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ABSTRACT

RISK MEASUREMENT, MANAGEMENT AND
OPTION PRICING VIA ANEW LOG-NORMAL SUM APPROXIMATION METH®M®

Zeytun, Serkan
Ph.D., Department of Financial Mathematics
Supervisor : Assoc. Prof. DOmir Ugur

Co-Supervisor : Prof. Dr. Ralf Korn

October 2012, 84 pages

In this thesis we mainly focused on the usage of the Conditional Value-at{RM&R) in
risk management and on the pricing of the arithmetic average basket anu dxdians in
the Black-Scholes framework via a new log-normal sum approximation metiostly, we
worked on the linearization procedure of the CVaR proposed by Reltkafnd Uryasev. We
constructed an optimization problem with the objective of maximizing the expeetathr
under a CVaR constraint. Due to possible intermediate payments we assusrteat] to deal
with a re-investment problem which turned the originally one-period profgma multi-
period one. For solving this multi-period problem, we used the linearizatiovedioe of
CVaR and developed an iterative scheme based on linear optimization. @erinal results
obtained from the solution of this problem uncovered some surprisingnesaks of the use

of Value-at-Risk (VaR) and CVaR as a risk measure.

In the next step, we extended the problem by including the liabilities and theilguzedging
to obtain a reasonable problem construction for managing the liquidity riskidrmproblem

construction the objective of the investor was assumed to be the maximization futba-
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bility of liquid assets minus liabilities bigger than a threshold level, which is a typeafije
hedging. Since the quantile hedging is not a perfect hedge, a nompizdrability of having

a liability value higher than the asset value exists. To control the amount pfabable de-
ficient amount we used a CVaR constraint. In the Black-Scholes frarkethar solution of

this problem necessitates to deal with the sum of the log-normal distributioagnown that
sum of the log-normal distributions has no closed-form representatieriniéduced a new,
simple and highly fiicient method to approximate the sum of the log-normal distributions us-
ing shifted log-normal distributions. The method is based on a limiting approximetftitire
arithmetic mean by the geometric mean. Using our new approximation method vwededu

the quantile hedging problem to a simpler optimization problem.

Our new log-normal sum approximation method could also be used to pricecgaiogs in
the Black-Scholes model. With the help of our approximation method we delivseidzform
approximation formulas for the prices of the basket and Asian optionsl loasthie arithmetic
averages. Using our approximation methodology combined with the new aaajyticing
formulas for the arithmetic average options, we obtained a véigient performance for
Monte Carlo pricing in a control variate setting. Our numerical results shatoilr control

variate method outperforms the well-known methods from the literature in scses.ca

Keywords: Risk measures, linearization of conditional value-at-risktilgumedging, pricing

options based on arithmetic averages, variance reduction with contiategar



Oz

RISK OLCUMU, YONETIMi VE LOG-NORMAL DAGILIMLARIN TOPLAMINA
YENI BIR YAKLASIM METODU ILE OPSYON FIYATLAMA

Zeytun, Serkan
Doktora, Finansal Matematik@umi
Tez Yoneticisi : Dog. Dr.Omiir Ugur
Ortak Tez Yoneticisi : Prof. Dr. Ralf Korn

Ekim 2012, 84 sayfa

Bu tezde temel olarak Kosullu Riske Maruz @@ (CVaR)'in risk ynetiminde kullanimi

ile geometrik ortalama sepet ve Asya tipi opsiyonlarin log-normdlidalarin toplamina
yeni bir yaklasim metodu ile fiyatlanmaiszerine odaklandikOncelikli olarak, Rockafeller

ve Uryasev tarafindan ortaya atilan CVaR’'irgdasallastiriimasi gntemiizerinde calistik.
Amag fonksiyonu beklenen getiriyi maksimize etmek olan ve CVaR kisitina sahgpty-
mizasyon problemi kurduk. Olasi ata@emelerden dolayi, orjinal hali tekbdem olan prob-
lemi ¢cok ddnemli probleme dniistiren bir yeniden yatirim problemi ilgduasmamiz gerekti.
Cok ddnemli problemi ¢zmek icin CVaR’'in dgrusallastiriima gntemini kullandik ve lineer
optimizasyona dayanan bir iteratif plan gelistirdik. Sayisal sonuclarimizRi&cuz Dger
(VaR) ve CVaR'in riskdlciim araci olarak kullaniimasinin bazi sasirtici zayifliklarini ortaya

cikard.

Bir sonraki adimda, likidite riskini kontrol etmemize yardimci olacak bir problgapisi
elde etme amaciyla probleme pasifi (borglarl) ve quantile hedging'i ekledikprBolem

yapisinda amagc fonksiyonunu quantile hedging’in bititolan, likit varliklarin dgeri ile
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borclarin dgeri arasindaki farkin bir esik seviyesinden daligilk olma olasilfinin mak-
simize edilmesi olarak kabul ettik. Quantile hedging tam koruma (perfece)edijamadg!
icin borglarin déerinin varliklarin dgerinden lbiyuk olmasinin sifirdan farkh bir olasg bu-
lunmaktadir. Olasi aciklarin miktarini kontrol etmek icin bir CVaR kisiti kullanBik prob-
lemin Black-Scholes modelindéziimi log-normal dgilimlarin toplamini ele almayi gerek-
tirmektedir. Log-normal dguimlarin toplaminin kapali-formda bibgteriminin olmadj bil-
inmektedir. Kaydirilmis (shifted) log-normal gdumlari kullanarak log-normal d@alimlarin
toplami igin yeni, basit ve ¢ok etkili bir metot gelistirdik. Metot aritmetik ortalamage-
ometrik ortalamaya limit ile yaklasimina dayanmaktadir. Yaklasim metodumuzu kwalkana

problemimizi daha basit bir optimizasyon problemine indirgedik.

Log-normal d@ilimlarin toplamina yaklasim metodumuz Black-Scholes modelinde bazi op-
siyonlarin fiyatlanmasinda da kullanilabilmektedir. Yaklasim metodumuzu kullaaaita
metik ortalama sepet ve Asya tipi opsiyonlari icin kapali-form yaklasimiideri elde ettik.
Yaklalasim metodolojimizi aritmetik ortalamaya dayali opsiyonlarin fiyat fdkeni ile bir-

likte kullanarak, kontrol dgiskenli Monte Carlo metodunda cok etkili bir performans elde
ettik. Sayisal sonuclarimiz kontrol gisken metodumuzun bazi durumlarda litérdeki iyi

bilinen metotlardan daha iyi sonug vejdii gostermektedir.

Anahtar Kelimeler: Riskolciimi, kosullu riske maruz dgerin ddjrusallastiriimasi, quan-
tile hedging, aritmetik ortalamaya dayali opsiyonlarin fiyatlandiriimasi, kontskeni ile

varyans azaltma
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In memory of my father Mahmut Zeytun.
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CHAPTER 1

INTRODUCTION

In the process of measuring the risk, the question of which risk measatgdsbe taken
into account has a critical importance. Several risk measures havecbasidered in the
literature, however none of them has superiority in all aspects. Thefube wariance as
the measure of risk has been popular since the introduction of Markowitzssical mean-
variance model [40]. Variance is a measure of variability which takes bethipvard and
downward price movements into consideration. This feature is the main drtkwbthe use
of variance as a risk measure since the upward movements are desireddiglis. Contrary
to the variance, Value-at-Risk (VaR) is a risk measure which takes only wex lguantile
of the return distribution into account. VaR has a big popularity among bamisotener
financial institutions. It is the amount of money that expresses the maximuettexploss
from an investment over a specific investment horizon for a given camdigllevel. Although
VAR is commonly used by practitioner it has some drawbacks such as lackhefency
and convexity. In this thesis we will focus on the Conditional Value-at-R&%aR) which
is a coherent and convex risk measure. More importantly, its optimizatiorigpnotan be
reduced to a linear optimization problem. Due to these features, in the lastg¥aR has

gained interest by the researchers.

In this thesis, firstly we will focus on the linearization procedure of the Cabposed by
Rockafeller and Uryasev [48]. We will construct an optimization problémirsy the maxi-
mization of the expected return under a CVaR constraint. Our problentraotisn will be a
dynamic version of the problem used in Martinelli et al. [42]. To solve thidbfam we will
use the linearization procedure of the CVaR and propose an iteratigensdhased on linear
optimization. We will also compare the performance of VaR, CVaR and thengaias a risk

measure.



In the next step, we will include liabilities to the problem, which turns the probldman
type of asset-liability management problem. In construction of an asset-liabilihagea
ment problem hedging plays a significant role. Since perfect (or Supedging eliminates
the opportunity of getting a profit higher than the risk-free investment tegetith the risk
of a loss, the quantile hedging could be reasonable for some investoesefdie, we will
also include the quantile hedging into our problem. In our new problem, thetogjef the
investor will be to maximize the probability of the (liquid) assets minus the (curliaibi)-
ities bigger than a threshold level. We will only consider the liquid assets siecaiiw to
construct a strategy strengthening the liquidity of the investor, therefdps o reduce the
liquidity risk of the investor. Since the quantile hedging is not a perfectdemigon-negative
probability exist to have liability value higher than the asset value. We will obtite prob-
able deficient amount by a CVaR constraint. This problem will be solved ilaekBScholes
framework where the assets and the liabilities are log-normally distributedal@olate the
probability in our objective function we have to deal with the problem of thrareation of
the log-normal distributions. It is well-know that sum of the log-normal distidns has no
closed-form representation. Some log-normal sum approximation methegsaosed in
the literature. We will introduce a new, simple and highfiicent method to approximate
the sum of the log-normal distributions using shifted log-normal distributibhe.method is
based on a limiting approximation of the arithmetic mean by the geometric mean. Using ou

approximation method we will reduce our problem to a simpler optimization problem.

Using an approximation for the sum of the log-normal distributions is a strategynonly

utilized to price some types of options. In the Black-Scholes model we céindatn exact
closed form price formula for the options based on the arithmetic averagesthere is no
closed form distribution representing the sum of the log-normal distributiémshe liter-

ature, these kind of options are generally priced by Monte-Carlo metholg the use of
an approximation for the sum of the log-normal distributions. We will derowaes closed-
form approximation formulas in the Black-Scholes framework for the pa¢dse arithmetic
average basket and Asian options by using our method. We will also shawoluse the ex-
trapolation methods to accelerate the convergence of our method. Anotlatdmtfeature
of our log-normal sum approximation method is that it is a good candidate éoktinte-

Carlo control variate approach. We will describe the use of our closed formulas and

the methodology as a control variate, and conduct some numerical exaim@ssess its



efficiency.

The outline of this thesis is as follows: In Chapter 2, we will describe some iidpiazoncepts
from the risk measurement theory and define some important risk meashegearization
procedure of the CVaR proposed by Rockafeller and Uryasev willtbednced in Chapter 3.
In Chapter 3, we will also provide information about the possibility dfedent problem
constructions containing CVaR, which is proved by Krokhmal et al. [8r problem con-
struction which is a dynamic version of the problem used in Martinelli et al. 4¢3pecified
above will be introduced and solved in Chapter 4. Chapter 4 will mainly becbas Korn

and Zeytun [35]. In Chapter 5, our quantile hedging problem and itsctextuto a simpler
problem will be given. Our now log-normal sum approximation and its ugagetion pric-

ing will be described in Chapter 6, which will be based on Korn and Zeyadh [Finally, in

Chapter 7, we will summarize our works, give the conclusions and outlofoktuce studies.



CHAPTER 2

RISK MEASURES

In investment and risk management processes, risk plays a crucialmeéstors generally
construct their portfolios by taking their risk perception and risk appetiteth@aonsidera-
tion. A risk measure is a mapping from the set of random variables to thaugders. The

mathematical definition of a risk measure can be given as follows.

Definition 2.0.1. Risk Measure: LetQ be the set of all possible states of nature (world), and
G be the set of all real-valued functions (random variablesYoiThen, a risk measueis a

mapping from the set of real-valued functions into the set of real numibers

p:G— R

By using a risk measure we assign a single number to the risk of a portfolithesngumber

is generally used in the investment decisions.

There are dferent types of risk measures which are used in finance. In the protes=a-
suring the risk, the question of which risk measure should be taken intomideas a critical
importance. In Markowitz’s modern portfolio theory (see Markowitz [48jE investor’s goal

is to optimally allocate its investments betweeffatient assets by maximizing the expected
value of the portfolio subject to a selected level of risk. In this theory,Ke\aitz uses the
variance as the measure of the risk. Although the risk of an investor isllgdiuéace with

a large negative return (loss) realization, variance also takes into ract@uupward return

realizations which are desired by the investors.

Although there are several risk measures proposed so far in the liggrature of them has
superiority in all aspects. In recent years, particular stress is laid odetfition and use

of the more sophisticated risk measures that have some desired propestiesl iof the use

4



of standard risk measures such as variance and expected absolatedeVn this chapter
firstly we will define coherent and convex risk measures and then gavidrmation about

two well-known risk measures: Value-at-Risk and Conditional Value-dt-Ris

2.1 Coherent Risk Measures

The concept of coherent risk measure is first introduced in Artznat. 2] and then ex-
tended by the same authors in [3]. In these works, Artzner et al. assfimitedorobability
spaces without complete market assumption and defined 4 axioms for themohef the
risk measures. Later, Delbaen [16] extended the definition of Artzredr & general prob-
ability spaces. Here we will give the definition of Artzner et al. and protigeeconomic

interpretation of the axioms.

Definition 2.1.1. Coherent Risk Measure: Let Q be the set of all possible states of nature
and G be the set of all real valued functions én Then, a risk measuyeis called coherent

if it satisfies the following axioms:

Trandation invariance: Foralla e Rand all Xe G, p(X+ ar) = p(X) — « where r

is the return of a reference instrument (e.qg. risk-free rate).

Subadditivity: Forall X,Y € G, p(X+Y) < p(X) + p(Y).

Positive homogeneity: Forall @ > 0and all Xe G, p(aX) = ap(X).

Monotonicity: Forall X,Y e gwith X>Y, p(X) < p(Y) .

Translation invariancés also called “cash invariance” and it implies that if we add a risk-free
investment with an initial amount to the portfolio then the risk of the portfolio decreases by
a. Subadditivitymeans that the risk of a portfolio is always less than or equal to the sum of the
risks of the individual components. This axiom is in line with the common econoruittion

that diversification decreases the rigksitive homogeneityays that there is a positive linear
relationship between the size of the portfolio position and its risk. Positive genwity
axiom assumes liquidity in the market and it may not be reasonable in an illiquidemark
since in such a market the risk of the portfolio might increase in a non-linagrwith the

size of the positionMonotonicityaxiom means that, among two portfolios if a portfolio has

higher returns for all possible states of nature then this portfolio has a ke

5



2.2 Convex Risk Measures

Convex risk measure is an extension of the coherent risk measure amdiais was intro-
duced by Blimer et al. [22]. As stated in the previous section, although positive honedtgen
axiom of coherent risk measures implies a liner relationship between thef ¢fme mosition

and its risk, in some situations the relationship might be in a nonlinear way. BonmEg,
when the size of the position multiplied by a large factor then an additional liquidkymay
arise. Due to this fact,dflmer et al. suggested to relax the positive homogeneity and subad-
ditivity axioms of the coherent risk measures by a weaker property ofexdiy, and called

the new risk measure as convex risk measure.

Definition 2.2.1. Convex Risk Measure: LetQ be the set of all possible states of nature and
G be the set of all real valued functions én Then, a risk measure is called convex if it

satisfies the following axioms:

e Convexity: For all X,Y € Gand anyd € [0,1], p(X+(1-2)Y) < (X)) + (1 -
p(Y).

e Monotonicity: Forall X,Y e gwith X>Y, p(X) < p(Y).

e Trandation invariance: If m € R then for all Xe G, p(X+ m) = p(X) — m.

Convexityimplies that the risk of a diversified positiotX + (1 — )Y is less or equal to the
weighted average of the individual risks, or, in other words, diveatifin does not increase
the risk. Notice that, the convexity axiom and the subadditivity axiom whichfineéfor the
coherent risk measures have the same intuition. Actually, if a risk meadigfesgoositive
homogeneity then convexity implies subadditivity whern= 1/2. Therefore, a convex risk

measure is coherent if it satisfies positive homogeneity.

Convexity is an important feature in portfolio optimization problems since cofwmstions
or risk measures have a unique global minimum and therefore easy to optiHozeever,
when a risk measure is non-convex with respect to the portfolio positioritthery has many

local minima and therefore it is filicult to optimize.
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2.3 Value-at-Risk

Contrary to the risk measures like variance and expected absolute dewhtanuse both the
lower and upper quantiles of the return distribution to calculate the risk cditiquo, Value-at-
Risk (VaR) is a risk measure which takes only the lower quantile of the retstnibdition into

the account. VaR is a risk measure that aims to find an answer to the quedtiatiswhe most
an investor can lose on a specific investment?”. More expressly, it is therdimiononey that
expresses the maximum expected loss from an investment over a speei§itrient horizon

for a given confidence level. In mathematical terms, VaR can be defirfedass.

Definition 2.3.1. Value-at-Risk (VaR): Let LV be the loss of an investor using the portfolio
vector w, lef € [0, 1]. The probability of IY not exceeding a thresholdis denoted by

yW,a) = P(LY < ).

Then, thevalue-at-Risk VaR(LY, B) of the loss with a confidence level®€an be defined via

VaR(L",8) = minfa € R : y(w,a) > }.

