
1



ON PROVABLE SECURITY OF SOME PUBLIC KEY ENCRYPTION SCHEMES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TURGUT HANOYMAK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

CRYPTOGRAPHY

SEPTEMBER 2012



Approval of the thesis:

ON PROVABLE SECURITY OF SOME PUBLIC KEY ENCRYPTION SCHEMES

submitted by TURGUT HANOYMAK in partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy in Department of Cryptography, Middle East Technical
University by,

Prof. Dr. Ersan Akyıldız
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
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ABSTRACT

ON PROVABLE SECURITY OF SOME PUBLIC KEY ENCRYPTION SCHEMES

Hanoymak, Turgut

Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Ersan Akyıldız

Co-Supervisor : Assist. Prof. Dr. Ali Aydın Selçuk

September 2012, 59 pages

In this thesis, we analyse the security criteria of some public key encryption schemes. In

this respect, we present the notion of adversarial goals and adversarial capabilities. We give

the definition of provably security by means of several games between the challenger and the

adversary in some security models, namely the standard model and the random oracle model.

We state the main differences between these two models and observe the advantage of the suc-

cess probability of the adversary in breaking the cryptographic schemes. We search the ways

of making more efficient and provably secure encryption schemes under weak assumptions.

In this context, we examine the constructions of some public key encryption schemes such

as RSA, ElGamal, Cramer-Shoup, Paillier, Damgard and finally Zheng-Seberry schemes and

discuss under which circumstances they satisfy which security notions. Finally, we modify

one of the schemes proposed by Zheng-Seberry -which is based on ElGamal signature- by

adapting Schnorr signature in order to enhance the efficiency and give a rigorous proof of

security in the random oracle model.

Keywords: public key encryption, provable security, standard model, random oracle model

iv



ÖZ

AÇIK ANAHTAR ŞİFRELEME SİSTEMLERİNİN İSPATLANABİLİR GÜVENLİĞİ

Hanoymak, Turgut

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ersan Akyıldız

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Ali Aydın Selçuk

Eylül 2012, 59 sayfa

Bu tezde, bazı açık anahtar şifreleme sistemlerinin güvenlik kriterlerini analiz ediyoruz. Bu

anlamda, sistemi kırmaya çalışanın amacını ve bu amaca yönelik kapasitelerini sunuyoruz.

Standart modelde ve rastgele kahin modelinde sistem kırıcı ile oynanan çeşitli oyunlar va-

sıtasıyla ispatlanabilir güvenliğin tanımını veriyoruz. Bu iki model arasındaki esas fark-

ları belirtiyoruz ve kriptografik sistemlere saldıran düşmanın başarı olasılığının avantajını

gözlemliyoruz. Zayıf varsayımlar altında verimli, pratikte kullanışlı ve güvenliği ispatlanmış

sistemler yapmanın yollarını arıyoruz. Bu amaç doğrultusunda RSA, ElGamal, Cramer-

Shoup, Paillier, Damgard ve son olarak Zheng-Seberry açık anahtar şifreleme sistemlerinin

yapılarını inceliyoruz ve bu sistemlerin hangi durumlarda hangi güvenlik notasyonlarını sağ-

ladıklarını açıklıyoruz. Son olarak, Zheng-Seberry’in önerdiği ElGamal imzasına dayanan

sistemi Schnorr imza algoritması kullanarak modifiye ederek daha etkili bir sistem elde edi-

yoruz ve bu sistemin rastgele kahin modelinde güvenli olduğunu ispatlıyoruz.

Anahtar Kelimeler: açık anahtar şifrelemesi, ispatlanabilir güvenlik, standard model, rastgele

kahin modeli
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CHAPTER 1

INTRODUCTION

“Better know nothing than half-know many things.”

Friedrich Nietzsche

Throughout the last century, especially with the beginning of public key cryptography due to

Diffie-Hellman [14], many cryptographic schemes have been proposed and it is significant to

note that their security depends on some mathematically hard problems such as the integer

factorization problem, RSA problem and knapsack problems. In fact, many people think that

a cryptographic algorithm is assumed to be secure if it resists to cryptographic attacks for a

long time. However, some schemes may take several years before widely studied in details so

it is possible to be broken in the future such as the Chor-Rivest system based on the knapsack

problems.

Later, cryptographic researchers are focused on trying to provide provable security for pub-

lic key cryptographic algorithms in a complexity theory. The idea of provable security was

first introduced by Goldwasser-Micali [19] and the notion of semantic security which is also

called polynomial indistinguishability was defined. Later, Naor and Yung introduced a more

severe security notion called security against non-adaptive chosen ciphertext attacks which is

also called lunch time attacks denoted by CCA1 [27]. In this attack model, an adversary is

given a decryption oracle and may access only before getting the challenge ciphertext. Hence,

the ciphertexts queried to the decryption oracle are uncorrelated with the challenge one but

they may be related with one another. Rackoff and Simon [34] improved this type of attack

model and introduced the strongest notion of security which is called security against adap-

tive chosen ciphertext attacks denoted by CCA2. In this attack model, the attacker may query

the decryption oracle before and after getting the challenge ciphertext. So, the ciphertexts
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queried to the decryption oracle may related with the challenge ciphertext. They presented

cryptosystems whose security proofs are based on noninteractive zero knowledge proof tech-

niques which are horribly inefficient due to the fact that multiple gigabytes of ciphertext may

be needed to encrypt a single bit of plaintext. Dolev, Dwork and Naor proposed a notion

of non-malleability cryptography [15] meaning that the adversary who observes a ciphertext

C of plaintext P, cannot modify it consciously and obtain a valid ciphertext C′ of a plain-

text P′ which is related to P where this relation is known by the adversary. Fujisaki and

Okamoto [17] gave a generic construction from a one way trapdoor function which is se-

cure against chosen plaintext attacks to a public key encryption scheme secure against chosen

ciphertext attacks. Damgard [11] first initiated efficient and simply constructed public key

encryption schemes which are secure against nonadaptive chosen ciphertext attacks based on

Diffie-Hellman/ElGamal public key cryptosystems. Zheng and Seberry [39] proposed three

immunizing methods to make public key encryption schemes secure against adaptive chosen

ciphertext attacks by appending a tag to each ciphertext which is related to the message. These

immunizing methods are encrypting using with one way hash function Cowh, with universal

hash family and with ElGamal digital signature adaptation, Csig. They are different from each

other at the point of tag generation. Zheng and Seberry also introduced sole-samplability

security notion which is especially related to chosen ciphertext attacks. Informally, it means

that there is no other way to generate ciphertext y than to pick a message x first and compute

y = E(x), i.e., there is no way to generate valid ciphertexts without knowing the underlying

plaintexts. They also prove that if a scheme is sole-samplable, then the cryptosystem is se-

mantically secure against adaptively chosen ciphertext attacks if and only if it is semantically

secure against chosen plaintext attacks.

Although Cowh is efficient and has a simple design, it is shown to be insecure against known

plaintext attacks [38] and also the authentication capability fails shown by Lim and Lee [25].

This is because the tags are computed as a function of the message alone whereas this at-

tack cannot be applied to Csig, since the random numbers used to generate a seed are also

involved in generating a tag. Lim and Lee also presented another method for attaining se-

curity against adaptive chosen ciphertext attacks and this method is useful for an application

to group oriented cryptosystems [12]. In this method, the deciphering algorithm first checks

that the ciphertext is legitimate and then outputs the matching plaintext only when the check

is successful. This is different from Zheng-Seberry method where the deciphering algorithm

2



first recovers the plaintext and then outputs it only when the checking condition on it is sat-

isfied. To overcome this vulnurability of Cowh, and the other immunizating methods, Zheng

[40] improved the tag generation methods by adding some randomness to the input of the

hash function being used to get ciphertexts and also noted that if Schnorr signature [36] is

adapted instead of ElGamal in Csig, a more efficient scheme can be obtained.

In provably security, the security is proved via a reduction method. For this, we first con-

sider a computationally hard underlying mathematical problem P which is well known to be

intractable by any probabilistic polynomial time algorithm. Then, we provide a polynomial

reduction from this mathematical problem to the problem P′ of breaking the cryptosytem.

Finally, we decide that if there exists an algorithm A breaking the cryptosystem in polyno-

mial time, then we can build a probabilistic polynomial time algorithm A′ which uses A as

a subroutine, to get a contradiction. Therefore, we state that the scheme is computationally

secure.

Such security proofs in the standard model suffer from efficiency and hence up to date very

few practical public key schemes can be proven secure in the standard model. But, Cramer

and Shoup [9] proposed such a scheme which is quite practical and is provably secure against

adaptive chosen ciphertext attacks under standard intractability assumptions. Because of in-

efficiency to prove the security in the standard model, researchers tried to provide security

proofs of public key encryption schemes in an efficient way. First attempt came from Bellare

and Rogaway [4]. They proposed a model, namely the random oracle model as a counterpart

to the standard version. In this model, hash functions are considered behaving like truely

random functions. Hence, it is reasonable to model a secure hash function as a completely

random function in a security analysis. This mostly reduces the process of proving security

of cryptographic scheme. By doing so, we know that the output of the hash function is com-

pletely random and independently generated values on different inputs. Therefore, adversary

can get no advantages about the outputs for any other inputs although he knows the hash

values for several different inputs. The RO model gives an opportunity for the designer of

the scheme to construct the responses about the outputs in order to prove the security of the

scheme, i.e, we may control the attacker’s behavior which is imposibble in the real world.

We note that the schemes with security proofs in the random oracle model may not be neces-

sarily secure when the hash function is fixed. Canetti et al. [8] showed that it was possible to
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construct an encryption scheme that was provably secure in the random oracle model but inse-

cure when the random oracle was instantiated with any hash function. In the standard model,

the attacker knows the description of the hash function and then submits it to the decryption

oracle as a ciphertext and the oracle outputs the secret key. So, their scheme is completely

artificial.

Baek and Zheng [3] was able to prove that the modified version of Cowh, is secure against

adaptive chosen ciphertext attacks in the random oracle model under the gap Diffie-Hellman

assumption [28].

In this thesis, we focus on one of the three immunizing methods presented by Zheng and

Seberry [39], namely Csig and following Zheng’s idea, we modify the Csig scheme by adapting

the Schnorr signature [36] instead of ElGamal signature [16] and prove that the modified

version Cmsig is provably secure against adaptive chosen ciphertext attacks in the random

oracle model under the gap Diffie-Hellman assumption.

This thesis is organized as follows:

In Chapter 2, we review the security notions on public key encryption schemes and discuss

security models in terms of adversarial goals and adversarial capabilities. Then we give some

probabilistic public key encryption schemes and show that under which assumptions they

satisfy which security notions.

In Chapter 3, we discuss the random oracle model and the standard model which are the main

tools for security analysis. Then we give game hopping technique. This technique is useful

when proving security via a sequence of games such that successive games are indistinguish-

able from the view of the adversary and this indistinguishability is related to the underlying

mathematically hard problems. We mention some concrete security proofs of several public

key encryption schemes. We briefly mention about Fujisaki and Okamoto’s construction and

propose a shortcut in this construction by checking the consistency of the ciphertext using

the random value instead of requiring re-encryption and investigate for which probabilistic

encryption schemes satisfy this construction.

