	6
SJC2-200-10-5-30-3	1189790	1	1210460	3
		4	1205250	4
		7	1200460	3
		10	1234000	2
SJC2-200-10-5-30-4	1165480	1	1205360	3
		4	1181710	3
		7	1177210	4
		10	1180030	3
SJC2-200-10-5-30-5	1034280	1	1054510	4
		4	1058270	4
		7	1055490	5
		10	1046100	6
SJC3-300-5-5-15-1	1110620	1	1128800	11
		3	1135370	11
		5	1116920	11
SJC3-300-5-5-15-2	977617	1	1024000	10
		3	986172	14
		5	1022310	12
SJC3-300-5-5-15-3	1224380	1	1241500	20
		3	1239010	19
		5	1230220	18
SJC3-300-5-5-15-4	1346440	1	1384440	17
		3	1351210	14
		5	1371730	19
SJC3-300-5-5-15-5	1241550	1	1289270	26
		3	1303520	21
		5	1253060	23
SJC3-300-10-5-15-1	3030730	1	3183900	70
		4	3128110	110
		7	3081240	82
		10	3088520	54
SJC3-300-10-5-15-2	2679890	1	2762620	68
		4	2715290	73
		7	2709520	65
		10	2734280	55
SJC3-300-10-5-15-3	3034220	1	3126410	56
		4	3078870	63
		7	3065490	65
		10	3109480	53

Table D. 1 (Cont)

SJC3-300-10-5-15-4	3311880	1	3399920	81
		4	3372340	103
		7	3381430	70
		10	3394020	101
SJC3-300-10-5-15-5	2809930	1	2864550	45
		4	2881620	48
		7	2821610	46
		10	2848320	62
SJC3-300-5-5-30-1	581092	1	596739	3
		3	596932	3
		5	588201	3
SJC3-300-5-5-30-2	610611	1	658476	5
		3	641741	6
		5	627662	2
SJC3-300-5-5-30-3	791799	1	829448	7
		3	800169	6
		5	807957	6
SJC3-300-5-5-30-4	772712	1	821055	7
		3	784653	8
		5	803024	7
SJC3-300-5-5-30-5	971093	1	1025750	13
		3	1003630	13
		5	988710	15
SJC3-300-10-5-30-1	2303930	1	2353230	45
		4	2342810	45
		7	2355130	44
		10	2358570	37
SJC3-300-10-5-30-2	2031090	1	2061750	34
		4	2059660	31
		7	2058310	34
		10	2067840	48
SJC3-300-10-5-30-3	2482630	1	2541900	53
		4	2517920	48
		7	2503040	48
		10	2506120	48
SJC3-300-10-5-30-4	2129420	1	2201950	34
		4	2169730	35
		7	2157960	33
		10	2169400	36
SJC3-300-10-5-30-5	1704590	1	1744650	20
		4	1725930	21
		7	1725830	20
		10	1735390	17

Table D. 2 Results for the progressive heuristics for the instances in the subset
A of the second group of the test instances

Instance	$\begin{gathered} \text { LPR } \\ (\mathbf{1 0 0 0}) \end{gathered}$	\boldsymbol{h}	Progressive-1		Progressive-2	
			$\begin{gathered} \text { UB } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \hline \text { UB } \\ \text { Time } \\ \text { (sec) } \end{gathered}$	$\begin{gathered} \text { UB } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \hline \text { UB } \\ \text { Time } \\ \text { (sec) } \\ \hline \end{gathered}$
SJC1-100-5-5-15-1	241785	1	256061	0	257625	0
		T*	248456	0	252511	0
SJC1-100-5-5-15-2	252912	1	261363	0	279087	0
		T*	271713	0	273360	0
SJC1-100-5-5-15-3	308872	1	326257	0	331730	0
		T*	322957	0	334958	0
SJC1-100-5-5-15-4	323052	1	341413	0	334226	0
		T*	361217	0	366707	0
SJC1-100-5-5-15-5	277694	1	300361	0	290959	0
		T*	303263	0	305978	0
SJC1-100-10-5-15-1	711770	1	744914	0	761553	0
		T*	758701	0	750232	1
SJC1-100-10-5-15-2	690616	1	738309	0	741972	0
		T*	801409	0	774831	3
SJC1-100-10-5-15-3	772218	1	818043	0	812174	0
		T*	780896	0	782762	1
SJC1-100-10-5-15-4	748921	1	807516	0	805099	0
		T*	780320	0	771543	1
SJC1-100-10-5-15-5	785570	1	820077	0	812245	0
		T*	859165	0	859165	1
SJC1-100-5-5-30-1	158240	1	166110	0	165993	0
		T*	274287	0	274298	0
SJC1-100-5-5-30-2	82389.1	1	111472	0	91647.2	0
		T*	85970.4	0	88380.3	0
SJC1-100-5-5-30-3	161836	1	181795	0	176227	0
		T*	181855	0	176118	0
SJC1-100-5-5-30-4	245473	1	310110	0	253647	0
		T*	287069	0	287069	0
SJC1-100-5-5-30-5	159621	1	165224	0	173484	0
		T*	230019	0	231525	0
SJC1-100-10-5-30-1	320506	1	476279	0	364222	0
		T*	351189	0	356418	0
SJC1-100-10-5-30-2	556427	1	588894	0	587361	0
		T*	713853	0	681699	0
SJC1-100-10-5-30-3	567070	1	614636	0	602661	0
		T*	646395	0	589094	0
SJC1-100-10-5-30-4	447455	1	491822	0	499196	0
		T*	493478	0	484840	1
SJC1-100-10-5-30-5	321096	1	338038	0	349475	0
		T*	388990	0	358428	0
SJC2-200-5-5-15-1	553710	1	566968	1	564539	2
		T*	698165	2	699561	6
SJC2-200-5-5-15-2	755008	1	789367	5	791668	6
		T*	805866	10	805109	12
SJC2-200-5-5-15-3	789996	1	804348	4	803903	6
		T*	846824	8	837896	15
SJC2-200-5-5-15-4	539626	1	576338	2	584099	4
		T*	570445	5	578795	9
SJC2-200-5-5-15-5	853995	1	876962	6	862601	10
		T*	922491	12	928521	20
SJC2-200-10-5-15-1	1972970	1	2078330	7	2088890	10
		T*	2079120	13	2118420	29
SJC2-200-10-5-15-2	1649590	1	1717970	4	1716510	5
		T*	1720350	10	1728540	14
SJC2-200-10-5-15-3	1851590	1	1948230	6	1948230	7
		T*	1952580	15	1923920	17
SJC2-200-10-5-15-4	1785670	1	1856320	5	1843000	7
		T*	1883900	15	1864420	21
SJC2-200-10-5-15-5	1597890	1	1681290	1	1634400	4
		T*	1661050	5	1663260	9

Table D. 2 (Cont.)

