

A TRUE RANDOM NUMBER GENERATOR IN FPGA FOR

CRYPTOGRAPHIC APPLICATIONS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

SALİH YILDIRIM

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2012

Approval of the thesis:

A TRUE RANDOM NUMBER GENERATOR IN FPGA FOR

CRYPTOGRAPHIC APPLICATIONS

submitted by SALİH YILDIRIM in partial fulfillment of the requirements for the

degree of Master of Science in Electrical and Electronics Engineering

Department, Middle East Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen

Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı

Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Semih Bilgen

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı

Electrical and Electronics Engineering Dept., METU

Prof. Dr. Gözde Akar

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Ece Schmidt

Electrical and Electronics Engineering Dept., METU

M. Hakan Solmaz, M.Sc.

ASELSAN Inc.

 Date: 14.12.2012

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name : SALİH YILDIRIM

Signature :

iv

ABSTRACT

A TRUE RANDOM NUMBER GENERATOR IN FPGA

FOR CRYPTOGRAPHIC APPLICATIONS

Yıldırım, Salih

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı

December 2012, 121 pages

In this thesis a True Random Number Generator (TRNG) employed for

cryptographic applications is investigated, implemented and evaluated. The design

of TRNG and its embedded tests are described in VHDL language and then

implemented on an FPGA platform. Randomness is extracted from the jitter of ring

oscillators that has self-failure detecting and sampling logic. The implementation

needs only primitive resources which are common in all kinds of FPGAs. The

embedded randomness tests described in Federal Information Processing Standard

(FIPS) 140-1 are realized on FPGA. The statistical quality of the generated random

bits is also confirmed by running the Diehard and NIST (National Institute of

Standards and Technology) Test Suites seperately. The implemented TRNG has a

throughput up to 0.5 Mbps and its core occupies only 25 slices of Xilinx Virtex-5

FPGA. This design demonstrates the possibility of generating and confirming true

random bit sequences by using only the internal resources of FPGAs. The

performance of our TRNG is also compared with a separate IC, RPG100 from FDK

Corporation.

v

Keywords: True Random Number Generator (TRNG), Field Programmable Gate

Array (FPGA), National Institute of Standard and Technology Special Publication

800-22 (NIST SP800-22), Diehard Test Suite.

vi

ÖZ

KRİPTO UYGULAMALARI İÇİN FPGA ÜZERİNDE

GERÇEK RASSAL SAYI ÜRETECİ

Yıldırım, Salih

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Cüneyt F. Bazlamaçcı

Aralık 2012, 121 sayfa

Bu tezde kriptografik uygulamalarda kullanılan bir Gerçek Rassal Sayı Üreteci

(GRSÜ) araştırılmış, gerçeklenmiş ve değerlendirilmiştir. Bu GRSÜ ve gömülü

testlerinin tasarımı VHDL dilinde tanımlanmış ve bir FPGA platformunda

gerçeklenmiştir. Rassallık halka osilatör seğirmelerinden içsel hata algılama

yetisine sahip bir örnekleme devresi ile çıkarılmıştır. Gerçekleme yalnızca tüm

FPGA‘lerde ortak olarak yer alan en temel kaynaklara ihtiyaç duymaktadır. FIPS

140-1 standardında açıklanan gömülü rassallık testleri FPGA üzerinde

gerçeklenmiştir. GRSÜ‘nin istatiksel özellikleri kriptografik uygulamalar için

standart olan NIST SP800-22 ve Diehard istatiksel test kütüphaneleri ile de

doğrulanmıştır. Gerçeklenen GRSÜ’nin üretim hızı 0,5 MBps’a kadar ulaşmaktadır

ve çekirdeği sadece 25 adet Xilinx Virtex-5 FPGA slice kaynağı kullanmaktadır. Bu

tasarım sadece FPGA’in içsel kaynaklarını kullanarak da rassal sayı üretilip bu

rassallığın doğrulanabileceğini göstermektedir. Ayrıca gerçeklenen GRSÜ‘nin

başarımı ayrı bir tümleşik devre olan, FDK şirketinden RPG100, ile de

karşılaştırılmıştır.

vii

Anahtar Kelimeler: Gerçek Rassal Sayı Üreteci (GRSÜ), Field Programmable Gate

Array (FPGA), National Institute of Standard and Technology Special Publication

800-22 (NIST SP800-22), Diehard Test Kütüphanesi.

viii

To My Daughter

ix

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor Assoc. Prof. Dr.

Cüneyt Bazlamaçcı for his guidance and support in my study. His inspiring

suggestions and meticulous feedback in every step of this thesis enabled me to write

it and made it an invaluable experience for me. It has been a pleasure to write this

thesis under his guidance.

I would like to thank to my technical leader Mr. Hakan Solmaz in Aselsan for his

support and time. Also it is a binding duty to thank to Aselsan Inc. for facilit ies and

equipments provided for the completion of my thesis.

Last but not least, most special thanks and love go to my wife Gül Dilek Yıldırım

for her continuous support and encouragements. It could have been impossible to

write this thesis without her love and support.

x

TABLE OF CONTENTS

ABSTRACT ... IV

ÖZ ... VI

ACKNOWLEDGEMENTS ... IX

TABLE OF CONTENTS ... X

LIST OF TABLES .. XII

LIST OF FIGURES .. XIII

LIST OF ABBREVIATIONS ... XV

CHAPTERS

1.INTRODUCTION .. 1

2.TRUE RANDOM NUMBER GENERATORS ... 5

2.1 GENERAL STRUCTURE OF TRUE RANDOM NUMBER GENERATORS.................... 5

2.1.1 Entropy Source ... 6

2.1.2 Entropy Extraction Methods ... 8

2.1.3 Post Processing ... 8

2.2 STATISTICAL EVALUATION AND TESTING .. 12

2.2.1 FIPS 140-1 and 140-2 ... 12

2.2.2 NIST Statistical Test Suite .. 15

2.2.3 Diehard Battery of Randomness Tests .. 18

2.3 PRACTICAL IMPLEMENTATIONS OF TRNGS BUILT IN FPGA 19

2.3.1 Basic Ring Oscillator Based Design.. 19

2.3.2 PLL Based Design .. 20

2.3.3 State Machine Based Design... 23

2.3.4 FIGARO Design ... 24

2.3.5 Metastable Ring Oscillator (Meta-RO) Based Design 26

xi

2.3.6 Metastable Flip Flop Based Design ... 28

2.3.7 Transition Effect Ring Oscillator Based Design 29

2.3.8 Crosstalk Effect Based Design .. 31

2.3.9 Write Collisions of Memory Blocks Based Design 33

2.3.10 Coherent Sampling Design ... 35

3.IMPLEMENTATION OF TRUE RANDOM NUMBER GENERATOR 39

3.1 TRNG CORE MODULE ... 40

3.1.1 Ring Oscillators .. 41

3.1.2 The Sampler Module .. 45

3.1.3 The Controller Module ... 49

3.2 EMBEDDED TEST MODULE ... 50

3.2.1 Simulation of Test Module on Modelsim .. 52

4.TESTS AND RESULTS ... 59

4.1 THE TEST SET UP ... 61

4.2 TEST PLATFORM-FPGA PART... 61

4.2.1 The TRNG Driver Module.. 64

4.2.2 The RPG100 Controller Module ... 64

4.3 STATISTICAL TEST RESULTS ... 65

4.3.1 The NIST Test Suite Execution and Results .. 66

4.3.2 The Diehard Battery of Tests and Results ... 74

4.3.3 Comparison of custom TRNG and RPG100 .. 82

5.CONCLUSION AND FUTURE WORK ... 84

REFERENCES ... 87

APPENDICES

APPENDIX – A ... 92

APPENDIX – B ... 95

APPENDIX – C ... 98

APPENDIX – D ... 101

xii

LIST OF TABLES

TABLES

Table 2-1 - Von Neumann Mapping Table .. 10

Table 2-2 - Accepted Intervals for Runs Test .. 14

Table 2-3 - Tests of NIST SP800-22 ... 15

Table 2-4 - NIST Error Table .. 16

Table 2-5 - List of Randomness Tests in Diehard Battery 18

Table 2-6 - Comparison Table of TRNG Methods .. 37

Table 4-1 - NIST Final Test Report for Custom TRNG (α = 0.01) 70

Table 4-2 - NIST Final Test Report for RPG100 ... 71

Table 4-3 - Diehard Pass/Fail Assessment for Custom TRNG 76

Table 4-4 - Diehard Pass/Fail Assessment for RPG100 ... 77

Table 4-5 - Pass/Fail Assessment of both TRNGs ... 79

Table 4-6 - Uniformity list of the custom TRNG Diehard Test Results 80

Table 4-7 - Uniformity list of the RPG100 Diehard Test Results 81

xiii

LIST OF FIGURES

FIGURES

Figure 2-1 - General Structure of TRNG ... 5

Figure 2-2 - Exclusive-OR Post Processor (n=2) ... 9

Figure 2-3 - Linear Feedback Shift Register .. 10

Figure 2-4 - Ring Oscillators Based Design [13] ... 19

Figure 2-5 - TRNG of Fisher and Drutarovsky [1]... 21

Figure 2-6 - State Machine Design [17]... 23

Figure 2-7 - Figaro Design .. 25

Figure 2-8 - Meta-RO based Design [20] .. 27

Figure 2-9 - Metastable Flip Flop Design [21] ... 29

Figure 2-10 - TERO [22]... 30

Figure 2-11 - Crosstalk based Design [24]... 32

Figure 2-12 - Bram Based Design [25] .. 34

Figure 2-13 - Coherent Sampling [27] ... 35

Figure 2-14 - Coherent Sampling Based TRNG [5] ... 36

Figure 3-1- TRNG Design (Top view) .. 40

Figure 3-2 - TRNG Core Sub Modules .. 41

Figure 3-3 - Ring Oscillator .. 42

Figure 3-4 - Ring Oscillator Implementation Schematic .. 43

Figure 3-5 - Plan Ahead Screen Shot ... 43

Figure 3-6 - Ring oscillator clocks .. 45

Figure 3-7 - Sampler Design [5] .. 46

Figure 3-8 - Sampler Signals ... 47

Figure 3-9 - Sampler Module Synplify Schematic ... 48

Figure 3-10 - Prohibit fence of TRNG core ... 49

xiv

Figure 3-11 - Embedded Test Module Schematic (Top View) 51

Figure 3-12 - Monobit Test Signals (Start of a sequence) 53

Figure 3-13 - Monobit Test Signal (End of a sequence) ... 54

Figure 3-14 - Runs Test Signals .. 55

Figure 3-15 - End of Runs Test ... 56

Figure 3-16 - Poker Test Signals ... 57

Figure 3-17 - Poker Result signals... 58

Figure 4-1 - Test Set Up .. 61

Figure 4-2 - Test Platform FPGA Project Top Design ... 62

Figure 4-3 - Test Platform Menu ... 63

Figure 4-4 - Top Modules of TRNG and RPG100 controller 65

Figure 4-5 - NIST Test Execution Screen - 1 ... 67

Figure 4-6 - NIST Test Execution Screen - 2 ... 68

Figure 4-7 - NIST Test Execution Screen - 3 ... 68

Figure 4-8 - NIST Test Execution Screen - 4 ... 69

Figure 4-9 - Diehard Execution Screen.. 75

xv

LIST OF ABBREVIATIONS

ABBREVIATIONS

AIS Anwendungshinweise und Interpretationen zum Schema

BSI Bundesamt für Sicherheit in der Informationstechnik

ASCII American Standard Code for Information Interchange

ASIC Aplication Specific Integrated Circuit

CASR Cellular Automata Shift register

FIPS Federal Information Processing Standard

FIRO Fibonacci Ring Oscillator

FPGA Field Programmable Gate Array

GARO Gallois Ring oscillator

IC Integrated Circuit

LFSR Linear Feedback Shift Register

LUT Look Up Table

METARO Metastable Ring oscillator

NIST National Institude of Standards and Technology

PLL Phase Lock Loop

PRNG Pseudo Random Number Generator

RAM Random Access Memory

RNG Random Number Generator

RO Ring Oscillator

TERO Transition effect ring oscillator

TFF Toggle Flip Flop

TRNG True Random Number Generator

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

1

CHAPTER 1

INTRODUCTION

Random number generators (RNGs) are one of basic cryptographic primitives that

generate random quantities for cryptosystems. These random quantities are utilized

for processes such as key generation, authentication, padding and password

generation, etc. The implementation of counter measure processes to side channel

attacks also needs random quantities. Security of various cryptographic systems

directly depends on random numbers that should remain unknown to an adversary.

Hence random numbers used in cryptographic systems should meet stringent

requirements. These numbers should first be unpredictable (unbiased and

independent) and irreproducible and also should have good statistical features.

Random numbers that have good statistical properties can be generated by

deterministic processes. Such generators are called pseudo random number

generators (PRNG). PRNGs are implementations of deterministic polynomial time

algorithms that expand a short seed value into uniformly distributed long bit

sequences having good statistical features [1]. However the output of a PRNG is not

unpredictable because the input (i.e. seed) deterministically governs the output and

a PRNG can generate a fixed number of bits meaning they repeat themselves in

long sequences. Because of these drawbacks, PRNGs are not suitable for many

cryptographic applications.

2

On the other hand, some generators use uncontrollable and unpredictable physical

processes as the source of randomness. This type of RNGs are called true random

number generators (TRNG). The statistical properties and features of the generated

random numbers by TRNGs are based on the randomness of the physical process

used and the extraction method employed. If the underlying physical process cannot

be controlled, the generator output also becomes unpredictable and uncontrollable.

In cryptography, Kerckhoff’s principle says that “A cryptosystem should be secure

even if everything about the system, except the key, is public knowledge”. Even for

Kerckhoff’s secure crypto system, protection of the confidential keys is a very

important issue [2]. If an information system is used in an uncontrollable

environment, cryptographic keys used in the security components should never be

open to the outside. For this reason, it is generally recommended that the security

system should be implemented in a single chip and the keys should be generated

inside the same chip. Therefore, implementation of random number generators in

logic devices (including FPGAs) is a crucial issue.

Traditionally, in spite of the long and difficult design cycle, the common choice of

implementation platform in cryptography was ASIC because of high performance,

low power and design security. On the other hand FPGA manufacturers have come

closer to filling the performance gap between FPGAs and ASICs in recent years.

Besides performance, existence of vendor specific security solutions in

cryptography increases the prevalence of FPGAs on this market [3].

In this thesis we also have chosen FPGA as our implementation platform because of

its increasing usage in cryptography and its flexible and faster design cycle.

Implementing a TRNG on an FPGA is not a straightforward issue because FPGAs

are digital devices, which are produced to implement deterministic processes. Any

non-deterministic behavior at the logic level can cause failures on such devices. On

the other hand unpredictable and uncontrollable events due to underlying physical

processes are unavoidable in such devices although device vendors aim to minimize

3

them. These underlying physical processes and impurities can provide a source of

randomness for TRNG implementation on FPGA.

In general, one can utilize three kinds of randomness in an FPGA. These are i)

unstable propagation delay of logic gates, ii) transient behavior of logic gates

between two states (meta-stability), and iii) thermal noise in FPGA [2]. The most

popular source of randomness in FPGAs is the unstable propagation delay in logic

gates. This source appears as jitter on ring oscillators which are the main component

of most TRNG designs.

In the development cycle of a TRNG, the validation of randomness is among the

most important parts of the process. The validation of a TRNG can be done by

using statistical test suites that are published by standard institutes such as NIST.

There are several statistical tests for randomness. The confirmation of these test

suites is required for a particular TRNG but still this does not means that the

implemented TRNG is a perfect random number generator.

Random numbers that are generated by a TRNG can be biased and can have bad

statistical properties even if they are extracted correctly. Therefore post processing

is also required in most TRNGs in order to get good statistical properties. This post

processing brings the risk of being unaware of TRNG failure since post processing

may hide the impurity of the outputs. Because of this risk TRNG tests should be run

in real time and in a continuous manner for detecting any possible failure in the

random number generator [4].

In our thesis work, we have realized an already proposed TRNG [5] method on

Virtex-5 FPGA with ML507 Xilinx FPGA Development Kit. Our implementation

uses only standard FPGA resources and has 0.5 Mbits/sec throughput. The

generated random numbers are tested and confirmed by NIST statistical test suite

[6] and Diehard battery of tests [7] using 1 Gigabit as the sample size. Besides the

4

embedded randomness tests that are published by FIPS 140-1 [8] are also realized

in our TRNG in order to control the outputs concurrently in real time operation.

The rest of the thesis is organized as follows:

In Chapter 2, background information about true random number generators for

cryptographic applications is given. Practical methods and randomness tests found

in literature for true random number generation in FPGA are presented.

In Chapter 3, implementation details of our TRNG and its embedded test module

are explained. The design is presented using a top to bottom hierarchy.

In Chapter 4, statistical evaluation of our TRNG and simulation of the design are

presented. This chapter contains statistical test results and circuit simulation

outputs. A comparison of our TRNG and RPG100, an existing IC TRNG [10] (from

FDK Corporation) has also been performed.

Chapter 5 is the conclusion, which includes a summary of the study and possible

future work.

5

CHAPTER 2

TRUE RANDOM NUMBER GENERATORS

2.1 General Structure of True Random Number Generators

True Random Number Generators (TRNG) utilize some physical processes as the

source of randomness. If the physical process utilized is unpredictable and it cannot

be controlled, then the output is also uncontrollable and unpredictable [11]. The

throughput and statistical characteristics of TRNGs are closely related to the quality

of the randomness of the source and the extraction method used. Generally, the

statistical properties of randomness extractor output bits do not have good statistical

properties even if they are extracted correctly because physical randomness sources

generally have low entropy that does not fulfill the cryptographic applications

requirements. For this reason, some post-processing algorithms have to be

employed to enhance the statistical parameters of the output bit-stream. However,

the TRNG output post-processing creates a risk that it will mask abnormalities

coming from either a poorly designed generator or an external attack. This masked

fault could remain undetected by standard statistical tests also.

Figure 2-1 - General Structure of TRNG

6

The security of the generator can be increased by implementing embedded

randomness tests that are running concurrently with the generator. This test

equipment detects any failure or deviation from randomness.

The general structure of a TRNG is given in Figure 2-1. There are four main sub

blocks that are named as Entropy Source, Extraction Method, Post Processing and

Embedded Tests. These sub blocks of a True Random Number generator are

explained in the following subsections of this chapter in detail.

2.1.1 Entropy Source

Entropy source of a true random number generator provides a stationary random

process to the extractor for sampling truly random bits from that process. Sampled

random bit must be unpredictable. Possibility of a true guess on the logical level of

that sampled bit must be %50 even if the predecessors and the successors of that bit

are known [12]. Furthermore, it should not be possible to control this process by

any means. For our interest, we have to find this kind of an entropy source in logic

devices especially in FPGAs. Logic devices are digital devices that are

manufactured to implement deterministic processes. Each non-deterministic

behavior in such a system (caused by a meta-stability, clock jitter, radiation errors,

etc.) can have catastrophic consequences on the overall system behavior. On the

other hand the underlying technology of these digital devices is still analogue

circuits, which are running on physical processes. So the unpredictable events due

to the physical nature of the underlying technology are unavoidable. The vendors of

logic devices are working hard to minimize the impurities coming from the

underlying physical process [11].

In general, there are three phenomena and their combinations, which can be used as

the source of randomness in FPGAs. These are the variation of the delay in logic

gates, the analog behavior of logic gates between two logic levels (e.g. meta-

stability) and the thermal noise generated inside the device [2].

7

Logic gates of FPGAs have their own time delay, which is not constant and stable.

Instability of the delays in logic gates causes variations signal propagation time. If

one measures this variation of propagation delay, this can be assumed to be random.