In chapter 4, we deal with the active attacks and construction methods for public key encryp-

tion schemes. These methods are utilized to make the schemes secure against adaptive chosen

ciphertext attacks. We also analyse the structure of the schemes and explain which security

4



notion they satisfy under which circumtances. Finally, we focus on Csig encryption scheme

and modify it with Schnorr signature, then we give a rigorous proof of security against chosen

ciphertext attacks in the random oracle model.

In chapter 5, we complete the thesis with conclusion part.
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CHAPTER 2

SECURITY NOTIONS AND PUBLIC KEY ENCRYPTION

SCHEMES IN THE STANDARD MODEL

“Intelligence plus character - that is the goal of true education.”

Martin Luther King

In this chapter, we review security models in terms of the adversarial goals and the adversarial

capabilities. We define what security actually means to decide whether a scheme is secure.

In this respect, we investigate some public key encryption schemes. Finally, we discuss the

Cramer-Shoup encryption scheme [9] which is the first efficient and practical scheme proven

to be secure against adaptive chosen ciphertext attacks in the standard model.

2.1 Public Key Encryption Scheme

Definition 2.1.1 A public key encryption scheme is a tuple of probabilistic polynomial time

algorithms Π = (Gen, Enc,Dec) such that:

1. The key generation algorithm Gen takes as input the security parameter and outputs a

pair of public and secret keys (pk, sk).

2. The encryption algorithm Enc takes as input a public key pk and a message m from

some underlying plaintext message space. It outputs a ciphertext c, i.e, c = Encpk(m).

3. The decryption algorithm Dec takes as input (sk, c) and outputs a message m or ⊥. We

denote it by m = Decsk(m).

6



We note that Enc may be probabilistic but Dec must be deterministic and it is required for

any encryption scheme to be valid,

Decsk(Encpkm) = m

is satisfied.

2.1.1 Success Probability of The Adversary

We decide that a cryptographic scheme is secure if the success probability of an adversary

trying to break the scheme is small. This notion is achieved by negligible functions.

Definition 2.1.2 A function ε : N −→ R+ ∪ 0 is negligible, if for every positive polynomial p,

there exists an integer kp such that

for all n > kp, we have ε(n) <
1

p(n)
.

In other words, a negligible function approaches zero faster than the inverse of any polyno-

mial. We denote this function by negl in the following sections.

2.2 Security Models

In the cryptography literature, there are several adversarial goals and capabilities. When we

talk about the security of a cryptographic scheme, we need to define them clearly. As the goal

becomes more difficult or as the capabilities are more limited, the security proof becomes

easier. First, we review some adversarial goals and capabilities related to them, then give

proof techniques of some public key encryption schemes in the standard model.

2.2.1 Adversarial Goals

2.2.1.1 One-Wayness

This is a weak kind of adversarial goal where the purpose of the adversary is to reveal the

whole plaintext m of a particular ciphertext c. However, this is an extremely weak notion
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of security because revealing almost all of the plaintext is considered to be unsuccessful ac-

cording to this definition but actually in almost all systems revealing the plaintext partially is

considered successful. This goal is defined via a game between the adversary and the chal-

lenger as follows:

Game 1 The One Wayness Game: PubKow
A,Π

1: Gen is run to obtain the keys (pk, sk)

2: m is chosen at random from message space

3: The challenge ciphertext c = Encpk(m)

4: Adversary A is given pk and c to produce m′ = A(pk, c)

5: The output of the game is defined to be 1 if m
′

= m and ⊥ otherwise.

A more convincing adversarial goal namely, indistinguishability, which focuses on keeping

the entire plaintext information secret, is given below:

2.2.1.2 Indistinguishability

This goal focuses on keeping the entire plaintext information secret and it is the most popular

adversarial goal. In this goal, the adversary selects two plaintexts of his choice and sends them

to an hypothetical challenger who has the secret key. The challenger randomly selects one of

the messages, encrypts it and sends the challenge ciphertext back to the adversary. Here, the

goal of the adversary is to find out which of the plaintexts has been selected by the challenger.

Game 2 IND-CPA Game: PubKind−cpa
A,Π

1: Gen is run to obtain public and secret keys (pk, sk).

2: Adversary A is given pk, outputs a pair of messages (m0, m1) of equal length.

3: A random bit b ∈ (0, 1) is chosen, the challenge ciphertext c = Encpk(mb) is computed

and given to A.

4: A outputs a bit b
′

.

5: The output of the game is defined to be 1 if b
′

= b and 0 otherwise.

Remark 2.2.1 We note that the encryption algorithm has to be probabilistic although the

decryption algorithm is always deterministic. Because, otherwise, the adversary can encrypt
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both plaintexts that he has chosen and compare the resulting ciphertexts to the challenged

one which would be a trivial solution.

Remark 2.2.2 Indistinguishability means that a ciphertext gives semantically no information

about the plaintext. In other words, whatever a passive adversary can compute about m given

the challenge ciphertext c, he can also compute without c. This is why it is also called semantic

security [19].

Definition 2.2.3 A public key encryption scheme Π = (Gen, Enc,Dec) is IND-secure against

chosen plaintext attacks if for all probabilistic polynomial time adversaries A, there exists a

negligible function such that

Pr[PubKcpa
A,Π = 1] ≤

1
2

+ negl.

2.2.1.3 Malleability

The notion of malleability is introduced by Naor et al. [15]. The goal of the adversary A

who observes a ciphertext c of plaintext m, cannot modify it consciously and obtain a valid

ciphertext c′ of a plaintext m′ which is related to m where this relation is known by the

adversary.

2.2.2 Adversarial Capabilities and Indistinguishability Games

There are several possible capabilities of an attacker in the public key setting depending on the

availability of the decryption oracle which is a hypothetical black box that is presented to the

attacker so that it can make decryption queries of its own choice and gets the corresponding

plaintexts. This captures the possible real life attacks that consist of attackers that has gained

temporary access to the decryption oracle. In this respect, there are three types of decryption

oracle access:

• CPA (Chosen Plaintext Attack): if there is no decryption oracle access at all, we call

this a chosen plaintext attack.

• CCA1 (Non-adaptive Chosen Ciphertext Attack, or lunchtime attack): Adversary A can

access the decrpytion oracle until it sees the ciphertext it needs to break.

9



• CCA2 (Adaptive Chosen Ciphertext Attack): Adversary A always has access to the

decryption oracle but querying the ciphertext it needs to break is prohibited.

Remark 2.2.4 Security against adaptive chosen ciphertext attacks is the most widely ac-

cepted level of security notion.

We explain them in Game 3 and Game 4.

Game 3 IND-CCA1 Game: PubKcpa
A,Π

1: Gen is run to obtain keys (pk, sk).

2: Adversary A is given pk, as well as oracle access to Decsk and outputs a pair of messages

(m0, m1) of equal length.

3: A random bit b ∈ (0, 1) is chosen, and the challenge ciphertext c = Encpk(mb) is computed

and given to A.

4: A continues to interact with Decsk before he gets the challenge ciphertext c and later it is

not allowed, then this kind of experiment is called CCA-1 or lunch time attacks.

5: The output is defined to be 1 if b
′

= b and 0 otherwise.

Game 4 IND-CCA2 Game: PubKcpa
A,Π

1: Gen is run to obtain keys (pk, sk).

2: Adversary A is given pk, as well as oracle access to Decsk and outputs a pair of messages

(m0, m1) of equal length.

3: A random bit b ∈ (0, 1) is chosen, and the challenge ciphertext c = Encpk(mb) is computed

and given to A.

4: A continues to have access to Decsk even after he sees the challenge ciphertext, but may

not request a decryption of the challenge ciphertext itself and finally outputs a bit b
′

.

5: The output is defined to be 1 if b
′

= b and 0 otherwise.

2.2.3 Computational Security and Reductions

Most of the security proofs in the literature are in the form of a reduction. Typically, a mathe-

matically hard problem M is reduced to breaking the scheme S that is assumed to be provable

secure. Existence of such a reduction implies that the problem of breaking the scheme S is

as hard as M. This implication stems from the following contraction argument: If there exist
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Figure 2.1: The reduction idea to prove security of public key schemes

a polynomial time algorithm A that breaks the scheme S , then due to this reduction, one may

construct a polynomial time algorithm B which uses A as a subroutine to solve M which is

assumed to be impossible. This is explained in Figure 2.1.

2.3 Security Analysis of Some Public Key Encryption Schemes

Before we review public key encryption schemes, we give some definitions which are utilized

throughout this chapter.

Definition 2.3.1 The set of integers {0, 1, 2, ..., N − 1} is defined as the integers mod N and

denoted by ZN .

Definition 2.3.2 The multiplicative group of ZN is

Z∗N = {a ∈ ZN | gcd(a, N) = 1}

2.3.1 The RSA Encryption Scheme

Rivest, Shamir, Adleman proposed this scheme due to the trapdoor one way permutation

property of the RSA function [35]. The key generation algorithm produces a large composite

number N = p · q where p and p are primes, a public key e and private key d such that

e · d = 1 mod φ(N) is satisfied. The encryption of a message m from Z∗N is an element of Z∗N ,

namely c = me mod N. One finds m using the secret key d by computing m = cd mod N.

11



Definition 2.3.3 (RSA problem) Let N = p · q where p and p are prime numbers. Let e be

an integer relatively prime to φ(N). The RSA problem states that for a given y ∈ Z∗N , compute

the e-th root of y, namely x, such that

y = xe mod N.

If the factorization of N is known, then the RSA problem can be easily solved.

RSA assumption: Given N = p · q, the RSA problem is intractable.

• This encryption scheme is one-way secure due to the RSA problem.

• Since RSA encryption is deterministic, it does not satisfy IND-CPA security notion

(i.e, semantic secure). It is because, given the challenge ciphertext c of either m0 or m1,

the adversary A simply computes c0 = me
0 mod N and c1 = me

1 mod N and checks the

resulting ciphertexts with the challenge one.

• RSA encryption scheme is vulnerable to a chosen ciphertext attack. If an adversary A

gets the challenge ciphertext c = me mod N, he can choose a random element r from

Z∗N and compute the modified ciphertext as c
′

= re · c mod N. Since c′ is different

from the challenge, A asks it to the decryption oracle, gives the decryption m
′

of this

ciphertext, then recovers m = m
′

· r−1 mod N.

• The scheme is malleable: Let the adversary A gets the challenge ciphertext c = me mod

N, then he is able to generate, for example, c′ = 2e ·c such that the underlying plaintexts

satisfy a relation m
′

= 2m This holds, because

(c
′

)d = (2e · me)d = 2ed · med = 2 · m mod N.

Remark 2.3.4 Bellare and Rogaway [5] proposed a padding scheme named Optimal Asym-

metric Encryption Padding which is often used with RSA encryption. It uses two random

oracles and achieves IND-CCA security with trapdoor one way permutation under the RSA

assumption in the random oracle model.

