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ABSTRACT 

A TRUE RANDOM NUMBER GENERATOR IN FPGA 

FOR CRYPTOGRAPHIC APPLICATIONS 

Yıldırım, Salih 

 

M.Sc., Department of Electrical and Electronics Engineering  

Supervisor: Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı 

 

December 2012, 121 pages 

 

In this thesis a True Random Number Generator (TRNG) employed for 

cryptographic applications is investigated, implemented and evaluated. The design 

of TRNG and its embedded tests are described in VHDL language and then 

implemented on an FPGA platform. Randomness is extracted from the jitter of ring 

oscillators that has self-failure detecting and sampling logic. The implementation 

needs only primitive resources which are common in all kinds of FPGAs. The 

embedded randomness tests described in Federal Information Processing Standard 

(FIPS) 140-1 are realized on FPGA. The statistical quality of the generated random 

bits is also confirmed by running the Diehard and NIST (National Institute of 

Standards and Technology) Test Suites seperately. The implemented TRNG has a 

throughput up to 0.5 Mbps and its core occupies only 25 slices of Xilinx Virtex-5 

FPGA. This design demonstrates the possibility of generating and confirming true 

random bit sequences by using only the internal resources of FPGAs. The 

performance of our TRNG is also compared with a separate IC, RPG100 from FDK 

Corporation.  
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Keywords: True Random Number Generator (TRNG), Field Programmable Gate 
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800-22 (NIST SP800-22), Diehard Test Suite. 
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ÖZ 

KRİPTO UYGULAMALARI İÇİN FPGA ÜZERİNDE 

GERÇEK RASSAL SAYI ÜRETECİ 

 

Yıldırım, Salih 

 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Cüneyt F. Bazlamaçcı 

 

Aralık 2012, 121 sayfa 

 

Bu tezde kriptografik uygulamalarda kullanılan bir Gerçek Rassal Sayı Üreteci 

(GRSÜ) araştırılmış, gerçeklenmiş ve değerlendirilmiştir. Bu GRSÜ ve gömülü 

testlerinin tasarımı VHDL dilinde tanımlanmış ve bir FPGA platformunda 

gerçeklenmiştir. Rassallık halka osilatör seğirmelerinden içsel hata algılama 

yetisine sahip bir örnekleme devresi ile çıkarılmıştır. Gerçekleme yalnızca tüm 

FPGA‘lerde ortak olarak yer alan en temel kaynaklara ihtiyaç duymaktadır. FIPS 

140-1 standardında açıklanan gömülü rassallık testleri FPGA üzerinde 

gerçeklenmiştir. GRSÜ‘nin istatiksel özellikleri kriptografik uygulamalar için 

standart olan NIST SP800-22 ve Diehard istatiksel test kütüphaneleri ile de 

doğrulanmıştır. Gerçeklenen GRSÜ’nin üretim hızı 0,5 MBps’a kadar ulaşmaktadır 

ve çekirdeği sadece 25 adet Xilinx Virtex-5 FPGA slice kaynağı kullanmaktadır. Bu 

tasarım sadece FPGA’in içsel kaynaklarını kullanarak da rassal sayı üretilip bu 

rassallığın doğrulanabileceğini göstermektedir. Ayrıca gerçeklenen GRSÜ‘nin 

başarımı ayrı bir tümleşik devre olan, FDK şirketinden RPG100, ile de 

karşılaştırılmıştır. 
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CHAPTER 1  

 

INTRODUCTION 

Random number generators (RNGs) are one of basic cryptographic primitives that 

generate random quantities for cryptosystems. These random quantities are utilized 

for processes such as key generation, authentication, padding and password 

generation, etc. The implementation of counter measure processes to side channel 

attacks also needs random quantities. Security of various cryptographic systems 

directly depends on random numbers that should remain unknown to an adversary. 

Hence random numbers used in cryptographic systems should meet stringent 

requirements. These numbers should first be unpredictable (unbiased and 

independent) and irreproducible and also should have good statistical features. 

 

Random numbers that have good statistical properties can be generated by 

deterministic processes. Such generators are called pseudo random number 

generators (PRNG). PRNGs are implementations of deterministic polynomial time 

algorithms that expand a short seed value into uniformly distributed long bit 

sequences having good statistical features [1]. However the output of a PRNG is not 

unpredictable because the input (i.e. seed) deterministically governs the output and   

a PRNG can generate a fixed number of bits meaning they repeat themselves in 

long sequences. Because of these drawbacks, PRNGs are not suitable for many 

cryptographic applications. 

 



2 

 

On the other hand, some generators use uncontrollable and unpredictable physical 

processes as the source of randomness. This type of RNGs are called true random 

number generators (TRNG). The statistical properties and features of the generated 

random numbers by TRNGs are based on the randomness of the physical process 

used and the extraction method employed. If the underlying physical process cannot 

be controlled, the generator output also becomes unpredictable and uncontrollable.  

 

In cryptography, Kerckhoff’s principle says that “A cryptosystem should be secure 

even if everything about the system, except the key, is public knowledge”. Even for 

Kerckhoff’s secure crypto system, protection of the confidential keys is a very 

important issue [2]. If an information system is used in an uncontrollable 

environment, cryptographic keys used in the security components should never be 

open to the outside. For this reason, it is generally recommended that the security 

system should be implemented in a single chip and the keys should be generated 

inside the same chip. Therefore, implementation of random number generators in 

logic devices (including FPGAs) is a crucial issue. 

 

Traditionally, in spite of the long and difficult design cycle, the common choice of 

implementation platform in cryptography was ASIC because of high performance, 

low power and design security. On the other hand FPGA manufacturers have come 

closer to filling the performance gap between FPGAs and ASICs in recent years. 

Besides performance, existence of vendor specific security solutions in 

cryptography increases the prevalence of FPGAs on this market [3]. 

 

In this thesis we also have chosen FPGA as our implementation platform because of 

its increasing usage in cryptography and its flexible and faster design cycle. 

Implementing a TRNG on an FPGA is not a straightforward issue because FPGAs 

are digital devices, which are produced to implement deterministic processes. Any 

non-deterministic behavior at the logic level can cause failures on such devices. On 

the other hand unpredictable and uncontrollable events due to underlying physical 

processes are unavoidable in such devices although device vendors aim to minimize 
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them. These underlying physical processes and impurities can provide a source of 

randomness for TRNG implementation on FPGA.  

 

In general, one can utilize three kinds of randomness in an FPGA. These are i) 

unstable propagation delay of logic gates, ii) transient behavior of logic gates 

between two states (meta-stability), and iii) thermal noise in FPGA [2]. The most 

popular source of randomness in FPGAs is the unstable propagation delay in logic 

gates. This source appears as jitter on ring oscillators which are the main component 

of most TRNG designs. 

 

In the development cycle of a TRNG, the validation of randomness is among the 

most important parts of the process. The validation of a TRNG can be done by 

using statistical test suites that are published by standard institutes such as NIST. 

There are several statistical tests for randomness. The confirmation of these test 

suites is required for a particular TRNG but still this does not means that the 

implemented TRNG is a perfect random number generator.   

 

Random numbers that are generated by a TRNG can be biased and can have bad 

statistical properties even if they are extracted correctly. Therefore post processing 

is also required in most TRNGs in order to get good statistical properties. This post 

processing brings the risk of being unaware of TRNG failure since post processing 

may hide the impurity of the outputs. Because of this risk TRNG tests should be run 

in real time and in a continuous manner for detecting any possible failure in the 

random number generator [4].  

 

In our thesis work, we have realized an already proposed TRNG [5] method on 

Virtex-5 FPGA with ML507 Xilinx FPGA Development Kit. Our implementation 

uses only standard FPGA resources and has 0.5 Mbits/sec throughput. The 

generated random numbers are tested and confirmed by NIST statistical test suite 

[6] and Diehard battery of tests [7] using 1 Gigabit as the sample size. Besides the 
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embedded randomness tests that are published by FIPS 140-1 [8] are also realized 

in our TRNG in order to control the outputs concurrently in real time operation. 

 

The rest of the thesis is organized as follows: 

In Chapter 2, background information about true random number generators for 

cryptographic applications is given. Practical methods and randomness tests found 

in literature for true random number generation in FPGA are presented.  

In Chapter 3, implementation details of our TRNG and its embedded test module 

are explained. The design is presented using a top to bottom hierarchy. 

In Chapter 4, statistical evaluation of our TRNG and simulation of the design are 

presented. This chapter contains statistical test results and circuit simulation 

outputs. A comparison of our TRNG and RPG100, an existing IC TRNG [10] (from 

FDK Corporation) has also been performed.   

Chapter 5 is the conclusion, which includes a summary of the study and possible 

future work.  
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CHAPTER 2  

 

TRUE RANDOM NUMBER GENERATORS 

2.1 General Structure of True Random Number Generators  

True Random Number Generators (TRNG) utilize some physical processes as the 

source of randomness. If the physical process utilized is unpredictable and it cannot 

be controlled, then the output is also uncontrollable and unpredictable [11]. The 

throughput and statistical characteristics of TRNGs are closely related to the quality 

of the randomness of the source and the extraction method used. Generally, the 

statistical properties of randomness extractor output bits do not have good statistical 

properties even if they are extracted correctly because physical randomness sources 

generally have low entropy that does not fulfill the cryptographic applications 

requirements. For this reason, some post-processing algorithms have to be 

employed to enhance the statistical parameters of the output bit-stream. However, 

the TRNG output post-processing creates a risk that it will mask abnormalities 

coming from either a poorly designed generator or an external attack. This masked 

fault could remain undetected by standard statistical tests also.  

 

Figure 2-1 - General Structure of TRNG 
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The security of the generator can be increased by implementing embedded 

randomness tests that are running concurrently with the generator. This test 

equipment detects any failure or deviation from randomness.  

The general structure of a TRNG is given in Figure 2-1. There are four main sub 

blocks that are named as Entropy Source, Extraction Method, Post Processing and 

Embedded Tests. These sub blocks of a True Random Number generator are 

explained in the following subsections of this chapter in detail. 

2.1.1 Entropy Source  

Entropy source of a true random number generator provides a stationary random 

process to the extractor for sampling truly random bits from that process. Sampled 

random bit must be unpredictable. Possibility of a true guess on the logical level of 

that sampled bit must be %50 even if the predecessors and the successors of that bit 

are known [12]. Furthermore, it should not be possible to control this process by 

any means. For our interest, we have to find this kind of an entropy source in logic 

devices especially in FPGAs. Logic devices are digital devices that are 

manufactured to implement deterministic processes. Each non-deterministic 

behavior in such a system (caused by a meta-stability, clock jitter, radiation errors, 

etc.) can have catastrophic consequences on the overall system behavior. On the 

other hand the underlying technology of these digital devices is still analogue 

circuits, which are running on physical processes. So the unpredictable events due 

to the physical nature of the underlying technology are unavoidable. The vendors of 

logic devices are working hard to minimize the impurities coming from the 

underlying physical process [11].  

 

In general, there are three phenomena and their combinations, which can be used as 

the source of randomness in FPGAs. These are the variation of the delay in logic 

gates, the analog behavior of logic gates between two logic levels (e.g. meta-

stability) and the thermal noise generated inside the device [2].  
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Logic gates of FPGAs have their own time delay, which is not constant and stable. 

Instability of the delays in logic gates causes variations signal propagation time. If 

one measures this variation of propagation delay, this can be assumed to be random. 

The variation of time delay of logic gates causes jitter on the ring oscillator’s clock 

frequency. A ring oscillator is a closed loop of logic gates which includes odd 

number of inverter(s) which provide(s) an oscillation. There are several methods 

that use these ring oscillators as the source of randomness. The variation in 

propagation time is also used in generators with delay elements assembled in an 

open chain. The chain is used here to increase or adjust total delay [11]. 

  

Some generators use jitter of the clock signals that are synthesized in the embedded 

analog PLLs to generate random numbers. Analog PLLs are common resource for 

some FPGAs which can be utilized easily. Because RC filters, which is the only 

analog part of PLL, can easily be realized using the same technology in FPGAs [1]. 

We can therefore consider a PLL-based TRNG as a generator, which can be 

implemented in logic devices in general. 

 

In standard logic devices a logic state is acceptable to be in one of two logic states 

“logical one” and “logical zero”. These two states are represented with different 

voltage levels. In order to resolve these states, there is a forbidden area between 

these states. While logical state is changing, the voltage level must be passes 

through this forbidden area. There is a possibility that the logical state is neither 

logical one nor logical zero in this forbidden area. This state is named meta-stability 

[12]. The concept of using meta-stability as a TRNG source is not very common for 

logic devices in literature because manufacturers mostly solve the meta-stability 

problem by using dedicated hardwired flip flops. On the other hand there is still a 

practical way to employ the meta-stability such as soft latches implemented in 

LUTs. 
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2.1.2 Entropy Extraction Methods 

Entropy extraction is a method which is applied to entropy source in order to obtain 

an output random string. Each kind of entropy source has its own extraction 

method. In logic devices entropy extraction method includes a sampling 

mechanism. This mechanism aims to take a sample of randomness when the 

entropy of the source is high enough. The entropy source and the extraction method 

must always be considered together because extraction methodology is directly 

related to the entropy source. Extraction method for each TRNG can be different 

and have its own pros and cons. 