SJC2-200-5-5-30-1	712009	1	729886	4	730177	4
		T*	865128	10	813023	10
SJC2-200-5-5-30-2	447000	1	471115	2	466105	2
		T*	512766	3	493982	4
SJC2-200-5-5-30-3	408556	1	451521	2	446130	4
		T*	438981	3	426839	6
SJC2-200-5-5-30-4	750011	1	776174	5	783878	7
		T*	832786	12	835549	14
SJC2-200-5-5-30-5	640846	1	669047	5	656677	8
		T*	710315	12	710315	10
SJC2-200-10-5-30-1	1655580	1	1740210	8	1743240	9
		T*	1860490	20	1862190	18
SJC2-200-10-5-30-2	1298480	1	1350940	3	1401010	7
		T*	1399570	14	1375210	17
SJC2-200-10-5-30-3	1189790	1	1267400	3	1299980	5
		T*	1277790	6	1240470	14
SJC2-200-10-5-30-4	1165480	1	1209380	4	1208150	4
		T*	1555080	5	1555810	5
SJC2-200-10-5-30-5	1034280	1	1128640	1	1102620	4
		T*	1137810	4	1131500	6
SJC3-300-5-5-15-1	1110620	1	1132810	23	1151370	25
		T*	1148910	34	1148910	51
SJC3-300-5-5-15-2	977617	1	1037030	11	1010560	30
		T*	1001500	29	1018580	68
SJC3-300-5-5-15-3	1224380	1	1236930	31	1236930	32
		T*	1243690	46	1243690	68
SJC3-300-5-5-15-4	1346440	1	1358090	37	1369190	37
		T*	1397150	38	1399370	47
SJC3-300-5-5-15-5	1241550	1	1263330	44	1257180	45
		T*	1315840	45	1323490	59
SJC3-300-10-5-15-1	3030730	1	3102980	36	3116530	45
		T*	3526200	54	3456630	90
SJC3-300-10-5-15-2	2679890	1	2810590	35	2789170	49
		T*	2790590	53	2789930	96
SJC3-300-10-5-15-3	3034220	1	3096470	40	3093040	39
		T*	3103080	74	3119050	82
SJC3-300-10-5-15-4	3311880	1	3437250	45	3423730	55
		T*	3459320	76	3465090	102
SJC3-300-10-5-15-5	2809930	1	2903540	19	2877900	46
		T*	2912610	45	2933510	77
SJC3-300-5-5-30-1	581092	1	596280	3	619429	4
		T*	605070	5	612988	10
SJC3-300-5-5-30-2	610611	1	664316	3	635833	7
		T*	643792	10	647095	19
SJC3-300-5-5-30-3	791799	1	814533	7	812308	22
		T*	852779	17	870398	28
SJC3-300-5-5-30-4	772712	1	805157	17	807294	20
		T*	799702	12	800837	22
SJC3-300-5-5-30-5	971093	1	985224	36	982458	36
		T*	1049370	43	1051310	36
SJC3-300-10-5-30-1	2303930	1	2433430	35	2424680	45
		T*	2499250	45	2446540	75
SJC3-300-10-5-30-2	2031090	1	2126600	27	2107850	36
		T*	2360700	45	2352080	45
SJC3-300-10-5-30-3	2482630	1	2558620	32	2548960	54
		T*	2587750	58	2569360	77
SJC3-300-10-5-30-4	2129420	1	2194440	11	2201510	19
		T*	2356900	22	2209960	47
SJC3-300-10-5-30-5	1704590	1	1784690	8	1813400	13
		T*	1914200	18	1846480	30

Table D. 3 Results for the myopic heuristic starting from the last period and DBnP with different target values for the instances in the subset A of the second group of the test instances

Instance	$\begin{gathered} \text { LPR } \\ (\mathbf{1 0 0 0}) \end{gathered}$	Target	$\begin{gathered} \text { UB } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \text { Best } \\ (1000) \end{gathered}$	$\begin{gathered} \hline \text { UB } \\ \text { Time } \\ (\mathrm{sec}) \end{gathered}$	Total Time (sec)
SJC1-100-5-5-15-1	241785	0.7	248399	241785	0	0
		0.8	248399	241785	0	0
		0.9	248399	241785	0	0
SJC1-100-5-5-15-2	252912	0.7	252912	252912	0	0
		0.8	252912	252912	0	0
		0.9	252912	252912	0	0
SJC1-100-5-5-15-3	308872	0.7	310905	308872	0	0
		0.8	310905	308872	0	0
		0.9	310905	308872	0	0
SJC1-100-5-5-15-4	323052	0.7	325322	323080	0	1
		0.8	325322	323080	0	1
		0.9	325322	323080	0	1
SJC1-100-5-5-15-5	277694	0.7	285188	277694	0	0
		0.8	285188	277694	0	0
		0.9	285188	277694	0	0
SJC1-100-10-5-15-1	711770	0.7	717191	711770	1	2
		0.8	717191	711770	1	2
		0.9	717191	711770	1	2
SJC1-100-10-5-15-2	690616	0.7	711207	690616	0	1
		0.8	711207	690616	0	1
		0.9	711207	690616	0	1
SJC1-100-10-5-15-3	772218	0.7	779884	772218	0	1
		0.8	779884	772218	0	1
		0.9	779884	772218	0	1
SJC1-100-10-5-15-4	748921	0.7	753258	750280	0	67
		0.8	753258	750280	0	66
		0.9	753258	750280	0	66
SJC1-100-10-5-15-5	785570	0.7	815001	785997	1	2
		0.8	815001	785997	1	2
		0.9	815001	785997	1	2
SJC1-100-5-5-30-1	158240	0.7	160136	158240	0	0
		0.8	160136	158240	0	0
		0.9	160136	158240	0	0
SJC1-100-5-5-30-2	82389.1	0.7	84189.9	82389.1	0	0
		0.8	84189.9	82389.1	0	0
		0.9	84189.9	82389.1	0	0
SJC1-100-5-5-30-3	161836	0.7	162394	161836	0	0
		0.8	162394	161836	0	0
		0.9	162394	161836	0	0
SJC1-100-5-5-30-4	245473	0.7	245975	245473	0	0
		0.8	245975	245473	0	0
		0.9	245975	245473	0	0
SJC1-100-5-5-30-5	159621	0.7	159621	159621	0	0
		0.8	159621	159621	0	0
		0.9	159621	159621	0	0
SJC1-100-10-5-30-1	320506	0.7	325766	320527	0	0
		0.8	325766	320527	0	0
		0.9	325766	320527	0	0
SJC1-100-10-5-30-2	556427	0.7	568519	556427	0	0
		0.8	568519	556427	0	0
		0.9	568519	556427	0	0
SJC1-100-10-5-30-3	567070	0.7	573818	567070	0	0
		0.8	573818	567070	0	0
		0.9	573818	567070	0	0
SJC1-100-10-5-30-4	447455	0.7	451264	447455	0	1
		0.8	451264	447455	0	1
		0.9	451264	447455	0	1

Table D. 3 (Cont.)