2.3.2 Rabin Encryption Scheme

Breaking a cryptographic scheme is not necessarily equivalent to solving the underlying math-

ematically hard problems. Rabin’s scheme is a counter example of it. If we know the fac-
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torization of N, then we can convert the RSA function and anybody can not invert it without

knowing p and q, i.e, RSA problem is polynomially reduced to factoring. It is conjectured

that there is no effective way except factorization to find the e-th roots modulo N. Rabin [33]

proposed an encryption function that could be proved to be invertible only by someone who

could factor N. This system is similar to RSA, ciptertext c is produced by squaring plaintext

m modulo N, i.e,

c = m2 mod N

where N = p · q and the squaring map is 4-1. So, Rabin finds all four square roots of a

ciphertext c.

The most important fact about Rabin encryption scheme is that it is in some sense provably

secure in reductionist argument meaning that if someone breaks the scheme and finds the

plaintext m from ciphertext c, then he is able to factor N.

• It is the first public key encryption scheme to be proposed with a reductionist security

argument.

• Since it is deterministic encryption, it does not satisfy IND-CPA security notion.

• As RSA encryption, it is also vulnerable to chosen ciphertext attacks, namely if an

adversary gets m, he is able to factor N.

2.3.3 Goldwasser-Micali Encryption Scheme

Goldwasser and Micali [19] introduced probabilistic encryption and proposed a scheme which

was proven secure in the sense of semantic security assuming the intractability of the quadratic

residuosity problem which is defined as follows:

Definition 2.3.5 (Quadratic Residues) Let N be any positive integer and a ∈ Z∗N . a is said

to be a quadratic residue modulo N if there exists an x ∈ Z∗N , such that x2 ≡ a mod N and x is

a square root of a mod N. If no such x exists, then a is called a quadratic nonresidue modulo

N. We denote the set of all quadratic residues modulo N by QN , and the set of all quadratic

nonresidues by Q̄N .
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Definition 2.3.6 (Legendre Symbol) Let N = p be an odd prime, a is an integer such that

gcd(N, a) = 1. Then the Legendre symbol is defined to be(
a
p

)
=

 1, i f a ∈ Qp

−1, i f a ∈ Q̄p

Lemma 2.3.7 Let p be an old prime and a, b ∈ Z∗p. Then(
ab
p

)
=

(
a
p

) (
b
p

)
.

Definition 2.3.8 (Jacobi symbol) The Jacobi symbol is an extension of the Legendre symbol

for composite N = p · q defined as ( a
N

)
=

(
a
p

) (
a
q

)
where p, q are prime numbers and a ∈ Z∗N .

Remark 2.3.9 Given a and N (with unknown factorization), it is possible to compute the

Jacobi symbol of a in polynomial time.

Definition 2.3.10 (Quadratic Residuosity Problem: QRP) Given N = p · q and a ∈ Z∗N
with ( a

N

)
= 1

decide whether a is quadratic residue mod N.

Quadratic Residuosity Assumption: Given N = p · q with unknown factorization, the QRP

is intractable.

Remark 2.3.11 If p, q are known and N = p ·q, then there exists a polynomial time algorithm

to decide whether a is quadratic residue mod N.

G-M encryption scheme works on bits. To encrypt m ∈ (0, 1), one first selects a quadratic

nonresidue y ∈ ZN satisfying
(

y
N

)
= 1. Then choosing a random value r ∈ Z∗N and produces

the challenge ciphertext

c = ymr2 mod N.

The receiver decides the plaintext m is 0 if c is a square, otherwise it must be 1 using the

factors of N = p · q.
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Remark 2.3.12 Although, G-M encryption scheme is the first probabilistic encryption scheme

satisfiying semantic security, efficiency does not hold because of ciphertext expansion.

2.3.4 ElGamal Encryption Scheme

Before we give the description of the scheme, we recall some mathematically hardness as-

sumptions and relations between them.

Definition 2.3.13 (The Discrete Logarithm Problem: DLP) Let G be a finite, multiplica-

tive group of order q with a generator g. The DLP asks x given a group element h = gx.

The Discrete Logarithm Assumption: The DLP is intractable in the underlying group G.

We formally show this via adversarial view as the following: For any polynomial time adver-

sary A, the probability that

Pr[x = A(G, q, g, h) : gx = h]

is negligible.

Definition 2.3.14 (The Computational Diffie-Hellman Problem: CDH) Let G be a finite,

multiplicative group of order q with a generator g. Given two elements of G, gx and gy, it is

required to find gxy.

The Computational Diffie-Hellman Assumption: The CDH problem is intractable in the

underlying group G.

Definition 2.3.15 (The Decisional Diffie-Hellman Problem: DDH) Let G be a finite, mul-

tiplicative group of order q with a generator g. Given three elements of G, (gx, gy, gz), it is

asked to find whether xy = z mod q.

The Decisional Diffie-Hellman Assumption: The DDH problem is computationally hard in

the underlying group G.

This assumption can also be represented in terms of probabilities as follows: Let D be a

polynomial time algorithm which is designed for deciding whether a three-tuple is a DDH
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tuple, and let

Pr[D(gx, gy, gxy) = 1] − Pr[D(gx, gy, gz) = 1]

where x, y, and z are selected randomly from Zq is defined as the advantage of D in distin-

guishing a DDH tuple distribution from a random one. The DDH assumption assumes that

this advantage is negligible.

Remark 2.3.16 The three assumptions are related with each other such that if there exists

a polynomial time algorithm A solving DLP with non-negligible probability, then using this

algorithm as a subroutine, one can construct an efficient algorithm B for CDH problem and

moreover, running B as a subroutine, there exists an algorithm C for DDH problem which

solves it in a polynomial amount of time. Hence, we decide that DDH assumption is the

strongest one.

We review the ElGamal encryption scheme [16] whose security is based on the DLP. Let G

be a finite cyclic group of order q with generator g. The secret and the public keys are x and

y = gx, respectively. To encrypt m ∈ G, the sender chooses a random r ∈ Zq and produces the

challenge ciphertext

c = (c1, c2) = (gr, yr · m).

The receiver gets m by calculating c2/c1
x.

We note that it is hard to find x, given y = gx under the discrete logarithm assumption but this

does not guarantee the security of semantic notion sense. If we work on some groups such as

for a prime p, Z∗p, where DLP holds, then there exists a polynomial time adversary violating

the semantic security as follows:

• Adversary selects two messages m0 and m1 of equal length such that one of them is

quadratic residue and sends them to the challenger.

• Given the challenge ciphertext c = (c1, c2) where c1 = gr and c2 = yrmb, it is easy to

distinguish which m is chosen. If c1 or y are quadratic residues, then at least r or x must

be even, hence yr is also quadratic residue. So, upon receiving c2, one can determine

whether mb is quadratic residue. If yr is a not a residue but c2 is residue, then mb is
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also a non residue. Hence, the semantic security of the scheme fails under the discrete

logarithm assumption.

We state a well known theorem about the semantic security of the ElGamal encryption scheme

[23].

Theorem 2.3.17 Under the DDH assumption, ElGamal encryption scheme is semantically

secure.

Proof. The proof is done by using the reductionist argument such that assuming there exists a

polynomial time adversary A breaking the scheme, then we can construct a polynomial time

algorithm B using A as a subroutine and solve the DDH problem which is a contradiction

under the DDH assumption, hence we conclude that this scheme is semantically secure.

The inputs to B is (G, q, g1, g2, g3, g4), where (g1, g2) is the public key. B gives the public key

to A and asks to get messages (m0, m1) of equal length. B selects a bit b ∈ (0, 1) randomly,

produces the challenge ciphertext c = (g3, g4 · mb) and runs A(pk, c) to obtain b′ of a guess

for b. Finally, B outputs 1 if and only if b = b′. Since the DDH assumption holds in G and B

is a PPT algorithm, we have∣∣∣Pr[B = 1 | DDH tuple] − Pr[B = 1 | Random tuple ]
∣∣∣ ≤ 1

2
+ negl.

If the input to B is a DDH tuple, then we have

Pr[B = 1 | DDH tuple] = Pr[Success of A in breaking the scheme].

When DDH tuple occurs, we have g2 = gx
1, g3 = gr

1 and g4 = gxr
1 = gr

2 for some x, r ∈ Zq. But

this is exactly ElGamal encryption scheme in real life so B outputs 1 if and only if A succeeds

in breaking the scheme. To complete the proof, we show that

Pr[B = 1 | Random tuple] =
1
2

is satisfied. In this case, g4 is uniformly distributed in G and it is independent of g1, g2 or

g3. So the second component given to A is uniformly distributed in G and independent of

m. Thus, A has no information about b, therefore, there is no way other than predicting with

probability 1
2 . �
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Remark 2.3.18 Like RSA and Rabin encryption schemes, ElGamal encryption scheme is also

vulnerable to adaptive chosen ciphertext attacks. When adversary A gets the challenge cipher-

text c = (c1, c2), he can modify it by randomly selecting m′ and getting c′ = (c1, c2 ·m′). Since

this is different from the challenge, he can ask it to the decryption oracle and by dividing the

returned answer by m′, he can get the plaintext m.

Remark 2.3.19 Damgard proposed [11] a slight modification of ElGgamal encryption scheme

by just adding an exponentiation to ciphertexts to provide security against nonadaptive cho-

sen ciphertext attacks. But it is vulnurable to an IND-CCA2 attacker. In 2008, Desmedt and

Duong [13] showed that by employing a data encapsulation mechanism to

Damgard’s ElGamal scheme resulting in hybrid Damgard’s ElGamal encryption and is se-

cure against adaptive chosen ciphertext attacks in the standard model.

2.3.5 Cramer-Shoup Encryption Scheme

We discuss about the Cramer-Shoup public key encryption scheme which is the first efficient

scheme proven to be secure against adaptive chosen ciphertext attacks under the DDH as-

sumption in the standard model. It is an extension of the ElGamal encryption scheme. We

summarize the proof techniques below, and inform that all the details and reductions can be

found in [9, 22].

2.3.5.1 The Modified ElGamal Encryption

In this section, we review the modified ElGamal scheme and show that it is semantically

secure under the DDH assumption.

Let G be a finite, cyclic group of prime order q meaning that every element of G except the

identity is a generator. Let (g1, g2) be two generators and (x, y) be the secret keys randomly

chosen from Zq. The public key is h = gx
1 · g

y
2. To encrypt m ∈ G, one randomly chooses

r ∈ Zq and performs the challenge ciphertext:

c = (u, v, e) = (gr
1, gr

2, hr · m).

The receiver with secret key (x, y) decrypts c as follows:

e/ux · vy = hr · m/(gr
1)x · (gr

2)y = hr · m/(gx
1 · g

y
2)r = m.
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Theorem 2.3.20 If the DDH assumption is hard in G, then the modified ElGamal scheme is

secure against a CPA attacker.

Proof. We use the reductionist argument such that if there exists a polynomial time attacker

A breaking the semantic security of the modified scheme in non-negligible probability, then

we can construct a polynomial time algorithm B which is able to break the DDH assumption

by distinguishing a DDH tuple from a random one. B is given (g1, g2, g3, g4) as input.

x, y ∈ Zq are chosen randomly, h = gx
1 · g

y
2 is set as the public key and (g1, g2, h) is given to

A. A chooses (m0, m1) of equal length and sends them to B. B selects one of them, namely

mb and produces the challenge ciphertext (u, v, e) = (g3, g4, gx
3 · g

y
4 · mb) and send back to

A. A guesses a bit b′ for b. If b′ = b, then we decide that (g1, g2, g3, g4) is a DDH tuple,

otherwise, random one.