VaR has a big popularity among banks and other financial institutions due tonjicsty
to understand and the approval of Basel Committee on Banking Supenasitrefusage of
VaR in calculations of capital requirements for banks. Although VaR is ya pepular risk

measure, it has some undesirable characteristics:

VaR is generally not a coherent risk measure since it does not satisfylthdditivity property
(see, for example, Artzner at al. [3]pFmer and Schied [23]). Therefore, when we use VaR
as our risk-measure diversification may increase the risk of the portfol® is coherent

only when underlying risk factors are normally distributed [48].

Another undesirable property of VaR is that it is generallficlilt to optimize. When the
underlying risk factors are normally distributed then VaR canffieiently optimized. How-
ever, when the underlying risk factors are not normally distributed Xamgple when we have
discrete distributions or when we use scenarios in calculations, VaR isarvex (since it
does not satisfy the subadditivity property), non-smooth as a functigosifions and it is

difficult to optimize since it has multiple local extremum points [56].
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2.4 Conditional Value-at-Risk

As explained in the previous section, VaR has some undesirable featgteaslack of sub-
additivity and convexity. Beside these, VaR has the shortcoming that itrdidsandlggive
any information about the loses that might bé&esred beyond the VaR value. An alternative
measure which handle the losses that might be encountered beyond VaROerttitional
Value-at-Risk (CVaR). For continuous loss distributions, the CVaR atengionfidence level
is the expected loss given that the loss is greater than (or equal to) that\dla& level [49].

In this sense, CVaR can be defined in mathematical terms as follows.

Definition 2.4.1. Conditional Value-at-Risk (CVaR): In addition to the assumptions of the
2.3.1, let IV have a finite expected value. Then @anditional Value-at-Risk CVaR(LY, B)

of the loss funcion Y. with a confidence level gfis given as

CVaR(L",8) = E(LYLY > VaR(L",8)).

For general loss distributions, Rockafellar and Uryasev [49] defthedupper and lower

CVaR (CVaR and CVaR, respectively) as
CvaR (L",B) = E(LYLY > VaR(L",3))

and

CVaR (L% ) = E(LYLY > VaR(L",8)).

CVaR" is sometimes called “mean shortfall” or “expected shortfall”’, while CvVaRkalso
called “tail VaR” [49]. Generally CVaR< CVaR< CVaR', and equality holds for continuous
loss distributions. For general loss distributions, Rockafellar and Bwadsfined CVaR as

the weighted average of VaR and CVa&s
CVaR(L",8) = AVaR(LY,B) + (1 - )CVaR (L%,B),

where

A= [y (w, VaRL".8)) - Bl /[1-5].

Since CVaR is the expected value of the VaR and the losses beyond it, VeRexeeeds
CVaR. When the return-loss distribution is normal, these two measures rtheédsame
optimal portfolio. However, for very skewed distributions, the optimal dids provided by

CVaR and VaR may be quiteféierent [37].



CVaR is a coherent risk measure, and its coherency is first provetlury[B6] (see also, for
example Rockafellar and Uryasev [49], Acerbi and Tasche [1])addition to be coherent,
CVaR is a convex risk measure (see, Rockafellar and Uryasev [#@}gfore it is easier to
optimize. Furthermore, it is possible to reduce the problem of optimizing CVaRitear
optimization problem. The linearization procedure of CVaR is proposed lokd&kellar and

Uryasev [48], and it will be introduced in-depth in the next chapter.

For more detailed information about the risk measures described abovteeaotter type of

risk measures we refer the readers for example to Down [18], E®kajid Yildirim [59].



CHAPTER 3

OPTIMIZATION OF CVaR

In this chapter we will introduce the linearization procedure that can kfoséhe optimiza-
tion (minimization) of Conditional Value-at-Risk (CVaR), which was propdsg&ockafellar
and Uryasev. Rockafellar and Uryasev in [48] introduced this praeefbr continuous loss
distributions and, then, in [49], they extended their study to assume gésdistributions.
In this part we will describe the methodology for the case of continuousdisssbutions.
Krokhmal et al. [37] extended the CVaR minimization approach of Rockafetid Urya-
sev to other classes of problems with CVaR functions. Krokhmal et al. ethdhat the
approach of Rockafellar and Uryasev can be used for the maximizati@wafd functions
(e.g., expected returns) under CVaR constraints and for the minimizatioved® €ubject to

a constraint on a reward function.

Here, firstly we will describe the approach of Rockafellar and Urydseeontinuous loss
distributions and then show how this approach can be used for othezglaigsroblems with

CVaR functions. In this part our main resources will be [37] and [48].

Let L(w,y) be the loss of an investor (it is a random variable) using the portfolio vecto
andy € RMis the set of uncertainties which determine the loss function. As in [48], we will
assume that the probability distribution of y have a density denotqu{y)yRockafellar and
Uryasev indicated that an analytical expressiorp@f) is not needed and it is fiicient to

have an algorithm which generates random samples figM).
We denote the probability df(w, y) not exceeding a threshotdby
YW, a) =P (Lwy) < a).
In generaly/(w, @) is nondecreasing with respectdéaand continuous from the right, but not

10



necessarily from the left because of the possibility of jumps. Howeven, [d8], we assume

thaty(w, @) is everywhere continuous with respecttathat means there is no jumps.

In order to avoid confusion in terms of the appearance, inside the pasentbf VaR and

CVaR we will use the notatioh" instead ofL(w, y).

For B € [0, 1], the value-at-risk/aR(L"Y, B) of the loss with a confidence level gfcan be

defined via

VaR(L",8) = min{fa € R : y(w, @) > B}. (3.1)

In addition, letL(w,y) (that is,L") have a finite expected value. Then its Conditional Value-

at-RiskCVaR(L", 8) with a confidence level @8 is given as

CVaR(L",g) = E(LYLY > VaR(LY,8)). (3.2)

Rockafellar and Uryasev characterize Y&R(L", 8) andCVaR(L", 8) in terms of a function

Fg onW x R whereW is the set of available portfolios. They defineglas

Fo(w,a) = a+(1-p)" [L(w.y) - a] " p(y)dy.

yeRM

where []* is equal tat for t > 0, and 0 otherwise.

Theorem 3.0.2.([48]) The function (w, @) is convex and continuously/tirentiable as a
function ofa. Theps—CVaR associated with the portfolio vectoravW can be determined

form the formula

CVaR(L",8) = minFg(w, a).
aeR
Here, the set consisting of the valuesidbr which the minimum is attained, namely
Ag(w) = arg minFg(w, @)
aeR

is a nonempty closed bounded interval (perhaps reducing to a singlé) paimd thes—VaR
of the loss is given by

VaR(L", B) = left endpoint of A(w).

In particular, we have

VaR(L",p) € arg;rem]{{nl:ﬂ(w, @) and CVaRL",p) = Fgz(w, VaR(L"Y,p)).
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The proof of Theorem 3.0.2 is given in [48]. The convexity and contishyodifferentiability
of Fg(w, @) is based on Shapiro and Wardi [S1]. The expression of VaR an®R@Veerms of
Fs(w, @) can be obtained by taking the derivativefgf(w, ) with respect tar and equating

it to zero, and rearranging the integral expression plac&g w, o).

To calculateB—CVaR by using its definition (i.e., Equation.23) first we need to calculate
B—VaR. This could be complicated because of the non-convexity of VaReddsby using
Theorem 3.0.2, one can calculgteCVaR by minimizingFg(w, «) overa. This would be
easier since the functioRg(w, ) is convex and continuously flierentiable as a function of

«a. Furthermore, in this method there is no need to calculate VaR value.

Another important advantage of this methodology is thapth€VaR can be minimized over

all portfolio weightsw using the following theorem:

Theorem 3.0.3.([48]) The minimization oB — CVaR of the loss over all possible portfolio
vectors we W is equivalent to the minimization of, @) over all (w,a) € W x R, in the
sense that

minCVaR(L",8) = min Fg(w,a). (3.3)
weW (

w,a)eWXR

Here,(w*, a*) is a solution of the right-hand-side minimization problem if and only*ifsxa
solution of the left-hand-side minimization problem arice Az(w*), where A(w") is defines
as in Theorem 3.0.2. When the sg{wX) reduces to a single point then the minimization of
Fs(w, @) produces a pai(w*, a*), not necessarily unique, such that minimizes the CvVaR

anda™ gives the corresponding VaR with the confidence levgl of

Moreover, when the loss functiorf\l, y) is convex with respect to w theny(w, ) is convex
with respect tqw, «), and CVaR is convex with respect to w. In addition to the convexity of
L(w,y), if the constraints are such that W is a convex set then the joint minimizatiam is a

instance of convex programming.

The proof of Theorem 3.0.3 is provided in [48]. The equality of minimums in)(8a® be
obtained by using the expression@¥aR(L", 3) given in Theorem 3.0.2, and carrying out
the minimization ofFg(w, @) with respect to\f, @) by first minimizing overa € R for fixed
w and then minimizing the result overe W. For the justification of the convexity claim we

refer the interested readers to [48].
Theorem 3.0.3 says that, to find the optimunvalues which minimizes the CVaR, there is
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no need to directly work with the Equation.23 which may be hard to do since it is defined
in terms of the VaR value. Instead, we can work wWi(w, @) which is convex with respect

tow, and even commonly with respect i@, () [48].

The integral in the definition dfz(w, ) can be approximated inflierent ways. For example,
a sample from the historical data, or a sample from the distribution of the tairdgrvector
y can be used. In this case, an approximation of the form

1

Fﬁ(W, oz) =a+ m

N
> [Lw.y) - al*,
i=1
can be used, whend is the size of the sample.

The approximatiorﬁ;(w, a) is convex and piecewise linear with respectrtevhen we have a
linear loss functiork (w, y) with respect tawv [48]. The functionlfﬁ(w, @) is not diferentiable
with respect tar but it can be minimized by reducing the minimization problenfg{w, @)

to a linear optimization problem. The minimization Ej(w, a) over X x R is equivalent to

the minimization of the linear expression

N
1
a+—- > XL (3.4)
N(1-5) ;
subject to linear constraints
z>0 and Lwy)—-a<z for i=1.,N
wherez (i = 1,...,N) are dummy variables [48].

Note that, the quality of the approximation given above may dependdfenatit factors, such
as the number of Monte-Carlo simulations, types of the random numberfousétiulations

and types of the descretization methods used for processes.

Although the above theorems are given for the case of continuous ldskudien, the reduc-
tion to linear programming does not depend on the distributionasfd it can be applied for

different distributions.

The procedure of Rockafeller and Uryasev which is described atieaks with the mini-
mization of CVaR. In [48], the authors required a minimum expected retuenefibre they
admitted only the portfolios that can be expected to return at least that minintum.r&y

considering dierent levels of the expected return in the setting of Rockafeller and &ryas
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the dficient frontier can be generated. Krokhmal et. al. [37] assum@elent types of prob-
lem constructions containing CVaR and they showed how the procediRead@afeller and

Uryasev can be used for these types of optimization problems.

In the next theorem Krokhmal et. al. [37] show the equivalence of tbpgienization prob-

lems in the sense that they produce the safiieent frontier.

Theorem 3.0.4.[37] Consider the functions (&) and ¢(w) depending on decision vector w,

and the following optimization problems:

min ¢(w) — uR(wW) subjectto u >0, (3.5)
weW
mivr\} #(w) subjectto Rw) > p, (3.6)
we
min —R(w) subjectto ¢(w) < . (3.7)
weW

If #(w) is convex, Rw) is concave and the set W is convex, then the above three optimization
problems generate the samgi@ent frontier provided that the constraint\® > p and

#(w) < ¢ have internal points.

When the loss functioh(w, y) is linear with respect ta then Theorem 3.0.3 implies that the
CVaR risk function which is given by Equation (3.2) is convex with respeat Furthermore,
when the reward functioR(X) is linear and the constraints are linear then the conditions of the
above theorem are satisfied for the CVaR risk function and the rewaatida R(x). In this
case, the functiog(x) in Theorem 3.0.4 can be replaced by the CVaR function. Therefore,
minimization of CVaR under a constraint on a concave reward function amamization of

a concave reward function under a CVaR constraint generate the sacrenefrontier.

Remember that, in Theorem 3.0.3 Rockafeller and Uryasev showed thatprotilem (3.6)
the functionFz(w, ) can be used instead 6V aR(L", 5). In the following theorems, Krokhmal
et. al. showed that the usageff(w, ) instead ofCVaR(L", 5) is also possible for the prob-
lems (3.5) and (3.7):

Theorem 3.0.5.[37] The objective functions of the optimization problems

mivr\) -R(w) subjectto CVaR"“,B) <e (3.8)
We
and

(a,v\rgllﬂgxw —-R(w) subjectto B(w,a)<e (3.9)
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achieve the same minimum value as the solution. If the CVaR constraint )ng&a&tive
then a pair(w*, @) minimizes (3.9) if and only if Wwminimizes (3.8) and* € Ag(w"). Fur-
thermore, when the intervalgfw*) reduces to a single point then the minimization-&4(x)
produces a pairfw*, *) such that v minimizes the return and* gives the corresponding

VaR value.

Theorem 3.0.6.[37] The objective functions of the optimization problems

mivr\\/ CVaRL",pB) - uR(w) subjectto u >0, (3.10)
we
and

(a,vgqelﬁxw Fs(w,a) — uR(w) subjectto p >0, (3.11)

achieve the same minimum value as the solution. A(@é&ire*) minimizes (3.11) if and only
if w* minimizes (3.10) and* € Ag(w"). Furthermore, when the intervalgfw®) reduces to a
single point then the minimization offw, o) — uR(w) produces a paikw*, o*) such that w

minimizes CVaR.", 8) — uR(w) anda* gives the corresponding VaR value.

The proofs of Theorems 3.0.4, 3.0.5 and 3.0.6 are based on the KukafTileeorem and

the detailed proofs can be found in [37].
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CHAPTER 4

SOLVING OPTIMAL INVESTMENT PROBLEMS WITH
STRUCTURED PRODUCTS UNDER CVAR CONSTRAINTS

In this chapter we will use the linearization procedure of Rockafellar aryadév [48] for
CVaR (as described in Chapter 3) to solve a problem which is a varianeadrth used by
Martinelli et al. [42], and compare the performance of VaR, CVaR anddhieance as a risk

measure.

4.1 Introduction

As a consequence of the Solvency Il regulations buying structuretlipt® dfered by vari-
ous banks might be a reasonable strategy for insurance companiegtothei liabilities.
Structured products (or, structured investment products) are pkegbacvestment strate-
gies designed to meet investors’ financial needs depending on the risknimde Structured
products can have very sophisticated forms (see, for example, Blunfghlall [9]) such as
various types of cliquet structures, interest rate derivatives linkecdktedhity market or even
instruments to hedge mortality and interest rate risk at the same time. Howeyarathalso
be simpler options such as standard calls or hindsight options (seeafopé Martinelli et

al. [42]).

There are various questions institutional investors such as insuramgen@s have to deal
with if they are considering the use of structured products in their investpaiolio.

Among them are:

e How to decide about which type of structured product to buy?
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e How to judge the advantage of the use of a structured product?

e How to measure the risk of the investment into a portfolio containing structucet p

ucts?

¢ Is the structured product worth its price?

While the last question can only be judged in connection with a pricing routimibdostruc-
tured product and while the first question is closely related to the structuhe dirm’s li-
abilities, the remaining two points will be addressed in this part. We will thera&ke up
the approach given in Martinelli et al. [42], refine the problem and amatiie properties
of the corresponding optimal solutions. In particular, we will consider tigh(y relevant)
aspect of using a structured product that does not exactly match ttstdriseneeds as it has
a maturity that lies before the investor’s investment horizon. The same sitwatiald turn
out if the structured product features intermediate payments. Then,fthed®ne-period
Martinelli et al. problem gets a dynamic aspect, the problem of optimally reingethe

payments resulting from the structured product.

In recent years, particular stress is laid on the use of the so-calledecdhisk measures (see
Chapter 2) as a risk measure instead of the use of the variance as in therdtilarkowitz
mean-variance model. We will examine the use of the Conditional Value-atf®Rigkh is a
coherent risk measure) as is done in Martinelli et al. We will assume a falanarket with
investment possibility in a bond, a stock and a structured product, and irmpasestraint for
the conditional value at risk as is done in Martinelli et al. However, the Geption-type
securities in the portfolio will result in a peculiar behaviour of the mean-itiomél-value-
at-risk optimal portfolio: Using the option with the higher strike leads to a highpe&ed

return while keeping the risk constant.

We will set up our investment problem in the next section which will also retemecessary
theoretical background. The remaining sectons will be devoted to the iaingslution of

some concrete problems and the interpretation of the special forms of thiesslu

4.2 Optimal investment with structured products

In Martinelli et al. [42] the authors considered an investment problenrawiie investor can

choose a buy and hold strategy in a riskless bond, a stock and an optiom&inck. In partic-
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ular, the option is assumed to mature exactly at the investor’s investmentrofize utility
criterion considered is the minimization of a convex combination of the portfoliaRC&hd
the negative of the expected portfolio return. The authors can then nsekeaf the property
of Conditional Value-at-Risk that allows to solve this problem via a combinatidmear
optimization and Monte-Carlo simulation, a fact that has been pointed out kafRdiar and

Uryasev [48] as described in the Chapter 3.

We will use the same notations with the previous chapters. We denote the Essnvkstor

using the portfolio vectow by L™ and the probability of." not exceeding a thresholdby
yw,a) =P(LY <a).

Then, we define the value-at-riskaR(L", 8) of the loss with a confidence level gfe [0, 1]
via

VaR(LY,8) = min{a € R : y(W, @) > B}.
fwe assume thdt" have a finite expected value then its Conditional Value-at-Ri¢RR(LY, 3)

with a confidence level @8 is given a
CVaR(L",p) = E(L"ILY > VaR(L",B)).