The variation of time delay of logic gates causes jitter on the ring oscillator’s clock

frequency. A ring oscillator is a closed loop of logic gates which includes odd

number of inverter(s) which provide(s) an oscillation. There are several methods

that use these ring oscillators as the source of randomness. The variation in

propagation time is also used in generators with delay elements assembled in an

open chain. The chain is used here to increase or adjust total delay [11].

Some generators use jitter of the clock signals that are synthesized in the embedded

analog PLLs to generate random numbers. Analog PLLs are common resource for

some FPGAs which can be utilized easily. Because RC filters, which is the only

analog part of PLL, can easily be realized using the same technology in FPGAs [1].

We can therefore consider a PLL-based TRNG as a generator, which can be

implemented in logic devices in general.

In standard logic devices a logic state is acceptable to be in one of two logic states

“logical one” and “logical zero”. These two states are represented with different

voltage levels. In order to resolve these states, there is a forbidden area between

these states. While logical state is changing, the voltage level must be passes

through this forbidden area. There is a possibility that the logical state is neither

logical one nor logical zero in this forbidden area. This state is named meta-stability

[12]. The concept of using meta-stability as a TRNG source is not very common for

logic devices in literature because manufacturers mostly solve the meta-stability

problem by using dedicated hardwired flip flops. On the other hand there is still a

practical way to employ the meta-stability such as soft latches implemented in

LUTs.

8

2.1.2 Entropy Extraction Methods

Entropy extraction is a method which is applied to entropy source in order to obtain

an output random string. Each kind of entropy source has its own extraction

method. In logic devices entropy extraction method includes a sampling

mechanism. This mechanism aims to take a sample of randomness when the

entropy of the source is high enough. The entropy source and the extraction method

must always be considered together because extraction methodology is directly

related to the entropy source. Extraction method for each TRNG can be different

and have its own pros and cons.

2.1.3 Post Processing

Generally, statistical quality of TRNGs is not high enough for cryptographic

applications, because the randomness source of TRNGs is physical processes which

have some weaknesses causing rarely the production of non-random numbers (long

sequences of zeros or ones). The statistical quality of generated random numbers

can be degraded for several reasons. Possible reasons of degradation are [11]:

 Entropy of the source may not be high enough

 Entropy may not be extracted correctly.

 The extracted samples may be correlated.

Even if the entropy of the source is properly extracted, the output of TRNG should

be reconsidered before using it. For this reason post-processing is necessary to

improve the statistical properties of the generated random numbers.

Post processing algorithms generally aims to reduce bias and/or correlation on

generated bits in order to increase the entropy. If the post processing mechanism

cannot increase the entropy, it degrades the throughput to increase the entropy per

bit.

On the other hand, the post processing algorithms are sometimes used for increasing

the throughput of the TRNG. Also these types of stretching algorithms are generally

9

used for pseudo random number generators. In some papers the random number

generators which have physical source of entropy and a pseudo post processing are

called hybrid random number generators.

Next, we will discuss the most common post-processing techniques[11].

2.1.3.1 The Exclusive-or Post Processing

The exclusive-or (XOR) post processing is a simple linear function. This post

processor applies exclusive-or operation on successive n bits in order to produce a

single bit.

Figure 2-2 - Exclusive-OR Post Processor (n=2)

The XOR post processing dramatically reduces the throughput (1/n times).

Therefore the bias on the input stream will also dramatically reduce at the output if

the input bits are independent of each other. The important advantages of the XOR

post processor are its simplicity and the possibility to maintain a constant output bit-

rate.

2.1.3.2 The Von Neumann Post Processing

The Von Neumann post processor is a simple procedure that takes a pair of

successive bits and uses the first bit of the pair if the bits are different while

throwing away identical pairs as shown in Table 2-1.

10

Table 2-1 - Von Neumann Mapping Table

Input pair Output bit

00 Null

01 0

10 1

11 Null

The Von Neumann post processing dramatically reduces the bias on the input

sequence except the case that the input sequence has a cycle with period of 2 bits.

However the output bit rate of this post process is directly dependent on the input

sequence. The non-constant output bit rate is the main disadvantage of this post

processing method.

2.1.3.3 Linear Feed Back Shift Registers (LFSR)

A linear feedback shift register (LFSR) is a shift register whose input bit is

a linear function of its previous state. LFSRs are commonly used for post

processing because of the reasons listed below:

 It is easy to implement an LFSR in hardware.

 Produces sequences with good statistical properties.

 It is possible to analyze it using algebraic techniques.

Figure 2-3 - Linear Feedback Shift Register

11

A LFSR of length n consists of n delay elements (Flip Flops). The clock input of all

flip flops are connected to the same clock source and the movement of data through

the register is controlled by rising or falling edge of this clock.

For each falling/rising edge of clock:

 First flip-flop gets its input from the feedback path and the random input.

This feedback path is a combinational block that applies an exclusive-or

operation on the register content according to the feedback polynomial.

 All flip-flops except the first one get their input from the previous one.

 The output is taken from the last flip flop (nth) of the register.

The LFSRs are also used as pseudo random number generators. For using LFSRs as

PRNGs the random input of the register is removed. The initial value of the LFSR

becomes the seed value of the pseudo random number generator and this value

should be updated before the LFSR cycle ends.

2.1.3.4 Resilient Functions

Resilient functions are special functions that are commonly used in cryptography

and coding theory. They are suitable for post processing because “the knowledge of

any m values of the input to the function does not allow one to make any better than

random guess at the output” [13]. These functions are derived as Boolean functions

so their implementations are feasible for FPGAs. The main disadvantage of this

kind of post processing is that they produce one bit per n input bits. So this post

processing method degrades the throughput n times.

2.1.3.5 Encryption of Extracted Random Source

The output of cryptographic algorithms has good statistical characteristics because

of the diffusion and confusion properties of cryptographic algorithms. These

statistical features of cryptographic algorithms also can be used for post processing.

Besides this if a cryptographic algorithm is used as the post processing method of a

12

TRNG, the variables of the algorithm can be taken both from the entropy source of

generator and the system where the TRNG is being used. So the effect of the post

process can be changed for each generation. This kind of post-processing block (the

cipher or hash function) is relatively complex and expensive, hence the TRNG

should re-use (share) the cipher that is used for data encryption.

2.2 Statistical Evaluation and Testing

There are various statistical tests that can be applied to a sequence to confirm if it is

truly random. Randomness is a probabilistic property. The properties of a random

sequence can be characterized and described in terms of probability. There are

numerous possible statistical randomness tests. These tests search a pattern in the

input sequence, which indicates that the sequence is nonrandom. While there are so

many tests for determining whether a sequence is random or not, there are no

specific finite set of tests that can produce an certain decision of being random or

not. In addition, the results of statistical testing should be interpreted with care and

caution to avoid incorrect conclusions about a specific generator.

The quality of a true random number generator’s output must be evaluated using

standard normalized statistical tests. The most commonly encountered tests are the

following: FIPS 140-1, FIPS 140-2, NIST statistical test suite and Diehard test

suite. We will discuss these groups of tests in the following sections.

2.2.1 FIPS 140-1 and 140-2

The National Institute of Standards and Technology (NIST) is an institute that

provides leadership, technical guidance, and coordination of U.S. Government

efforts in the development of standards and guidelines. The Federal Information

Processing Standards (FIPS) Publication Series is the official series of the NIST.

This publication specifies the security requirements that are to be satisfied by a

cryptographic module [8].

13

The FIPS publications classify the cryptographic modules into security levels, i.e.,

level 1 up to 4, four being the highest. Cryptographic modules that implement a

random number generator should generally have the capability to perform statistical

tests for randomness. For Levels 1 and 2, such tests are not required. For Level 3,

the tests should be called upon demand. For level 4, the tests should be performed at

power-up and should also be called upon demand. Four tests that are specified in

the next sub sections are recommended by FIPS 140-1 and later in FIPS 140-2 [9].

A single bit stream of 20,000 consecutive bits of a random number generator’s

output is subjected to each of the following tests. If any of the tests fail, then the

module should enter an error state. These tests are “monobit test”, “poker test”,

“runs test” and “long runs test”, which are explained below.

2.2.1.1 Monobit Test

The purpose of the monobit test is to check whether the number zeros and the

number of ones in a sequence are approximately the same as expected for a truly

random sequence. The monobit is a basic test for a random sequence because the

passing ratios of the other tests are dependent on this test result.

Implementation of the test:

 Count the number of ones for each 20,000 bit stream. Denote this quantity

by X.

 The test is passed if 9,654 < X < 10,346

2.2.1.2 Poker Test

The Poker test divides the 20,000 bit stream into 5,000 contiguous 4 bit segments.

Then the test counts and stores the number of occurrences of each of the 16 possible

4 bit. Then, f(i), which is the number of occurrences of i, is used to check if the

equation below is satisfied or not.

14

2.2.1.3 Runs Test

Run is a terminology used in runs test that corresponds to consecutive occurrence of

ones or zeros. A run of length k consists of exactly k identical bits and is bounded

before and after with a bit of the opposite value.

The purpose of the runs test is to determine whether the number of runs of ones and

zeros of various lengths are in between expected intervals. This test particularly

determines whether the oscillation between such zeros and ones is too fast or too

slow. Acceptable intervals of run numbers are given in the Table 2-2.

Table 2-2 - Accepted Intervals for Runs Test

Length of Run Required Interval

1 2,267 - 2,733

2 1,079 - 1,421

3 502 - 748

4 223 - 402

5 90 - 223

6+ 90 - 223

2.2.1.4 The Long Run Test

A long run is defined as a run of length 34 or more (of either zeros or ones).On a

sample of 20,000 bits, the test is passed if there are no long runs.

15

2.2.2 NIST Statistical Test Suite

The Information Technology Laboratory (ITL) is a major research component of

NIST. ITL develops tests and measurement methods, reference data and technical

analysis that help advance the development and use new information technology

[14]. The ITL‘s special publication NIST-SP800-22 [6] provides criteria for

characterizing and selecting appropriate random number generators. It also includes

some recommended statistical tests that are useful as a first step in determining

whether or not a generator is suitable for a particular cryptographic application.

Still, no set of statistical tests can absolutely certify a generator as appropriate for

use in a particular application. NIST SP800-22 includes 15 statistical tests in order

to evaluate statistical characteristics of the random number generators. These tests

are listed in Table 2-3.

Table 2-3 - Tests of NIST SP800-22

 Test Name

1 The Frequency (Monobit) Test

2 Frequency Test within a Block

3 The Runs Test

4 Tests for the Longest-Run-of-Ones in a Block

5 The Binary Matrix Rank Test

6 The Discrete Fourier Transform (Spectral) Test

7 The Non-overlapping Template Matching Test

8 The Overlapping Template Matching Test

9 Maurer's "Universal Statistical" Test

10 The Linear Complexity Test

11 The Serial Test

12 The Approximate Entropy Test

13 The Cumulative Sums (Cuscus) Test

14 The Random Excursions Test

16

15 The Random Excursions Variant Test

The tests in the list are developed, implemented and evaluated by ITL. ITL also

provides ANSI C codes for the test suite. There is no specific order of application

for these tests but the frequency test has the highest priority since if it fails then it is

highly probable that the others fail too.

The statistical tests are formulated to test a specific hypothesis. For NIST statistical

test suite, the hypothesis is that the sequence under a test is random. For each test, a

relevant randomness statistic must be chosen and used to determine the acceptance

or rejection of this hypothesis. Under the assumption of randomness, such a statistic

has a distribution of possible values. A critical value is then determined from the

theoretical reference distribution of this statistic, which is obtained by mathematical

methods. In order to determine the acceptance or rejection, a statistical value is

computed on the sequence under test. Then the computed statistical value is

compared to the critical value. If the statistical value exceeds the critical value, the

hypothesis for randomness is rejected. Otherwise it is accepted.

There are two possible error conditions for this hypothesis. These are:

 Error Type-1: when the statistical test rejects a sequence that is, in truth,

random.

 Error Type-2: when the statistical test accepts a sequence that is, in truth, not

random.

Table 2-4 - NIST Error Table

TRUE SITUATION
CONCLUSION

Acceptance Rejection

Data is random No error Error Type-1

Data is not random Error Type-2 No error

17

A statistical randomness test cannot decide certainly whether a sequence is random

or not random because of the possibility of these errors. The probability of an Error

Type-1 is often called the level of significance of the test and is denoted as α. The

level of significance of a test indicates that the sequence under test might have non-

random properties even if it is taken from a good generator. Common values of α in

cryptography are around 0.01.

Each statistical test of NIST SP800-22 calculates a P-value (probability value) that

summarizes the strength of the evidence against the hypothesis. This P-value

corresponds to the probability that a perfect random number generator produced a

sequence that is less random than the sequence being under test. If this P-value is

greater than the level of significance (α), then the sequence under test is accepted to

be random. Otherwise, it is rejected.

The NIST also recommends a five step strategy for testing RNGs.

1. Selection of a generator (select a hardware or software based generator for

evaluation).

2. Binary sequence generation (for a fixed sequence of length n and the pre-

selected generator, construct a set of m binary sequences and save the

sequences to a file).

3. Execute the Statistical Test Suite (invoke the NIST Test Suite).

4. Examine the P-value (an output file is produced with relevant values such as

P-values for each statistical test).

5. Assessment: Pass/Fail assignment (for a fixed significance level, a certain

percentage of P-values are expected to indicate a failure, for example, if α =

0.01, then about 1% of the sequences are expected to fail).

18

2.2.3 Diehard Battery of Randomness Tests

The Diehard battery of tests was developed and published in 1996 [7]. The battery

of the tests is supposed to provide a better statistical evaluation of random

sequences in comparison to the original FIPS statistical tests. The test battery

consists of 15 different, independent statistical tests that are listed in Table 2-5.

Table 2-5 - List of Randomness Tests in Diehard Battery

 Test Name

1 Birthday Spacing Test

2 Overlapping 5-Permutations (OPERM5) Test

3 Binary Rank Tests (three kinds of rank matrices tests)

4 Bitstream (Monkey) Test

5 Overlapping-Pairs-Sparse-Occupancy (OPSO) Test

6 Overlapping-Quadruples-Sparse-Occupancy (OQSO) Test

7 DNA Test

8 Count The 1s Tests (two kinds of tests)

9 Parking Lot Test

10 Minimum Distance Test

11 Random Spheres Test

12 The Squeeze Test

13 Overlapping Sums Test

14 Runs Test

15 Craps Test

The diehard test suite also generates P-values for each test as the NIST test suite

and the results of these P-values are supposed to be uniformly distributed. Unlike

the NIST test suite, the test is considered to be successful when the P-value is in

range [(0+α/2) , (1-α/2)] where α is the level of significance of the test.

19

More detailed description of these 15 tests and software to perform them are

available on the internet link of the Diehard CDROM [7]. This suite requires at least

80 million bits (10-12 Megabytes) of random data for each run of the suite.

2.3 Practical Implementations of TRNGs built in FPGA

In this section some sample practical designs reported in literature of true random

number generators built in FPGA are presented and briefly explained.

2.3.1 Basic Ring Oscillator Based Design

The basic ring oscillator based design is proposed first in [13]. The principle of this

design is based on sampling phase jitter in ring oscillators. Ring oscillator is a

combinational loop of delays, which includes an odd number of inverters. That

provides the oscillation in the loop. The instability of the propagation delay of each

logic gate in closed loop generates jitter on the ring oscillator clock. This design

employs a large number of ring oscillators (114 for the selected Xilinx Virtex-2

FPGA) each composed of 13 inverters. The number of employed ring oscillators is

determined according to the measured jitter. The outputs of all ring oscillators are

input to a multiple input exclusive-or (XOR) operation in order to get a high-

frequency random signal. The output of exclusive-or operation is sampled using a

low frequency reference clock. This method is simply presented in Figure 2-4.

Figure 2-4 - Ring Oscillators Based Design [13]

The digital random output is then post processed using resilient functions. The

relationship between the number of oscillators and the randomness of the output is

20

shown in [13]. The weakness of this method is the assumption that the ring

oscillators are independent with each other. This weakness is later explained in

detail in [15]. The improvements and revisions are proposed in [16].

The advantages of basic ring oscillators based design:

 Technology independent (Suitable for all FPGA families).

 Easy design and implementation.

 Synthesis can be done using fully automated FPGA tools.

 Relatively high and constant throughput.

The disadvantages of basic ring oscillators based design:

 High power consumption (Because of large number of ring oscillators).

 The ring oscillators are probably not totally independent with each other.

This causes a correlation on the output of design and degrades the quality of

randomness.

 The external manipulations or attacks on the generator will not be detected

because of the existence of resilient corrector.

 The power consumption of design and the high fan in of single exclusive or

gate can cause excessive local heating.

2.3.2 PLL Based Design

The PLL based design of true random number generator is proposed in [1]. The

basic principle behind this method is to extract the randomness from the jitter of the

output clock signal of embedded analog phase-locked loop (PLL) in FPGAs. The

jitter on the reference clock is sampled by using a rationally related clock signal

synthesized in the same on-chip analog PLL. The most important requirement of

this method is that the reference signal has to be sampled near the edges influenced

by the jitter. The basic structure of the proposed generator is depicted in Figure 2-5.

21

Figure 2-5 - TRNG of Fisher and Drutarovsky [1]

The design includes an on-chip PLL whose clock generation factor is m/d. m is the

multiplication factor and d is the division factor of the PLL. The design has also a

flip flop (DFF) for sampling the jitter on the reference clock. The last part of the

generator is decimator part. The decimator is an n bit buffer where the output of this

buffer is input to a multiple input exclusive-or (XOR) operation. The result of this

operation generates the random output of the TRNG.

The signal named CLJ is a rectangular clock waveform with the frequency:

Signal CLJ is sampled by the D flip-flop using the reference clock signal with

frequency FCLK. There are d rising edges of CLK signal and 2m edges (rising and

falling) of CKJ waveform during time period TQ.

It has been shown in [1] that if m and d are relative primes (Greatest Common

Divisor GCD (m, d) = 1), the set of samples creates an equidistant set of values. The

worst-case distance between the two closest edges of CLK and CLJ during the

period TQ is given as

22

If m, d, and FCLJ are properly chosen then worst-case distance between the two

closest edges of CLK and CLJ can be controlled. Therefore if the intrinsic analog

PLL jitter (σjitter), which is already specified by FPGA vendors is greater than the

worst-case distance between the two closest edges of CLK and CLJ, the sampling

edge of CLK will fall at least once into the edge zone of CLJ during each period TQ

[1].

Hence if we sample CLJ for the period TQ, at least one of the samples will

statistically depend on the random jitter. The output is then generated by the

decimator which is a bit-wise addition in modulo 2 of d samples and this output will

be random.

The randomness of this design was tested by NIST statistical test suite by using 1-

Gigabit of continuous TRNG output. The results of tested sequences was within the

expected confidence intervals for all tests and P-values were uniformly distributed

over the (0,1] interval.

The advantages of PLL Based Design:

 No need for post processing.

 Easy design and implementation

 Synthesis can be done using fully automated FPGA tools

 Constant throughput.

 Low power consumption (PLL can be enabled just only for generation)

The disadvantages of PLL based design:

 Low throughput.

 Use of PLLs could be restrictive in some designs (some FPGAs contain only

one or two PLLs).

 The external manipulations or attacks on the generator will not be detected

because of existence of resilient corrector.

23

2.3.3 State Machine Based Design

The state machine based design of random number generator is proposed in [17].

The basic structure of this design is presented in Figure 2-6. The design employs

two state machines: one of them is a linear feedback shift register (LFSR) and the

other one is a cellular automata shift register (CASR). These state machines are

clocked by jittery clock signals that are generated by two independent free running

ring oscillators.