Claim 2.3.21 If the input to B is a DDH tuple, then A’s view is the same as in the real attack

game, i.e,

There exist α, r ∈ Zq such that:

(g1, g2, g3, g4) = (g1, gα1 , gr
1, gαr

1 = gr
2)

holds. Hence, the success probability of A in breaking the scheme is directly related to the

DDH assumption which is supposed to be intractable.

Claim 2.3.22 If the input to B is a random tuple, then b is theoretically hidden from the view

of A and the scheme becomes a one time pad encryption, hence the success probability is

nothing but 1/2 plus negligible probability.

Assume B gets a random tuple. Then there exists α, β, r which are randomly chosen from

∈ Zq such that the input (g1, g2, g3, g4) to B becomes (g1, g2 = gα1 , g3 = gr
1, g4 = gβ1).

Another saying of this, there exist r, r′ ∈ Zq with r , r′, g3 = gr
1 and g4 = gr′

2 . Given the

public key, (g1, g2, h), it is easily seen that there are exactly q possible pairs (x, y) that could

be chosen by A. Then we have

logg1h = x + αy.

19



We observe that for every x ∈ Zq, there is a unique y ∈ Zq satisfying this equation. So, there

are exactly q solutions due to the group order. Let us consider µ = gx
3 · g

y
4 where µ is an

arbitrary group element. By similar argument, we have

logg1µ = r · x + r′ · α · y.

We see that these form a system of linear equations and has a unique solution in (x, y). But µ

is an arbitrary group element so each possible value for µ is possible meaning that A can not

guess gx
3 · g

y
4 with non negligible probability. It seems like a one-time pad encryption. �

2.3.5.2 The Reduced Cramer-Shoup Encryption

In this section, we review the reduced Cramer-Shoup encryption scheme and show that it is

provably secure against non-adaptive chosen ciphertext attacks under the DDH assumption,

however, it is insecure against CCA2 attackers.

Let (g1, g2) be two generators of the group G and (x, y, a, b) be the secret key randomly

chosen from Zq. The public key is (h, c) = (gx
1 · g

y
2, ga

1 · g
b
2). To encrypt m ∈ G, one randomly

chooses r ∈ Zq and performs the challenge ciphertext:

c = (u, v, e, w) = (gr
1, gr

2, hr · m, cr)

On receiving the challenge ciphertext (u, v, e, w), there is a checking mechanism and the

receiver checks whether w = ua · vb. If so, output is e/ux · vy, else ⊥.

Correctness is satisfied, since

w = cr = (ga
1 · g

b
2)

r
= ua · vb

and

e/ux · vy = hr · m/(gr
1)x · (gr

2)y = hr · m/(gx
1 · g

y
2)r = m.

Theorem 2.3.23 Under the DDH assumption, the scheme is IND-CCA1 secure.

Proof. To prove this, as in the previous section, we use reductionist argument such that if there

exists a polynomial time attacker A breaking the semantic security of the reduced Cramer-

Shoup scheme with a nonnegligible success probability, then we can construct a polynomial
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time algorithm B which is able to break the DDH assumption by distinguishing a DDH tuple

from a random one. The important difference is that A has access decryption oracle and is

allowed to have polynomially many queries until getting the challenge ciphertext. B is given

(g1, g2, g3, g4) as input which is either a DDH tuple or a random tuple. A chooses (m0, m1) of

equal length and sends them to B. B selects one of them, namely mb, produces the challenge

ciphertext (g3, g4, gx
3 ·g

y
4 ·mb, ga

3 ·g
b
4) and sends it to A. Then, A guesses a bit b′ for b. Finally,

if b′ = b, then (g1, g2, g3, g4) is a DDH tuple, otherwise random one.

Claim 2.3.24 If the input to B is a DDH tuple, then A’s view is the same as in the real

encryption scheme.

If (g1, g2, g3, g4) is a DDH tuple, we can write g3 = gr
1 and g4 = gr

2 for a randomly selected

r ∈ Zq. Hence, the success probability of A in breaking the scheme is directly related to the

DDH problem which is supposed to be intractable.

Claim 2.3.25 If the input to B is a random tuple, then b is theoretically hidden from the view

of A and the scheme becomes a one time pad encryption, hence the success probability of A

guessing the true b is about 1/2 plus some negligible probability.

The proof is similar with the modified ElGamal scheme so we omit it and refer [9, 22] for

details, however we discuss below why this scheme is not secure against adaptive chosen

ciphertext attacks.

On receiving the challenge ciphertext (g3, g4, gx
3 · g

y
4 · mb, ga

3 · g
b
4), A computes

logg1w = a · logg1g3 + b · logg1g4 (2.1)

and from the public key c, A learns that

logg1c = a + b · logg1g2. (2.2)

From (2.1) and (2.2), A theoratically learns (a, b). Then, in particular, makes a query of the

form (gr
1, gr′

2 , e, (gr
1)a, (gr′

2 )b) and return m, thus we have;

logg1

e
m

= x · r + y · r′ · logg1g2 (2.3)
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from the public key h, A learns that

logg1h = x + y · logg1g2. (2.4)

Since (2.3) and (2.4) are linearly independent, A can compute the values of (x, y) and finally

decrypt the challenge ciphertext. �

2.3.5.3 The Full Cramer-Shoup Encryption

In the previous section, we analyse the reduced Cramer-Shoup version and briefly show that

it satisfies IND-CCA1 security under the DDH assumption but vulnerable against an CCA2

attacker. In order to make the scheme provably secure against adaptive chosen ciphertext

attacks in the standard model, a public collision-resistant hash function H which hashes ar-

bitrary length strings to Zq is used. Briefly, the full Cramer-Shoup encryption scheme is as

follows:

Encryption:

• pk = (g1, g2, h = gx
1 · g

y
2, c = ga

1 · g
b
2, d = ga′

1 · g
b′
2 , H)

• sk = (x, y, a, b, a′, b′)

• To encrypt m, we choose random r ∈ Zq and set the challenge ciphertext

c = (gr
1, gr

2, hr · m, ((c · dα))r)

where α = H(gr
1, gr

2, hr · m).

Decryption:

• To decrypt the challenge ciphertext c = (u, v, e, w), there is a checking mechanism: if

ua+αa
′

· vb+αb
′

= w where α = H(u, v, e) then output is valid.

• Output is e/ux · vy, else ⊥.

Theorem 2.3.26 Under the DDH assumption, the Full Cramer-Shoup encryption scheme is

secure against adaptive chosen ciphertext attacks in the standard model.
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Proof. Given a PPT algorithm A attacking the scheme with nonnegligible success probability,

we construct an adversary B violating the DDH assumption as follows:

B is given (g1, g2, g3, g4) as an input. The algorithm selects (x, y, a, b, a′, b′) from Zq

and sets (g1, g2, h = gx
1 · g

y
2, c = ga

1 · g
b
2, d = ga′

1 · g
b′
2 , H) as the public key. Then it runs

A to produce (m0, m1) of equal length. B selects a bit b and gives the challenge ciphertext

(u, v, e, w) = (g3, g4, gx
3 · g

y
4 · mb, ga+αa

′

3 · gb+αb
′

4 ). Then A guesses a bit b′ for b. Finally, B

outputs 1 if and only if b = b
′

. We see from the previous sections that if B is given a DDH

tuple, then A’s view is the same as in an execution of the real full Cramer-Shoup encryption

scheme. Hence, we show that if B is given a random tuple, then the bit b is theoratically

hidden from A’s view, so A has no information about the bit chosen by B. From the public

key, A learns

logg1c = a + b · logg1g2

and

logg1d = a
′

+ b
′

· logg1g2.

We write g3 = gr
1, g4 = gr

2
′ and when given the challenge ciphertext, denoted by

(g3, g4, e∗ = gx
3 · g

y
4 · mb, w∗ = ga+αa

′

3 · gb+αb
′

4 ).

A learns

logg1w∗ = (a + α · a
′

) · r + (b + α · b
′

) · logg1g2 · r
′

.

Hence, we have three cases to be considered about the decryption oracle queries. We also

note that it is not allowed to query the challenge ciphertext to the oracle.

• if (u, v, e) = (u∗, v∗, e∗), and w , w∗ then the query is always rejected because of the

checking mechanism.

• if (u, v, e) , (u∗, v∗, e∗) but the the hash values are the same, this happens with

negligible probability because of the collision resistant property of H.

• if α
′

= H(u, v, e) , H(u∗, v∗, e∗) = α. Then, with a careful analysis, we have more

unknowns than linear equations in these unknowns.

�
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CHAPTER 3

SECURITY PROOFS BASED ON THE RANDOM ORACLE

MODEL AND GAME HOPPING TECHNIQUE

“Education is the most powerful weapon you can use to change the world.”

Nelson Mandela

In this chapter, we discuss the random oracle model- a tool for security analysis of crypto-

graphic schemes- which has been proposed as an alternative to the standard model. Then we

give game hopping technique since sometimes security proofs in cryptography may be con-

structed as sequence of games. We give some concrete illustrations of public key encryption

schemes and their security proofs that utilize random oracles and game hopping.

3.1 The Random Oracle Model

The random oracle model was introduced by Bellare and Rogaway [4] as an alternative to

the standard counterpart. It is well accepted as a method for proving security of public key

encryption because in the standard model, secure schemes require more complex operations

whereas in the random oracle model, the use of hash functions usually is sufficient. In this

model, hash functions are modeled as random oracles which are not actually possible in the

real world however, due to this relaxation, one may construct much more efficient schemes.

ROM assumes that there exists a public, randomly chosen function H which is evaluated only

by quering an oracle; given x as input, it returns H(x) as an output and it ensures that queries

and responses must be consistent meaning that if the same query is asked later in the future

then the same answer has to be given.
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The main utilization of ROM while analysing cryptographic schemes and their security proofs

is that it provides simplicity and enables the design of more efficient schemes than those in the

standard model mentioned in the previous sections. In the random oracle model, secure hash

functions would share many properties with the random functions and they are modeled truely

random functions which is a heuristic argument. However, random oracles are instantiated in

the real world with concrete hash functions.

In the ROM, hash functions are modeled as random functions meaning that the outputs are

truly random so the knowledge of the outputs for some inputs are useless for the knowledge of

the outputs of some other inputs. Hence, it is more convenient to think generating outputs for

H on the fly as needed. We assume that the function is defined by input-output table. When

x is queried on H, first it is checked to be in the table and if so, then the corresponding y is

given as an output otherwise, a random y is chosen, returned as the output and stored in the

table in case whenever the same x is queried then the same y is given as an output to keep

consistancy. In the real world, however, the on the fly process is impossible.

3.1.1 Security Proofs in the Random Oracle Model

Unlike the security proofs in the standard model, the random oracle model enables different

proof techniques mainly because in addition to all parties in the system, adversary is also

given access to the RO which means we observe the adversary’s behaviour during the attack

process. Random oracle proofs are not considered to be rigorous mathematical proofs and

indeed it is shown that there exist schemes which can be proven in the random oracle model

but completely insecure in real world such as in [8]. Probably, this is why the use of ROM is

objected by a number of cryptographers such as Menezes and Koblitz [24]. But this does not

make ROM completely useless because at least it guarantees that there are no inherent design

flaws and this is certainly better than providing no proof at all.

