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Supervisor,Institute of Applied Mathematics, METU

Prof. Dr. Ralf Korn
Co-supervisor,TU Kaiserslautern, Germany

Examining Committee Members:

Prof. Dr. Gerhard-Wilhelm Weber
Institute of Applied Mathematics, METU

Assoc. Prof. Dr.Ömür Uğur
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ABSTRACT

RISK MEASUREMENT, MANAGEMENT AND
OPTION PRICING VIA A NEW LOG-NORMAL SUM APPROXIMATION METHOD

Zeytun, Serkan

Ph.D., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr.̈Omür Uğur

Co-Supervisor : Prof. Dr. Ralf Korn

October 2012, 84 pages

In this thesis we mainly focused on the usage of the Conditional Value-at-Risk(CVaR) in

risk management and on the pricing of the arithmetic average basket and Asian options in

the Black-Scholes framework via a new log-normal sum approximation method. Firstly, we

worked on the linearization procedure of the CVaR proposed by Rockafellar and Uryasev. We

constructed an optimization problem with the objective of maximizing the expected return

under a CVaR constraint. Due to possible intermediate payments we assumed, we had to deal

with a re-investment problem which turned the originally one-period probleminto a multi-

period one. For solving this multi-period problem, we used the linearization procedure of

CVaR and developed an iterative scheme based on linear optimization. Our numerical results

obtained from the solution of this problem uncovered some surprising weaknesses of the use

of Value-at-Risk (VaR) and CVaR as a risk measure.

In the next step, we extended the problem by including the liabilities and the quantile hedging

to obtain a reasonable problem construction for managing the liquidity risk. Inthis problem

construction the objective of the investor was assumed to be the maximization of the proba-
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bility of liquid assets minus liabilities bigger than a threshold level, which is a type of quantile

hedging. Since the quantile hedging is not a perfect hedge, a non-zeroprobability of having

a liability value higher than the asset value exists. To control the amount of theprobable de-

ficient amount we used a CVaR constraint. In the Black-Scholes framework, the solution of

this problem necessitates to deal with the sum of the log-normal distributions. It is known that

sum of the log-normal distributions has no closed-form representation. We introduced a new,

simple and highly efficient method to approximate the sum of the log-normal distributions us-

ing shifted log-normal distributions. The method is based on a limiting approximationof the

arithmetic mean by the geometric mean. Using our new approximation method we reduced

the quantile hedging problem to a simpler optimization problem.

Our new log-normal sum approximation method could also be used to price someoptions in

the Black-Scholes model. With the help of our approximation method we derived closed-form

approximation formulas for the prices of the basket and Asian options based on the arithmetic

averages. Using our approximation methodology combined with the new analytical pricing

formulas for the arithmetic average options, we obtained a very efficient performance for

Monte Carlo pricing in a control variate setting. Our numerical results show that our control

variate method outperforms the well-known methods from the literature in some cases.

Keywords: Risk measures, linearization of conditional value-at-risk, quntile hedging, pricing

options based on arithmetic averages, variance reduction with control variates
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ÖZ

RİSK ÖLÇÜMÜ, YÖNEṪIM İ VE LOG-NORMAL DAĞILIMLARIN TOPLAMINA
YENİ BİR YAKLAŞIM METODU İLE OPṠIYON FİYATLAMA

Zeytun, Serkan

Doktora, Finansal Matematik B̈olümü

Tez Yöneticisi : Doç. Dr.Ömür Uğur

Ortak Tez Ÿoneticisi : Prof. Dr. Ralf Korn

Ekim 2012, 84 sayfa

Bu tezde temel olarak Koşullu Riske Maruz Değer (CVaR)’in risk ÿonetiminde kullanımı

ile geometrik ortalama sepet ve Asya tipi opsiyonların log-normal dağılımların toplamına

yeni bir yaklaşım metodu ile fiyatlanmasıüzerine odaklandık.̈Oncelikli olarak, Rockafeller

ve Uryasev tarafından ortaya atılan CVaR’ın doğrusallaştırılması ÿontemiüzerinde çalıştık.

Amaç fonksiyonu beklenen getiriyi maksimize etmek olan ve CVaR kısıtına sahip bir opti-

mizasyon problemi kurduk. Olası araödemelerden dolayı, orjinal hali tek dönem olan prob-

lemi çok d̈onemli probleme d̈onüşẗuren bir yeniden yatırım problemi ile uğraşmamız gerekti.

Çok d̈onemli problemi ç̈ozmek için CVaR’ın dŏgrusallaştırılma ÿontemini kullandık ve lineer

optimizasyona dayanan bir iteratif plan geliştirdik. Sayısal sonuçlarımız Riske Maruz Dĕger

(VaR) ve CVaR’ın riskölçüm aracı olarak kullanılmasının bazı şaşırtıcı zayıflıklarını ortaya

çıkardı.

Bir sonraki adımda, likidite riskini kontrol etmemize yardımcı olacak bir problemyapısı

elde etme amacıyla probleme pasifi (borçları) ve quantile hedging’i ekledik. Buproblem

yapısında amaç fonksiyonunu quantile hedging’in bir türü olan, likit varlıkların dĕgeri ile
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borçların dĕgeri arasındaki farkın bir eşik seviyesinden daha büyük olma olasılı̆gının mak-

simize edilmesi olarak kabul ettik. Quantile hedging tam koruma (perfect hedge) săglamadı̆gı

için borçların dĕgerinin varlıkların dĕgerinden b̈uyük olmasının sıfırdan farklı bir olasılığı bu-

lunmaktadır. Olası açıkların miktarını kontrol etmek için bir CVaR kısıtı kullandık. Bu prob-

lemin Black-Scholes modelinde çözümü log-normal dăgılımların toplamını ele almayı gerek-

tirmektedir. Log-normal dăgılımların toplamının kapalı-formda bir gösteriminin olmadı̆gı bil-

inmektedir. Kaydırılmış (shifted) log-normal dağılımları kullanarak log-normal dağılımların

toplamı için yeni, basit ve çok etkili bir metot geliştirdik. Metot aritmetik ortalamanın ge-

ometrik ortalamaya limit ile yaklaşımına dayanmaktadır. Yaklaşım metodumuzu kullanarak

problemimizi daha basit bir optimizasyon problemine indirgedik.

Log-normal dăgılımların toplamına yaklaşım metodumuz Black-Scholes modelinde bazı op-

siyonların fiyatlanmasında da kullanılabilmektedir. Yaklaşım metodumuzu kullanarak arit-

metik ortalama sepet ve Asya tipi opsiyonları için kapalı-form yaklaşım formülleri elde ettik.

Yaklalaşım metodolojimizi aritmetik ortalamaya dayalı opsiyonların fiyat formülleri ile bir-

likte kullanarak, kontrol dĕgişkenli Monte Carlo metodunda çok etkili bir performans elde

ettik. Sayısal sonuçlarımız kontrol değişken metodumuzun bazı durumlarda literatürdeki iyi

bilinen metotlardan daha iyi sonuç verdiğini göstermektedir.

Anahtar Kelimeler: Risk̈olçümü, koşullu riske maruz dĕgerin dŏgrusallaştırılması, quan-

tile hedging, aritmetik ortalamaya dayalı opsiyonların fiyatlandırılması, kontrol değişkeni ile

varyans azaltma
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CHAPTER 1

INTRODUCTION

In the process of measuring the risk, the question of which risk measure should be taken

into account has a critical importance. Several risk measures have beenconsidered in the

literature, however none of them has superiority in all aspects. The use of the variance as

the measure of risk has been popular since the introduction of Markowitz’sclassical mean-

variance model [40]. Variance is a measure of variability which takes both the upward and

downward price movements into consideration. This feature is the main drawback of the use

of variance as a risk measure since the upward movements are desired by investors. Contrary

to the variance, Value-at-Risk (VaR) is a risk measure which takes only the lower quantile

of the return distribution into account. VaR has a big popularity among banks and other

financial institutions. It is the amount of money that expresses the maximum expected loss

from an investment over a specific investment horizon for a given confidence level. Although

VAR is commonly used by practitioner it has some drawbacks such as lack of coherency

and convexity. In this thesis we will focus on the Conditional Value-at-Risk (CVaR) which

is a coherent and convex risk measure. More importantly, its optimization problem can be

reduced to a linear optimization problem. Due to these features, in the last years CVaR has

gained interest by the researchers.

In this thesis, firstly we will focus on the linearization procedure of the CVaRproposed by

Rockafeller and Uryasev [48]. We will construct an optimization problem aiming the maxi-

mization of the expected return under a CVaR constraint. Our problem construction will be a

dynamic version of the problem used in Martinelli et al. [42]. To solve this problem we will

use the linearization procedure of the CVaR and propose an iterative scheme based on linear

optimization. We will also compare the performance of VaR, CVaR and the variance as a risk

measure.
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In the next step, we will include liabilities to the problem, which turns the problem into a

type of asset-liability management problem. In construction of an asset-liability manage-

ment problem hedging plays a significant role. Since perfect (or super-) hedging eliminates

the opportunity of getting a profit higher than the risk-free investment together with the risk

of a loss, the quantile hedging could be reasonable for some investors. Therefore, we will

also include the quantile hedging into our problem. In our new problem, the objective of the

investor will be to maximize the probability of the (liquid) assets minus the (current)liabil-

ities bigger than a threshold level. We will only consider the liquid assets since we aim to

construct a strategy strengthening the liquidity of the investor, therefore helps to reduce the

liquidity risk of the investor. Since the quantile hedging is not a perfect hedge, a non-negative

probability exist to have liability value higher than the asset value. We will control the prob-

able deficient amount by a CVaR constraint. This problem will be solved in a Black-Scholes

framework where the assets and the liabilities are log-normally distributed. To calculate the

probability in our objective function we have to deal with the problem of the summation of

the log-normal distributions. It is well-know that sum of the log-normal distributions has no

closed-form representation. Some log-normal sum approximation methods are proposed in

the literature. We will introduce a new, simple and highly efficient method to approximate

the sum of the log-normal distributions using shifted log-normal distributions.The method is

based on a limiting approximation of the arithmetic mean by the geometric mean. Using our

approximation method we will reduce our problem to a simpler optimization problem.

Using an approximation for the sum of the log-normal distributions is a strategycommonly

utilized to price some types of options. In the Black-Scholes model we cannotfind an exact

closed form price formula for the options based on the arithmetic averages since there is no

closed form distribution representing the sum of the log-normal distributions. In the liter-

ature, these kind of options are generally priced by Monte-Carlo methods or by the use of

an approximation for the sum of the log-normal distributions. We will derive some closed-

form approximation formulas in the Black-Scholes framework for the pricesof the arithmetic

average basket and Asian options by using our method. We will also show how to use the ex-

trapolation methods to accelerate the convergence of our method. Another important feature

of our log-normal sum approximation method is that it is a good candidate for the Monte-

Carlo control variate approach. We will describe the use of our closed form formulas and

the methodology as a control variate, and conduct some numerical examplesto assess its

2



efficiency.

The outline of this thesis is as follows: In Chapter 2, we will describe some important concepts

from the risk measurement theory and define some important risk measures.The linearization

procedure of the CVaR proposed by Rockafeller and Uryasev will be introduced in Chapter 3.

In Chapter 3, we will also provide information about the possibility of different problem

constructions containing CVaR, which is proved by Krokhmal et al. [37].Our problem con-

struction which is a dynamic version of the problem used in Martinelli et al. [42] as specified

above will be introduced and solved in Chapter 4. Chapter 4 will mainly be based on Korn

and Zeytun [35]. In Chapter 5, our quantile hedging problem and its reduction to a simpler

problem will be given. Our now log-normal sum approximation and its usagein option pric-

ing will be described in Chapter 6, which will be based on Korn and Zeytun [34]. Finally, in

Chapter 7, we will summarize our works, give the conclusions and outlook tofuture studies.
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CHAPTER 2

RISK MEASURES

In investment and risk management processes, risk plays a crucial role.Investors generally

construct their portfolios by taking their risk perception and risk appetite intothe considera-

tion. A risk measure is a mapping from the set of random variables to the realnumbers. The

mathematical definition of a risk measure can be given as follows.

Definition 2.0.1. Risk Measure: LetΩ be the set of all possible states of nature (world), and

G be the set of all real-valued functions (random variables) onΩ. Then, a risk measureρ is a

mapping from the set of real-valued functions into the set of real numbers, i.e.,

ρ : G → R.

By using a risk measure we assign a single number to the risk of a portfolio andthis number

is generally used in the investment decisions.

There are different types of risk measures which are used in finance. In the processof mea-

suring the risk, the question of which risk measure should be taken into account has a critical

importance. In Markowitz’s modern portfolio theory (see Markowitz [40]), the investor’s goal

is to optimally allocate its investments between different assets by maximizing the expected

value of the portfolio subject to a selected level of risk. In this theory, Markowitz uses the

variance as the measure of the risk. Although the risk of an investor is actually to face with

a large negative return (loss) realization, variance also takes into account the upward return

realizations which are desired by the investors.

Although there are several risk measures proposed so far in the literature, none of them has

superiority in all aspects. In recent years, particular stress is laid on thedefinition and use

of the more sophisticated risk measures that have some desired properties instead of the use
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of standard risk measures such as variance and expected absolute deviation. In this chapter

firstly we will define coherent and convex risk measures and then provide information about

two well-known risk measures: Value-at-Risk and Conditional Value-at-Risk.

2.1 Coherent Risk Measures

The concept of coherent risk measure is first introduced in Artzner etal. [2] and then ex-

tended by the same authors in [3]. In these works, Artzner et al. assumedfinite probability

spaces without complete market assumption and defined 4 axioms for the coherency of the

risk measures. Later, Delbaen [16] extended the definition of Artzner etal. to general prob-

ability spaces. Here we will give the definition of Artzner et al. and providethe economic

interpretation of the axioms.

Definition 2.1.1. Coherent Risk Measure: LetΩ be the set of all possible states of nature

andG be the set of all real valued functions onΩ. Then, a risk measureρ is called coherent

if it satisfies the following axioms:

• Translation invariance: For all α ∈ R and all X∈ G, ρ(X + αr) = ρ(X) − α where r

is the return of a reference instrument (e.g. risk-free rate).

• Subadditivity: For all X,Y ∈ G, ρ(X + Y) ≤ ρ(X) + ρ(Y).

• Positive homogeneity: For all α ≥ 0 and all X∈ G, ρ(αX) = αρ(X).

• Monotonicity: For all X,Y ∈ G with X ≥ Y, ρ(X) ≤ ρ(Y) .

Translation invarianceis also called “cash invariance” and it implies that if we add a risk-free

investment with an initial amountα to the portfolio then the risk of the portfolio decreases by

α. Subadditivitymeans that the risk of a portfolio is always less than or equal to the sum of the

risks of the individual components. This axiom is in line with the common economic intuition

that diversification decreases the risk.Positive homogeneitysays that there is a positive linear

relationship between the size of the portfolio position and its risk. Positive homogeneity

axiom assumes liquidity in the market and it may not be reasonable in an illiquid market

since in such a market the risk of the portfolio might increase in a non-linear way with the

size of the position.Monotonicityaxiom means that, among two portfolios if a portfolio has

higher returns for all possible states of nature then this portfolio has a lower risk.
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2.2 Convex Risk Measures

Convex risk measure is an extension of the coherent risk measure and its notion was intro-

duced by F̈ollmer et al. [22]. As stated in the previous section, although positive homogeneity

axiom of coherent risk measures implies a liner relationship between the size of the position

and its risk, in some situations the relationship might be in a nonlinear way. For example,

when the size of the position multiplied by a large factor then an additional liquidity risk may

arise. Due to this fact, F̈ollmer et al. suggested to relax the positive homogeneity and subad-

ditivity axioms of the coherent risk measures by a weaker property of convexity, and called

the new risk measure as convex risk measure.

Definition 2.2.1. Convex Risk Measure: LetΩ be the set of all possible states of nature and

G be the set of all real valued functions onΩ. Then, a risk measureρ is calledconvex if it

satisfies the following axioms:

• Convexity: For all X,Y ∈ G and anyλ ∈ [0,1], ρ (λX + (1− λ)Y) ≤ λρ(X) + (1 −

λ)ρ(Y).

• Monotonicity: For all X,Y ∈ G with X ≥ Y, ρ(X) ≤ ρ(Y) .

• Translation invariance: If m ∈ R then for all X∈ G, ρ(X +m) = ρ(X) −m.

Convexityimplies that the risk of a diversified positionλX + (1 − λ)Y is less or equal to the

weighted average of the individual risks, or, in other words, diversification does not increase

the risk. Notice that, the convexity axiom and the subadditivity axiom which is defined for the

coherent risk measures have the same intuition. Actually, if a risk measure satisfies positive

homogeneity then convexity implies subadditivity whenλ = 1/2. Therefore, a convex risk

measure is coherent if it satisfies positive homogeneity.

Convexity is an important feature in portfolio optimization problems since convexfunctions

or risk measures have a unique global minimum and therefore easy to optimize.However,

when a risk measure is non-convex with respect to the portfolio position thenit may has many

local minima and therefore it is difficult to optimize.
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2.3 Value-at-Risk

Contrary to the risk measures like variance and expected absolute deviationwhich use both the

lower and upper quantiles of the return distribution to calculate the risk of a position, Value-at-

Risk (VaR) is a risk measure which takes only the lower quantile of the return distribution into

the account. VaR is a risk measure that aims to find an answer to the question “what is the most

an investor can lose on a specific investment?”. More expressly, it is the amount of money that

expresses the maximum expected loss from an investment over a specific investment horizon

for a given confidence level. In mathematical terms, VaR can be defined asfollows.

Definition 2.3.1. Value-at-Risk (VaR): Let Lw be the loss of an investor using the portfolio

vector w, letβ ∈ [0,1]. The probability of Lw not exceeding a thresholdα is denoted by

ψ(w, α) = P
(
Lw ≤ α

)
.

Then, theValue-at-Risk VaR(Lw, β) of the loss with a confidence level ofβ can be defined via

VaR
(
Lw, β

)
= min{α ∈ R : ψ(w, α) ≥ β}.

VaR has a big popularity among banks and other financial institutions due to its simplicity

to understand and the approval of Basel Committee on Banking Supervision for the usage of

VaR in calculations of capital requirements for banks. Although VaR is a very popular risk

measure, it has some undesirable characteristics:

VaR is generally not a coherent risk measure since it does not satisfy thesubadditivity property

(see, for example, Artzner at al. [3], Föllmer and Schied [23]). Therefore, when we use VaR

as our risk-measure diversification may increase the risk of the portfolio.VaR is coherent

only when underlying risk factors are normally distributed [48].