The employed state machines have different lengths and only 32-bits of these

machines are used for generating the output. The employed LFSR is based on a

primitive 43 bit long polynomial, which provides a cycle length of (2
43

 – 1). The

employed CASR is 37 bit long, which provides a cycle length of (2
37

 – 1). To

generate a 32 bit random number, 32 bits of the LFSR and CASR are selected and

permuted and added using bitwise modulo - 2 exclusive or operation. The lengths of

the state machines are selected to be relative primes in order to get the cycle length

of the combined generator close to 2
Sum of lengths

 – 1 (2
80

).

Figure 2-6 - State Machine Design [17]

The initial state of the state machines would be critical if the machines are restarted

for each 32 bit output generation. But the ring oscillators that drive state machines

are never stopped, even if the generator is not in use. So due to the time drift of the

clocks, the LFSR and CASR can be supposed to be in an undetermined state after a

sufficiently long period. Also for getting multiple successive random words, the

design requires the same sufficiently long time period for each successive words.

24

The minimum sufficient time for wait between two successive words permits the

state machines to pass at least twice their cycle.

This method has been realized for random number generation in some custom

silicon chips that are produced by Freescale Semiconductor with the name Random

Number Generator Accelerator (RNGA). But Freescale also does not recommend

using this generator in high-level data security applications since the output of this

generator can be determined from the initial states of the machines theoretically

[12].

The advantages of state machine based design:

 No need for post processing.

 Easy design and implementation

 Synthesis can be done using fully automated FPGA tools

 Constant and high throughput.

The disadvantages of state machine based design:

 It is difficult or even impossible to describe the randomness with a

mathematical model.

 The structure of TRNG mixes pseudo-randomness with true-randomness.

 True randomness is based on the presence of frequency variation and drift,

but absence of true randomness could not be detected because of having

pseudo-randomness also.

2.3.4 FIGARO Design

The FIGARO Design of true random number generator is proposed in [18] [19].

Figure 2-7 presents the basic structure of the design. This design contains two

special ring oscillators, one Fibonacci and one Galois ring oscillators. These ring

oscillators differ from the ordinary LFSRs containing inverters instead of flip flops.

The feedback path of the ring oscillators can be expressed using Fibonacci and

25

Galois polynomials and the ring oscillators are named according to these

polynomials such as Fibonacci Ring Oscillator (FIRO) and Galois Ring Oscillator

(GARO). Because of the unstable delay time of each inverter, the internal state of

these ring oscillators change chaotically and very fast. Hence the internal state of

the ring oscillators cannot be predicted after a specified time. In [15], it is stated that

each of the rings having linear feedback gives a random output after a period as

small as 25ns.

Figure 2-7 - Figaro Design

The FIGARO design combines the random output of the Fibonacci ring oscillator

and the Galois ring oscillator with an exclusive or operator. The output of the

exclusive or gate is sampled with a sampling frequency that is chosen relatively low

to avoid output bit correlations.

Golic [18] has also proposed a method of random data post processing based on

self-clock-controlled LFSR. The proposed post processing can be used for

randomness extraction and for computationally secure throughput upgrade of input

random data.

The advantages of FIGARO Design:

 Easy design and implementation in all FPGA families.

 Synthesis can be done using fully automated FPGA tools.

 Uses relatively few logic sources and requires only logic blocks.

 Constant and high throughput.

 By restarting for each generation, power consumption is assumed low.

The disadvantages of FIGARO Design:

26

 It is difficult to describe the randomness with a mathematical model.

 The robustness of the generator against attacks is difficult to estimate.

 Entropy on the output of the exclusive or operation is expected to be very

high according to [15] on the other hand the bias on the output is reported to

be very high [11].

 The output spectrum has some dominant frequencies.

 Some of the implementations in the literature stop running randomly [11].

2.3.5 Metastable Ring Oscillator (Meta-RO) Based Design

The Metastable Ring Oscillator based true random number generator design is

proposed in [20]. This design includes a metastable ring oscillator. The metastable

ring oscillators are designed to extract the randomness from the metastable

condition of the digital devices instead of jitter on the output clock. This new source

of randomness is expected to reduce the entropy accumulation time and increase the

throughput of the generator.

The basic element of the generator is the metastable ring oscillator which has the

ability to be set in metastable mode. The metastable ring oscillators are composed

of inverters and each inverter has its own switch. The generator has a control for

switching all of the inverters as shown in Figure 2-8.

27

Figure 2-8 - Meta-RO based Design [20]

The generator has two modes of operation. These are metastability (entropy

accumulation) mode and oscillating mode. In the metastability mode, the individual

switches of all inverters are closed. The output of each inverter is connected to its

input and it converges somewhere near a metastability level. This voltage level

fluctuates around the metastable level because of thermal noise as long as the

switches are closed. In the metastable mode each of the inverter forms an

independent randomness source. Whenever the switches are opened the initial state

of the ring oscillator is completely determined by from the fluctuations of each

inverter.

For the validation of the proposed method, an ASIC design is implemented and

simulated in Cadence [20]. The outputs are shown to have passed tests of AIS.31

Class P2 and FIPS 140-1/2. The throughput is reported to be 35-50 Mbits/sec. The

estimated area for the design with 65nm semiconductor technology is reported to be

1µm
2
 (for Digital TRNG core only).

On the other hand an FPGA implementation is also done using Xilinx XC2V3000-

5. This design is shown to have also successfully passed FIPS 140-1/2 and AIS.31

Class P1, but problems exist with AIS.31 Class 2 tests. It is also mentioned that the

28

FPGA implementation of this method is not very stable compared to ASIC design

[20].

The advantages of Metastable Ring Oscillator based design:

 Uses relatively few logic resources and requires only logic blocks.

 Relatively high throughput (35 Mbits / sec for the ASIC design).

 High entropy source.

The disadvantages of Metastable Ring Oscillator based design:

 It is difficult to describe the randomness with a mathematical model.

 Manually intervention to FPGA tools is required for implementation.

 Weaknesses against temperature and voltage changes on the generator,

which can cause degradation on the statistical characteristics of the output

bit-stream.

 Robustness against attacks is questionable.

2.3.6 Metastable Flip Flop Based Design

The metastable flip flop based true random number generator is proposed in [21].

Generating metastable condition on a standard flip flop is a challenging issue for

FPGAs because vendors solve metastability problems in general on their products.

In [21], the authors propose a method to generate metastable condition that utilizes

programmable delay lines (PDL), which alter the propagation delay in a controlled

fashion. The method uses PDLs to equalize the signal arrival times to flip flops

accurately. These PDLs have the capability of adjusting the delay of signal with a

resolution of pico second. The method has an adaptive feedback mechanism that

tunes the PDL according to the probability of the output bits being monitored.

Whenever a small bias is detected on the output, the PDLs are reconfigured to put

the flip flop in metastable region again. The monitoring module compensates the

effects of environment changes (temperature, voltage, etc.). The general structure of

the proposed design is shown in Figure 2-9.

29

Figure 2-9 - Metastable Flip Flop Design [21]

In [21], the design is implemented on Xilinx Virtex 5 FPGAs. Throughput is

reported 2 Mbits/sec with a von Neumann corrector. And NIST randomness tests

are passed with high rates.

The advantages of metastable flip flop based design:

 Relatively high throughput

 Uses very few logic resources.

 Low power consumption.

 Robust for external changes and attacks

The disadvantages of metastable flip flop based design

 Manual placement is needed in order to ensure that the generator is in proper

operation in all circumstances.

 FPGA family and even model specific design is required.

 Not feasible for some FPGAs.

2.3.7 Transition Effect Ring Oscillator Based Design

The transition effect ring oscillator (TERO) based true random number generator is

proposed in [22]. The design includes a new high-entropy digital circuit named

transition effect ring oscillator that can be realized in FPGA. TERO is a kind of bi-

stable Flip-Flop (FF) with intentionally lengthened feedback paths. The generator

30

extracts the random bit while TERO is resolving a metastable event. The structure

of TERO is shown in Figure 2-10.

Figure 2-10 - TERO [22]

The TERO design includes two XOR gates that can act like inverters or buffers

according to the ctrl signal. If ctrl = ‘1’ both XOR gates act like inverters and if ctrl

= ‘0’ then the two XOR gates act like buffers. For these two conditions there should

be no oscillation on the loop but at the rising edge of the ctrl signal two XOR gates

both act as inverters and try to change their outputs. This action disturbs the steady

state behavior of the loop and a pulse rises in the loop. This pulse disappears in a

small transient period. The randomness is extracted from this transient effect of

TERO loop using T-Flip Flops (TFF). TFFs resolve if the loop made even or odd

number of oscillations. The “rst” and “clr” signals are used to initialize TERO to

zero for each generation, which prevents correlation between two successive bits.

The implemented design, in [22] produces random bits with a throughput of 250

kbps. The generated bit streams are confirmed by the NIST test suite without any

complex post processing.

 The advantages of TERO based design:

 Uses resources common to all FPGA families.

 Mathematical model has been presented in the paper.

 Uses very few logic resources. (2 CLBs of Xilinx Virtex-5).

 Low power consumption.

The disadvantages of TERO based design:

31

 Manual placement is needed in order to ensure the generator proper

operation in all circumstances.

2.3.8 Crosstalk Effect Based Design

Cret et. al. [23],[24] have presented a new method of implementing TRNGs in

FPGAs. The method is based on using the logic resources of the FPGA close to its

maximal capacity in a given region, either globally or locally and exploiting the

interconnection network as intensely as possible. The authors has experienced that

this kind of heavy load operation causes crosstalk at the dedicated carry chains

which are present in each Xilinx FPGA. The carry chains, are most common type of

fast dedicated lines between neighboring logic cells, which allow creating

arithmetic functions efficiently. The crosstalk begins to occur after the threshold,

which is a fraction of the carry chain length, is exceeded. Cret et. al. [23],[24]

proposes a design that utilizes this kind of crosstalk as an entropy source, which can

be exploited to obtain a high quality TRNG.

The architecture in this design consists of a chain of inverters, which is driven by

the system clock as shown in Figure 2-11. The outputs of the (n + m) inverters

represent currents flowing through the chain line rapidly. Data from the outputs of

inverters is added to a counter value and the result is collected in an accumulator.

After a threshold is exceeded by increasing the m, the final result obtained in the

accumulator becomes different at the end of each run of a fixed amount of clock

cycles due to crosstalk and other electrostatic or magnetic interferences that appear

in the interconnection network.

32

Figure 2-11 - Crosstalk based Design [24]

The proposed design has been proven to provide high quality random numbers

satisfying statistical test suites such as NIST and TestU01. The provided throughput

of the proposed design is also shown to be quite high (up to 0.7Gbps for

Spartan3E100 FPGA) [24].

The advantages of the crosstalk based design:

 Very high throughput.

 Entropy level increases with the temperature or any other extreme condition

which could influence the FPGA [24].

 The disadvantages of crosstalk based design:

 Dedicated to Xilinx FPGAs.

33

 FPGA is required to be used at a relatively large capacity levels.

 Manual placement is required for exploiting the interconnection intensely.

 High power consumption.

 There is no mathematical model for the entropy source.

2.3.9 Write Collisions of Memory Blocks Based Design

An alternative method for implementing TRNGs in FPGAs, which is based on write

collisions in dual-port block memories (BRAM) appeared in [25],[26]. The author

reports that the write collision of block rams provides efficient entropy to be

employed in cryptography or for other security issues such as device identification

and true random number generation [26]. When a write collision occurs on a field

of memory cell, the cell is likely to remain in a metastable state before it goes into a

stable state again. The stable states of the cell are influenced by the respective

drivers, adjacent components, manufacturing and process anomalies, thermal

vibrations of materials and other minor factors [25]. These external and internal

factors in FPGA obviously affect some individual bits of the memory cell. These

individual memory cells are then employed as the entropy source for the proposed

design which provides a fast and robust true random number generation method

with a throughput of more than 100 Mbits per second. The randomness quality is

extended by post processing and confirmed by Diehard and standardized BSI AIS

31 test suites. This random number generator can also be instantiated many times on

contemporary FPGA devices to support even higher throughputs of random data

(>100 Mbits/s).

The proposed TRNG employs an evaluation design that is shown in Figure 2-12 for

distinguishing the memory bits of block memories which utilizes sufficient entropy

after the write collisions. The evaluation design can drive all input lines of the

memory to either zero or one at the same time. Furthermore, a finite state machine

(CTL) performs repeated queries on all bits at each memory address. By using this

34

design the TRNG determines which of the individual bits of the memory blocks are

suitable for entropy generation. This determination is done by monobit test with 2
15

tries of collision measurements. After this evaluation process the TRNG uses the

chosen bits of the memory block for write collision which is the entropy source of

the proposed design.

Figure 2-12 - Bram Based Design [25]

The advantages of write collision of BRAMs based design:

 Relatively high throughput.

 The throughput can be increased by employing multiple TRNGs in the same

FPGA.

 Relatively low resource usage but BRAMs are valuable resource of FPGAs.

 Low power consumption.

The disadvantages of write collision of BRAMs based design:

 Device specific characteristics of TRNG.

 Potential risks of defects on the used BRAM because of write collisions

 There is no mathematical model for the entropy source

35

 The employed post processing method can hide the abnormalities of the

generator.

2.3.10 Coherent Sampling Design

The coherent sampling design of true random number generator is proposed in [5].

The randomness source of the proposed design is the intrinsic jitter contained in

ring oscillator clocks. The generator can produce random bits at speeds up to 0.5

Mbits/second with good statistical characteristics. The design uses resources

commonly encountered in all FPGA families. The generated output bit streams are

also confirmed by NIST Test suite [5].

The source of randomness of this design is the ring oscillator’s clock jitter. Jitter on

the ring oscillator clocks arises from unstable propagation delays of the logic gates

that are included in the ring oscillator’s loop. The method employs two ring

oscillators in order to generate two clock signals with jitter. The critical part of the

clock generation is that the generated clocks must have different but very close

periods. In order to extract the randomness from the intrinsic jitter of ring oscillator

clocks, coherent sampling method has been used.

Figure 2-13 - Coherent Sampling [27]

The coherent sampling (see Figure 2-13) is a method which samples a periodic

signal S1 with another periodic signal S2 where the period of S1 (T1) is slightly

different than the period of S2 (T2). The output signal of the sampling (beat signal)

will also be periodic with a period that is inversely proportional to period difference

of the signals. Beside of this, the period of beat signal is equal to integer multiple of

36

T2. The size of beat signal will be a random count of periods T2 because of the

unstable T1. In order to get the random bit from the jitter, it is sufficient to count the

period of T2 during one period of beat signal [27].

Figure 2-14 - Coherent Sampling Based TRNG [5]

The general structure of the coherent sampling design based TRNG is presented in

Figure 2-14. This design contains two separate ring oscillators, sampling module

and controller module. Ring oscillators supplies two clock signals to the sampler.

The sampler module extracts random bit from the jitter by the help of the controller

module using coherent sampling method.

The most critical part of the generator is the requirement of that the two generated

clock frequencies have to be close but not the same for generating high quality

random numbers. The period difference of these two clocks should be tens of pico

seconds. In order to solve this problem the ring oscillator components must be

manually placed in the FPGA to the close CLBs.

The advantages of coherent sampling design:

 Uses common resources of all FPGA families.

 Mathematical model is feasible (not given in the original paper)

 Uses very few logic resources.

37

 Low power consumption.

The disadvantages of coherent sampling design:

 Manual placement is needed in order to ensure the generator proper

operation in all circumstances.

 The output bit-stream required a post-processing in order to reduce the bias.

Table 2-6 - Comparison Table of TRNG Methods

R
in

g

O
sc

il
la

to
r

P
L

L

S
ta

te

M
a

ch
in

e

F
IG

A
R

O

M
E

T
A

-

R
O

M
et

a
st

a
b

le

F
F

T
E

R
O

C
ro

ss
ta

lk

E
ff

ec
t

B
R

A
M

C
o

h
er

en
t

S
a

m
p

li
n

g

Can be

realized in all

kind of
FPGAs

Yes No Yes Yes Yes No Yes No No Yes

Automated

Synthesis
Yes Yes Yes Yes No No No No Yes No

Design
Simplicity

High High
Mid

Range
Mid

Range
Low Low Low Low Low High

Throughput High Low High High High High Low
Very

High
High High

Power
Consumption

Very
High

Low High Low Low Low Low High Low Low

Post Process

Requirement
Yes No No Yes No No No No No Yes

Math Model
Availability

No Yes No No No No Yes No No Yes

Required

FPGA

resource

Very

High
Low

Mid

Range

Mid

Range
Low Low

Very

Low
High Low Low

Randomness

Quality
High High Low Low High High High High High High

Robustness Low High High Low Low High High High High High

As a result of the previous comparative table, we have chosen to implement

coherent sampling technique because of its advantages especially the use of

resources that are commonly encountered for all kind of FPGAs and the design

simplicity. The next chapter is prepared for a deeper understanding of the method

and presenting its implementation details. Our implementation has the same

38

features of the originally proposed design. We also used NIST statistical test suite

and Diehard battery of tests to evaluate the randomness quality of our

implementation. The generated one Gigabit output of our implementation is used

and confirmed by both of the test suites. In addition to the design proposed in [5],

we have implemented the embedded tests of FIPS 140-1 in the same FPGA. By

implementing these embedded tests, our design gained a concurrent control of

randomness feature, which makes the design more secure and reliable for external

attacks and environment changes.

39

CHAPTER 3

IMPLEMENTATION OF TRUE RANDOM NUMBER

GENERATOR

In this chapter, we will present the implementation details of the TRNG that we

have realized on Virtex-5 FPGA with Xilinx ML507 Development Platform. We

have chosen to implement coherent sampling method which was briefly overviewed

in the first chapter because of its advantages especially its design simplicity and

very low resource requirement. Besides, the coherent sampling method employs a

robust high quality randomness source that can be realized by using commonly

encountered FPGA resources. We have also implemented the embedded tests

published by FIPS 140-1 [8]. We have designed the TRNG and its embedded tests

in a compact module and described it in VHDL language. We have also confirmed

our generated random numbers with the NIST statistical test suite. In the following

parts of this chapter we will report on the obtained experience and the engineering

challenges encountered during this implementation. Our TRNG design will be

explained hierarchically in a top-down fashion.

40

Figure 3-1- TRNG Design (Top view)

Our design includes three main modules that are named as TRNG core, TRNG

controller and Test module. The TRNG core is the heart of the generator where the

randomness source, extraction method and the post processing are realized. Test

module includes the embedded tests which are defined in FIPS 140-1 standard.

These tests run concurrently while the random numbers are generated. The

controller module controls the test module and the TRNG core module. It also

provides an interface to an upper TRNG driver. Block diagram of the top level

design of our TRNG is illustrated in RTL schematic as an output of Synplify Pro

synthesis tool in Figure 3-1.

3.1 TRNG Core Module

The TRNG core module is the most critical part of the generator because the

employed randomness source, extraction method and post processing are all

realized in this module.

The module has three inputs that are named “rst”, “clk” and active. The “clk” signal

is the interface clock of the TRNG, which should be supplied from an upper control

layer of the TRNG. The period of this clock signal is critical because of the preset

time configuration of the sampler module. This requirement is explained in the

design details of the sampler. We have implemented the controller and the sampler

for 50 MHz input clock signal. The input signal “rst” can be used to stop the clock

generation of the ring oscillators while the TRNG is in reset mode. The active input

of the TRNG is used to enable or disable the controller module. The TRNG core

also has two output ports that are named as random and ready. Whenever the TRNG

41

core generates a new random bit at its random port, it generates a ready pulse that to

indicate this event.