SJC1-100-10-5-30-5	321096	0.7	326081	321096	0	0
		0.8	326081	321096	0	0
		0.9	326081	321096	0	0
SJC2-200-5-5-15-1	553710	0.7	556608	554636	2	157
		0.8	556608	554636	2	174
		0.9	556608	554636	2	155
SJC2-200-5-5-15-2	755008	0.7	757877	755422	3	12
		0.8	757877	755422	3	9
		0.9	757877	755422	3	9
SJC2-200-5-5-15-3	789996	0.7	796335	789996	5	15
		0.8	796335	789996	5	15
		0.9	796335	789996	5	15
SJC2-200-5-5-15-4	539626	0.7	543624	540359	2	1117
		0.8	543624	540359	2	435
		0.9	543624	540359	2	585
SJC2-200-5-5-15-5	853995	0.7	874330	854003	6	18
		0.8	874330	854003	6	18
		0.9	874330	854003	6	18
SJC2-200-10-5-15-1	1972970	0.7	1984900	1973030	9	55
		0.8	1984900	1973030	9	57
		0.9	1984900	1973030	9	57
SJC2-200-10-5-15-2	1649590	0.7	1687040	1649590	6	81
		0.8	1687040	1649590	6	81
		0.9	1687040	1649590	6	81
SJC2-200-10-5-15-3	1851590	0.7	1904870	1851590	8	234
		0.8	1904870	1851590	8	234
		0.9	1904870	1851590	8	234
SJC2-200-10-5-15-4	1785670	0.7	1787590	1786230	5	485
		0.8	1787590	1786230	5	285
		0.9	1787590	1786230	5	284
SJC2-200-10-5-15-5	1597890	0.7	1629300	1597890	5	34
		0.8	1629300	1597890	5	33
		0.9	1629300	1597890	5	34
SJC2-200-5-5-30-1	712009	0.7	718494	712009	4	8
		0.8	718494	712009	4	8
		0.9	718494	712009	4	8
SJC2-200-5-5-30-2	447000	0.7	463834	447000	1	2
		0.8	463834	447000	1	2
		0.9	463834	447000	1	2
SJC2-200-5-5-30-3	408556	0.7	410510	408665	1	4
		0.8	410510	408665	1	11
		0.9	410510	408665	1	11
SJC2-200-5-5-30-4	750011	0.7	757345	750015	3	9
		0.8	757345	750015	3	9
		0.9	757345	750015	3	10
SJC2-200-5-5-30-5	640846	0.7	645285	640859	4	7
		0.8	645285	640859	4	7
		0.9	645285	640859	4	7
SJC2-200-10-5-30-1	1655580	0.7	1671630	1655580	7	18
		0.8	1671630	1655580	7	18
		0.9	1671630	1655580	7	18
SJC2-200-10-5-30-2	1298480	0.7	1322790	1298580	6	15
		0.8	1322790	1298580	6	15
		0.9	1322790	1298580	6	21
SJC2-200-10-5-30-3	1189790	0.7	1234000	1189790	2	8
		0.8	1234000	1189790	2	9
		0.9	1234000	1189790	2	8
SJC2-200-10-5-30-4	1165480	0.7	1180030	1165530	3	7
		0.8	1180030	1165530	3	7
		0.9	1180030	1165530	3	7
SJC2-200-10-5-30-5	1034280	0.7	1046100	1034280	6	15
		0.8	1046100	1034280	6	15
		0.9	1046100	1034280	6	15
SJC3-300-5-5-15-1	1110620	0.7	1116920	1110620	11	149
		0.8	1116920	1110620	11	148
		0.9	1116920	1110620	11	149

Table D. 3 (Cont.)

SJC3-300-5-5-15-2	977617	0.7	1022310	977678	12	189
		0.8	1022310	977678	12	179
		0.9	1022310	977678	12	180
SJC3-300-5-5-15-3	1224380	0.7	1230220	1224380	18	142
		0.8	1230220	1224380	18	142
		0.9	1230220	1224380	18	142
SJC3-300-5-5-15-4	1346440	0.7	1371730	1346440	19	171
		0.8	1371730	1346440	19	171
		0.9	1371730	1346440	19	171
SJC3-300-5-5-15-5	1241550	0.7	1253060	1241690	23	237
		0.8	1253060	1241690	23	237
		0.9	1253060	1241690	23	237
SJC3-300-10-5-15-1	3030730	0.7	3088520	3041430	54	18001
		0.8	3088520	3037220	54	51762
		0.9	3088520	3036940	54	18007
SJC3-300-10-5-15-2	2679890	0.7	2734280	2687150	55	18359
		0.8	2734280	2696160	56	18052
		0.9	2734280	2696160	55	18069
SJC3-300-10-5-15-3	3034220	0.7	3109480	3051870	53	18770
		0.8	3109480	3051870	54	21300
		0.9	3109480	3051870	53	18019
SJC3-300-10-5-15-4	3311880	0.7	3394020	3311880	101	4763
		0.8	3394020	3311880	101	4750
		0.9	3394020	3311880	100	4743
SJC3-300-10-5-15-5	2809930	0.7	2848320	2810320	62	1190
		0.8	2848320	2810320	62	1073
		0.9	2848320	2810320	62	3332
SJC3-300-5-5-30-1	581092	0.7	588201	581204	3	15
		0.8	588201	581204	4	19
		0.9	588201	581204	3	24
SJC3-300-5-5-30-2	610611	0.7	627662	610611	2	14
		0.8	627662	610611	2	15
		0.9	627662	610611	2	14
SJC3-300-5-5-30-3	791799	0.7	807957	791799	6	17
		0.8	807957	791799	6	17
		0.9	807957	791799	6	17
SJC3-300-5-5-30-4	772712	0.7	803024	773622	7	1876
		0.8	803024	773622	7	2977
		0.9	803024	773622	7	2437
SJC3-300-5-5-30-5	971093	0.7	988710	971431	15	81
		0.8	988710	971431	15	97
		0.9	988710	971431	15	97
SJC3-300-10-5-30-1	2303930	0.7	2358570	2303930	37	1321
		0.8	2358570	2303930	37	1326
		0.9	2358570	2303930	37	1325
SJC3-300-10-5-30-2	2031090	0.7	2067840	2031250	48	177
		0.8	2067840	2031250	48	177
		0.9	2067840	2031250	48	178
SJC3-300-10-5-30-3	2482630	0.7	2506120	2494620	48	18414
		0.8	2506120	2492870	48	18037
		0.9	2506120	2492870	48	18002
SJC3-300-10-5-30-4	2129420	0.7	2169400	2130410	36	7891
		0.8	2169400	2130410	36	3010
		0.9	2169400	2130410	36	5849
SJC3-300-10-5-30-5	1704590	0.7	1735390	1705910	17	1806
		0.8	1735390	1705910	17	3634
		0.9	1735390	1705910	18	4404