Another undesirable property of VaR is that it is generally difficult to optimize. When the

underlying risk factors are normally distributed then VaR can be efficiently optimized. How-

ever, when the underlying risk factors are not normally distributed, for example when we have

discrete distributions or when we use scenarios in calculations, VaR is non-convex (since it

does not satisfy the subadditivity property), non-smooth as a function ofpositions and it is

difficult to optimize since it has multiple local extremum points [56].
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2.4 Conditional Value-at-Risk

As explained in the previous section, VaR has some undesirable features such as lack of sub-

additivity and convexity. Beside these, VaR has the shortcoming that it doesnot handle/give

any information about the loses that might be suffered beyond the VaR value. An alternative

measure which handle the losses that might be encountered beyond VaR is the Conditional

Value-at-Risk (CVaR). For continuous loss distributions, the CVaR at a given confidence level

is the expected loss given that the loss is greater than (or equal to) the VaRat that level [49].

In this sense, CVaR can be defined in mathematical terms as follows.

Definition 2.4.1. Conditional Value-at-Risk (CVaR): In addition to the assumptions of the

2.3.1, let Lw have a finite expected value. Then theConditional Value-at-Risk CVaR(Lw, β)

of the loss funcion Lw with a confidence level ofβ is given as

CVaR
(
Lw, β

)
= E

(
Lw|Lw ≥ VaR

(
Lw, β

))
.

For general loss distributions, Rockafellar and Uryasev [49] definedthe upper and lower

CVaR (CVaR+ and CVaR−, respectively) as

CVaR+
(
Lw, β

)
= E

(
Lw|Lw > VaR

(
Lw, β

))

and

CVaR−
(
Lw, β

)
= E

(
Lw|Lw ≥ VaR

(
Lw, β

))
.

CVaR+ is sometimes called “mean shortfall” or “expected shortfall”, while CVaR− is also

called “tail VaR” [49]. Generally CVaR− ≤CVaR≤CVaR+, and equality holds for continuous

loss distributions. For general loss distributions, Rockafellar and Uryasev defined CVaR as

the weighted average of VaR and CVaR+ as

CVaR
(
Lw, β

)
= λVaR

(
Lw, β

)
+ (1− λ)CVaR+

(
Lw, β

)
,

where

λ =
[
ψ

(
w,VaR(Lw, β)

)
− β

]
/
[
1− β

]
.

Since CVaR is the expected value of the VaR and the losses beyond it, VaR never exceeds

CVaR. When the return-loss distribution is normal, these two measures provide the same

optimal portfolio. However, for very skewed distributions, the optimal portfolios provided by

CVaR and VaR may be quite different [37].
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CVaR is a coherent risk measure, and its coherency is first proved by Pflug [46] (see also, for

example Rockafellar and Uryasev [49], Acerbi and Tasche [1]). Inaddition to be coherent,

CVaR is a convex risk measure (see, Rockafellar and Uryasev [48]),therefore it is easier to

optimize. Furthermore, it is possible to reduce the problem of optimizing CVaR to alinear

optimization problem. The linearization procedure of CVaR is proposed by Rockafellar and

Uryasev [48], and it will be introduced in-depth in the next chapter.

For more detailed information about the risk measures described above andthe other type of

risk measures we refer the readers for example to Down [18], Ekşi [19] and Yıldırım [59].
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CHAPTER 3

OPTIMIZATION OF CVaR

In this chapter we will introduce the linearization procedure that can be used for the optimiza-

tion (minimization) of Conditional Value-at-Risk (CVaR), which was proposedby Rockafellar

and Uryasev. Rockafellar and Uryasev in [48] introduced this procedure for continuous loss

distributions and, then, in [49], they extended their study to assume general loss distributions.

In this part we will describe the methodology for the case of continuous lossdistributions.

Krokhmal et al. [37] extended the CVaR minimization approach of Rockafellar and Urya-

sev to other classes of problems with CVaR functions. Krokhmal et al. showed that the

approach of Rockafellar and Uryasev can be used for the maximization ofreward functions

(e.g., expected returns) under CVaR constraints and for the minimization of CVaR subject to

a constraint on a reward function.

Here, firstly we will describe the approach of Rockafellar and Uryasevfor continuous loss

distributions and then show how this approach can be used for other classes of problems with

CVaR functions. In this part our main resources will be [37] and [48].

Let L(w, y) be the loss of an investor (it is a random variable) using the portfolio vector w

andy ∈ Rm is the set of uncertainties which determine the loss function. As in [48], we will

assume that the probability distribution of y have a density denoted byp(y) (Rockafellar and

Uryasev indicated that an analytical expression ofp(y) is not needed and it is sufficient to

have an algorithm which generates random samples fromp(y)).

We denote the probability ofL(w, y) not exceeding a thresholdα by

ψ(w, α) = P (L(w, y) ≤ α) .

In general,ψ(w, α) is nondecreasing with respect toα and continuous from the right, but not
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necessarily from the left because of the possibility of jumps. However, asin [48], we assume

thatψ(w, α) is everywhere continuous with respect toα, that means there is no jumps.

In order to avoid confusion in terms of the appearance, inside the parenthesis of VaR and

CVaR we will use the notationLw instead ofL(w, y).

For β ∈ [0,1], the value-at-riskVaR(Lw, β) of the loss with a confidence level ofβ can be

defined via

VaR
(
Lw, β

)
= min{α ∈ R : ψ(w, α) ≥ β}. (3.1)

In addition, letL(w, y) (that is,Lw) have a finite expected value. Then its Conditional Value-

at-RiskCVaR(Lw, β) with a confidence level ofβ is given as

CVaR
(
Lw, β

)
= E

(
Lw|Lw ≥ VaR

(
Lw, β

))
. (3.2)

Rockafellar and Uryasev characterize theVaR(Lw, β) andCVaR(Lw, β) in terms of a function

Fβ onW× R whereW is the set of available portfolios. They definedFβ as

Fβ(w, α) = α + (1− β)−1
∫

y∈Rm
[L(w, y) − α]+p(y)dy,

where [t]+ is equal tot for t > 0, and 0 otherwise.

Theorem 3.0.2. ([48]) The function Fβ(w, α) is convex and continuously differentiable as a

function ofα. Theβ−CVaR associated with the portfolio vector w∈ W can be determined

form the formula

CVaR
(
Lw, β

)
= min

α∈R
Fβ(w, α).

Here, the set consisting of the values ofα for which the minimum is attained, namely

Aβ(w) = arg min
α∈R

Fβ(w, α)

is a nonempty closed bounded interval (perhaps reducing to a single point), and theβ−VaR

of the loss is given by

VaR
(
Lw, β

)
= left endpoint of Aβ(w).

In particular, we have

VaR
(
Lw, β

)
∈ arg min

α∈R
Fβ(w, α) and CVaR

(
Lw, β

)
= Fβ(w,VaR

(
Lw, β

)
).
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The proof of Theorem 3.0.2 is given in [48]. The convexity and continuously differentiability

of Fβ(w, α) is based on Shapiro and Wardi [51]. The expression of VaR and CVaR in terms of

Fβ(w, α) can be obtained by taking the derivative ofFβ(w, α) with respect toα and equating

it to zero, and rearranging the integral expression placed inFβ(w, α).

To calculateβ−CVaR by using its definition (i.e., Equation (3.2)) first we need to calculate

β−VaR. This could be complicated because of the non-convexity of VaR. Instead, by using

Theorem 3.0.2, one can calculateβ−CVaR by minimizingFβ(w, α) overα. This would be

easier since the functionFβ(w, α) is convex and continuously differentiable as a function of

α. Furthermore, in this method there is no need to calculate VaR value.

Another important advantage of this methodology is that theβ−CVaR can be minimized over

all portfolio weightsw using the following theorem:

Theorem 3.0.3. ([48]) The minimization ofβ − CVaR of the loss over all possible portfolio

vectors w∈ W is equivalent to the minimization of Fβ(w, α) over all (w, α) ∈ W × R, in the

sense that

min
w∈W

CVaR
(
Lw, β

)
= min

(w,α)∈W×R
Fβ(w, α). (3.3)

Here,(w∗, α∗) is a solution of the right-hand-side minimization problem if and only if w∗ is a

solution of the left-hand-side minimization problem andα∗ ∈ Aβ(w∗), where Aβ(w∗) is defines

as in Theorem 3.0.2. When the set Aβ(w∗) reduces to a single point then the minimization of

Fβ(w, α) produces a pair(w∗, α∗), not necessarily unique, such that w∗ minimizes the CVaR

andα∗ gives the corresponding VaR with the confidence level ofβ.

Moreover, when the loss function L(w, y) is convex with respect to w then Fβ(w, α) is convex

with respect to(w, α), and CVaR is convex with respect to w. In addition to the convexity of

L(w, y), if the constraints are such that W is a convex set then the joint minimization is an

instance of convex programming.

The proof of Theorem 3.0.3 is provided in [48]. The equality of minimums in (3.3) can be

obtained by using the expression ofCVaR(Lw, β) given in Theorem 3.0.2, and carrying out

the minimization ofFβ(w, α) with respect to (w, α) by first minimizing overα ∈ R for fixed

w and then minimizing the result overw ∈ W. For the justification of the convexity claim we

refer the interested readers to [48].

Theorem 3.0.3 says that, to find the optimumw values which minimizes the CVaR, there is
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no need to directly work with the Equation (3.2) which may be hard to do since it is defined

in terms of the VaR value. Instead, we can work withFβ(w, α) which is convex with respect

to w, and even commonly with respect to (w, α) [48].

The integral in the definition ofFβ(w, α) can be approximated in different ways. For example,

a sample from the historical data, or a sample from the distribution of the uncertainty vector

y can be used. In this case, an approximation of the form

F̃β(w, α) = α +
1

N(1− β)

N∑

i=1

[L(w, yi) − α]+,

can be used, whereN is the size of the sample.

The approximatioñFβ(w, α) is convex and piecewise linear with respect toα when we have a

linear loss functionL(w, y) with respect tow [48]. The functionF̃β(w, α) is not differentiable

with respect toα but it can be minimized by reducing the minimization problem ofF̃β(w, α)

to a linear optimization problem. The minimization ofF̃β(w, α) over X × R is equivalent to

the minimization of the linear expression

α +
1

N(1− β)

N∑

i=1

zk (3.4)

subject to linear constraints

zi ≥ 0 and L(w, yi) − α ≤ zi for i = 1, ...,N

wherezi (i = 1, ...,N) are dummy variables [48].

Note that, the quality of the approximation given above may depends on different factors, such

as the number of Monte-Carlo simulations, types of the random numbers usedfor simulations

and types of the descretization methods used for processes.

Although the above theorems are given for the case of continuous loss distribution, the reduc-

tion to linear programming does not depend on the distribution ofy and it can be applied for

different distributions.

The procedure of Rockafeller and Uryasev which is described abovedeals with the mini-

mization of CVaR. In [48], the authors required a minimum expected return, therefore they

admitted only the portfolios that can be expected to return at least that minimum return. By

considering different levels of the expected return in the setting of Rockafeller and Uryasev
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the efficient frontier can be generated. Krokhmal et. al. [37] assumed different types of prob-

lem constructions containing CVaR and they showed how the procedure ofRockafeller and

Uryasev can be used for these types of optimization problems.

In the next theorem Krokhmal et. al. [37] show the equivalence of threeoptimization prob-

lems in the sense that they produce the same efficient frontier.

Theorem 3.0.4. [37] Consider the functions R(w) andφ(w) depending on decision vector w,

and the following optimization problems:

min
w∈W

φ(w) − µR(w) subject to µ ≥ 0, (3.5)

min
w∈W

φ(w) subject to R(w) ≥ ρ, (3.6)

min
w∈W
−R(w) subject to φ(w) ≤ ε. (3.7)

If φ(w) is convex, R(w) is concave and the set W is convex, then the above three optimization

problems generate the same efficient frontier provided that the constraints R(w) ≥ ρ and

φ(w) ≤ ε have internal points.

When the loss functionL(w, y) is linear with respect tow then Theorem 3.0.3 implies that the

CVaR risk function which is given by Equation (3.2) is convex with respectto w. Furthermore,

when the reward functionR(x) is linear and the constraints are linear then the conditions of the

above theorem are satisfied for the CVaR risk function and the reward function R(x). In this

case, the functionφ(x) in Theorem 3.0.4 can be replaced by the CVaR function. Therefore,

minimization of CVaR under a constraint on a concave reward function and maximization of

a concave reward function under a CVaR constraint generate the same efficient frontier.

Remember that, in Theorem 3.0.3 Rockafeller and Uryasev showed that in theproblem (3.6)

the functionFβ(w, α) can be used instead ofCVaR(Lw, β). In the following theorems, Krokhmal

et. al. showed that the usage ofFβ(w, α) instead ofCVaR(Lw, β) is also possible for the prob-

lems (3.5) and (3.7):

Theorem 3.0.5. [37] The objective functions of the optimization problems

min
w∈W
−R(w) subject to CVaR(Lw, β) ≤ ε (3.8)

and

min
(α,w)∈R×W

−R(w) subject to Fβ(w, α) ≤ ε (3.9)
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achieve the same minimum value as the solution. If the CVaR constraint in (3.8) is active

then a pair(w∗, α∗) minimizes (3.9) if and only if w∗ minimizes (3.8) andα∗ ∈ Aβ(w∗). Fur-

thermore, when the interval Aβ(w∗) reduces to a single point then the minimization of−R(x)

produces a pair(w∗, α∗) such that w∗ minimizes the return andα∗ gives the corresponding

VaR value.

Theorem 3.0.6. [37] The objective functions of the optimization problems

min
w∈W

CVaR(Lw, β) − µR(w) subject to µ ≥ 0, (3.10)

and

min
(α,w)∈R×W

Fβ(w, α) − µR(w) subject to µ ≥ 0, (3.11)

achieve the same minimum value as the solution. A pair(w∗, α∗) minimizes (3.11) if and only

if w∗ minimizes (3.10) andα∗ ∈ Aβ(w∗). Furthermore, when the interval Aβ(w∗) reduces to a

single point then the minimization of Fβ(w, α) − µR(w) produces a pair(w∗, α∗) such that w∗

minimizes CVaR(Lw, β) − µR(w) andα∗ gives the corresponding VaR value.

The proofs of Theorems 3.0.4, 3.0.5 and 3.0.6 are based on the Kuhn-Tucker Theorem and

the detailed proofs can be found in [37].
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CHAPTER 4

SOLVING OPTIMAL INVESTMENT PROBLEMS WITH

STRUCTURED PRODUCTS UNDER CVAR CONSTRAINTS

In this chapter we will use the linearization procedure of Rockafellar and Uryasev [48] for

CVaR (as described in Chapter 3) to solve a problem which is a variant of the one used by

Martinelli et al. [42], and compare the performance of VaR, CVaR and thevariance as a risk

measure.

4.1 Introduction

As a consequence of the Solvency II regulations buying structured products offered by vari-

ous banks might be a reasonable strategy for insurance companies to hedge their liabilities.

Structured products (or, structured investment products) are pre-packed investment strate-

gies designed to meet investors’ financial needs depending on the risk tolerance. Structured

products can have very sophisticated forms (see, for example, Blundell-Wignall [9]) such as

various types of cliquet structures, interest rate derivatives linked to the equity market or even

instruments to hedge mortality and interest rate risk at the same time. However, they can also

be simpler options such as standard calls or hindsight options (see, for example, Martinelli et

al. [42]).

There are various questions institutional investors such as insurance companies have to deal

with if they are considering the use of structured products in their investmentportfolio.

Among them are:

• How to decide about which type of structured product to buy?
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• How to judge the advantage of the use of a structured product?

• How to measure the risk of the investment into a portfolio containing structured prod-

ucts?

• Is the structured product worth its price?

While the last question can only be judged in connection with a pricing routine for the struc-

tured product and while the first question is closely related to the structure of the firm’s li-

abilities, the remaining two points will be addressed in this part. We will thereforetake up

the approach given in Martinelli et al. [42], refine the problem and analyze the properties

of the corresponding optimal solutions. In particular, we will consider the (highly relevant)

aspect of using a structured product that does not exactly match the investor’s needs as it has

a maturity that lies before the investor’s investment horizon. The same situationwould turn

out if the structured product features intermediate payments. Then, the refined one-period

Martinelli et al. problem gets a dynamic aspect, the problem of optimally reinvesting the

payments resulting from the structured product.

In recent years, particular stress is laid on the use of the so-called coherent risk measures (see

Chapter 2) as a risk measure instead of the use of the variance as in the standard Markowitz

mean-variance model. We will examine the use of the Conditional Value-at-Risk(which is a

coherent risk measure) as is done in Martinelli et al. We will assume a financial market with

investment possibility in a bond, a stock and a structured product, and imposea constraint for

the conditional value at risk as is done in Martinelli et al. However, the use of option-type

securities in the portfolio will result in a peculiar behaviour of the mean-conditional-value-

at-risk optimal portfolio: Using the option with the higher strike leads to a higher expected

return while keeping the risk constant.

We will set up our investment problem in the next section which will also reviewthe necessary

theoretical background. The remaining sectons will be devoted to the numerical solution of

some concrete problems and the interpretation of the special forms of the solutions.

4.2 Optimal investment with structured products

In Martinelli et al. [42] the authors considered an investment problem where the investor can

choose a buy and hold strategy in a riskless bond, a stock and an option onthe stock. In partic-
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ular, the option is assumed to mature exactly at the investor’s investment horizon. The utility

criterion considered is the minimization of a convex combination of the portfolio CVaR and

the negative of the expected portfolio return. The authors can then make use of the property

of Conditional Value-at-Risk that allows to solve this problem via a combination of linear

optimization and Monte-Carlo simulation, a fact that has been pointed out in Rockafellar and

Uryasev [48] as described in the Chapter 3.

We will use the same notations with the previous chapters. We denote the loss ofan investor

using the portfolio vectorw by Lw and the probability ofLw not exceeding a thresholdα by

ψ(w, α) = P
(
Lw ≤ α

)
.

Then, we define the value-at-riskVaR(Lw, β) of the loss with a confidence level ofβ ∈ [0,1]

via

VaR
(
Lw, β

)
= min{α ∈ R : ψ(w, α) ≥ β}.

f we assume thatLw have a finite expected value then its Conditional Value-at-RiskCVaR(Lw, β)

with a confidence level ofβ is given a

CVaR
(
Lw, β

)
= E

(
Lw|Lw ≥ VaR

(
Lw, β

))
.

Note thatLw = −Rw, whereRw is the return associated with the portfolio vectorw, and we

define the return as

Rw =
final wealth

initial wealth
− 1.

The use of CVaR in portfolio optimization problems as a measure of allowed risk ispartic-

ularly attractive because, as formulated thus, the optimization problem can bereduced to a

linear optimization problem with linear constraints. The resulting problem can then be solved

by the standard simplex method (for the simplex method see, for example, Maros[41], Burke

[11]).