Note thatL" = —R", whereR" is the return associated with the portfolio vectgrand we

define the return as
final wealth

~ initial wealth

W

The use of CVaR in portfolio optimization problems as a measure of allowed riskrit-
ularly attractive because, as formulated thus, the optimization problem cadbeed to a
linear optimization problem with linear constraints. The resulting problem cand@solved
by the standard simplex method (for the simplex method see, for example, MatoBurke

[11]).

We will illustrate this by looking at a one-period problem closely related to tleeiomMar-
tinelli et al. [42]. We assume that we can invest into a stock with reRirna bond with
returnRE, and an option (or a structured product) with matufiitand returnR®. Choosing
the investment portfoliav = (ws, wg, Wo), wherews, wg andwg represent the weights of the

stock, the bond and the option in the portfolio, respectively, then leadsddfalp return of
RY = wsR? + wgRE + WoR®.
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To take the risk under the control, we aim the CVaR of the loss to be bounydaddnstant
C. We are trying to maximize the expected return over all portfokosgith a loss that has a

CVaR that does not exceed an upper boGndlVe therefore consider the

Problem (RCVaR):
maxE (RY),
weR3 (T)
such that
CvaR(-RY.5) < C,
RYI_V = WsR-? +WBR-|B-’+W0R$,
Ws+Wg+Wo = 1,

Ws,Wg,Wo > 0.

Besides the CVaR-constraint this is a linear optimization problem iHowever, the CVaR-
constraint seems to be highly non-linearin Fortunately, the linearization procedure for
CVaR which is poposed by Rockafellar and Uryasev [48], can be tassedercome this dif-
ficulty. As we described in the Chapter 3, Rockafellar and Uryasev atidghat using the
functionFg(w, ) defined by

Fotwa) =a+ (A=p [ 1Ly ~alp)y

one can minimize the CVaR over all possible portfolio vectors W by

: W .
meVaR(L ,/3)_( min  Fg(w, ).

w,a)eWXR

Furthermore, Rockafellar and Uryasev proposed to approximate theahtggpearing in
Fs(w, @) by using a sample from the distribution of the uncertainty vegtdihen, the integral
can be replaced by a summation, and in this case minimizatiéi @, ) is equivalent to

the minimization of the linear expression
N
1
“TNE-P) le “
subject to linear constraints
z>0 and Lwy)—-a<z for i=1..,N
wherez (i = 1,...,N) are dummy variables and is the size of the sample.
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Later, Krokhmal et al. [37] showed the equivalence of the optimizatiohlpros
min ¢(w) subjectto R(w) > p
weW

and
min —R(w) subjectto ¢(w) < &
weW
in the sense that they produce the sarfiient frontier for two functiondR(w) and ¢(w)

depending on decision vectar, if ¢(w) is convex,R(w) is concave and sal/ is convex,

provided that the constraints have internal points.

In our problemCVaRL", p) is convex since the loss functidtY is linear with respevt tov
(for the proof, see Rockafellar and Uryasev [48]), the rewardtion (that is, the expected
return) is linear, therefore concave, and the constraints are assurbedinear. Therefore,
the minimization of CVaR under an expected return constraint can be rdddgdbe maxi-

mization of the expected return under a CVaR constraint.

Remember that, Krokhmal et al. [37] also showed the possibility of the udagg(w, )

instead ofCVaR(LY, B) in the optimization problems given above.

With the help of the above information, our problem "Problem (RCVaR)"lmawconverted to

a linear optimization problem. The new problem mainly consists of

e Step 1: SimulateN paths of the market prices of the stock, bond and the option.

e Step 2: Set up a suitable linear problem on those simulated paths that can be solved by

the well-known simplex method.

More precisely, we can consider the
Problem (LRCVaR):
T
max— » RY.
weRr3 N ; T
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such that:

RV, = wsR}; +weRE, +WoR®, (i=1..N),

Ws + Wg + Wo 1, ws,wg,Wo > 0,

R‘{V,i+a+zi 0, i=1..,N,

vV

1 N
a+———> 7% < C,
N(l—/s)i;
z > 0 i=1..N

Here, is the given confidence level for the CVaR ands a free parameter which gives the
Value-at-Risk in the optimum solution of our problem (see Krokhmal et al) [The indexi
corresponds to the values that occur in simulation run numtéote also that the dimension
of the problem is of the order of the number of simulated @dthIn our computations,
stability of the solutions typically is obtained fodf = 20000 which means that the linear
problem is of a quite big size. However, this also shows that the number ofagiomuruns
determines the size of the problem as considering more investment oppostwiatiéd only
slightly increase the dimension of the problem (in fact, each further sedeaiths to just one

more variable, the corresponding component of the portfolio vector).

Having this problem and also the linearization method of Rockafellar andsewjia mind,
we now turn to our problem variant. Therefore, suppose that we lgaia three dierent in-
vestment opportunities on the financial market and suppose furtheuthdésired investment
horizon isT, however, some of the financial instruments contain payments afitjmeT.

A simple example of such an instrument would be an option which expiresebéime T

or a coupon bond with a coupon payment beférerhe presence of such intermediate pay-
ments is the main extension to the Martinelli et al. [42] problem. More precisdignw
we receive these intermediate payments we are facing the problem aivgsting them in
the remaining investment opportunities at the intermediate time. As a consegtienone-
period problem has turned into a special multi-period one. This howesg&ogs the linearity

in the corresponding Rockafellar-Uryasev version. To cope with tlais vee first choose a
fixed re-investment portfolig' (with vV being a vector of non-negative components adding up
to one) for the payments received at tifigfrom securityi and then add the payments re-
ceived fromV' at timeT to securityi. Thus, we can identify thisew security as a structured
product. With this interpretation, we can apply the Rockafellar-Uryasesiination method

to the new problem of the type (LRCVaR) and find the optimal (initial) portfali@iven the
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fixed choice olv). An outer optimization loop for the best choice of the re-investment strategy

v completes our method.

If, for instance, we use a call option with matur%yas the (very simple) structured product
thenits returrR?"’, given a fixed re-investment strategy (vs, vg) wherevs andvg represent

the weights of the stock and the bond, respectively, satisfies
RO = (1+ T1O)[vs(1 + %) + vg(1 + rB)] - 1,

whererS andrB denote the return of the stock and the bond on the int{%\gaﬂ], respectively,
I1° denotes the call option’s return at maturgyi.e.,

(K-Sg)*
T C(So.K.T)

o)

with
(K- S%)Jf =max(QK - S%),

andC(Sy, K, %) is the price of the call option with initial stock pricgy, strike priceK and

maturity time%. Our problem to solve then reads as

Problem (RCVaR-Mult(v)):

maxE (Rr"),

such that

W,V B (OAY
R} WsR? + wgRE + woR>,

Ws + WB + Wp

1, ws,wg,Wo > 0,

O,v
RT

CVaR(-Ry".p)

(1+IO)[vs(1+r5) +vg(l+rB)] - 1,

C.

IA

Its corresponding linearized version then consists of

Problem (LRCVaR-Mult(v)):



such that

R\-II-V:IV = WsR-?’i + WBR-I?J + WoR-IQ,’iV (I =1 .., N),

R%V = @+TO)vs(L+r7) +veL+rB)] -1,

Ws+Wg+Wo = 1, Ws,wg,Wo > 0,
R¥:¥+a+a > 0(@(=1..,N),
1 N
CHN(l—ﬁ);Z' =
z > 0(=1..N)

Here again, the subscripindicates the value of the indexed variable corresponding to simu-

lation run number.

Remark 4.2.1. 1. The choice of the optimal re-investment strategy v mostly depends on th
option (or, in general, the available structured product) that is the altermstiivthe standard
investment possibilities bond and stock. In our example above, optiraallecdetermined by

a combination of a simple line search fi) 1] and the solution of a sequence of corresponding
problems (LRCVaR-Mult(v)). To see this, note that dug;te vg = 1, v is indeed determined

by its first component.

2. We can also benefit from the linear optimization theory if we want to dequi®a about

the usefulness of including an option (or a specific structured product)aantgportfolio.
Suppose we have an optimization problem which does not contain the ienésipportunity

in options and has the form of
max C'X st AX<b,

where C is the cgficient vector of the objective function, A is the constraint matrix and b is
the right-hand-side vector of the constraints. Then, using the relatiom&tipeen the primal
and dual problems in the simplex method and the Strong Duality Theorenfdsezample,
Burke [11]), including an option in our portfolio improves the quality of owrtbolio (i.e.,
leads to a better risk-return tradefd if vector Y = (y1, Yo, ..., Yn+2)' € RN*2 of dual prices

corresponding to the above problem satisfies

N
yi+ ) {1+ T)Vs(L+17) + V(L + )] - Ly
i=1

. (4.1)

< % D@+ TP)Vs(L+ 1) + (1 + P)] - 1

=1
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where
(K-Sz )"
O 2

and, Sy, K, %) is the price of the call option at tim (initial time) with strike price K and
maturity%, and S%’i is the stock price at tim% under scenario i. Thus, by the inequality
(4.1) we can decide whether using an option with strike price K and retimesg weights
vs, Vg for the payg of the option will be beneficial or not. Inequality (4.1) can be used to
find a sample of options with fiérent strike prices and gferent re-investment weights which
improve the quality of the portfolio. However, this inequality is not enough tbtfie best

initial investment weights and re-investment weights for the ffaythe option.

We will illustrate both our method and the particular consequences of usti@nspn our

portfolio in the next sections.

4.3 Results for the optimization problem with a call option

In the following, to consider a realistic financial market model, we assum& ptazes fol-

lowing a Heston [26] type process

dS—St pdt+ VVdWe,
t
dV; k(6 - Vp) dt + oy A VedWY,

and interest rates are assumed to follow a Vasicek [57] process
dry = a(b—ry) dt + ogdW?

with non-negative constants 6, a, b, os, ov, o, a volatility vV; (whereV, is the vari-
ance) of the stock price return and a three-dimensional Brownian mMier(WS, WY, WB).
As in [42], we assume thaW/® andW" are independent Brownian motions whilé® is cor-
related with the othersy; is a time-varying expected return which can be derived by using

market prices of risk and arbitrage-free market assumption, and giwen

1_
My + Ty = \/Vt(/ls—

wherelg andAs are the riskpremiums associated with interest rate risk and stock price risk,

eat

o B,Ole) ,

respectively, ang is the correlation between the drift term and stock return (see Martinelli et

al. [42]).
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We now look at an investment problem with a 4-year investment horizon si@ena Eu-
ropean call option which expires in 2 years and has a striki.ofif the option ends up
in-the-money in 2 years then we allocate this gayo the stock and bond with pre-specified

weightsv.

We performed our simulations by discretising the stock price and interegtrmatesses by the
Euler method. In the discretization, a step size .60@ year is used for time. We simulated
5000 paths for the stock price and the interest rate. Then, applying théesimpthod to
these simulated scenarios, by changing the re-investment weightsessively (indeed, we
performed a simple line search by changirg, we optimized our problem for the initial

weights of the stock, bond, option and re-investment weights for theffpafythhe option.

The results for dierent strike prices of the call option, with initial stock price equal to 100,
an upper bound of = 10 percent loss for the CVaR with a confidence leveBof 0.95
(we used similar parameters with [42] and all the parameter values used iptthezation

problem are given in Table 4.3), are given in Table 4.1.

| K [CVaR [ ws Wg Wo Vs Vg E(R VaR

60 10 4252 52.04 544 100 O 3534 4.39
70 10 36.94 5498 8.08 100 O 3550 4.63
80 10 19.92 64.12 1596 100 O 36.11 6.73
90 10 0 7525 24.75 100 O 3825 1(
100 | 10 0 7525 2475 100 O 41.19 1(
120| 10 0 7525 24.75 100 O 47.87 10
150 | 10 0 7525 2475 100 O 57.16 1(Q
200| 10 0 7525 2475 100 O 63.82 1(

Table 4.1:0Optimization results (in percentages) foyfdrent strike prices of the call option.

|CVaR|] ws ws E(R) VaR|
| 10 || 51.02 48.98 3529 4.41

Table 4.2:0ptimization results (in percentages) for the problem without option.

The results given in Table 4.1 have some peculiar consequences. Eigttithization results
show that by using a call option with high strike price we can increase theceegbreturn of
our portfolio substantially. When the strike price of the option is increasetithie optimal

portfolio the weight of the stock in the initial investment decreases and thehtsead the
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Investment horizonT) 4 years
Size of time steps in the discretization 0.004 year
Number of scenarios\) 5000
Upper bound for CVaRQ) 10 percent (loss
Confidence level for CVaRBj 95 percent
Initial stock price 100

Initial variance of the stock price 0.045
Speed of mean-reversion of the variange ( || 5
Long-run mean of the varianceé)( 0.045
Volatility of the variance ¢v) 0.48

Initial interest rate 0.04
Speed of mean-reversion of the interest raje|( 0.15
Long-run mean of the interest ratea) ( 0.04
Volatility of the interest ratedg) 0.015
Correlation betweelv® andWY -0.77
Correlation betweelVS andW® -0.25
Correlation betweelVV andW®? 0

Market price of risk of the stockig) 0.343
Market price of risk of the bondig) -0.207

Table 4.3:Parameter values that are used in the optimization problem.

bond and option increase. Over a specific level of the strike price, timapveight of the
stock always takes the value 0 and the weights of the bond and option reonaiiaiat. Also,
over this level of the strike price, CVaR and VaR attain the same value. Theldference
is seen in the expected returns. When we use a call option with a highermidkehen our

expected return is also higher.

In the first instance, these results look very surprising. In particwansing diferent strike
prices for the call option we can obtainfiiirent portfolios with the same risk level (if we
take CVaR or VaR as our risk measure) butetient expected returns. This counterintuitive
result calls for an explanation. Indeed, when a certain level of the girike of the call is
exceeded then losses from call investment which are relevant for henaVaR calculation
are always caused when the option ends up out of the money, i.e., whealltiezestment
leads to the total loss. This explains the fact that when initially the only riskystnvent

is the call investment (which is the case in our example in Table 4.1 if the ${rigéthe
call is at least 90) VaR and CVaR coincide. Further, the relative retutimeocall increases
with increasing strike (in the Heston setting we can only show this numericallye iBlttTk-

Scholes case this can even be proved). As, however, in our exampisktheeasured in terms
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Figure 4.1: Hicient frontiers with and without call option based structured productrevhe
K =120.

of CVaR stays constant above (a value slightly smaller thag) 90, there is an increase in

the relative return of the total portfolio although the CVaR of the return resraonstant.

Thus, this behaviour of the risk-return characteristics does not explaisubjective fact that
investing in calls with a higher strike price is more risky. If, however, instddtVaR we use

the traditional mean-variance description, then the optimal portfolios of Zablare judged
more and more risky with increasing call strike (which indeed is what weatage As a
consequence, if we use the classical Markowitz mean-variance metleodfctha constant
variance bound S (say=2342 which corresponds to the mean-CVaR-portfolio in the case of
K = 90, see Table 4.4) optimal portfolios have to involve initial stock investmerstfies

K > 90.

| K [ 60 70 80 90 100 120 150  200]
E(R) [/ 3534 3550 36.11 38.25 41.19 4787 57.16 63.82
CVaR || 10 10 10 10 10 10 10 10
VaR || 439 463 673 10 10 10 10 10
Variance|| 979 1032 1306 2342 3762 10185 42705 336789

Table 4.4:The values (in percentages) of the three risk measures for the portfdtioslifv
ferent strike price of the call option.

Another view on this remarkable result can be obtained via Figure 4.2., Mer@resent
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the return of a fixed amount of money invested in options (in our cagepr one unit of
money) with diferent strikes. Obviously, the higher the strike, the cheaper the optiaa pric
Consequently, for the same amount of money, more options with higher sarkieecbought

compared to one with a lower strike which results in théedent forms of the final payts.

Return

/ Strike

400 Price

Figure 4.2: Percentage return of an investment in call options wfiirdnt strike prices.

Here, for all considered values of the strike price of the call option weimithe worst case
lose all the invested money, so all graphs start from the same point. Degendthe strike
price of the call option, the return starts to increase fiedint levels of the stock price. An
investment in a call option with a higher strike price has a higher slope ohrdiacause the
price of the call is lower with a higher strike price and this implies the possibilityugfrig
more options. Suppose the probability of obtaining a final stock price ukdér equal to
1 - 3. Then, with this probability, the options will expire out-of-money and we wilkledl
the invested money. This explains why in our results we obtained identicas/ébu both
VaR and CVaR above a certain level of the strike price. Therefore, wsthilae price above
K1, all investments have the same level of VaR and CVaR (and, thus, areessite same
risk when VaR or CVaR are taken as our risk measures), fierdnt levels of expected return
since the slopes of the increase in total return afewdint for diterent strike prices. However,
if we take the variance as our risk measure then all investments hi@geedi levels of risk

since the variations (so, the variances) aftedent.
Another result, which in the first instance looks surprising, is the re-imest weights for
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the paydrf of the option. Optimization results always favor full re-investment in the stock
This can easily be explained in the cases where VaR and CVaR coincide, the only risk
that is measured is the one of the call ending out of the money, i.e. the lobshef amoney.
Thus, using the stock after the option has ended up in the money adds ribatisnters
the CVaR computation. However, reinvesting everything in the stock is tivestment
strategy that yields the highest expected return. In the case wherenda@®\aR still difer,

the explanation is not as easy but can still be given: Since the option is avealgceive a
paydf if the stock price at timé2[ is above the strike price. In this case, we have got rid of the
risk of losing all the invested money in the option. Moreover, the conditioradability of
losing more than a pre-specified level from the stock investment hasadecrsubstantially
as the stock has already done well uéﬂ'lThus, as the risk of losing from call investment is
highly correlated with the risk of losing from stock investment, the full stockvestment
strategy does not add to the risk already taken, but it increases the.rétherefore, we

always optimally reinvest all call payments in the stock.