Table D. 4 Results for DBnP

Instance	$\begin{gathered} \text { UB } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \text { Best } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \text { LPR } \\ (1000) \end{gathered}$	UB Time (sec)	NN	Total Time (sec)
SJC1-100-5-5-15-1	248399	241785	241785	0	1	0
SJC1-100-5-5-15-2	252912	252912	252912	0	1	0
SJC1-100-5-5-15-3	310905	308872	308872	0	1	0
SJC1-100-5-5-15-4	325322	323080	323052	0	5	1
SJC1-100-5-5-15-5	285188	277694	277694	0	1	0
SJC1-100-5-5-30-1	160136	158240	158240	0	1	0
SJC1-100-5-5-30-2	84189.9	82389.1	82389.1	0	1	0
SJC1-100-5-5-30-3	162394	161836	161836	0	1	0
SJC1-100-5-5-30-4	245975	245473	245473	0	1	0
SJC1-100-5-5-30-5	159621	159621	159621	0	1	0
SJC1-100-10-5-15-1	717191	711770	711770	1	1	2
SJC1-100-10-5-15-2	711207	690616	690616	0	1	1
SJC1-100-10-5-15-3	779884	772218	772218	0	1	1
SJC1-100-10-5-15-4	753258	750280	748921	0	394	67
SJC1-100-10-5-15-5	815001	785997	785570	1	5	2
SJC1-100-10-5-30-1	325766	320527	320506	0	3	0
SJC1-100-10-5-30-2	568519	556427	556427	0	1	0
SJC1-100-10-5-30-3	573818	567070	567070	0	1	0
SJC1-100-10-5-30-4	451264	447455	447455	0	1	1
SJC1-100-10-5-30-5	326081	321096	321096	0	1	0
SJC2-200-5-5-15-1	556608	554636	553710	2	201	157
SJC2-200-5-5-15-2	757877	755422	755008	3	11	12
SJC2-200-5-5-15-3	796335	789996	789996	5	1	15
SJC2-200-5-5-15-4	543624	540359	539626	2	737	1117
SJC2-200-5-5-15-5	874330	854003	853995	6	3	18
SJC2-200-5-5-30-1	718494	712009	712009	4	1	8
SJC2-200-5-5-30-2	463834	447000	447000	1	1	2
SJC2-200-5-5-30-3	410510	408665	408556	1	29	4
SJC2-200-5-5-30-4	757345	750015	750011	3	3	9
SJC2-200-5-5-30-5	645285	640859	640846	4	3	7
SJC2-200-10-5-15-1	1984900	1973030	1972970	9	5	55
SJC2-200-10-5-15-2	1687040	1649590	1649590	6	1	81
SJC2-200-10-5-15-3	1904870	1851590	1851590	8	1	234
SJC2-200-10-5-15-4	1787590	1786230	1785670	5	67	485
SJC2-200-10-5-15-5	1629300	1597890	1597890	5	1	34
SJC2-200-10-5-30-1	1671630	1655580	1655580	7	1	18
SJC2-200-10-5-30-2	1322790	1298580	1298480	6	11	15
SJC2-200-10-5-30-3	1234000	1189790	1189790	2	1	8
SJC2-200-10-5-30-4	1180030	1165530	1165480	3	3	7
SJC2-200-10-5-30-5	1046100	1034280	1034280	6	1	15
SJC3-300-5-5-15-1	1116920	1110620	1110620	11	1	149
SJC3-300-5-5-15-2	1022310	977678	977617	12	3	189
SJC3-300-5-5-15-3	1230220	1224380	1224380	18	1	142
SJC3-300-5-5-15-4	1371730	1346440	1346440	19	9	171
SJC3-300-5-5-15-5	1253060	1241690	1241550	23	11	237
SJC3-300-5-5-30-1	588201	581204	581092	3	5	15
SJC3-300-5-5-30-2	627662	610611	610611	2	1	14
SJC3-300-5-5-30-3	807957	791799	791799	6	3	17
SJC3-300-5-5-30-4	803024	773622	772712	7	583	1876
SJC3-300-5-5-30-5	988710	971431	971093	15	23	81
SJC3-300-10-5-15-1	3065720	3042150	3030730	50	450	36155
SJC3-300-10-5-15-2	2734280	2687150	2679890	51	336	36452
SJC3-300-10-5-15-3	3078580	3051450	3034220	51	180	36071
SJC3-300-10-5-15-4	3394020	3311880	3311880	101	12	4763
SJC3-300-10-5-15-5	2848320	2810320	2809930	62	7	1190
SJC3-300-10-5-30-1	2358570	2303930	2303930	37	1	1321
SJC3-300-10-5-30-2	2067840	2031250	2031090	48	5	177
SJC3-300-10-5-30-3	252029	2488010	2482630	45	1599	36001
SJC3-300-10-5-30-4	2169400	2130410	2129420	36	133	7891
SJC3-300-10-5-30-5	1735390	1705910	1704590	17	253	1806
SJC4-402-5-5-15-1	1543570	1524200	1522590	87	15	3696
SJC4-402-5-5-15-2	1914850	1897990	1897990	157	8	3579
SJC4-402-5-5-15-3	1851670	1833850	1832060	111	61	7972

Table D. 4 (Cont.)

SJC4-402-5-5-15-4	1751210	1726970	1726470	98	5	768
SJC4-402-5-5-15-5	1784360	1747980	1747980	108	1	1955
SJC4-402-5-5-30-1	1081640	1074700	1074700	55	1	218
SJC4-402-5-5-30-2	1150710	1135410	1135410	50	4	137
SJC4-402-5-5-30-3	1307960	1290850	1289880	60	49	4601
SJC4-402-5-5-30-4	1440680	1407810	1407810	109	3	224
SJC4-402-5-5-30-5	1526500	1496710	1496640	124	5	214
SJC4-402-10-5-15-1	4139230	4086170	4085680	173	18	12587
SJC4-402-10-5-15-2	5171840	5148380	5146060	221	4	42840
SJC4-402-10-5-15-3	3764500	3738620	3735130	125	32	37134
SJC4-402-10-5-15-4	5008410	4898720	4897590	85	11	17839
SJC4-402-10-5-15-5	4723390	4596480	4587130	95	27	38035
SJC4-402-10-5-30-1	3347820	3327880	3327070	105	73	18357
SJC4-402-10-5-30-2	3373820	3355080	3351790	138	287	39776
SJC4-402-10-5-30-3	3662620	3586820	3586730	59	5	1591
SJC4-402-10-5-30-4	3612090	3530270	3529080	44	21	4249
SJC4-402-10-5-30-5	3154760	3128610	3120340	40	548	36066
AP-200-5-5-15-1	6293120000	6234770000	$6.235 \mathrm{E}+09$	8	1	69
AP-200-5-5-15-2	5864710000	5649940000	$5.65 \mathrm{E}+09$	7	1	22
AP-200-5-5-15-3	5255660000	5188010000	$5.184 \mathrm{E}+09$	7	5	39
AP-200-5-5-15-4	5942040000	5929810000	$5.93 \mathrm{E}+09$	8	1	23
AP-200-5-5-15-5	4207030000	4032820000	$4.025 \mathrm{E}+09$	1	5	34
AP-200-5-5-30-1	3311960000	3263090000	$3.263 \mathrm{E}+09$	1	1	7
AP-200-5-5-30-2	3326300000	3300850000	$3.301 \mathrm{E}+09$	3	1	5
AP-200-5-5-30-3	2583690000	2542290000	$2.542 \mathrm{E}+09$	2	1	3
AP-200-5-5-30-4	3450080000	3389650000	$3.39 \mathrm{E}+09$	2	1	3
AP-200-5-5-30-5	3124860000	3021120000	$3.021 \mathrm{E}+09$	1	1	2
AP-200-10-5-15-1	14822900000	14573300000	$1.457 \mathrm{E}+10$	13	1	144
AP-200-10-5-15-2	12673400000	12165600000	$1.217 \mathrm{E}+10$	9	1	118
AP-200-10-5-15-3	13273100000	13008300000	$1.301 \mathrm{E}+10$	8	1	68
AP-200-10-5-15-4	14613800000	14355400000	$1.436 \mathrm{E}+10$	16	1	292
AP-200-10-5-15-5	16242900000	15789200000	$1.579 \mathrm{E}+10$	12	7	367
AP-200-10-5-30-1	16891800000	16650400000	$1.665 \mathrm{E}+10$	17	1	261
AP-200-10-5-30-2	11149300000	11092300000	$1.109 \mathrm{E}+10$	10	1	19
AP-200-10-5-30-3	9952280000	9884800000	$9.885 \mathrm{E}+09$	6	1	28
AP-200-10-5-30-4	8269870000	8224260000	$8.223 \mathrm{E}+09$	5	17	28
AP-200-10-5-30-5	10410600000	10240700000	$1.024 \mathrm{E}+10$	9	1	21
CAPA-1000-5-5-15-1	152756000	151516000	150707000	30	159	6369
CAPA-1000-5-5-15-2	153354000	153225000	151379000	49	2175	36058
CAPA-1000-5-5-15-3	136378000	136092000	135423000	22	23	809
CAPA-1000-5-5-15-4	124177000	121497000	119916000	33	4874	36028
CAPA-1000-5-5-15-5	115943000	115396000	114658000	19	285	3809
CAPA-1000-5-5-30-1	88392000	87056600	86583400	10	193	902
CAPA-1000-5-5-30-2	115248000	113357000	112862000	33	211	2517
CAPA-1000-5-5-30-3	67668800	67306400	67256600	4	23	36
CAPA-1000-5-5-30-4	94922600	93891500	93540000	19	2511	13360
CAPA-1000-5-5-30-5	88215000	85527000	85203800	8	4375	15133
CAPA-1000-10-5-15-1	399044000	393146000	391398000	50	157	28940
CAPA-1000-10-5-15-2	321778000	318915000	318915000	23	1	575
CAPA-1000-10-5-15-3	357401000	350235000	344520000	47	1257	36009
CAPA-1000-10-5-15-4	428538000	420924000	414554000	75	396	36023
CAPA-1000-10-5-15-5	328634000	327166000	323026000	42	611	36312
CAPA-1000-10-5-30-1	321491000	314217000	312109000	40	1837	36002
CAPA-1000-10-5-30-2	275818000	274874000	274621000	26	3134	36057
CAPA-1000-10-5-30-3	268953000	265985000	263864000	14	3138	36011
CAPA-1000-10-5-30-4	204446000	202503000	202496000	12	9	113
CAPA-1000-10-5-30-5	247475000	245116000	242248000	15	2630	36244
CAPB-1000-5-5-15-1	140093000	139477000	138562000	21	1163	11144
CAPB-1000-5-5-15-2	153390000	151233000	151006000	29	19	829
CAPB-1000-5-5-15-3	122883000	121431000	121024000	15	111	2157
CAPB-1000-5-5-15-4	111952000	111412000	111398000	11	3	103
CAPB-1000-5-5-15-5	128427000	127576000	127126000	19	167	2819
CAPB-1000-5-5-30-1	131186000	129346000	128837000	23	147	3085
CAPB-1000-5-5-30-2	93676800	93638100	93545800	11	313	688
CAPB-1000-5-5-30-3	135044000	134140000	133414000	27	1179	19639
CAPB-1000-5-5-30-4	88618700	88327700	87672300	32	7964	36002