Figure 3-2 - TRNG Core Sub Modules

The TRNG core module includes three sub modules that are named as ring

oscillator, sampler and controller as shown in Figure 3-2. Two instances of a ring

oscillator are employed in the TRNG core which has close but non-identical

oscillation frequencies. We use these two ring oscillators to supply streams of

pulses to the sampler logic. The sampler logic extracts the random bit by the help of

the controller and produces “bitready” signal for every random bit. The controller

module drives the sampler module to get true random bits. Generated random bits

are post processed by the controller. The controller generates ready pulse for every

post processed random bit. The operation and the implementation details of each

module are explained below.

3.1.1 Ring Oscillators

A ring oscillator is a combinational loop of delay elements (logic gates), which

contains an odd number of inverters. The employed inverter(s) in the loop causes an

oscillation whose period is the total propagation time in the loop. The propagation

delay of logic gates in FPGAs is unstable because of the physical processes of the

underlying technology. This instability reveals itself as jitter on the generated clock

signal of a ring oscillator.

42

Figure 3-3 - Ring Oscillator

The frequency of the ring oscillator clock signal is directly dependent on the

number of gates employed in the loop. On the other hand the entropy of the ring

oscillator’s clock jitter is also related to the number of delay elements employed in

the loop. Considering these and a couple of experiments together, we have chosen

to use three buffers and one inverter for the construction of our ring oscillator. The

oscillation on the loop is supplied to a toggle flip flop in order to obtain a better

square shape clock signal. The general structure of our ring oscillator is shown in

Figure 3-3.

The ring oscillators are asynchronous designs. Asynchronous circuits are not

commonly encountered in FPGA based designs. VHDL implementation of a ring

oscillator is not an ordinary VHDL code, since the vendor’s synthesizing tool or the

mapping tool may prune the delay elements in the loop automatically. In order to

prevent this, we construct the ring oscillator in Xilinx schematics using “KEEP”

constraint [28]. Using [29], we have determined the primitive elements, associated

with KEEP attribute with each and then we have describe the connections in VHDL

as shown in Appendix-A. “KEEP” is an advanced mapping and synthesis constraint

which is used with the name of the net that one wants not to be pruned [28]. For

every FPGA family, a similar design attribute can be found to implement ring

oscillators.

43

Figure 3-4 - Ring Oscillator Implementation Schematic

The RTL schematic of our ring oscillator is presented in Figure 3-4. LUT2 and FD

modules in the schematic are Xilinx primitive design elements. The reset input of

the ring oscillator is connected to all LUT2 elements and it resets the outputs of all

LUT2s. Each LUT2 primitive that are named as delay1_lut, delay2_lut and

delay3_lut is configured to behave like a buffer. But each LUT2 element that are

named as invert_lut and the div2_lut is configured to behave like an inverter. The

FD is the regular D Flip Flop.

Figure 3-5 - Plan Ahead Screen Shot

44

Our implemented ring oscillator fits into a single slice of Virtex – 5 FPGA as shown

in Figure 3-5. The generated clock frequency of ring oscillator is around 195 MHz.

For our purpose the frequencies of the generated clocks should be close to each

other but not identical. This can be achieved by placing each oscillator into

individual slices that are very close to each other. Hence we place the ring

oscillators manually into two separate slices that are adjacent to each other by using

the Plan Ahead tool of Xilinx ISE Project Navigator. The coordinates of the slices

that are used for ring oscillators are arbitrarily chosen as Slice_X1Y0 and

Slice_X1Y1. This constraint of placement can be done by using “LOC” attribute of

Xilinx as shown below.

 Attribute LOC: string;

 Attribute LOC of RO1: label is "SLICE_X1Y0";

 Attribute LOC of RO2: label is "SLICE_X1Y1";

In addition, we have placed each element of a ring oscillator in to a specific location

in the slice for providing the same conditions in each ring oscillator. We have first

done the manual placements by using Plan Ahead visual interface. Then we

described these manual placement constraints in the VHDL code using “BEL”

attribute of Xilinx as shown below. “BEL” is an advanced placement constraint,

which locks the logical symbol into a specific site of the slice. This means that if

these constraints are used for a LUT, this LUT will only be placed in the specified

site of the slice.

attribute bel : string ;

attribute bel of delay1_lut : label is "D6LUT";

attribute bel of delay2_lut : label is "C6LUT";

attribute bel of delay3_lut : label is "B6LUT";

attribute bel of div2_lut : label is "A6LUT";

attribute bel of invert_lut : label is "A5LUT";

45

We monitored the clocks of our implemented ring oscillators with an Agilent

MSO6104A oscilloscope. The screen shot of the oscilloscope can be seen in Figure

3-6. The frequencies of ring oscillators are around 195 MHz and the jitter can be

observed easily. The measurement is done when the oscilloscope is in edge

triggered mode and the trigger is on CLOCK2 signal.

Figure 3-6 - Ring oscillator clocks

3.1.2 The Sampler Module

The sampler circuit extracts randomness from the jitter on the input ring oscillator

clocks by using the coherent sampling method. In order to use coherent sampling

the frequency of the input clocks have to be close but non-identical. So if we sample

one of them with the rising edge of the other one, the sampled output signal (beat

signal) will have long sequences of 1s or 0s because of period drifting of the clocks.

Due to jitter noise on input clock signals, one period of the beat signal includes

many numbers of cycles of the sampling clock, this number being a random

quantity. The sampler circuit counts the number of cycles that the beat signal is not

46

changing by using a single bit counter (T-flip flop). The output of the counter flip

flop has a random bit for each rising edge of the beat signal. The sampler module

that extracts the random bit mentioned above is presented in Figure 3-7.

Figure 3-7 - Sampler Design [5]

The sampler circuit contains four flip flops that are denoted as (X,Y,Z,W) in Figure

3-7. Flip flop X is used to sample clk0 with the rising edge of clk1. The output of

this flip flop is the beat signal in coherent sampling method and is denoted as S0.

During the sampling process the toggle flip flop (Y) toggles its output for each

falling edge of clk1. Sampler module utilizes this flip flop for counting the cycles of

clk1 during one period of S0 in modulo 2. This toggle flip flop can be reset by the

signal denoted R0. It is a critical need of the sampler mechanism to reset this flip

flop before each generation in order to prevent the correlation between two

successive generated bits. The output of counter flip flop is denoted as C0. Flip flop

W latches the C0 signal for every rising edge of S0, meaning that the number of

cycles passed during one period of S0 is latched at the end of the period. This is

now the generated random bit for this period of the beat signal (S0). The output of Z

flip flop (bitready signal) gets high for each newly generated bit and this flip flop

can be cleared only by an external signal (ReadAck). E0 is the enable input of the

47

sampler circuit which is used for disabling W and Z flip flops and for keeping the

random bit unchanged before it is read from outside. After each rising or falling

edge of the S0 signal, C0 signal has many state changes with short cycles because

of jitter noise. Therefore after the first rising edge of S0, enable signal (E0) should

be made low by the controller module to keep the random bit unchanged. The

controller then read the random bit while keeping the enable signal at low for a

predetermined period in order to wait for S0 to settle up. To let the sampler generate

the next random bit the controller module of the TRNG core should send

“ReadAck” and re-enable flip flops W and Z.

Figure 3-8 - Sampler Signals

Figure 3-8 illustrates the timing of the signals. It is seen that C0 toggles for each

falling edge of clk1 and S0 has a long period relative to clk1. The random bit is

latched with the rising edge of S0.

In our implementation of the above simple sampler we have used schematic design

features of Xilinx as we have done for the ring oscillator case. For the schematic

design of the sampler we used LUT2 and FDCE primitives in order to construct our

sampler module. The FDCE primitive is a D flip flop with chip enable and clear

inputs features. The Synplify schematic diagram of our sampler is shown in Figure

3-9.

48

Figure 3-9 - Sampler Module Synplify Schematic

In the implementation, X, Y, Z and W flip flops are denoted with sampling_FF,

Rand_cnt_FF, Bit_ready_FF and Rand_out_FF, respectively. The enable input of

the circuit is the same as E0 in our implementation. We combined R0 and ReadAck

signals also because they work with the same polarity for random bit generation.

We also used a clear input instead of R0 and ReadAck signals.

While implementing the sampler we utilized “BEL” and “LOC” constraints as in

the ring oscillator case. These constraints and the VHDL description of the sampler

module are presented in Appendix – B.

During the implementation of ring oscillator we have observed that the jitter of the

output clock can be affected by the circuit that is employed in adjacent slices of the

ring oscillator. Because of this the quality of the generated numbers decreases

whenever the ring oscillators of our TRNG is placed into slices that are surrounded

with circuit that are used for other purposes. In order to overcome this problem, we

placed the TRNG core, which contains the ring oscillator and the sampler circuit on

one of the corners of the FPGA. Besides, we have also surrounded our compact

49

TRNG core design with a slice fence that is prohibited to be used for other purposes

as shown in Figure 3-10.

Figure 3-10 - Prohibit fence of TRNG core

This prohibition of usage of the slices can be done by the “PROHIBIT” constraint

that is shown below.

CONFIG PROHIBIT = SLICE_X0Y0;

CONFIG PROHIBIT = SLICE_X0Y1;

CONFIG PROHIBIT = SLICE_X0Y2;

CONFIG PROHIBIT = SLICE_X2Y3;

3.1.3 The Controller Module

The controller module senses the output control signals of the sampler and drives

the sampler for sampling correctly. The controller manages enabling or disabling of

the sampler and clears the counter flip flop for each run. In order to generate a

50

single random bit, the controller enables the sampler and waits for the bitready

signal. Whenever a random bit is latched by the sampler, the bitready signal goes

high and the controller disables the sampler and then reads the random bit. After

reading, it waits for a predetermined amount of time (3 clock cycles of 50MHz in

our case) for re-enabling the sampler. In this way the controller forces the sampler

circuit to ignore the short beat cycles that occur on both rising and falling edges of

the beat signal. Following this preset waiting time the controller re-enables the

sampler and resets the counter value and bitready signal for the next bit generation,

cycle. The controller prevents correlation between successive bits by resetting the

counter flip flop for each new generation operation.

Meanwhile the controller uses an exclusive - or corrector in order to prevent the

bias on the output. Two successive incoming bits are input to the exclusive or

corrector, which halves the throughput of the generator but increases the quality of

its statistical properties. The controller generates a ready pulse for every generated

and post processed random bit. The random bit and ready pulse of that bit is

connected to the output ports of the TRNG core module.

3.2 Embedded Test Module

The randomness of a TRNG is generally confirmed by statistical test suites before it

can be employed by a cryptographic system. However these tests are generally

executed offline using output streams of a TRNG. It is equally important to care

about whether any environmental change (such as temperature, voltage, current

requirement of FPGA) could decrease the randomness quality of the employed

TRNG. Besides, the quality of a TRNG can also be degraded by external attacks,

which are directly targeting the TRNG. The generated random numbers that are

used during the real operation of the system are usually not tested with statistical

randomness tests. Because these tests are complex and heavy to be executed for

each random number set generated online. Statistical tests are generally executed at

the start up of the system and are repeated later periodically. NIST has proposed a

subset of its statistical tests to be realized in embedded hardware in FIPS 140-1.

51

These tests have already been explained in chapter 2. We have implemented these

tests also in our TRNG as was illustrated in Figure 3-11. The implementation of

these tests occupies 827 slices of the Virtex-5 (xc5vfx70t) FPGA.

Figure 3-11 - Embedded Test Module Schematic (Top View)

FIPS 140-1 contains four basic randomness tests that are feasible to implement in

FPGA. These tests are monobit, poker, run and long run tests. In our TRNG these

tests are running concurrently with generator module. The test module generates an

error signal for failure of any of these tests. The upper layer TRNG controller can

consider this error signal in order to determine whether or not it should use the last

set of random numbers generated. Even for some systems, this error signal can be

considered as an alarm that indicates an external attack on the system.

52

The proposed tests of FIPS 140-1 require 20.000 bits of random data for each run of

the tests. The implementation of our test module has four sub modules that are

illustrated in Figure 3-11. The controller of the test module generates the error

signal if any one of the implemented test fails. The runs_test module includes the

runs and long run tests. Monobit and poker tests are realized in two separate

modules. The following subsections presents simulations and verification of these

test modules.

3.2.1 Simulation of Test Module on Modelsim

Modelsim is a hardware simulation and debug tool developed by Mentor Graphics

Inc. In order to verify the functionality, we simulated our test module design on

Modelsim simulator. Modelsim simulates the input signals of the device under test

(DUT) and shows the responses of this the device via a proper visual interface.

Modelsim compiles the device and test bench codes by using standard and vendor

specific libraries and the tester can observe all internal and external signals of the

design in a timing diagram while simulating it.

In the present case, DUT is the test module of our TRNG. The test module has 6

inputs i.e. start, stop, bitready, randombit, rst and clk. The clk input of our test

module is a 50 MHz clock and the rst is an active low reset signal. The start and

stop input signals carry initiate and halt commands respectively, which are formed

as single pulses. The critical part of this test bench is the simulation of the

randombit signal because the random input of the test module is not a periodic

signal and even it is required to have good randomness features to simulate for

correct random bit generation. Generating a random signal is not an easy task for

Modelsim by VHDL code. Therefore we decided to use the original random bits

that are generated by our custom TRNG as an input to the test bench of our design.

The generated numbers are saved in a text file in binary format and are used as an

input for the test bench. During simulation the test bench reads the random bits

from the file and produces randombit and bitready signals. By using the visual

interface, we have verified that the test module of our TRNG works as expected and

53

any deviation from the randomness according to FIPS 140-1 is detected by this

module. In the next sub sections of this chapter, we present some simulation

diagrams for the test module.

3.2.1.1 Simulation of Monobit (Frequency) Test

The implementation of monobit test is the simplest one of the FIPS 140-1 tests. This

test checks the zero and one ratio of every 20.000 bits of input sequence. The

implementation contains just two counters which are named as bit_counter and

one_counter as in Figure 3-12. The bit_counter counts the number of input bits up

to 20.000 and restarts counting. For every 20.000 bits of random input a stop signal

is generated to reset the counter value. The start input also clears the counters. The

one_counter counts ones in the input sequence until a clear signal is generated.

Figure 3-12 - Monobit Test Signals (Start of a sequence)

The error output signal gets high when the stop signal is high and the one counter

value is out of the acceptance interval.

9,654 < # of ones in 20.000 bits < 10,346

54

Figure 3-13 - Monobit Test Signal (End of a sequence)

3.2.1.2 Simulation of Runs Test

The runs and long run tests check if the tested sequence contains more than

expected number of consecutive ones or zeros. “Run” is a terminology, which

corresponds to a sequence of identical bits that are bounded before and after with a

bit of the opposite value. The length and number of occurrence of the runs are

critical for randomness. The runs with length up to 6 and larger than 6 have their

own required intervals which is in Figure 3-14. On the other hand according to long

runs test, a run with length 34 and larger is not acceptable for a random sequence.

We have implemented runs and long run tests in the same module which counts the

number of runs that are occurred in a 20.000 bits long sequence.

55

Figure 3-14 - Runs Test Signals

The generated signals and the counters used in the implementation of run test

module are presented in Figure 3-14. The module generates change signal, which

indicates the starting point of all runs in the incoming sequence. The run counter is

cleared by each change signal and counts up until the next change pulse. For every

change pulse one of the run occurrence counters, counts up.

The bit counters counts incoming bits and is used to generate clear signal for every

20.000 bits. Whenever the clear signal is generated, the numbers of occurrence

counters are controlled if it is in the required interval of not as can be seen in Figure

3-15. If any occurrence number of run is not in the required interval the error signal

gets high to indicate non randomness. Besides if the run counter value exceeds 34,

the error signal also gets high.

56

Figure 3-15 - End of Runs Test

3.2.1.3 Simulation of Poker Test

The poker test considers a 20.000 bit random stream as 5000 distinct numbers that

are represented in 4 bits. Each distinct number has 16 possible decimal values. The

poker tests controls if the occurrence numbers of these 16 possible values are in a

required interval as given below.

57

Figure 3-16 - Poker Test Signals

The signals of the poker test implementation are illustrated in Figure 3-16.

In our implementation, the poker module packs the each 4 successive bits into a

nibble and generates a nibbready signal. This generated nibble is input to a hex to

decimal decoder. The decoder generates 16 state signals, which are then used for

counting the occurrence numbers of 16 possible decimal numbers. A sub module of

poker test is named count_then_square counts the number of occurrences and

calculates the square of this count values.

58

Figure 3-17 - Poker Result signals

The results of the square operation are added together and controlled if the sum is in

the following interval or not.

.

59

CHAPTER 4

TESTS AND RESULTS

The quality and security evaluation of a TRNG should be carried out before it is

employed in a cryptographic system. The strength and the security of a system

directly depend on the randomness quality of the TRNG. Generated random bit

streams have to be tested generally with various tests in order to detect any

deviation from randomness. The deviation may arise from either a poorly designed

generator or an external attack. Besides a certain number of failures can also be

expected in random sequences that are generated by a custom TRNG. A tester

should interpret the test results and make a conclusion about the

correctness/incorrectness or validity/invalidity issues.

The statistical evaluation of the bit streams that are generated by a TRNG can be

done internally or externally. In spite of the fact that internal and concurrent

evaluation is more secure and reliable, the generated bit streams are generally tested

out of the TRNG because the statistical tests require complex and heavy

calculations and the implementation of these on hardware are generally not feasible

and efficient. In our TRNG implementation we have implemented the tests of FIPS

140-1 in hardware because this in a way reduced test suite is feasible and efficient

to implement in hardware to enhance the security of the TRNG. On the other hand,

we still have to evaluate the randomness of our TRNG externally by using some

other test suites. For this, we designed a test platform, which generates required

60

amount of random bits using our TRNG and saves them in a file on the computer.

We then use this file for statistical evaluation of our custom TRNG.

Besides determining whether our custom TRNG is qualified to be employed in a

cryptographic system or not, we also compared it with a commercial TRNG that is

already used in many cryptographic systems. RPG100 TRNG from the FDK

corporation [10] is our choice in this comparative evaluation. RPG100 is an IC that

generates a true random bit stream with a 250 Kbps throughput [30] [31]. The

circuit is composed of only CMOS and no other external components are needed.

Statistical random number generator test circuits of FIPS 140-1 are also built into

the chip for checking randomness easily. The FDK corporation provides an

evaluation board for RPG100 [32]. By using this evaluation board, we can easily

reach to the pins of RPG100 chip and can operate it with external signals that are

supplied by another board.

In our evaluation, RPG100 is required to be operated with in the same conditions

hence we used RPG100 in the same test platform. We connected the evaluation

board of RPG100 to the ML507 board via external pins of Virtex-5 FPGA. Then by

the help of our test platform designed FPGA, we have accumulated the generated

random bits of RPG100 and save then also in a file on the computer as was done for

custom TRNG.

In this chapter firstly, we first explain the components and connections of the test

set up and then the FPGA project that includes our custom TRNG and the driver for

RPG100. The statistical evaluations of the generated bit streams, which are

performed off-line, are also reported in this chapter. At the end of the chapter our

custom TRNG and RPG100 are compared according to several aspects.

61

4.1 The Test Set Up

The test set up contains three main elements that are computer, Xilinx ML507

Development Board and RPG100 Evaluation Board [33]. The computer is

connected to FPGA (Virtex – 5) of the ML507 Board via Xilinx USB Platform

Cable which can reach to the FPGA from the JTAG port. This port is used for

loading and the debugging of the code running on the FPGA. The RS232 port of the

board is used for communication of computer and the test platform project that runs

on the FPGA. The RPG100 Evaluation board is also connected to ML507 board via

the general purpose external pins of the FPGA. The general structure of the test set

up is presented in Figure 4-1.

Figure 4-1 - Test Set Up

The test set up provides the facilities listed below.

 Generating required length of random bit streams by using custom TRNG or

RPG100 chip.

 Accumulating the generated bit streams in a file on the computer.

 Running statistical evaluation processes on the generated bit streams.