2.1.3 Post Processing 

Generally, statistical quality of TRNGs is not high enough for cryptographic 

applications, because the randomness source of TRNGs is physical processes which 

have some weaknesses causing rarely the production of non-random numbers (long 

sequences of zeros or ones). The statistical quality of generated random numbers 

can be degraded for several reasons. Possible reasons of degradation are [11]:  

 Entropy of the source may not be high enough  

 Entropy may not be extracted correctly. 

 The extracted samples may be correlated.  

Even if the entropy of the source is properly extracted, the output of TRNG should 

be reconsidered before using it. For this reason post-processing is necessary to 

improve the statistical properties of the generated random numbers. 

Post processing algorithms generally aims to reduce bias and/or correlation on 

generated bits in order to increase the entropy. If the post processing mechanism 

cannot increase the entropy, it degrades the throughput to increase the entropy per 

bit.  

On the other hand, the post processing algorithms are sometimes used for increasing 

the throughput of the TRNG. Also these types of stretching algorithms are generally 
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used for pseudo random number generators. In some papers the random number 

generators which have physical source of entropy and a pseudo post processing are 

called hybrid random number generators. 

Next, we will discuss the most common post-processing techniques[11]. 

2.1.3.1 The Exclusive-or Post Processing 

The exclusive-or (XOR) post processing is a simple linear function. This post 

processor applies exclusive-or operation on successive n bits in order to produce a 

single bit. 

 

Figure 2-2 - Exclusive-OR Post Processor (n=2) 

The XOR post processing dramatically reduces the throughput (1/n times). 

Therefore the bias on the input stream will also dramatically reduce at the output if 

the input bits are independent of each other. The important advantages of the XOR 

post processor are its simplicity and the possibility to maintain a constant output bit-

rate. 

2.1.3.2 The Von Neumann Post Processing 

The Von Neumann post processor is a simple procedure that takes a pair of 

successive bits and uses the first bit of the pair if the bits are different while 

throwing away identical pairs as shown in Table 2-1. 
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Table 2-1 - Von Neumann Mapping Table 

Input pair Output bit 

00 Null 

01 0 

10 1 

11 Null 

The Von Neumann post processing dramatically reduces the bias on the input 

sequence except the case that the input sequence has a cycle with period of 2 bits. 

However the output bit rate of this post process is directly dependent on the input 

sequence. The non-constant output bit rate is the main disadvantage of this post 

processing method.  

2.1.3.3 Linear Feed Back Shift Registers (LFSR) 

A linear feedback shift register (LFSR) is a shift register whose input bit is 

a linear function of its previous state. LFSRs are commonly used for post 

processing because of the reasons listed below:   

 It is easy to implement an LFSR in hardware. 

 Produces sequences with good statistical properties. 

 It is possible to analyze it using algebraic techniques. 

 

Figure 2-3 - Linear Feedback Shift Register 
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A LFSR of length n consists of n delay elements (Flip Flops). The clock input of all 

flip flops are connected to the same clock source and the movement of data through 

the register is controlled by rising or falling edge of this clock.  

For each falling/rising edge of clock:  

 First flip-flop gets its input from the feedback path and the random input. 

This feedback path is a combinational block that applies an exclusive-or 

operation on the register content according to the feedback polynomial. 

 All flip-flops except the first one get their input from the previous one.  

 The output is taken from the last flip flop (nth) of the register. 

The LFSRs are also used as pseudo random number generators. For using LFSRs as 

PRNGs the random input of the register is removed. The initial value of the LFSR 

becomes the seed value of the pseudo random number generator and this value 

should be updated before the LFSR cycle ends.  

2.1.3.4 Resilient Functions 

Resilient functions are special functions that are commonly used in cryptography 

and coding theory. They are suitable for post processing because “the knowledge of 

any m values of the input to the function does not allow one to make any better than 

random guess at the output” [13]. These functions are derived as Boolean functions 

so their implementations are feasible for FPGAs. The main disadvantage of this 

kind of post processing is that they produce one bit per n input bits. So this post 

processing method degrades the throughput n times.  

2.1.3.5 Encryption of Extracted Random Source 

The output of cryptographic algorithms has good statistical characteristics because 

of the diffusion and confusion properties of cryptographic algorithms. These 

statistical features of cryptographic algorithms also can be used for post processing. 

Besides this if a cryptographic algorithm is used as the post processing method of a 
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TRNG, the variables of the algorithm can be taken both from the entropy source of 

generator and the system where the TRNG is being used. So the effect of the post 

process can be changed for each generation. This kind of post-processing block (the 

cipher or hash function) is relatively complex and expensive, hence the TRNG 

should re-use (share) the cipher that is used for data encryption. 

2.2 Statistical Evaluation and Testing 

There are various statistical tests that can be applied to a sequence to confirm if it is 

truly random. Randomness is a probabilistic property. The properties of a random 

sequence can be characterized and described in terms of probability. There are 

numerous possible statistical randomness tests. These tests search a pattern in the 

input sequence, which indicates that the sequence is nonrandom. While there are so 

many tests for determining whether a sequence is random or not, there are no 

specific finite set of tests that can produce an certain decision of being random or 

not. In addition, the results of statistical testing should be interpreted with care and 

caution to avoid incorrect conclusions about a specific generator. 

The quality of a true random number generator’s output must be evaluated using 

standard normalized statistical tests. The most commonly encountered tests are the 

following: FIPS 140-1, FIPS 140-2, NIST statistical test suite and Diehard test 

suite. We will discuss these groups of tests in the following sections. 

2.2.1 FIPS 140-1 and 140-2 

The National Institute of Standards and Technology (NIST) is an institute that 

provides leadership, technical guidance, and coordination of U.S. Government 

efforts in the development of standards and guidelines. The Federal Information 

Processing Standards (FIPS) Publication Series is the official series of the NIST. 

This publication specifies the security requirements that are to be satisfied by a 

cryptographic module [8].  
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The FIPS publications classify the cryptographic modules into security levels, i.e., 

level 1 up to 4, four being the highest. Cryptographic modules that implement a 

random number generator should generally have the capability to perform statistical 

tests for randomness. For Levels 1 and 2, such tests are not required. For Level 3, 

the tests should be called upon demand. For level 4, the tests should be performed at 

power-up and should also be called upon demand. Four tests that are specified in 

the next sub sections are recommended by FIPS 140-1 and later in FIPS 140-2 [9]. 

A single bit stream of 20,000 consecutive bits of a random number generator’s 

output is subjected to each of the following tests. If any of the tests fail, then the 

module should enter an error state. These tests are “monobit test”, “poker test”, 

“runs test” and “long runs test”, which are explained below. 

2.2.1.1 Monobit Test 

The purpose of the monobit test is to check whether the number zeros and the 

number of ones in a sequence are approximately the same as expected for a truly 

random sequence. The monobit is a basic test for a random sequence because the 

passing ratios of the other tests are dependent on this test result.  

Implementation of the test: 

 Count the number of ones for each 20,000 bit stream. Denote this quantity 

by X. 

 The test is passed if 9,654 < X < 10,346 

2.2.1.2 Poker Test 

The Poker test divides the 20,000 bit stream into 5,000 contiguous 4 bit segments. 

Then the test counts and stores the number of occurrences of each of the 16 possible 

4 bit. Then, f(i), which is the number of occurrences of i, is used to check if the 

equation below is satisfied or not. 
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2.2.1.3 Runs Test 

Run is a terminology used in runs test that corresponds to consecutive occurrence of 

ones or zeros. A run of length k consists of exactly k identical bits and is bounded 

before and after with a bit of the opposite value.  

The purpose of the runs test is to determine whether the number of runs of ones and 

zeros of various lengths are in between expected intervals. This test particularly 

determines whether the oscillation between such zeros and ones is too fast or too 

slow. Acceptable intervals of run numbers are given in the Table 2-2. 

Table 2-2 - Accepted Intervals for Runs Test 

Length of Run Required Interval 

1 2,267 - 2,733 

2 1,079 - 1,421 

3 502 - 748 

4 223 - 402 

5 90 - 223 

6+ 90 - 223 

2.2.1.4 The Long Run Test 

A long run is defined as a run of length 34 or more (of either zeros or ones).On a 

sample of 20,000 bits, the test is passed if there are no long runs. 
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2.2.2 NIST Statistical Test Suite 

The Information Technology Laboratory (ITL) is a major research component of 

NIST. ITL develops tests and measurement methods, reference data and technical 

analysis that help advance the development and use new information technology 

[14]. The ITL‘s special publication NIST-SP800-22 [6] provides criteria for 

characterizing and selecting appropriate random number generators. It also includes 

some recommended statistical tests that are useful as a first step in determining 

whether or not a generator is suitable for a particular cryptographic application. 

Still, no set of statistical tests can absolutely certify a generator as appropriate for 

use in a particular application. NIST SP800-22 includes 15 statistical tests in order 

to evaluate statistical characteristics of the random number generators. These tests 

are listed in Table 2-3.  

Table 2-3 - Tests of NIST SP800-22 

 Test Name 

1 The Frequency (Monobit) Test 

2 Frequency Test within a Block 

3 The Runs Test 

4 Tests for the Longest-Run-of-Ones in a Block 

5 The Binary Matrix Rank Test 

6 The Discrete Fourier Transform (Spectral) Test 

7 The Non-overlapping Template Matching Test 

8 The Overlapping Template Matching Test 

9 Maurer's "Universal Statistical" Test 

10 The Linear Complexity Test 

11 The Serial Test 

12 The Approximate Entropy Test 

13 The Cumulative Sums (Cuscus) Test 

14 The Random Excursions Test 
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15 The Random Excursions Variant Test 

 

The tests in the list are developed, implemented and evaluated by ITL. ITL also 

provides ANSI C codes for the test suite. There is no specific order of application 

for these tests but the frequency test has the highest priority since if it fails then it is 

highly probable that the others fail too. 

 

The statistical tests are formulated to test a specific hypothesis. For NIST statistical 

test suite, the hypothesis is that the sequence under a test is random. For each test, a 

relevant randomness statistic must be chosen and used to determine the acceptance 

or rejection of this hypothesis. Under the assumption of randomness, such a statistic 

has a distribution of possible values. A critical value is then determined from the 

theoretical reference distribution of this statistic, which is obtained by mathematical 

methods. In order to determine the acceptance or rejection, a statistical value is 

computed on the sequence under test. Then the computed statistical value is 

compared to the critical value. If the statistical value exceeds the critical value, the 

hypothesis for randomness is rejected. Otherwise it is accepted.  

There are two possible error conditions for this hypothesis. These are:  

 Error Type-1: when the statistical test rejects a sequence that is, in truth, 

random. 

 Error Type-2: when the statistical test accepts a sequence that is, in truth, not 

random.  

Table 2-4 - NIST Error Table 

TRUE SITUATION 
CONCLUSION 

Acceptance Rejection 

Data is random  No error Error Type-1 

Data is not random  Error Type-2 No error 
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A statistical randomness test cannot decide certainly whether a sequence is random 

or not random because of the possibility of these errors. The probability of an Error 

Type-1 is often called the level of significance of the test and is denoted as α. The 

level of significance of a test indicates that the sequence under test might have non-

random properties even if it is taken from a good generator. Common values of α in 

cryptography are around 0.01. 

 

Each statistical test of NIST SP800-22 calculates a P-value (probability value) that 

summarizes the strength of the evidence against the hypothesis. This P-value 

corresponds to the probability that a perfect random number generator produced a 

sequence that is less random than the sequence being under test. If this P-value is 

greater than the level of significance (α), then the sequence under test is accepted to 

be random. Otherwise, it is rejected.  

 

The NIST also recommends a five step strategy for testing RNGs. 

1. Selection of a generator (select a hardware or software based generator for 

evaluation).  

2. Binary sequence generation (for a fixed sequence of length n and the pre-

selected generator, construct a set of m binary sequences and save the 

sequences to a file).  

3. Execute the Statistical Test Suite (invoke the NIST Test Suite). 

4. Examine the P-value (an output file is produced with relevant values such as 

P-values for each statistical test). 

5. Assessment: Pass/Fail assignment (for a fixed significance level, a certain 

percentage of P-values are expected to indicate a failure, for example, if α = 

0.01, then about 1% of the sequences are expected to fail). 
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2.2.3 Diehard Battery of Randomness Tests 

The Diehard battery of tests was developed and published in 1996 [7]. The battery 

of the tests is supposed to provide a better statistical evaluation of random 

sequences in comparison to the original FIPS statistical tests. The test battery 

consists of 15 different, independent statistical tests that are listed in Table 2-5. 