Table D. 4 (Cont.)

CAPB-1000-5-5-30-5	97039900	95714200	95606700	9	199	814
CAPB-1000-10-5-15-1	356487000	349644000	348322000	50	560	36042
CAPB-1000-10-5-15-2	355355000	345348000	344583000	53	121	14070
CAPB-1000-10-5-15-3	377395000	376887000	375371000	20	353	25037
CAPB-1000-10-5-15-4	419220000	411242000	405354000	81	341	36006
CAPB-1000-10-5-15-5	353269000	351185000	349985000	39	409	36003
CAPB-1000-10-5-30-1	271409000	267227000	266328000	32	906	36024
CAPB-1000-10-5-30-2	261885000	253800000	253543000	25	13	914
CAPB-1000-10-5-30-3	241293000	239920000	239358000	18	1535	36215
CAPB-1000-10-5-30-4	245372000	240132000	240033000	17	15	575
CAPB-1000-10-5-30-5	290761000	285768000	285106000	25	1900	36036
CAPC-1000-5-5-15-1	125868000	124696000	122968000	19	3801	36007
CAPC-1000-5-5-15-2	138309000	137178000	135001000	23	1356	36004
CAPC-1000-5-5-15-3	112995000	112675000	111733000	9	1311	14295
CAPC-1000-5-5-15-4	125929000	125710000	125138000	15	23	710
CAPC-1000-5-5-15-5	155704000	152955000	150780000	32	795	25583
CAPC-1000-5-5-30-1	97236100	95263900	94686000	11	8895	36007
CAPC-1000-5-5-30-2	116074000	114193000	113526000	49	3545	36002
CAPC-1000-5-5-30-3	92929400	90555700	89858200	12	8985	36028
CAPC-1000-5-5-30-4	94796800	93097500	92573700	11	10474	36001
CAPC-1000-5-5-30-5	139576000	136872000	136328000	44	3130	36035
CAPC-1000-10-5-15-1	385267000	385117000	383987000	36	85	21743
CAPC-1000-10-5-15-2	366092000	363318000	357392000	58	541	36323
CAPC-1000-10-5-15-3	398333000	394524000	386714000	68	457	36010
CAPC-1000-10-5-15-4	333916000	328701000	327278000	44	153	14443
CAPC-1000-10-5-15-5	401015000	390129000	388672000	119	183	36419
CAPC-1000-10-5-30-1	243767000	240064000	239660000	16	3121	32451
CAPC-1000-10-5-30-2	303942000	300076000	298053000	73	2022	36146
CAPC-1000-10-5-30-3	393536000	384124000	378515000	60	718	36023
CAPC-1000-10-5-30-4	290305000	286294000	284422000	25	2034	36007
CAPC-1000-10-5-30-5	302927000	297828000	295569000	32	1574	36303