 Measuring the throughput of the generators exactly.

 Monitoring the results of the embedded tests of custom TRNG.

4.2 Test Platform-FPGA Part

The test platform project, which runs on the test set up, provides a user interface for

generating and saving the random bit streams of our custom TRNG or RPG100 on a

62

file. By using this set up we can also calculate the throughput of our custom TRNG.

Main sub modules of the test platform are listed below:

 An embedded microprocessor (Power PC “PPC440”),

 A shared two port block RAM (BRAM),

 TRNG driver module,

 Our custom TRNG (explained in the previous chapter),

 RPG100 controller module,

Figure 4-2 - Test Platform FPGA Project Top Design

The general structure of our test platform is presented in Figure 4-2. The modules in

orange color are cores that already exist in all Virtex-5 FPGAs but the modules in

green color are our custom designs for the test platform.

The embedded PPC440 microprocessor communicates with the peripheral devices

via the peripheral local bus (PLB). Using software one can read/write from/to

BRAM by using BRAM controller. And one can also send commands and read

responses from the TRNG driver by using custom peripheral controller register

which is already included in the TRNG driver. The TRNG driver shares the

63

generated random bits via a shared BRAM. Both of the microprocessor and the

TRNG driver can write/ read to/from the same BRAM.

The software that is running on the PPC440 provides a user interface by

communicating with the computer via RS232 port and sensing the buttons of the

board. This user interface informs the user using the terminal connected to the serial

port while polling the buttons on the board. Each button of the board has its own

functionality that is explained in the interface menu shown in Figure 4-3.

Figure 4-3 - Test Platform Menu

Whenever the generate button of the board is pressed, software side of the system

sends generate command to TRNG driver module. After sending start command,

the software waits for the response of the TRNG driver. The TRNG driver operates

the chosen TRNG in order to generate a 1 mega random bit. Whenever the

generation process is completed the TRNG driver informs the software that the

requested random stream is generated and written on the shared block RAM. Also

by using different buttons of the board, these generated random numbers can be

printed on the serial port terminal. By using the log to a file function of the terminal,

the user can save this random bit stream in a file on the computer. This file can then

be used for the statistical evaluation of the TRNGs. If the user wants more than one

64

mega random bits there is also a button on the board that is configured to generate

and print the random numbers continuously.

4.2.1 The TRNG Driver Module

The TRNG driver module is designed to operate one of the true random number

generation modules, i.e. our custom TRNG or one of RPG100. This module

communicates with the microprocessor by using the custom peripheral controller

registers. A custom peripheral controller register is a software accessible register

which both the microprocessor and the custom design can write/read to/from it. The

TRNG driver module gets the commands from the microprocessor and it operates

the relevant TRNG. The custom TRNG or the RPG controller then send the random

bit streams to the TRNG driver via 32 bit long output ports. TRNG driver writes the

required amount of incoming random numbers into the two port block RAM then

send acknowledgement to the microprocessor which means bit stream is ready to be

read from the block RAM. The TRNG driver also stops the generation operation

whenever the required amount of random bit streams are generated and written into

the shared block RAM.

Besides, TRNG driver employs a counter for measuring the generation rate of the

related TRNG. This counter is cleared before the generation process is started and

then counts up during the generation of 1 megabits of random data. When

generation is completed, this counter value can also be read by our software. The

counter counts up with a 50 MHz clock. So the total time for the generation of 1

mega random bit is equal to counter value multiplied by 20 ns. Using this total time

information the generation bit rate is calculated.

4.2.2 The RPG100 Controller Module

For the statistical evaluation of RPG100, we designed a module named RPG100

controller, which is connected to the RPG100 Evaluation Board via the general

65

purpose I/O pins of the FPGA. RPG100 controller module supplies a 250 KHz

clock to the RPG100 evaluation board, reads the generated random bits, saves them

on a file as is done for the custom TRNG. The RPG100 controller module shown in

Figure 4-4 has a top design view similar to the custom TRNG that was explained in

the previous chapter.

Figure 4-4 - Top Modules of TRNG and RPG100 controller

Both of these modules begin generating 32 bit long random numbers with the start

pulse and continue generating up to the stop pulse. Both modules form a ready

pulse for every new random number generated. The RPG controller module has two

different pins which are “randombit” and “rpg_clk”, which are used for supplying

the clock and for reading the random bit from the RPG100 evaluation board. These

two pins are both connected to the external pins of the FPGA and wired to the

RPG100 evaluation board.

4.3 Statistical Test Results

We have utilized the NIST test suite and Diehard battery of tests in our project for

statistical evaluation of our custom TRNG and the RPG100 IC. We captured one

gigabit output of both TRNGs into files on the computer by using the test platform

design explained above. We then executed the tests on these random streams by

following the recommendations of each relevant test suite. We assessed the outputs

of the test suites by the method following NIST SP800-22 explanations. In this part

of the chapter, the execution of the tests is explained in detail and our assessments

of the results are reported.

66

We utilized the same statistical testing methodology used by the FDK Corporation,

which produces the RPG100 IC. They have also tested their RPG100 silicon chip by

NIST and Diehard test suites. The employed testing procedure of FDK Corporation

is reported in [32].

4.3.1 The NIST Test Suite Execution and Results

The NIST Test Suite is a statistical test suite that includes 15 different tests that

were developed for randomness evaluation of binary sequences that are produced

by cryptographic TRNGs. These tests check if there exist any different types of

non-randomness in the sequence under test. The test suite produces a P-value for

each test. The P-value (probability value) is a probabilistic measure that indicates

the probability that the tested sequence is random. If a P-value of a test is equal to 1,

then the sequence appears to have perfect randomness according to this test. On the

other hand a P-value of zero indicates that the sequence appears to be completely

non-random according to the test. Even if the tested sequence is truly random, the

test results may conclude that the sequence is non-random with a small percentage.

The probability of this kind of conclusion is called level of significance of the tests

and denoted by “α”. The level of significance of a random sequence should be about

0.01 – 0.001 for cryptography. In order to decide whether the sequence passes a test

or not, both the P-value and the level of significance are used. If the P-value is

greater than (or equal to) the level of significance then the sequence under test is

passed. On the other hand the distribution of P-values between (0, 1] is also

important for the interpretation of the results. These P-values should be uniformly

distributed in the interval (0, 1]. The NIST test suite generates a final analysis

report, which includes the distribution of the P-values and the pass/fail proportions

of each test in the suite.

4.3.1.1 The NIST test suite execution process

NIST has published ANSI C codes of the test suite in SP800-22. We used these C

codes in our test process. We first compiled and built these codes to generate an

67

executable for the test suite. Sample run of this executable for testing of 1.000.000

bits long bit stream is presented step by step below.

In order to invoke the NIST statistical test suite the user types the name of

executable followed by the desired bit stream length (n) on the command prompt of

windows. The following screen in Figure 4-5 is displayed first.

Figure 4-5 - NIST Test Execution Screen - 1

The test suite can run the tests on the outputs of the pseudo random number

generators that are listed in menu. However, option “0” is prepared for testing a

custom bit stream. The user chooses the option “0” then types the folder link of the

file that contains the bit stream.

After specifying the input string file the statistical test list comes to screen as shown

in Figure 4-6. In this console, the user can choose the tests that are going to be

executed. If the user’s choice is “1” then all tests are going to be executed. But if

the user’s choice is “0” then the user can determine which ones of the tests are

going to be executed by typing a string. The string consists of 15 consecutive zeros

or ones. The sequence numbers of ones in the string indicate the sequence numbers

of the tests that are going to be executed.

68

Figure 4-6 - NIST Test Execution Screen - 2

As an example in Figure 4-6, only the longest run of one’s test is going to be

executed since only 5th bit of the string is set, indicating the fifth test. After

choosing the tests the tests parameter adjustment screen appears as shown in Figure

4-7.

Figure 4-7 - NIST Test Execution Screen - 3

The parameter adjustment of the tests is also critical for the reliability of the tests.

Generally, these parameter adjustments are done according to the length and

number of samples that are going to be tested. The recommendations on the choice

of parameters for each test are also explained in [6]. This console screen enables

one to change these parameters during the test. After configuration of the test

parameters the user types the number of samples (m) in the input file as shown in

69

Figure 4-8. So the input file has to include m times n bits. For the example given in

Figure 4-8, the input file has 10 (m) times 100.000 (n) bits long streams.

Figure 4-8 - NIST Test Execution Screen - 4

NIST test suite executable file can read random streams from an input file that are

prepared in one of two different formats, which are ASCII and Binary formats. An

ASCII formatted file includes a sequence of ASCII characters of 0’s and 1’s. Each

bit of the random string is represented by an ASCII character. The binary formatted

file includes the binary data that each byte in file contains 8 bits of random data.

The user prepared file format is chosen in the screen shown in Figure 4-8. After this

last step, the tests are executed and the results of all tests are written on specific

result files. Besides, an interpretation of all tests is prepared and written on a file as

a final analysis report of the test suite. This report includes results for the uniformity

of P-values and the pass proportions of the tested sequences.

We performed the NIST statistical tests for evaluating our custom TRNG and

RPG100 by following the strategy and recommendations in [6]. We used one

gigabit generated bit streams. The generated random sequences are input to the test

as a set of m (=1000) one Mbit sequences. The test suite provided the set of P-

values for each generator (some typical values are shown in Table 4-1 and Table

4-2) for a significance level (α) of 0.01. The proportion of the passing sequences is

within the expected confidence interval for both of the performed tests and P-values

are uniformly distributed over (0, 1) interval. Some of the results that are taken from

the final analysis report of executed NIST test of the two TRNGs are shown in the

70

following tables. The final test report generated by NIST test suite executable file is

available in the Appendix – C.

Table 4-1 - NIST Final Test Report for Custom TRNG (α = 0.01)

Results for the Uniformity of P-values and the Proportion of Passing sequences

Test Name Proportion C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

PT

Frequency 989/1000 95 107 108 108 100 100 84 100 94 104 5.1 0.825505

Block Frequency 989/1000 114 86 95 93 110 108 112 88 95 99 10.88 0.397688

Cum Sums 988/1000 94 108 99 116 75 108 115 113 91 81 18.82 0.026768

Runs 995/1000 87 98 95 106 100 88 112 116 105 93 8.52 0.482707

Longest Run 989/1000 104 114 107 112 80 95 114 92 84 98 13.5 0.141256

Rank 989/1000 103 89 101 119 91 98 108 94 102 95 7.06 0.630872

FFT 983/1000 110 110 98 104 89 108 95 93 91 102 5.64 0.775337

Non Overlapping Temp. 989/1000 94 103 96 99 119 91 101 93 97 97 5.72 0.603841

Overlapping Temp. 995/1000 136 100 83 95 103 83 90 115 104 91 23.3 0.005557

Universal 990/1000 103 100 119 99 96 99 103 97 98 86 6.06 0.733899

Approximate Entropy 987/1000 109 102 92 81 121 101 94 100 103 97 10.06 0.345650

Random Excursion 617/628 58 67 62 75 59 65 61 52 69 60 5.986 0.723673

Rand. Exc. Variant 623/628 58 62 71 75 39 60 67 68 56 72 15.75 0.065546

Serial 993/1000 117 112 90 83 107 107 81 96 100 107 12.18 0.142872

Linear Complexity 993/1000 101 96 104 93 98 125 91 110 82 100 12.16 0.204439

71

Table 4-2 - NIST Final Test Report for RPG100

Results for the Uniformity of P-values and the Proportion of Passing sequences

Test Name Proportion C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

PT

Frequency 994/1000 96 110 101 104 110 111 78 93 114 83 13.72 0.132640

Block Frequency 991/1000 96 92 91 99 114 101 92 117 95 103 7.46 0.589341

Cum Sums 994/1000 92 107 108 106 109 92 91 93 110 92 6.52 0.686955

Runs 987/1000 107 110 106 86 103 104 104 96 91 93 5.28 0.771469

Longest Run 987/1000 90 96 116 105 109 103 99 86 107 89 8.54 0.480771

Rank 990/1000 104 109 95 102 89 102 94 89 114 102 6.08 0.731886

FFT 987/1000 111 14 99 107 99 88 106 85 87 104 9.57 0.385543

Non Overlapping Temp. 992/1000 100 89 95 90 93 99 109 118 104 103 7.26 0.610070

Overlapping Temp. 987/1000 106 113 105 99 98 112 96 98 98 75 10.28 0.328297

Universal 991/1000 99 113 102 94 110 76 87 90 94 135 24.16 0.004055

Approximate Entropy 992/1000 107 91 100 97 93 100 82 118 117 95 8.26 0.242986

Random Excursion 608/618 75 71 56 61 45 57 67 66 46 74 16.85 0.045966

Rand. Exc. Variant 610/618 65 67 71 55 68 59 55 65 53 60 5.689 0.752969

Serial 994/1000 91 103 99 78 114 110 99 94 98 114 11.08 0.270265

Linear Complexity 987/1000 94 119 105 102 87 113 90 103 95 92 9.02 0.382115

The final analysis report of NIST test suite contains a summary distribution of the

P-values and passing rate of each test. The results are represented as a table with x

rows and y columns. The rows correspond to statistical tests applied, while columns

are distributed as follows: columns 1-10 corresponding to the frequency of P-

values, column 11 corresponding to the P-value that arises via the application of a

chi-square test, column 12 corresponding to the proportion of binary sequences that

have passed, and column 13 being name of the corresponding statistical test.

72

4.3.1.2 Interpretation of NIST test results

The interpretation of empirical results can be done in several ways. But the NIST

test suite has adopted two approaches for this. The first one is the examining the

proportion of sequences that pass a statistical test and the second one is checking

the uniformity of distribution of P-values.

4.3.1.2.1 The pass/fail assessment of the tests

The test suite determines if an individual test is passed or not according to level of

significance. If the P-value of an individual test is greater or equal to the level of

significance then the test is accepted to be passed. The level of significance is 0.01

for all our tests. For example if 1000 binary sequences were tested and 996 binary

sequences had P-values ≥ .01, then the passing ratio is 996/1000 = 0.9960.

The final analysis report of the NIST test suite contains the passing ratios of each

test. In order to determine that the input stream is truly random these passing ratios

should be in an acceptable range. NIST recommends that the acceptable range of

passing rates is determined using the confidence interval defined by the equation

below.

 where and m is the sample size

If the proportion falls outside this interval, then there is evidence that the data is

non-random. In our case:

Test sample (m) 1000

Length of each bit stream (n) 1 Mbit

Level of significance α 0.01

The acceptance region

73

For both of the tests that are executed using the outputs of custom TRNG and

RPG100 we obtained passing ratios as in Table 4-1 and Table 4-2, which verifies

that all of these passing rates are in the acceptance region.

4.3.1.2.2 Uniformity of distribution of P-values

The final analysis report of the NIST test suite also includes the distribution of P-

values to ensure uniformity. The interval between 0 and 1 is divided into 10 sub-

intervals, and the P-values that lie within each sub-interval are counted and

displayed in the report for each test. The report contains a master P-value for each

test which is calculated via an application of a chi-square test and Goodness-of-Fit

Distributional Test on the P-values obtained for each individual statistical test. This

master P-value of each test should be greater than or equal to 0.0001 for uniformly

distributed P-values. The master P-value (PT) of a test is calculated by the procedure

defined below.

Firstly the chi-square test is run as follows:

 where Fi is the number of P-values in sub-interval i and s is

the sample size.

Then master P-value is calculated as

 where the igamc is an incomplete Gama function.

In order to obtain a PT, which is greater than (or equal to) 0.0001 NIST recommends

that if the level of significance of test is 0.01 then the acceptance region of the chi-

square test output should meet the equation χ
2
 ≤ 33.72. In our case all calculated χ

2

values are observed in the acceptance region as seen in Table 4-1 and Table 4-2.

74

The results of both TRNGs are similar to each other according to passing rates and

distribution of P-values. Results of both TRNGs are in the safe interval of

randomness tests of the NIST.

4.3.2 The Diehard Battery of Tests and Results

The diehard battery of tests includes 15 distinct statistical tests. For each execution,

the test suite generates 220 P-values for the evaluation of 11,468,800 bytes of

random data. The number of generated P-values is different each test of the battery.

A statistical test of diehard is considered a pass if the P-value is in range

[(0+α/2),(1-α/2)] where α is the level of significance of the test. The level of

significance (α) is recommended to be 0.05 for the diehard test suite. Therefore,

these P-values are supposed to be uniformly distributed in [0, 1) if the tested stream

is truly random.

4.3.2.1 Diehard Battery of the Tests execution process

The source code and the executable file of the diehard test suite (diehard.exe) are

also available on the internet [7]. We used this executable for the evaluation of our

bit streams. A sample run of the diehard test suite is explained below. Diehard test

suite requires data in binary format, where conversion can be done by using

“asc2bin.exe”, which is also available on the internet together with the diehard test

executable file.

The executable file of diehard test is invoked without any parameter. Then it waits

for the name of a file of size 87.5 Mbits. The user then identifies an output file

name and selects the tests to be executed as shown in Figure 4-9. For the evaluation

of our custom TRNG and the RPG100 we used 1 Gbit output streams from each

TRNG. In order to evaluate the randomness of these bit streams with diehard test

suite, we split each 1 gigabit stream of data into 12 distinct 87.5 Mbits set of

streams. Then we ran diehard test suite 12 times with each individual set. The result

75

file of these tests includes a total of 2640 P-values. One of the generated test result

files of diehard test suite is given in the Appendix - D.

Figure 4-9 - Diehard Execution Screen

4.3.2.2 Interpretation of the Diehard Tests Results

The output of diehard test suite contains P-values of each performed test for the

tested stream. The numbers of generated P-values for each test is different and are

given in Table 4-3 and Table 4-4.

76

In contrast with NIST test suite, diehard suite generates only the P-values. There

exists no interpretation of these P-values and no pass/fail assessment of the tests. In

order to interpret these P-values we employed the same method as in NIST case.

These methods are (1) the examination of the proportion of sequences that pass a

statistical test and (2) the distribution of P-values to check for uniformity.

4.3.2.2.1 The pass/fail assessment of Diehard tests

The pass and fail assessment of diehard tests is different than the NIST test suite. A

statistical test of diehard is considered to be a pass if the P-value is in range

[(0+α/2),(1-α/2)] where α is the level of significance [7]. Diehard test suite set the

level of significance of each test as %5 for assessment then the passing interval of

each tests is [0.025,0.975]. We performed the diehard test for 12 times for each

TRNG. For each run we obtained 220 P-values. The results of our pass/fail

assessment are summarized in Table 4-3 and Table 4-4. Table 4-3 and Table 4-4

contain the results of custom TRNG and RPG100 respectively. These tables include

the number of P-values that are out of the pass region (0.025 – 0.975) for each

individual Diehard test.