Table 2-5 - List of Randomness Tests in Diehard Battery 

 Test Name  

1 Birthday Spacing Test 

2 Overlapping 5-Permutations (OPERM5) Test 

3 Binary Rank Tests (three kinds of rank matrices tests) 

4 Bitstream (Monkey) Test 

5 Overlapping-Pairs-Sparse-Occupancy (OPSO) Test 

6 Overlapping-Quadruples-Sparse-Occupancy (OQSO) Test 

7 DNA Test 

8 Count The 1s Tests (two kinds of tests) 

9 Parking Lot Test 

10 Minimum Distance Test 

11 Random Spheres Test 

12 The Squeeze Test 

13 Overlapping Sums Test 

14 Runs Test 

15 Craps Test 

 

The diehard test suite also generates P-values for each test as the NIST test suite 

and the results of these P-values are supposed to be uniformly distributed. Unlike 

the NIST test suite, the test is considered to be successful when the P-value is in 

range [(0+α/2) , (1-α/2)] where α is the level of significance of the test.  
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More detailed description of these 15 tests and software to perform them are 

available on the internet link of the Diehard CDROM [7]. This suite requires at least 

80 million bits (10-12 Megabytes) of random data for each run of the suite.  

2.3 Practical Implementations of TRNGs built in FPGA 

In this section some sample practical designs reported in literature of true random 

number generators built in FPGA are presented and briefly explained.   

2.3.1 Basic Ring Oscillator Based Design 

The basic ring oscillator based design is proposed first in [13]. The principle of this 

design is based on sampling phase jitter in ring oscillators. Ring oscillator is a 

combinational loop of delays, which includes an odd number of inverters. That 

provides the oscillation in the loop. The instability of the propagation delay of each 

logic gate in closed loop generates jitter on the ring oscillator clock. This design 

employs a large number of ring oscillators (114 for the selected Xilinx Virtex-2 

FPGA) each composed of 13 inverters. The number of employed ring oscillators is 

determined according to the measured jitter. The outputs of all ring oscillators are 

input to a multiple input exclusive-or (XOR) operation in order to get a high-

frequency random signal. The output of exclusive-or operation is sampled using a 

low frequency reference clock. This method is simply presented in Figure 2-4. 

 

Figure 2-4 - Ring Oscillators Based Design [13] 

The digital random output is then post processed using resilient functions. The 

relationship between the number of oscillators and the randomness of the output is 
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shown in [13]. The weakness of this method is the assumption that the ring 

oscillators are independent with each other. This weakness is later explained in 

detail in  [15]. The improvements and revisions are proposed in  [16]. 

 

The advantages of basic ring oscillators based design:  

 Technology independent (Suitable for all FPGA families).  

 Easy design and implementation. 

 Synthesis can be done using fully automated FPGA tools. 

 Relatively high and constant throughput.  

The disadvantages of basic ring oscillators based design: 

 High power consumption (Because of large number of ring oscillators).  

 The ring oscillators are probably not totally independent with each other. 

This causes a correlation on the output of design and degrades the quality of 

randomness.  

 The external manipulations or attacks on the generator will not be detected 

because of the existence of resilient corrector.  

 The power consumption of design and the high fan in of single exclusive or 

gate can cause excessive local heating.  

2.3.2 PLL Based Design  

The PLL based design of true random number generator is proposed in [1]. The 

basic principle behind this method is to extract the randomness from the jitter of the 

output clock signal of embedded analog phase-locked loop (PLL) in FPGAs. The 

jitter on the reference clock is sampled by using a rationally related clock signal 

synthesized in the same on-chip analog PLL. The most important requirement of 

this method is that the reference signal has to be sampled near the edges influenced 

by the jitter. The basic structure of the proposed generator is depicted in Figure 2-5. 
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Figure 2-5 - TRNG of Fisher and Drutarovsky [1] 

The design includes an on-chip PLL whose clock generation factor is m/d. m is the 

multiplication factor and d is the division factor of the PLL. The design has also a 

flip flop (DFF) for sampling the jitter on the reference clock. The last part of the 

generator is decimator part. The decimator is an n bit buffer where the output of this 

buffer is input to a multiple input exclusive-or (XOR) operation. The result of this 

operation generates the random output of the TRNG. 

 

The signal named CLJ is a rectangular clock waveform with the frequency:  

 

Signal CLJ is sampled by the D flip-flop using the reference clock signal with 

frequency FCLK. There are d rising edges of CLK signal and 2m edges (rising and 

falling) of CKJ waveform during time period TQ. 

 

 

It has been shown in [1] that if m and d are relative primes (Greatest Common 

Divisor GCD (m, d) = 1), the set of samples creates an equidistant set of values. The 

worst-case distance between the two closest edges of CLK and CLJ during the 

period TQ is given as 
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If m, d, and FCLJ are properly chosen then worst-case distance between the two 

closest edges of CLK and CLJ can be controlled. Therefore if the intrinsic analog 

PLL jitter (σjitter), which is already specified by FPGA vendors is greater than the 

worst-case distance between the two closest edges of CLK and CLJ, the sampling 

edge of CLK will fall at least once into the edge zone of CLJ during each period TQ 

[1].  

 

Hence if we sample CLJ for the period TQ, at least one of the samples will 

statistically depend on the random jitter. The output is then generated by the 

decimator which is a bit-wise addition in modulo 2 of d samples and this output will 

be random. 

 

The randomness of this design was tested by NIST statistical test suite by using 1-

Gigabit of continuous TRNG output. The results of tested sequences was within the 

expected confidence intervals for all tests and P-values were uniformly distributed 

over the (0,1] interval. 

 

The advantages of PLL Based Design:  

 No need for post processing.  

 Easy design and implementation  

 Synthesis can be done using fully automated FPGA tools  

 Constant throughput.  

 Low power consumption (PLL can be enabled just only for generation) 

The disadvantages of PLL based design: 

 Low throughput. 

 Use of PLLs could be restrictive in some designs (some FPGAs contain only 

one or two PLLs).  

 The external manipulations or attacks on the generator will not be detected 

because of existence of resilient corrector.  
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2.3.3 State Machine Based Design  

The state machine based design of random number generator is proposed in [17]. 

The basic structure of this design is presented in Figure 2-6. The design employs 

two state machines: one of them is a linear feedback shift register (LFSR) and the 

other one is a cellular automata shift register (CASR). These state machines are 

clocked by jittery clock signals that are generated by two independent free running 

ring oscillators.   

 

The employed state machines have different lengths and only 32-bits of these 

machines are used for generating the output. The employed LFSR is based on a 

primitive 43 bit long polynomial, which provides a cycle length of (2
43

 – 1). The 

employed CASR is 37 bit long, which provides a cycle length of ( 2
37

 – 1). To 

generate a 32 bit random number, 32 bits of the LFSR and CASR are selected and 

permuted and added using bitwise modulo - 2 exclusive or operation. The lengths of 

the state machines are selected to be relative primes in order to get the cycle length 

of the combined generator close to 2
Sum of lengths

 – 1 (2
80

). 

 

Figure 2-6 - State Machine Design [17] 

The initial state of the state machines would be critical if the machines are restarted 

for each 32 bit output generation. But the ring oscillators that drive state machines 

are never stopped, even if the generator is not in use. So due to the time drift of the 

clocks, the LFSR and CASR can be supposed to be in an undetermined state after a 

sufficiently long period. Also for getting multiple successive random words, the 

design requires the same sufficiently long time period for each successive words. 
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The minimum sufficient time for wait between two successive words permits the 

state machines to pass at least twice their cycle.  

 

This method has been realized for random number generation in some custom 

silicon chips that are produced by Freescale Semiconductor with the name Random 

Number Generator Accelerator (RNGA). But Freescale also does not recommend 

using this generator in high-level data security applications since the output of this 

generator can be determined from the initial states of the machines theoretically 

[12].  

 

The advantages of state machine based design:  

 No need for post processing.  

 Easy design and implementation  

 Synthesis can be done using fully automated FPGA tools   

 Constant and high throughput.  

The disadvantages of state machine based design: 

 It is difficult or even impossible to describe the randomness with a 

mathematical model. 

 The structure of TRNG mixes pseudo-randomness with true-randomness.  

 True randomness is based on the presence of frequency variation and drift, 

but absence of true randomness could not be detected because of having 

pseudo-randomness also. 

2.3.4 FIGARO Design  

The FIGARO Design of true random number generator is proposed in [18] [19]. 

Figure 2-7 presents the basic structure of the design. This design contains two 

special ring oscillators, one Fibonacci and one Galois ring oscillators. These ring 

oscillators differ from the ordinary LFSRs containing inverters instead of flip flops. 

The feedback path of the ring oscillators can be expressed using Fibonacci and 
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Galois polynomials and the ring oscillators are named according to these 

polynomials such as Fibonacci Ring Oscillator (FIRO) and Galois Ring Oscillator 

(GARO). Because of the unstable delay time of each inverter, the internal state of 

these ring oscillators change chaotically and very fast. Hence the internal state of 

the ring oscillators cannot be predicted after a specified time. In [15], it is stated that 

each of the rings having linear feedback gives a random output after a period as 

small as 25ns. 

 

Figure 2-7 - Figaro Design 

The FIGARO design combines the random output of the Fibonacci ring oscillator 

and the Galois ring oscillator with an exclusive or operator. The output of the 

exclusive or gate is sampled with a sampling frequency that is chosen relatively low 

to avoid output bit correlations.  

Golic [18] has also proposed a method of random data post processing based on 

self-clock-controlled LFSR. The proposed post processing can be used for 

randomness extraction and for computationally secure throughput upgrade of input 

random data. 

The advantages of FIGARO Design:  

 Easy design and implementation in all FPGA families.  

 Synthesis can be done using fully automated FPGA tools.  

 Uses relatively few logic sources and requires only logic blocks. 

 Constant and high throughput.  

 By restarting for each generation, power consumption is assumed low. 

The disadvantages of FIGARO Design: 
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 It is difficult to describe the randomness with a mathematical model. 

 The robustness of the generator against attacks is difficult to estimate. 

 Entropy on the output of the exclusive or operation is expected to be very 

high according to [15] on the other hand the bias on the output is reported to 

be very high [11]. 

 The output spectrum has some dominant frequencies.  

 Some of the implementations in the literature stop running randomly [11]. 

 

2.3.5 Metastable Ring Oscillator (Meta-RO) Based Design 

The Metastable Ring Oscillator based true random number generator design is 

proposed in [20]. This design includes a metastable ring oscillator. The metastable 

ring oscillators are designed to extract the randomness from the metastable 

condition of the digital devices instead of jitter on the output clock. This new source 

of randomness is expected to reduce the entropy accumulation time and increase the 

throughput of the generator.  

 

The basic element of the generator is the metastable ring oscillator which has the 

ability to be set in metastable mode. The metastable ring oscillators are composed 

of inverters and each inverter has its own switch. The generator has a control for 

switching all of the inverters as shown in Figure 2-8. 
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Figure 2-8 - Meta-RO based Design [20] 

The generator has two modes of operation. These are metastability (entropy 

accumulation) mode and oscillating mode. In the metastability mode, the individual 

switches of all inverters are closed. The output of each inverter is connected to its 

input and it converges somewhere near a metastability level. This voltage level 

fluctuates around the metastable level because of thermal noise as long as the 

switches are closed. In the metastable mode each of the inverter forms an 

independent randomness source. Whenever the switches are opened the initial state 

of the ring oscillator is completely determined by from the fluctuations of each 

inverter. 

For the validation of the proposed method, an ASIC design is implemented and 

simulated in Cadence [20]. The outputs are shown to have passed tests of AIS.31 

Class P2 and FIPS 140-1/2. The throughput is reported to be 35-50 Mbits/sec. The 

estimated area for the design with 65nm semiconductor technology is reported to be 

1µm
2
 (for Digital TRNG core only).  

On the other hand an FPGA implementation is also done using Xilinx XC2V3000-

5. This design is shown to have also successfully passed FIPS 140-1/2 and AIS.31 

Class P1, but problems exist with AIS.31 Class 2 tests. It is also mentioned that the 
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FPGA implementation of this method is not very stable compared to ASIC design 

[20]. 

 

The advantages of Metastable Ring Oscillator based design:  

 Uses relatively few logic resources and requires only logic blocks. 

 Relatively high throughput (35 Mbits / sec for the ASIC design).  

 High entropy source. 

The disadvantages of Metastable Ring Oscillator based design: 

 It is difficult to describe the randomness with a mathematical model. 

 Manually intervention to FPGA tools is required for implementation. 

 Weaknesses against temperature and voltage changes on the generator, 

which can cause degradation on the statistical characteristics of the output 

bit-stream. 

 Robustness against attacks is questionable. 

2.3.6 Metastable Flip Flop Based Design 

The metastable flip flop based true random number generator is proposed in [21]. 

Generating metastable condition on a standard flip flop is a challenging issue for 

FPGAs because vendors solve metastability problems in general on their products. 

In [21], the authors propose a method to generate metastable condition that utilizes 

programmable delay lines (PDL), which alter the propagation delay in a controlled 

fashion. The method uses PDLs to equalize the signal arrival times to flip flops 

accurately. These PDLs have the capability of adjusting the delay of signal with a 

resolution of pico second. The method has an adaptive feedback mechanism that 

tunes the PDL according to the probability of the output bits being monitored. 