We can also obtain the results of the optimization problem when we replacelltioptoan
with a put option. In this case the optimal re-investment strategy alwaysst®oinvesting
the whole option pay into the bond. This can be explained by the negative relationship

between the return of a stock and a put option written on that stock.

The two extreme re-investment strategies in the cases of a call option (follastment in
the stock) and a put option (full re-investment in the bond) which are meatiabove make
it worth asking what would happen if we used a combination of a call optidragout option

as the structured product.

4.4 Results for the optimization problem when a combined célplus-put option

is traded

Assume we have the opportunity of investing into a call and a put option withaime s
strike price (the assumption of the same strike price can be relaxed). Aggdlygnsame

methodology and using the same parameter values as in the case of the calbbptie, we

get the results outlined in Table 4.5 for the case of this call-plus-put option.

The results show that the optimal re-investment weights of the optionfiisgagioange with
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| K [ CVaR| ws Wg Wo Vs Vg E(R) VaR|
80 10 26.64 57.85 15.51 100 0 36.72 6.19
100 10 4199 48.49 953 100 0 36.79 5.17
105 10 4558 46.46 7.96 100 O 36.57 4.96
105.7 10 46.65 45.63 7.72 86 14 36.54 4.96
106 10 49.77 43.08 7.15 23 77 36.53 5.04
110 10 52.25 40.82 6.93 0 100 36.55 4.80
130 10 57.10 36.41 6.49 0 100 36.39 4.80

Table 4.5:0ptimization results for dferent strike prices of the call-plus-put option.

different strike prices.

A Stock
Weight

100

Strike
Price

Figure 4.3: Weight of the stock in the re-investment of the call-plus-put ogiaydt for
different strike prices.

Figure 4.3 shows the change of the re-investment weight in the stockiferratit strike prices.
Up to a specific level of the strike price we obtain full re-investment in thekstééter this
specific level of the strike price, when we increase the strike price, tightvef the stock
starts to decrease and above a certain level of the strike, a full bondestment will be
optimal. We can explain this result by combining the explanations for the callroatid put
option we have given above. When the strike price of the call-plus-pidrofs suficiently
low the put option will be cheap relative to the call option. If we buy the contbaa!-plus-
put option with this strike price, most of the premium we have to pay will be paithfocall
option part of the strategy. Also, for the call option the probability of expgiiinthe money is
higher than the put option in the case of low strike price. The call option Wéktethe total

return much more than the put option does since the weight of the call optiomiméstment

30



and the probability of getting a paffdrom the call option are higher. Thus, the investment
of the call-plus-put option will behave like a call option. Therefore, in tlisecwe get a
pure stock re-investment, as in the case of the call option example abovewisék if the
strike price of the call-plus-put option isféigiently high, the call-plus-put option will behave
like a put option. Therefore, we get a pure bond re-investment, as iruthepgion example
above. In between these two values of the strike price none of the optonmate the
other stficiently, and therefore we end up with a mixed re-investment strategy with tgeigh

depending on the level of the strike price.

4.5 Summary and Concluding Remarks

In this chapter we have looked at a particular investment problem whesalds stocks and
bonds- the investor can also include options (or more complicated, strdgitosducts) into
a portfolio. Compared to the Martinelli et al. [42] approach, we allow forrimediate pay-
ments of the securities and are thus faced with a re-investment problem twimstthe orig-
inally one-period model into a (special kind of a) multi-period problem. Weeliped a

method to deal with this problem by solving a series of those one-periotepneb

Our numerical results uncovered some surprising weaknesses ofele WaR and CVaR
as a risk measure. In the presence of the opportunity to invest into optitdmsehatively
high strikes, using the option with the higher strike leads to a higher expedted wehile
keeping the risk constant. However, our subjective feeling of an isrgaisk is much better

matched by the use of the variance, although this is a non-coherent riskiraea

Our investment decision problem can also be solved when we have mariisethan above.
They can also have multiple internal payments. One can think of coupors twynekotic
options. In particular, we can also deal with more than just two periods il@imization
problem. However, here the outer optimization loop(s) for obtaining the optéerial’estment
strategy gets more complicated. Each additional time period will add one mornel@upe

consequently finding the solution of the optimization problem will take longer.
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CHAPTER 5

QUANTILE HEDGING
IN THE BLACK-SCHOLES FRAMEWORK

In the previous chapter we worked on an asset management problem@giRaconstraint.
In this part, we will improve our problem by including liabilities to our problem.tRarmore,
we will consider a quantile hedging problem to obtain a reasonable prololestraction from
the point of view of theBasel Committee on Banking Supervisqmroposal on liquidity risk

management.

5.1 Introduction

In a complete market every contingent claim can be hedged. In such antiagke always
exists a self-financing strategy that replicates the contingent claim (thid also be referred
as “perfect hedge”). In other words, for every contingent cl&mwe could find a self-
financing strategy such that the value of this strategy at maturity tifhes equal to the

contingent claim, that is,

Vr(p) =H

for each state of the world, wheXg denotes the value at timie The cost of the replicating
strategy defines the price of the claim. This price can be computed as theezkpalue of

the claim under a unique risk neutral measure (or, equivalent martingalsunes.

In an incomplete market every contingent claim can not be hedged. In thietihe risk
neutral measure is not unique, therefore we can fiffér@int prices for a contingent claim by
using diferent risk neutral measures. Although in an incomplete market a peddgelis

not possible, the investors can stay on the safe side by using a suggndstrategy. For a
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contingent clainH, a super-hedging strategy is a self-financing stratethat satisfies

-
P(VT((p) = V0+f ©dS > H) =1
0

whereS is the set of the available instruments in the market. The cost of the cheapest s

hedging strategy is called the cost of the super-hedging and it is given by

II(H) = inf {Vo; dp st ]P’(VT(<p) =Vo+ fT ©dS > H) = 1,}
0

whereinf denotes the infimum [14]. The cost of a super-hedging strategy is ajgntro

high from a practical point of view.

Although the investors have the opportunity to stay on the safe side by usiadging or
super-hedging strategy, they are generally unwilling to put up the initial atnafucapital
required for a hedge or a super-hedge. Furthermore, the investgrsemawilling to use a
hedging or super-hedging strategy since these strategies take awaptriaity of making
a profit together with the risk of a loss. Therefore, the investors magipited use of quantile
hedging instead of a perfect or a super hedge. Quantile hedging igial padge which
can be achieved with a smaller amount of capital. This type of hedge genanal$yto
maximize the probability of success of hedge under a given initial capital. themetical
terms, its aim is to find an admissible strateyy, () such that® (VT(t,D) =Vo+ fOT edS > H)

is maximum under the constrailt < Vo, for a given initialVo. This type of problem was
used in many studies, and its solution can be found, for example, in Spidak\atanic [54]
in the context of the classical Black-Scholes model (by using a dualitpapprfamiliar from
utility maximization literature), in Blimer and Leukert [20] for the general complete and
incomplete cases (with the help of the Neyman-Pearson lemma), in Klusik andviFdimo

[31] and in the references provided there for the problem adapted tosthe@nce setting.

Another commonly used problem construction for the quantile hedging is the matiomz
of the cost of the hedging strategy for a given level of shortfall podldg i.e., finding the

minimum value oV such that there exists an admissible strat&@y«) with

T
P(VT(90)=Vo+f edS > H)Z l-e,
0

wheree € (0, 1) is a pre-specified shortfall probability. The solution of this kind of feois

can be found, for example, imokmer and Leukert [20].
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In the literature, some works construct the quantile hedging problem by tisn“success

ratio” for the hedge, where the success ration can be defined as

Vr
Vo, H) = Livyspy + Fl{vT<H}’

and 1 is the indicator function. This kind of problem construction and its solutionkzan

found, for example, in &llmer and Leukert [20, 21] and in Klusik and Palmowski [31].

Quantile hedging does not take into the account the size of the shortfadlguke value-at-

risk. Here, we will use a problem construction which also aims to controlitbefall.

5.2 A Quantile Hedging Problem in the Black-Scholes Framewds

5.2.1 Description of the Problem

In classical approaches, default occur when the value of a firmagsets) is less than the
value of its liabilities. For example, see Merton [43], where the default isnasd to occur
only at time of liability payment, or Black and Cox [7], where the intermediateudefprior

to the liability payment) is also allowed. Here, we will not exactly assume the dgfatead
assume the ability of the firm to pay its liabilities using its liquid assets. Assuming the liquid
assets is important in the following sense: At the maturity time of a liability, if the firs ha
no enough cash to pay the liability then it will borrow money from the marketif dhe
borrowing is not desirable, it will sell some liquid assets. Selling un-liquiétassill not be
desirable for the firm since it is hard to sell these assets in a short time withritr@isic

value.

More importantly, the liquidity has been emphasized byBhsel Committee on Banking Su-
pervision In 2008, the Committee published the documerinciples for Sound Liquidity
Risk Management and Supervisidhas the foundation of its liquidity framework. This doc-
ument provide detailed guidance on the risk management and supervisiomiofg liquidity
risk. Later, in the documen®Basel lll: International framework for liquidity risk measure-
ment, standards and monitorirj§] and Basel IlI: A global regulatory framework for more
resilient banks and banking systef8$ the Committee proposed new standards for the lig-
uidity. In these documents, the Committee developed the Liquidity Coverage Ratbitve

the objective of promoting short-term resilience of a bank’s liquidity risKijgdy ensuring
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that it has sfficient high-quality liquid assets to survive a significant stress scenatindas
for one month [5]. The Committee described the importance of the liquidity in [&hby
following words:

“During the early liquidity phase of the financial crisis, many banks desgitequate capital
levels still experienced fgliculties because they did not manage their liquidity in a prudent
manner. The crisis again drove home the importance of liquidity to the pfapetioning of

financial markets and the banking sector”

Assume an investor having assets and liabilities. At timlet the value of the investor's
liquid assets beX(t), and let the value of the liabilities of the investor bé). Due to the
facts which we mentioned above, the investor may aims to have a liquid assetlaajar
than the liability value at any time of liability payment. However, since the financiskets
generally are not complete a perfect hedge against the liability paymentohag possible,
andor a super-hedging strategy may not be desirable due to the reasonsaathiove. In
this case, trying to maximize the probabiliB(X(t) > L(t)) seems to be reasonable for the
investor. Therefore, for a pre-specified cost, the investor may airmistreact a strategy with

the objective

max P(X(T) = L(T)), (5.2)
whereT is the time of the liability payment.

Remember that, this quantile hedging strategy does not take into accounttbétsie short-

fall (that is, L(T) — X(T)) since it only deals with the probability of success. However, the
amount of the shortfall might be important since, at maturity time(if) < L(T) then the
investor will barrow money from the market or sell some un-liquid assetsythigdiabilities.

If the amount of the shortfall is large then in the case of borrowing the(twstyield) could

be higher, and in the case of selling an un-liquid asset the loss due to uhtliqrould be
high. Since, both of these cases are undesirable for the investor, #sangould aim to take
the level of the shortfall amount under the control. In this case, a camstfaConditional

Value-at-Risk

CVaR(L(T) - X(T),8) < ¢

could be appropriate for the investor, whgris the confidence level. By using such a CvVaR
constraint, the investor could get ride of the drawback of the quantilamgdghich is related

to the shortfall amount.
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If the investor also aims to control the expected value of the surplusX{:€),— L(T)), then

he could have a constraint of the type
EX(T)-L(T)) > ¢
whereg is a constant (it may also be taken as dependeX(@n or L(T)).
Under the above conditions, the problem of the investor can be formalkiziedi@wvs:
max P(X(T) = L(T))
subject to

E(X(T) - L(T))

v
o

CVaR(L(T) - X(T))

IA
o

By using the linearization procedure of Rackafeller and Uryasev itbestin Chapter 3, the

above problem can be approximated by the following problem:

max P(X(T) = L(T))

such that
LSy j
S2XM-Um) > e
i=1
XM -LiM+a+z; = 0(j=1..N),
1 N
a+t———= %7 < C
N(l—ﬁ);l ‘
zi > 0 (j=1..N).

Note that, this problem construction is important since it both eliminates the dcavdia
the quantile hedging as mentioned above and may help to achieve the propibsaBasel

Committee on liquidity.

5.2.2 Case of Geometric Brownian Motion for Asset and Liability Processs

In this part we assume a Black-Scholes type market for asset and liabbitggses. As-

sume we hava assetsS;(t), Sx(t), ..., Sn(t), and their prices evolve according to geometric
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Brownian motions
dSi(t) = Si(t){wdt + ojdW(t)}, Si(0)=s, i=1,..,n

where the constanig ando (i = 1, ..., n) are the drift and volatility terms, respectively. For
simplicity, the Brownian motion§V; (i = 1,...,n) are assumed to be uncorrelated, however
this assumption can be relaxed to include the correlation structure to thermprabbkin this

case the methodology that will be used in Section A.2 can be applied here.

We also assume that liability process is also follows the geometric Brownian motion
dL(t) = L(t){bdt+ ndB(t)}, L(0)= I,

where the constaititis drift term,n is the volatility term and is a Brownian motion.

Modeling asset processes as a geometric Brownian motion is very commonfinahee
literature while it is not common in modeling of liabilities. However, there are studidse
literature that are modeling liabilities using geometric Brownian motion (see, fimple,

Chiu and Li[13], Josa-Fombellida and Rincon-Zapatero [28], Genhe@iShiu [24]).

Since the asset processes follow geometric Brownian motion then stoclepgtiaéons have

analytic solutions as

ot
—

Si(t) = sexp((p > )t + crth) i=1,..n).

wheres is the initial value of the process. In this case, stock prices log-normallyixitetd
with expected value
E(Si(t)) = se (5.2)

and variance

Var(si(t) = e (e - 1) (5.3)
fori=1,..,n.

If the investor construct his investment portfolio by using the asSets= 1, ..., n), then the

value of the investment at tintewhich will be denoted here by;, can be written as
n
X(t) = ) wiSi()
i=1
wherew; (i = 1,...,n) are the investment weights of the stocks and they safifyw; = 1.
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Since we assumed log-normal distributions for the stock prices Xifgrcan be interpreted
as the sum of log-normal distributions. The distribution of sum of log-nowistibutions
is not known. In the literature, the distribution of the sum of log-normal distidins is
generally approximated by a log-normal distribution having same moments asnthes
the multiplication of the log-normal distributions, which is again a log-normal digioh, is
used to find a lower bound for the sum. To calculate the probability includedrinlgective
function we will use our log-normal sum approximation method introduced ap 6. For
the details of our log-normal sum approximation we refer the reader to thpt@h6 of this

thesis.

Our aim is to replace the arithmetic mean with the geometric mean by using the information
given in Theorem 6.2.1. To get an approximation between the arithmetic mdaheage-
ometric mean of the price processes, firstly we shift égchy a suficiently large positive
constanC. In this case,

Si:=Si+C (i=1..n),

has a shifted log-normal distribution with expectati®fs;) + C and variancé&/ar(S;), where
E(S;) andVar(S;) are given by the Equations (5.2) and (5.3), respectively. Now, if pre a
proximate each shifted log-normal distributinby a log-normal distributio; having same
expected value and variance with the shifted log-normal distribution, therothesponding

parameters of th&; are

i = ,Og( (E(S) + C)? ]
| VES) +CZ +Vars) )
A2 Var(S;)
@F = ooty o)

Denote

Then, eacl$; has a log-normal distribution with parameters

*

Hi

()

log(w;) + £,

()%

From Theorem 6.2.1 we know that the arithmetic mean and the geometric m&irfaf
i = 1,...,n are close to each other. Using this fact and knowing that the multiplication of

log-normal distribution has a known distribution (which is again a log-nornsatidution) it
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will be beneficial to work with the geometric mean instead of to arithmetic meanefdrer
in our calculations of the probability contained in the objective function, werejilace the
arithmetic mean by the geometric mean to find an approximation to the arithmetic mean of

stock prices.

Since the corresponding log-normal distribution &rhas parameters’ and bi*)z fori =
1,...,n, and since the product of the log-normal distributions has a log-normizibditson,
the product of thé&;’s can be approximated with a log-normal distribution having parameters

as
n n n
Fb%¢w%2ﬁ,zpy}
i=1 i=1 i=1

Using the properties of the log-normal distributions it can be easily cona It

n 1/n n n
n(]—[ Si*] ~ LogN [Iog(n) + % Z,ui*, n—12 Z((r;")z] .
= =

i=1
We also know that, for a sliciently large positive constaf, the arithmetic mean and the
geometric mean of the price processgsare approximately equal to each other, that is
1 ) . .
iyn, s = ( n Si*) " Therefore, for the summation of ttg fori = 1,..,n we find
the approximation
n

Z$wm%mmﬁzﬁ,$;wﬂ.

Then, the distribution of the log-returns for the approximation of the asstofio
n n . n
XM= S/ =Y wSit)= > wi(Si+C)=X(t)+C
i=1 i=1 i=1

is a normal distribution with

n

Rx-(t) := IOg(;(:((g)) ~N (lOg(X*rzO)) + %Z“I* n_lzz(o_i*)z .
i=1

i=1

whereX*(0) = X(0) + C.

We will use the same methodology for the liability process. If we dehdf® := L(t) + C,
then

E(L*() = lo€” + C,  Var(L"(1) = 12e®! (e - 1).