We will illustrate this by looking at a one-period problem closely related to the one in Mar-

tinelli et al. [42]. We assume that we can invest into a stock with returnRS, a bond with

returnRB, and an option (or a structured product) with maturityT and returnRO. Choosing

the investment portfoliow = (wS,wB,wO), wherewS, wB andwO represent the weights of the

stock, the bond and the option in the portfolio, respectively, then leads to a portfolio return of

Rw
T = wSRS

T + wBRB
T + wORO

T .
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To take the risk under the control, we aim the CVaR of the loss to be bounded by a constant

C. We are trying to maximize the expected return over all portfoliosw with a loss that has a

CVaR that does not exceed an upper boundC. We therefore consider the

Problem (RCVaR):

max
w∈R3

E

(
Rw

T

)
,

such that

CVaR
(
−Rw

T , β
)
≤ C,

Rw
T = wSRS

T + wBRB
T + wORO

T ,

wS + wB + wO = 1,

wS,wB,wO ≥ 0.

Besides the CVaR-constraint this is a linear optimization problem inw. However, the CVaR-

constraint seems to be highly non-linear inw. Fortunately, the linearization procedure for

CVaR which is poposed by Rockafellar and Uryasev [48], can be usedto overcome this dif-

ficulty. As we described in the Chapter 3, Rockafellar and Uryasev showed that using the

functionFβ(w, α) defined by

Fβ(w, α) = α + (1− β)−1
∫

y∈Rm
[L(w, y) − α]+p(y)dy

one can minimize the CVaR over all possible portfolio vectorsw ∈W by

min
w∈W

CVaR
(
Lw, β

)
= min

(w,α)∈W×R
Fβ(w, α).

Furthermore, Rockafellar and Uryasev proposed to approximate the integral appearing in

Fβ(w, α) by using a sample from the distribution of the uncertainty vectory. Then, the integral

can be replaced by a summation, and in this case minimization ofFβ(w, α) is equivalent to

the minimization of the linear expression

α +
1

N(1− β)

N∑

i=1

zk

subject to linear constraints

zi ≥ 0 and L(w, yi) − α ≤ zi for i = 1, ...,N

wherezi (i = 1, ...,N) are dummy variables andN is the size of the sample.
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Later, Krokhmal et al. [37] showed the equivalence of the optimization problems

min
w∈W

φ(w) subject to R(w) ≥ ρ

and

min
w∈W
−R(w) subject to φ(w) ≤ ε

in the sense that they produce the same efficient frontier for two functionsR(w) andφ(w)

depending on decision vectorw, if φ(w) is convex,R(w) is concave and setW is convex,

provided that the constraints have internal points.

In our problem,CVaR(Lw, β) is convex since the loss functionLw is linear with respevt tow

(for the proof, see Rockafellar and Uryasev [48]), the reward function (that is, the expected

return) is linear, therefore concave, and the constraints are assumed tobe linear. Therefore,

the minimization of CVaR under an expected return constraint can be replaced by the maxi-

mization of the expected return under a CVaR constraint.

Remember that, Krokhmal et al. [37] also showed the possibility of the usage of Fβ(w, α)

instead ofCVaR(Lw, β) in the optimization problems given above.

With the help of the above information, our problem ”Problem (RCVaR)” canbe converted to

a linear optimization problem. The new problem mainly consists of

• Step 1: SimulateN paths of the market prices of the stock, bond and the option.

• Step 2:Set up a suitable linear problem on those simulated paths that can be solved by

the well-known simplex method.

More precisely, we can consider the

Problem (LRCVaR):

max
w∈R3

1
N

N∑

i=1

Rw
T,i ,
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such that:

Rw
T,i = wSRS

T,i + wBRB
T,i + wORO

T,i (i = 1, ...,N),

wS + wB + wO = 1, wS,wB,wO ≥ 0,

Rw
T,i + α + zi ≥ 0, i = 1, ...,N,

α +
1

N(1− β)

N∑

i=1

zi ≤ C,

zi ≥ 0, i = 1, ...,N.

Here,β is the given confidence level for the CVaR andα is a free parameter which gives the

Value-at-Risk in the optimum solution of our problem (see Krokhmal et al. [37]). The indexi

corresponds to the values that occur in simulation run numberi. Note also that the dimension

of the problem is of the order of the number of simulated pathN. In our computations,

stability of the solutions typically is obtained forN = 20000 which means that the linear

problem is of a quite big size. However, this also shows that the number of simulation runs

determines the size of the problem as considering more investment opportunities would only

slightly increase the dimension of the problem (in fact, each further securityleads to just one

more variable, the corresponding component of the portfolio vector).

Having this problem and also the linearization method of Rockafellar and Uryasev in mind,

we now turn to our problem variant. Therefore, suppose that we have again three different in-

vestment opportunities on the financial market and suppose further that our desired investment

horizon isT, however, some of the financial instruments contain payments at timeT1 < T.

A simple example of such an instrument would be an option which expires before timeT

or a coupon bond with a coupon payment beforeT. The presence of such intermediate pay-

ments is the main extension to the Martinelli et al. [42] problem. More precisely, when

we receive these intermediate payments we are facing the problem of (re-)investing them in

the remaining investment opportunities at the intermediate time. As a consequence, the one-

period problem has turned into a special multi-period one. This however destroys the linearity

in the corresponding Rockafellar-Uryasev version. To cope with this fact, we first choose a

fixed re-investment portfoliovi (with vi being a vector of non-negative components adding up

to one) for the payments received at timeT1 from securityi and then add the payments re-

ceived fromvi at timeT to securityi. Thus, we can identify thisnew security ias a structured

product. With this interpretation, we can apply the Rockafellar-Uryasev linearization method

to the new problem of the type (LRCVaR) and find the optimal (initial) portfoliow (given the
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fixed choice ofv). An outer optimization loop for the best choice of the re-investment strategy

v completes our method.

If, for instance, we use a call option with maturityT
2 as the (very simple) structured product

then its returnRO,v
T , given a fixed re-investment strategyv = (vS, vB) wherevS andvB represent

the weights of the stock and the bond, respectively, satisfies

RO,v
T = (1+ ΠO)[vS(1+ rS) + vB(1+ rB)] − 1,

whererS andrB denote the return of the stock and the bond on the interval
[

T
2 ,T

]
, respectively,

ΠO denotes the call option’s return at maturityT
2 , i.e.,

ΠO =
(K − ST

2
)+

C(S0,K, T
2 )
− 1

with

(K − ST
2
)+ = max(0,K − ST

2
),

andC(S0,K, T
2 ) is the price of the call option with initial stock priceS0, strike priceK and

maturity timeT
2 . Our problem to solve then reads as

Problem (RCVaR-Mult(v)):

max
w∈R3

E

(
Rw,v

T

)
,

such that

Rw,v
T = wSRS

T + wBRB
T + wORO,v

T ,

wS + wB + wO = 1, wS,wB,wO ≥ 0,

RO,v
T = (1+ ΠO)[vS(1+ rS) + vB(1+ rB)] − 1,

CVaR
(
−Rw,v

T , β
)
≤ C.

Its corresponding linearized version then consists of

Problem (LRCVaR-Mult(v)):

max
w∈R3

1
N

N∑

i=1

Rw,v
T,i ,

22



such that

Rw,v
T,i = wSRS

T,i + wBRB
T,i + wORO,v

T,i (i = 1, ...,N),

RO,v
T,i = (1+ ΠO

i )[vS(1+ rS
i ) + vB(1+ rB

i )] − 1,

wS + wB + wO = 1, wS,wB,wO ≥ 0,

Rw,v
T,i + α + zi ≥ 0 (i = 1, ...,N),

α +
1

N(1− β)

N∑

i=1

zi ≤ C,

zi ≥ 0 (i = 1, ...,N).

Here again, the subscripti indicates the value of the indexed variable corresponding to simu-

lation run numberi.

Remark 4.2.1. 1. The choice of the optimal re-investment strategy v mostly depends on the

option (or, in general, the available structured product) that is the alternative to the standard

investment possibilities bond and stock. In our example above, optimal v can be determined by

a combination of a simple line search on[0,1] and the solution of a sequence of corresponding

problems (LRCVaR-Mult(v)). To see this, note that due to vS + vB = 1, v is indeed determined

by its first component.

2. We can also benefit from the linear optimization theory if we want to decide apriori about

the usefulness of including an option (or a specific structured product) intoour portfolio.

Suppose we have an optimization problem which does not contain the investment opportunity

in options and has the form of

max C′X s.t. AX≤ b,

where C is the coefficient vector of the objective function, A is the constraint matrix and b is

the right-hand-side vector of the constraints. Then, using the relationshipbetween the primal

and dual problems in the simplex method and the Strong Duality Theorem (see, for example,

Burke [11]), including an option in our portfolio improves the quality of our portfolio (i.e.,

leads to a better risk-return trade-off) if vector Y= (y1, y2, ..., yN+2)T ∈ R
N+2 of dual prices

corresponding to the above problem satisfies

y1 +

N∑

i=1

{(1+ ΠO
i )[vS(1+ rS

i ) + vB(1+ rB
i )] − 1}yi+1

<
1
N

N∑

i=1

(1+ ΠO
i )[vS(1+ rS

i ) + vB(1+ rB
i )] − 1

(4.1)
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where

ΠO
i =

(K − ST
2 ,i

)+

C(S0,K, T
2 )
− 1

and, C(S0,K, T
2 ) is the price of the call option at time0 (initial time) with strike price K and

maturity T
2 , and ST

2 ,i
is the stock price at timeT2 under scenario i. Thus, by the inequality

(4.1) we can decide whether using an option with strike price K and re-investment weights

vS, vB for the payoff of the option will be beneficial or not. Inequality (4.1) can be used to

find a sample of options with different strike prices and different re-investment weights which

improve the quality of the portfolio. However, this inequality is not enough to find the best

initial investment weights and re-investment weights for the payoff of the option.

We will illustrate both our method and the particular consequences of using options in our

portfolio in the next sections.

4.3 Results for the optimization problem with a call option

In the following, to consider a realistic financial market model, we assume stock prices fol-

lowing a Heston [26] type process

dSt

St
= µtdt+

√
VtdWS

t ,

dVt = κ (θ − Vt) dt+ σv

√
VtdWV

t ,

and interest rates are assumed to follow a Vasicek [57] process

drt = a (b− rt) dt+ σBdWB
t

with non-negative constantsκ, θ, a, b, σS, σV, σB, a volatility
√

Vt (whereVt is the vari-

ance) of the stock price return and a three-dimensional Brownian motionW =
(
WS,WV,WB

)
.

As in [42], we assume thatWB andWV are independent Brownian motions whileWS is cor-

related with the others .µt is a time-varying expected return which can be derived by using

market prices of risk and arbitrage-free market assumption, and givenby

µt + rt =
√

Vt

(
λS −

1− e−at

a
σBρλB

)
,

whereλB andλS are the riskpremiums associated with interest rate risk and stock price risk,

respectively, andρ is the correlation between the drift term and stock return (see Martinelli et

al. [42]).
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We now look at an investment problem with a 4-year investment horizon. Consider a Eu-

ropean call option which expires in 2 years and has a strike ofK. If the option ends up

in-the-money in 2 years then we allocate this payoff to the stock and bond with pre-specified

weightsv.

We performed our simulations by discretising the stock price and interest rateprocesses by the

Euler method. In the discretization, a step size of 0.004 year is used for time. We simulated

5000 paths for the stock price and the interest rate. Then, applying the simplex method to

these simulated scenarios, by changing the re-investment weightsv successively (indeed, we

performed a simple line search by changingvS), we optimized our problem for the initial

weights of the stock, bond, option and re-investment weights for the payoff of the option.

The results for different strike prices of the call option, with initial stock price equal to 100,

an upper bound ofC = 10 percent loss for the CVaR with a confidence level ofβ = 0.95

(we used similar parameters with [42] and all the parameter values used in the optimization

problem are given in Table 4.3), are given in Table 4.1.

K CVaR wS wB wO vS vB E(R) VaR

60 10 42.52 52.04 5.44 100 0 35.34 4.39
70 10 36.94 54.98 8.08 100 0 35.50 4.63
80 10 19.92 64.12 15.96 100 0 36.11 6.73
90 10 0 75.25 24.75 100 0 38.25 10
100 10 0 75.25 24.75 100 0 41.19 10
120 10 0 75.25 24.75 100 0 47.87 10
150 10 0 75.25 24.75 100 0 57.16 10
200 10 0 75.25 24.75 100 0 63.82 10

Table 4.1:Optimization results (in percentages) for different strike prices of the call option.

CVaR wS wB E(R) VaR

10 51.02 48.98 35.29 4.41

Table 4.2:Optimization results (in percentages) for the problem without option.

The results given in Table 4.1 have some peculiar consequences. First, the optimization results

show that by using a call option with high strike price we can increase the expected return of

our portfolio substantially. When the strike price of the option is increased then in the optimal

portfolio the weight of the stock in the initial investment decreases and the weights of the
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Investment horizon (T) 4 years
Size of time steps in the discretization 0.004 year
Number of scenarios (N) 5000
Upper bound for CVaR (C) 10 percent (loss)
Confidence level for CVaR (β) 95 percent
Initial stock price 100
Initial variance of the stock price 0.045
Speed of mean-reversion of the variance (κ) 5
Long-run mean of the variance (θ) 0.045
Volatility of the variance (σV) 0.48
Initial interest rate 0.04
Speed of mean-reversion of the interest rate (a) 0.15
Long-run mean of the interest rate (b) 0.04
Volatility of the interest rate (σB) 0.015
Correlation betweenWS andWV -0.77
Correlation betweenWS andWB -0.25
Correlation betweenWV andWB 0
Market price of risk of the stock (λS) 0.343
Market price of risk of the bond (λB) -0.207

Table 4.3:Parameter values that are used in the optimization problem.

bond and option increase. Over a specific level of the strike price, the optimal weight of the

stock always takes the value 0 and the weights of the bond and option remain constant. Also,

over this level of the strike price, CVaR and VaR attain the same value. The only difference

is seen in the expected returns. When we use a call option with a higher strikeprice then our

expected return is also higher.

In the first instance, these results look very surprising. In particular, by using different strike

prices for the call option we can obtain different portfolios with the same risk level (if we

take CVaR or VaR as our risk measure) but different expected returns. This counterintuitive

result calls for an explanation. Indeed, when a certain level of the strikeprice of the call is

exceeded then losses from call investment which are relevant for the VaR or CVaR calculation

are always caused when the option ends up out of the money, i.e., when thecall investment

leads to the total loss. This explains the fact that when initially the only risky investment

is the call investment (which is the case in our example in Table 4.1 if the strikeK of the

call is at least 90) VaR and CVaR coincide. Further, the relative return of the call increases

with increasing strike (in the Heston setting we can only show this numerically, in the Black-

Scholes case this can even be proved). As, however, in our example therisk measured in terms
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Figure 4.1: Efficient frontiers with and without call option based structured product where
K = 120.

of CVaR stays constant above (a value slightly smaller than)K = 90, there is an increase in

the relative return of the total portfolio although the CVaR of the return remains constant.

Thus, this behaviour of the risk-return characteristics does not explainthe subjective fact that

investing in calls with a higher strike price is more risky. If, however, insteadof CVaR we use

the traditional mean-variance description, then the optimal portfolios of Table4.1 are judged

more and more risky with increasing call strike (which indeed is what we expected). As a

consequence, if we use the classical Markowitz mean-variance method, then for a constant

variance bound S (say, S=2342 which corresponds to the mean-CVaR-portfolio in the case of

K = 90, see Table 4.4) optimal portfolios have to involve initial stock investment forstrikes

K > 90.

K 60 70 80 90 100 120 150 200

E(R) 35.34 35.50 36.11 38.25 41.19 47.87 57.16 63.82
CVaR 10 10 10 10 10 10 10 10
VaR 4.39 4.63 6.73 10 10 10 10 10

Variance 979 1032 1306 2342 3762 10185 42705 336789

Table 4.4:The values (in percentages) of the three risk measures for the portfolios with dif-
ferent strike price of the call option.

Another view on this remarkable result can be obtained via Figure 4.2. Here, we present
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the return of a fixed amount of money invested in options (in our case,wO for one unit of

money) with different strikes. Obviously, the higher the strike, the cheaper the option price.

Consequently, for the same amount of money, more options with higher strike can be bought

compared to one with a lower strike which results in the different forms of the final payoffs.

Figure 4.2: Percentage return of an investment in call options with different strike prices.

Here, for all considered values of the strike price of the call option we willin the worst case

lose all the invested money, so all graphs start from the same point. Depending on the strike

price of the call option, the return starts to increase at different levels of the stock price. An

investment in a call option with a higher strike price has a higher slope of return, because the

price of the call is lower with a higher strike price and this implies the possibility of buying

more options. Suppose the probability of obtaining a final stock price underK1 is equal to

1 − β. Then, with this probability, the options will expire out-of-money and we will lose all

the invested money. This explains why in our results we obtained identical values for both

VaR and CVaR above a certain level of the strike price. Therefore, with astrike price above

K1, all investments have the same level of VaR and CVaR (and, thus, are assigned the same

risk when VaR or CVaR are taken as our risk measures), but different levels of expected return

since the slopes of the increase in total return are different for different strike prices. However,

if we take the variance as our risk measure then all investments have different levels of risk

since the variations (so, the variances) are different.

Another result, which in the first instance looks surprising, is the re-investment weights for
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the payoff of the option. Optimization results always favor full re-investment in the stock.

This can easily be explained in the cases where VaR and CVaR coincide. Here, the only risk

that is measured is the one of the call ending out of the money, i.e. the loss of all the money.

Thus, using the stock after the option has ended up in the money adds no riskthat enters

the CVaR computation. However, reinvesting everything in the stock is the re-investment

strategy that yields the highest expected return. In the case where VaR and CVaR still differ,

the explanation is not as easy but can still be given: Since the option is a call,we receive a

payoff if the stock price at timeT2 is above the strike price. In this case, we have got rid of the

risk of losing all the invested money in the option. Moreover, the conditional probability of

losing more than a pre-specified level from the stock investment has decreased substantially

as the stock has already done well untilT
2 . Thus, as the risk of losing from call investment is

highly correlated with the risk of losing from stock investment, the full stock re-investment

strategy does not add to the risk already taken, but it increases the return. Therefore, we

always optimally reinvest all call payments in the stock.

We can also obtain the results of the optimization problem when we replace the call option

with a put option. In this case the optimal re-investment strategy always consists of investing

the whole option payoff into the bond. This can be explained by the negative relationship

between the return of a stock and a put option written on that stock.

The two extreme re-investment strategies in the cases of a call option (full re-investment in

the stock) and a put option (full re-investment in the bond) which are mentioned above make

it worth asking what would happen if we used a combination of a call option and a put option

as the structured product.