Whenever a small bias is detected on the output, the PDLs are reconfigured to put 

the flip flop in metastable region again. The monitoring module compensates the 

effects of environment changes (temperature, voltage, etc.). The general structure of 

the proposed design is shown in Figure 2-9. 
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Figure 2-9 - Metastable Flip Flop Design [21] 

 

In [21], the design is implemented on Xilinx Virtex 5 FPGAs. Throughput is 

reported 2 Mbits/sec with a von Neumann corrector. And NIST randomness tests 

are passed with high rates. 

The advantages of metastable flip flop based design:  

 Relatively high throughput 

 Uses very few logic resources. 

 Low power consumption. 

 Robust for external changes and attacks 

The disadvantages of metastable flip flop based design 

 Manual placement is needed in order to ensure that the generator is in proper 

operation in all circumstances. 

 FPGA family and even model specific design is required. 

 Not feasible for some FPGAs. 

2.3.7 Transition Effect Ring Oscillator Based Design 

The transition effect ring oscillator (TERO) based true random number generator is 

proposed in [22]. The design includes a new high-entropy digital circuit named 

transition effect ring oscillator that can be realized in FPGA. TERO is a kind of bi-

stable Flip-Flop (FF) with intentionally lengthened feedback paths. The generator 
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extracts the random bit while TERO is resolving a metastable event. The structure 

of TERO is shown in Figure 2-10. 

 

Figure 2-10 - TERO [22] 

The TERO design includes two XOR gates that can act like inverters or buffers 

according to the ctrl signal. If ctrl = ‘1’ both XOR gates act like inverters and if ctrl 

= ‘0’ then the two XOR gates act like buffers. For these two conditions there should 

be no oscillation on the loop but at the rising edge of the ctrl signal two XOR gates 

both act as inverters and try to change their outputs. This action disturbs the steady 

state behavior of the loop and a pulse rises in the loop. This pulse disappears in a 

small transient period. The randomness is extracted from this transient effect of 

TERO loop using T-Flip Flops (TFF). TFFs resolve if the loop made even or odd 

number of oscillations. The “rst” and “clr” signals are used to initialize TERO to 

zero for each generation, which prevents correlation between two successive bits. 

The implemented design, in [22] produces random bits with a throughput of 250 

kbps. The generated bit streams are confirmed by the NIST test suite without any 

complex post processing. 

 The advantages of TERO based design:  

 Uses resources common to all FPGA families. 

 Mathematical model has been presented in the paper. 

 Uses very few logic resources. (2 CLBs of Xilinx Virtex-5). 

 Low power consumption. 

The disadvantages of TERO based design: 
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 Manual placement is needed in order to ensure the generator proper 

operation in all circumstances. 

2.3.8 Crosstalk Effect Based Design 

Cret et. al. [23],[24] have presented a new method of implementing TRNGs in 

FPGAs. The method is based on using the logic resources of the FPGA close to its 

maximal capacity in a given region, either globally or locally and exploiting the 

interconnection network as intensely as possible. The authors has experienced that 

this kind of heavy load operation causes crosstalk at the dedicated carry chains 

which are present in each Xilinx FPGA. The carry chains, are most common type of 

fast dedicated lines between neighboring logic cells, which allow creating 

arithmetic functions efficiently. The crosstalk begins to occur after the threshold, 

which is a fraction of the carry chain length, is exceeded. Cret et. al. [23],[24] 

proposes a design that utilizes this kind of crosstalk as an entropy source, which can 

be exploited to obtain a high quality TRNG.  

 

The architecture in this design consists of a chain of inverters, which is driven by 

the system clock as shown in Figure 2-11. The outputs of the (n + m) inverters 

represent currents flowing through the chain line rapidly. Data from the outputs of 

inverters is added to a counter value and the result is collected in an accumulator. 

After a threshold is exceeded by increasing the m, the final result obtained in the 

accumulator becomes different at the end of each run of a fixed amount of clock 

cycles due to crosstalk and other electrostatic or magnetic interferences that appear 

in the interconnection network.  
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Figure 2-11 - Crosstalk based Design [24] 

The proposed design has been proven to provide high quality random numbers 

satisfying statistical test suites such as NIST and TestU01. The provided throughput 

of the proposed design is also shown to be quite high (up to 0.7Gbps for 

Spartan3E100 FPGA) [24]. 

The advantages of the crosstalk based design:  

 Very high throughput. 

 Entropy level increases with the temperature or any other extreme condition 

which could influence the FPGA [24]. 

 The disadvantages of crosstalk based design:  

 Dedicated to Xilinx FPGAs. 



33 

 

 FPGA is required to be used at a relatively large capacity levels. 

 Manual placement is required for exploiting the interconnection intensely. 

 High power consumption. 

 There is no mathematical model for the entropy source. 

 

2.3.9 Write Collisions of Memory Blocks Based Design 

An alternative method for implementing TRNGs in FPGAs, which is based on write 

collisions in dual-port block memories (BRAM) appeared in [25],[26]. The author 

reports that the write collision of block rams provides efficient entropy to be 

employed in cryptography or for other security issues such as device identification 

and true random number generation [26]. When a write collision occurs on a field 

of memory cell, the cell is likely to remain in a metastable state before it goes into a 

stable state again. The stable states of the cell are influenced by the respective 

drivers, adjacent components, manufacturing and process anomalies, thermal 

vibrations of materials and other minor factors [25]. These external and internal 

factors in FPGA obviously affect some individual bits of the memory cell. These 

individual memory cells are then employed as the entropy source for the proposed 

design which provides a fast and robust true random number generation method 

with a throughput of more than 100 Mbits per second. The randomness quality is 

extended by post processing and confirmed by Diehard and standardized BSI AIS 

31 test suites. This random number generator can also be instantiated many times on 

contemporary FPGA devices to support even higher throughputs of random data 

(>100 Mbits/s). 

 

The proposed TRNG employs an evaluation design that is shown in Figure 2-12 for 

distinguishing the memory bits of block memories which utilizes sufficient entropy 

after the write collisions. The evaluation design can drive all input lines of the 

memory to either zero or one at the same time. Furthermore, a finite state machine 

(CTL) performs repeated queries on all bits at each memory address. By using this 
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design the TRNG determines which of the individual bits of the memory blocks are 

suitable for entropy generation. This determination is done by monobit test with 2
15

 

tries of collision measurements. After this evaluation process the TRNG uses the 

chosen bits of the memory block for write collision which is the entropy source of 

the proposed design. 

 

Figure 2-12 - Bram Based Design [25] 

The advantages of write collision of BRAMs based design:  

 Relatively high throughput. 

 The throughput can be increased by employing multiple TRNGs in the same 

FPGA. 

 Relatively low resource usage but BRAMs are valuable resource of FPGAs. 

 Low power consumption. 

The disadvantages of write collision of BRAMs based design:  

 Device specific characteristics of TRNG. 

 Potential risks of defects on the used BRAM because of write collisions 

 There is no mathematical model for the entropy source 
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 The employed post processing method can hide the abnormalities of the 

generator. 

2.3.10 Coherent Sampling Design 

The coherent sampling design of true random number generator is proposed in [5]. 

The randomness source of the proposed design is the intrinsic jitter contained in 

ring oscillator clocks. The generator can produce random bits at speeds up to 0.5 

Mbits/second with good statistical characteristics. The design uses resources 

commonly encountered in all FPGA families.  The generated output bit streams are 

also confirmed by NIST Test suite [5]. 

The source of randomness of this design is the ring oscillator’s clock jitter. Jitter on 

the ring oscillator clocks arises from unstable propagation delays of the logic gates 

that are included in the ring oscillator’s loop. The method employs two ring 

oscillators in order to generate two clock signals with jitter. The critical part of the 

clock generation is that the generated clocks must have different but very close 

periods. In order to extract the randomness from the intrinsic jitter of ring oscillator 

clocks, coherent sampling method has been used. 

 

Figure 2-13 - Coherent Sampling [27] 

The coherent sampling (see Figure 2-13) is a method which samples a periodic 

signal S1 with another periodic signal S2 where the period of S1 (T1) is slightly 

different than the period of S2 (T2). The output signal of the sampling (beat signal) 

will also be periodic with a period that is inversely proportional to period difference 

of the signals. Beside of this, the period of beat signal is equal to integer multiple of 
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T2. The size of beat signal will be a random count of periods T2 because of the 

unstable T1. In order to get the random bit from the jitter, it is sufficient to count the 

period of T2 during one period of beat signal [27]. 

 

 

Figure 2-14 - Coherent Sampling Based TRNG [5] 

 

The general structure of the coherent sampling design based TRNG is presented in 

Figure 2-14. This design contains two separate ring oscillators, sampling module 

and controller module. Ring oscillators supplies two clock signals to the sampler. 

The sampler module extracts random bit from the jitter by the help of the controller 

module using coherent sampling method.  

The most critical part of the generator is the requirement of that the two generated 

clock frequencies have to be close but not the same for generating high quality 

random numbers. The period difference of these two clocks should be tens of pico 

seconds. In order to solve this problem the ring oscillator components must be 

manually placed in the FPGA to the close CLBs.  

The advantages of coherent sampling design:  

 Uses common resources of all FPGA families. 

 Mathematical model is feasible (not given in the original paper) 

 Uses very few logic resources. 
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 Low power consumption. 

The disadvantages of coherent sampling design: 

 Manual placement is needed in order to ensure the generator proper 

operation in all circumstances. 

 The output bit-stream required a post-processing in order to reduce the bias. 

Table 2-6  - Comparison Table of TRNG Methods 
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Can be 

realized in all 

kind of 
FPGAs 

Yes No Yes Yes Yes No Yes No No Yes 

Automated 

Synthesis 
Yes Yes Yes Yes No No No No Yes No 

Design 
Simplicity 

High High 
Mid 

Range 
Mid 

Range 
Low Low Low Low Low High 

Throughput High Low High High High High Low 
Very 

High 
High High 

Power 
Consumption 

Very 
High 

Low High Low Low Low Low High Low Low 

Post Process 

Requirement 
Yes No No Yes No No No No No Yes 

Math Model 
Availability 

No Yes No No No No Yes No No Yes 

Required 

FPGA 

resource 

Very 

High 
Low 

Mid 

Range 

Mid 

Range 
Low Low 

Very 

Low 
High Low Low 

Randomness 

Quality 
High High Low Low High High High High High High 

Robustness  Low High High Low Low High High High High High 

 

As a result of the previous comparative table, we have chosen to implement 

coherent sampling technique because of its advantages especially the use of 

resources that are commonly encountered for all kind of FPGAs and the design 

simplicity. The next chapter is prepared for a deeper understanding of the method 

and presenting its implementation details. Our implementation has the same 
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features of the originally proposed design. We also used NIST statistical test suite 

and Diehard battery of tests to evaluate the randomness quality of our 

implementation. The generated one Gigabit output of our implementation is used 

and confirmed by both of the test suites. In addition to the design proposed in [5], 

we have implemented the embedded tests of FIPS 140-1 in the same FPGA. By 

implementing these embedded tests, our design gained a concurrent control of 

randomness feature, which makes the design more secure and reliable for external 

attacks and environment changes.  
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CHAPTER 3  

 

IMPLEMENTATION OF TRUE RANDOM NUMBER 

GENERATOR  

In this chapter, we will present the implementation details of the TRNG that we 

have realized on Virtex-5 FPGA with Xilinx ML507 Development Platform. We 

have chosen to implement coherent sampling method which was briefly overviewed 

in the first chapter because of its advantages especially its design simplicity and 

very low resource requirement. Besides, the coherent sampling method employs a 

robust high quality randomness source that can be realized by using commonly 

encountered FPGA resources. We have also implemented the embedded tests 

published by FIPS 140-1 [8]. We have designed the TRNG and its embedded tests 

in a compact module and described it in VHDL language. We have also confirmed 

our generated random numbers with the NIST statistical test suite. In the following 

parts of this chapter we will report on the obtained experience and the engineering 

challenges encountered during this implementation. Our TRNG design will be 

explained hierarchically in a top-down fashion.      
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Figure 3-1- TRNG Design (Top view) 

Our design includes three main modules that are named as TRNG core, TRNG 

controller and Test module. The TRNG core is the heart of the generator where the 

randomness source, extraction method and the post processing are realized. Test 

module includes the embedded tests which are defined in FIPS 140-1 standard. 

These tests run concurrently while the random numbers are generated. The 

controller module controls the test module and the TRNG core module. It also 

provides an interface to an upper TRNG driver. Block diagram of the top level 

design of our TRNG is illustrated in RTL schematic as an output of Synplify Pro 

synthesis tool in Figure 3-1. 

3.1 TRNG Core Module 

The TRNG core module is the most critical part of the generator because the 

employed randomness source, extraction method and post processing are all 

realized in this module.  