Table D. 5 Results for IMCA

Instance	$\begin{gathered} \text { UB } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \text { Best } \\ (1000) \end{gathered}$	$\begin{gathered} \text { LPR } \\ (\mathbf{1 0 0 0}) \end{gathered}$	$\begin{gathered} \hline \text { UB } \\ \text { Time } \\ \text { (sec) } \\ \hline \end{gathered}$	NN	Total Time (sec)
SJC1-100-5-5-15-1	248399	241785	241785	0	1	1
SJC1-100-5-5-15-2	252912	252912	252912	1	1	1
SJC1-100-5-5-15-3	314811	308872	308872	1	1	2
SJC1-100-5-5-15-4	325322	323080	323052	1	1	2
SJC1-100-5-5-15-5	279080	277694	277694	0	1	1
SJC1-100-5-5-30-1	160136	158240	158240	0	1	1
SJC1-100-5-5-30-2	84189.9	82389.1	82389.1	0	1	0
SJC1-100-5-5-30-3	164517	161836	161836	0	1	0
SJC1-100-5-5-30-4	249057	245473	245473	0	1	1
SJC1-100-5-5-30-5	159621	159621	159621	0	1	0
SJC1-100-10-5-15-1	720468	711770	711770	2	1	5
SJC1-100-10-5-15-2	710906	690616	690616	1	1	3
SJC1-100-10-5-15-3	801351	772218	772218	1	1	3
SJC1-100-10-5-15-4	759212	750280	748921	2	19	12
SJC1-100-10-5-15-5	788739	785997	785570	1	1	5
SJC1-100-10-5-30-1	325468	320527	320506	0	1	1
SJC1-100-10-5-30-2	563929	556427	556427	1	1	2
SJC1-100-10-5-30-3	573818	567070	567070	1	1	2
SJC1-100-10-5-30-4	452502	447455	447455	1	1	3
SJC1-100-10-5-30-5	332574	321096	321096	0	1	1
SJC2-200-5-5-15-1	556608	554636	553710	5	1	15
SJC2-200-5-5-15-2	757877	755460	755008	7	5	31
SJC2-200-5-5-15-3	800074	789996	789996	6	1	67
SJC2-200-5-5-15-4	549278	540359	539626	6	9	32
SJC2-200-5-5-15-5	874330	854003	853995	11	1	132
SJC2-200-5-5-30-1	719637	712009	712009	5	1	29
SJC2-200-5-5-30-2	459225	447000	447000	2	1	4
SJC2-200-5-5-30-3	413186	408665	408556	3	1	6
SJC2-200-5-5-30-4	757345	750015	750011	7	1	21
SJC2-200-5-5-30-5	645285	640859	640846	8	1	16
SJC2-200-10-5-15-1	1984900	1973030	1972970	18	1	112
SJC2-200-10-5-15-2	1679930	1649590	1649590	13	1	188
SJC2-200-10-5-15-3	1904870	1851590	1851590	16	1	292
SJC2-200-10-5-15-4	1792750	1786230	1785670	12	4	69
SJC2-200-10-5-15-5	1705940	1668290	1663600	11	159	443
SJC2-200-10-5-30-1	1680990	1655580	1655580	15	1	37
SJC2-200-10-5-30-2	1311890	1298580	1298480	7	1	45
SJC2-200-10-5-30-3	1234000	1189790	1189790	4	1	20
SJC2-200-10-5-30-4	1179630	1165530	1165480	7	1	16
SJC2-200-10-5-30-5	1045600	1034280	1034280	4	1	18
SJC3-300-5-5-15-1	1116920	1110620	1110620	20	1	234
SJC3-300-5-5-15-2	991696	977678	977617	16	1	183
SJC3-300-5-5-15-3	1237470	1224380	1224380	32	1	503
SJC3-300-5-5-15-4	1371730	1346440	1346440	46	1	169
SJC3-300-5-5-15-5	1253060	1241690	1241550	50	1	393
SJC3-300-5-5-30-1	588201	581204	581092	8	6	95
SJC3-300-5-5-30-2	633218	610611	610611	10	1	29
SJC3-300-5-5-30-3	807957	791799	791799	13	1	38
SJC3-300-5-5-30-4	803024	773622	772712	15	101	438
SJC3-300-5-5-30-5	988710	971431	971093	30	1	148
SJC3-300-10-5-15-1	3081240	3036020	3030730	82	2684	36211
SJC3-300-10-5-15-2	2734280	2687150	2679890	55	390	8225
SJC3-300-10-5-15-3	3065490	3042680	3034220	66	535	9683
SJC3-300-10-5-15-4	3381430	3311880	3311880	70	1	2263
SJC3-300-10-5-15-5	2848320	2810320	2809930	62	1	950
SJC3-300-10-5-30-1	2343520	2303930	2303930	46	1	3962
SJC3-300-10-5-30-2	2067840	2031250	2031090	50	1	174
SJC3-300-10-5-30-3	2511810	2486630	2482630	47	632	4892
SJC3-300-10-5-30-4	2157960	2130410	2129420	33	105	2130
SJC3-300-10-5-30-5	1721800	1705910	1704590	18	26	354
SJC4-402-5-5-15-1	1543570	1524200	1522590	87	16	922
SJC4-402-5-5-15-2	1915380	1897990	1897990	124	1	3156
SJC4-402-5-5-15-3	1851670	1833850	1832060	111	55	3227

Table D. 5 (Cont.)

SJC4-402-5-5-15-4	1751210	1726970	1726470	97	1	857
SJC4-402-5-5-15-5	1784360	1747980	1747980	109	1	1977
SJC4-402-5-5-30-1	1081640	1074700	1074700	56	1	224
SJC4-402-5-5-30-2	1150710	1135410	1135410	50	1	143
SJC4-402-5-5-30-3	1307960	1290850	1289880	59	21	511
SJC4-402-5-5-30-4	1440680	1407810	1407810	109	1	229
SJC4-402-5-5-30-5	1500970	1496770	1496640	93	1	190
SJC4-402-10-5-15-1	4139230	4086170	4085680	174	10	11999
SJC4-402-10-5-15-2	5286220	5148380	5146060	200	23	20813
SJC4-402-10-5-15-3	3745350	3738310	3735130	111	186	22433
SJC4-402-10-5-15-4	4932800	4898720	4897590	228	15	12692
SJC4-402-10-5-15-5	4609010	4590490	4587130	188	44	13334
SJC4-402-10-5-30-1	3346290	3327880	3327070	101	13	2245
SJC4-402-10-5-30-2	3379480	3355080	3351790	147	340	6250
SJC4-402-10-5-30-3	3631210	3586820	3586730	112	1	6452
SJC4-402-10-5-30-4	3585710	3530270	3529080	82	42	14739
SJC4-402-10-5-30-5	3154760	3124200	3120340	80	196	4621
AP-200-5-5-15-1	$6.29 \mathrm{E}+09$	$6.23 \mathrm{E}+09$	$6.23 \mathrm{E}+09$	8	1	72
AP-200-5-5-15-2	$5.86 \mathrm{E}+09$	$5.65 \mathrm{E}+09$	$5.65 \mathrm{E}+09$	7	1	23
AP-200-5-5-15-3	$5.26 \mathrm{E}+09$	$5.19 \mathrm{E}+09$	$5.18 \mathrm{E}+09$	7	7	49
AP-200-5-5-15-4	$6.11 \mathrm{E}+09$	$5.93 \mathrm{E}+09$	$5.93 \mathrm{E}+09$	5	1	35
AP-200-5-5-15-5	$4.11 \mathrm{E}+09$	$4.03 \mathrm{E}+09$	$4.03 \mathrm{E}+09$	3	10	13
AP-200-5-5-30-1	$3.29 \mathrm{E}+09$	$3.26 \mathrm{E}+09$	$3.26 \mathrm{E}+09$	2	1	3
AP-200-5-5-30-2	$3.33 \mathrm{E}+09$	$3.3 \mathrm{E}+09$	$3.3 \mathrm{E}+09$	3	1	5
AP-200-5-5-30-3	$2.58 \mathrm{E}+09$	$2.54 \mathrm{E}+09$	$2.54 \mathrm{E}+09$	2	1	3
AP-200-5-5-30-4	$3.49 \mathrm{E}+09$	$3.39 \mathrm{E}+09$	$3.39 \mathrm{E}+09$	1	1	3
AP-200-5-5-30-5	$3.04 \mathrm{E}+09$	$3.02 \mathrm{E}+09$	$3.02 \mathrm{E}+09$	1	1	3
AP-200-10-5-15-1	$1.46 \mathrm{E}+10$	$1.46 \mathrm{E}+10$	$1.46 \mathrm{E}+10$	15	1	143
AP-200-10-5-15-2	$1.27 \mathrm{E}+10$	$1.22 \mathrm{E}+10$	$1.22 \mathrm{E}+10$	9	1	121
AP-200-10-5-15-3	$1.33 \mathrm{E}+10$	$1.3 \mathrm{E}+10$	$1.3 \mathrm{E}+10$	8	1	72
AP-200-10-5-15-4	$1.44 \mathrm{E}+10$	$1.44 \mathrm{E}+10$	$1.44 \mathrm{E}+10$	13	1	157
AP-200-10-5-15-5	$1.6 \mathrm{E}+10$	$1.58 \mathrm{E}+10$	$1.58 \mathrm{E}+10$	16	1	232
AP-200-10-5-30-1	$1.67 \mathrm{E}+10$	$1.67 \mathrm{E}+10$	$1.67 \mathrm{E}+10$	17	1	90
AP-200-10-5-30-2	$1.12 \mathrm{E}+10$	$1.11 \mathrm{E}+10$	$1.11 \mathrm{E}+10$	9	1	24
AP-200-10-5-30-3	$1.01 \mathrm{E}+10$	$9.88 \mathrm{E}+09$	$9.88 \mathrm{E}+09$	7	1	19
AP-200-10-5-30-4	$8.23 \mathrm{E}+09$	$8.22 \mathrm{E}+09$	$8.22 \mathrm{E}+09$	8	1	61
AP-200-10-5-30-5	$1.04 \mathrm{E}+10$	$1.02 \mathrm{E}+10$	$1.02 \mathrm{E}+10$	7	1	15
CAPA-1000-5-5-15-1	$1.53 \mathrm{E}+08$	148276000	148242000	31	221	3512
CAPA-1000-5-5-15-2	$1.53 \mathrm{E}+08$	150179000	149981000	49	2091	8071
CAPA-1000-5-5-15-3	$1.36 \mathrm{E}+08$	133952000	133952000	21	113	1086
CAPA-1000-5-5-15-4	$1.25 \mathrm{E}+08$	119486000	119047000	41	1023	5042
CAPA-1000-5-5-15-5	$1.16 \mathrm{E}+08$	113704000	113477000	19	208	1109
CAPA-1000-5-5-30-1	88455700	85943400	85654600	13	302	854
CAPA-1000-5-5-30-2	$1.15 \mathrm{E}+08$	111762000	111671000	33	247	782
CAPA-1000-5-5-30-3	67668800	66746400	66710800	4	3	31
CAPA-1000-5-5-30-4	94922600	93114700	92875300	18	42	335
CAPA-1000-5-5-30-5	88215000	84799700	84555600	8	10	95
CAPA-1000-10-5-15-1	$3.97 \mathrm{E}+08$	387162000	386902000	28	1508	11647
CAPA-1000-10-5-15-2	$3.25 \mathrm{E}+08$	317047000	317047000	16	1	153
CAPA-1000-10-5-15-3	$3.51 \mathrm{E}+08$	$3.51 \mathrm{E}+08$	341061000	27	5370	36000
CAPA-1000-10-5-15-4	$4.24 \mathrm{E}+08$	$4.24 \mathrm{E}+08$	407187000	53	843	36001
CAPA-1000-10-5-15-5	$3.31 \mathrm{E}+08$	$3.31 \mathrm{E}+08$	319718000	78	1834	36000
CAPA-1000-10-5-30-1	$3.2 \mathrm{E}+08$	$3.2 \mathrm{E}+08$	308745000	27	2297	36002
CAPA-1000-10-5-30-2	$2.81 \mathrm{E}+08$	273597000	273453000	32	13	445
CAPA-1000-10-5-30-3	$2.7 \mathrm{E}+08$	260783000	260662000	31	217	3712
CAPA-1000-10-5-30-4	$2.04 \mathrm{E}+08$	201103000	200940000	12	1	98
CAPA-1000-10-5-30-5	$2.47 \mathrm{E}+08$	242045000	241126000	15	2358	8878
CAPB-1000-5-5-15-1	$1.4 \mathrm{E}+08$	136041000	135961000	20	309	3276
CAPB-1000-5-5-15-2	$1.53 \mathrm{E}+08$	148218000	148099000	29	4	306
CAPB-1000-5-5-15-3	$1.23 \mathrm{E}+08$	120024000	119944000	25	25	323
CAPB-1000-5-5-15-4	$1.12 \mathrm{E}+08$	110461000	110339000	11	1	102
CAPB-1000-5-5-15-5	$1.29 \mathrm{E}+08$	125790000	125683000	21	15	300
CAPB-1000-5-5-30-1	$1.31 \mathrm{E}+08$	126651000	126595000	23	236	1059
CAPB-1000-5-5-30-2	93676800	92587000	92405400	11	1	49
CAPB-1000-5-5-30-3	$1.37 \mathrm{E}+08$	131543000	131437000	27	478	2055
CAPB-1000-5-5-30-4	88618700	86507200	86481800	32	159	818