4.4 Results for the optimization problem when a combined call-plus-put option

is traded

Assume we have the opportunity of investing into a call and a put option with the same

strike price (the assumption of the same strike price can be relaxed). Applying the same

methodology and using the same parameter values as in the case of the call option above, we

get the results outlined in Table 4.5 for the case of this call-plus-put option.

The results show that the optimal re-investment weights of the option payoffs change with
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K CVaR wS wB wO vS vB E(R) VaR

80 10 26.64 57.85 15.51 100 0 36.72 6.19
100 10 41.99 48.49 9.53 100 0 36.79 5.17
105 10 45.58 46.46 7.96 100 0 36.57 4.96

105.7 10 46.65 45.63 7.72 86 14 36.54 4.96
106 10 49.77 43.08 7.15 23 77 36.53 5.04
110 10 52.25 40.82 6.93 0 100 36.55 4.80
130 10 57.10 36.41 6.49 0 100 36.39 4.80

Table 4.5:Optimization results for different strike prices of the call-plus-put option.

different strike prices.

Figure 4.3: Weight of the stock in the re-investment of the call-plus-put option payoff for
different strike prices.

Figure 4.3 shows the change of the re-investment weight in the stock for different strike prices.

Up to a specific level of the strike price we obtain full re-investment in the stock. After this

specific level of the strike price, when we increase the strike price, the weight of the stock

starts to decrease and above a certain level of the strike, a full bond re-investment will be

optimal. We can explain this result by combining the explanations for the call option and put

option we have given above. When the strike price of the call-plus-put option is sufficiently

low the put option will be cheap relative to the call option. If we buy the combined call-plus-

put option with this strike price, most of the premium we have to pay will be paid for the call

option part of the strategy. Also, for the call option the probability of expiring in the money is

higher than the put option in the case of low strike price. The call option will effect the total

return much more than the put option does since the weight of the call option in the investment
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and the probability of getting a payoff from the call option are higher. Thus, the investment

of the call-plus-put option will behave like a call option. Therefore, in this case we get a

pure stock re-investment, as in the case of the call option example above. Likewise, if the

strike price of the call-plus-put option is sufficiently high, the call-plus-put option will behave

like a put option. Therefore, we get a pure bond re-investment, as in the put option example

above. In between these two values of the strike price none of the options dominate the

other sufficiently, and therefore we end up with a mixed re-investment strategy with weights

depending on the level of the strike price.

4.5 Summary and Concluding Remarks

In this chapter we have looked at a particular investment problem where -besides stocks and

bonds- the investor can also include options (or more complicated, structured products) into

a portfolio. Compared to the Martinelli et al. [42] approach, we allow for intermediate pay-

ments of the securities and are thus faced with a re-investment problem whichturns the orig-

inally one-period model into a (special kind of a) multi-period problem. We developed a

method to deal with this problem by solving a series of those one-period problems.

Our numerical results uncovered some surprising weaknesses of the use of VaR and CVaR

as a risk measure. In the presence of the opportunity to invest into options with relatively

high strikes, using the option with the higher strike leads to a higher expected return while

keeping the risk constant. However, our subjective feeling of an increasing risk is much better

matched by the use of the variance, although this is a non-coherent risk measure.

Our investment decision problem can also be solved when we have more securities than above.

They can also have multiple internal payments. One can think of coupon bonds or exotic

options. In particular, we can also deal with more than just two periods in ouroptimization

problem. However, here the outer optimization loop(s) for obtaining the optimalre-investment

strategy gets more complicated. Each additional time period will add one more outer loop,

consequently finding the solution of the optimization problem will take longer.
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CHAPTER 5

QUANTILE HEDGING

IN THE BLACK-SCHOLES FRAMEWORK

In the previous chapter we worked on an asset management problem with aCVaR constraint.

In this part, we will improve our problem by including liabilities to our problem. Furthermore,

we will consider a quantile hedging problem to obtain a reasonable problem construction from

the point of view of theBasel Committee on Banking Supervision’s proposal on liquidity risk

management.

5.1 Introduction

In a complete market every contingent claim can be hedged. In such a market there always

exists a self-financing strategy that replicates the contingent claim (this could also be referred

as “perfect hedge”). In other words, for every contingent claimH, we could find a self-

financing strategyϕ such that the value of this strategy at maturity timeT is equal to the

contingent claim, that is,

VT(ϕ) = H

for each state of the world, whereVT denotes the value at timeT. The cost of the replicating

strategy defines the price of the claim. This price can be computed as the expected value of

the claim under a unique risk neutral measure (or, equivalent martingale measure).

In an incomplete market every contingent claim can not be hedged. In this market the risk

neutral measure is not unique, therefore we can find different prices for a contingent claim by

using different risk neutral measures. Although in an incomplete market a perfect hedge is

not possible, the investors can stay on the safe side by using a super-hedging strategy. For a
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contingent claimH, a super-hedging strategy is a self-financing strategyϕ that satisfies

P

(
VT(ϕ) = V0 +

∫ T

0
ϕdS ≥ H

)
= 1

whereS is the set of the available instruments in the market. The cost of the cheapest super-

hedging strategy is called the cost of the super-hedging and it is given by

Π(H) = in f

{
V0;∃ϕ s.t. P

(
VT(ϕ) = V0 +

∫ T

0
ϕdS ≥ H

)
= 1,

}

wherein f denotes the infimum [14]. The cost of a super-hedging strategy is generally too

high from a practical point of view.

Although the investors have the opportunity to stay on the safe side by using ahedging or

super-hedging strategy, they are generally unwilling to put up the initial amount of capital

required for a hedge or a super-hedge. Furthermore, the investors may be unwilling to use a

hedging or super-hedging strategy since these strategies take away the opportunity of making

a profit together with the risk of a loss. Therefore, the investors may prefer the use of quantile

hedging instead of a perfect or a super hedge. Quantile hedging is a partial hedge which

can be achieved with a smaller amount of capital. This type of hedge generallyaims to

maximize the probability of success of hedge under a given initial capital. In mathematical

terms, its aim is to find an admissible strategy (V0, ϕ) such thatP
(
VT(ϕ) = V0 +

∫ T

0
ϕdS ≥ H

)

is maximum under the constraintV0 ≤ Ṽ0, for a given initialṼ0. This type of problem was

used in many studies, and its solution can be found, for example, in Spivak and Cvitanic [54]

in the context of the classical Black-Scholes model (by using a duality approach familiar from

utility maximization literature), in F̈ollmer and Leukert [20] for the general complete and

incomplete cases (with the help of the Neyman-Pearson lemma), in Klusik and Palmowski

[31] and in the references provided there for the problem adapted to theinsurance setting.

Another commonly used problem construction for the quantile hedging is the minimization

of the cost of the hedging strategy for a given level of shortfall probability, i.e., finding the

minimum value ofV0 such that there exists an admissible strategy (V0, ϕ) with

P

(
VT(ϕ) = V0 +

∫ T

0
ϕdS ≥ H

)
≥ 1− ǫ,

whereǫ ∈ (0,1) is a pre-specified shortfall probability. The solution of this kind of problems

can be found, for example, in Föllmer and Leukert [20].
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In the literature, some works construct the quantile hedging problem by using the “success

ratio” for the hedge, where the success ration can be defined as

ξ(V0,H) = 1{VT≥H} +
VT

H
1{VT<H},

and1 is the indicator function. This kind of problem construction and its solution canbe

found, for example, in F̈ollmer and Leukert [20, 21] and in Klusik and Palmowski [31].

Quantile hedging does not take into the account the size of the shortfall justas the value-at-

risk. Here, we will use a problem construction which also aims to control the shortfall.

5.2 A Quantile Hedging Problem in the Black-Scholes Framework

5.2.1 Description of the Problem

In classical approaches, default occur when the value of a firm (or,assets) is less than the

value of its liabilities. For example, see Merton [43], where the default is assumed to occur

only at time of liability payment, or Black and Cox [7], where the intermediate default (prior

to the liability payment) is also allowed. Here, we will not exactly assume the default, instead

assume the ability of the firm to pay its liabilities using its liquid assets. Assuming the liquid

assets is important in the following sense: At the maturity time of a liability, if the firm has

no enough cash to pay the liability then it will borrow money from the market, or,if the

borrowing is not desirable, it will sell some liquid assets. Selling un-liquid assets will not be

desirable for the firm since it is hard to sell these assets in a short time with theirintrinsic

value.

More importantly, the liquidity has been emphasized by theBasel Committee on Banking Su-

pervision. In 2008, the Committee published the documentPrinciples for Sound Liquidity

Risk Management and Supervision[4] as the foundation of its liquidity framework. This doc-

ument provide detailed guidance on the risk management and supervision offunding liquidity

risk. Later, in the documentsBasel III: International framework for liquidity risk measure-

ment, standards and monitoring[5] and Basel III: A global regulatory framework for more

resilient banks and banking systems[6] the Committee proposed new standards for the liq-

uidity. In these documents, the Committee developed the Liquidity Coverage Ratio toachieve

the objective of promoting short-term resilience of a bank’s liquidity risk profile by ensuring
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that it has sufficient high-quality liquid assets to survive a significant stress scenario lasting

for one month [5]. The Committee described the importance of the liquidity in [6] bythe

following words:

“During the early liquidity phase of the financial crisis, many banks despiteadequate capital

levels still experienced difficulties because they did not manage their liquidity in a prudent

manner. The crisis again drove home the importance of liquidity to the proper functioning of

financial markets and the banking sector.”

Assume an investor having assets and liabilities. At timet, let the value of the investor’s

liquid assets beX(t), and let the value of the liabilities of the investor beL(t). Due to the

facts which we mentioned above, the investor may aims to have a liquid asset value larger

than the liability value at any time of liability payment. However, since the financial markets

generally are not complete a perfect hedge against the liability payment may not be possible,

and/or a super-hedging strategy may not be desirable due to the reasons outlined above. In

this case, trying to maximize the probabilityP(X(t) ≥ L(t)) seems to be reasonable for the

investor. Therefore, for a pre-specified cost, the investor may aim to construct a strategy with

the objective

max P(X(T) ≥ L(T)), (5.1)

whereT is the time of the liability payment.

Remember that, this quantile hedging strategy does not take into account the size of the short-

fall (that is, L(T) − X(T)) since it only deals with the probability of success. However, the

amount of the shortfall might be important since, at maturity time, ifX(T) < L(T) then the

investor will barrow money from the market or sell some un-liquid assets to pay his liabilities.

If the amount of the shortfall is large then in the case of borrowing the cost(the yield) could

be higher, and in the case of selling an un-liquid asset the loss due to un-liquidity could be

high. Since, both of these cases are undesirable for the investor, the investor could aim to take

the level of the shortfall amount under the control. In this case, a constraint of Conditional

Value-at-Risk

CVaR(L(T) − X(T), β) ≤ c

could be appropriate for the investor, whereβ is the confidence level. By using such a CVaR

constraint, the investor could get ride of the drawback of the quantile hedging, which is related

to the shortfall amount.
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If the investor also aims to control the expected value of the surplus (i.e.,X(T) − L(T)), then

he could have a constraint of the type

E(X(T) − L(T)) ≥ ε

whereε is a constant (it may also be taken as depended onX(T) or L(T)).

Under the above conditions, the problem of the investor can be formalized as follows:

max P(X(T) ≥ L(T))

subject to

E(X(T) − L(T)) ≥ ε,

CVaR(L(T) − X(T)) ≤ c.

By using the linearization procedure of Rackafeller and Uryasev described in Chapter 3, the

above problem can be approximated by the following problem:

max P(X(T) ≥ L(T))

such that

1
N

N∑

j=1

(X j(T) − L j(T)) ≥ ε,

X j(T) − L j(T) + α + zj ≥ 0 ( j = 1, ...,N),

α +
1

N(1− β)

N∑

j=1

zj ≤ c,

zj ≥ 0 ( j = 1, ...,N).

Note that, this problem construction is important since it both eliminates the drawback of

the quantile hedging as mentioned above and may help to achieve the proposalof the Basel

Committee on liquidity.

5.2.2 Case of Geometric Brownian Motion for Asset and Liability Processes

In this part we assume a Black-Scholes type market for asset and liability processes. As-

sume we haven assetsS1(t), S2(t), ..., Sn(t), and their prices evolve according to geometric
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Brownian motions

dSi(t) = Si(t){µidt+ σidWi(t)}, Si(0) = si , i = 1, ...,n

where the constantsµi andσi (i = 1, ...,n) are the drift and volatility terms, respectively. For

simplicity, the Brownian motionsWi (i = 1, ...,n) are assumed to be uncorrelated, however

this assumption can be relaxed to include the correlation structure to the problem and in this

case the methodology that will be used in Section A.2 can be applied here.

We also assume that liability process is also follows the geometric Brownian motion

dL(t) = L(t){bdt+ ηdB(t)}, L(0) = l0,

where the constantb is drift term,η is the volatility term andB is a Brownian motion.

Modeling asset processes as a geometric Brownian motion is very common in thefinance

literature while it is not common in modeling of liabilities. However, there are studiesin the

literature that are modeling liabilities using geometric Brownian motion (see, for example,

Chiu and Li[13], Josa-Fombellida and Rincon-Zapatero [28], Gerber and Shiu [24]).

Since the asset processes follow geometric Brownian motion then stock priceequations have

analytic solutions as

Si(t) = siexp


µi −

σ2
i

2

 t + σiWt

 (i = 1, ...,n).

wheresi is the initial value of the process. In this case, stock prices log-normally distributed

with expected value

E(Si(t)) = sie
µi t (5.2)

and variance

Var(Si(t)) = s2
i e2µi t

(
eσ

2
i t − 1

)
(5.3)

for i = 1, ...,n.

If the investor construct his investment portfolio by using the assetsSi (i = 1, ...,n), then the

value of the investment at timet, which will be denoted here byXt, can be written as

X(t) =
n∑

i=1

wiSi(t)

wherewi (i = 1, ...,n) are the investment weights of the stocks and they satisfy
∑n

i=1 wi = 1.
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Since we assumed log-normal distributions for the stock prices thenX(t) can be interpreted

as the sum of log-normal distributions. The distribution of sum of log-normaldistributions

is not known. In the literature, the distribution of the sum of log-normal distributions is

generally approximated by a log-normal distribution having same moments as the sum, or

the multiplication of the log-normal distributions, which is again a log-normal distribution, is

used to find a lower bound for the sum. To calculate the probability included in our objective

function we will use our log-normal sum approximation method introduced in Chapter 6. For

the details of our log-normal sum approximation we refer the reader to the Chapter 6 of this

thesis.

Our aim is to replace the arithmetic mean with the geometric mean by using the information

given in Theorem 6.2.1. To get an approximation between the arithmetic mean and the ge-

ometric mean of the price processes, firstly we shift eachSi by a sufficiently large positive

constantC. In this case,

S̃i := Si +C (i = 1, ...,n),

has a shifted log-normal distribution with expectationE(Si)+C and varianceVar(Si), where

E(Si) andVar(Si) are given by the Equations (5.2) and (5.3), respectively. Now, if we ap-

proximate each shifted log-normal distributionS̃i by a log-normal distribution̂Si having same

expected value and variance with the shifted log-normal distribution, then the corresponding

parameters of thêSi are

µ̂i = log


(E(Si) +C)2

√
(E(Si) +C)2 + Var(Si)

 ,

(σ̂i)
2 = log

(
1+

Var(Si)
(E(Si) +C)2

)
.

Denote

S∗i = wiŜi (i = 1, ...,n).

Then, eachS∗i has a log-normal distribution with parameters

µ∗i = log(wi) + µ̂i ,

(σ∗i )
2 = (σ̂i)

2.

From Theorem 6.2.1 we know that the arithmetic mean and the geometric mean ofS∗i for

i = 1, ...,n are close to each other. Using this fact and knowing that the multiplication of

log-normal distribution has a known distribution (which is again a log-normal distribution) it
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will be beneficial to work with the geometric mean instead of to arithmetic mean. Therefore,

in our calculations of the probability contained in the objective function, we willreplace the

arithmetic mean by the geometric mean to find an approximation to the arithmetic mean of

stock prices.

Since the corresponding log-normal distribution forS∗i has parametersµ∗i and (σ∗i )
2 for i =

1, ...,n, and since the product of the log-normal distributions has a log-normal distribution,

the product of theS∗i ’s can be approximated with a log-normal distribution having parameters

as
n∏

i=1

S∗i ∼ LogN


n∑

i=1

µ∗i ,
n∑

i=1

(σ∗i )
2

 .

Using the properties of the log-normal distributions it can be easily concluded that

n


n∏

i=1

S∗i


1/n

∼ LogN

log(n)+
1
n

n∑

i=1

µ∗i ,
1
n2

n∑

i=1

(σ∗i )
2

 .

We also know that, for a sufficiently large positive constantC, the arithmetic mean and the

geometric mean of the price processesS∗i are approximately equal to each other, that is

1
n

∑n
i=1 S∗i �

(∏n
i=1 S∗i

)1/n
. Therefore, for the summation of theS∗i for i = 1, ...,n we find

the approximation

n∑

i=1

S∗i ∼ LogN

log(n) +
1
n

n∑

i=1

µ∗i ,
1
n2

n∑

i=1

(σ∗i )
2

 .

Then, the distribution of the log-returns for the approximation of the asset portfolio

X∗(t) :=
n∑

i=1

S∗i (t) =
n∑

i=1

wiŜi(t) �
n∑

i=1

wi(Si +C) = X(t) +C

is a normal distribution with

RX∗(t) := log

(
X∗(t)
X∗(0)

)
∼ N

log

(
n

X∗(0)

)
+

1
n

n∑

i=1

µ∗i ,
1
n2

n∑

i=1

(σ∗i )
2

 .

whereX∗(0) = X(0)+C.

We will use the same methodology for the liability process. If we denoteL∗(t) := L(t) + C,

then

E(L∗(t)) = l0ebt +C, Var(L∗(t)) = l20e2bt
(
eη

2t − 1
)
.

L∗ has a shifted log-normal distribution and we will approximate it by a log-normaldis-

tribution having same expected value and variance. The parameters of the corresponding
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log-normal distribution with expected valueE(L∗(t)) andVar(L∗(t)) are

b∗ = log


(E(L∗(t)))2

√
(E(L∗(t)))2 + Var(L∗(t))

 ,

(η∗)2 = log

(
1+

Var(L∗(t))
(E(L∗(t)))2

)
.

If we denoteRL∗(t) := log
(

L∗(t)
L∗(0)

)
, then it has a normal distribution with

RL∗(t) ∼ N
(
b∗ − log(L∗(0)), (η∗)2

)
,

whereL∗(0) = L(0)+C.