The module has three inputs that are named “rst”, “clk” and active. The “clk” signal 

is the interface clock of the TRNG, which should be supplied from an upper control 

layer of the TRNG. The period of this clock signal is critical because of the preset 

time configuration of the sampler module. This requirement is explained in the 

design details of the sampler. We have implemented the controller and the sampler 

for 50 MHz input clock signal. The input signal “rst” can be used to stop the clock 

generation of the ring oscillators while the TRNG is in reset mode. The active input 

of the TRNG is used to enable or disable the controller module. The TRNG core 

also has two output ports that are named as random and ready. Whenever the TRNG 
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core generates a new random bit at its random port, it generates a ready pulse that to 

indicate this event.  

 

Figure 3-2 - TRNG Core Sub Modules 

The TRNG core module includes three sub modules that are named as ring 

oscillator, sampler and controller as shown in Figure 3-2. Two instances of a ring 

oscillator are employed in the TRNG core which has close but non-identical 

oscillation frequencies. We use these two ring oscillators to supply streams of 

pulses to the sampler logic. The sampler logic extracts the random bit by the help of 

the controller and produces “bitready” signal for every random bit. The controller 

module drives the sampler module to get true random bits. Generated random bits 

are post processed by the controller. The controller generates ready pulse for every 

post processed random bit. The operation and the implementation details of each 

module are explained below. 

3.1.1 Ring Oscillators 

A ring oscillator is a combinational loop of delay elements (logic gates), which 

contains an odd number of inverters. The employed inverter(s) in the loop causes an 

oscillation whose period is the total propagation time in the loop. The propagation 

delay of logic gates in FPGAs is unstable because of the physical processes of the 

underlying technology. This instability reveals itself as jitter on the generated clock 

signal of a ring oscillator.  
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Figure 3-3 - Ring Oscillator 

The frequency of the ring oscillator clock signal is directly dependent on the 

number of gates employed in the loop. On the other hand the entropy of the ring 

oscillator’s clock jitter is also related to the number of delay elements employed in 

the loop. Considering these and a couple of experiments together, we have chosen 

to use three buffers and one inverter for the construction of our ring oscillator. The 

oscillation on the loop is supplied to a toggle flip flop in order to obtain a better 

square shape clock signal. The general structure of our ring oscillator is shown in 

Figure 3-3. 

The ring oscillators are asynchronous designs. Asynchronous circuits are not 

commonly encountered in FPGA based designs. VHDL implementation of a ring 

oscillator is not an ordinary VHDL code, since the vendor’s synthesizing tool or the 

mapping tool may prune the delay elements in the loop automatically.  In order to 

prevent this, we construct the ring oscillator in Xilinx schematics using “KEEP” 

constraint [28].  Using [29], we have determined the primitive elements, associated 

with KEEP attribute with each and then we have describe the connections in VHDL 

as shown in Appendix-A. “KEEP” is an advanced mapping and synthesis constraint 

which is used with the name of the net that one wants not to be pruned [28]. For 

every FPGA family, a similar design attribute can be found to implement ring 

oscillators. 
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Figure 3-4 - Ring Oscillator Implementation Schematic 

The RTL schematic of our ring oscillator is presented in Figure 3-4. LUT2 and FD 

modules in the schematic are Xilinx primitive design elements. The reset input of 

the ring oscillator is connected to all LUT2 elements and it resets the outputs of all 

LUT2s. Each LUT2 primitive that are named as delay1_lut, delay2_lut and 

delay3_lut is configured to behave like a buffer. But each LUT2 element that are 

named as invert_lut and the div2_lut is configured to behave like an inverter. The 

FD is the regular D Flip Flop.  

 

Figure 3-5 - Plan Ahead Screen Shot 
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Our implemented ring oscillator fits into a single slice of Virtex – 5 FPGA as shown 

in Figure 3-5. The generated clock frequency of ring oscillator is around 195 MHz. 

For our purpose the frequencies of the generated clocks should be close to each 

other but not identical. This can be achieved by placing each oscillator into 

individual slices that are very close to each other. Hence we place the ring 

oscillators manually into two separate slices that are adjacent to each other by using 

the Plan Ahead tool of Xilinx ISE Project Navigator. The coordinates of the slices 

that are used for ring oscillators are arbitrarily chosen as Slice_X1Y0 and 

Slice_X1Y1. This constraint of placement can be done by using “LOC” attribute of 

Xilinx as shown below. 

  Attribute LOC: string; 

  Attribute LOC of RO1: label is "SLICE_X1Y0"; 

  Attribute LOC of RO2: label is "SLICE_X1Y1";  

In addition, we have placed each element of a ring oscillator in to a specific location 

in the slice for providing the same conditions in each ring oscillator. We have first 

done the manual placements by using Plan Ahead visual interface. Then we 

described these manual placement constraints in the VHDL code using “BEL” 

attribute of Xilinx as shown below. “BEL” is an advanced placement constraint, 

which locks the logical symbol into a specific site of the slice. This means that if 

these constraints are used for a LUT, this LUT will only be placed in the specified 

site of the slice. 

attribute bel : string ; 

attribute bel of delay1_lut : label is "D6LUT";  

attribute bel of delay2_lut : label is "C6LUT";  

attribute bel of delay3_lut : label is "B6LUT";  

attribute bel of div2_lut    : label is "A6LUT";  

attribute bel of invert_lut  : label is "A5LUT"; 
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We monitored the clocks of our implemented ring oscillators with an Agilent 

MSO6104A oscilloscope. The screen shot of the oscilloscope can be seen in Figure 

3-6. The frequencies of ring oscillators are around 195 MHz and the jitter can be 

observed easily. The measurement is done when the oscilloscope is in edge 

triggered mode and the trigger is on CLOCK2 signal. 

 

Figure 3-6 - Ring oscillator clocks 

 

3.1.2 The Sampler Module 

The sampler circuit extracts randomness from the jitter on the input ring oscillator 

clocks by using the coherent sampling method. In order to use coherent sampling 

the frequency of the input clocks have to be close but non-identical. So if we sample 

one of them with the rising edge of the other one, the sampled output signal (beat 

signal) will have long sequences of 1s or 0s because of period drifting of the clocks. 

Due to jitter noise on input clock signals, one period of the beat signal includes 

many numbers of cycles of the sampling clock, this number being a random 

quantity. The sampler circuit counts the number of cycles that the beat signal is not 
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changing by using a single bit counter (T-flip flop). The output of the counter flip 

flop has a random bit for each rising edge of the beat signal. The sampler module 

that extracts the random bit mentioned above is presented in Figure 3-7. 

 

Figure 3-7 - Sampler Design [5] 

The sampler circuit contains four flip flops that are denoted as (X,Y,Z,W) in Figure 

3-7. Flip flop X is used to sample clk0 with the rising edge of clk1. The output of 

this flip flop is the beat signal in coherent sampling method and is denoted as S0. 

During the sampling process the toggle flip flop (Y) toggles its output for each 

falling edge of clk1. Sampler module utilizes this flip flop for counting the cycles of 

clk1 during one period of S0 in modulo 2. This toggle flip flop can be reset by the 

signal denoted R0. It is a critical need of the sampler mechanism to reset this flip 

flop before each generation in order to prevent the correlation between two 

successive generated bits. The output of counter flip flop is denoted as C0. Flip flop 

W latches the C0 signal for every rising edge of S0, meaning that the number of 

cycles passed during one period of S0 is latched at the end of the period. This is 

now the generated random bit for this period of the beat signal (S0). The output of Z 

flip flop (bitready signal) gets high for each newly generated bit and this flip flop 

can be cleared only by an external signal (ReadAck). E0 is the enable input of the 
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sampler circuit which is used for disabling W and Z flip flops and for keeping the 

random bit unchanged before it is read from outside. After each rising or falling 

edge of the S0 signal, C0 signal has many state changes with short cycles because 

of jitter noise. Therefore after the first rising edge of S0, enable signal (E0) should 

be made low by the controller module to keep the random bit unchanged. The 

controller then read the random bit while keeping the enable signal at low for a 

predetermined period in order to wait for S0 to settle up. To let the sampler generate 

the next random bit the controller module of the TRNG core should send 

“ReadAck” and re-enable flip flops W and Z. 

 

Figure 3-8 - Sampler Signals 

Figure 3-8 illustrates the timing of the signals. It is seen that C0 toggles for each 

falling edge of clk1 and S0 has a long period relative to clk1. The random bit is 

latched with the rising edge of S0.  

In our implementation of the above simple sampler we have used schematic design 

features of Xilinx as we have done for the ring oscillator case. For the schematic 

design of the sampler we used LUT2 and FDCE primitives in order to construct our 

sampler module. The FDCE primitive is a D flip flop with chip enable and clear 

inputs features. The Synplify schematic diagram of our sampler is shown in Figure 

3-9. 
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Figure 3-9 - Sampler Module Synplify Schematic 

 

In the implementation, X, Y, Z and W flip flops are denoted with sampling_FF, 

Rand_cnt_FF, Bit_ready_FF and Rand_out_FF, respectively. The enable input of 

the circuit is the same as E0 in our implementation. We combined R0 and ReadAck 

signals also because they work with the same polarity for random bit generation. 

We also used a clear input instead of R0 and ReadAck signals.  

While implementing the sampler we utilized “BEL” and “LOC” constraints as in 

the ring oscillator case. These constraints and the VHDL description of the sampler 

module are presented in Appendix – B. 

During the implementation of ring oscillator we have observed that the jitter of the 

output clock can be affected by the circuit that is employed in adjacent slices of the 

ring oscillator. Because of this the quality of the generated numbers decreases 

whenever the ring oscillators of our TRNG is placed into slices that are surrounded 

with circuit that are used for other purposes. In order to overcome this problem, we 

placed the TRNG core, which contains the ring oscillator and the sampler circuit on 

one of the corners of the FPGA. Besides, we have also surrounded our compact 
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TRNG core design with a slice fence that is prohibited to be used for other purposes 

as shown in Figure 3-10. 

 

Figure 3-10 - Prohibit fence of TRNG core 

This prohibition of usage of the slices can be done by the “PROHIBIT” constraint 

that is shown below.  

CONFIG PROHIBIT = SLICE_X0Y0; 

CONFIG PROHIBIT = SLICE_X0Y1; 

CONFIG PROHIBIT = SLICE_X0Y2; 

CONFIG PROHIBIT = SLICE_X2Y3; 

 

3.1.3 The Controller Module 

The controller module senses the output control signals of the sampler and drives 

the sampler for sampling correctly. The controller manages enabling or disabling of 

the sampler and clears the counter flip flop for each run. In order to generate a 
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single random bit, the controller enables the sampler and waits for the bitready 

signal. Whenever a random bit is latched by the sampler, the bitready signal goes 

high and the controller disables the sampler and then reads the random bit. After 

reading, it waits for a predetermined amount of time (3 clock cycles of 50MHz in 

our case) for re-enabling the sampler. In this way the controller forces the sampler 

circuit to ignore the short beat cycles that occur on both rising and falling edges of 

the beat signal. Following this preset waiting time the controller re-enables the 

sampler and resets the counter value and bitready signal for the next bit generation, 

cycle. The controller prevents correlation between successive bits by resetting the 

counter flip flop for each new generation operation.  

Meanwhile the controller uses an exclusive - or corrector in order to prevent the 

bias on the output. Two successive incoming bits are input to the exclusive or 

corrector, which halves the throughput of the generator but increases the quality of 

its statistical properties. The controller generates a ready pulse for every generated 

and post processed random bit. The random bit and ready pulse of that bit is 

connected to the output ports of the TRNG core module. 

3.2 Embedded Test Module 

The randomness of a TRNG is generally confirmed by statistical test suites before it 

can be employed by a cryptographic system. However these tests are generally 

executed offline using output streams of a TRNG. It is equally important to care 

about whether any environmental change (such as temperature, voltage, current 

requirement of FPGA) could decrease the randomness quality of the employed 

TRNG. Besides, the quality of a TRNG can also be degraded by external attacks, 

which are directly targeting the TRNG. The generated random numbers that are 

used during the real operation of the system are usually not tested with statistical 

randomness tests. Because these tests are complex and heavy to be executed for 

each random number set generated online. Statistical tests are generally executed at 

the start up of the system and are repeated later periodically. NIST has proposed a 

subset of its statistical tests to be realized in embedded hardware in FIPS 140-1. 
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These tests have already been explained in chapter 2. We have implemented these 

tests also in our TRNG as was illustrated in Figure 3-11. The implementation of 

these tests  occupies 827 slices of the Virtex-5 (xc5vfx70t) FPGA.  

 

Figure 3-11 - Embedded Test Module Schematic (Top View) 

 

FIPS 140-1 contains four basic randomness tests that are feasible to implement in 

FPGA. These tests are monobit, poker, run and long run tests. In our TRNG these 

tests are running concurrently with generator module. The test module generates an 

error signal for failure of any of these tests. The upper layer TRNG controller can 

consider this error signal in order to determine whether or not it should use the last 

set of random numbers generated. Even for some systems, this error signal can be 

considered as an alarm that indicates an external attack on the system. 
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The proposed tests of FIPS 140-1 require 20.000 bits of random data for each run of 

the tests. The implementation of our test module has four sub modules that are 

illustrated in Figure 3-11. The controller of the test module generates the error 

signal if any one of the implemented test fails. The runs_test module includes the 

runs and long run tests. Monobit and poker tests are realized in two separate 

modules. The following subsections presents simulations and verification of these 

test modules. 