We stress that, it is still preferable to use a scheme secure in the standard model even if it is

slightly less efficient as opposed to the random oracle counterpart.

We emphasize that random oracle is a hypothetical “magic” box that is assumed to have the

following two properties:

• It produces truly random outputs.
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• For each input, it gives the same output.

The objections on ROM comes from the fact that random oracles do not exist in the real world,

and a simulator needs to see the queries of the adversary which is not so realistic. Also it is

assumed that the simulator can set the output of the random oracle as it wishes. This is called

programmability yet it is not realistic, neither.

When proving security of public key encryption schemes in the ROM, we assume there is

an efficient polynomial time algorithm A breaking the scheme, then we try to construct a

polynomial time algorithm A′ which violates the underlying cryptographic hard assumption.

This procedure is called reduction as in the standard version. The random oracle H which is

given to the adversary A, must be simulated, i.e, A′ sees the queries and answers them as it

likes, these answers must be correctly distributed and uniformly random in order not to realise

for A whether it is in the real attack game or in a simulated one.

An Important Remark on the Validity of the Random Oracle Model: In the cryptography

literature, as we point out there are two major objections about the validity of the random

oracle model originating from the usage of hash functions to simulate random oracles:

• Programmability property is not possible in the real world:

Since in the real world it is impossible to set the output of an hash function to a specific

value, this is indeed a sound objection. Because most of the time, a concrete hash

function (e.g. SHA-1, SHA-2) is used and the result is immediately set as soon as the

input is given. Some sort of programmability would be possible in a highly hypothetical

environment where hash families could be used instead of a concrete hash function.

• In the real world, it should be impossible for any other entity to see the hash evaluations

that the adversary makes:

Unlike the previous one, this objection may not be correct [2]. Note that by arguing such

an impossibility, one imposes that the hard problem being reduced cannot be broken

by the same breaker as the scheme security of which is being proved. To make this

point clear, suppose that we are proving the security of a scheme S by reducing a

mathematically hard problem P to S . In such a reduction, we need to provide a breaker

BP for P assuming that we have a breaker BS for S . If we do not allow BP to see the hash

evaluations that BS makes, this implies the restriction that BP cannot be designed by
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the same entity who designed BS . However, this is an unnecessary restriction because

it must be sufficient to show that if S can be broken so can P, no matter who designs

the breaker algorithms BS and BP. So, since BS and BP can possibly be designed by

the same entity (at least we cannot prohibit this), the hash evaluations of BS should be

visible to BP.

In the next sections, we present the random oracle methodology in details and game hopping

technique in order to prove security of the schemes with some public key illustrations.

3.1.1.1 CPA Secure RSA Encryption in the ROM

The first scheme we will discuss is an IND-CPA secure version of RSA based encryption

scheme. The scheme is defined by the following three algorithms:

• Setup: Let N be an RSA number and e, d is an RSA key pair. Let H : Z∗N → {0, 1}
` be

a hash function.

• Encrypt(m): Given a message m ∈ {0, 1}`, a random r ∈ Z∗N is chosen and m is en-

crypted as:

c = ( re mod N, H(r) ⊕ m )

• Decrypt(c): Given a ciphertext c = (c1, c2),

m = H( cd
1 ) ⊕ c2

Theorem 3.1.1 If the RSA problem is hard, then the scheme above is IND-CPA secure in the

random oracle model.

Proof. The proof is given in [23] and proceeds as follows: A reduction from breaking the

scheme to solve the RSA problem is presented. Suppose there exists an adversarial algorithm

A that can break the scheme. We will construct another algorithm B that solves the RSA

problem using A as a subroutine. Algorithm B will simulate an attack game for the successful

attacker A given. The steps of B is explained in Algorithm 1.

The core idea of the proof is as follows: If t is not queried, then H(t) is considered to be

truly random, hence, c2 is like a one-time pad encryption. If it is queried, then t must be
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Algorithm 1 B(N, e, y)
1: Choose s ∈R Z∗N . Consider t = y1/e which we do not actually know, and due to pro-

grammability, let H(t) = s.

2: Simulate IND-CPA game for A as follows:

3: Provide the public key (N, e) to A.

4: Maintain table T for random oracle queries, initially empty.

5: Whenever A makes a random oracle query q at FIND stage, check whether q is already

queried before. If so, return the same output. Otherwise randomly choose H(q), save

(q,H(q)) to table T and return H(q) to A.

6: After FIND stage is over A outputs two messages m0,m1.

7: Randomly select a bit b and give the challenge ciphertext c = (c1, c2) = (y, s ⊕ mb)

8: Whenever A makes a random oracle query q at GUESS stage, check whether q is already

queried before. If so, return the same output. Otherwise randomly choose H(q), save

(q,H(q)) to table T and return H(q) to A.

9: After the game is over (A outputs its guess b′) search table T to see whether qe = y, if so,

output q as the answer otherwise return ⊥.

the answer we are looking for, i.e. the answer of the RSA problem. So we can argue that

Algorithm B solves the RSA problem if A can break the scheme. This contradicts with the

RSA assumption, so the scheme is IND-CPA secure. �

3.1.1.2 Security of Hashed ElGamal Encryption

We look at a similar but slightly more complicated example random oracle proof. The reduc-

tion will be similar to that of the previous section but there will be a probabilistic argument.

This time, the encryption scheme is as follows:

• Setup: Let g be a generator of some prime order group G. Let x be the private key and

h = gx be the public key. Let H : G→ {0, 1}` be a hash function.

• Encrypt(m): Given a message m ∈ {0, 1}`, a random r ∈ G is chosen and m is encrypted

as:

c = (gr, H(hr) ⊕ m)
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• Decrypt(c): Given a ciphertext c = (c1, c2),

m = H(cx
1) ⊕ c2

Theorem 3.1.2 Under the CDH assumption, the scheme is IND-CPA secure in the random

oracle model.

Proof. In order to prove this theorem, we give a reduction from breaking the scheme to solve

the CDH problem [2]. Similar to the previous proof, we assume that we have an adversarial

algorithm A that can break the scheme above and construct another algorithm B that solves

the CDH problem using A as a subroutine. Algorithm B will be similar to that of the previous

proof except that we cannot check the queries whether they correspond directly to the answer

of the CDH problem we are looking for. However, we note that when we set the parameters

gx and gr to the input of the CDH problem ga and gb respectively, if the attacker is successful

in breaking the scheme this means that it must have queried the oracle with gab somewhere

in its execution. So, one of the queries consists of the answer of the CDH problem. Because

otherwise, the ciphertext part c2 is like a one-time pad due to the truly randomness assumption

of random oracles. Hence, at the end of the game simulation, algorihtm B selects one of the

queries randomly and returns it as the output. The probability of this output to be correct is

(1/q)ε where q is the number of queries performed, and ε is the success probability of the

adversary. Since the number of queries is polynomially bounded, the probability is divided

into polynomial factor which is still non-negligible. Hence, the scheme is IND-CPA secure.

�

We note that in the proof of the IND-CPA RSA scheme, the success probability is preserved

since we can explicitly test whether a random oracle query is the one that consists of the

answer of the RSA problem, but we cannot do the same check in the proof of IND-CPA

ElGamal scheme, but fortunately returning one of the queries still works since it decreases

the success probability only in polynomial factor.

3.1.1.3 Existentially Unforgeable RSA Signature

In this section, we present a secure RSA-based signature scheme in the random oracle model.

First, let us consider the plain RSA signature scheme:
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• Setup: Let N be an RSA number and (e, d) is an RSA key pair.

• Sign(m): Given a message m ∈ Z∗N , m is signed as: s = md mod N.

• Verify(s): Given a signature (m, s), verification equation is: m = se mod N.

Unfortunately, this is not considered as a secure signature scheme because one can forge a

message-signature pair by simply choosing a signature s randomly and computing the corre-

sponding message m as se mod N.

Indeed, the most widely accepted security definition for signature schemes is as follows:

Definition 3.1.3 (Existential unforgeability:) A signature scheme is existentially unforge-

able under an adaptive chosen message attack if there exists no polynomial time algorithm

that can output a valid message-signature pair given access to a signature oracle.

So, according to this definition, the scheme above is not existentially unforgeable. However,

it is possible to construct a secure signature scheme that is a modified version of the basic

RSA signature scheme using a hash function as follows:

• Setup: Let N be an RSA number and (e, d) is an RSA key pair. Let H : Z∗N → {0, 1}
`

be a hash function.

• Sign(m): Given a message m ∈ {0, 1}`, m is signed as:

s = H(m)d mod N.

• Verify(s): Given a signature (m, s), verification equation is

H(m) = se mod N.

The following theorem is proved in [23]

Theorem 3.1.4 Under the RSA assumption, the modified RSA signature scheme is existen-

tially unforgeable under a no-message attack in the random oracle model.

Proof. The proof proceeds similar to the proof of the RSA encryption scheme. We construct

an algorithm B for solving the RSA problem assuming that we have an algorithm A that can
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forge a signature pair. Algorithm B is constructed as follows: Given an RSA problem in-

stance (N, e, y), it gives A the public key (N, e). Whenever A makes random oracle queries, B

responds with random values. Except that for a randomly selected query, it responds with y

instead of a random value. So, when the simulation is over, and A outputs a forgery (m, s),

B outputs s. Note that s is the correct answer of the RSA problem, i.e. y = se mod N with a

probability (1/q)ε where q is the number of random oracle queries and ε is the success prob-

ability of algorithm A. Because A must have queried m to the random oracle since otherwise

H(m) remains truly random and s cannot be determined thus cannot be included in a forgery.

So, since a polynomially many random oracle queries are allowed, and ε is assumed to be

non-negligible, the success probability of algorithm B is also non-negligible which contra-

dicts the RSA assumption. So the scheme is existentially unforgeable under a no-message

attack in the random oracle model. �

We show that the same scheme is indeed existentially unforgeable under an adaptive chosen

message attack in the random oracle model.

Theorem 3.1.5 If the RSA problem is hard, then the modified RSA signature scheme above

is existentially unforgeable under an adaptive chosen message attack in the random oracle

model.

Proof. The proof proceeds same as the proof of the no-message case except that the adversary

must be provided with a signature oracle. This signature oracle can be simulated by using the

programmability feature of the random oracle. When the adversary A requests a signature on

message m, B sets H(m) to be se mod N for a randomly selected s and returns s to A. We note

that B does not have to know d explicitly, and since it sets H(m) it can respond to later random

oracle queries consistently with the previous ones. Together with the previous construction,

this addition is sufficient to complete the proof. �

3.2 Game Hopping Technique

One of the most popular techniques used in security proofs is game hopping. In this method,

we construct different versions of the security game played between the adversary and the

challenger. Typically, the first game is the original security game usually called G0. The idea

is to start with G0 , and slightly modify it into a number of games satisfying the following:
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• Successive games are indistinguishable from the view of the adversary and this indis-

tinguishability is shown by relating them to the usual underlying mathematically hard

problems.

• Adversary gains no information in the last game, meaning that its success probability

is 1/2.