Therefore, it can be concluded that

RL∗(t) − RX∗(t) ∼ N

b∗ − log

(
n

L∗(0)
X∗(0)

)
− 1

n

n∑

i=1

µ∗i , (η∗)2 +
1
n2

n∑

i=1

(σ∗i )
2

 . (5.4)

Note that, we can write our objective as

max P(L(t) − X(t) ≤ 0).

The probabilityP(L(t) − X(t) ≤ 0) can be written in the form of (log-)returns ofX(t) andL(t)

when the initial values are known. Here we will assume the initial valuesX(0) andL(0) are

equal, that means, the investor construct a hedge portfolio with a cost equal to the initial value

of liabilities (this assumption is not mandatory since we can write the objective function in

terms of the returns for each values ofX(0) andL(0)). In this case, the objective of

max P(L(t) − X(t) ≤ 0)

is equivalent to

max P(RL(t) − RX(t) ≤ 0).

SinceX(0) andL(0) are equal thenX∗(0) andL∗(0) are equal whereX∗(0) = X(0) + C and

L∗(0) = L(0)+C. Then, it can be concluded that we can use the objective

max P(RL∗(t) − RX∗(t) ≤ 0) (5.5)

instead of the objective

max P(RL(t) − RX(t) ≤ 0).

Therefore, the problem (5.5) can be used (as an approximation) to find an optimum solution

for our original problem (5.1). SinceX∗(0) = L∗(0)) then by using (5.4) we get

P(RL∗(t) − RX∗(t) ≤ 0) =
1
2


1+ er f


−b∗ + log(n) + 1

n

∑n
i=1 µ

∗
i√

2
[
(η∗)2 + 1

n2

∑n
i=1(σ∗i )

2
]




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whereer f(u) represent the error function ofu and it is given by

er f(u) =
2
√
π

∫ u

0
e−t2dt.

Since the error function is a strictly increasing function then the problem of

max P(RL∗(t) − RX∗(t) ≤ 0)

is equivalent to the problem of

min
b∗ − log(n) − 1

n

∑n
i=1 µ

∗
i√

(η∗)2 + 1
n2

∑n
i=1(σ∗i )

2
.

Therefore, our problem can be written in the form of

min
w,α,z

b∗ − log(n) − 1
n

∑n
i=1 µ

∗
i√

(η∗)2 + 1
n2

∑n
i=1(σ∗i )

2

such that

1
N

N∑

j=1

(Rj
X(t) − Rj

L(t)) ≥ ε,

Rj
X(t) − Rj

L(t) + α + zj ≥ 0 ( j = 1, ...,N),

α +
1

N(1− β)

N∑

j=1

zj ≤ c,

zj ≥ 0 ( j = 1, ...,N).

As we mentioned before, the above problem construction could be used to manage the liq-

uidity risk and therefore, it is reasonable from the point of view of theBasel Committee on

Banking Supervision’s proposal on liquidity risk management. Moreover, one could obtain

more conservative or speculative problem constructions by using a higher or lower value for

the ratioX(T)/L(T), or, by allowing a higher or lower CVaR value on the probable shortfall

amount.

Although our problem reduction with the help of our log-normal sum approximation method

and the linearization procedure of CVaR leads to a simpler problem with linear constraints,

the solution of the problem is still not so easy since the reduced objective function is not linear.

Furthermore, we may need to use more developed programming languages since the dimen-

sion of the problem is about the number of the simulated paths, which should behigh to obtain

good approximation values. Nevertheless, numerical examples show that our log-normal sum

approximation method performs good in the above problem when we are working around the

41



mean (or median) of the shortfall amount, while the approximation is getting worsein the

tails. Actually, the results are in line with the ones we obtain in the next chapter, where we

use our log-normal sum approximation method to price options on geometric averages. How-

ever, in option pricing we would have the opportunity to use our methodology and formulas

as a control variate to obtain excellent approximation values.
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CHAPTER 6

PRICING OPTIONS BASED ON ARITHMETIC AVERAGES

BY USING A NEW LOG-NORMAL SUM APPROXIMATION

6.1 Introduction

The problem of pricing options on an arithmetic mean (average) of stock prices cannot be

solved analytically, neither for basket options (where the final payoff is based on the arithmetic

mean over a basket of prices from different stocks) nor for Asian options (where the mean is

built over the evolution in time of one stock), just to name the two most popular such options.

The main reason for this difficulty is that exponentials of families of random variables which

are stable under convolution are typically not stable under convolution themselves. This can

easily be seen in the case of a basket option in the multi-asset Black-Scholesmodel: While the

arithmetic mean of the exponents of the different stock prices is again normally distributed,

the arithmetic mean of the stock prices has no simple distribution. It is in particular not log-

normally distributed. This fact prevents us to find a closed-form solution for the price of the

options based on the arithmetic averages.

In the literature, there are numerous studies aiming to price such options and different types of

methods are proposed by the authors. One way to price such options is to use the Monte-Carlo

methods. Especially when the variance reduction methods, such as controlvariate methods

and antithetic variate methods (for theoretical background and other variance reduction meth-

ods see, for example, Ŭgur [55]), are used one can obtain very effective results from the

Monte-Carlo method. However, this method is time consuming and in risk management it is

difficult to work with since, for example, some risk measures are non-convex when we use

scenarios, the sensitivity analysis is more difficult when we use Monte-Carlo, etc.. Therefore,
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the focus in the literature is on finding closed-form approximation formulas and bounds for

the option price.

The product of log-normally distributed stock prices is however log-normally distributed.

Thus, as a consequence, the geometric mean of asset prices in the Black-Scholes model is

again log-normally distributed. This allows a Black-Scholes type closed analytical pricing

formula for a basket option which is based on the geometric mean. On top of this, the geo-

metric mean of a set of numbers is always bounded by the arithmetic mean of those numbers.

Kemna and Vorst [30] used this fact for two different types of approximation:

• By replacing the arithmetic mean in a basket (or an Asian) option by a geometric one,

one can obtain a lower bound for the actual price of a basket (resp. anAsian) option.

• As the approximation of the arithmetic mean by the geometric mean is not really good

if the numbers entering the means are not close to each other a mean correction is used.

In the case of a basket call this amounts to using a modified strike priceK̃ such that we

have

E


1
n

n∑

i=1

Si (T) − K

 = E




n∏

i=1

Si (T)


1/n

− K̃

 ,

whereE denotes the expectation,K is the original strike price,Si(T) is the price ofi−th stock

at timeT andn is the number of stocks deriving the payoff of the option. In both cases the

approximation price can be computed immediately via a suitable variant of the Black-Scholes

formula. However, in the first case the lower bound might be a poor one, while in the second

case the resulting approximating price is not necessarily a lower bound at all.

Other analytical approximation methods are mainly based on the approximation ofthe sum

of the log-normal distributions with a simple distribution by matching some moments. For

instance, Levy [38] approximates the sum of the log-normal distributions bya log-normal dis-

tribution, Milevsky and Posner [44] approximate by a reciprocal gamma distribution, Posner

and Milevsky [47] approximate by a shifted log-normal distribution and Zhouand Wang [60]

approximate by some log-extended-skew-normal distribution. Besides finding closed-form

approximation formulas, finding analytical lower and upper bounds is also apopular way to

price arithmetic average based options. Such kind of methods can be found, for example, in

Curran [15], Rogers and Shi [50], Kaas et al. [29] and Deelstra etal. [17]. Another class of

the pricing methods are the model-free approaches which are based on theobserved option
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prices on the individual stocks. Such methods can be found, for instance, in Chen et al. [12],

Hobson et al. [27] and Linders et al. [39].

The readers interested in other pricing techniques of options based on arithmetic averages,

such as partial differential equation approaches, binomial trees and lattice techniques, are

referred to the list of references given in Zhou and Wang [60] and Milevsky and Posner [45].

In this part we describe a new methodology to price the basket and Asian options based on the

arithmetic averages in the Black-Scholes model. We will use the simple fact that arithmetic

and geometric mean coincide if the numbers entering them are equal to derivean asymptotic

relation between the two means. Followed by an approximation of a shifted log-normal distri-

bution by a log-normal one, we obtain an analytic Black-Scholes type approximation formula

for basket and Asian options which is very accurate for low volatilities of theunderlying

stock price(s). For medium to high volatilities this approximation serves as the basis for a

Monte-Carlo control variate approach which performs well.

6.2 Approximating the arithmetic by a geometric mean

It is well-known that for a set of non-negative real numbers (and, thus, also for realizations

of non-negative random variables)S1, ...,Sn we have the following relation between their

arithmetic and their geometric mean:

1
n

n∑

i=1

Si ≥


n∏

i=1

Si


1/n

.

We only have equality if all theSi coincide. Further, the relative difference between the two

means is the smaller, the smaller the relative variation inside the setS1, ...,Sn. The relative

variation inside this set vanishes if we add a sufficiently big numberC to eachSi . Then the

relative differences

(Si +C) − (S j +C)

S j +C
=

Si − S j

S j +C

vanish asymptotically with growingC leading to the following result.

Theorem 6.2.1. Let S1, ...,Sn be a set of non-negative numbers. Denote Yi = Si + C for

i = 1, ...,n, where C is a positive constant. Then, the geometric mean converges asymptotically
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to the arithmetic mean of the sequence Yi as C tends to infinity, that is,

lim
C→∞

1
n

∑n
i=1(Si +C)

[∏n
i=1(Si +C)

] 1
n

= 1.

Proof. Equivalent to our aim, we will show that

lim
C→∞

[
1
n

∑n
i=1(Si +C)

]n
∏n

i=1(Si +C)
= 1.

For suitable functionsf1, ..., fn andg1, ...,gn depending onS1, ...,Sn, and by the use of bino-

mial expansion we get

[
1
n

∑n
i=1(Si +C)

]n
∏n

i=1(Si +C)
= lim

C→∞

[
C + 1

n

∑n
i=1 Si

]n
∏n

i=1(Si +C)

= lim
C→∞

Cn + f1(S1, ...,Sn)Cn−1 + ... + fn(S1, ...,Sn)C0

Cn + g1(S1, ...,Sn)Cn−1 + ... + gn(S1, ...,Sn)C0

= lim
C→∞

1+ 1
C f1(S1, ...,Sn) + ... + 1

Cn fn(S1, ...,Sn)

1+ 1
Cg1(S1, ...,Sn) + ... + 1

Cn gn(S1, ...,Sn)
.

By taking the limitC→ ∞ in both sides of the equality, one directly ends up with the equality

that we would like to obtain. �

The rate of convergence of the geometric mean to the arithmetic mean in Theorem6.2.1 is

furnished in the following theorem:

Theorem 6.2.2.Again, let S1, ...,Sn be a set of non-negative numbers, and denote Yi = Si+C

for i = 1, ...,n where C is a positive constant. Then, the convergence rate of the geometric

mean to the arithmetic mean of the sequence Yi is given by

(
1
n

∑n
i=1 (Si +C)

)n

∏n
i=1 (Si +C)

= 1+
1
C

n∑

i=1

Si +O

(
1

C2

)
for C→ ∞.
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Proof. From the proof of Theorem 6.2.1 we have

[
1
n

∑n
i=1(Si +C)

]n
∏n

i=1(Si +C)
=

1+ 1
C f1(S1, ...,Sn) + ... + 1

Cn fn(S1, ...,Sn)

1+ 1
Cg1(S1, ...,Sn) + ... + 1

Cn gn(S1, ...,Sn)

=
1

1+ 1
Cg1(S1, ...,Sn) + ... + 1

Cn gn(S1, ...,Sn)

+
1
C

f1(S1, ...,Sn)

1+ 1
Cg1(S1, ...,Sn) + ... + 1

Cn gn(S1, ...,Sn)

+
1

C2

f2(S1, ...,Sn)

1+ 1
Cg1(S1, ...,Sn) + ... + 1

Cn gn(S1, ...,Sn)
+ ...

+
1

Cn

fn(S1, ...,Sn)

1+ 1
Cg1(S1, ...,Sn) + ... + 1

Cn gn(S1, ...,Sn)
.

Explicit calculation of numerator gives

f1(S1, ...,Sn) = n
1
n

n∑

i=1

Si =

n∑

i=1

Si .

Then, by using the properties of limit one can easily obtain

(
1
n

∑n
i=1 (Si +C)

)n

∏n
i=1 (Si +C)

= 1+
1
C

n∑

i=1

Si +O

(
1

C2

)
.

�

Note that, the coefficient of the term 1/C may change depending on the assumptions we made

on limit calculations.

6.3 Approximate pricing of options on the arithmetic mean

We now use the approximation result of Theorem 6.2.1 such that

• the arithmetic mean will not be changed at all,

• the geometric mean will be modified via adding a large numberC to all components

entering the geometric mean.
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To make this more precise, we consider the situation of an arithmetic average basket option

where we have

Bbasket,ar =


1
n

n∑

i=1

Si − K


+

=


1
n

n∑

i=1

(Si +C) − (K +C)


+

≥



n∏

i=1

(Si +C)


1/n

− (K +C)



+

=: Bbasket,geo(C) , (6.1)

with x+ = max{x,0}. So, in the spirit of Theorem 6.2.1 we have convergence of the option

prices for the paymentsBbasket,geo(C) towards the original basket option price. In particular,

the necessary exchange of theC-limit with the expectation is ensured by inequality (6.1)

by the Dominated Convergence Theorem (see, for example, Körezliŏglu and Hayfavi [36],

Shreve [52]). Note that this result is model independent which gives theapproach a taste of

robustness.

Numerical examples showing the fast convergence of such an approximation of the arithmetic

mean-based basket option by a sequence of geometric mean-based onesare given in Table 1,

where both the prices and the confidence intervals (inside the parenthesis) are given. There,

we assumed three independent stock prices that follow geometric Brownianmotion under

the risk-neutral measure with driftr = 0.06, volatilitiesσ = (0.3,0.2,0.3) and initial stock

pricesS(t0) = (40,60,80). We used two different strikes ofK and assumed that the option

matures after 6 months. The prices were obtained by using the Monte-Carlo method with 105

simulations for each stock price process. The pricesPbasket,ar andPbasket,geo(C) are correspond

to the present values ofE(Bbasket,geo) andE(Bbasket,geo(C)), respectively, whereBbasket,geo and

Bbasket,geo(C) are as given in (6.1) andE denotes the expected value. Note that, the case of

C = 0 for Pbasket,geo corresponds to the price based on the geometric average of the original

stock price realizations.

Although the results given in Table 1 are really impressive, there is a particular drawback of

this method: Simulating the geometric mean is at least as slow as simulating the arithmetic

one. Even more, as the factors in the newly obtained geometric mean are no longer log-

normally distributed forC , 0, we can also not use the well-known closed pricing formula

for the call option based on the geometric mean (see Korn et al. [33]):

Theorem 6.3.1.[Price of geometric average basket option] The price of a geometric average
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K C Pbasket,ar Pbasket,geo(C)
55 0 7.1214 ([7.0827, 7.1601]) 4.6311 ([4.5999, 4.6623])
55 102 7.1214 ([7.0827, 7.1601]) 6.1113 ([6.0762, 6.1464])
55 104 7.1214 ([7.0827, 7.1601]) 7.1043 ([7.0656, 7.1429])
55 106 7.1214 ([7.0827, 7.1601]) 7.1212 ([7.0825, 7.1600])
55 107 7.1214 ([7.0827, 7.1601]) 7.1214 ([7.0826, 7.1601])
65 0 1.5692 ([1.5482, 1.5902]) 0.6373 ([0.6250, 0.6497])
65 102 1.5692 ([1.5482, 1.5902]) 1.0947 ([1.0780, 1.1114])
65 104 1.5692 ([1.5482, 1.5902]) 1.5600 ([1.5391, 1.5809])
65 106 1.5692 ([1.5482, 1.5902]) 1.5691 ([1.5481, 1.5901])
65 107 1.5692 ([1.5482, 1.5902]) 1.5692 ([1.5482, 1.5902])

Table 6.1:Convergence of the geometric mean-based basket option price to the arithmetic
mean-based one when we use our method.

basket call with weights wi = 1/n in the Black- Scholes model is given by

Pbasket,geo= e−rT
(
s̃em̃Φ

(
d̃1

)
− KΦ

(
d̃2

))
,

ν =
1
n

√√√√ n∑

j=1


n∑

i=1

σ2
i j


2

, m= rT − 1
2n

n∑

i, j=1

σ2
i j T,

m̃= m+
1
2
ν2, s̃=


n∏

i=1

si


1/n

, d̃1 =
log(s̃/K) +m+ ν2

ν
, d̃2 = d̃1 − ν,

where r is the risk-free rate, n is the number of stocks entering into the basket, K is the strike

price, T is the maturity time, si is the initial price of the i− th stock,σi j are the enteries of

the variance-covariance matrics of the stock returns andΦ denotes the cumulative standard

normal distribution.

To be able to use closed pricing formulae for geometric mean-based options (such as the one

in Theorem 6.3.1), we approximate the shifted log-normally distributed randomvariables in

the geometric mean by a log-normal distribution having the same expected value and variance.

The resulting log-normal sum approximation method and the complete methodologyto price

options based on arithmetic averages can be summarized as follows:

• Step 1: Shift each log-normally distributed random variableSi by a sufficiently large

positive constantC. Then,Yi := Si + C has a shifted log-normal distribution with

expected valueE(Yi) = E(Si) +C and varianceVar(Yi) = Var(Si) for i = 1, ...,n.

• Step 2: Approximate each shifted log-normal distributionYi by a log-normal distribu-

tion Y∗i with the same expected value and variance. This yields the parametersµi and
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σi for the approximating log-normal distribution as

µi = log


[E(Yi)]2

√
[E(Yi)]2 + Var(Yi)


, σ2

i = log

(
1+

Var(Yi)

[E(Yi)]2

)
.

• Step 3:Now, from Theorem 6.2.1, the arithmetic mean and the geometric mean ofY∗i s

are very close to each other, therefore the geometric mean can be used (with some small

error) instead of the arithmetic mean.

• Step 4: Finally, since shifting the random variables byC increases the original mean,

we need to subtractC from the geometric mean that we obtain (or, instead, when we

are pricing an option we can shift the strike price byC).

We are going to illustrate the application and performance of this approximation methodology

in Sections 6.4 and 6.5 when applied to the pricing of arithmetic average basketcall option

and arithmetic average Asian call option in the Black-Scholes framework. However, first we

give some information about the accuracy of our log-normal sum approximation method.