3.2.1 Simulation of Test Module on Modelsim 

Modelsim is a hardware simulation and debug tool developed by Mentor Graphics 

Inc. In order to verify the functionality, we simulated our test module design on 

Modelsim simulator. Modelsim simulates the input signals of the device under test 

(DUT) and shows the responses of this the device via a proper visual interface. 

Modelsim compiles the device and test bench codes by using standard and vendor 

specific libraries and the tester can observe all internal and external signals of the 

design in a timing diagram while simulating it. 

In the present case, DUT is the test module of our TRNG. The test module has 6 

inputs i.e. start, stop, bitready, randombit, rst and clk. The clk input of our test 

module is a 50 MHz clock and the rst is an active low reset signal. The start and 

stop input signals carry initiate and halt commands respectively, which are formed 

as single pulses. The critical part of this test bench is the simulation of the 

randombit signal because the random input of the test module is not a periodic 

signal and even it is required to have good randomness features to simulate for 

correct random bit generation. Generating a random signal is not an easy task for 

Modelsim by VHDL code. Therefore we decided to use the original random bits 

that are generated by our custom TRNG as an input to the test bench of our design. 

The generated numbers are saved in a text file in binary format and are used as an 

input for the test bench. During simulation the test bench reads the random bits 

from the file and produces randombit and bitready signals. By using the visual 

interface, we have verified that the test module of our TRNG works as expected and 
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any deviation from the randomness according to FIPS 140-1 is detected by this 

module. In the next sub sections of this chapter, we present some simulation 

diagrams for the test module. 

3.2.1.1 Simulation of Monobit (Frequency) Test  

The implementation of monobit test is the simplest one of the FIPS 140-1 tests. This 

test checks the zero and one ratio of every 20.000 bits of input sequence. The 

implementation contains just two counters which are named as bit_counter and 

one_counter as in Figure 3-12. The bit_counter counts the number of input bits up 

to 20.000 and restarts counting. For every 20.000 bits of random input a stop signal 

is generated to reset the counter value. The start input also clears the counters. The 

one_counter counts ones in the input sequence until a clear signal is generated.     

 

Figure 3-12 - Monobit Test Signals (Start of a sequence) 

The error output signal gets high when the stop signal is high and the one counter 

value is out of the acceptance interval. 

9,654 < # of ones in 20.000 bits < 10,346 
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Figure 3-13 - Monobit Test Signal (End of a sequence) 

3.2.1.2 Simulation of Runs Test 

The runs and long run tests check if the tested sequence contains more than 

expected number of consecutive ones or zeros. “Run” is a terminology, which 

corresponds to a sequence of identical bits that are bounded before and after with a 

bit of the opposite value. The length and number of occurrence of the runs are 

critical for randomness. The runs with length up to 6 and larger than 6 have their 

own required intervals which is in Figure 3-14. On the other hand according to long 

runs test, a run with length 34 and larger is not acceptable for a random sequence. 

We have implemented runs and long run tests in the same module which counts the 

number of runs that are occurred in a 20.000 bits long sequence. 
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Figure 3-14 - Runs Test Signals 

The generated signals and the counters used in the implementation of run test 

module are presented in Figure 3-14. The module generates change signal, which 

indicates the starting point of all runs in the incoming sequence. The run counter is 

cleared by each change signal and counts up until the next change pulse. For every 

change pulse one of the run occurrence counters, counts up. 

The bit counters counts incoming bits and is used to generate clear signal for every 

20.000 bits. Whenever the clear signal is generated, the numbers of occurrence 

counters are controlled if it is in the required interval of not as can be seen in Figure 

3-15. If any occurrence number of run is not in the required interval the error signal 

gets high to indicate non randomness. Besides if the run counter value exceeds 34, 

the error signal also gets high.  
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Figure 3-15 - End of Runs Test 

3.2.1.3 Simulation of Poker Test 

The poker test considers a 20.000 bit random stream as 5000 distinct numbers that 

are represented in 4 bits. Each distinct number has 16 possible decimal values. The 

poker tests controls if the occurrence numbers of these 16 possible values are in a 

required interval as given below. 
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Figure 3-16 - Poker Test Signals 

The signals of the poker test implementation are illustrated in Figure 3-16.  

In our implementation, the poker module packs the each 4 successive bits into a 

nibble and generates a nibbready signal. This generated nibble is input to a hex to 

decimal decoder. The decoder generates 16 state signals, which are then used for 

counting the occurrence numbers of 16 possible decimal numbers. A sub module of 

poker test is named count_then_square counts the number of occurrences and 

calculates the square of this count values.    
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Figure 3-17 - Poker Result signals 

The results of the square operation are added together and controlled if the sum is in 

the following interval or not. 

. 
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CHAPTER 4  

 

TESTS AND RESULTS 

The quality and security evaluation of a TRNG should be carried out before it is 

employed in a cryptographic system. The strength and the security of a system 

directly depend on the randomness quality of the TRNG. Generated random bit 

streams have to be tested generally with various tests in order to detect any 

deviation from randomness. The deviation may arise from either a poorly designed 

generator or an external attack. Besides a certain number of failures can also be 

expected in random sequences that are generated by a custom TRNG. A tester 

should interpret the test results and make a conclusion about the 

correctness/incorrectness or validity/invalidity issues.  

 

The statistical evaluation of the bit streams that are generated by a TRNG can be 

done internally or externally. In spite of the fact that internal and concurrent 

evaluation is more secure and reliable, the generated bit streams are generally tested 

out of the TRNG because the statistical tests require complex and heavy 

calculations and the implementation of these on hardware are generally not feasible 

and efficient. In our TRNG implementation we have implemented the tests of FIPS 

140-1 in hardware because this in a way reduced test suite is feasible and efficient 

to implement in hardware to enhance the security of the TRNG. On the other hand, 

we still have to evaluate the randomness of our TRNG externally by using some 

other test suites. For this, we designed a test platform, which generates required 
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amount of random bits using our TRNG and saves them in a file on the computer. 

We then use this file for statistical evaluation of our custom TRNG. 

 

Besides determining whether our custom TRNG is qualified to be employed in a 

cryptographic system or not, we also compared it with a commercial TRNG that is 

already used in many cryptographic systems. RPG100 TRNG from the FDK 

corporation [10] is our choice in this comparative evaluation. RPG100 is an IC that 

generates a true random bit stream with a 250 Kbps throughput [30] [31]. The 

circuit is composed of only CMOS and no other external components are needed. 

Statistical random number generator test circuits of FIPS 140-1 are also built into 

the chip for checking randomness easily. The FDK corporation provides an 

evaluation board for RPG100 [32]. By using this evaluation board, we can easily 

reach to the pins of RPG100 chip and can operate it with external signals that are 

supplied by another board. 

 

In our evaluation, RPG100 is required to be operated with in the same conditions 

hence we used RPG100 in the same test platform. We connected the evaluation 

board of RPG100 to the ML507 board via external pins of Virtex-5 FPGA. Then by 

the help of our test platform designed FPGA, we have accumulated the generated 

random bits of RPG100 and save then also in a file on the computer as was done for 

custom TRNG. 

 

In this chapter firstly, we first explain the components and connections of the test 

set up and then the FPGA project that includes our custom TRNG and the driver for 

RPG100. The statistical evaluations of the generated bit streams, which are 

performed off-line, are also reported in this chapter. At the end of the chapter our 

custom TRNG and RPG100 are compared according to several aspects.  
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4.1 The Test Set Up 

The test set up contains three main elements that are computer, Xilinx ML507 

Development Board and RPG100 Evaluation Board [33]. The computer is 

connected to FPGA (Virtex – 5) of the ML507 Board via Xilinx USB Platform 

Cable which can reach to the FPGA from the JTAG port. This port is used for 

loading and the debugging of the code running on the FPGA. The RS232 port of the 

board is used for communication of computer and the test platform project that runs 

on the FPGA. The RPG100 Evaluation board is also connected to ML507 board via 

the general purpose external pins of the FPGA. The general structure of the test set 

up is presented in Figure 4-1.  

 

Figure 4-1 - Test Set Up 

The test set up provides the facilities listed below. 

 Generating required length of random bit streams by using custom TRNG or 

RPG100 chip. 

 Accumulating the generated bit streams in a file on the computer.  

 Running statistical evaluation processes on the generated bit streams. 

 Measuring the throughput of the generators exactly. 

 Monitoring the results of the embedded tests of custom TRNG. 

4.2 Test Platform-FPGA Part 

The test platform project, which runs on the test set up, provides a user interface for 

generating and saving the random bit streams of our custom TRNG or RPG100 on a 
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file. By using this set up we can also calculate the throughput of our custom TRNG. 

Main sub modules of the test platform are listed below: 

 An embedded microprocessor (Power PC “PPC440” ),   

 A shared two port block RAM (BRAM),   

 TRNG driver module,   

 Our custom TRNG (explained in the previous chapter), 

 RPG100 controller module, 

 

Figure 4-2 - Test Platform FPGA Project Top Design 

The general structure of our test platform is presented in Figure 4-2. The modules in 

orange color are cores that already exist in all Virtex-5 FPGAs but the modules in 

green color are our custom designs for the test platform. 

 

The embedded PPC440 microprocessor communicates with the peripheral devices 

via the peripheral local bus (PLB). Using software one can read/write from/to 

BRAM by using BRAM controller. And one can also send commands and read 

responses from the TRNG driver by using custom peripheral controller register 

which is already included in the TRNG driver. The TRNG driver shares the 
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generated random bits via a shared BRAM. Both of the microprocessor and the 

TRNG driver can write/ read to/from the same BRAM. 

 

The software that is running on the PPC440 provides a user interface by 

communicating with the computer via RS232 port and sensing the buttons of the 

board. This user interface informs the user using the terminal connected to the serial 

port while polling the buttons on the board. Each button of the board has its own 

functionality that is explained in the interface menu shown in Figure 4-3. 

 

Figure 4-3 - Test Platform Menu 

Whenever the generate button of the board is pressed, software side of the system 

sends generate command to TRNG driver module. After sending start command, 

the software waits for the response of the TRNG driver. The TRNG driver operates 

the chosen TRNG in order to generate a 1 mega random bit. Whenever the 

generation process is completed the TRNG driver informs the software that the 

requested random stream is generated and written on the shared block RAM. Also 

by using different buttons of the board, these generated random numbers can be 

printed on the serial port terminal. By using the log to a file function of the terminal, 

the user can save this random bit stream in a file on the computer. This file can then 

be used for the statistical evaluation of the TRNGs. If the user wants more than one 
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mega random bits there is also a button on the board that is configured to generate 

and print the random numbers continuously. 

4.2.1 The TRNG Driver Module 

The TRNG driver module is designed to operate one of the true random number 

generation modules, i.e. our custom TRNG or one of RPG100. This module 

communicates with the microprocessor by using the custom peripheral controller 

registers. A custom peripheral controller register is a software accessible register 

which both the microprocessor and the custom design can write/read to/from it. The 

TRNG driver module gets the commands from the microprocessor and it operates 

the relevant TRNG. The custom TRNG or the RPG controller then send the random 

bit streams to the TRNG driver via 32 bit long output ports. TRNG driver writes the 

required amount of incoming random numbers into the two port block RAM then 

send acknowledgement to the microprocessor which means bit stream is ready to be 

read from the block RAM. The TRNG driver also stops the generation operation 

whenever the required amount of random bit streams are generated and written into 

the shared block RAM.  

 

Besides, TRNG driver employs a counter for measuring the generation rate of the 

related TRNG. This counter is cleared before the generation process is started and 

then counts up during the generation of 1 megabits of random data. When 

generation is completed, this counter value can also be read by our software. The 

counter counts up with a 50 MHz clock. So the total time for the generation of 1 

mega random bit is equal to counter value multiplied by 20 ns. Using this total time 

information the generation bit rate is calculated.  

4.2.2 The RPG100 Controller Module 

For the statistical evaluation of RPG100, we designed a module named RPG100 

controller, which is connected to the RPG100 Evaluation Board via the general 
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purpose I/O pins of the FPGA. RPG100 controller module supplies a 250 KHz 

clock to the RPG100 evaluation board, reads the generated random bits, saves them 

on a file as is done for the custom TRNG. The RPG100 controller module shown in 

Figure 4-4 has a top design view similar to the custom TRNG that was explained in 

the previous chapter. 

 

Figure 4-4 - Top Modules of TRNG and RPG100 controller 

Both of these modules begin generating 32 bit long random numbers with the start 

pulse and continue generating up to the stop pulse. Both modules form a ready 

pulse for every new random number generated. The RPG controller module has two 

different pins which are “randombit” and “rpg_clk”, which are used for supplying 

the clock and for reading the random bit from the RPG100 evaluation board. These 

two pins are both connected to the external pins of the FPGA and wired to the 

RPG100 evaluation board.  