Table 4-3 - Diehard Pass/Fail Assessment for Custom TRNG

Test Name

(Total # of

generated P-values)

Number of generated P-values that are out of pass region for each

execution of test

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

Birthday Spacing

(10)

1 1 0 1 0 0 0 0 1 0 0 1

OPERM5 (2) 1 0 0 1 0 0 1 1 0 0 0 0

Binary Rank 31x31

(1)

0 0 1 0 0 0 0 0 0 0 0 0

Binary Rank 32x32

(1)

0 0 0 0 0 0 0 0 0 0 0 0

77

Binary Rank 6x8

(26)

0 0 2 2 3 0 0 1 0 1 1 1

Bitstream (20) 1 1 0 1 0 1 0 1 1 3 3 2

OPSO (23) 0 1 0 1 0 1 0 1 1 3 3 1

OQSO (28) 0 2 3 3 1 2 1 0 2 4 1 4

DNA (31) 2 0 2 0 0 1 1 2 3 2 1 0

1’s on stream of bytes (2) 0 0 1 0 0 0 0 1 0 0 0 1

1’s on specific bytes (25) 0 1 1 0 2 1 0 2 0 1 2 2

Parking Lot (11) 0 1 0 1 2 0 1 3 0 0 0 1

Minimum Distance

(1)

0 0 0 0 0 0 0 0 0 0 0 0

3D Spheres (21) 1 1 1 0 2 0 0 2 1 0 1 1

Squeeze (1) 0 0 0 0 0 0 0 0 0 0 0 0

Overlapping Sums

(11)

2 0 0 1 0 1 1 0 0 1 1 0

Runs (4) 0 0 0 0 0 1 0 1 0 0 0 0

Craps (2) 0 0 0 0 0 0 1 0 0 0 0 0

Table 4-4 - Diehard Pass/Fail Assessment for RPG100

Test Name

(Total # of

generated P-values)

Number of generated P-values that are out of pass region for each

execution of test

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

Birthday Spacing

(10)

0 0 0 0 1 0 1 0 0 3 1 0

OPERM5 (2) 0 0 1 0 2 0 0 0 0 0 2 0

Binary Rank 31x31

(1)

0 0 0 0 0 0 0 0 0 0 0 0

78

Binary Rank 32x32

(1)

0 0 0 0 0 0 0 0 0 0 0 0

Binary Rank 6x8

(26)

2 0 0 0 0 2 3 2 0 3 2 4

Bitstream (20) 3 1 0 1 1 1 2 1 0 1 1 0

OPSO (23) 0 0 0 0 1 0 2 0 1 1 1 1

OQSO (28) 2 2 0 1 2 1 1 1 1 2 1 1

DNA (31) 2 1 1 1 2 5 4 2 1 0 0 2

1’s on stream of bytes (2) 0 0 0 0 1 0 0 0 0 0 0 0

1’s on specific bytes (25) 1 1 3 2 1 1 2 1 0 1 1 0

Parking Lot (11) 1 0 1 0 0 0 0 0 1 1 0 0

Minimum Distance

(1)

0 0 0 0 1 0 0 0 0 0 0 0

3D Spheres (21) 2 3 0 0 1 1 0 3 2 0 1 2

Squeeze (1) 0 0 0 0 0 0 0 0 0 1 0 0

Overlapping Sums

(11)

0 0 1 1 1 0 0 0 0 0 0 0

Runs (4) 0 0 0 0 1 0 0 1 0 0 0 1

Craps (2) 0 0 0 0 0 0 0 0 0 0 0 0

For the evaluation of our 1 Gigabit data we performed diehard test suite 12 times.

These 12 distinct run of diehard test suite produces a total of 2640 P-values. In

order to make a pass/fail assessment with diehard test results, we specified the

number of P-values that are out of the pass region (0.025-0.975). Then we

determined the proportion of fails and passes in these 2640 P-values. This ratio

must be in a specified interval, which is named as the acceptance interval.

79

The acceptance interval of our test is calculated using the same method as the NIST

case. We have used the number of P-value that are generated by diehard test suite as

the number of test samples and the level of significance of the test is 0.05.

Test sample m = 2640

Level of significance α = 0.05 then

The acceptance region

The results of the tests show that 128 out of 2640 P-values are out of the pass region

for the custom TRNG. On the other hand 126 out of 2640 P-values are out of the

pass region for RPG100. Both these results are in the acceptance region and listed

in the Table 4-5.

Table 4-5 - Pass/Fail Assessment of both TRNGs

RESULT

Custom TRNG output 0.95151 SUCCESS

RPG100 output 0.95227 SUCCESS

4.3.2.2.2 Uniformity of distribution of P-values of Diehard tests

We have checked the uniformity of the P-values of diehard test suite using the same

method as in NIST case. We have parsed the output files of 12 diehard executions

for each TRNG then calculated the χ
2
 values. The distribution of P-values and

calculated χ
2
 values for the custom TRNG test results is listed in Table 4-6.

80

Table 4-6 - Uniformity list of the custom TRNG Diehard Test Results

Execution

Number

Distribution of generated 220 P-values over (0,1] for each

execution of Diehard

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1 19 20 22 21 26 22 24 20 22 24 1.909

2 23 17 22 23 22 16 28 27 24 18 6.545

3 22 18 19 25 15 30 26 22 18 25 8.545

4 18 19 24 23 20 23 18 28 24 23 4.181

5 24 16 20 22 27 19 18 21 28 25 6.363

6 22 25 14 30 21 25 16 22 17 28 11.09

7 14 15 33 15 24 21 23 25 25 25 14.36

8 22 22 20 17 22 29 16 18 21 33 11.45

9 28 17 16 17 22 20 23 18 23 36 15.45

10 11 17 16 22 23 21 27 19 29 35 19.81

11 18 21 19 24 16 27 22 28 20 25 6.363

12 16 13 23 19 25 24 18 13 34 35 25

The distribution of P-values and calculated χ
2
 values for the custom TRNG test

results is listed in Table 4-7.

81

Table 4-7 - Uniformity list of the RPG100 Diehard Test Results

Execution

Number

Distribution of generated 220 P-values over (0,1] for each

execution of Diehard

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1 26 19 16 22 25 18 23 23 17 31 8.045

2 17 23 27 17 22 20 32 30 18 14 14.72

3 26 21 14 18 22 26 26 21 16 30 10.45

4 14 24 17 22 18 20 20 34 22 29 14.09

5 27 14 16 23 22 31 15 26 22 24 12.54

6 19 14 19 33 13 22 33 19 21 27 20

7 22 25 21 23 21 17 22 18 24 27 4.22

8 26 22 23 24 26 23 17 20 21 18 3.81

9 18 24 21 17 17 22 22 32 25 22 8.18

10 24 27 16 25 25 20 21 20 19 23 4.63

11 24 19 19 21 25 22 16 29 19 26 6.45

12 14 26 27 21 20 24 15 22 25 26 8.544

The assessment of these χ
2
 values of both TRNGs is done using χ

2
 ≤ 33.72 and the

results indicate that the distribution of 220 P-values that are generated by the

diehard test suite for each execution with the random streams of custom TRNG and

RPG100 have sufficient distribution uniformity.

82

4.3.3 Comparison of custom TRNG and RPG100

Cryptographic systems generally employ an external silicon chip TRNG such as

RPG100 for random number generation. Employing a RPG100 chip on crypto

system for random number generation has its own pros and cons. In this section of

the thesis, we compare the RPG100 and our custom embedded TRNG from several

aspects such as randomness quality, design security and throughput.

The randomness quality of a TRNG is evaluated by statistical tests. The FDK

Corporation also confirmed the randomness quality of RPG100 by diehard and

NIST test suites. This corporation shares results of these tests but their statistical

results file do not contain detailed information. In order to be able to compare our

custom TRNG and RPG100, we had to performed the same tests with FDK with the

same parameters for confirming our custom TRNG and RPG100. The results of our

tests revealed that both of the TRNGs have sufficient randomness to be used in

cryptographic applications.

Besides external statistical evaluation of TRNGs the concurrent randomness tests

are also recommended for security of TRNGs. The RPG100 chip has its own

embedded FIPS 140-1, test which can be executed in real time during the

generation. Therefore we also implemented these tests in the FPGA fabric

integrated to our custom TRNG. These tests provide a concurrent and real time

evaluation of the random numbers before they are used for any cryptographic issue.

The security level of the random numbers generated is upgraded with such

concurrent control features.

The throughput is another important feature of TRNGs because the random number

need of a typical cryptographic system is getting larger and larger every day. The

RPG100 chip generates true random bits with a constant throughput of 250 Kbps.

However our custom TRNG has a variable throughput which is around 500 Kbps on

the average. The throughput of our custom TRNG has a narrow standard deviation

also. Although variable throughput of our custom TRNG is always higher than the

throughput of RPG100.

83

If the TRNGs are used in an uncontrollable environment, the generated random bits

should never be available for at the outside of the system. The RPG100 is an

external device so it can easily be sniffed from its pins by attackers. On the other

hand our custom TRNG is embedded in the FPGA, where the actual cryptographic

application is also running on. Hence the attackers will not being able to sniff the

generated random numbers, which is a feature that definitely, enhances the security

of the overall system.

The effects of external changes (i.e. temperature) are not analyzed for our custom

TRNG within the scope of this work but RPG100 makes a promise of supporting

the same quality specifications for industrial operating conditions also.

84

CHAPTER 5

CONCLUSION AND FUTURE WORK

Cryptographic systems requires random sequences for many processes such as key

generation, authentication, padding and even for counter measures of side channel

attacks. However random sequences that are employed in cryptographic systems

must meet stringent requirements since the security of the system directly depends

on these numbers. Simply stated these random numbers must be uncontrollable,

unpredictable and irreproducible and must have good statistical properties in order

to be eligible in cryptography. In addition to these, even if the employed random

numbers have these features mentioned, a cryptographic system has to keep these

numbers confidential for overall security issues. Hence it is generally recommended

to realize the TRNGs inside the same implementation platform of the cryptographic

algorithms. In contrast to older approaches where ASICs are mostly chosen for

cryptographic applications, most of the implementations are realized with FPGAs

during recent years. FPGA is common choice as the implementation platform

because of its design simplicity, flexibility and re-programmability. Considering the

prevalence of FPGAs in cryptographic systems, a TRNG built in FPGA is expected

to improve the security and quality of a general cryptographic system.

In this thesis a TRNG, which is suitable for cryptographic applications is

investigated, implemented and evaluated. The TRNG and its embedded statistical

tests are described in VHDL language and then realized on an FPGA platform. The

true random number extraction method proposed in [5] is employed for the

85

implementation of the TRNG. The implementation can be realized in any FPGA of

any vendor because it needs only the very common primitive resources of the

FPGAs. For the concurrent statistical evaluation of the generated random numbers

the randomness tests that are described in FIPS 140-1 are realized on the FPGA.

Besides, the external statistical evaluation of the developed TRNG is also

performed by using NIST statistical tests and Diehard battery of tests. These test

suites are executed on a general purpose computer using the generated random

streams of the TRNG. The implemented TRNG has a throughput up to 0.5 Mbps

and the generation core occupies only 25 slices of the Xilinx Virtex-5 FPGA. This

design shows us the possibility of generating and confirming true random bit

sequences by using only the internal resources of FPGAs.

We have also compared our custom TRNG with RPG100, which is an external IC

TRNG of FDK Corporation, from several aspects. We have performed the same

statistical tests on the bit streams of RPG100. The statistical evaluation of both

TRNGs shows that both are suitable to be employed in cryptographic applications.

The throughput of our custom TRNG is higher than the throughput of RPG100 on

average. The most important advantage of custom TRNG is being embedded in the

FPGA that hosts the cryptographic application also. In contrast RPG100 is an

external device, which is vulnerable to attacks of an adversary. As a result, using

embedded TRNG in FPGA is more advantageous than using a separate IC such as

RPG100 for true random number generation. This approach decreases vendor

dependency and cost of a complete design. Besides, security of the whole system

increases with embedded TRNG against external attacks. This thesis demonstrates

that random number generation requirement of cryptographic systems can be

satisfied by a TRNG built in FPGA where the system is already running on.

As a future study, other random number generation methods found in the literature

can be implemented and tested in order to compare those with the already

86

implemented one. The statistical evaluation of TRNGs can be done by the other

statistical tests that exist in the literature such as the test of BSI [30]. ASIC

implementation of the custom TRNG can also be considered together with the

embedded test suite and an appropriate communication interface.

87

REFERENCES

[1] V. Fischer and M. Drutarovsky, “True Random Number Generator Embedded

in Reconfigurable Hardware”, In Cryptographic Hardware and Embedded

Systems - CHES 2002, Redwood Shores, CA, USA, Springer Verlag, Vol. 2523

of LNCS, 2002, pp 415-430.

[2] B. Sunar and D. Schellekens, “Secure Integrated Circuits and Systems Book,

Chapter 6 - Random Number Generators for Integrated Circuits and FPGAs”

2010, pp 107-124.

[3] T. Williger, J. Guajardo, C. Paar, “Security on FPGAs: State of the art

implementations and attacks”, Journal ACM Transactions on Embedded

Computing Systems (TECS) , Volume 3, Issue 3, August 2004, pp 534 – 574.

[4] M. Varchola and M. Drutarovsky, “Embedded platform for automatic testing

and optimizing of FPGA based cryptographic true random number generators”

Radioengineering, Vol. 18, No. 4, 2009, pp 2-3.

[5] P. Kohlbrenner and K. Gaj, “An embedded true random number generator for

FPGAs”, FPGA '04 Proceedings of the 2004 ACM/SIGDA 12th international

symposium on Field programmable gate arrays, 2004, pp 71-78.

[6] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson,

M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo, “A Statistical Test Suite for

Random and Pseudorandom Number Generators for Cryptographic

Applications”, NIST Special Publication SP800-22 rev 1a. (Revised: April

2010).

[7] G. Marsaglia, “The marsaglia random number cdrom with the diehard battery of

tests of randomness” Supercomputer Computations Research Institute and

88

Department of Statistics, Florida State University,

http://www.csis.hku.hk/diehard , last visited date, 10/12/2012 .

[8] FIPS Special Publication 140-1, “Security Requirements for Cryptographic

Modules, Federal Information Processing Standards Publication 140-1”, U.S.

Department of Commerce/NIST, National Technical Information Service,

Springfield, VA, Online http://csrc.nist.gov/publications/fips/fips1401.htm,

1994,last visited date, 10/12/2012 .

[9] FIPS Special Publication 140-2, “Security Requirements for Cryptographic

Modules, Federal Information Processing Standards Publication 140-2”, U.S.

Department of Commerce/NIST, National Technical Information Service,

Springfield, VA, Online. http://csrc.nist.gov/publications/fips/fips140-

2/fips1402.pdf, March 2002, last visited date, 10/04/2012 .

[10] FDK Corporation, “True Random Number Generator (TRNG) RPG100

datasheet Rev08”, http://www.fdk.com/cyber-e/pdf/HM-RAE106.pdf, last

visited date, 10/11/2012.

[11] V. Fischer, A. Aubert, F. Bernard, B. Valtchanov, J.-L. Danger, and N.

Bochard, “True random number generators in configurable logic devices,”

Project ANR – ICTeR, February - 2009.

[12] M. Varchola, “FPGA Based True Random Number Generators for

Embedded Cryptographic Applications (Thesis to the dissertation

examination)”, Technical University of Kosice Faculty of Electrical

Engineering and Informatics Department of Electronics and Multimedia

Communications, December 2008.

[13] B. Sunar, W.J. Martin, and D.R. Stinson. “A Provably Secure True Random

Number Generator with Built-In Tolerance to Active Attacks”, IEEE

TRANSACTIONS ON COMPUTERS, 2007 pp 109–119.

89

[14] NIST, “A Statistical Test Suite For Random And Pseudorandom Number

Generators For Cryptographic Applications”, ITL Security Bulletin

http://csrc.nist.gov/publications/nistbul/12-00.pdf, last visited date, 10/12/2012 .

[15] M. Dichtl and J.D. Golic, “High-Speed True Random Number Generation

with Logic Gates Only” In Cryptographic Hardware and Embedded Systems -

CHES 2007, Vienna, Austria, Springer Verlag, Vol. 4727 of LNCS, 2007, pp

45–61.

[16] S.K. Yoo, D. Karakoyunlu, B. Birand, B. Sunar, “Improving the Robustness

of Ring Oscillator TRNGs”, http://ece.wpi.edu/~sunar/preprints/rings.pdf, 2008,

last visited date, 13/07/2012 .

[17] T. E. Tkacik, “A hardware random number generator in Cryptographic

Hardware and Embedded Systems”, CHES 2002, Redwood Shores, CA, USA,

August 13-15, 2002, Revised Papers, ser. LNCS, Vol. 2523. Springer, 2003, pp

450-453.

[18] J.D. Golic, “New paradigms for digital generation and post-processing of

random data” Technical report, Cryptology ePrint Archive, Report 2004/254,

2004.Online. Available: http://eprint.iacr.org/2004/254.ps, 2004, last visited

date, 11/08/2012.

[19] J.D. Golic. “New Methods for Digital Generation and Postprocessing of

Random Data” IEEE TRANSACTIONS ON COMPUTERS, 2006, pp. 1217–

1229.

[20] I. Vasyltsov, E. Hambardzumyan, Y.-S. Kim, and B. Karpinskyy. Fast

Digital TRNG Based on Metastable Ring Oscillator. In Elisabeth Oswald and

Pankaj Rohatgi, editors, Cryptographic Hardware and Embedded Systems –

CHES 2008, volume 5154 of LNCS, Springer, 2008, pp 164–180.

[21] M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA-based true random

number generation using circuit metastability with adaptive feedback control,”

90

Cryptographic Hardware and Embedded Systems–CHES 2011, 2011, pp. 17–

32.

[22] M. Varchola and M. Drutarovsky , “New High Entropy Element for FPGA

based True Random Number Generators”, Cryptographic Hardware and

Embedded Systems, CHES 2010, 12
th
 International Workshop Santa Barbara,

USA, Agust 2010, Springer, 2010, pp. 351-365.

[23] R. Tudoran , O. Cret , S. Banescu , A. Suciu, “Implementing true random

number generators by generating crosstalk effects in FPGA chips”, Proceedings

of the 6th FPGA world Conference, September 2009, pp.25-31.

[24] O. Cret, R. Tudoran, A. Suciu, and T. Gyorfi, “Implementing True Random

Number Generators in FPGAs by Chip Filling.”, In Proceedings of the

International Conference on Security and Cryptography, SECRYPT’09, 2009,

pp. 62-67.

[25] T. Güneysu , “True Random Number Generation in Block Memories of

Reconfigurable Devices” , Field-Programmable Technology (FPT), 2010 , pp

200 – 207.

[26] T. Güneysu , “Using Data Contention in Dual-ported Memories for Security

Applications” , Journal of Signal Processing Systems, April 2012

Pages 15-29.

[27] B. Valtchanov, V. Fischer, A. Aubert, “Enhanced TRNG Based on the

Coherent Sampling”, 2009 International Conference on Signals, Circuits and

Systems, 2009.

[28] Xilinx Constraints Guide http://www.xilinx.com/ support /documentation

/sw_manuals /xilinx14_2 /cgd.pdf, UG625 (v. 13.4) ,last visited date,

10/12/2012.

[29] Xilinx Virtex-5 Libraries Guide for Schematic Designs

http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_4/virtex5_

scm.pdf, last visited date, 10/12/2012.

91

[30] BSI, “Anwendungshinweise und Interpretationen zum Schema (AIS 31)”,

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpr

etationen /ais31.pdf, 2011, last visited date, 10/12/2012 .

[31] FDK Corporation, True Random Number Generation IC RPG100 /

RPG100F catalog, http://www.fdk.com/cyber-e/pdf/HM-RAE101.pdf, last

visited date, 10/11/2012.

[32] FDK Corporation RPG Business Promotion Dept., The Evaluation of

Randomness of RPG100 by using NIST and Diehard Tests,

http://www.fdk.com/cyber-e/pdf /HM-RAE104.pdf, last visited date,

10/11/2012.

[33] FDK Corporation, RPG100 Evaluation Board RPG100-TB(MB) User’s

Manual Rev2 , http://www.fdk.com/cyber-e/pdf/HM-RAE102.pdf, last visited

date, 10/11/2012.