Table D. 5 (Cont.)

CAPB-1000-5-5-30-5	97217700	94268500	94268500	7	5	115
CAPB-1000-10-5-15-1	$3.56 \mathrm{E}+08$	345722000	345200000	50	30	2642
CAPB-1000-10-5-15-2	$3.49 \mathrm{E}+08$	340358000	340091000	29	65	2796
CAPB-1000-10-5-15-3	$3.82 \mathrm{E}+08$	371308000	370779000	43	518	17919
CAPB-1000-10-5-15-4	$4.18 \mathrm{E}+08$	$4.18 \mathrm{E}+08$	399487000	82	526	36001
CAPB-1000-10-5-15-5	$3.52 \mathrm{E}+08$	346943000	346756000	33	14	1509
CAPB-1000-10-5-30-1	$2.71 \mathrm{E}+08$	264348000	263572000	32	232	3742
CAPB-1000-10-5-30-2	$2.62 \mathrm{E}+08$	250920000	250464000	25	7	483
CAPB-1000-10-5-30-3	$2.41 \mathrm{E}+08$	236650000	236594000	18	30	430
CAPB-1000-10-5-30-4	$2.44 \mathrm{E}+08$	237665000	237470000	14	1	264
CAPB-1000-10-5-30-5	$2.86 \mathrm{E}+08$	281845000	281845000	29	14	367
CAPC-1000-5-5-15-1	$1.25 \mathrm{E}+08$	121411000	121339000	23	310	1185
CAPC-1000-5-5-15-2	$1.38 \mathrm{E}+08$	$1.38 \mathrm{E}+08$	133349000	23	9891	36000
CAPC-1000-5-5-15-3	$1.13 \mathrm{E}+08$	110861000	110777000	9	629	2365
CAPC-1000-5-5-15-4	$1.26 \mathrm{E}+08$	123989000	123798000	15	110	658
CAPC-1000-5-5-15-5	$1.56 \mathrm{E}+08$	149234000	148799000	32	2115	15038
CAPC-1000-5-5-30-1	96615500	93891900	93748800	10	517	1274
CAPC-1000-5-5-30-2	$1.16 \mathrm{E}+08$	112749000	112713000	50	132	948
CAPC-1000-5-5-30-3	92596400	89382500	89233100	14	1905	3992
CAPC-1000-5-5-30-4	94796800	92013600	91911700	11	64	290
CAPC-1000-5-5-30-5	$1.4 \mathrm{E}+08$	134899000	134490000	52	136	790
CAPC-1000-10-5-15-1	$3.85 \mathrm{E}+08$	380337000	379939000	37	155	8038
CAPC-1000-10-5-15-2	$3.63 \mathrm{E}+08$	$3.63 \mathrm{E}+08$	353465000	48	947	36011
CAPC-1000-10-5-15-3	$3.97 \mathrm{E}+08$	$3.97 \mathrm{E}+08$	383050000	29	3063	36007
CAPC-1000-10-5-15-4	$3.34 \mathrm{E}+08$	323835000	323637000	19	229	2010
CAPC-1000-10-5-15-5	$4.01 \mathrm{E}+08$	$4.01 \mathrm{E}+08$	382294000	117	765	36000
CAPC-1000-10-5-30-1	$2.44 \mathrm{E}+08$	237265000	237066000	16	73	881
CAPC-1000-10-5-30-2	$3.02 \mathrm{E}+08$	$3.02 \mathrm{E}+08$	295496000	42	6498	36000
CAPC-1000-10-5-30-3	$3.94 \mathrm{E}+08$	$3.94 \mathrm{E}+08$	374048000	30	3126	36011
CAPC-1000-10-5-30-4	$2.88 \mathrm{E}+08$	280332000	280133000	15	7099	23895
CAPC-1000-10-5-30-5	$3 \mathrm{E}+08$	$3 \mathrm{E}+08$	291667000	41	3124	36000

APPENDIX E

CURRICULUM VITAE

HÜSEYİN GÜDEN

BASKENT UNIVERSITY, BAGLICA CAMPUS, ANKARA, TURKEY Phone 05363460846 E-MAIL hsyngdn@baskent.edu.tr

PERSONAL

Date of Birth: 19.08.1978
Place of Birth: ÇORUM, T.R.
Nationality: Turkish, Turkish Cypriot
Gender: Male
Marital Status: Married

EDUCATION

- Ph.D. in Industrial Engineering (3.64/4 GPA)

Middle East Technical University, Ankara, Turkey, 2006-present

- M.S. in Industrial Engineering (3.21/4 GPA)

Middle East Technical University, Ankara, Turkey, 2003-2006
Thesis Title: An Adaptive Simulated Annealing Method for Assembly Line Balancing And a Case Study
Advisor: Assist. Prof. Dr. Sedef MERAL

- B.S. in Industrial Engineering (3.71/4 GPA)

Gazi University, Ankara, Turkey, 1998-2002

WORK EXPERIENCE

- Lecturer (June 2009 - present)

Baskent University, Baglıca Campus, T.R.