4.3 Statistical Test Results 

We have utilized the NIST test suite and Diehard battery of tests in our project for 

statistical evaluation of our custom TRNG and the RPG100 IC. We captured one 

gigabit output of both TRNGs into files on the computer by using the test platform 

design explained above. We then executed the tests on these random streams by 

following the recommendations of each relevant test suite. We assessed the outputs 

of the test suites by the method following NIST SP800-22 explanations. In this part 

of the chapter, the execution of the tests is explained in detail and our assessments 

of the results are reported. 
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We utilized the same statistical testing methodology used by the FDK Corporation, 

which produces the RPG100 IC. They have also tested their RPG100 silicon chip by 

NIST and Diehard test suites. The employed testing procedure of FDK Corporation 

is reported in [32].  

4.3.1 The NIST Test Suite Execution and Results 

The NIST Test Suite is a statistical test suite that includes 15 different tests that 

were developed for randomness evaluation of binary sequences that are produced 

by cryptographic TRNGs. These tests check if there exist any different types of 

non-randomness in the sequence under test. The test suite produces a P-value for 

each test. The P-value (probability value) is a probabilistic measure that indicates 

the probability that the tested sequence is random. If a P-value of a test is equal to 1, 

then the sequence appears to have perfect randomness according to this test. On the 

other hand a P-value of zero indicates that the sequence appears to be completely 

non-random according to the test. Even if the tested sequence is truly random, the 

test results may conclude that the sequence is non-random with a small percentage. 

The probability of this kind of conclusion is called level of significance of the tests 

and denoted by “α”. The level of significance of a random sequence should be about 

0.01 – 0.001 for cryptography. In order to decide whether the sequence passes a test 

or not, both the P-value and the level of significance are used. If the P-value is 

greater than (or equal to) the level of significance then the sequence under test is 

passed. On the other hand the distribution of P-values between (0, 1] is also 

important for the interpretation of the results. These P-values should be uniformly 

distributed in the interval (0, 1]. The NIST test suite generates a final analysis 

report, which includes the distribution of the P-values and the pass/fail proportions 

of each test in the suite.  

4.3.1.1 The NIST test suite execution process 

NIST has published ANSI C codes of the test suite in SP800-22. We used these C 

codes in our test process. We first compiled and built these codes to generate an 
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executable for the test suite. Sample run of this executable for testing of 1.000.000 

bits long bit stream is presented step by step below.  

 

In order to invoke the NIST statistical test suite the user types the name of 

executable followed by the desired bit stream length (n) on the command prompt of 

windows. The following screen in Figure 4-5 is displayed first. 

 

Figure 4-5 - NIST Test Execution Screen - 1 

The test suite can run the tests on the outputs of the pseudo random number 

generators that are listed in menu. However, option “0” is prepared for testing a 

custom bit stream. The user chooses the option “0” then types the folder link of the 

file that contains the bit stream.  

 

After specifying the input string file the statistical test list comes to screen as shown 

in Figure 4-6. In this console, the user can choose the tests that are going to be 

executed. If the user’s choice is “1” then all tests are going to be executed. But if 

the user’s choice is “0” then the user can determine which ones of the tests are 

going to be executed by typing a string. The string consists of 15 consecutive zeros 

or ones. The sequence numbers of ones in the string indicate the sequence numbers 

of the tests that are going to be executed. 
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Figure 4-6 - NIST Test Execution Screen - 2 

As an example in Figure 4-6, only the longest run of one’s test is going to be 

executed since only 5th bit of the string is set, indicating the fifth test. After 

choosing the tests the tests parameter adjustment screen appears as shown in Figure 

4-7. 

 

Figure 4-7 - NIST Test Execution Screen - 3 

The parameter adjustment of the tests is also critical for the reliability of the tests. 

Generally, these parameter adjustments are done according to the length and 

number of samples that are going to be tested. The recommendations on the choice 

of parameters for each test are also explained in [6]. This console screen enables 

one to change these parameters during the test. After configuration of the test 

parameters the user types the number of samples (m) in the input file as shown in 
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Figure 4-8. So the input file has to include m times n bits. For the example given in 

Figure 4-8, the input file has 10 (m) times 100.000 (n) bits long streams.   

 

Figure 4-8 - NIST Test Execution Screen - 4 

NIST test suite executable file can read random streams from an input file that are 

prepared in one of two different formats, which are ASCII and Binary formats. An 

ASCII formatted file includes a sequence of ASCII characters of 0’s and 1’s. Each 

bit of the random string is represented by an ASCII character. The binary formatted 

file includes the binary data that each byte in file contains 8 bits of random data. 

The user prepared file format is chosen in the screen shown in Figure 4-8. After this 

last step, the tests are executed and the results of all tests are written on specific 

result files. Besides, an interpretation of all tests is prepared and written on a file as 

a final analysis report of the test suite. This report includes results for the uniformity 

of P-values and the pass proportions of the tested sequences.  

 

We performed the NIST statistical tests for evaluating our custom TRNG and 

RPG100 by following the strategy and recommendations in [6]. We used one 

gigabit generated bit streams. The generated random sequences are input to the test 

as a set of m (=1000) one Mbit sequences. The test suite provided the set of P-

values for each generator (some typical values are shown in Table 4-1 and Table 

4-2) for a significance level (α) of 0.01. The proportion of the passing sequences is 

within the expected confidence interval for both of the performed tests and P-values 

are uniformly distributed over (0, 1) interval. Some of the results that are taken from 

the final analysis report of executed NIST test of the two TRNGs are shown in the 
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following tables. The final test report generated by NIST test suite executable file is 

available in the Appendix – C. 

 

Table 4-1 - NIST Final Test Report for Custom TRNG (α = 0.01) 

Results for the Uniformity of P-values and the Proportion of Passing sequences 

Test Name Proportion C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

 

PT 

Frequency 989/1000 95 107 108 108 100 100 84 100 94 104 5.1 0.825505 

Block Frequency 989/1000 114 86 95 93 110 108 112 88 95 99 10.88 0.397688 

Cum Sums 988/1000 94 108 99 116 75 108 115 113 91 81 18.82 0.026768 

Runs 995/1000 87 98 95 106 100 88 112 116 105 93 8.52 0.482707 

Longest Run 989/1000 104 114 107 112 80 95 114 92 84 98 13.5 0.141256 

Rank 989/1000 103 89 101 119 91 98 108 94 102 95 7.06 0.630872 

FFT 983/1000 110 110 98 104 89 108 95 93 91 102 5.64 0.775337 

Non Overlapping Temp. 989/1000 94 103 96 99 119 91 101 93 97 97 5.72 0.603841 

Overlapping Temp. 995/1000 136 100 83 95 103 83 90 115 104 91 23.3 0.005557 

Universal 990/1000 103 100 119 99 96 99 103 97 98 86 6.06 0.733899 

Approximate Entropy 987/1000 109 102 92 81 121 101 94 100 103 97 10.06 0.345650 

Random Excursion 617/628 58 67 62 75 59 65 61 52 69 60 5.986 0.723673 

Rand. Exc. Variant 623/628 58 62 71 75 39 60 67 68 56 72 15.75 0.065546 

Serial 993/1000 117 112 90 83 107 107 81 96 100 107 12.18 0.142872 

Linear Complexity 993/1000 101 96 104 93 98 125 91 110 82 100 12.16 0.204439 
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Table 4-2 - NIST Final Test Report for RPG100 

Results for the Uniformity of P-values and the Proportion of Passing sequences 

Test Name Proportion C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

 

PT 

Frequency 994/1000 96 110 101 104 110 111 78 93 114 83 13.72 0.132640 

Block Frequency 991/1000 96 92 91 99 114 101 92 117 95 103 7.46 0.589341 

Cum Sums 994/1000 92 107 108 106 109 92 91 93 110 92 6.52 0.686955 

Runs 987/1000 107 110 106 86 103 104 104 96 91 93 5.28 0.771469 

Longest Run 987/1000 90 96 116 105 109 103 99 86 107 89 8.54 0.480771 

Rank 990/1000 104 109 95 102 89 102 94 89 114 102 6.08 0.731886 

FFT 987/1000 111 14 99 107 99 88 106 85 87 104 9.57 0.385543 

Non Overlapping Temp. 992/1000 100 89 95 90 93 99 109 118 104 103 7.26 0.610070 

Overlapping Temp. 987/1000 106 113 105 99 98 112 96 98 98 75 10.28 0.328297 

Universal 991/1000 99 113 102 94 110 76 87 90 94 135 24.16 0.004055 

Approximate Entropy 992/1000 107 91 100 97 93 100 82 118 117 95 8.26 0.242986 

Random Excursion 608/618 75 71 56 61 45 57 67 66 46 74 16.85 0.045966 

Rand. Exc. Variant 610/618 65 67 71 55 68 59 55 65 53 60 5.689 0.752969 

Serial 994/1000 91 103 99 78 114 110 99 94 98 114 11.08 0.270265 

Linear Complexity 987/1000 94 119 105 102 87 113 90 103 95 92 9.02 0.382115 

 

The final analysis report of NIST test suite contains a summary distribution of the 

P-values and passing rate of each test. The results are represented as a table with x 

rows and y columns. The rows correspond to statistical tests applied, while columns 

are distributed as follows: columns 1-10 corresponding to the frequency of P-

values, column 11 corresponding to the P-value that arises via the application of a 

chi-square test, column 12 corresponding to the proportion of binary sequences that 

have passed, and column 13 being name of the corresponding statistical test.  
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4.3.1.2 Interpretation of NIST test results 

The interpretation of empirical results can be done in several ways. But the NIST 

test suite has adopted two approaches for this. The first one is the examining the 

proportion of sequences that pass a statistical test and the second one is checking 

the uniformity of distribution of P-values. 

4.3.1.2.1 The pass/fail assessment of the tests 

The test suite determines if an individual test is passed or not according to level of 

significance. If the P-value of an individual test is greater or equal to the level of 

significance then the test is accepted to be passed. The level of significance is 0.01 

for all our tests. For example if 1000 binary sequences were tested and 996 binary 

sequences had P-values ≥ .01, then the passing ratio is 996/1000 = 0.9960.  

 

The final analysis report of the NIST test suite contains the passing ratios of each 

test. In order to determine that the input stream is truly random these passing ratios 

should be in an acceptable range. NIST recommends that the acceptable range of 

passing rates is determined using the confidence interval defined by the equation 

below. 

   where   and m is the sample size 

If the proportion falls outside this interval, then there is evidence that the data is 

non-random. In our case: 

Test sample (m) 1000 

Length of each bit stream (n) 1 Mbit 

Level of significance α 0.01 

The acceptance region 
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For both of the tests that are executed using the outputs of custom TRNG and 

RPG100 we obtained passing ratios as in Table 4-1 and Table 4-2, which verifies 

that all of these passing rates are in the acceptance region.  

4.3.1.2.2 Uniformity of distribution of P-values 

The final analysis report of the NIST test suite also includes the distribution of P-

values to ensure uniformity. The interval between 0 and 1 is divided into 10 sub-

intervals, and the P-values that lie within each sub-interval are counted and 

displayed in the report for each test. The report contains a master P-value for each 

test which is calculated via an application of a chi-square test and Goodness-of-Fit 

Distributional Test on the P-values obtained for each individual statistical test. This 

master P-value of each test should be greater than or equal to 0.0001 for uniformly 

distributed P-values. The master P-value (PT) of a test is calculated by the procedure 

defined below.  

Firstly the chi-square test is run as follows: 

  where Fi is the number of P-values in sub-interval i and s is 

the sample size.  

Then master P-value is calculated as 

 where the igamc is an incomplete Gama function. 

In order to obtain a PT, which is greater than (or equal to) 0.0001 NIST recommends 

that if the level of significance of test is 0.01 then the acceptance region of the chi-

square test output should meet the equation χ
2
 ≤ 33.72. In our case all calculated χ

2 

values are observed in the acceptance region as seen in Table 4-1 and Table 4-2.  
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The results of both TRNGs are similar to each other according to passing rates and 

distribution of P-values. Results of both TRNGs are in the safe interval of 

randomness tests of the NIST. 

4.3.2 The Diehard Battery of Tests and Results 

The diehard battery of tests includes 15 distinct statistical tests. For each execution, 

the test suite generates 220 P-values for the evaluation of 11,468,800 bytes of 

random data. The number of generated P-values is different each test of the battery. 

A statistical test of diehard is considered a pass if the P-value is in range 

[(0+α/2),(1-α/2)] where α is the level of significance of the test. The level of 

significance (α) is recommended to be 0.05 for the diehard test suite. Therefore, 

these P-values are supposed to be uniformly distributed in [0, 1) if the tested stream 

is truly random.  

4.3.2.1 Diehard Battery of the Tests execution process 

The source code and the executable file of the diehard test suite (diehard.exe) are 

also available on the internet [7]. We used this executable for the evaluation of our 

bit streams. A sample run of the diehard test suite is explained below. Diehard test 

suite requires data in binary format, where conversion can be done by using 

“asc2bin.exe”, which is also available on the internet together with the diehard test 

executable file.  