92

APPENDIX – A

library unisim;

use unisim.vcomponents.all;

entity ring_osc is port (

osc_out : out std_logic;

 reset : in std_logic);

 end ring_osc;

architecture low_level_definition of ring_osc is

signal ring_delay1 : std_logic;

signal ring_delay2 : std_logic;

signal ring_delay3 : std_logic;

signal ring_invert : std_logic;

signal toggle : std_logic;

signal clk_div2 : std_logic;

attribute KEEP : string;

attribute KEEP of ring_delay1 : signal is "true";

attribute KEEP of ring_delay2 : signal is "true";

attribute KEEP of ring_delay3 : signal is "true";

attribute INIT : string;

attribute INIT of div2_lut : label is "1";

93

attribute INIT of delay1_lut : label is "4";

attribute INIT of delay2_lut : label is "4";

attribute INIT of delay3_lut : label is "4";

attribute INIT of invert_lut : label is "B";

-- Attribute for manually placement

attribute bel : string ;

attribute bel of delay1_lut : label is "D6LUT";

attribute bel of delay2_lut : label is "C6LUT";

attribute bel of delay3_lut : label is "B6LUT";

attribute bel of div2_lut : label is "A6LUT";

attribute bel of invert_lut : label is "A5LUT";

begin

 osc_out <= clk_div2;

 toggle_flop : FDCE

 port map (D => toggle,

 CLR => '0' ,

 CE => '1' ,

 Q => clk_div2,

 C => ring_invert);

 div2_lut: LUT2

 generic map (INIT => X"1")

 port map(I0 => reset,

 I1 => clk_div2,

 O => toggle);

94

 delay1_lut: LUT2

 generic map (INIT => X"4")

 port map(I0 => reset,

 I1 => ring_invert,

 O => ring_delay1);

 delay2_lut: LUT2

 generic map (INIT => X"4")

 port map(I0 => reset,

 I1 => ring_delay1,

 O => ring_delay2);

 delay3_lut: LUT2

 generic map (INIT => X"4")

 port map(I0 => reset,

 I1 => ring_delay2,

 O => ring_delay3);

 invert_lut: LUT2

 generic map (INIT => X"B")

 port map(I0 => reset,

 I1 => ring_delay3,

 O => ring_invert);

end low_level_definition;

95

APPENDIX – B

entity sampler is

 port(clk_in1 : in std_logic;

 clk_in2 : in std_logic;

 enable : in std_logic;

 clear : in std_logic;

 randout : out std_logic;

 bitready : out std_logic

);

 end sampler;

architecture low_level_definition of sampler is

signal rand_clk : std_logic;

signal cnt0_n : std_logic;

signal cnt0 : std_logic;

-- Attribute for manually placement

attribute bel : string ;

attribute bel of Sampling_FF : label is "AFF";

attribute bel of Rand_out_FF : label is "AFF";

attribute bel of Rand_cnt_FF : label is "AFF";

attribute bel of Bit_ready_FF : label is "AFF";

96

attribute bel of invert_lut : label is "A6LUT";

-- Attributes LOC

 attribute LOC : string ;

 attribute LOC of invert_lut : label is "SLICE_X2Y0";

 attribute LOC of Sampling_FF : label is "SLICE_X2Y1";

 attribute LOC of Bit_ready_FF : label is "SLICE_X3Y1";

 attribute LOC of Rand_cnt_FF : label is "SLICE_X2Y0";

 attribute LOC of Rand_out_FF : label is "SLICE_X3Y0";

begin

 Sampling_FF : FDCE

 port map (D => clk_in1,

 CLR => '0' ,

 CE => '1' ,

 Q => rand_clk,

 C => clk_in2);

 Rand_cnt_FF : FDC_1

 port map (D => cnt0_n,

 Q => cnt0,

 CLR => clear,

 C => clk_in2

);

 invert_lut: LUT2

 generic map (INIT => X"B")

 port map(I0 => '0',

97

 I1 => cnt0,

 O => cnt0_n);

 Rand_out_FF : FDCE

 port map (D => cnt0,

 CLR => clear,

 CE => enable,

 Q => randout,

 C => rand_clk);

 Bit_ready_FF : FDCE

 port map (D => '1',

 CLR => clear,

 CE => enable,

 Q => bitready,

 C => rand_clk);

end low_level_definition;

98

APPENDIX – C

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION

OF PASSING SEQUENCES

--

 generator is <data/custom_total.bin>

--

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

--

 95 107 108 108 100 100 84 100 94 104 0.825505 989/1000 Frequency

114 86 95 93 110 108 112 88 95 99 0.397688 989/1000 BlockFrequency

 94 108 99 116 75 108 115 113 91 81 0.026768 988/1000 CumulativeSums

 99 96 113 105 114 93 96 84 102 98 0.599693 987/1000 CumulativeSums

 87 98 95 106 100 88 112 116 105 93 0.482707 995/1000 Runs

104 114 107 112 80 95 114 92 84 98 0.141256 989/1000 LongestRun

103 89 101 119 91 98 108 94 102 95 0.630872 989/1000 Rank

110 110 98 104 89 108 95 93 91 102 0.775337 983/1000 FFT

 94 113 96 99 119 91 101 93 97 97 0.603841 989/1000 NonOverlappingTemplate

 89 95 85 106 110 105 108 88 108 106 0.494392 993/1000 NonOverlappingTemplate

136 100 83 95 103 83 90 115 104 91 0.005557 995/1000 OverlappingTemplate

103 100 119 99 96 99 103 97 98 86 0.733899 990/1000 Universal

109 102 92 81 121 101 94 100 103 97 0.345650 987/1000 ApproximateEntropy

 58 67 62 75 59 65 61 52 69 60 0.723673 617/628 RandomExcursions

 62 73 60 49 61 72 68 58 63 62 0.613623 622/628 RandomExcursions

99

 67 63 74 59 54 60 67 71 48 65 0.437274 623/628 RandomExcursions

 57 66 76 54 56 63 69 64 61 62 0.707249 620/628 RandomExcursions

 62 61 63 66 69 57 65 64 62 59 0.993769 622/628 RandomExcursions

 53 52 59 71 54 76 64 63 67 69 0.363700 620/628 RandomExcursions

 63 63 66 49 60 83 57 67 56 64 0.234060 623/628 RandomExcursions

 70 61 67 58 59 54 65 68 60 66 0.915607 614/628 RandomExcursions

 58 62 71 75 39 60 67 68 56 72 0.065546 623/628 RandomExcursionsVariant

 66 57 74 57 61 71 57 54 61 70 0.616976 621/628 RandomExcursionsVariant

 68 62 50 69 58 68 54 63 72 64 0.610271 622/628 RandomExcursionsVariant

 68 62 51 55 69 61 66 70 65 61 0.781044 623/628 RandomExcursionsVariant

 72 60 53 52 60 64 79 72 57 59 0.239982 622/628 RandomExcursionsVariant

 75 59 57 60 56 58 69 70 73 51 0.358376 619/628 RandomExcursionsVariant

 62 58 68 60 72 49 63 58 67 71 0.613623 623/628 RandomExcursionsVariant

 58 62 63 53 63 50 67 55 68 89 0.042096 623/628 RandomExcursionsVariant

 58 64 58 64 60 60 54 81 52 77 0.168532 619/628 RandomExcursionsVariant

 68 42 72 58 60 70 71 63 66 58 0.222556 621/628 RandomExcursionsVariant

 65 54 61 67 57 75 69 65 58 57 0.707249 620/628 RandomExcursionsVariant

 62 66 62 59 74 64 64 51 64 62 0.845408 624/628 RandomExcursionsVariant

 58 65 55 56 65 71 72 76 51 59 0.342708 621/628 RandomExcursionsVariant

 56 53 59 60 62 65 62 67 69 75 0.723673 618/628 RandomExcursionsVariant

 60 57 58 47 69 59 71 63 74 70 0.353103 620/628 RandomExcursionsVariant

 68 50 52 54 68 72 65 64 77 58 0.222556 618/628 RandomExcursionsVariant

 59 52 54 57 66 70 66 78 63 63 0.446255 620/628 RandomExcursionsVariant

 55 48 58 61 70 56 77 71 56 76 0.105114 620/628 RandomExcursionsVariant

117 112 90 83 107 107 81 96 100 107 0.142872 993/1000 Serial

113 96 97 88 103 108 106 98 90 101 0.786830 983/1000 Serial

101 96 104 93 98 125 91 110 82 100 0.204439 993/1000 LinearComplexity

100

-

The minimum pass rate for each statistical test with the exception of the

random excursion (variant) test is approximately = 980 for a

sample size = 1000 binary sequences.

The minimum pass rate for the random excursion (variant) test

is approximately = 614 for a sample size = 628 binary sequences.

For further guidelines construct a probability table using the MAPLE program

provided in the addendum section of the documentation.

-

101

APPENDIX – D

NOTE: Most of the tests in DIEHARD return a p-value, which should be uniform

on [0,1) if the input file contains truly independent random bits. Those p-values

are obtained by p=F(X), where F is the assumed distribution of the sample random

variable X---often normal. But that assumed F is justan asymptotic approximation,

for which the fit will be worst in the tails. Thus you should not be surprised with

occasional p-values near 0 or 1, such as .0012 or .9983. When a bit stream really

FAILS BIG, you will get p's of 0 or 1 to six or more places. By all means, do not,

as a Statistician might, think that a p < .025 or p> .975 means that the RNG has

"failed the test at the .05 level". Such p's happen among the hundreds that

DIEHARD produces, even with good RNG's. So keep in mind that " p happens".

__

This is the BIRTHDAY SPACINGS TEST

Choose m birthdays in a year of n days. List the spacings between the birthdays. If

j is the number of values that occur more than once in that list, then j is

asymptotically Poisson distributed with mean m^3/(4n). Experience shows n must

be quite large, say n>=2^18, for comparing the results to the Poisson distribution

with that mean. This test uses n=2^24 and m=2^9, so that the underlying

distribution for j is taken to be Poisson with lambda=2^27/(2^26)=2. A sample of

500 j's is taken, and a chi-square goodness of fit test provides a p value. The first

test uses bits 1-24 (counting from the left) from integers in the specified file. Then

the file is closed and reopened. Next, bits 2-25 are used to provide birthdays, then 3-

26 and so on to bits 9-32. Each set of bits provides a p-value, and the nine p-values

provide a sample for a KSTEST.

 BIRTHDAY SPACINGS TEST, M= 512 N=2**24 LAMBDA= 2.0000

102

 Results for custom_1.bin

 For a sample of size 500: mean

 The 9 p-values were

 .335681 .623615 .512990 .638848 .052862

 .178181 .853718 .943854 .405282

 A KSTEST for the 9 p-values yields .000665

__

 THE OVERLAPPING 5-PERMUTATION TEST

This is the OPERM5 test. It looks at a sequence of one million 32-bit random

integers. Each set of five consecutive integers can be in one of 120 states, for the 5!

possible orderings of five numbers. Thus the 5th, 6th, 7th,...numbers each provide a

state. As many thousands of state transitions are observed, cumulative counts are

made of the number of occurences of each state. Then the quadratic form in the

weak inverse of the 120x120 covariance matrix yields a test equivalent to the

likelihood ratio test that the 120 cell counts came from the specified

(asymptotically) normal distribution with the specified 120x120 covariance matrix

(with rank 99). This version uses 1,000,000 integers, twice.

 OPERM5 test for file custom_1.bin

For a sample of 1,000,000 consecutive 5-tuples,

 chisquare for 99 degrees of freedom= 97.795; p-value= .484594

 OPERM5 test for file custom_1.bin

 For a sample of 1,000,000 consecutive 5-tuples,

 chisquare for 99 degrees of freedom=140.726; p-value= .996237

__

This is the BINARY RANK TEST for 31x31 matrices.

103

The leftmost 31 bits of 31 random integers from the test sequence are used to form a

31x31 binary matrix over the field {0,1}. The rank is determined. That rank can be

from 0 to 31, but ranks< 28 are rare, and their counts are pooled with those for rank

28. Ranks are found for 40,000 such random matrices and a chisquare test is

performed on counts for ranks 31,30,29 and <=28. ::

 Binary rank test for custom_1.bin

 Rank test for 31x31 binary matrices:

 rows from leftmost 31 bits of each 32-bit integer

 rank observed expected (o-e)^2/e sum

 28 212 211.4 .001602 .002

 29 5033 5134.0 1.987349 1.989

 30 23247 23103.0 .896960 2.886

 31 11508 11551.5 .163993 3.050

 chisquare= 3.050 for 3 d. of f.; p-value= .656377

__

This is the BINARY RANK TEST for 32x32 matrices.

A random 32x32 binary matrix is formed, each row a 32-bit random integer. The

rank is determined. That rank can be from 0 to 32, ranks less than 29 are rare, and

their counts are pooled with those for rank 29. Ranks are found for 40,000 such

random matrices and a chisquare test is performed on counts for ranks 32,31,30 and

<=29.

 Binary rank test for custom_1.bin

 Rank test for 32x32 binary matrices:

 rows from leftmost 32 bits of each 32-bit integer

 rank observed expected (o-e)^2/e sum

 29 196 211.4 1.124385 1.124

104

 30 4990 5134.0 4.039523 5.164

 31 23122 23103.0 .015549 5.179

 32 11692 11551.5 1.708293 6.888

 chisquare= 6.888 for 3 d. of f.; p-value= .928777

__

This is the BINARY RANK TEST for 6x8 matrices.

From each of six random 32-bit integers from the generator under test, a specified

byte is chosen, and the resulting six bytes form a 6x8 binary matrix whose rank is

determined. That rank can be from 0 to 6, but ranks 0,1,2,3 are rare; their counts

are pooled with those for rank 4. Ranks are found for 100,000 random matrices, and

a chi-square test is performed on counts for ranks 6,5 and <=4.

 Binary Rank Test for custom_1.bin

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG custom_1.bin

 b-rank test for bits 1 to 8

 TEST SUMMARY, 25 tests on 100,000 random 6x8 matrices

 These should be 25 uniform [0,1] random variables:

 .750451 .071345 .421675 .155774 .827358

 .376755 .726652 .897187 .786412 .611982

 .303095 .129650 .127276 .429067 .609446

 .501428 .221000 .877219 .556928 .329686

 .369401 .314815 .970922 .116750 .752722

 brank test summary for custom_1.bin

 The KS test for those 25 supposed UNI's yields

 KS p-value= .034584

105

__

 THE BITSTREAM TEST

The file under test is viewed as a stream of bits. Call them b1,b2,... . Consider an

alphabet with two "letters", 0 and 1and think of the stream of bits as a succession of

20-letter "words", overlapping. Thus the first word is b1b2...b20, the second is

b2b3...b21, and so on. The bitstream test counts the number of missing 20-letter

(20-bit) words in a string of 2^21 overlapping 20-letter words. There are 2^20

possible 20 letter words. For a truly random string of 2^21+19 bits, the number of

missing words j should be (very close to) normally distributed with mean 141,909

and sigma 428. Thus (j-141909)/428 should be a standard normal variate (z score)

that leads to a uniform [0,1) p value. The test is repeated twenty times.

THE OVERLAPPING 20-tuples BITSTREAM TEST, 20 BITS PER WORD, N

words

 This test uses N=2^21 and samples the bitstream 20 times.

 No. missing words should average 141909. with sigma=428.

tst no 1: 141469 missing words, -1.03 sigmas from mean, p-value= .15179

 tst no 2: 141762 missing words, -.34 sigmas from mean, p-value= .36534

 tst no 3: 142141 missing words, .54 sigmas from mean, p-value= .70585

 tst no 4: 142516 missing words, 1.42 sigmas from mean, p-value= .92183

 tst no 5: 141984 missing words, .17 sigmas from mean, p-value= .56925

 tst no 6: 141281 missing words, -1.47 sigmas from mean, p-value= .07104

 tst no 7: 142413 missing words, 1.18 sigmas from mean, p-value= .88036

 tst no 8: 141494 missing words, -.97 sigmas from mean, p-value= .16593

 tst no 9: 141636 missing words, -.64 sigmas from mean, p-value= .26154

 tst no 10: 142805 missing words, 2.09 sigmas from mean, p-value= .98181

 tst no 11: 141948 missing words, .09 sigmas from mean, p-value= .53600

106

 tst no 12: 141877 missing words, -.08 sigmas from mean, p-value= .46990

 tst no 13: 141847 missing words, -.15 sigmas from mean, p-value= .44211

 tst no 14: 141997 missing words, .20 sigmas from mean, p-value= .58115

 tst no 15: 141887 missing words, -.05 sigmas from mean, p-value= .47920

 tst no 16: 141490 missing words, -.98 sigmas from mean, p-value= .16361

 tst no 17: 141875 missing words, -.08 sigmas from mean, p-value= .46804

 tst no 18: 142332 missing words, .99 sigmas from mean, p-value= .83831

 tst no 19: 142137 missing words, .53 sigmas from mean, p-value= .70262

 tst no 20: 141694 missing words, -.50 sigmas from mean, p-value= .30745

__

 The tests OPSO, OQSO and DNA

OPSO means Overlapping-Pairs-Sparse-Occupancy The OPSO test considers 2-

letter words from an alphabet of 1024 letters. Each letter is determined by a

specified ten bits from a 32-bit integer in the sequence to be tested. OPSO generates

2^21 (overlapping) 2-letter words (from 2^21+1 "keystrokes") and counts the

number of missing words---that is 2-letter words which do not appear in the entire

sequence. That count should be very close to normally distributed with mean

141,909, sigma 290. Thus (missingwrds-141909)/290 should be a standard normal

variable. The OPSO test takes 32 bits at a time from the test file and uses a

designated set of ten consecutive bits. It then restarts the file for the next designated

10 bits, and so on.

OQSO means Overlapping-Quadruples-Sparse-Occupancy The test OQSO is

similar, except that it considers 4-letter words from an alphabet of 32 letters, each

letter determined by a designated string of 5 consecutive bits from the test file,

elements of which are assumed 32-bit random integers. The mean number of

missing words in a sequence of 2^21 four letter words, (2^21+3 "keystrokes"), is

107

again 141909, with sigma = 295. The mean is based on theory; sigma comes from

extensive simulation.

The DNA test considers an alphabet of 4 letters C,G,A,T determined by two

designated bits in the sequence of random integers being tested. It considers 10-

letter words, so that as in OPSO and OQSO, there are 2^20 possible words, and the

mean number of missing words from a string of 2^21 (over-lapping) 10-letter

words (2^21+9 "keystrokes") is 141909. The standard deviation sigma=339 was

determined as for OQSO by simulation. (Sigma for OPSO, 290, is the true value (to

three places), not determined by simulation.