L* has a shifted log-normal distribution and we will approximate it by a log-norwfisl

tribution having same expected value and variance. The parameters ajrteeponding
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log-normal distribution with expected vallgL*(t)) andVar(L*(t)) are

b*:lw[ (BL W) }
VELC M) +VarL O)

. Var(L*(t))
V2 = log(1+ 2 W)}
W= O\ Gy
If we denoteR,-(t) := Iog(%), then it has a normal distribution with

Re(® ~ N(b" ~log(L"(0)),  (1')?).

whereL*(0) = L(0) + C.

Therefore, it can be concluded that

n

. 'O\ 1< . 2. 1, .
RL(t) = Rx:(t) ~ N [b —log (nX*(O)) - ;ﬂi . )%+ = ;(o'i )2]. (5.4)

Note that, we can write our objective as
max P(L(t) — X(t) < 0).

The probabilityP(L(t) — X(t) < 0) can be written in the form of (log-)returns ¥ft) andL(t)
when the initial values are known. Here we will assume the initial vak(€3 andL(0) are
equal, that means, the investor construct a hedge portfolio with a cadttedhbe initial value
of liabilities (this assumption is not mandatory since we can write the objectivaidmin

terms of the returns for each valuesX(D) andL(0)). In this case, the objective of
max P(L(t) - X(t) < 0)

is equivalent to

max P(R_(t) — Rx(t) < 0).
SinceX(0) andL(0) are equal theX*(0) andL*(0) are equal wherX*(0) = X(0) + C and
L*(0) = L(0) + C. Then, it can be concluded that we can use the objective

max P(R.«(t) — Rx:(t) < 0) (5.5)
instead of the objective

max P(R_(t) — Rx(t) < 0).
Therefore, the problem (5.5) can be used (as an approximation) torfiogtemum solution
for our original problem (5.1). Sinck*(0) = L*(0)) then by using (5.4) we get
—b* +log(n) + £ 31, u
V2l + & 5007

P(R.(t) — Rx-(t) < 0) = % l+erf
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whereer f(u) represent the error function afand it is given by

2 U
erf(u):—f e tdt.
vVr Jo

T

Since the error function is a strictly increasing function then the problem of
max P(Rp«(t) — Rx-(t) < 0)

is equivalent to the problem of
b* -~ log(n) - & X1, uf
Vo2 + & 30 (o))

Therefore, our problem can be written in the form of

min

i b* —log(n) — £ 3N,

W,z \/(77*)2"' n_lzzinzl(o-i*)z
such that
l N . .
NZ;(R'X(”‘ RO = =
J:
RO-R®+a+z; > 0(j=1..N),
+ ! ZN:Z < C
a —_— i = o
N(1-p) 4~
zi > 0(j=1..N).

As we mentioned before, the above problem construction could be usedhtmgméhe lig-
uidity risk and therefore, it is reasonable from the point of view of Blasel Committee on
Banking Supervisids proposal on liquidity risk management. Moreover, one could obtain
more conservative or speculative problem constructions by using aragthower value for
the ratioX(T)/L(T), or, by allowing a higher or lower CVaR value on the probable shortfall

amount.

Although our problem reduction with the help of our log-normal sum appratton method
and the linearization procedure of CVaR leads to a simpler problem with limestraints,
the solution of the problem is still not so easy since the reduced objectigédn is not linear.
Furthermore, we may need to use more developed programming languagethsiimen-
sion of the problem is about the number of the simulated paths, which shohighbe obtain
good approximation values. Nevertheless, numerical examples showthagenormal sum

approximation method performs good in the above problem when we aréengaitound the
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mean (or median) of the shortfall amount, while the approximation is getting viorse
tails. Actually, the results are in line with the ones we obtain in the next chapterawe
use our log-normal sum approximation method to price options on geometragase How-
ever, in option pricing we would have the opportunity to use our methodolody@amulas

as a control variate to obtain excellent approximation values.
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CHAPTER 6

PRICING OPTIONS BASED ON ARITHMETIC AVERAGES
BY USING A NEW LOG-NORMAL SUM APPROXIMATION

6.1 Introduction

The problem of pricing options on an arithmetic mean (average) of stockspcannot be
solved analytically, neither for basket options (where the final fiaybased on the arithmetic
mean over a basket of prices fronftdrent stocks) nor for Asian options (where the mean is

built over the evolution in time of one stock), just to name the two most popularaptons.

The main reason for this filiculty is that exponentials of families of random variables which
are stable under convolution are typically not stable under convolution gieess This can
easily be seen in the case of a basket option in the multi-asset Black-Sctuales While the
arithmetic mean of the exponents of théfelient stock prices is again normally distributed,
the arithmetic mean of the stock prices has no simple distribution. It is in particoddog
normally distributed. This fact prevents us to find a closed-form solutiothf® price of the

options based on the arithmetic averages.

In the literature, there are numerous studies aiming to price such optiongkandrd types of
methods are proposed by the authors. One way to price such optionsesheonte-Carlo
methods. Especially when the variance reduction methods, such as c@miadé methods
and antithetic variate methods (for theoretical background and othenganiaduction meth-
ods see, for example, duir [55]), are used one can obtain verfjegetive results from the
Monte-Carlo method. However, this method is time consuming and in risk managensen
difficult to work with since, for example, some risk measures are non-conier we use

scenarios, the sensitivity analysis is moridult when we use Monte-Carlo, etc.. Therefore,
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the focus in the literature is on finding closed-form approximation formuldsbaninds for

the option price.

The product of log-normally distributed stock prices is however log-nyntlistributed.
Thus, as a consequence, the geometric mean of asset prices in theSBrastks model is
again log-normally distributed. This allows a Black-Scholes type closed tisalypricing
formula for a basket option which is based on the geometric mean. On top othiigeo-
metric mean of a set of numbers is always bounded by the arithmetic meanehtmbers.

Kemna and Vorst [30] used this fact for twdi@irent types of approximation:

e By replacing the arithmetic mean in a basket (or an Asian) option by a geomeéjc o

one can obtain a lower bound for the actual price of a basket (regjsian) option.

e As the approximation of the arithmetic mean by the geometric mean is not really good
if the numbers entering the means are not close to each other a mean colissgtied.
In the case of a basket call this amounts to using a modified strike oriceeh that we

have

E (% anl Si(T) - K] =K ((i[ S (T)]l/n - K],

whereE denotes the expectatiold,is the original strike price$;(T) is the price ofi—th stock
at timeT andn is the number of stocks deriving the pdlyof the option. In both cases the
approximation price can be computed immediately via a suitable variant of the-Btduies
formula. However, in the first case the lower bound might be a poor oniée im the second

case the resulting approximating price is not necessarily a lower boulid at a

Other analytical approximation methods are mainly based on the approximatibe sfim
of the log-normal distributions with a simple distribution by matching some moments. For
instance, Levy [38] approximates the sum of the log-normal distributiorslbg-normal dis-
tribution, Milevsky and Posner [44] approximate by a reciprocal gammalison, Posner
and Milevsky [47] approximate by a shifted log-normal distribution and Ziodi\Wang [60]
approximate by some log-extended-skew-normal distribution. Besidaadintbsed-form
approximation formulas, finding analytical lower and upper bounds is gisxpalar way to
price arithmetic average based options. Such kind of methods can be fouegample, in
Curran [15], Rogers and Shi [50], Kaas et al. [29] and Deelsted. §tL7]. Another class of

the pricing methods are the model-free approaches which are based arstrged option
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prices on the individual stocks. Such methods can be found, for irsstan€hen et al. [12],

Hobson et al. [27] and Linders et al. [39].

The readers interested in other pricing techniques of options basedttumetic averages,
such as partial dlierential equation approaches, binomial trees and lattice techniques, are

referred to the list of references given in Zhou and Wang [60] andvglig and Posner [45].

In this part we describe a new methodology to price the basket and Adian®pased on the
arithmetic averages in the Black-Scholes model. We will use the simple factritiehetic
and geometric mean coincide if the numbers entering them are equal to ae@aymptotic
relation between the two means. Followed by an approximation of a shifteclogahdistri-
bution by a log-normal one, we obtain an analytic Black-Scholes type gippation formula
for basket and Asian options which is very accurate for low volatilities ofuthéerlying
stock price(s). For medium to high volatilities this approximation serves as #is foa a

Monte-Carlo control variate approach which performs well.

6.2 Approximating the arithmetic by a geometric mean

It is well-known that for a set of hon-negative real numbers (ands,thlso for realizations
of non-negative random variableS}), ..., S, we have the following relation between their
arithmetic and their geometric mean:

1 s=([1s]

i=1 i=1

We only have equality if all th&; coincide. Further, the relativeftierence between the two
means is the smaller, the smaller the relative variation inside th;set S,,. The relative
variation inside this set vanishes if we add #isiently big numbelC to eachS;. Then the

relative diferences
(Si+C)-(S;+C) _Si-S;
Sj +C B Sj +C

vanish asymptotically with growin@ leading to the following result.

Theorem 6.2.1.Let Sy, ..., S, be a set of non-negative numbers. Denaote=YS; + C for

i =1,...,n,where C is a positive constant. Then, the geometric mean conveygeptasically
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to the arithmetic mean of the sequen¢@¥ C tends to infinity, that is,

1yn (g
élm n Z|:1(SI + C:)l - 1
[Ty (Si+C)]"

Proof. Equivalent to our aim, we will show that

|m1H Li(si+0)]"
Cooo n(@6Si+C

For suitable functionds, ..., f, andga, ..., g, depending o184, ..., Sp, and by the use of bino-

mial expansion we get

[% e1(Si + C)]n . [C +5 2k Si]n
NCETO R GRS
im Cch+ fl(Sl, ey Sn)Cn_l + ...+ fn(S]_, ey Sn)CO
C—o C" + g1(Sy, ... Sn)Cn_l + ...+ gn(S1, ..., Sn)CO
Im1+éh6LWSd+m+%m6LMSM.
Cow 1+ 201(S1, ..., Sn) + ... + Z20n(S1. ... Sn)

By taking the limitC — oo in both sides of the equality, one directly ends up with the equality

that we would like to obtain. [ ]

The rate of convergence of the geometric mean to the arithmetic mean in Thé@dnis

furnished in the following theorem:

Theorem 6.2.2.Again, let S, ..., S, be a set of non-negative numbers, and denpte S; +C
fori = 1,...,n where C is a positive constant. Then, the convergence rate of the gmome

mean to the arithmetic mean of the sequenads ¥iven by

(s, (si+0) 14 1
TCETS) =1+E§si+o(—) for C — .



Proof. From the proof of Theorem 6.2.1 we have

n
[E20iSi+O] 14 Afu(S1 e Se) + o + & (S S0)

[MLiSi+C) 1+ 201(S1,-»Sn) + - + Z0n(S1. -, Sn)
B 1
1+ £01(S1. s Sn) + oo + Z50n(S1, .., Sn)
L 1 f1(S1, ..., Sn)
C l + (—]igl(S]_, veey Sn) + ...+ %gn(S:L, ceey Sn)
L L f2(S4, ..., Sp)
C?1+ 40gi(S1,...S 20n(S1,...S
+ &01(S1, -, Sn) + ... + & In(S1, - Sn)
+ ..
L, 2L fa(S1. ..., Sn)

C"1+ 1g1(S1, . Sn) + . + Z0n(S1, . Sn)

Explicit calculation of numerator gives

l n n
f1(St. . Sn) = N D.Si=) s
i=1 i=1

Then, by using the properties of limit one can easily obtain

(tznisi+0)

—l+£Zn:S-+Oi
n(Si+C C & ' c2)”

Note that, the cd@cient of the term 1C may change depending on the assumptions we made

on limit calculations.

6.3 Approximate pricing of options on the arithmetic mean

We now use the approximation result of Theorem 6.2.1 such that

¢ the arithmetic mean will not be changed at all,

e the geometric mean will be modified via adding a large nuntbé&p all components

entering the geometric mean.
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To make this more precise, we consider the situation of an arithmetic aversigt bation

where we have

Boaskemar = {% Z ) = (% Z (Si+C)—-(K+ C))

i=1

> [ﬁ(s,+C)) - (K+0QC)

i=1

+

= Bbaskeigeo(C) (6 1)

with x* = max{x, 0}. So, in the spirit of Theorem 6.2.1 we have convergence of the option
prices for the paymentByaskegeo (C) towards the original basket option price. In particular,
the necessary exchange of t@dimit with the expectation is ensured by inequality (6.1)
by the Dominated Convergence Theorem (see, for exampleeajlu and Hayfavi [36],
Shreve [52]). Note that this result is model independent which giveaghbeoach a taste of

robustness.

Numerical examples showing the fast convergence of such an apptmairoathe arithmetic
mean-based basket option by a sequence of geometric mean-basedeogigen in Table 1,
where both the prices and the confidence intervals (inside the parehtduesgven. There,

we assumed three independent stock prices that follow geometric Browradon under

the risk-neutral measure with drift= 0.06, volatilitieso = (0.3,0.2,0.3) and initial stock
pricesS(tg) = (40,60,80). We used two dierent strikes oK and assumed that the option
matures after 6 months. The prices were obtained by using the Monte-CaHodweith 1¢
simulations for each stock price process. The pri&gskenr aNdPhaskegedC) are correspond

to the present values @f(Bpaskegeo) aNAE(BpaskegedC)), respectively, wher8paskegeo and
BhaskegedC) are as given in (6.1) anfl denotes the expected value. Note that, the case of
C = 0 for Ppaskegeo COrresponds to the price based on the geometric average of the original

stock price realizations.

Although the results given in Table 1 are really impressive, there is a partidtawback of

this method: Simulating the geometric mean is at least as slow as simulating the arithmetic
one. Even more, as the factors in the newly obtained geometric mean aregao log-
normally distributed foiIC # 0, we can also not use the well-known closed pricing formula

for the call option based on the geometric mean (see Korn et al. [33]):

Theorem 6.3.1.[Price of geometric average basket option] The price of a geometecame
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K

C

Pbaskejar

Pbaskeigeo(c)

55
55
55
55
55

0
107
10
10°
10’

7.1214 ([7.0827, 7.1601]
7.1214 ([7.0827, 7.1601]
7.1214 ([7.0827, 7.1601]
7.1214 ([7.0827, 7.1601]
7.1214 ([7.0827, 7.1601]

4.6311 ([4.5999, 4.6623]
6.1113 ([6.0762, 6.1464]
7.1043 ([7.0656, 7.1429]
7.1212 ([7.0825, 7.1600]
7.1214 ([7.0826, 7.1601]

65
65
65
65
65

0
107
104
108
10’

1.5692 ([1.5482, 1.5902]
1.5692 ([1.5482, 1.5902]
1.5692 ([1.5482, 1.5902]
1.5692 ([1.5482, 1.5902]
1.5692 ([1.5482, 1.5902]

0.6373 ([0.6250, 0.6497]
1.0947 ([1.0780, 1.1114]
1.5600 ([1.5391, 1.5809]
1.5691 ([1.5481, 1.5901]
1.5692 ([1.5482, 1.5902]

Table 6.1: Convergence of the geometric mean-based basket option price toitheetic
mean-based one when we use our method.
basket call with weightsw= 1/n in the Black- Scholes model is given by

Pbaskegeo = e’ (gé’ﬂ@ (dl) - K(D( 2)) ,

~ log(§/K)+m++v? -

s d2:dl—V,

4

where r is the risk-free rate, n is the number of stocks entering into theehdsks the strike
price, T is the maturity time,; $s the initial price of the i~ th stock,o; are the enteries of
the variance-covariance matrics of the stock returns éndenotes the cumulative standard

normal distribution.

To be able to use closed pricing formulae for geometric mean-based oiaisds the one
in Theorem 6.3.1), we approximate the shifted log-normally distributed randoi@bles in
the geometric mean by a log-normal distribution having the same expected ndluarance.
The resulting log-normal sum approximation method and the complete methodolpgge

options based on arithmetic averages can be summarized as follows:

e Step 1: Shift each log-normally distributed random varialBleby a suficiently large
positive constanC. Then,Y;

expected valu&(Y;) = E(S;) + C and varianc&/ar(Y;) = Var(S;) fori = 1,...,n.

= S§; + C has a shifted log-normal distribution with

e Step 2: Approximate each shifted log-normal distributi¥nby a log-normal distribu-

tion Y;" with the same expected value and variance. This yields the parametard
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o for the approximating log-normal distribution as

i = log

[E(YV)]? s Iog(1+ Var(YiZ)‘
JIECOI? + Var(y) [E(Y)]

e Step 3:Now, from Theorem 6.2.1, the arithmetic mean and the geometric me¢is of
are very close to each other, therefore the geometric mean can be litbesbfwe small

error) instead of the arithmetic mean.

e Step 4: Finally, since shifting the random variables Byincreases the original mean,
we need to subtra&@ from the geometric mean that we obtain (or, instead, when we

are pricing an option we can shift the strike price@®y

We are going to illustrate the application and performance of this approximatithdwogy
in Sections 6.4 and 6.5 when applied to the pricing of arithmetic average lwadkeption
and arithmetic average Asian call option in the Black-Scholes framewonkelter, first we

give some information about the accuracy of our log-normal sum appation method.

6.3.1 Some facts about our log-normal sum approximation method

In our log-normal sum approximation method each log-normal distributionifsediby a
positive real numbe€ and then the resulting shifted log-normal distribution is approximated
by a log-normal distribution. The quality of our log-normal sum approximaisoclosely
related to the quality of the approximation of the shifted log-normal distributigrns log-
normal distribution. Numerical examples show that the shifted log-normailditons can be
approximated very well by a log-normal distribution when the original logyra distribution

has a small volatility parameter. The reason is as follows: The volatility parameter directly
effects the skewness of the log-normal distribution. Remember that, we apptexinea
shifted log-normal distribution by a log-normal distribution having the samedird second
moments, which yields the following volatility parameter for the final log-normaii@istion:

(o-*)zzlog(l+ var(s) )

[E(S) + C]?
In our approximation metho@ should be taken shiciently large to get good approximation
values. Since a large value Gfcauses a value of* close to zero, the skewness of the new

log-normal distribution will be small. If the skewness of the original log-ndrdistribution
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S is small (which means if the volatility parameter®fs small) then the original log-normal
distribution and the approximating one will be close to each other. Thereforur ap-
proximation method smaller volatility parameters imply better approximation values. This

situation is illustrated in Figure 6.1.

x10° x 10
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Figure 6.1: Comparison of our approximation with the original distribution.