- Research and Teaching Assistant (September 2003-June 2009) Baskent University, Baglıca Campus, T.R.
- Production Planning Engineer (September 2002-February 2003) Nuriş Welding Machines, Sincan, Ankara, Turkey

LECTURER EXPERIENCE

- One Day Project Management Course, Logistics Management School, Turkish Army, March 2009 - Present
- END 202 Operations Research-I, Başkent University, 2009 Summer school, 2010 Summer school
- END 301 Operations Research-II, Başkent University, 2009 Summer school
- END 205 Algorithms, Başkent University, 2009-2010 Fall, 2010-2011 Fall, 2011-2012 Fall
- END 401 Production Planning and Control-II, Başkent University, 2009-2010 Fall, 2010 Summer school, 2010-2011 Fall, 2011 Summer school, 2011-2012 Fall
- END 310 Production Planning and Control-I, Başkent University, 2009-2010 Spring, 2010 Summer school, 2010-2011 Spring, 2011-2012 Spring
- END 491 Last Year Project-I and END 492 Last Year Project-II, Başkent University, 2009-2010 Fall, 2009-2010 Spring, 2010-2011 Fall, 2010-2011 Spring, 2011-2012 Fall, 2011-2012 Spring

RESEARCH AND TEACHING ASSISTANT EXPERIENCE

- END 205 Algorithms, Başkent University, 2003-2004 Fall
- END 305 Statistical Analysis, Başkent University, 2003-2004 Fall
- END 204 Introduction to Probability and Statistic, Başkent University 2003-2004 Spring
- END 202 Operations Research-I, Başkent University, 2003-2004 Spring, 2004-2005 Spring, 2005-2006 Spring, 2006-2007 Spring
- END 301 Operations Research-II, Başkent University,
- END 405 Quality Control, Başkent University, 2004-2005 Fall
- END 421 Simulation Languages, Başkent University, 2004-2005 Fall
- SOS 423 Human Resource Management, Başkent University, 2004-2005 Spring
- END 306 Stochastic Models, Başkent University, 2004-2005 Spring, 2005-2006 Spring, 2006-2007 Spring
- END 310 Production Planning and Control-I, Başkent University, 2007-2008 Spring, 2008-2009 Spring
- END 401 Production Planning and Control-II, Başkent University, 2008-2009 Fall
- END 491, END 492 Last Year Project, Başkent University, Every semester from 2003 to 2009

AWARDS AND HONORS

- Secondary Award in Best Graduate Student Paper Competition in TRANSLOG2011 Conference. (TRANSLOG2011: A Conference on Transportation And Logistics, 15-16 June 2011, Hamilton Canada)
- Ranked $2^{\text {nd }}$ among 2002 graduates of Engineering and Architecture Faculty, Gazi University, Ankara, Turkey
- Secondary Award in ORIE 2002 (YAEM 2002) Student Project Competition. (ORIE 2002: 22th National Conference on Operation Research and Industrial Engineering, Istanbul, Turkey)
- "High Honor Certificate", Gazi University, 1998-1999.

RESEARCH INTERESTS

Optimization
Logistics
Facility Location
Production Planning and Scheduling
Assembly Line Balancing
Supply Chain Network Design
Stochastic Processes
Simulation

JOURNAL PUBLICATIONS

Güden, H., Vakvak, B., Özkan, B. E., Altıparmak, F. and Dengiz, B.,2005. 'Simulation Optimization with Meta-Heuristic Algorithms:

Determination of Best Kanban Numbers (Genel Amaçlı Arama
Algoritmaları İle Benzetim Eniyilemesi: En İyi Kanban Sayısının
Bulunması)', Journal of Industrial Engineering (Endüstri Mühendisliği
Dergisi), 16 (2), 2-15.

PROCEEDINGS and/or CONFERENCE/WORKSHOP PRESENTATIONS

- Güden, H. and Meral, S., 2006. ‘Balancing Single/Multi/Mixed Model Assembly Lines by an Adaptive Simulated Annealing Method: Solving a Real Life Case Study Problem' ORIE2006 Kocaeli University, Turkey.
- Güden, H., Pakdil, F., Vardaloğlu, Z., Hacıhasanoğlu, P. and Birlik, E., 2007. 'Operating Room Scheduling at a University Hospital, ORIE2007 Dokuz Eylül University, Turkey.
- Güden, H. and Süral, H., 2008. 'Hub Location Problem with Nonlinear Cost Fuction', ORIE2008 Galatasaray University, Turkey.
- Güden, H. and Süral, H., 2009. 'New Complexity Results for the Hub Location Problem ', ORIE2009 Bilkent University, Turkey.
- Kara, İ., Güden, H., Öztürk, A. and Seyhan., A., 2009. ‘Computational Results for the Polynomial Size Mathematical Models for the Generalized Traveling Salesman Problem', 10th Econometric and Statistical Symposium, Erzurum Atatürk University, Turkey.
- Kara, İ., Güden, H., Seyhan., A. and Öztürk, A., 2009. 'Integer Linear Programming Models for the Clustered Traveling Salesman Problem', ORIE2009, Bilkent University, Turkey.
- Güden, H., Süral, H. and Tağızade, E., 2010. 'Location Problems in Speedy Train Railroad Construction’, ORIE2010, Sabancı University, Turkey.
- Güden, H. and Süral, H., 2010. 'A location problem in construction management', EURO24 - $24^{\text {th }}$ European Conference on Operations Research, Lisboa-Portugal.
- Güden, H. and Süral, H., 2011. 'The Depot-Quarry Location Problem and Solution Methods for It', 12th International Econometric, Operations Research and Statistical Symposium, Denizli, Turkey.
- Güden, H. and Süral, H., 2011. 'A location problem with mobile facilities in a railroad construction project', TRANSLOG2011 - A conference on transportation and logistics, Hamilton-Canada.
- Kara, İ., Güden H. and Koç, Ö. N., 2011. 'New polynomial Size Mathematical Models for the Generalized Traveling Salesman Problem', PRS2011 - Production Research Symposium, İstanbul, Turkey.

LANGUAGE

English (Advanced)

COMPUTER SKILLS

Programming Language: Pascal, C, C++, Visual Basic Optimization Software: CPLEX, LINDO, LINGO
Simulation Software: ARENA, SIMAN
Statistics Software: MINITAB, SPSS

[^0]: * Here we assume that triangular inequality property holds for graph G and moving costs are positive for simplicity of the proof. If these properties do not hold, it is easy to show that Proposition 1 hold.