 OPSO test for generator custom_1.bin

 Output: No. missing words (mw), equiv normal variate (z), p-value (p)

 mw z p

 OPSO for custom_1.bin using bits 23 to 32 142229 1.102 .8648

 OPSO for custom_1.bin using bits 22 to 31 142369 1.585 .9435

 OPSO for custom_1.bin using bits 21 to 30 142212 1.044 .8517

 OPSO for custom_1.bin using bits 20 to 29 141672 -.818 .2066

 OPSO for custom_1.bin using bits 19 to 28 141961 .178 .5707

 OPSO for custom_1.bin using bits 18 to 27 142411 1.730 .9582

 OPSO for custom_1.bin using bits 17 to 26 141994 .292 .6148

 OPSO for custom_1.bin using bits 16 to 25 141853 -.194 .4230

 OPSO for custom_1.bin using bits 15 to 24 141968 .202 .5802

 OPSO for custom_1.bin using bits 14 to 23 141441 -1.615 .0532

 OPSO for custom_1.bin using bits 13 to 22 141432 -1.646 .0499

 OPSO for custom_1.bin using bits 12 to 21 141677 -.801 .2115

 OPSO for custom_1.bin using bits 11 to 20 141948 .133 .5530

108

 OPSO for custom_1.bin using bits 10 to 19 142017 .371 .6448

 OPSO for custom_1.bin using bits 9 to 18 142267 1.233 .8913

 OPSO for custom_1.bin using bits 8 to 17 141869 -.139 .4447

 OPSO for custom_1.bin using bits 7 to 16 142165 .882 .8110

 OPSO for custom_1.bin using bits 6 to 15 142239 1.137 .8722

 OPSO for custom_1.bin using bits 5 to 14 142041 .454 .6751

 OPSO for custom_1.bin using bits 4 to 13 141881 -.098 .4611

 OPSO for custom_1.bin using bits 3 to 12 141376 -1.839 .0330

 OPSO for custom_1.bin using bits 2 to 11 141798 -.384 .3505

 OPSO for custom_1.bin using bits 1 to 10 142104 .671 .7490

 OQSO test for generator custom_1.bin

 Output: No. missing words (mw), equiv normal variate (z), p-value (p)

 mw z p

 OQSO for custom_1.bin using bits 28 to 32 142003 .318 .6246

 OQSO for custom_1.bin using bits 27 to 31 141829 -.272 .3927

 OQSO for custom_1.bin using bits 26 to 30 142261 1.192 .8834

 OQSO for custom_1.bin using bits 25 to 29 141573 -1.140 .1271

 OQSO for custom_1.bin using bits 24 to 28 142092 .619 .7321

 OQSO for custom_1.bin using bits 23 to 27 142247 1.145 .8738

 OQSO for custom_1.bin using bits 22 to 26 141604 -1.035 .1503

 OQSO for custom_1.bin using bits 21 to 25 141790 -.405 .3429

 OQSO for custom_1.bin using bits 20 to 24 141726 -.621 .2672

 OQSO for custom_1.bin using bits 19 to 23 141859 -.171 .4323

 OQSO for custom_1.bin using bits 18 to 22 142236 1.107 .8659

109

 OQSO for custom_1.bin using bits 17 to 21 142110 .680 .7518

 OQSO for custom_1.bin using bits 16 to 20 141893 -.055 .4779

 OQSO for custom_1.bin using bits 15 to 19 141873 -.123 .4510

 OQSO for custom_1.bin using bits 14 to 18 141663 -.835 .2019

 OQSO for custom_1.bin using bits 13 to 17 142148 .809 .7908

 OQSO for custom_1.bin using bits 12 to 16 141528 -1.293 .0981

 OQSO for custom_1.bin using bits 11 to 15 141761 -.503 .3075

 OQSO for custom_1.bin using bits 10 to 14 142463 1.877 .9697

 OQSO for custom_1.bin using bits 9 to 13 142191 .955 .8302

 OQSO for custom_1.bin using bits 8 to 12 141942 .111 .5441

 OQSO for custom_1.bin using bits 7 to 11 142075 .562 .7128

 OQSO for custom_1.bin using bits 6 to 10 142082 .585 .7208

 OQSO for custom_1.bin using bits 5 to 9 141856 -.181 .4283

 OQSO for custom_1.bin using bits 4 to 8 141892 -.059 .4766

 OQSO for custom_1.bin using bits 3 to 7 142510 2.036 .9791

 OQSO for custom_1.bin using bits 2 to 6 141854 -.188 .4256

 OQSO for custom_1.bin using bits 1 to 5 141845 -.218 .4137

 DNA test for generator custom_1.bin

 Output: No. missing words (mw), equiv normal variate (z), p-value (p)

 mw z p

 DNA for custom_1.bin using bits 31 to 32 141819 -.266 .3949

 DNA for custom_1.bin using bits 30 to 31 141559 -1.033 .1507

 DNA for custom_1.bin using bits 29 to 30 141861 -.143 .4433

 DNA for custom_1.bin using bits 28 to 29 141473 -1.287 .0990

110

 DNA for custom_1.bin using bits 27 to 28 141487 -1.246 .1064

 DNA for custom_1.bin using bits 26 to 27 141679 -.679 .2484

 DNA for custom_1.bin using bits 25 to 26 142228 .940 .8264

 DNA for custom_1.bin using bits 24 to 25 141723 -.550 .2913

 DNA for custom_1.bin using bits 23 to 24 141563 -1.022 .1535

 DNA for custom_1.bin using bits 22 to 23 142324 1.223 .8894

 DNA for custom_1.bin using bits 21 to 22 142111 .595 .7240

 DNA for custom_1.bin using bits 20 to 21 141967 .170 .5675

 DNA for custom_1.bin using bits 19 to 20 141643 -.786 .2160

 DNA for custom_1.bin using bits 18 to 19 142053 .424 .6641

 DNA for custom_1.bin using bits 17 to 18 142310 1.182 .8814

 DNA for custom_1.bin using bits 16 to 17 142064 .456 .6759

 DNA for custom_1.bin using bits 15 to 16 141804 -.311 .3780

 DNA for custom_1.bin using bits 14 to 15 141657 -.744 .2283

 DNA for custom_1.bin using bits 13 to 14 142042 .391 .6522

 DNA for custom_1.bin using bits 12 to 13 141224 -2.022 .0216

 DNA for custom_1.bin using bits 11 to 12 142787 2.589 .9952

 DNA for custom_1.bin using bits 10 to 11 142248 .999 .8411

 DNA for custom_1.bin using bits 9 to 10 141920 .031 .5126

 DNA for custom_1.bin using bits 8 to 9 142480 1.683 .9539

 DNA for custom_1.bin using bits 7 to 8 142025 .341 .6335

 DNA for custom_1.bin using bits 6 to 7 141714 -.576 .2822

 DNA for custom_1.bin using bits 5 to 6 142027 .347 .6357

 DNA for custom_1.bin using bits 4 to 5 141994 .250 .5986

111

 DNA for custom_1.bin using bits 3 to 4 141646 -.777 .2186

 DNA for custom_1.bin using bits 2 to 3 142041 .388 .6511

 DNA for custom_1.bin using bits 1 to 2 141729 -.532 .2974

__

 This is the COUNT-THE-1's TEST on a stream of bytes.

Consider the file under test as a stream of bytes (four per 32 bit integer). Each byte

can contain from 0 to 8 1's, with probabilities 1,8,28,56,70,56,28,8,1 over 256.

Now let the stream of bytes provide a string of overlapping 5-letter words, each

"letter" taking values A,B,C,D,E. The letters are determined by the number of 1's in

a byte:: 0,1,or 2 yield A, 3 yields B, 4 yields C, 5 yields D and 6,7 or 8 yield E.

Thus we have a monkey at a typewriter hitting five keys with various probabilities

(37,56,70,56,37 over 256). There are 5^5 possible 5-letter words, and from a string

of 256,000 (overlapping) 5-letter words, counts are made on the frequencies for

each word. The quadratic form in the weak inverse of the covariance matrix of the

cell counts provides a chisquare test Q5-Q4, the difference of the naive Pearson

sums of (OBS-EXP)^2/EXP on counts for 5- and 4-letter cell counts.

 Test results for custom_1.bin

 Chi-square with 5^5-5^4=2500 d.of f. for sample size:2560000

 chisquare equiv normal p-value

 Results fo COUNT-THE-1's in successive bytes:

 byte stream for custom_1.bin 2510.48 .148 .558909

 byte stream for custom_1.bin 2421.22 -1.114 .132617

__

 This is the COUNT-THE-1's TEST for specific bytes.

Consider the file under test as a stream of 32-bit integers. From each integer, a

specific byte is chosen , say the leftmost bits 1 to 8. Each byte can contain from 0 to

112

8 1's, with probabilitie 1,8,28,56,70,56,28,8,1 over 256. Now let the specified bytes

from successive integers provide a string of (overlapping) 5-letter words, each

"letter" taking values A,B,C,D,E. The letters are determined by the number of 1's,

in that byte:: 0,1,or 2 ---> A, 3 ---> B, 4 ---> C, 5 ---> D, and 6,7 or 8 ---> E. Thus

we have a monkey at a typewriter hitting five keys with with various probabilities

37,56,70,56,37 over 256. There are 5^5 possible 5-letter words, and from a string of

256,000 (overlapping) 5-letter words, counts are made on the frequencies for each

word. The quadratic in the weak inverse of the covariance matrix of the cell counts

provides a chisquare test:: Q5-Q4, the difference of the naive Pearson sums of

(OBS-EXP)^2/EXP on counts for 5- and 4-letter cell counts.

Chi-square with 5^5-5^4=2500 d.of f. for sample size: 256000

 chisquare equiv normal p value

 Results for COUNT-THE-1's in specified bytes:

 bits 1 to 8 2443.96 -.793 .214021

 bits 2 to 9 2416.46 -1.181 .118708

 bits 3 to 10 2526.06 .369 .643754

 bits 4 to 11 2491.55 -.119 .452443

 bits 5 to 12 2522.34 .316 .623997

 bits 6 to 13 2491.22 -.124 .450586

 bits 7 to 14 2625.15 1.770 .961623

 bits 8 to 15 2593.83 1.327 .907740

 bits 9 to 16 2449.62 -.712 .238096

 bits 10 to 17 2451.16 -.691 .244880

 bits 11 to 18 2507.65 .108 .543071

 bits 12 to 19 2434.88 -.921 .178539

 bits 13 to 20 2520.40 .288 .613514

113

 bits 14 to 21 2525.94 .367 .643154

 bits 15 to 22 2594.37 1.335 .909005

 bits 16 to 23 2541.63 .589 .721994

 bits 17 to 24 2591.28 1.291 .901629

 bits 18 to 25 2509.22 .130 .551845

 bits 19 to 26 2389.95 -1.556 .059817

 bits 20 to 27 2439.70 -.853 .196882

 bits 21 to 28 2479.03 -.297 .383389

 bits 22 to 29 2562.59 .885 .811954

 bits 23 to 30 2485.35 -.207 .417942

 bits 24 to 31 2446.02 -.763 .222608

 bits 25 to 32 2571.86 1.016 .845259

__

 THIS IS A PARKING LOT TEST

In a square of side 100, randomly "park" a car---a circle of radius 1. Then try to

park a 2nd, a 3rd, and so on, each time parking "by ear". That is, if an attempt to

park a car causes a crash with one already parked, try again at a new random

location. (To avoid path problems, consider parking helicopters rather than cars.)

Each attempt leads to either a crash or a success, the latter followed by an increment

to the list of cars already parked. If we plot n: the number of attempts, versus k the

number successfully parked, we get a curve that should be similar to those provided

by a perfect random number generator. Theory for the behavior of such a random

curve seems beyond reach, and as graphics displays are not available for this battery

of tests, a simple characterization of the random experiment is used: k, the number

of cars successfully parked after n=12,000 attempts. Simulation shows that k should

average 3523 with sigma 21.9 and is very close to normally distributed. Thus (k-

114

3523)/21.9 should be a standard normal variable, which, converted to a uniform

variable, provides input to a KSTEST based on a sample of 10.

 CDPARK: result of ten tests on file custom_1.bin

 Of 12,000 tries, the average no. of successes

 should be 3523 with sigma=21.9

 Successes: 3541 z-score: .822 p-value: .794438

 Successes: 3561 z-score: 1.735 p-value: .958644

 Successes: 3555 z-score: 1.461 p-value: .928018

 Successes: 3548 z-score: 1.142 p-value: .873180

 Successes: 3520 z-score: -.137 p-value: .445521

 Successes: 3553 z-score: 1.370 p-value: .914635

 Successes: 3497 z-score: -1.187 p-value: .117571

 Successes: 3489 z-score: -1.553 p-value: .060270

 Successes: 3534 z-score: .502 p-value: .692266

 Successes: 3520 z-score: -.137 p-value: .445521

 square size avg. no. parked sample sigma

 100. 3531.800 23.494

 KSTEST for the above 10: p= .818998

__

 THE MINIMUM DISTANCE TEST

It does this 100 times:: choose n=8000 random points in a square of side 10000.

Find d, the minimum distance between the (n^2-n)/2 pairs of points. If the points

are truly independent uniform, then d^2, the square of the minimum distance should

be (very close to) exponentially distributed with mean .995 . Thus 1-exp(-d^2/.995)

should be uniform on [0,1) and a KSTEST on the resulting 100 values serves as a

115

test of uniformity for random points in the square. Test numbers=0 mod 5 are

printed but the KSTEST is based on the full set of 100 random choices of 8000

points in the 10000x10000 square.

 This is the MINIMUM DISTANCE test

 for random integers in the file custom_1.bin

 Sample no. d^2 avg equiv uni

 5 .2568 .4633 .227466

 10 .3804 .6225 .317684

 15 .3710 1.0337 .311239

 20 2.7945 1.5499 .939706

 25 .0367 1.3904 .036204

 30 .9667 1.2787 .621501

 35 .1312 1.1506 .123576

 40 1.1381 1.1592 .681391

 45 1.4139 1.1469 .758522

 50 .2297 1.1258 .206137

 55 2.0995 1.1709 .878767

 60 .0429 1.1082 .042214

 65 5.2945 1.1434 .995113

 70 .2287 1.1530 .205350

 75 .2150 1.1202 .194297

 80 5.5842 1.1310 .996347

 85 1.7746 1.1254 .831956

 90 5.6926 1.1848 .996724

116

 95 2.3002 1.1930 .900917

 100 2.4611 1.1748 .915710

 MINIMUM DISTANCE TEST for custom_1.bin

 Result of KS test on 20 transformed mindist^2's:

 p-value= .673039

__

 THE 3DSPHERES TEST

Choose 4000 random points in a cube of edge 1000. At each point, center a sphere

large enough to reach the next closest point. Then the volume of the smallest such

sphere is (very close to) exponentially distributed with mean 120pi/3. Thus the

radius cubed is exponential with mean 30. (The mean is obtained by extensive

simulation). The 3DSPHERES test generates 4000 such spheres 20 times. Each

min radius cubed leads to a uniform variable by means of 1-exp(-r^3/30.), then a

KSTEST is done on the 20 p-values.

 The 3DSPHERES test for file custom_1.bin

 sample no: 1 r^3= 14.010 p-value= .37313

 sample no: 2 r^3= 4.483 p-value= .13881

 sample no: 3 r^3= 4.290 p-value= .13323

 sample no: 4 r^3= 8.167 p-value= .23833

 sample no: 5 r^3= 10.468 p-value= .29456

 sample no: 6 r^3= 11.586 p-value= .32037

 sample no: 7 r^3= 6.453 p-value= .19355

 sample no: 8 r^3= 27.781 p-value= .60388

 sample no: 9 r^3= 45.703 p-value= .78204

 sample no: 10 r^3= 11.222 p-value= .31207

117

 sample no: 11 r^3= 124.081 p-value= .98401

 sample no: 12 r^3= 18.753 p-value= .46479

 sample no: 13 r^3= 36.836 p-value= .70709

 sample no: 14 r^3= 27.195 p-value= .59606

 sample no: 15 r^3= 26.891 p-value= .59195

 sample no: 16 r^3= 2.189 p-value= .07038

 sample no: 17 r^3= 25.173 p-value= .56789

 sample no: 18 r^3= 44.948 p-value= .77648

 sample no: 19 r^3= 11.705 p-value= .32305

 sample no: 20 r^3= 88.002 p-value= .94678

 A KS test is applied to those 20 p-values.

 3DSPHERES test for file custom_1.bin p-value= .199021

__

 This is the SQEEZE test

Random integers are floated to get uniforms on [0,1). Starting with

k=2^31=2147483647, the test finds j, the number of iterations necessary to reduce k

to 1, using the reduction k=ceiling(k*U), with U provided by floating integers from

the file being tested. Such j's are found 100,000 times, then counts for the number

of times j was <=6,7,...,47,>=48 are used to provide a chi-square test for cell

frequencies.

 RESULTS OF SQUEEZE TEST FOR custom_1.bin

 Table of standardized frequency counts

 ((obs-exp)/sqrt(exp))^2

 for j taking values <=6,7,8,...,47,>=48:

 1.3 -.3 .6 -.5 1.4 -.8

118

 1.3 -.4 -.9 -2.4 1.2 .5

 -1.9 .0 -.8 .4 -1.7 .8

 -1.0 .9 1.8 .8 -1.8 1.0

 .4 1.3 .1 -1.1 1.6 1.5

 .0 -.1 .9 -1.0 1.3 -.5

 .7 .8 1.3 -.7 -1.3 .0

 -.1

 Chi-square with 42 degrees of freedom: 50.305

 z-score= .906 p-value= .822518

__

 The OVERLAPPING SUMS test

 Integers are floated to get a sequence U(1),U(2),... of uniform [0,1) variables. Then

overlapping sums, S(1)=U(1)+...+U(100), S2=U(2)+...+U(101),... are formed. The

S's are virtually normal with a certain covariance matrix. A linear transformation of

the S's converts them to a sequence of independent standard normals, which are

converted to uniform variables for a KSTEST. The p-values from ten KSTESTs are

given still another KSTEST.

 Test no. 1 p-value .250680

 Test no. 2 p-value .636456

 Test no. 3 p-value .306310

 Test no. 4 p-value .204592

 Test no. 5 p-value .001913

 Test no. 6 p-value .956360

 Test no. 7 p-value .606248

 Test no. 8 p-value .223802

119

 Test no. 9 p-value .562835

 Test no. 10 p-value .001896

 Results of the OSUM test for custom_1.bin

 KSTEST on the above 10 p-values: .931216

__

This is the RUNS test.

It counts runs up, and runs down, in a sequence of uniform [0,1) variables, obtained

by floating the 32-bit integers in the specified file. This example shows how runs

are counted: .123,.357,.789,.425,.224,.416,.95 contains an up-run of length 3, a

down-run of length 2 and an up-run of (at least) 2, depending on the next values.

The covariance matrices for the runs-up and runs-down are well known, leading to

chisquare tests for quadratic forms in the weak inverses of the covariance matrices.

Runs are counted for sequences of length 10,000. This is done ten times. Then

repeated.

 The RUNS test for file custom_1.bin

 Up and down runs in a sample of 10000

 Run test for custom_1.bin :

 runs up; ks test for 10 p's: .772382

 runs down; ks test for 10 p's: .953169

 Run test for custom_1.bin :

 runs up; ks test for 10 p's: .597759

 runs down; ks test for 10 p's: .438695

__

 This is the CRAPS TEST.

It plays 200,000 games of craps, finds the number of wins and the number of throws

necessary to end each game. The number of wins should be (very close to) a

120

normal with mean 200000p and variance 200000p(1-p), with p=244/495. Throws

necessary to complete the game can vary from 1 to infinity, but counts for all>21

are lumped with 21. A chi-square test is made on the no.-of-throws cell counts.

Each 32-bit integer from the test file provides the value for the throw of a die, by

floating to [0,1), multiplying by 6 and taking 1 plus the integer part of the result.

::

 Results of craps test for custom_1.bin

 No. of wins: Observed Expected

 98483 98585.86

 98483= No. of wins, z-score= -.460 pvalue= .32274

 Analysis of Throws-per-Game:

 Chisq= 19.90 for 20 degrees of freedom, p= .53605

 Throws Observed Expected Chisq Sum

 1 66834 66666.7 .420 .420

 2 37818 37654.3 .711 1.131

 3 26537 26954.7 6.474 7.605

 4 19355 19313.5 .089 7.695

 5 13716 13851.4 1.324 9.018

 6 10025 9943.5 .667 9.686

 7 7207 7145.0 .538 10.223

 8 5191 5139.1 .525 10.748

 9 3735 3699.9 .334 11.082

 10 2586 2666.3 2.418 13.500

 11 1942 1923.3 .181 13.681

 12 1403 1388.7 .146 13.828

121

 13 969 1003.7 1.201 15.028

 14 752 726.1 .921 15.949

 15 533 525.8 .098 16.047

 16 377 381.2 .045 16.092

 17 275 276.5 .009 16.101

 18 222 200.8 2.232 18.332

 19 135 146.0 .826 19.159

 20 112 106.2 .315 19.474

 21 276 287.1 .430 19.904

 SUMMARY FOR custom_1.bin

 p-value for no. of wins: .322741

 p-value for throws/game: .536055

 Results of DIEHARD battery of tests sent to file custom_1.txt