Figure 6.1 contains the densities of the stock price realizations at maturity titteeforiginal
stock price process and the artificial stock price obtained from ouroappation method
(with density named “Our Approx.”). Here, we used 0.06, T = 0.5 and varying values

of 0. Note that foroc = 0.1 our approximation and the original density function nearly
coincide. When we increase theparameter then the approximation gets worse. Therefore,
our approximation method can be uséfketively especially for small values of parameter

or when we have short time to maturity as both situations imply small variance & stice

realizations.
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6.4 Approximate pricing of arithmetic average basket optim

We consider a Black-Scholes type market witlassets where the prices at tirnare de-
noted bySi(t), Sx(t), ..., Sn(t) and under the risk-neutral measure they follow the following
dynamics:

dSi(t) = SiO)(rdt + i dW (@), Si0)=s (i=1,...n),

Here,r is the risk-free rate and; is the volatility parameter of thie-th stock price process.
For simplicity we assume the independence between the stock price pgydhssefore, the
variablesW; are independent Brownian motions. Later, we will also mention about tlee cas

of the dependence between stock prices.

By applying our approximation methodology, we would like to find a closed-fapproxi-
mation formula for the price of a European arithmetic average basket ¢alhopith a strike

priceK and final pay&
1< "
(H Z Si(T) - K]
i=1
whereT is the maturity time.

We start our methodology by shifting each stock price process bytigisntly big positive
constant. If we shift each price process using the maturity time then thessrg¢€) =
Si(T) + C has a shifted log-normal distribution with expected vai¥(T)) = E(S;i(T)) + C
and variancé&/ar(Y;(T)) = Var(S;(T)) where

E(Si(T)) = s€T, Var(Si(T)) = se”7 (efT?T -1).

In the next step, we use log-normal random variab[g3) to replace the shifted log-normal
random variable¥(T). The corresponding parametgss (a-i*)2 of Y;*(T) that yield the same

mean and variance &%(T) can be easily calculated to obtain

[E(Si(T)) + CP?
VIE(SI(T) + CI? + Var(Si(T))
[s e + C]2
JIs€T +CP + e (7T - 1) ’

_ 2T (erfT _
og(l+m):log 1+%2 (ecr 1) .
[E(Si(T)) +C]? [seT +CJ?

u = log

log (6.2)

(o)

(6.3)
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Note that, in accordance with the Theorem 6.2.1, the geometric mean and timee#iath
mean of the variable¥’(T) are very close to each other, therefore we could approximate the
arithmetic average by the geometric average. Since the products of thelesvigT) has a

log-normal distribution with parameters

[Ty~ IogN(Z . Z(ar)Z),
i=1 i=1 i=1

we can value the final pagfdbased on the geometric mean

n 1/n
[H Yi*(T)) - (K+0)

i=1

+

Bapprgeo :=

by using the log-normal valuation formula (see Korn et al. [33]) and oliterapproximate

price formula for a European basket option

Cappiged T, K) = € Te™ 2 d(dy) — €T (K + C)d(dy) (6.4)

1 1 |
m = - .*’ V=-—- .*2’
ni;u. - ;w.)

q log(1/(K + C)) + m+\?
1= :
v

with

d2:d1—V,

whereC is a sufficiently big positive constant andg, (o-i*)2 are given by Equations (6.2) and
(6.3).

To assess thefgciency of our closed form pricing formula we give the following example:

Example 6.4.1.Assume an arithmetic average basket call option dependingratependent
stock prices and maturing after 6 months. We use the risk-neutral maré@ciemts of

r = 0.06,

o =02+0008 (i=1..n),

Si(0)=100—i (i=1,..,n).

The price of the given option calculated from our approximation formulg féidifferent
values ofn and diterent strikes oK are given in Table 6.2. For comparison purpose, in the
Table we also provide the 95% confidence intervals obtained from the dviashte-Carlo
method and the Monte-Carlo method with antithetic variates. In the computationgltiee

of our shift parameter was taken @s= 10° and we used 250000 simulations for each stock
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n | K Monte-Carlo Monte-Carlo Method | Approximation
Method with Antithetic Variates| Formula (6.4)

20| 80 | [11.8435,11.8752] [11.8627,11.8674] 11.8645

20| 85| [7.0439, 7.0747] [7.0623, 7.0675] 7.0782

20| 90 | [2.8803, 2.9047] [2.8913, 2.9004] 2.9157

40 | 70 | [11.5561,11.5812] [11.5664, 11.5713] 11.5662

40 | 75| [6.7184,6.7432] [6.7285, 6.7334] 6.7346

40 | 80 | [2.3941, 2.4137] [2.3991, 2.4064] 2.4175

60 | 60 | [11.2613,11.2824] [11.2708, 11.2757] 11.2695

60 | 65| [6.4138, 6.4348] [6.4233, 6.4282] 6.4249

60 | 70 | [2.0133,2.0298] [2.0189, 2.0252] 2.0320

Table 6.2: Price of arithmetic average basket call option obtained from the MontdeCar
method and our closed form approximation formula.

price process in the Monte-Carlo calculations. The results show thatasedcform approx-
imation formula gives very accurate results with a tendency to slightly overfire&ception
for higher strikes. This is an excellent basis for a control variate MQatde method which

we present later.

Note that, although in the calculations we assumed independence betwetrckprices,
our methodology could also be used when there is dependence betwestoctherices en-
tering the basket. The onlyftierence is that, in the case of dependence we need to preserve
the original covariance structure between the stock prices, as we willSigdsection A.2 for
the Asian options. We will not illustrate the case of the dependence foebapkons since

we illustrate it for the Asian option case where the idea is completely similar.

Note also that, in all of the calculations given above we assumed equalte/éiglthe stocks
entering the basket, however our method could still be used when we Hesreit weights
in the basket. Ifn; is the weight of thath stock in the basket the) := w;S; would have a
log-normal distribution, therefore we could apply our methodology to thebiasX; with

equal weights, just as we did in Subsection 5.2.2.
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6.5 Approximate pricing of arithmetic average Asian optiors

In this part, we focus on a single stock price process since as perwaitirAsian options

depend on a single path. Let the stock price process follows the dynafmics o
dS(t) = S(t){rdt + cdW(t)}, (6.5)
for a one-dimensional Brownian motidi under the risk-neutral probability measure.

Our aim is to price the discrete fixed-strike arithmetic average Asian option triite & and
paydt
19 v
BZ(—ZS(ti)—K] with 02t0<t1< ~'-<tn=T.
n{=
We are again in a situation where the sum of (dependent!) log-normal distris causes

the problems. However, there is a well-known theorem that allows to pricerasponding

geometric mean via a Black-Scholes type formula (see Korn et al. [33]):

Theorem 6.5.1. [Price of geometric average Asian option] Under the risk-neutral nieas

assume an asset price following
dS(t) = S(t){rdt + ocdW(t)},

where r andr- are constants and W is a Brownian motion. The price of the discrete fixikd-s

geometric average Asian option with pgyo

+

n 1/n
B=([n8(ti)) —K] L O0=tg<ty<-<th=T,
i=1

is given by

pera=€"T (S 0) em+%v2q) (Iog(S(O)/K)+m+v2) _K® (Iog(S(O)/K)+m))’

4 v

m=(r =30 ) y:%@(n+1_n2<ti-n_l>,

where® denotes the cumulative standard normal distribution.

Thus, we can make use of our approximation methodology just presemtdtfbasket op-
tion. However, we now have two possible ways to apply our approximatiooeg. In the
first one, we determine the input deients for the approximating Black-Scholes type for-

mula only from approximating the shifted log-normal distributiéT) = S(T) + C at the
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terminal time by the appropriate log-normal distributigi(T). In this case we obtain the

following approximate pricing formula.

Approximate pricing formula | for a fixed-strike arithmetic average Asian option

S(0)+C S(0)+C

DaraL = €T (S(0) + C) €™ 270 (M) — e (K +C)d (w) (6.6)

4 4

with

m = (a—%yz)%iti, v=%di(n+1—i)2(ti—ti_1),
i=1 i=1

& _fi-log(SO)+C) ¥
7 - \/-T’ a = T 29

[s©eT +c|

’

log

=
Il

\/[S(O)efT +CJ? + S(0peT (e7°T - 1)
S0P T (¢°T - 1)
[S(0)eT +C]> |

log|1+

In the second way, we apply our methodology at each time pdioti = 1, ...,n. However,
in this case, the new processes shall be taken as correlated with eackintkehe original

option is path dependent. This kind of approximation yields the following formula

Approximate pricing formula Il for a fixed-strike arithmetic averag e Asian option

1 SO4C ), 2 S(0)+C
Parre = €77 (S(0) + C) €™ 2" (M) e (K +C)d (M) (6.7)

v v

where

13
m = ﬁ;aitie

v = %Jzyfti +2" mini, jlyiyi(t - t0)V2(t - ta) Y2,
i—1 %]
&
Yi = ﬁ (| = 1, veey n),
~ 2
o = AZ0gCO+C) Vg
tj 2
: 2
i = log [Se™ +C] (i=1..n),
J[S(O)" +CJ2 + S(0pe2 (e - 1)
S(0ye? (&7 — 1
&% = log|l+ ©) ( . ) (i=1,..n).
[S(0)et + C]
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The derivations of the approximate pricing formulas | and Il can be fonppendix A.1

and A.2, respectively.

Example 6.5.2.We consider a discrete fixed-strike arithmetic average Asian call option de-
pending on the stock prices observednatquidistant time points. We choose= 0.06,

o =02,S(0) = 100, T = 0.5. Table 3 contains some approximate option prices obtained
from the approximation formulas (6.6) and (6.7) foffeient values ofi and diferent strikes

K. Here, our choice of the shift paramete€is= 10°. For comparison purposes, we also give
option prices with 95% confidence interval obtained from the crude MGars method and

the Monte-Carlo method with antithetic variates based on 250.000 simulations sibttie

price paths. From Table 6.3 it is seen that the performance of the apptedinamulas is

n| K Monte-Carlo | Monte-Carlo with| Approx. (6.6) | Approx. (6.7)
Method antithetic Variates
25| 95 | [7.3078, 7.3630] [7.3387, 7.3554] 7.4863 7.4489
25| 100 | [4.0759, 4.1202] [4.0963, 4.1179] 4.1957 4.1499
25| 105 | [1.9548, 1.9864] [1.9682, 1.9877] 1.9702 1.9285
50| 95 | [7.2514,7.3058] [7.2773,7.2937] 7.4266 7.3893
50 | 100 | [4.0102, 4.0538] [4.0280, 4.0493] 4.1307 4.0847
50 | 105 | [1.8978, 1.9287] [1.9088, 1.9280] 1.9147 1.8731
75| 95 | [7.2329, 7.2871] [7.2593, 7.2756] 7.4068 7.3695
75| 100 | [3.9925, 4.0359] [4.0092, 4.0304] 4.1089 4.0629
75| 105 | [1.8827,1.9134] [1.8924, 1.9114] 1.8963 1.8546

Table 6.3:Price of arithmetic average Asian call option.

good, but not sfiiciently accurate to replace the Monte-Carlo method. On top of that, it is not
as good as in the basket option case. In particular, the closed forrxapjation formulas

- and, in particular, Formula (6.6) - perform well when the option is at theayof/or low
strikes they both tend to underestimate the correct price significantly. Hostriges, the ap-
proximation methods tend to overvalue the discrete Asian average options Bvisn more
pronounced for larger values of the volatility, for small values-pthe approximations seem

to be good approximations. This is also illustrated in the plots given in Figurean@.6.7.

Each figure contains the plots for 4i@rent values of the volatility parameter
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Figure 6.2: Price of the Asian option obtained from the Approximation (6.6).

6.6 A new control variate method for options on arithmetic averages

Numerical results given in the above examples show that our approximatithrodngives

very dficient approximations for the price of the arithmetic average basket optide thk

price approximations for the arithmetic average Asian options are not as jpsome cases

the performance of our approximation formulas is good, but nfiicgently accurate to re-

place the Monte-Carlo method. However, due to the closed form formulaawe derived,

the approximating payis are candidates to be used as control variates in a Monte-Carlo sim-

ulation. For the case of the arithmetic average basket option we could ubtttie-Carlo

estimator

N
Xy =€ %Z (Xi — M) + E (M)
=1
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Figure 6.3: Price of the Asian option obtained from the Approximation (6.7).

with
18 "
X = (ﬁ;si(T)—K], (6.9)
n 1/n +
M, = ((HY,] —(K+C)]. (6.10)
i=1

Here, X; is the payd (corresponding to thé&h scenario) obtained from the Monte-Carlo

method when we use the original optidv; is the payd (again, corresponding to théh

scenario) obtained from the Monte-Carlo method when we use our metlyydatalE (M)

is the expected value of the pdjahich can be calculated with the help of the price formula

(6.4).Y;" is the price process having log-normal distribution with the paramgteaad (Ti*)z

as defined in (6.2) and (6.3).

Note that, this control variate methodology can also be applied for pricingreettb average

Asian options.
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6.7 Numerical results

In this section we give some numerical examples to illustrateffi@ency of our closed form
formulas and the use of our methodology as a control variate method by dompéth some
of the well-known methods form the literature. Here we provide the numegsalts for the
basket option case, however we will also mention about fiigency of our methodology in

Asian option pricing.

We compare our approximation method (the closed-form formula) with the Moatk®
price, the confidence interval obtained from Monte-Carlo method, thedogral approxi-
mation of Levy [38], the reciprocal gamma approximation of Milevsky anchBog4], the
approximation of Kemna and Vorst [30], the geometric average baskienhgmice which is
in some cases used as an approximation (actually, a lower bound) foiittiraetic average
price, and the lower and upper bounds obtained from Deelstra et §l.B&gides, we com-
pare the use of our methodology and closed-form formula as a contiatevavith the use
of the geometric average, the log-normal approximation of Levy [38] amdproximation
of Kemna and Vorst [30] as a control variate. We do not use the theroegipbgamma ap-
proximation of Milevsky and Posner [44] as a control variate since thisoxppation uses
a distribution diferent from the log-normal one and therefore yields week results due to the

low correlation structure with the original paf§o

We assume a basket option based on the arithmetic average of 4 indejstndkes. We also
assume that the risk free rate and the maturity time ar®.06 andT = 0.5, respectively. In
computations, we used 48imulations for each stock in the Monte-Carlo methods (and the
control variate methods) and took the shift paramete® as10’ in our method. The results
obtained from our method and the methods from the literature are given iesTal, 6.5,

6.6 and 6.7. The notations MC, MCCI, LB, UB, GA, KV, LN, RG and SLN that used

in the Tables are the Monte-Carlo price, the confidence interval of theévi©arlo method,
the lower bound of Deelstra et al. (the maximum of the lower bounds obtainadibg the
conditioning variable§ Al andF A2 as defined in [17]), the upper bound of Deelstra et al. (the
minimum of the partially exagtomonotonic upper bounds obtained by using the conditioning
variables- Al andF A2), the option price based on the geometric average, Kemna and Vorst’s
approximation, Levy’s log-normal approximation, Milevsky and Posreesiprocal Gamma

approximation and our shifted log-normal approximation, respectively.
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Table 6.4:Arithmetic average basket call option price when the initial stock pricesare