6.3.1 Some facts about our log-normal sum approximation method

In our log-normal sum approximation method each log-normal distribution is shifted by a

positive real numberC and then the resulting shifted log-normal distribution is approximated

by a log-normal distribution. The quality of our log-normal sum approximationis closely

related to the quality of the approximation of the shifted log-normal distributions by a log-

normal distribution. Numerical examples show that the shifted log-normal distributions can be

approximated very well by a log-normal distribution when the original log-normal distribution

has a small volatility parameterσ. The reason is as follows: The volatility parameter directly

effects the skewness of the log-normal distribution. Remember that, we approximate the

shifted log-normal distribution by a log-normal distribution having the same first and second

moments, which yields the following volatility parameter for the final log-normal distribution:

(σ∗)2 = log

(
1+

Var(S)

[E(S) +C]2

)
.

In our approximation methodC should be taken sufficiently large to get good approximation

values. Since a large value ofC causes a value ofσ∗ close to zero, the skewness of the new

log-normal distribution will be small. If the skewness of the original log-normal distribution
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S is small (which means if the volatility parameter ofS is small) then the original log-normal

distribution and the approximating one will be close to each other. Therefore, in our ap-

proximation method smaller volatility parameters imply better approximation values. This

situation is illustrated in Figure 6.1.
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(d) σ = 0.4

Figure 6.1: Comparison of our approximation with the original distribution.

Figure 6.1 contains the densities of the stock price realizations at maturity time forthe original

stock price process and the artificial stock price obtained from our approximation method

(with density named “Our Approx.”). Here, we usedr = 0.06, T = 0.5 and varying values

of σ. Note that forσ = 0.1 our approximation and the original density function nearly

coincide. When we increase theσ parameter then the approximation gets worse. Therefore,

our approximation method can be used effectively especially for small values ofσ parameter

or when we have short time to maturity as both situations imply small variance for stock price

realizations.
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6.4 Approximate pricing of arithmetic average basket option

We consider a Black-Scholes type market withn assets where the prices at timet are de-

noted byS1(t), S2(t), ..., Sn(t) and under the risk-neutral measure they follow the following

dynamics:

dSi(t) = Si(t){rdt + σidWi(t)}, Si(0) = si (i = 1, ...,n),

Here,r is the risk-free rate andσi is the volatility parameter of thei−th stock price process.

For simplicity we assume the independence between the stock price processes, therefore, the

variablesWi are independent Brownian motions. Later, we will also mention about the case

of the dependence between stock prices.

By applying our approximation methodology, we would like to find a closed-formapproxi-

mation formula for the price of a European arithmetic average basket call option with a strike

priceK and final payoff 
1
n

n∑

i=1

Si(T) − K


+

whereT is the maturity time.

We start our methodology by shifting each stock price process by a sufficiently big positive

constant. If we shift each price process using the maturity time then the processYi(T) :=

Si(T) +C has a shifted log-normal distribution with expected valueE(Yi(T)) = E(Si(T)) +C

and varianceVar(Yi(T)) = Var(Si(T)) where

E(Si(T)) = sie
rT , Var(Si(T)) = s2

i e2rT
(
eσ

2
i T − 1

)
.

In the next step, we use log-normal random variablesY∗i (T) to replace the shifted log-normal

random variablesYi(T). The corresponding parametersµ∗i , (σ
∗
i )

2 of Y∗i (T) that yield the same

mean and variance asYi(T) can be easily calculated to obtain

µ∗i = log


[E(Si(T)) +C]2

√
[E(Si(T)) +C]2 + Var(Si(T))



= log



[
sierT +C

]2
√[

sierT +C
]2
+ s2

i e2rT
(
eσ

2
i T − 1

)


, (6.2)

(σ∗i )
2 = log

(
1+

Var(Si(T))

[E(Si(T)) +C]2

)
= log

1+
s2
i e2rT

(
eσ

2
i T − 1

)

[
sierT +C

]2

 . (6.3)
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Note that, in accordance with the Theorem 6.2.1, the geometric mean and the arithmetic

mean of the variablesY∗i (T) are very close to each other, therefore we could approximate the

arithmetic average by the geometric average. Since the products of the variablesY∗i (T) has a

log-normal distribution with parameters

n∏

i=1

Y∗i (T) ∼ logN


n∑

i=1

µ∗i ,
n∑

i=1

(σ∗i )
2

 ,

we can value the final payoff based on the geometric mean

Bappr,geo :=




n∏

i=1

Y∗i (T)


1/n

− (K +C)



+

by using the log-normal valuation formula (see Korn et al. [33]) and obtainthe approximate

price formula for a European basket option

Cappr,geo(T,K) = e−rT em+ 1
2v2
Φ(d1) − e−rT (K +C)Φ(d2) (6.4)

with

m =
1
n

n∑

i=1

µ∗i , v =
1
n

√√
n∑

i=1

(σ∗i )
2,

d1 =
log(1/(K +C)) +m+ v2

v
, d2 = d1 − v,

whereC is a sufficiently big positive constant andµ∗i , (σ∗i )
2 are given by Equations (6.2) and

(6.3).

To assess the efficiency of our closed form pricing formula we give the following example:

Example 6.4.1.Assume an arithmetic average basket call option depending onn independent

stock prices and maturing after 6 months. We use the risk-neutral market coefficients of

r = 0.06,

σi = 0.2+ 0.008i (i = 1, ...,n),

Si(0) = 100− i (i = 1, ...,n).

The price of the given option calculated from our approximation formula (6.4) for different

values ofn and different strikes ofK are given in Table 6.2. For comparison purpose, in the

Table we also provide the 95% confidence intervals obtained from the crude Monte-Carlo

method and the Monte-Carlo method with antithetic variates. In the computations, thevalue

of our shift parameter was taken asC = 105 and we used 250000 simulations for each stock
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n K Monte-Carlo Monte-Carlo Method Approximation
Method with Antithetic Variates Formula (6.4)

20 80 [11.8435, 11.8752] [11.8627, 11.8674] 11.8645
20 85 [7.0439, 7.0747] [7.0623, 7.0675] 7.0782
20 90 [2.8803, 2.9047] [2.8913, 2.9004] 2.9157
40 70 [11.5561, 11.5812] [11.5664, 11.5713] 11.5662
40 75 [6.7184, 6.7432] [6.7285, 6.7334] 6.7346
40 80 [2.3941, 2.4137] [2.3991, 2.4064] 2.4175
60 60 [11.2613, 11.2824] [11.2708, 11.2757] 11.2695
60 65 [6.4138, 6.4348] [6.4233, 6.4282] 6.4249
60 70 [2.0133, 2.0298] [2.0189, 2.0252] 2.0320

Table 6.2: Price of arithmetic average basket call option obtained from the Monte-Carlo
method and our closed form approximation formula.

price process in the Monte-Carlo calculations. The results show that our closed form approx-

imation formula gives very accurate results with a tendency to slightly overpricethe option

for higher strikes. This is an excellent basis for a control variate Monte-Carlo method which

we present later.

Note that, although in the calculations we assumed independence between the stock prices,

our methodology could also be used when there is dependence between thestock prices en-

tering the basket. The only difference is that, in the case of dependence we need to preserve

the original covariance structure between the stock prices, as we will do inSubsection A.2 for

the Asian options. We will not illustrate the case of the dependence for basket options since

we illustrate it for the Asian option case where the idea is completely similar.

Note also that, in all of the calculations given above we assumed equal weights for the stocks

entering the basket, however our method could still be used when we have different weights

in the basket. Ifwi is the weight of theith stock in the basket thenXi := wiSi would have a

log-normal distribution, therefore we could apply our methodology to the variablesXi with

equal weights, just as we did in Subsection 5.2.2.
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6.5 Approximate pricing of arithmetic average Asian options

In this part, we focus on a single stock price process since as per construction Asian options

depend on a single path. Let the stock price process follows the dynamics of

dS(t) = S(t){rdt + σdW(t)}, (6.5)

for a one-dimensional Brownian motionW under the risk-neutral probability measure.

Our aim is to price the discrete fixed-strike arithmetic average Asian option with strike K and

payoff

B =


1
n

n∑

i=1

S(ti) − K


+

with 0 = t0 < t1 < · · · < tn = T.

We are again in a situation where the sum of (dependent!) log-normal distributions causes

the problems. However, there is a well-known theorem that allows to price a corresponding

geometric mean via a Black-Scholes type formula (see Korn et al. [33]):

Theorem 6.5.1. [Price of geometric average Asian option] Under the risk-neutral measure,

assume an asset price following

dS(t) = S(t){rdt + σdW(t)},

where r andσ are constants and W is a Brownian motion. The price of the discrete fixed-strike

geometric average Asian option with payoff

B =




n∏

i=1

S (ti)


1/n

− K



+

, 0 = t0 < t1 < · · · < tn = T,

is given by

pGFA = e−rT
(
S (0) em+1

2ν
2
Φ

(
log(S(0)/K)+m+ν2

ν

)
− KΦ

(
log(S(0)/K)+m

ν

))
,

m=
(
r − 1

2σ
2
)

1
n

n∑

i=1

ti , ν = σ
n

√√
n∑

i=1

(n+ 1− i)2 (ti − ti−1),

whereΦ denotes the cumulative standard normal distribution.

Thus, we can make use of our approximation methodology just presented for the basket op-

tion. However, we now have two possible ways to apply our approximation concept. In the

first one, we determine the input coefficients for the approximating Black-Scholes type for-

mula only from approximating the shifted log-normal distributionY(T) := S(T) + C at the
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terminal time by the appropriate log-normal distributionY∗(T). In this case we obtain the

following approximate pricing formula.

Approximate pricing formula I for a fixed-strike arithmetic average Asian option

pAFA1 � e−rT (S(0)+C) em+1
2ν

2
Φ

(
log

(
S(0)+C

K+C

)
+m+ν2

ν

)
− e−rT (K +C)Φ

(
log

(
S(0)+C

K+C

)
+m

ν

)
, (6.6)

with

m =
(
α − 1

2γ
2
)

1
n

n∑

i=1

ti , ν =
γ

n

√√
n∑

i=1

(n+ 1− i)2 (ti − ti−1),

γ =
σ̃
√

T
, α =

µ̃ − log(S(0)+C)
T

+
γ2

2
,

µ̃ = log



[
S(0)erT +C

]2
√[

S(0)erT +C
]2
+ S(0)2e2rT

(
eσ2T − 1

)


,

σ̃2 = log

1+
S(0)2e2rT

(
eσ

2T − 1
)

[
S(0)erT +C

]2

 .

In the second way, we apply our methodology at each time pointti for i = 1, ...,n. However,

in this case, the new processes shall be taken as correlated with each other since the original

option is path dependent. This kind of approximation yields the following formula.

Approximate pricing formula II for a fixed-strike arithmetic averag e Asian option

pAFA2 � e−rT (S(0)+C) em+1
2ν

2
Φ

(
log

(
S(0)+C

K+C

)
+m+ν2

ν

)
− e−rT (K +C)Φ

(
log

(
S(0)+C

K+C

)
+m

ν

)
, (6.7)

where

m =
1
n

n∑

i=1

αi ti ,

ν =
1
n

√√√ n∑

i=1

γ2
i ti + 2

n∑

i, j

min{i, j}γiγ j(ti − ti−1)1/2(t j − t j−1)1/2,

γi =
σ̃i√

ti
(i = 1, ...,n),

αi =
µ̃i − log(S(0)+C)

ti
+
γ2

i

2
(i = 1, ...,n),

µ̃i = log



[
S(0)ert i +C

]2
√

[S(0)ert i +C]2 + S(0)2e2rt i
(
eσ2ti − 1

)


(i = 1, ...,n),

σ̃i
2 = log

1+
S(0)2e2rt i

(
eσ

2ti − 1
)

[S(0)ert i +C]2

 (i = 1, ...,n).
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The derivations of the approximate pricing formulas I and II can be foundin Appendix A.1

and A.2, respectively.

Example 6.5.2.We consider a discrete fixed-strike arithmetic average Asian call option de-

pending on the stock prices observed atn equidistant time points. We chooser = 0.06,

σ = 0.2, S(0) = 100,T = 0.5. Table 3 contains some approximate option prices obtained

from the approximation formulas (6.6) and (6.7) for different values ofn and different strikes

K. Here, our choice of the shift parameter isC = 106. For comparison purposes, we also give

option prices with 95% confidence interval obtained from the crude Monte-Carlo method and

the Monte-Carlo method with antithetic variates based on 250.000 simulations of thestock

price paths. From Table 6.3 it is seen that the performance of the approximation formulas is

n K Monte-Carlo Monte-Carlo with Approx. (6.6) Approx. (6.7)
Method antithetic Variates

25 95 [7.3078, 7.3630] [7.3387, 7.3554] 7.4863 7.4489
25 100 [4.0759, 4.1202] [4.0963, 4.1179] 4.1957 4.1499
25 105 [1.9548, 1.9864] [1.9682, 1.9877] 1.9702 1.9285
50 95 [7.2514, 7.3058] [7.2773, 7.2937] 7.4266 7.3893
50 100 [4.0102, 4.0538] [4.0280, 4.0493] 4.1307 4.0847
50 105 [1.8978, 1.9287] [1.9088, 1.9280] 1.9147 1.8731
75 95 [7.2329, 7.2871] [7.2593, 7.2756] 7.4068 7.3695
75 100 [3.9925, 4.0359] [4.0092, 4.0304] 4.1089 4.0629
75 105 [1.8827, 1.9134] [1.8924, 1.9114] 1.8963 1.8546

Table 6.3:Price of arithmetic average Asian call option.

good, but not sufficiently accurate to replace the Monte-Carlo method. On top of that, it is not

as good as in the basket option case. In particular, the closed form approximation formulas

- and, in particular, Formula (6.6) - perform well when the option is at the money. For low

strikes they both tend to underestimate the correct price significantly. For high strikes, the ap-

proximation methods tend to overvalue the discrete Asian average option. Thisis even more

pronounced for larger values of the volatility, for small values ofσ, the approximations seem

to be good approximations. This is also illustrated in the plots given in Figures 6.6and 6.7.

Each figure contains the plots for 4 different values of the volatility parameterσ.
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(a) σ = 0.1 (b) σ = 0.2

(c) σ = 0.3 (d) σ = 0.4

Figure 6.2: Price of the Asian option obtained from the Approximation (6.6).

6.6 A new control variate method for options on arithmetic averages

Numerical results given in the above examples show that our approximation method gives

very efficient approximations for the price of the arithmetic average basket option while the

price approximations for the arithmetic average Asian options are not as good. In some cases

the performance of our approximation formulas is good, but not sufficiently accurate to re-

place the Monte-Carlo method. However, due to the closed form formula we have derived,

the approximating payoffs are candidates to be used as control variates in a Monte-Carlo sim-

ulation. For the case of the arithmetic average basket option we could use theMonte-Carlo

estimator

X̄N := e−rT


1
N

N∑

i=1

(Xi − Mi) + E (M)

 (6.8)
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(a) σ = 0.1 (b) σ = 0.2

(c) σ = 0.3 (d) σ = 0.4

Figure 6.3: Price of the Asian option obtained from the Approximation (6.7).

with

Xi =


1
n

n∑

i=1

Si(T) − K


+

, (6.9)

Mi =




n∏

i=1

Y∗i


1/n

− (K +C)



+

. (6.10)

Here, Xi is the payoff (corresponding to theith scenario) obtained from the Monte-Carlo

method when we use the original option,Mi is the payoff (again, corresponding to theith

scenario) obtained from the Monte-Carlo method when we use our methodology andE (M)

is the expected value of the payoff which can be calculated with the help of the price formula

(6.4).Y∗i is the price process having log-normal distribution with the parametersµ∗i and (σ∗i )
2

as defined in (6.2) and (6.3).

Note that, this control variate methodology can also be applied for pricing arithmetic average

Asian options.
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6.7 Numerical results

In this section we give some numerical examples to illustrate the efficiency of our closed form

formulas and the use of our methodology as a control variate method by comparing with some

of the well-known methods form the literature. Here we provide the numericalresults for the

basket option case, however we will also mention about the efficiency of our methodology in

Asian option pricing.

We compare our approximation method (the closed-form formula) with the Monte-Carlo

price, the confidence interval obtained from Monte-Carlo method, the log-normal approxi-

mation of Levy [38], the reciprocal gamma approximation of Milevsky and Posner [44], the

approximation of Kemna and Vorst [30], the geometric average basket option price which is

in some cases used as an approximation (actually, a lower bound) for the arithmetic average

price, and the lower and upper bounds obtained from Deelstra et al. [17]. Besides, we com-

pare the use of our methodology and closed-form formula as a control variate with the use

of the geometric average, the log-normal approximation of Levy [38] and the approximation

of Kemna and Vorst [30] as a control variate. We do not use the the reciprocal gamma ap-

proximation of Milevsky and Posner [44] as a control variate since this approximation uses

a distribution different from the log-normal one and therefore yields week results due to the

low correlation structure with the original payoff.