By showing these two properties, one proves that the view of the adversary in the original

game and the last game are indistinguishable, therefore, the success probability in the original

attack game is related to the success probability in the last game which acts like a one-time

pad, thus must be negligible due to transitivity.

In order to illustrate this idea, we present two different examples which are CPA-secure in the

standard model.

3.2.1 Security Analysis of ElGamal Encryption

First, we briefly recall the ElGamal encryption scheme.

• Setup: Let g be a generator of some prime order group G. Let x be the private key and

h = gx be the public key.

• Encrypt(m): Given a message m ∈ G, a random r ∈ Zq is chosen and m is encrypted

as:

c = (gr, hr · m)

• Decrypt(c): Given a ciphertext c = (c1, c2),

m = c2/cx
1.

Now, we briefly explain the game hopping proof of the CPA-security of the El Gamal encryp-

tion scheme in the standard model.

Theorem 3.2.1 Under the DDH assumption, the ElGamal encryption scheme is IND-CPA

secure in the standard model.
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Proof. We first consider the original CPA attack game Game 0 between an adversary A and a

challenger C. Game 0 proceeds as follows:

Game 0 :

1. C runs the setup algorithm and provides the public key to A.

2. Find Stage: A chooses two messages (m0,m1) of equal length and sends them to C.

3. Challenge: C selects a random bit b and encrypts mb as c∗ = (gr, hr · mb).

4. Guess: A guesses b′ for b.

Next, with a small change, we define a new game Game 1 same as Game 0 except in the

challenge ciphertext C sends c∗ = (gr, gz ·mb) where z is randomly chosen from Zq. Now, we

argue that the adversary cannot distinguish its view in games Game 0 and Game 1 depending

on the DDH assumption. Because note that knowing gr and h = gx the adversary needs to

distinguish hr = gxr and the random value gz which corresponds exactly the DDH decision

problem. What remains is that the success probability of the attacker in Game 1 is information

theoretically 1/2 since gz is randomly selected from a uniform distribution over G which

makes it like a one-time pad. This concludes the proof. �

3.2.2 Security Analysis of Hashed ElGamal Encryption

In this section, we discuss the hashed version of the ElGamal encryption scheme which we

already defined. However, this time, we prove the security of the scheme in the standard model

under the DDH and entropy smoothing assumptions. First, we define entropy smoothing.

Definition 3.2.2 (Entropy smoothing:) LetH = {Hk}k∈K be a family of hash functions where

each Hk : G → {0, 1}`. H is called entropy smoothing if there exists no polynomial time ad-

versary that can effectively distinguish between the pairs (k,Hk(x)) and (k, h), where k ∈ K,

x ∈ G and h ∈ {0, 1}`.

The intution behind entropy smoothness is that the range of an arbitrary hash function from

the hash family is uniformly distributed. We present the semantic security of hashed ElGamal

encryption scheme in the standard model using game hopping technique [37].
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Theorem 3.2.3 Under the DDH assumption and entropy smoothing property of the hash fam-

ily, hashed ElGamal encryption scheme is CPA-secure in the standard model.

Proof. Let Game 0 be the original CPA attack game.

Game 0 :

1. C runs the setup algorithm and provides the public key to A.

2. Find Stage: A chooses two messages (m0,m1) of equal length and sends them to C.

3. Challenge: C selects a random bit b and encrypts mb as c∗ = ( gr , H(hr) ⊕ mb ).

4. Guess: A guesses b′ for b.

Let Game 1 be the same as Game 0 except a small change in the challenge, c2 = H(gz) ⊕

mb instead of H(hr) ⊕ mb where z is randomly chosen from Zq. Note if a polynomial time

adversary can distinguish its views in Game 0 and Game 1 with a non-negligible success

probability, one can construct an efficient algorithm that can decide DDH problem which

contradicts the hardness assumption of DDH.

Let Game 2 be the same as Game 1, except that in the challenge, c2 = r ⊕ mb instead of

H(gz) ⊕ mb where r is a random element of {0, 1}`. Note that due to the entropy smoothing

property of the hash family used in the scheme, no efficient adversary can distinguish between

its views in Game 1 and Game 2.

Finally, the success probability of the adversary in Game 2 is information theoretically 1/2,

i.e, it behaves like a one-time pad and this concludes the proof. �

Constructing efficient and provably secure schemes against adaptive chosen ciphertext attacks

(i.e, IND-CCA2- which is accepted as the strongest security notion in public key encryption

schemes) is one of the main goals of cryptographic community. A lot of work has been done.

In this context, we discuss Fujisaki and Okamoto’s construction.
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Figure 3.1: Fujisaki-Okamoto encryption operation.

3.3 A Generic Conversion from IND-CPA Security into an IND-CCA2 Security

In late 90s, Fujisaki and Okamoto [17] gave a generic construction from an IND-CPA secure

one-way trapdoor function to an IND-CCA2 secure public-key encryption scheme in the ran-

dom oracle model. We first describe this conversion briefly. Suppose we have an IND-CPA

secure public-key encryption scheme Π := (K ,E,D) such that E : {0, 1}k+k0×{0, 1}l → {0, 1}n

andD : {0, 1}n → {0, 1}k+k0 where k, k0 and n denotes the bit lengths of the message, the ran-

dom value, and the ciphertext of the new encryption scheme we produce. Also we assume

that we have an ideal hash function H : {0, 1}k+k0 → {0, 1}l. Using these primitives, a new

encryption scheme, Π̄ := (K̄ , Ē, D̄), is defined as follows:

1. K̄ := K(1k+k0)

2. Ē : {0, 1}k × {0, 1}k0 → {0, 1}n is defined as Ē(m, r) = E( m ‖ r, H( m ‖ r ))

3. D̄ : {0, 1}n → {0, 1}k is defined as

D̄(c) =

 D(c)[1 : k], if c = E(D(c) , H(D(c)))

⊥, otherwise.

whereD(c)[1 : k] denotes the first k bits ofD(c).

Encryption and decryption operations of the construction is illustrated in Figures 3.1 and 3.2.

However, the conversion needs a re-encryption which makes it expensive in terms of compu-

tational complexity. We propose a shortcut for this construction, where we check the consis-

tency of the ciphertext using the random value instead of requiring re-encryption [1].
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Figure 3.2: Fujisaki-Okamoto decryption operation.

Figure 3.3: The new decryption operation.

3.3.1 Checking Consistency with r

We note that when we perform the encryption operation c = Ē(m, r) = E(m ‖ r, H(m ‖ r)), the

first parameter m ‖ r and the second parameter H(m ‖ r) act as the message and the random

value of the encryption function, respectively. Therefore, in cryptosystems where we can cal-

culate the random value from the ciphertext and the message, we can find H(m ‖ r) from c

and m ‖ r. Obviously, this requires the encryption function to be injective. Otherwise, a sin-

gle ciphertext may correspond to more than one random values and it becomes theoretically

impossible to find the random value used in the encryption process. Another requirement is

the existence of an efficient algorithm FindR which can efficiently find the random value from

the ciphertext and the plaintext. Then, we can perform the following alternative decryption

instead of the original Fujisaki-Okamoto construction: Suppose that we have an algorithm

FindR: {0, 1}n × {0, 1}k+k0 → {0, 1}l which finds r from c and m where E(m, r) = c. Upon re-

ceiving c, we first perform the decryptionD(c) to get m ‖ r. Then we calculate FindR(c,m ‖ r)

and compare the result to the hash H(m ‖ r). Note that this is equivalent to check whether

the encryption E(m ‖ r,H(m ‖ r)) equals c or not since E is injective. Thus we get rid of the

re-encryption. This idea is illustrated in Figure 3.3.
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Verification with r holds if and only if verification with re-encryption holds because

c = E(D(c) , H(D(c)))

if and only if FindR(c, D(c)) = H(D(c)) by definition of FindR. Here, the crucial point is the

existence of the algorithm FindR.

Remark 3.3.1 The security proof for the new construction is same as that of [17] except

the definition of the knowledge extractor which is an algorithm watching the random oracle

queries and the decryption oracle queries of the adversary A and extracts the knowledge

of this adversary. More specifically, a (t, λk)-knowledge extractor is a knowledge extractor

which has a success probability greater than λ(k) and runs within at most running time t,

and A is (t, qH , qD, ε) adversary which runs in time t, makes qH random oracle queries, qD

decryption oracle queries, and has an advantage of at least ε. In the new construction, the

knowledge extractor is shown in Algorithm 2.

Algorithm 2 Knowledge-Extractor(τ, µ, y, pk)
1: for qH times do

2: if Hi = FindR(c, hi)

3: then x← hi[1 : k] and break

4: else x← ⊥

5: return x

We note that in the original Fujisaki-Okamoto construction, knowledge extractor was requir-

ing a re-encryption instead of the line Hi = FindR(c, hi). This change makes no difference

in terms of the security proof since we do nothing but check the same predicate, namely the

consistency of the plaintext and the ciphertext. In the original construction, this is done by

encrypting hi with Hi and checking whether we end up with the same ciphertext, however

in the new construction, we use the ciphertext and hi to guess a candidate for Hi and check

whether it holds. Since both the encryption and the FindR functions are available, changing

this line in the knowledge extractor definition has no effect on the validity of the proof.

Our method turns out to be less generic since we can apply this method only for public key

schemes where the random value can be efficiently found from the ciphertext and the plaintext.

Then, we investigate suitability of this new method for several public key encryption schemes

[16, 26, 29]. It turns out that this method can be used in Paillier encryption with the same
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complexity as the original Fujisaki-Okamoto construction. In the other schemes we consider,

our shortcut idea turned out to be inapplicable since calculation of the random value is costly

or impossible.

3.3.2 Application of the New Method to Paillier Encryption

In this section, we first briefly mention about Paillier public key encryption scheme, then we

discuss how our idea can be applied to the scheme. More details about the scheme can be

found in [30, 31].

3.3.2.1 Paillier Encryption Scheme

Key Generation:

• N = p · q where p and q are large primes

• gcd(N, φ(N)) = 1

• |Z∗
N2 | = φ(N2) = N · φ(N)

• ZN × Z∗N � Z∗
N2

• order of (1 + N) in Z∗
N2 is N.

Encryption:

• Let g ∈ Z∗
N2 whose order is N

• To encrypt m ∈ ZN , r ∈ Z∗N is chosen

• The challenge ciphertext is

c = gm · rN mod N2.

3.3.2.2 Application to Paillier Encryption Scheme

We find r directly from the ciphertext and the plaintext as follows:
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Having c and after getting m from c = gm · rN mod N2, we compute

a =
c

gm = rN mod N2

which implies a = rN mod N. We know that gcd(N, φ(N)) = 1 therefore by using Euclidean

Algorithm we can find

N · x + φ(N) · y = 1

such that x, y ∈ Z. Then we get

ax = r1−φ(N)y = r (mod N).