K] MC ] MCCI | LB UB [ GA [ KV | LN [ RG | SLN
0,=02;, 0,=02;, 03=02;, 0,=02
55 | 9.1527| [9.14339.1621] | 9.1578| 9.2548 | 2.4230 | 9.1312 | 9.1606 | 9.1546 | 9.1828
60 | 4.7236 | [4.71534.7318] | 4.7251| 5.3557 | 0.4583 | 4.5069 | 4.7345 | 4.7179 | 4.7816
65 | 1.6678 | [1.66231.6733] | 1.6648 | 3.5181 | 0.0394 | 1.2847 | 1.6708 | 1.6704 | 1.6653
0,=05, 0,=05, 03=05;, 0,=05
60 | 7.1455| [7.1267,7.1642] | 7.0786| 10.8761| 1.7784 | 6.1027 | 7.1951 | 7.0933 | 7.4087
65 | 4.6357 | [4.61994.6514] | 4.5576 | 10.1025| 0.8379 | 3.4568 | 4.6653 | 4.6170 | 4.6991
70 | 2.8672| [2.85452.8799] | 2.7888 | 10.2626| 0.3660 | 1.7772 | 2.8723 | 2.8834 | 2.7315
0'1:0.8; 0'2:0.8; 0'3:0.8; 0'4:0.8
65 | 7.7500 | [7.72137.7788] | 7.4316| 18.2651| 0.6246 | 2.2716 | 7.8781 | 7.6444 | 8.1004
70 | 5.9464 | [5.92065.9723] | 5.6183 | 18.9463| 1.0087 | 3.5026 | 6.0349 | 5.8965 | 5.9495
75 | 4.5320 | [4.509Q04.5550] | 4.2075| 20.3043| 0.0394 | 1.2847 | 4.5782 | 4.5315| 4.2289
o1 =06, o,=12; 0'3=0.3; o4 =09
65 | 7.8928| [7.86027.9255] | 7.5437| 17.1976| 1.6470 | 5.3787 | 8.3693 | 8.0901 | 8.6403
70 | 6.2128 | [6.18296.2428] | 5.8375| 17.9661| 1.0480 | 3.6136 | 6.5294 | 6.3500 | 6.4729
75 | 4.8941 | [4.86684.9214] | 4.5070| 19.5807| 0.6590 | 2.3721 | 5.0548 | 4.9730 | 4.7116
Approximate Price Length of the
by Using Control Variate Confidence Interval
K GA [ LN [ KV [ SLN GA [ LN [ KV [ SLN
0'120.2; 0'2=0.2; 0'320.2; 0'4=0.2
55 | 9.1556 | 9.1550 | 9.1569 | 9.1584 | 0.0110| 0.0240 | 0.0081 | 0.0018
60 | 4.7239| 4.7263 | 4.7279| 4.7288| 0.0136 | 0.0212 | 0.0073 | 0.0016
65 | 1.6673| 1.6673 | 1.6693| 1.6704| 0.0104 | 0.0143 | 0.0055 | 0.0013
o1 =05, o0,=05; 0'320.5; o4 =05
60 | 7.1478| 7.1481| 7.1524| 7.1548| 0.0266 | 0.0486 | 0.0194 | 0.0099
65 | 4.6349| 4.6338| 4.6393| 4.6427| 0.0246 | 0.0412 | 0.0175| 0.0091
70 | 2.8652 | 2.8634 | 2.8695| 2.8728| 0.0213| 0.0335| 0.0154 | 0.0081
o,=08;, 0,=08;, 03=08;, o04,=08
65 | 7.7488 | 7.7451| 7.7550| 7.7621| 0.0450| 0.0751| 0.0362 | 0.0251
70 | 5.9439 | 5.9398 | 5.9503| 5.9569 | 0.0422| 0.0678 | 0.0342 | 0.0237
75 | 4.5282 | 4.5234 | 4.5332| 4.5408| 0.0391 | 0.0607 | 0.0322 | 0.0223
0'1=0.6; 0'2=1.2; 0'3=0.3; (7'4:0.9
65 | 7.8928 | 7.8873| 7.8990| 7.9059| 0.0510| 0.0859 | 0.0421 | 0.0339
70 | 6.2111| 6.2056 | 6.2176 | 6.2241| 0.0488 | 0.0786 | 0.0403 | 0.0325
75 | 4.8922| 4.8848| 4.8964 | 4.9035| 0.0463 | 0.0714 | 0.0386 | 0.0310

25 s =50 s3=75 s =100

Numerical results show that the closed form formulas of RG and LN appeiions generally
gives better results than the other closed form formulas. Our closedftomula generally
slightly under estimates the price when the option is (deep-)out-the-mortegl|ightly over
estimates the price when the option is (deep-)in-the-money, however itadigrggves much
better results than the KV approximation and the GA price. Furthermore, tf@rmpance

of our closed form formula is better for some levels of the strike price. The e slightly

higher than the arithmetic average of the initial stock prices when we havediatilities,

and it is higher for higher volatilities.
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K] MC ] MCCI | 1B [ uB | GA | KV [ LN | RG | SIN
0,=02;, 0,=02;, 03=02;, 0,=02
50 | 6.5355 | [6.52806.5431] [ 6.5392[ 6.6987 [ 5.0540 | 6.5249 | 6.5412] 6.5340 | 6.5653
55 [ 2.5063 | [2.50062.5121] | 2.5042| 3.5819 | 0.4583| 2.4362 | 2.5104 | 2.5010 | 2.5343
60 [ 0.5041| [0.50140.5068] | 0.5005]| 3.0705 | 0.2145| 0.4439 | 0.5037 [ 0.5133| 0.4719
0,=05, 0,=05, 03=05;, 0,=05
55 [ 4.8324 [ [4.81844.8465] [ 4.7575] 9.1269 | 2.7725] 4.4322 ] 4.8499[ 4.7920 4.9492
60 [ 2.7402 [2.72922.7512] | 2.6592| 9.0931 | 1.3581| 2.3371 | 2.7463| 2.7444| 2.6729
65 | 1.4468| [1.4387.1.4549] | 1.3741[ 9.9795 [ 0.6090 | 1.1183| 1.4413| 1.4831| 1.2550
0'1:0.8; 0'2:0.8; 0'3:0.8; 0'4:0.8
60 [ 5.3401] [5.31865.3616] [ 5.0103 | 16.8742] 2.1135] 4.0846 [ 5.3897 [ 5.2725] 5.3819
65 | 3.8179 | [3.79933.8365] | 3.4889 | 18.2588| 1.3236 | 2.6443 | 3.8418 | 3.8123| 3.5776
70 [ 2.7011] [2.68522.7170] | 2.3909 | 20.3315| 0.8153 | 1.6722| 2.7003| 2.7430 | 2.2590
o1 =06, o,=12; 0'3=0.3; o4 =09
60 [ 5.5569 | [5.53125.5826] [ 5.2084 [ 16.0580[ 2.1475] 4.1943[ 59128 5.7558 | 5.9371
65 | 4.1555 | [4.13244.1786] | 3.7902| 17.7751| 1.3628 | 2.7471| 4.3459 | 4.2836 | 4.0874
70 [ 3.1196 | [3.098931403] | 2.7517| 20.5267 | 0.8521| 1.7609 | 3.1607 | 3.1798 | 2.6941

Approximate Price Length of the
by Using Control Variate Confidence Interval
K GA [ LN [ KV [ SLN GA [ LN [ KV [ SLN

0'120.2; 0'2=0.2; 0'320.2; 0'4=0.2

50 | 6.5399 | 6.5375| 6.5399 | 6.5404 | 0.0036| 0.0172| 0.0034 | 0.0015
55 | 2.5082| 2.5078 | 2.5092 | 2.5093| 0.0041| 0.0135| 0.0029 | 0.0013
60 | 0.5038 | 0.5028 | 0.5044 | 0.5051| 0.0028 | 0.0067 | 0.0017 | 0.0008
o1 =05, o0,=05; 0'320.5; o4 =05
55 | 4.8355| 4.8328 | 4.8375| 4.8385| 0.0123| 0.0330| 0.0098 | 0.0079
60 | 2.7413 | 2.7378 | 2.7430| 2.7445| 0.0110| 0.0264 | 0.0085| 0.0068
65 | 1.4457| 1.4428| 1.4471| 1.4495| 0.0092 | 0.0199| 0.0071| 0.0058
o,=08;, 0,=08;, 03=08;, o04,=08
60 | 5.3409 | 5.3355| 5.3443| 5.3481| 0.0265| 0.0509 | 0.0217| 0.0199
65 | 3.8161| 3.8113| 3.8204 | 3.8242| 0.0245| 0.0446 | 0.0201| 0.0183
70 | 2.6981 | 2.6933| 2.7003| 2.7061| 0.0223 | 0.0386 | 0.0185| 0.0167
0'1=0.6; 0'2=1.2; 0'3=0.3; (7'4:0.9
60 | 5.5587 | 5.5517 | 5.5622 | 5.5664 | 0.0337 | 0.0645| 0.0292 | 0.0286
65 | 4.1546 | 4.1482| 4.1587 | 4.1643| 0.0324 | 0.0580| 0.0279| 0.0271
70 | 3.1178| 3.1109| 3.1200| 3.1251| 0.0308 | 0.0518 | 0.0267 | 0.0257

Table 6.5:Arithmetic average basket call option price when the initial stock pricesare
40, s =50, 53=60 s, =70.

Numerical results also show that our control variate method performswelty Especially,
when the relative variation inside the initial stock prices high and the volatilitiestthamn

our control variate method gives much better results and outperforms tecottitrol variate
methods. When the relative variation inside the initial stock prices is smaller titleous
method outperforms the other control variate methods, however, in thisandse the case

of high volatility environment the dierence between our method and the other methods is
smaller. When there is no relative variation between the initial stock pricestiremethod

and KV method outperform the other control variate methods.
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Table 6.6:Arithmetic average basket call option price when the initial stock pricesare

K] MC ] MCCI | LB UB [ GA [ KV | LN [ RG | SLN
0,=02;, 0,=02;, 03=02;, 0,=02
48 | 5.9822| [5.97515.9893] | 5.9855| 6.1555 | 5.3297 | 5.9793 | 5.9870 | 5.9799 | 6.0106
52 | 2.7000 | [2.69432.7058] | 2.6986 | 3.5922 | 2.2148 | 2.4362 | 2.7035| 2.6934 | 2.7305
56 | 0.7722| [0.76890.7755] | 0.7682| 2.8950 | 0.5586 | 0.7431| 0.7730| 0.7787 | 0.7518
0,=05, 0,=05, 03=05;, 0,=05
50 | 5.9724 | [5.9577,5.9871] | 5.9094 | 9.1528 | 4.1446 | 5.7223 | 5.9874 | 5.9127 | 6.1548
55 | 3.4087 | [3.397Q03.4204] | 3.3284| 8.5935 | 2.1249| 3.1189 | 3.4161 | 3.3899 | 3.4215
60 | 1.7808 | [1.77221.7895] | 1.7039| 9.1467 | 0.9836 | 1.5255| 1.7803 | 1.8057 | 1.6393
0'1:0.8; 0'2:0.8; 0'3:0.8; 0'4:0.8
55 | 5.8777 | [5.85625.8991] | 5.5589 | 15.8253| 2.7544 | 4.8301 | 5.9215| 5.7752 | 6.0396
60 | 4.1362 | [4.1177,4.1547] | 3.8070| 16.9183| 1.7225| 3.1251 | 4.1605 | 4.1032 | 4.0034
65 | 2.8687 | [2.85302.8844] | 2.5527 | 18.7541| 1.0554 | 1.9673 | 2.8723 | 2.8930 | 2.5081
o1 =06, o,=12; 0'3=0.3; o4 =09
55 | 6.0108 | [5.98526.0364] | 5.6875| 14.9213| 2.7775| 4.9357 | 6.4436 | 6.2557 | 6.6041
60 | 4.4080 | [4.38504.4310] | 4.0666 | 16.2330| 1.7586 | 3.2290 | 4.6777 | 4.5851 | 4.5372
65 | 3.2438 | [3.22333.2643] | 2.8972| 18.6330| 1.0931 | 2.0596 | 3.3514 | 3.3458 | 2.9729
Approximate Price Length of the
by Using Control Variate Confidence Interval
K GA [ LN [ KV [ SLN GA [ LN [ KV [ SLN
0'120.2; 0'2=0.2; 0'320.2; 0'4=0.2
48 | 5.9866 | 5.9840| 5.9865| 5.9868 | 0.0021 | 0.0152 | 0.0020 | 0.0014
52 | 2.7027| 2.7016 | 2.7031| 2.7032| 0.0021 | 0.0126 | 0.0017 | 0.0012
56 | 0.7729| 0.7713| 0.7733| 0.7735| 0.0017 | 0.0076 | 0.0012 | 0.0009
o1 =05, o0,=05; 0'320.5; o4 =05
50 | 5.9771| 5.9750| 5.9789| 5.9796 | 0.0096 | 0.0323 | 0.0081 | 0.0078
55 | 3.4114| 3.4072| 3.4120| 3.4133| 0.0090 | 0.0263 | 0.0071 | 0.0069
60 | 1.7807 | 1.7775| 1.7825| 1.7837| 0.0077 | 0.0200 | 0.0059 | 0.0058
o,=08;, 0,=08;, 03=08;, o04,=08
55 | 5.8806 | 5.8740| 5.8822| 5.8858| 0.0235| 0.0478| 0.0193| 0.0194
60 | 4.1358 | 4.1305| 4.1396 | 4.1421| 0.0219 | 0.0418 | 0.0179 | 0.0178
65 | 2.8665| 2.8616 | 2.8692| 2.8732| 0.0200 | 0.0359 | 0.0164 | 0.0162
0'1=0.6; 0'2=1.2; 0'3=0.3; (7'4:0.9
55 | 6.0142 | 6.0066 | 6.0166 | 6.0196 | 0.0310| 0.0626 | 0.0272 | 0.0279
60 | 4.4085| 4.4018 | 4.4123| 4.4160| 0.0300 | 0.0565| 0.0261 | 0.0265
65 | 3.2424 | 3.2360 | 3.2454 | 3.2496 | 0.0287 | 0.0504 | 0.0251 | 0.0251

45 s, =50, s3=55 s =60.

It is seen that, our control variate method performs better actually wheeltt&e variation
inside the expected end prices (that is, expected prices at maturity) is.Qyhthe top of this,
it can be concluded that, our control variate method outperforms all otliee control variate
methods when the parameter settings lead to high relative variation inside #ttexkprices

at maturity time, and in the other cases our and KV'’s control variate methaperéarm the

other methods.

To compare the computationdfert of the diferent approaches note that
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K] MC ] MCCI | LB UB [ GA [ KV | LN [ RG | SLN
0,=02;, 0,=02;, 03=02;, 0,=02
45 | 6.3618 | [6.35506.3686] | 6.3651| 6.4702 | 6.0024 | 6.3635| 6.3659 | 6.3610 | 6.3831
50 | 2.2535| [2.24832.2586] | 2.2513| 3.2410 | 2.0056 | 2.2417 | 2.2561 | 2.2479 | 2.2772
55 | 0.3550 | [0.35280.3571] | 0.3511| 2.8596 | 0.2863 | 0.3443 | 0.3547 | 0.3637 | 0.3255
0,=05, 0,=05, 03=05;, 0,=05
50 | 4.3303 | [4.31784.3428] | 4.2581| 8.3077 | 2.9983 | 4.0993 | 4.3388 | 4.2885 | 4.4258
55 | 2.2766 | [2.26722.2860] | 2.1981| 8.3854 | 1.4187 | 2.0479 | 2.2784 | 2.2828 | 2.1982
60 | 1.0915| [1.08491.0981] | 1.0247| 9.4226 | 0.6046 | 0.9152 | 1.0871| 1.1298 | 0.9131
0'1:0.8; 0'2:0.8; 0'3:0.8; 0'4:0.8
55 | 45973 | [4.57854.6160] | 4.2788| 15.5960| 2.1080 | 3.6616 | 4.6233 | 4.5330 | 4.5849
60 | 3.1407 | [3.12493.1566] | 2.8264 | 17.1442| 1.2767 | 2.2850 | 3.1482 | 3.1419| 2.8703
65 | 2.1158 | [2.10252.1290] | 1.8271| 19.4057| 0.7582 | 1.3890 | 2.1065 | 2.1647 | 1.6826
o1 =06, o,=12; 0'3=0.3; o4 =09
60 | 3.4530 | [3.43243.4735] | 3.1366 | 16.6666| 1.3130 | 2.3788 | 3.6409 | 3.6050 | 3.3613
65 | 2.5091 | [2.49082.5274] | 2.1983| 19.8250| 0.7924 | 1.4678 | 2.5448 | 2.5841 | 2.0843
70 | 1.8417 | [1.82541.8579] | 1.5448 | 24.3681| 0.4720| 0.8889 | 1.7610| 1.8525| 1.2194
Approximate Price Length of the
by Using Control Variate Confidence Interval
K GA [ LN [ KV [ SLN GA [ LN [ KV [ SLN
0'120.2; 0'2=0.2; 0'320.2; 0'4=0.2
45 | 6.3659| 6.3635| 6.3658| 6.3660| 0.0012 | 0.0137 | 0.0012 | 0.0013
50 | 2.2559 | 2.2548 | 2.2561| 2.2562| 0.0012 | 0.0107 | 0.0010| 0.0011
55 | 0.3548 | 0.3538| 0.3550| 0.3551| 0.0008 | 0.0049 | 0.0006 | 0.0007
o1 =05, o0,=05; 0'320.5; o4 =05
50 | 4.3335| 4.3307 | 4.3350| 4.3358| 0.0080 | 0.0259 | 0.0065| 0.0071
55 | 2.2781| 2.2742| 2.2792| 2.2795| 0.0072 | 0.0201 | 0.0055| 0.0060
60 | 1.0905| 1.0881| 1.0913| 1.0922| 0.0058 | 0.0146 | 0.0044 | 0.0049
o,=08;, 0,=08;, 03=08;, o04,=08
55 | 4.5985| 4.5930| 4.6011| 4.6027| 0.0207 | 0.0391 | 0.0168 | 0.0176
60 | 3.1391| 3.1345| 3.1425| 3.1452| 0.0190| 0.0335| 0.0154 | 0.0160
65 | 2.1129| 2.1090 | 2.1145| 2.1174| 0.0170 | 0.0283 | 0.0140| 0.0144
0'1=0.6; 0'2=1.2; 0'3=0.3; (7'4:0.9
60 | 3.4523 | 3.4461 | 3.4556 | 3.4586 | 0.0277 | 0.0494 | 0.0244 | 0.0246
65 | 2.5074 | 2.5013| 2.5089 | 2.5117| 0.0265| 0.0439 | 0.0234 | 0.0233
70 | 1.8399| 1.8348| 1.8401| 1.8418| 0.0251 | 0.0388 | 0.0225| 0.0222

Table 6.7:Arithmetic average basket call option price when the initial stock pricesare
50, s, =50, s3=50, s4 =50.

e All closed-form formulas yield results nearly immediately (even if we have e

¢ As the closed-form formulas of RG and KV contain nested loops in their legions

e In the class of the control variate methods our method is slower than the othere

of stocks in the basket gets very high.
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and KV methods are shorter than those of the RG and LN methods.

hundred stocks in our basket) where the computation times of our method,(SI2N

their computation times grow much faster than those of SLN, LN and GA if the numbe




it requires nearly twice as much random numbers (for a given numbémaoiation
runs). When we additionally consider the accuracy of the methods via mulgplyin
the computation times with the length of the confidence intervals then our method out
performs the other methods, in particular when the relative variation insidgtdok

prices is high.