We assume a basket option based on the arithmetic average of 4 independent stocks. We also

assume that the risk free rate and the maturity time arer = 0.06 andT = 0.5, respectively. In

computations, we used 106 simulations for each stock in the Monte-Carlo methods (and the

control variate methods) and took the shift parameter asC = 107 in our method. The results

obtained from our method and the methods from the literature are given in Tables 6.4, 6.5,

6.6 and 6.7. The notations MC, MCCI, LB, UB, GA, KV, LN, RG and SLN thatwe used

in the Tables are the Monte-Carlo price, the confidence interval of the Monte-Carlo method,

the lower bound of Deelstra et al. (the maximum of the lower bounds obtained byusing the

conditioning variablesFA1 andFA2 as defined in [17]), the upper bound of Deelstra et al. (the

minimum of the partially exact/comonotonic upper bounds obtained by using the conditioning

variablesFA1 andFA2), the option price based on the geometric average, Kemna and Vorst’s

approximation, Levy’s log-normal approximation, Milevsky and Posner’sReciprocal Gamma

approximation and our shifted log-normal approximation, respectively.
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K MC MCCI LB UB GA KV LN RG SLN
σ1 = 0.2; σ2 = 0.2; σ3 = 0.2; σ4 = 0.2

55 9.1527 [9.1433,9.1621] 9.1578 9.2548 2.4230 9.1312 9.1606 9.1546 9.1828
60 4.7236 [4.7153,4.7318] 4.7251 5.3557 0.4583 4.5069 4.7345 4.7179 4.7816
65 1.6678 [1.6623,1.6733] 1.6648 3.5181 0.0394 1.2847 1.6708 1.6704 1.6653

σ1 = 0.5; σ2 = 0.5; σ3 = 0.5; σ4 = 0.5
60 7.1455 [7.1267,7.1642] 7.0786 10.8761 1.7784 6.1027 7.1951 7.0933 7.4087
65 4.6357 [4.6199,4.6514] 4.5576 10.1025 0.8379 3.4568 4.6653 4.6170 4.6991
70 2.8672 [2.8545,2.8799] 2.7888 10.2626 0.3660 1.7772 2.8723 2.8834 2.7315

σ1 = 0.8; σ2 = 0.8; σ3 = 0.8; σ4 = 0.8
65 7.7500 [7.7213,7.7788] 7.4316 18.2651 0.6246 2.2716 7.8781 7.6444 8.1004
70 5.9464 [5.9206,5.9723] 5.6183 18.9463 1.0087 3.5026 6.0349 5.8965 5.9495
75 4.5320 [4.5090,4.5550] 4.2075 20.3043 0.0394 1.2847 4.5782 4.5315 4.2289

σ1 = 0.6; σ2 = 1.2; σ3 = 0.3; σ4 = 0.9
65 7.8928 [7.8602,7.9255] 7.5437 17.1976 1.6470 5.3787 8.3693 8.0901 8.6403
70 6.2128 [6.1829,6.2428] 5.8375 17.9661 1.0480 3.6136 6.5294 6.3500 6.4729
75 4.8941 [4.8668,4.9214] 4.5070 19.5807 0.6590 2.3721 5.0548 4.9730 4.7116

Approximate Price Length of the
by Using Control Variate Confidence Interval

K GA LN KV SLN GA LN KV SLN
σ1 = 0.2; σ2 = 0.2; σ3 = 0.2; σ4 = 0.2

55 9.1556 9.1550 9.1569 9.1584 0.0110 0.0240 0.0081 0.0018
60 4.7239 4.7263 4.7279 4.7288 0.0136 0.0212 0.0073 0.0016
65 1.6673 1.6673 1.6693 1.6704 0.0104 0.0143 0.0055 0.0013

σ1 = 0.5; σ2 = 0.5; σ3 = 0.5; σ4 = 0.5
60 7.1478 7.1481 7.1524 7.1548 0.0266 0.0486 0.0194 0.0099
65 4.6349 4.6338 4.6393 4.6427 0.0246 0.0412 0.0175 0.0091
70 2.8652 2.8634 2.8695 2.8728 0.0213 0.0335 0.0154 0.0081

σ1 = 0.8; σ2 = 0.8; σ3 = 0.8; σ4 = 0.8
65 7.7488 7.7451 7.7550 7.7621 0.0450 0.0751 0.0362 0.0251
70 5.9439 5.9398 5.9503 5.9569 0.0422 0.0678 0.0342 0.0237
75 4.5282 4.5234 4.5332 4.5408 0.0391 0.0607 0.0322 0.0223

σ1 = 0.6; σ2 = 1.2; σ3 = 0.3; σ4 = 0.9
65 7.8928 7.8873 7.8990 7.9059 0.0510 0.0859 0.0421 0.0339
70 6.2111 6.2056 6.2176 6.2241 0.0488 0.0786 0.0403 0.0325
75 4.8922 4.8848 4.8964 4.9035 0.0463 0.0714 0.0386 0.0310

Table 6.4:Arithmetic average basket call option price when the initial stock prices ares1 =

25, s2 = 50, s3 = 75, s4 = 100.

Numerical results show that the closed form formulas of RG and LN approximations generally

gives better results than the other closed form formulas. Our closed formformula generally

slightly under estimates the price when the option is (deep-)out-the-money, and slightly over

estimates the price when the option is (deep-)in-the-money, however it generally gives much

better results than the KV approximation and the GA price. Furthermore, the performance

of our closed form formula is better for some levels of the strike price. This level is slightly

higher than the arithmetic average of the initial stock prices when we have low volatilities,

and it is higher for higher volatilities.
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K MC MCCI LB UB GA KV LN RG SLN
σ1 = 0.2; σ2 = 0.2; σ3 = 0.2; σ4 = 0.2

50 6.5355 [6.5280,6.5431] 6.5392 6.6987 5.0540 6.5249 6.5412 6.5340 6.5653
55 2.5063 [2.5006,2.5121] 2.5042 3.5819 0.4583 2.4362 2.5104 2.5010 2.5343
60 0.5041 [0.5014,0.5068] 0.5005 3.0705 0.2145 0.4439 0.5037 0.5133 0.4719

σ1 = 0.5; σ2 = 0.5; σ3 = 0.5; σ4 = 0.5
55 4.8324 [4.8184,4.8465] 4.7575 9.1269 2.7725 4.4322 4.8499 4.7920 4.9492
60 2.7402 [2.7292,2.7512] 2.6592 9.0931 1.3581 2.3371 2.7463 2.7444 2.6729
65 1.4468 [1.4387,1.4549] 1.3741 9.9795 0.6090 1.1183 1.4413 1.4831 1.2550

σ1 = 0.8; σ2 = 0.8; σ3 = 0.8; σ4 = 0.8
60 5.3401 [5.3186,5.3616] 5.0103 16.8742 2.1135 4.0846 5.3897 5.2725 5.3819
65 3.8179 [3.7993,3.8365] 3.4889 18.2588 1.3236 2.6443 3.8418 3.8123 3.5776
70 2.7011 [2.6852,2.7170] 2.3909 20.3315 0.8153 1.6722 2.7003 2.7430 2.2590

σ1 = 0.6; σ2 = 1.2; σ3 = 0.3; σ4 = 0.9
60 5.5569 [5.5312,5.5826] 5.2084 16.0580 2.1475 4.1943 5.9128 5.7558 5.9371
65 4.1555 [4.1324,4.1786] 3.7902 17.7751 1.3628 2.7471 4.3459 4.2836 4.0874
70 3.1196 [3.0989,3.1403] 2.7517 20.5267 0.8521 1.7609 3.1607 3.1798 2.6941

Approximate Price Length of the
by Using Control Variate Confidence Interval

K GA LN KV SLN GA LN KV SLN
σ1 = 0.2; σ2 = 0.2; σ3 = 0.2; σ4 = 0.2

50 6.5399 6.5375 6.5399 6.5404 0.0036 0.0172 0.0034 0.0015
55 2.5082 2.5078 2.5092 2.5093 0.0041 0.0135 0.0029 0.0013
60 0.5038 0.5028 0.5044 0.5051 0.0028 0.0067 0.0017 0.0008

σ1 = 0.5; σ2 = 0.5; σ3 = 0.5; σ4 = 0.5
55 4.8355 4.8328 4.8375 4.8385 0.0123 0.0330 0.0098 0.0079
60 2.7413 2.7378 2.7430 2.7445 0.0110 0.0264 0.0085 0.0068
65 1.4457 1.4428 1.4471 1.4495 0.0092 0.0199 0.0071 0.0058

σ1 = 0.8; σ2 = 0.8; σ3 = 0.8; σ4 = 0.8
60 5.3409 5.3355 5.3443 5.3481 0.0265 0.0509 0.0217 0.0199
65 3.8161 3.8113 3.8204 3.8242 0.0245 0.0446 0.0201 0.0183
70 2.6981 2.6933 2.7003 2.7061 0.0223 0.0386 0.0185 0.0167

σ1 = 0.6; σ2 = 1.2; σ3 = 0.3; σ4 = 0.9
60 5.5587 5.5517 5.5622 5.5664 0.0337 0.0645 0.0292 0.0286
65 4.1546 4.1482 4.1587 4.1643 0.0324 0.0580 0.0279 0.0271
70 3.1178 3.1109 3.1200 3.1251 0.0308 0.0518 0.0267 0.0257

Table 6.5:Arithmetic average basket call option price when the initial stock prices ares1 =

40, s2 = 50, s3 = 60, s4 = 70.

Numerical results also show that our control variate method performs verywell. Especially,

when the relative variation inside the initial stock prices high and the volatilities lowthen

our control variate method gives much better results and outperforms the other control variate

methods. When the relative variation inside the initial stock prices is smaller then still our

method outperforms the other control variate methods, however, in this caseand in the case

of high volatility environment the difference between our method and the other methods is

smaller. When there is no relative variation between the initial stock prices thenour method

and KV method outperform the other control variate methods.
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K MC MCCI LB UB GA KV LN RG SLN
σ1 = 0.2; σ2 = 0.2; σ3 = 0.2; σ4 = 0.2

48 5.9822 [5.9751,5.9893] 5.9855 6.1555 5.3297 5.9793 5.9870 5.9799 6.0106
52 2.7000 [2.6943,2.7058] 2.6986 3.5922 2.2148 2.4362 2.7035 2.6934 2.7305
56 0.7722 [0.7689,0.7755] 0.7682 2.8950 0.5586 0.7431 0.7730 0.7787 0.7518

σ1 = 0.5; σ2 = 0.5; σ3 = 0.5; σ4 = 0.5
50 5.9724 [5.9577,5.9871] 5.9094 9.1528 4.1446 5.7223 5.9874 5.9127 6.1548
55 3.4087 [3.3970,3.4204] 3.3284 8.5935 2.1249 3.1189 3.4161 3.3899 3.4215
60 1.7808 [1.7722,1.7895] 1.7039 9.1467 0.9836 1.5255 1.7803 1.8057 1.6393

σ1 = 0.8; σ2 = 0.8; σ3 = 0.8; σ4 = 0.8
55 5.8777 [5.8562,5.8991] 5.5589 15.8253 2.7544 4.8301 5.9215 5.7752 6.0396
60 4.1362 [4.1177,4.1547] 3.8070 16.9183 1.7225 3.1251 4.1605 4.1032 4.0034
65 2.8687 [2.8530,2.8844] 2.5527 18.7541 1.0554 1.9673 2.8723 2.8930 2.5081

σ1 = 0.6; σ2 = 1.2; σ3 = 0.3; σ4 = 0.9
55 6.0108 [5.9852,6.0364] 5.6875 14.9213 2.7775 4.9357 6.4436 6.2557 6.6041
60 4.4080 [4.3850,4.4310] 4.0666 16.2330 1.7586 3.2290 4.6777 4.5851 4.5372
65 3.2438 [3.2233,3.2643] 2.8972 18.6330 1.0931 2.0596 3.3514 3.3458 2.9729

Approximate Price Length of the
by Using Control Variate Confidence Interval

K GA LN KV SLN GA LN KV SLN
σ1 = 0.2; σ2 = 0.2; σ3 = 0.2; σ4 = 0.2

48 5.9866 5.9840 5.9865 5.9868 0.0021 0.0152 0.0020 0.0014
52 2.7027 2.7016 2.7031 2.7032 0.0021 0.0126 0.0017 0.0012
56 0.7729 0.7713 0.7733 0.7735 0.0017 0.0076 0.0012 0.0009

σ1 = 0.5; σ2 = 0.5; σ3 = 0.5; σ4 = 0.5
50 5.9771 5.9750 5.9789 5.9796 0.0096 0.0323 0.0081 0.0078
55 3.4114 3.4072 3.4120 3.4133 0.0090 0.0263 0.0071 0.0069
60 1.7807 1.7775 1.7825 1.7837 0.0077 0.0200 0.0059 0.0058

σ1 = 0.8; σ2 = 0.8; σ3 = 0.8; σ4 = 0.8
55 5.8806 5.8740 5.8822 5.8858 0.0235 0.0478 0.0193 0.0194
60 4.1358 4.1305 4.1396 4.1421 0.0219 0.0418 0.0179 0.0178
65 2.8665 2.8616 2.8692 2.8732 0.0200 0.0359 0.0164 0.0162

σ1 = 0.6; σ2 = 1.2; σ3 = 0.3; σ4 = 0.9
55 6.0142 6.0066 6.0166 6.0196 0.0310 0.0626 0.0272 0.0279
60 4.4085 4.4018 4.4123 4.4160 0.0300 0.0565 0.0261 0.0265
65 3.2424 3.2360 3.2454 3.2496 0.0287 0.0504 0.0251 0.0251

Table 6.6:Arithmetic average basket call option price when the initial stock prices ares1 =

45, s2 = 50, s3 = 55, s4 = 60.

It is seen that, our control variate method performs better actually when the relative variation

inside the expected end prices (that is, expected prices at maturity) is higher. On the top of this,

it can be concluded that, our control variate method outperforms all of the other control variate

methods when the parameter settings lead to high relative variation inside the expected prices

at maturity time, and in the other cases our and KV’s control variate methods outperform the

other methods.

To compare the computational effort of the different approaches note that
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K MC MCCI LB UB GA KV LN RG SLN
σ1 = 0.2; σ2 = 0.2; σ3 = 0.2; σ4 = 0.2

45 6.3618 [6.3550,6.3686] 6.3651 6.4702 6.0024 6.3635 6.3659 6.3610 6.3831
50 2.2535 [2.2483,2.2586] 2.2513 3.2410 2.0056 2.2417 2.2561 2.2479 2.2772
55 0.3550 [0.3528,0.3571] 0.3511 2.8596 0.2863 0.3443 0.3547 0.3637 0.3255

σ1 = 0.5; σ2 = 0.5; σ3 = 0.5; σ4 = 0.5
50 4.3303 [4.3178,4.3428] 4.2581 8.3077 2.9983 4.0993 4.3388 4.2885 4.4258
55 2.2766 [2.2672,2.2860] 2.1981 8.3854 1.4187 2.0479 2.2784 2.2828 2.1982
60 1.0915 [1.0849,1.0981] 1.0247 9.4226 0.6046 0.9152 1.0871 1.1298 0.9131

σ1 = 0.8; σ2 = 0.8; σ3 = 0.8; σ4 = 0.8
55 4.5973 [4.5785,4.6160] 4.2788 15.5960 2.1080 3.6616 4.6233 4.5330 4.5849
60 3.1407 [3.1249,3.1566] 2.8264 17.1442 1.2767 2.2850 3.1482 3.1419 2.8703
65 2.1158 [2.1025,2.1290] 1.8271 19.4057 0.7582 1.3890 2.1065 2.1647 1.6826

σ1 = 0.6; σ2 = 1.2; σ3 = 0.3; σ4 = 0.9
60 3.4530 [3.4324,3.4735] 3.1366 16.6666 1.3130 2.3788 3.6409 3.6050 3.3613
65 2.5091 [2.4908,2.5274] 2.1983 19.8250 0.7924 1.4678 2.5448 2.5841 2.0843
70 1.8417 [1.8254,1.8579] 1.5448 24.3681 0.4720 0.8889 1.7610 1.8525 1.2194

Approximate Price Length of the
by Using Control Variate Confidence Interval

K GA LN KV SLN GA LN KV SLN
σ1 = 0.2; σ2 = 0.2; σ3 = 0.2; σ4 = 0.2

45 6.3659 6.3635 6.3658 6.3660 0.0012 0.0137 0.0012 0.0013
50 2.2559 2.2548 2.2561 2.2562 0.0012 0.0107 0.0010 0.0011
55 0.3548 0.3538 0.3550 0.3551 0.0008 0.0049 0.0006 0.0007

σ1 = 0.5; σ2 = 0.5; σ3 = 0.5; σ4 = 0.5
50 4.3335 4.3307 4.3350 4.3358 0.0080 0.0259 0.0065 0.0071
55 2.2781 2.2742 2.2792 2.2795 0.0072 0.0201 0.0055 0.0060
60 1.0905 1.0881 1.0913 1.0922 0.0058 0.0146 0.0044 0.0049

σ1 = 0.8; σ2 = 0.8; σ3 = 0.8; σ4 = 0.8
55 4.5985 4.5930 4.6011 4.6027 0.0207 0.0391 0.0168 0.0176
60 3.1391 3.1345 3.1425 3.1452 0.0190 0.0335 0.0154 0.0160
65 2.1129 2.1090 2.1145 2.1174 0.0170 0.0283 0.0140 0.0144

σ1 = 0.6; σ2 = 1.2; σ3 = 0.3; σ4 = 0.9
60 3.4523 3.4461 3.4556 3.4586 0.0277 0.0494 0.0244 0.0246
65 2.5074 2.5013 2.5089 2.5117 0.0265 0.0439 0.0234 0.0233
70 1.8399 1.8348 1.8401 1.8418 0.0251 0.0388 0.0225 0.0222

Table 6.7:Arithmetic average basket call option price when the initial stock prices ares1 =

50, s2 = 50, s3 = 50, s4 = 50.

• All closed-form formulas yield results nearly immediately (even if we have morethan

hundred stocks in our basket) where the computation times of our method (SLN), GA

and KV methods are shorter than those of the RG and LN methods.

• As the closed-form formulas of RG and KV contain nested loops in their calculations

their computation times grow much faster than those of SLN, LN and GA if the number

of stocks in the basket gets very high.

• In the class of the control variate methods our method is slower than the other ones as
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it requires nearly twice as much random numbers (for a given number of simulation

runs). When we additionally consider the accuracy of the methods via multiplying

the computation times with the length of the confidence intervals then our method out

performs the other methods, in particular when the relative variation inside thestock

prices is high.

Here, we do not provide numerical results for the arithmetic average Asianoptions. However,

in the Asian option case our method is not as suited as for the basket option case as per

construction there are high dependencies in the Asian option setting which leads to a low

relative variation inside the prices that derive the payoff of the option.

6.8 Use of the extrapolation methods to accelerate the convergence

In general terms, extrapolation is the process of estimating a function value with the help of

its other values. With this definition extrapolation may serve for different objectives, however

here we will focus on the convergence acceleration.

Finding the limit of an infinite series may be hard when its convergence to the limit value is

slow. In this case, extrapolation methods can be applied to accelerate the convergence of the

sequence to its limit value. One of the widely used methods for this purpose is theRichardson

extrapolation. Richardson extrapolation takes some values of a sequenceand process them to

obtain better approximation values. Its idea is basically to combine solutions obtained from

different terms of the sequence to eleminate some of the error made from the use of them as an

approximation. Since we will illustrate the methodology in the next section, here we will not

provide more detailed information about the Richardson extrapolation. For acomprehensive

information about the Richardson extrapolation method and the other extrapolation methods

we refer the interested readers to Sidi [53] and Brezinski and RedivoZaglia [10].

In this part we will introduce how to use the extrapolation methods to acceleratethe conver-

gence of our log-normal sum approximation method. The use of the Richardson and Romberg

extrapolation which is based on the successive implementation of the Richardson extrapola-

tion, will be illustrated.
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6.8.1 Richardson Extrapolation

To accelerate the convergence of our method by Richardson Extrapolation, we could use both

the absolute error and the relative error in our calculations. Here, we willderive the formulas

by using the absolute error. The derivation of the formulas for the relative error can be found

in Appendix B.

From Theorem 6.2.1 we have the approximation

1
n

n∑

i=1

(Si +C) ≈


n∏

i=1

(Si +C)


1/n

,

or, equivalently

1
n

n∑

i=1

Si ≈


n∏

i=1

(Si +C)


1/n

−C

for large values ofC. In the remaining part of this chapter and in Appendix B we will denote

the arithmetic mean byAM, and the geometric mean obtained from our method with a shift

parameter valueC by GM(C), that is,

AM =
1
n

n∑

i=1

Si , (6.11)

GM(C) =


n∏

i=1

(Si +C)


1/n

−C. (6.12)

Our extensive numerical applications show that the absolute error of ourapproximation can

be assumed to be of order 1/C, that is

AM = GM(C) + K
1
C
+O

(
1

C2

)
,

whereK is a constant andO denotes the big O notation (see, for example, Heath [25]).