Although it is possible to extract r from c and m, the computational performance of the con-

struction turns out to be the same as re-encryption since it performs 2 modular exponentia-

tions. The idea of checking consistency by using r works at least as good as checking with

re-encryption. However, there is a strong intuition that there may exist variants of the existing

schemes where the random element of the encryption function can be calculated from the

ciphertext and the plaintext. If we apply the new construction idea to such a scheme, we end

up with an IND-CCA2 secure scheme in the random oracle model more efficiently compared

to the original Fujisaki-Okamoto construction.
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CHAPTER 4

CONSTRUCTIONS OF IND-CCA SECURE PUBLIC KEY

ENCRYPTION SCHEMES

“Opinion is the medium between knowledge and ignorance.”

Plato

In this chapter, we first review some constructions of public key encryption schemes prov-

ably secure against chosen ciphertext attacks under some mathematically hard problems. We

investigate these constructions since proposing a scheme with a security proof against cho-

sen ciphertext attacks, especially adaptive one, is one of the main goals of cryptography. We

mainly focus on the immunization methods proposed by Zheng-Seberry [39], especially the

one with ElGamal signature adaptation. We modify this construction by adapting Schnorr

signature and obtain a more efficient encryption scheme. Moreover, we also give a formal

proof of IND-CCA2 security in the random oracle model.

4.1 Damgard’s Scheme

Damgard [11] introduced practical approaches to constructing public key cryptosystems se-

cure against chosen ciphertext attacks and proposed a scheme based on the Diffie Hellman /

ElGamal public key cryptosystem. The security of the scheme is based on the intractability

of computing discrete logarithms in finite fields but it is insecure against adaptive chosen ci-

phertext attacks, i.e, IND-CCA2- the strongest security notion. We briefly discuss the scheme

as follows:

Let p be a n-bit prime, where n is the security parameter and g be a generator for Z∗p.
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Suppose that Bob, B, wants to send m in secret to Alice, A, with A’s public key pair (yA1 , yA2)

where yA1 = gx
A1

, yA2 = gxA2 such that (xA1 , xA2) is the secret key pair of A chosen at random

from [1, p − 1].

Encryption:

• B chooses a random r ∈ [1, p − 1].

• B creates the challenge ciphertext c = (c1, c2, c3) = (gr, yr
A1
, yr

A2
⊕ m).

Upon receiving c, the decryption algorithm works as follows:

Decryption:

D(xA1 , xA2 , c1, c2, c3) =

 c
xA2
1 ⊕ c3, i f c

xA1
1 = c2

⊥, otherwise

The scheme seems to be secure against nonadaptive chosen ciphertext attacks since, given

(g, yA1), it is hard to generate (gr, yr
A1

) without first choosing r. Hence, for the adversary

it is hard to generate a valid ciphertext passing the checking step unless he already knows

m. Although the simplicity of the design and security against CCA1 attackers, it is insecure

against adaptive chosen ciphertext attacks which is the most severe attack type. Given c =

(c1, c2, c3), an attacker A can choose a random message mr, calculate mr ⊕ c3 and asks the

decryption algorithm with the modified ciphertext c′. The oracle answers m′ = m ⊕ mr and A

gets the challenge ciphertext m by computing m′ ⊕ mr. To resist this attack and to have more

secure schemes, Zheng and Seberry proposed some methods.

4.2 Zheng-Seberry Encryption Schemes

Zheng and Seberry [39] proposed three immunizing methods to make public key encryption

schemes secure against adaptive chosen ciphertext attacks by appending a tag which is related

to the message to each ciphertext. These methods are different from each other at the point

of tag generation. The first method is based on the use of one-way hash functions, the second
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on the use of universal hash functions and the third on the use of digital signature schemes.

In this section, we deal with only two of these three methods:

• Cowh: Using a one-way hash function

• Csig: ElGamal digital signature adaptation

4.2.1 Cowh Public Key Encryption Scheme

Suppose that Bob, B, wants to send a n-bit messsage m in secret to Alice, A, with A’s public

key yA = gxA where xA is the secret key of A. The encryption and the decryption procedures

are as follows:

Encryption:

• r is chosen randomly from [1, p − 1].

• We produce ciphertext (c1, c2) such that c1 = gr mod p and c2 = G(yr
A mod p) ⊕

(m ‖ H(m)) where G is a cryptographically strong pseudo-random string generator ex-

panding a relatively short random input into an output of desired length and H is a

one-way hash function which compresses arbitrarily long input strings into `-bit output

strings.

Decryption:

• r′ = cxA
1 mod p is calculated.

• w = c2 ⊕G(r′) is found.

• parse the first n bits of w as m′ and the remaining as t′.

• if H(m′) = t′ then output m′, otherwise output ⊥.

They show that Cowh satisfies IND-CPA security notion under the Diffie-Hellman assump-

tion, and in order to prove security against adaptive chosen ciphertext attacks, they introduce

sole-samplability security notion. Informally, it means that there is no other way to generate
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ciphertext y than to pick a message x first and compute y = E(x), i.e., there is no way to gen-

erate valid ciphertexts without knowing the underlying plaintexts. This makes the decryption

oracle useless since the plaintext which is queried to the oracle is already known. Formally,

they also prove that if a scheme is sole-samplable, then it is IND-CPA secure provided that

IND-CCA2 secure as well [39] and they show that the scheme Cowh is indeed IND-CCA2

secure under the assumption of sole-samplability.

4.2.2 Csig Public Key Encryption Scheme

We review the original Zheng-Seberry encryption scheme that adapts ElGamal signature.

Suppose Bob, B, wants to send a n-bit messsage m in secret to Alice, A, with A’s public

key yA = gxA where xA is the secret key of A. The encryption and the decryption procedures

are as follows:

Encryption:

• x and k are chosen randomly from [1, p − 1] such that gcd(k, p − 1) = 1.

• r = yA
x+k mod p and z = G(r)

• c1 = gx mod p, c2 = gk mod p, c3 = (H(m) − x · r)/k mod p

• c4 = z ⊕ m

• C = (c1, c2, c3, c4)

Decryption:

• r′ = (c1c2)xA mod p

• z′ = G(r′), m′ = z′ ⊕ c4

• if gh(m′) = cr′
1 · c

c3
2 mod p then output m′, otherwise ⊥.

Zheng and Seberry were unable to prove that the scheme Csig is semantically secure against

chosen plaintext attacks because m appears both c3 and c4 hence it is not certain about the
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leaked information. But they stated that if H is replaced by a random function, then the

problem does not occur and the adversary has negligible probability in guessing the right b

for mb hence the scheme is IND-CPA secure.

4.3 Lim-Lee’s Attack

Although Cowh is efficient and has a simple design, Lim and Lee [25] shows that an attacker

breaks the scheme under known plaintext attacks if one wants to add authentication capability

which guarantees that no third party can create a legal ciphertext between A and B. The attack

is as follows:

We point out that the enciphering procedure of Cowh is

(c1, c2) = (gr, G(yr
A) ⊕ (m ‖ H(m)).

A third party C can mount a known plaintext attack to impersonate A or B. C obtains m,

then calculates H(m) and by adding c2 part of the ciphertext, gets the output of G, hence,

he is able to choose m′ different from m, calculates H(m′), with the output of G to create

a valid ciphertext c′. To overcome this problem, they propose a countermeasure by using

random numbers involved hash calculation which is later modified by Zheng [40]. They

also present another method different from Zheng and Seberry for schemes to become secure

against chosen ciphertext attacks. The proposed method is useful for an application to group

oriented cryptosystems [12]. In their method, the decryption algorithm first checks whether

the ciphertext is valid, then outputs the underlying plaintext, whereas in Zheng and Seberry’s

method, first the ciphertext is decrypted as m, and output when the checking procedure is

satisfied.

4.4 Soldera’s Attack

Soldera et.all [38] analysed the Cowh scheme and showed that it was insecure against chosen

ciphertext attacks if the attacker knows the message m in the challenge ciphertext. We know

that c2 = G(yr
A) ⊕ (m ‖ H(m) which depends only on m. As long as m is known, this part can

be recreated as mentioned previous section. The adversary chooses m′ of its own, calculates
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H(m′) and creates c′2 = c2 ⊕ (m′ ‖ H(m′) ⊕ m ‖ H(m) = G(yr
A) ⊕ (m′ ‖ H(m′). This gives the

adversary A to make an adaptive chosen ciphertext attack as presented in Attack 1.

Attack 1 Soldera’s Attack:
1: A chooses m0 and m1 of equal length.

2: The challenger selects one of them randomly.

3: The challenge ciphertext is produced as (c1, c2) = (gr,G(yr
A) ⊕ mb ‖ H(mb)).

4: A changes c2 to c2 ⊕ [m0 ‖ H(m0)] ⊕ [m1 ‖ H(m1)].

5: If m0 is encrypted then A has G(yr
A) ⊕ [m1 ‖ H(m1)] and similar for m1.

6: A has a valid ciptertext which is not equal to the challenge ciphertext.

7: A asks decryption oracle and upon receiving the plaintext, decides b.

Note that A succeeds every time. This is because the hash function, H, depends only on m. To

defeat this kind of attack, not only m but also some randomness such as r = yr
A must be used in

the hash function. Hence, the adversary A can no longer create the concatenation of message

and hash because the attacker does not know the random value use in it. As we mention in the

previous section, the idea comes from the authenticated version of Zheng-Seberry scheme.

Zheng [40] improved the tag generation methods by adding some randomness to the input of

the hash function being used to get ciphertexts to accomplish the problems mentioned above.

These proof techniques and modifications are given in the following sections.

4.5 Zheng’s Modified Schemes

Zheng [40] improved Cowh encryption scheme, which is provable secure against chosen ci-

phertext attacks, in order to resist such attacks defined previous sections. To attain this goal, he

proposed incorporating some randomness into the hash function, H utilized in the schemes.

We briefly give the modified one way hash version of Zheng Seberry encryption scheme,

Cmowh:

4.5.1 Cmowh PKE Scheme

Encryption:

• r is chosen randomly from [1, p − 1].
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• c = (c1, c2) such that c1 = gr mod p and c2 = G(yr
A) ⊕ (m ‖ H(m‖yr

A)).

Decryption:

• r′ = cxA
1 mod p

• w = c2 ⊕G(r′)

• parse the first n bits of w as m′ and and the remaining as t′.

• if (H(m′ ‖ r′) = t′ then output is m′, otherwise ⊥.

We note that the main difference is the random value yr
A in the input of H, that is secret to the

attacker which makes it hard to make the same attack as in the original version.

We also note that Baek [3] proved this scheme is secure against adaptive chosen ciphertext

attacks in the ROM under the gap Diffie Hellman assumption.

Zheng also gave a solution to the authentication problem and modified Cowh scheme by in-

volving the secret key xB to the input of G and H, respectively as follows:

4.5.2 Enhanced Cmowh PKE Scheme with Authentication

Encryption:

• r is chosen randomly from [1, p − 1].

• c = (c1, c2) such that c1 = gr mod p and c2 = G(yr+xB
A ) ⊕ (m ‖ H(m ‖ yr+xB

A )).

Decryption:

• r′ = (yB · c1)xA mod p

• w = c2 ⊕G(r′)

• parse the first n bits of w as m′ and and the remaining as t′.

• if (H(m′ ‖ r′) = t′ then output is m′, otherwise ⊥.
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Zheng noted that efficiency of Csig can be improved by adapting Schnorr digital signature in-

stead of ElGamal signature [16]. We first give the Schnorr signature scheme, then we modify

the Csig encryption scheme by adapting Schnorr signature [21].