Here, we do not provide numerical results for the arithmetic average Apigons. However,
in the Asian option case our method is not as suited as for the basket opsierasger
construction there are high dependencies in the Asian option setting whith tea low

relative variation inside the prices that derive the ghgbthe option.

6.8 Use of the extrapolation methods to accelerate the conmgence

In general terms, extrapolation is the process of estimating a function vétu¢he help of
its other values. With this definition extrapolation may serve féiedent objectives, however

here we will focus on the convergence acceleration.

Finding the limit of an infinite series may be hard when its convergence to the litog &
slow. In this case, extrapolation methods can be applied to accelerate tteegaace of the
sequence to its limit value. One of the widely used methods for this purposeRectherdson
extrapolation. Richardson extrapolation takes some values of a secarehpeocess them to
obtain better approximation values. Its idea is basically to combine solutions ethtaom
different terms of the sequence to eleminate some of the error made from tti¢hese as an
approximation. Since we will illustrate the methodology in the next section, hergilivnot
provide more detailed information about the Richardson extrapolation. E@amarehensive
information about the Richardson extrapolation method and the other esiiapanethods

we refer the interested readers to Sidi [53] and Brezinski and R&digba [10].

In this part we will introduce how to use the extrapolation methods to accetbatonver-
gence of our log-normal sum approximation method. The use of the Radraeshd Romberg
extrapolation which is based on the successive implementation of the Richaxisapola-

tion, will be illustrated.
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6.8.1 Richardson Extrapolation

To accelerate the convergence of our method by Richardson Extrapolagaould use both
the absolute error and the relative error in our calculations. Here, weaville the formulas
by using the absolute error. The derivation of the formulas for the relatiror can be found

in Appendix B.
From Theorem 6.2.1 we have the approximation
1 n n 1/n
ﬁ§;a+QzU16wcﬂ :
1= 1=

or, equivalently

1 n n 1/n
ﬁ;si z(g(si +C)) -C

for large values o€. In the remaining part of this chapter and in Appendix B we will denote
the arithmetic mean bAM, and the geometric mean obtained from our method with a shift

parameter valu€ by GM(C), that is,

AM = 1 DS (6.11)

GM(C) (6.12)

Il
—
—°
@
+
0O
Nl
-
B
|
0

Our extensive numerical applications show that the absolute error @fpproximation can

be assumed to be of orderd, that is

1 1
AM = GM(C)+ KE +O(a),

whereK is a constant an@® denotes the big O notation (see, for example, Heath [25]).
For two diterent values of the shift parameternamely,C; andC,, we have
1
AM = GM(Cy) + K—,
Cy

1
AM = GM(Cy) + K.
C

Multiplying the first equation with-1, the second equation witB,/C;, and then summing
up the equations we get

EGM(C2) - GM(Cy)

&_ 9
Cll

AM(C1,Cp) = (6.13)
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which is the extrapolated value obtained from Richardson ExtrapolationGyi#mdC,.

Remember that, in our method the arithmetic mean and the geometric mean are egual as
goes to infinity. Since in computations we required to use a fldit@lue it is not possible
to find the exact limiting approximation, therefore our calculations containran &s per the
limiting value. If we want to have an approximation error equal to a preifspeédixed value
then the Richardson extrapolation method can be used to fhdsdue corresponding to this
error value. Assume that in our approximation method we want to have atusbgrror
aboute. To find theC value achieving this absolute error, take two value€ ohamely,Cy
andC,, then we have
1
C,’

1
AM = GM(Cy) + K—.

Co

AM = GM(Cy) + K

Multiplying the second equation byl and summing up the equations we get

CiCo
C,-Cy’

K = (GM(C2) - GM(Cy))

Note that, in our method we approximate the arithmetic mean by using the Equatiaj (6.1

and we assumed

AM:GWQ+Ké

Therefore, in our approximation method the absolute error is @b@LAC). Since we would

like to have an absolute error abaithe optimunC value can be calculated from

KE:8,

which implies

CiCy _ 1

Copt = (GM(C2) - Gl\/l(Cl))C2 —c,°

(6.14)

6.8.2 Romberg Extrapolation

If we usek differentC values to find an approximation to the arithmetic mean by the use of

our method and denote

GM, :=GM(C) (i=1,..Kk),
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then the Romberg extrapolation method implies the following iterative formula theider a

faster convergence to the limiting approximation value:

Chyj j+1 j
GMi = C GMn—l_GMn—l
no Cnsj _ 1 ’
Cj

To illustrate the above formula, for example use there values of C (na@glZ, andCs),

then we have

GMj =GM(C1), GM3=GM(Cy), GM; =GM(Cs),

C 2 1 C 3 2
2GM; - GM] EGM3 - GM]

GM;] = GM? =
C ’ 1 C ’
g-1 2-1
SGM2 - GMi
MLz & 1 1
G _

whereG Mé, GMS, GMg are the approximation results obtained usmgC,, C3 in the Equa-

tion (6.12), respectively. FurthermorGM} is the value of the Richardson extrapolation
obtained by usingsM} andGM3; GM? is the value of the Richardson extrapolation ob-
tained by usings M3 andGM3 and, finally, GM) is the approximation value obtained from
the Romberg extrapolation usiri@y, Cy, C3 (or, equivalently, the value of the Richardson

extrapolation obtained by usit@M; andGMz).

Note that, above we illustrated the extrapolation methods to accelerate thegmoroaof the
geometric mean obtained from our methodology to the original arithmetic meahmEaas,
in the extrapolation methods we did not deal with the approximate option priagaehtal
applications show that the error of our approximation can still be assumedabdvder ¥C
if we use option prices. Therefore, to use the extrapolation methods fappuoximation
formulas of option price, we just need to replaek! with the actual option price ar@M(C)

with the approximate option price obtained from our method.

Note also that, extrapolation methods accelerates the convergence ppoaxienation method
to the limiting value, however that does not mean they accelerate the comeerigethe cor-
rect option price since our method has a bias in some cases. However,béoncluded
that, for the (deep-) out of money options extrapolation methods speect ugoiivergance
to the right value since in such options our closed-form formula generatlgnestimate the

option price.
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Example 6.8.1. Assume an arithmetic average basket call option with fiayepending on
the prices of 30 assets in a Black-Scholes market. Under the risk-nengeaure, let the

initial stock prices and the volatility parameters of the stock price processas follows:

Si(0)= 100—i (i =1,...n),

o =02+0008 (i=1,..n).

In computations, we will take a maturity of 6 months for the option and assume kigees

rate and the strike price are= 0.06 andK = 80.

For different values of shift paramet€rwe get the following option prices from our approx-

imation formula (6.4):

Pem(10Y) = 4.6446; pew(10?) = 5.7207; pem(10®) = 6.6970; pem(10%) = 6.8775;

Pem(10°) = 6.8971; pem(10°) = 6.8990; pem(10’) = 6.8992; pem(10°) = 6.8992

With four digits there is no dierence between the valuesmfy(107) and pam(10P). There-
fore, it can be concluded that limiting price of our approximation method is gkse to

6.8992.

To test the performance of extrapolation methods we usdfdreint values of shift param-
eter: 16, 10°, 10* and 16. The results of the Richardson extrapolation for the possible
pairwise usage of thesg values are given in Table 6.8. From the table it is clearly seen that
with increasingC values we get better results. When we @se: 10* andC = 10° in the

extrapolation method, we obtain the same results with(10°) in 4 digits.

Ci=1F [ C, =100 [ C3 =100 [ C4, = 10°
C, =10 - 6.8055 6.8892 6.8982
C,=10° | 6.8055 - 6.8975 6.8991
C; =10 | 6.8892 6.8975 - 6.8992
Cs=10° | 6.8982 6.8991 6.8992 -

Table 6.8:The results of the Richardson extrapolation fgfefient pairwise usage of C values.

To illustrate the #iciency of the Romberg extrapolation we will use 3 value€ofWhen
C = 10% C = 10 andC = 10* are used we get 6.8985, however when we Qse 107,
C = 10° andC = 10° we get 6.8992 which is the result p§y(10°).

From the results it is seen that the Richardson and Romberg extrapolaticodwatitelerates
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the convergence of our approximation methods, however, there is noffegedce between

these two methods.
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CHAPTER 7

CONCLUSION

In the last decade, CVaR has received considerable attention by #eraksrs since the
introduction of its linearization procedure by Rockafeller and Uryasé&y. [4n this thesis,
we worked on some types of problems containing CVaR constraints. Firglooked at
a particular investment problem where - besides stocks and bonds - tt#omgan also
include options (or more complicated, structured products) into a portfobmp@red to the
Martinelli et al. [42] approach, we allow for intermediate payments of thariézs and are
thus faced with a re-investment problem which turns the originally one-ghenimdel into a
(special kind of a) multi-period problem. We used the linearization proeedfuRockafeller
and Uryasev for the CVaR constraint and developed a method to deal wvithudti-period

problem by solving a series of those one-period problems.

Our numerical results obtained from the solution of the problem uncosened surprising
weaknesses of the use of VAR and CVaR as a risk measure. In thepeexfdhe opportunity
to invest into options with relatively high strikes, using the option with the higtidedeads
to a higher expected return while keeping the risk constant. Howevesubijective feeling
of an increasing risk is much better matched by the use of the variance, gtitlos is a

non-coherent risk measure.

Our investment decision problem can also be solved when we have maré&iesthan the
ones assumed above. Each new security increases the number ofribevosln the problem
just by one, therefore it increases the computation time in a negligible level. rticyiar,
we can also deal with more than just two periods in our optimization problem. VYtowe
here the outer optimization loop(s) for obtaining the optimal re-investmentgyrgets more

complicated. Each additional time period will add one more outer loop, coasdgdinding
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the solution of the optimization problem will take longer.

In the next step, we focused on a type of quantile hedging problem. Alththeginvestors
have the opportunity to stay on the safe side by using a hedging or segging strategy, they
are generally unwilling to put up the initial amount of capital required fordgleeor a super-
hedge strategy. In this case, the quantile hedging might be reasonalleterinvestors.
We constructed an optimization problem with the objective of maximizing the piligab
of having a higher value for liquid assets than that for the liabilities at a peeHsed time.

In our problem, we only considered the liquid assets since we aimed to otretstrategy
strengthening the liquidity of the investor, which is also a convenient probtamtruction
for meeting the Liquidity Coverage Ratio requirement of Basel Il Acc&idce the quantile
hedging is not a perfect hedge, a non-negative probability for havirpility value higher
than the asset value exists. As the shortfall amount between the liability arsdtbeval-
ues dfects the cost of financing, we used a CVaR constraint to control thalpledeficient
amount. Under the assumption of a Black-Scholes market where the as$éte diabilities
are log-normally distributed, to calculate the probability placed in our objefiivetion we
had to deal with the problem of finding the distribution of summation of the logaabdis-
tributions. It is know that the sum of the log-normal distributions has noipéestribution.
To get ride of this problem, some log-normal sum approximation methods@ves®d in the
literature. We have introduced a new, simple afifitient method to approximate the sum of
the log-normal distributions using shifted log-normal distributions. Our meithbdsed on a
limiting approximation of the arithmetic mean by the geometric one. In our method,iftre sh
each log-normal distribution by a ficiently big positive constant and then approximate the
resulting shifted log-normal distribution by a log-normal distribution having saroments.
This method causes a sharp decrease in the relative variation inside thprites and there-
fore enables us to replace the arithmetic mean by the geometric mean whicHdesedsarm
representation. Using our approximation method we reduced our quardignigeoroblem

to a simpler optimization problem.

Our log-normal sum approximation method could also be used to price somapticdhe
Black-Scholes model. We have derived closed analytical approximatromufas for the
prices of the arithmetic average basket and Asian options. Numerical @ipptis show that
our approximation method gives very accurate results when we have saratees for the

stock prices. If variances of the stock prices are high then we still ggbreble approximate
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prices but the quality of the approximation is noffsziently good for the use of the analytical
formulas as substitute for Monte-Carlo simulation. However, using the nevwosipnation
method in a Monte-Carlo control variate approach results in very accandteery éicient
results. In this case, our control variate method is at lease comparable aithethknow
control variate methods from the literature and outperforms them whendRists a relative
variation inside the expected values of prices at maturity time. Note that, our doétlhy is
not limited to this market model. The same methodology could always be usedoptiens

on the approximating geometric averages admit a closed-form option ppiesentation.

Our closed form approximation formulas of the option price are generalipgxhe same
characteristic. They generally overestimate the price when we use Ydiedipe-money op-
tions, underestimate the price when we use (deep-) out-of-money optiongiwe better
estimates when we use at-the-money options. Therefore, as a futureistadyht be pos-
sible to define a correction term for our closed form approximation formwHasthermore,
we are planning to assess thaency of our log-normal sum approximation method and the
formulas in risk management, by the use of Gieeksand by the use of dierent problem

constructions.
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APPENDIX A

Approximate pricing of arithmetic average Asian options

A.1 Approximate pricing by using the parameters of the shifed price process

at maturity

Firstly, we shift the random variable(T) by a suficiently big positive constar to obtain
the random variabl¥(T) := S(T)+C that has a shifted log-normal distribution with expected
value E(S(T)) + C and variance/ar(S(T)). Then, we approximate this shifted log-normal
distribution by a log-normal distributiovt*(T) having the same mean and variance Wiff).

The parameters of thé*(T) are given by

[E(S(T)) +C

@ = log

JIEST) +CP + varsm) |

52 log (1 + _Var(S(T)) )
[E(S(T)) +CI?)

SinceY*(T) follows log-normal distribution it can be written in the form of a geometric Brow
nian motion as
dY*(t) = Y*(t){adt + ydB(t)},

where

B Bl o C(ORZS) 7

s a = + o
andY*(0) = S(0)+C. We then replace the final payment of the discrete fixed-strike arithmetic

average Asian option by that of discrete fixed-strike geometric averaga Aption having

strike priceK + C and payd

n 1/n
Bi = ((]—[ Y*(ti)] ~(K+0)
i=1

and end up with the approximate pricing formula (6.6).

+

il
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A.2 The price obtained by shifting the price process at eachmne point

Here, we determine the input parameters for the Black-Scholes type fobwulaing all
stock prices entering the average. For egche define a new random variab¥g having a
log-normal distribution with meafi(S(t;)) and variancé/ar(S(t;)). Then the random vari-
ableY; := X; + C has a shifted log-normal distribution and we approximate it by a log-normal
distributionY;”, having the same expected value and variance. Then, the correspgadin

rameters of this log-normal distribution are

[E(S(t:)) + CI?

VIES()) + CJ2 + Var(S(t))

Var(S(t))
o[t s o)

di = log

B

Gi®

Each log-normal distribution with parametefsafido’? as defined above corresponds to the

geometric Brownian motion

dY; (1) = Y7 (t){idt + yid B (1)},

with
_ G _A-10g0)+C) 7
Yi \/ﬁ’ | t| 2 ’
andY;(0) = S(0) + C fori = 1,..,n. Here, the Brownian motionB; shall be taken as

correlated with each other since the original option is path dependent. plecesely, the
priceS(t;) is given as the product &(t;_1) and the randomness betwdgen andt;. Therefore,
the price at timd; is also d@ected by the randomness priort{o;, or equivalently, by the
randomness contained 8(ti_1). If we denote the randomness realized in the time interval

(ti—1, t] by Z;, then the prices(t;) will be depended o#4, Zy, ..., Z; for all i.

We need to transfer the correlation structure to the new stock price priocgsgch a way that
the total éfect of the correlation structure to the option price shall be preserved inetlve
construction. We could achieve this by preserving the original covaiatracture between
the stock prices in our new environment. We thus obtain

gl

(S(0)+ C) e% inzl{((li—é)ti‘*')’i Bi(ti)}

(S(0) + C) ™7,
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whereZ has a standard normal distribution and
l n
m = 5 IZ]; aitj,

1 n n - - .
y = ﬁ J Z 7|2t| + ZZ min{i, J}’yl’yj(tl — ti_l)l/Z(tj _ tj—l)l/z-
i=1

i#]

We then replace the final payment of the discrete fixed-strike arithmetiage/éysian option
by that of a discrete fixed-strike geometric average Asian option havikg pticeK +C and

paydf

n 1/n +
By = ((]—[ Y{‘J — (K + C)]
i=1

with a suficiently big constan€, which enables us to end up with the approximate pricing

formula (6.7).

80



APPENDIX B

Richardson extrapolation with the use of relative error

In this part, we will assume that the relative error of our approximation isagral/C, that is

v ket

AM-GM(C) 1 1
M -werola)

whereK is a constant.

If we take two values of, namely,C; andC,, then we have

AM-GM(C) _ 1
AM Ct’
AM-GM(C) _ 1
AM Cy’

Multiplying the first equation by-1 and the second equation 8y/C4, and then summing up
the equations we get

C2GM(C,) — GM(Cy)
AM(C1,C;) = = c :
¢ 1

which is same as the equation obtained using absolute error.

To find theC value achieving a relative error abaytagain take two values &, namelyC;
andC,. Then,

AM-GMC) _ 1
AM C,’
AM-GM(C2) _ 1
AM Cy

Multiplying the first equation by-GM(C,)/GM(C1) and then summing up the equations we
get

GM(Cy) _ 1
K = _GMC)
T IGMC) _ 1
CiGM(C) ~ G,
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Since in our approximation method the relative error is albdayC) then theC value achiev-

ing a relative error about can be calculated from

KE =&,

which implies
GM(C) _ ¢
GM(Cy) &1
1GM(C) _ 1

C,GM(Cy) ~ G,

Copt =
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