For two different values of the shift parameterC, namely,C1 andC2, we have

AM = GM(C1) + K
1

C1
,

AM = GM(C2) + K
1

C2
.

Multiplying the first equation with−1, the second equation withC2/C1, and then summing

up the equations we get

AM(C1,C2) =
C2
C1

GM(C2) −GM(C1)
C2
C1
− 1

, (6.13)
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which is the extrapolated value obtained from Richardson Extrapolation withC1 andC2.

Remember that, in our method the arithmetic mean and the geometric mean are equal asC

goes to infinity. Since in computations we required to use a finiteC value it is not possible

to find the exact limiting approximation, therefore our calculations contain an error as per the

limiting value. If we want to have an approximation error equal to a pre-specified fixed value

then the Richardson extrapolation method can be used to find aC value corresponding to this

error value. Assume that in our approximation method we want to have an absolute error

aboutε. To find theC value achieving this absolute error, take two values ofC, namely,C1

andC2, then we have

AM = GM(C1) + K
1

C1
,

AM = GM(C2) + K
1

C2
.

Multiplying the second equation by−1 and summing up the equations we get

K = (GM(C2) −GM(C1))
C1C2

C2 −C1
.

Note that, in our method we approximate the arithmetic mean by using the Equation (6.12),

and we assumed

AM = GM(C) + K
1
C
.

Therefore, in our approximation method the absolute error is aboutK(1/C). Since we would

like to have an absolute error aboutε, the optimumC value can be calculated from

K
1
C
= ε,

which implies

Copt = (GM(C2) −GM(C1))
C1C2

C2 −C1
ε−1. (6.14)

6.8.2 Romberg Extrapolation

If we usek differentC values to find an approximation to the arithmetic mean by the use of

our method and denote

GMi
0 := GM(Ci) (i = 1, ..., k),
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then the Romberg extrapolation method implies the following iterative formula that provide a

faster convergence to the limiting approximation value:

GM j
n =

Cn+ j

C j
GM j+1

n−1 −GM j
n−1

Cn+ j

C j
− 1

.

To illustrate the above formula, for example use there values of C (namely,C1, C2 andC3),

then we have

GM1
0 = GM(C1), GM2

0 = GM(C2), GM3
0 = GM(C3),

GM1
1 =

C2
C1

GM2
0 −GM1

0
C2
C1
− 1

, GM2
1 =

C3
C2

GM3
0 −GM2

0
C3
C2
− 1

,

GM1
2 =

C3
C1

GM2
1 −GM1

1
C3
C1
− 1

.

whereGM1
0, GM2

0, GM3
0 are the approximation results obtained usingC1, C2, C3 in the Equa-

tion (6.12), respectively. Furthermore,GM1
1 is the value of the Richardson extrapolation

obtained by usingGM1
0 andGM2

0; GM2
1 is the value of the Richardson extrapolation ob-

tained by usingGM2
0 andGM3

0 and, finally,GM1
2 is the approximation value obtained from

the Romberg extrapolation usingC1, C2, C3 (or, equivalently, the value of the Richardson

extrapolation obtained by usingGM1
1 andGM2

1).

Note that, above we illustrated the extrapolation methods to accelerate the convergence of the

geometric mean obtained from our methodology to the original arithmetic mean. That means,

in the extrapolation methods we did not deal with the approximate option prices. Numerical

applications show that the error of our approximation can still be assumed to be of order 1/C

if we use option prices. Therefore, to use the extrapolation methods for ourapproximation

formulas of option price, we just need to replaceAM with the actual option price andGM(C)

with the approximate option price obtained from our method.

Note also that, extrapolation methods accelerates the convergence of our approximation method

to the limiting value, however that does not mean they accelerate the convergence to the cor-

rect option price since our method has a bias in some cases. However, it can be concluded

that, for the (deep-) out of money options extrapolation methods speed up the convergance

to the right value since in such options our closed-form formula generally underestimate the

option price.
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Example 6.8.1.Assume an arithmetic average basket call option with payoff depending on

the prices of 30 assets in a Black-Scholes market. Under the risk-neutralmeasure, let the

initial stock prices and the volatility parameters of the stock price processes be as follows:

Si(0) = 100− i (i = 1, ...,n),

σi = 0.2+ 0.008i (i = 1, ...,n).

In computations, we will take a maturity of 6 months for the option and assume the risk-free

rate and the strike price arer = 0.06 andK = 80.

For different values of shift parameterC we get the following option prices from our approx-

imation formula (6.4):

pGM(101) = 4.6446; pGM(102) = 5.7207; pGM(103) = 6.6970; pGM(104) = 6.8775;

pGM(105) = 6.8971; pGM(106) = 6.8990; pGM(107) = 6.8992; pGM(108) = 6.8992.

With four digits there is no difference between the values ofpGM(107) andpGM(108). There-

fore, it can be concluded that limiting price of our approximation method is veryclose to

6.8992.

To test the performance of extrapolation methods we use 4 different values of shift param-

eter: 102, 103, 104 and 105. The results of the Richardson extrapolation for the possible

pairwise usage of theseC values are given in Table 6.8. From the table it is clearly seen that

with increasingC values we get better results. When we useC = 104 andC = 105 in the

extrapolation method, we obtain the same results withpGM(108) in 4 digits.

C1 = 102 C2 = 103 C3 = 104 C4 = 105

C1 = 102 - 6.8055 6.8892 6.8982
C2 = 103 6.8055 - 6.8975 6.8991
C3 = 104 6.8892 6.8975 - 6.8992
C4 = 105 6.8982 6.8991 6.8992 -

Table 6.8:The results of the Richardson extrapolation for different pairwise usage of C values.

To illustrate the efficiency of the Romberg extrapolation we will use 3 values ofC. When

C = 102, C = 103 andC = 104 are used we get 6.8985, however when we useC = 102,

C = 103 andC = 105 we get 6.8992 which is the result ofpGM(108).

From the results it is seen that the Richardson and Romberg extrapolation methods accelerates
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the convergence of our approximation methods, however, there is no big difference between

these two methods.
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CHAPTER 7

CONCLUSION

In the last decade, CVaR has received considerable attention by the researchers since the

introduction of its linearization procedure by Rockafeller and Uryasev [48]. In this thesis,

we worked on some types of problems containing CVaR constraints. Firstly, we looked at

a particular investment problem where - besides stocks and bonds - the investor can also

include options (or more complicated, structured products) into a portfolio. Compared to the

Martinelli et al. [42] approach, we allow for intermediate payments of the securities and are

thus faced with a re-investment problem which turns the originally one-period model into a

(special kind of a) multi-period problem. We used the linearization procedure of Rockafeller

and Uryasev for the CVaR constraint and developed a method to deal with our multi-period

problem by solving a series of those one-period problems.

Our numerical results obtained from the solution of the problem uncoveredsome surprising

weaknesses of the use of VAR and CVaR as a risk measure. In the presence of the opportunity

to invest into options with relatively high strikes, using the option with the higher strike leads

to a higher expected return while keeping the risk constant. However, oursubjective feeling

of an increasing risk is much better matched by the use of the variance, although this is a

non-coherent risk measure.

Our investment decision problem can also be solved when we have more securities than the

ones assumed above. Each new security increases the number of the unknowns in the problem

just by one, therefore it increases the computation time in a negligible level. In particular,

we can also deal with more than just two periods in our optimization problem. However,

here the outer optimization loop(s) for obtaining the optimal re-investment strategy gets more

complicated. Each additional time period will add one more outer loop, consequently finding
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the solution of the optimization problem will take longer.

In the next step, we focused on a type of quantile hedging problem. Although the investors

have the opportunity to stay on the safe side by using a hedging or super-hedging strategy, they

are generally unwilling to put up the initial amount of capital required for a hedge or a super-

hedge strategy. In this case, the quantile hedging might be reasonable forsome investors.

We constructed an optimization problem with the objective of maximizing the probability

of having a higher value for liquid assets than that for the liabilities at a pre-specified time.

In our problem, we only considered the liquid assets since we aimed to construct a strategy

strengthening the liquidity of the investor, which is also a convenient problemconstruction

for meeting the Liquidity Coverage Ratio requirement of Basel III Accord.Since the quantile

hedging is not a perfect hedge, a non-negative probability for havinga liability value higher

than the asset value exists. As the shortfall amount between the liability and theasset val-

ues effects the cost of financing, we used a CVaR constraint to control the probable deficient

amount. Under the assumption of a Black-Scholes market where the assets and the liabilities

are log-normally distributed, to calculate the probability placed in our objectivefunction we

had to deal with the problem of finding the distribution of summation of the log-normal dis-

tributions. It is know that the sum of the log-normal distributions has no specific distribution.

To get ride of this problem, some log-normal sum approximation methods are proposed in the

literature. We have introduced a new, simple and efficient method to approximate the sum of

the log-normal distributions using shifted log-normal distributions. Our methodis based on a

limiting approximation of the arithmetic mean by the geometric one. In our method, we shift

each log-normal distribution by a sufficiently big positive constant and then approximate the

resulting shifted log-normal distribution by a log-normal distribution having samemoments.

This method causes a sharp decrease in the relative variation inside the stock prices and there-

fore enables us to replace the arithmetic mean by the geometric mean which has a closed form

representation. Using our approximation method we reduced our quantile hedging problem

to a simpler optimization problem.

Our log-normal sum approximation method could also be used to price some options an the

Black-Scholes model. We have derived closed analytical approximation formulas for the

prices of the arithmetic average basket and Asian options. Numerical applications show that

our approximation method gives very accurate results when we have small variances for the

stock prices. If variances of the stock prices are high then we still get reasonable approximate
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prices but the quality of the approximation is not sufficiently good for the use of the analytical

formulas as substitute for Monte-Carlo simulation. However, using the new approximation

method in a Monte-Carlo control variate approach results in very accurateand very efficient

results. In this case, our control variate method is at lease comparable with the well know

control variate methods from the literature and outperforms them when thereexists a relative

variation inside the expected values of prices at maturity time. Note that, our methodology is

not limited to this market model. The same methodology could always be used whenoptions

on the approximating geometric averages admit a closed-form option price representation.

Our closed form approximation formulas of the option price are generally exhibit the same

characteristic. They generally overestimate the price when we use (deep-) in-the-money op-

tions, underestimate the price when we use (deep-) out-of-money options and give better

estimates when we use at-the-money options. Therefore, as a future study, it might be pos-

sible to define a correction term for our closed form approximation formulas. Furthermore,

we are planning to assess the efficiency of our log-normal sum approximation method and the

formulas in risk management, by the use of theGreeksand by the use of different problem

constructions.

73



REFERENCES

[1] C. Acerbi, D. Tasche,On the Coherence of Expected Shortfall, Journal of Banking and
Finance, 26(7):1487-1503, 2002.

[2] P. Artzner, F. Delbaen, J.-M. Eber, D. Heath,Thinking Coherently, Risk, 10:68-71, 1997.

[3] P. Artzner, F. Delbaen, J.-M. Eber, D. Heath,Coherent Measures of Risk, Mathematical
Finance, 9(3):203-228, 1999.

[4] Bank for International Settlements,Principles for Sound Liquidity Risk Management
and Supervision, 2008 (http://www.bis.org/publ/bcbs144.pdf).

[5] Bank for International Settlements,Basel III: International framework for
liquidity risk measurement, standards and monitoring, December 2010
(http://www.bis.org/publ/bcbs188.pdf).

[6] Bank for International Settlements,Basel III: A global regulatory framework for more
resilient banks and banking systems, June 2011 (http://www.bis.org/publ/bcbs189.pdf).

[7] F. Black, J. C. Cox,Valuing Corporate Securities: Some Effects of Bond Indenture Pro-
visions, Journal of Finance, 31(2):351-367, 1976.

[8] F. Black, M.S. Scholes,The pricing of options and corporate liabilities, Journal of Po-
litical Economy, 81:637-653, 1973.

[9] A. Blundell-Wignall, Structured Products: Implications for Financial Markets, ISSN
0378-651X, OECD, 2007.

[10] C. Brezinski, M. Redivo Zaglia,Extrapolation methods: Theory and practice, Elsevier
Science Publishing Company Inc., 1991.

[11] J. Burke, Linear Optimization, Lecture notes (downloaded from
http://www.math.washington.edu/ burke/crs/407/notes/ in September 2012).

[12] X. Chen, G. Deelstra, J. Dhaene and M. Vanmaele,Static super-replicating strategies
for a class of exotic options,Insurance: Mathematics and Economics , 42:1067−1085,
2008.

[13] M. C. Chiu, D. Li, Asset and Liability Management Under a Continuous-Time Mean-
Variance Optimization Framework, Insurance: Mathematics and Economics, 39(3):330-
355, 2006.

[14] R. Cont, P. TankovFinancial Modelling With Jump Processes, Chapman & Hall/CRC,
2004.

[15] M. Curran,Valuing Asian and portfolio options by conditioning on the geometric mean
price, Management Science, 40:1705-1711, 1994.

74



[16] F. Delbean,Coherent Measures of Risk on General Probability Spaces, ETH Zurich,
2000.

[17] G. Deelstra, J. Liinev and M. Vanmaele,Pricing of arithmetic basket options by condi-
tioning, Insurance: Mathematics and Economics, 34:55-77, 2004.

[18] K. Down,An Introduction to Market Risk Measurement, John Wiley & Sons, 2002.
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APPENDIX A

Approximate pricing of arithmetic average Asian options

A.1 Approximate pricing by using the parameters of the shifted price process

at maturity

Firstly, we shift the random variableS(T) by a sufficiently big positive constantC to obtain

the random variableY(T) := S(T)+C that has a shifted log-normal distribution with expected

valueE(S(T)) + C and varianceVar(S(T)). Then, we approximate this shifted log-normal

distribution by a log-normal distributionY∗(T) having the same mean and variance withY(T).

The parameters of theY∗(T) are given by

µ̃ = log


[E(S(T)) +C]2

√
[E(S(T)) +C]2 + Var(S(T))


,

σ̃2 = log

(
1+

Var(S(T))

[E(S(T)) +C]2

)
.

SinceY∗(T) follows log-normal distribution it can be written in the form of a geometric Brow-

nian motion as

dY∗(t) = Y∗(t){αdt+ γdB(t)},

where

γ =
σ̃
√

T
, α =

µ̃ − log(S(0)+C)
T

+
γ2

2
,

andY∗(0) = S(0)+C. We then replace the final payment of the discrete fixed-strike arithmetic

average Asian option by that of discrete fixed-strike geometric average Asian option having

strike priceK +C and payoff

B1 =




n∏

i=1

Y∗(ti)


1/n

− (K +C)



+

,

and end up with the approximate pricing formula (6.6).
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A.2 The price obtained by shifting the price process at each time point

Here, we determine the input parameters for the Black-Scholes type formulaby using all

stock prices entering the average. For eachi, we define a new random variableXi having a

log-normal distribution with meanE(S(ti)) and varianceVar(S(ti)). Then the random vari-

ableYi := Xi +C has a shifted log-normal distribution and we approximate it by a log-normal

distributionY∗i , having the same expected value and variance. Then, the corresponding pa-

rameters of this log-normal distribution are

µ̃i = log


[E(S(ti)) +C]2

√
[E(S(ti)) +C]2 + Var(S(ti))


,

σ̃i
2 = log

(
1+

Var(S(ti))

[E(S(ti)) +C]2

)
.

Each log-normal distribution with parameters ˜µi andσ̃i
2 as defined above corresponds to the

geometric Brownian motion

dY∗i (t) = Y∗i (t){αidt+ γidBi(t)},

with

γi =
σ̃i√

ti
, αi =

µ̃i − log(S(0)+C)
ti

+
γ2

i

2
,

and Y∗i (0) = S(0) + C for i = 1, ...,n. Here, the Brownian motionsBi shall be taken as

correlated with each other since the original option is path dependent. Moreprecisely, the

priceS(ti) is given as the product ofS(ti−1) and the randomness betweenti−1 andti . Therefore,

the price at timeti is also affected by the randomness prior toti−1, or equivalently, by the

randomness contained inS(ti−1). If we denote the randomness realized in the time interval

(ti−1, ti ] by Zi , then the priceS(ti) will be depended onZ1,Z2, ...,Zi for all i.

We need to transfer the correlation structure to the new stock price process in such a way that

the total effect of the correlation structure to the option price shall be preserved in thenew

construction. We could achieve this by preserving the original covariance structure between

the stock prices in our new environment. We thus obtain


n∏

i=1

Y∗i


1/n

= (S(0)+C) e
1
n

∑n
i=1

{(
αi−

γ2
i
2

)
ti+γi Bi (ti )

}

= (S(0)+C) em+νZ,
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whereZ has a standard normal distribution and

m =
1
n

n∑

i=1

αi ti ,

ν =
1
n

√√√ n∑

i=1

γ2
i ti + 2

n∑

i, j

min{i, j}γiγ j(ti − ti−1)1/2(t j − t j−1)1/2.

We then replace the final payment of the discrete fixed-strike arithmetic average Asian option

by that of a discrete fixed-strike geometric average Asian option having strike priceK+C and

payoff

B2 =




n∏

i=1

Y∗i


1/n

− (K +C)



+

with a sufficiently big constantC, which enables us to end up with the approximate pricing

formula (6.7).
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APPENDIX B

Richardson extrapolation with the use of relative error

In this part, we will assume that the relative error of our approximation is of order 1/C, that is

AM −GM(C)
AM

= K
1
C
+O

(
1

C2

)
,

whereK is a constant.

If we take two values ofC, namely,C1 andC2, then we have

AM −GM(C1)
AM

= K
1

C1
,

AM −GM(C2)
AM

= K
1

C2
.

Multiplying the first equation by−1 and the second equation byC2/C1, and then summing up

the equations we get

AM(C1,C2) =
C2
C1

GM(C2) −GM(C1)
C2
C1
− 1

,

which is same as the equation obtained using absolute error.

To find theC value achieving a relative error aboutε, again take two values ofC, namelyC1

andC2. Then,

AM −GM(C1)
AM

= K
1

C1
,

AM −GM(C2)
AM

= K
1

C2
.

Multiplying the first equation by−GM(C2)/GM(C1) and then summing up the equations we

get

K =

GM(C2)
GM(C1) − 1

1
C1

GM(C2)
GM(C1) −

1
C2

.
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Since in our approximation method the relative error is aboutK(1/C) then theC value achiev-

ing a relative error aboutε can be calculated from

K
1
C
= ε,

which implies

Copt =

GM(C2)
GM(C1) − 1

1
C1

GM(C2)
GM(C1) −

1
C2

ε−1.
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