Definition 4.5.1 (Schnorr Signature Scheme) Let G be a multiplicative, prime order group

in which the DLP is hard and g is a generator. Let H be a cryptographic hash function, x and

y = gx are the secret and public keys, respectively.

• Choose a random k and set r = gk.

• Compute e = H(m ‖ r) and s = k − xe.

• (e, s) is the signature pair.

Verification:

• Compute rv = gsye and ev = H(m ‖ rv).

• Check if ev = e, then the signature is verified, since

rv = gs · ye = g(k−ex) · gex = gk = r

and

ev = H(m ‖ rv) = H(m ‖ r) = e

holds.

Remark 4.5.2 We note that under the discrete logarithm assumption, the Schnorr signature

scheme [36] is existentially unforgeable under chosen message attack. The proof is similar to

that of hashed RSA signature scheme. It is also efficient and generates short signatures.

4.5.3 Cmsig PKE Scheme with Schnorr Signature Adaptation

Let G be a group with prime order p in which the DLP is intractable and g be a generator.

Let yA = gxA is A’s public key and xA is the private key. B wants to send a n bit message m

to A. Let G and H are hash functions that are modeled as random oracles. Encryption and

decryption procedure are as follows:
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Encryption:

• x and k are chosen randomly from [1, p − 1].

• c1 = gx, c2 = H(m ‖ yA
x+k), c3 = k − x · c2, c4 = G(yx+k

A ) ⊕ m.

• c = (c1, c2, c3, c4)

Decryption:

• r′ = (gc3 · c1
c2+1)xA (which is supposed to be yA

x+k)

• m′ = c4 ⊕G(r′)

• if (H(m′ ‖ r′) = c2 then output is m′, otherwise ⊥.

We state a variant of Diffie-Hellman problems, namely partitioned Diffie-Hellman problem

and define it as follows:

Definition 4.5.3 (The Partitioned Diffie-Hellman Problem: PDH) Let G be a finite, multi-

plicative group of order q with a generator g. Given y1 = gx1 , y2 = gx2 and y3 = gx3 for

randomly chosen (x1, x2, x3), it is asked to compute y = gx1(x2+x3).

We prove that the PDH problem is equivalent to the CDH problem by showing that these

problems can be reduced to each other.

• The PDH problem can be reduced to the CDH problem as follows: Given a PDH prob-

lem instance (gx1 , gx2 , gx3) and a CDH oracle, we can first multiply gx2 and gx3 , then

give (gx1 , gx2+x3) to the CDH oracle which outputs gx1(x2+x3), exactly the result of the

PDH problem we are looking for.

• CDH problem can be reduced to the PDH problem as follows: Given a CDH problem

instance (gx1 , gx2) and a PDH oracle, we can give (gx1 , gx2 , g0) to the PDH oracle which

outputs gx1(x2+0) = gx1 x2 , exactly the result of the CDH problem we are looking for.

We give the definition of another variant of Diffie-Hellman problems which was introduced

by Okamoto and Pointcheval in [28].
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Definition 4.5.4 (The gap Diffie-Hellman Problem: gDHP) Let G be a finite, multiplica-

tive group of order q with a generator g. Given gx1 , gx2 and a DDH oracle, it is required to

compute gx1 x2 .

The Gap Diffie-Hellman Assumption The gDHP is computationally hard. Essentially, this

means that CDH problem is still hard even if a DDH oracle is available. We define the success

probability of the adversary by

SuccAGDH = Pr[GDHODDH (g, gx1 , gx2) = gx1 x2]

and say that this problem is hard if SuccAGDH is negligible.

4.5.4 The security Analysis of Cmsig

In this section, we prove that our modified scheme Cmsig is indistinguishable against adaptive

chosen ciphertext attacks in the random oracle model. This part is our main contribution of

the thesis.

We give the main theorem:

Theorem 4.5.5 The encryption scheme Cmsig is IND-CCA2 secure in the random oracle

model if the gDHP is intractable in the underlying group.

Proof. The proof consists of two parts, (1) proving that the scheme is IND-CPA secure, (2)

proving that the scheme is plaintext aware. As we noted before, it is a well known that these

two properties imply IND-CCA2 security.

First, we show that the scheme Cmsig is semantically secure against a chosen plaintext attacker,

ACPA, via game hopping technique as we mention in Section 3.2.

We start with the real attack game:

Game G0: This game is actually the same as the real attack game. First, we take the secu-

rity parameter and run the key generation algorithm to get public and secret keys, (gxA , xA),

respectively. The public key, gxA , is given to the attacker ACPA. After, ACPA chooses two mes-

sages of equal length (m0, m1), we choose x∗, k∗ randomly and create a challenge ciphertext
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c∗ = (c1
∗, c2

∗, c3
∗, c4

∗) such that

c∗ = (gx∗, H(mb ‖ yA
x∗+k∗), k∗ − x∗c2

∗, G(yA
x∗+k∗) ⊕ mb).

Upon receiving c∗, ACPA outputs b′. We denote S 0 the event that b′ = b. Since this game is

the same as the real attack game, we have

|Pr[S 0]| = 1/2 + SuccACPA .

Note that, in this security notion, there is no decryption oracle access for the adversary.

Game G1:

Let G1 be the same game as G0 except that in the challenge ciphertext, the value yA
x∗+k∗ that

appears in G and H are substituted with a random value r. That is, the challenge ciphertext

becomes

c∗ = (gx∗ , H(mb ‖ r), k∗ − x∗c2
∗, G(r) ⊕ mb)

We argue that the adversary ACPA can distinguish its views among these two games G0 and

G1, only when yA
x∗+k∗ is queried to the oracles.

We note that since PDH problem is hard, it has a negligible probability that the critical query

yA
x∗+k∗ is asked by the adversary ACPA to the random oracles H and G, respectively. Let εPDH

be the advantage of ACPA breaking PDH problem. Then we have

|Pr[S 1] − Pr[S 0]| ≤ εPDH .

Let G2 be such a game that the challenger chooses r1 and r2 uniformly at random without

interacting to the oracles when preparing the challenge ciphertext. Hence, the challenge ci-

phertext becomes c∗ = (gx∗, r1, k∗ − x∗c2
∗, r2 ⊕ mb). The adversary ACPA distinguishes

which game is played between G1 and G2 whenever the true value is catched among all of the

random oracle queries which is negligible as follows:

|Pr[S 2] − Pr[S 1]| ≤
qH + qG

2|G|

where qH and qG are polynomial number of queries to the random oracles H and G, respec-

tively.

From these equations, we conclude that the adversary ACPA has negligible probability in

guessing the right mb chosen by the challenger. This shows that the scheme Cmsig is IND-

CPA secure in the random oracle model.
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Plaintext awareness:

This security notion is first introduced by Bellare and Rogaway [5]. It states that it shoud be

impossible to generate any valid ciphertexts without knowing the corresponding plaintexts,

i.e, the adversary is aware of the decryption of the message therefore, the decryption ora-

cle becomes useless. Plaintext awareness together with IND-CPA security implies security

against chosen ciphertext attacks. In this respect, we need an algorithm K, called knowledge

extractor, to perfectly simulate the decryption oracle, this means without the secret key, K is

able to decrypt the ciphertexts submitted by the attacker ACCA to the decryption oracle, just

by watching the random oracle queries and the answers returned.

Let `G and `H be the query-answer list such that

`G = (r1,G1), (r2,G2), ..., (rqG ,GqG )

and

`H = (s1,H1), (s2,H2), ..., (sqH ,HqH )

respectively where qG and qH are polynomial number of queries of the adversary to the ran-

dom oracles H and G, respectively.

Let c∗ = (c∗1, c∗2, c∗3, c∗4) be the challenge ciphertext and yA = gxA be the public key respec-

tively. We first check whether c∗2 is included in Hi where 1 ≤ i ≤ qH . Then, parse the first n-th

bit of the query si as m′, and the rest as r′ of si. We calculate m′ ⊕ c∗4 and check whether it is

included in Gi where 1 ≤ i ≤ qG. Then, we compare the oracle queries ri and r′, and provided

that equality holds, we conclude ri = r′ = yA
x∗+k∗ . Then we compute gk∗ from gc3

∗

(c1
∗)c2

∗

and finally, with the help of DDH oracle, we check whether (gx∗ , gxA , gk∗ , ri) really satisfies

PDH instance. Otherwise, c3
∗ would not be checked and this enables the adversary to make a

chosen ciphertext attack. The adversary simply changes the third component of the challenge

ciphertext c∗ and finds b directly using the decryption oracle. We note that it is impossible for

the adversary to generate a valid ciphertext without making necessary random oracle queries,

since the outputs of random oracles are assumed to be truly random if not explicitly queried.

This completes the proof. �

Remark 4.5.6 By adapting Schnorr signature to Csig, we get a more efficient scheme Cmsig,

since no inversion operation is needed and we prove the security of the scheme against chosen
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ciphertext attacks. Moreover in Csig, there is no randomness for the calculation of H, hence

confidentiality does not hold by utilizing only H(m), i.e, there is no difference to use H(m) or

just m. This is because adversary knows m0 and m1 in the game. If we provide randomness by

concatenation, the proof may hold but we are unable to get rid of the inversion operation. This

is why we focus on Schnorr signature, and modification of Csig by adapting it to the scheme.
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CHAPTER 5

CONCLUSION

“Knowing is not enough; we must apply. Willing is not enough; we must do.”

Goethe

In this thesis, we give the security definitions in terms of adversarial goals and adversarial

capabilities. We present several games played between the challenger and the adversary in

order to analyse the security under some mathematically hard problems.

In Chapter 3, we propose a shortcut for a generic construction from an IND-CPA secure

one-way trapdoor function to an IND-CCA2 secure public key encryption given by Fujisaki-

Okamoto [17]. Their conversion needs a re-encryption which makes it expensive in terms

of computational complexity. In our method, we check the consistency of the ciphertext

using the random value instead of requiring re-encryption. It is clear that our method is less

generic than theirs, because we can apply this method only for public key encryption schemes

where the random value can be efficiently found from the ciphertext and the plaintext. We

investigate suitability of our method for several public key encryption schemes and show that

the method can be used in Paillier encryption with the same complexity as original Fujisaki-

Okamoto construction. On the other hand, in several schemes it was observed that our method

is inapplicable since calculation of the random value is costly or impossible [16, 26, 29].

In Chapter 4, we mention three methods proposed by Zheng and Seberry [39] for public key

encryption schemes to become secure against adaptive chosen ciphertext attacks. We focus

on one of the three methods, namely Csig, which is an encryption scheme with ElGamal

signature adaptation. We modify this scheme by adapting Schnorr signature and this new

encryption scheme Cmsig turns out to be more efficient, since we get rid of inversion operation
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which is necessary in Csig. Moreover, we prove that the modified version Cmsig is provably

secure against adaptive chosen ciphertext attacks in the random oracle model under the gap

Diffie Hellman assumption. To attain our goal, we first show that the scheme Cmsig is IND-

CPA secure via game hopping tecnique, then it also satisfies plaintext awareness in the ROM,

finally it is a well known fact that these security notions together lead to IND-CCA2 security.
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