 

The executable file of diehard test is invoked without any parameter. Then it waits 

for the name of a file of size 87.5 Mbits. The user then identifies an output file 

name and selects the tests to be executed as shown in Figure 4-9. For the evaluation 

of our custom TRNG and the RPG100 we used 1 Gbit output streams from each 

TRNG. In order to evaluate the randomness of these bit streams with diehard test 

suite, we split each 1 gigabit stream of data into 12 distinct 87.5 Mbits set of 

streams. Then we ran diehard test suite 12 times with each individual set. The result 
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file of these tests includes a total of 2640 P-values. One of the generated test result 

files of diehard test suite is given in the Appendix - D.  

 

Figure 4-9 - Diehard Execution Screen 

4.3.2.2 Interpretation of the Diehard Tests Results 

The output of diehard test suite contains P-values of each performed test for the 

tested stream. The numbers of generated P-values for each test is different and are 

given in Table 4-3 and Table 4-4.  
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In contrast with NIST test suite, diehard suite generates only the P-values. There 

exists no interpretation of these P-values and no pass/fail assessment of the tests. In 

order to interpret these P-values we employed the same method as in NIST case. 

These methods are (1) the examination of the proportion of sequences that pass a 

statistical test and (2) the distribution of P-values to check for uniformity. 

4.3.2.2.1 The pass/fail assessment of Diehard tests 

The pass and fail assessment of diehard tests is different than the NIST test suite. A 

statistical test of diehard is considered to be a pass if the P-value is in range 

[(0+α/2),(1-α/2)] where α is the level of significance [7]. Diehard test suite set the 

level of significance of each test as %5 for assessment then the passing interval of 

each tests is [0.025,0.975]. We performed the diehard test for 12 times for each 

TRNG. For each run we obtained 220 P-values. The results of our pass/fail 

assessment are summarized in Table 4-3 and Table 4-4. Table 4-3 and Table 4-4 

contain the results of custom TRNG and RPG100 respectively. These tables include 

the number of P-values that are out of the pass region (0.025 – 0.975) for each 

individual Diehard test. 

 

Table 4-3 - Diehard Pass/Fail Assessment for Custom TRNG 

Test Name 

(Total # of 

generated P-values) 

Number of generated P-values that are out of pass region for each 

execution of test 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 

Birthday Spacing 

(10) 

1 1 0 1 0 0 0 0 1 0 0 1 

OPERM5 (2) 1 0 0 1 0 0 1 1 0 0 0 0 

Binary Rank 31x31 

(1) 

0 0 1 0 0 0 0 0 0 0 0 0 

Binary Rank 32x32 

(1) 

0 0 0 0 0 0 0 0 0 0 0 0 
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Binary Rank 6x8 

(26) 

0 0 2 2 3 0 0 1 0 1 1 1 

Bitstream (20) 1 1 0 1 0 1 0 1 1 3 3 2 

OPSO (23) 0 1 0 1 0 1 0 1 1 3 3 1 

OQSO (28) 0 2 3 3 1 2 1 0 2 4 1 4 

DNA (31) 2 0 2 0 0 1 1 2 3 2 1 0 

1’s on stream of bytes (2) 0 0 1 0 0 0 0 1 0 0 0 1 

1’s on specific bytes (25) 0 1 1 0 2 1 0 2 0 1 2 2 

Parking Lot (11) 0 1 0 1 2 0 1 3 0 0 0 1 

Minimum Distance 

(1) 

0 0 0 0 0 0 0 0 0 0 0 0 

3D Spheres (21) 1 1 1 0 2 0 0 2 1 0 1 1 

Squeeze (1) 0 0 0 0 0 0 0 0 0 0 0 0 

Overlapping Sums 

(11) 

2 0 0 1 0 1 1 0 0 1 1 0 

Runs (4) 0 0 0 0 0 1 0 1 0 0 0 0 

Craps (2) 0 0 0 0 0 0 1 0 0 0 0 0 

   

Table 4-4 - Diehard Pass/Fail Assessment for RPG100 

Test Name 

(Total # of 

generated P-values) 

Number of generated P-values that are out of pass region for each 

execution of test  

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 

Birthday Spacing 

(10) 

0 0 0 0 1 0 1 0 0 3 1 0 

OPERM5 (2) 0 0 1 0 2 0 0 0 0 0 2 0 

Binary Rank 31x31 

(1) 

0 0 0 0 0 0 0 0 0 0 0 0 
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Binary Rank 32x32 

(1) 

0 0 0 0 0 0 0 0 0 0 0 0 

Binary Rank 6x8 

(26) 

2 0 0 0 0 2 3 2 0 3 2 4 

Bitstream (20) 3 1 0 1 1 1 2 1 0 1 1 0 

OPSO (23) 0 0 0 0 1 0 2 0 1 1 1 1 

OQSO (28) 2 2 0 1 2 1 1 1 1 2 1 1 

DNA (31) 2 1 1 1 2 5 4 2 1 0 0 2 

1’s on stream of bytes (2) 0 0 0 0 1 0 0 0 0 0 0 0 

1’s on specific bytes (25) 1 1 3 2 1 1 2 1 0 1 1 0 

Parking Lot (11) 1 0 1 0 0 0 0 0 1 1 0 0 

Minimum Distance 

(1) 

0 0 0 0 1 0 0 0 0 0 0 0 

3D Spheres (21) 2 3 0 0 1 1 0 3 2 0 1 2 

Squeeze (1) 0 0 0 0 0 0 0 0 0 1 0 0 

Overlapping Sums 

(11) 

0 0 1 1 1 0 0 0 0 0 0 0 

Runs (4) 0 0 0 0 1 0 0 1 0 0 0 1 

Craps (2) 0 0 0 0 0 0 0 0 0 0 0 0 

 

For the evaluation of our 1 Gigabit data we performed diehard test suite 12 times. 

These 12 distinct run of diehard test suite produces a total of 2640 P-values. In 

order to make a pass/fail assessment with diehard test results, we specified the 

number of P-values that are out of the pass region (0.025-0.975). Then we 

determined the proportion of fails and passes in these 2640 P-values. This ratio 

must be in a specified interval, which is named as the acceptance interval.   
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The acceptance interval of our test is calculated using the same method as the NIST 

case. We have used the number of P-value that are generated by diehard test suite as 

the number of test samples and the level of significance of the test is 0.05.  

Test sample  m = 2640  

Level of significance  α = 0.05 then  

 

The acceptance region    

The results of the tests show that 128 out of 2640 P-values are out of the pass region 

for the custom TRNG. On the other hand 126 out of 2640 P-values are out of the 

pass region for RPG100. Both these results are in the acceptance region and listed 

in the Table 4-5.  

Table 4-5 - Pass/Fail Assessment of both TRNGs 

 
 

RESULT 

Custom TRNG output 0.95151 SUCCESS 

RPG100 output 0.95227 SUCCESS 

4.3.2.2.2  Uniformity of distribution of P-values of Diehard tests 

We have checked the uniformity of the P-values of diehard test suite using the same 

method as in NIST case. We have parsed the output files of 12 diehard executions 

for each TRNG then calculated the χ
2
 values. The distribution of P-values and 

calculated χ
2
 values for the custom TRNG test results is listed in Table 4-6. 
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Table 4-6 - Uniformity list of the custom TRNG Diehard Test Results  

Execution 

Number  

Distribution of generated 220 P-values over (0,1] for each 

execution of Diehard  

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 
 

1 19 20 22 21 26 22 24 20 22 24 1.909 

2 23 17 22 23 22 16 28 27 24 18 6.545 

3 22 18 19 25 15 30 26 22 18 25 8.545 

4 18 19 24 23 20 23 18 28 24 23 4.181 

5 24 16 20 22 27 19 18 21 28 25 6.363 

6 22 25 14 30 21 25 16 22 17 28 11.09 

7 14 15 33 15 24 21 23 25 25 25 14.36 

8 22 22 20 17 22 29 16 18 21 33 11.45 

9 28 17 16 17 22 20 23 18 23 36 15.45 

10 11 17 16 22 23 21 27 19 29 35 19.81 

11 18 21 19 24 16 27 22 28 20 25 6.363 

12 16 13 23 19 25 24 18 13 34 35 25 

 

The distribution of P-values and calculated χ
2
 values for the custom TRNG test 

results is listed in Table 4-7. 
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Table 4-7 - Uniformity list of the RPG100 Diehard Test Results  

Execution 

Number  

Distribution of generated 220 P-values over (0,1] for each 

execution of Diehard  

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 
 

1 26 19 16 22 25 18 23 23 17 31 8.045 

2 17 23 27 17 22 20 32 30 18 14 14.72 

3 26 21 14 18 22 26 26 21 16 30 10.45 

4 14 24 17 22 18 20 20 34 22 29 14.09 

5 27 14 16 23 22 31 15 26 22 24 12.54 

6 19 14 19 33 13 22 33 19 21 27 20 

7 22 25 21 23 21 17 22 18 24 27 4.22 

8 26 22 23 24 26 23 17 20 21 18 3.81 

9 18 24 21 17 17 22 22 32 25 22 8.18 

10 24 27 16 25 25 20 21 20 19 23 4.63 

11 24 19 19 21 25 22 16 29 19 26 6.45 

12 14 26 27 21 20 24 15 22 25 26 8.544 

 

The assessment of these χ
2
 values of both TRNGs is done using χ

2
 ≤ 33.72 and the 

results indicate that the distribution of 220 P-values that are generated by the 

diehard test suite for each execution with the random streams of custom TRNG and 

RPG100 have sufficient distribution uniformity. 
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4.3.3 Comparison of custom TRNG and RPG100 

Cryptographic systems generally employ an external silicon chip TRNG such as 

RPG100 for random number generation. Employing a RPG100 chip on crypto 

system for random number generation has its own pros and cons. In this section of 

the thesis, we compare the RPG100 and our custom embedded TRNG from several 

aspects such as randomness quality, design security and throughput. 

The randomness quality of a TRNG is evaluated by statistical tests. The FDK 

Corporation also confirmed the randomness quality of RPG100 by diehard and 

NIST test suites. This corporation shares results of these tests but their statistical 

results file do not contain detailed information. In order to be able to compare our 

custom TRNG and RPG100, we had to performed the same tests with FDK with the 

same parameters for confirming our custom TRNG and RPG100. The results of our 

tests revealed that both of the TRNGs have sufficient randomness to be used in 

cryptographic applications.  

Besides external statistical evaluation of TRNGs the concurrent randomness tests 

are also recommended for security of TRNGs. The RPG100 chip has its own 

embedded FIPS 140-1, test which can be executed in real time during the 

generation. Therefore we also implemented these tests in the FPGA fabric 

integrated to our custom TRNG. These tests provide a concurrent and real time 

evaluation of the random numbers before they are used for any cryptographic issue. 

The security level of the random numbers generated is upgraded with such 

concurrent control features. 

The throughput is another important feature of TRNGs because the random number 

need of a typical cryptographic system is getting larger and larger every day. The 

RPG100 chip generates true random bits with a constant throughput of 250 Kbps. 

However our custom TRNG has a variable throughput which is around 500 Kbps on 

the average. The throughput of our custom TRNG has a narrow standard deviation 

also. Although variable throughput of our custom TRNG is always higher than the 

throughput of RPG100. 
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If the TRNGs are used in an uncontrollable environment, the generated random bits 

should never be available for at the outside of the system. The RPG100 is an 

external device so it can easily be sniffed from its pins by attackers. On the other 

hand our custom TRNG is embedded in the FPGA, where the actual cryptographic 

application is also running on. Hence the attackers will not being able to sniff the 

generated random numbers, which is a feature that definitely, enhances the security 

of the overall system. 

 

The effects of external changes (i.e. temperature) are not analyzed for our custom 

TRNG within the scope of this work but RPG100 makes a promise of supporting 

the same quality specifications for industrial operating conditions also. 
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CHAPTER 5  

 

CONCLUSION AND FUTURE WORK 

Cryptographic systems requires random sequences for many processes such as key 

generation, authentication, padding and even for counter measures of side channel 

attacks. However random sequences that are employed in cryptographic systems 

must meet stringent requirements since the security of the system directly depends 

on these numbers. Simply stated these random numbers must be uncontrollable, 

unpredictable and irreproducible and must have good statistical properties in order 

to be eligible in cryptography. In addition to these, even if the employed random 

numbers have these features mentioned, a cryptographic system has to keep these 

numbers confidential for overall security issues. Hence it is generally recommended 

to realize the TRNGs inside the same implementation platform of the cryptographic 

algorithms. In contrast to older approaches where ASICs are mostly chosen for 

cryptographic applications, most of the implementations are realized with FPGAs 

during recent years. FPGA is common choice as the implementation platform 

because of its design simplicity, flexibility and re-programmability. Considering the 

prevalence of FPGAs in cryptographic systems, a TRNG built in FPGA is expected 

to improve the security and quality of a general cryptographic system. 

 

In this thesis a TRNG, which is suitable for cryptographic applications is 

investigated, implemented and evaluated. The TRNG and its embedded statistical 

tests are described in VHDL language and then realized on an FPGA platform. The 

true random number extraction method proposed in [5] is employed for the 
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implementation of the TRNG. The implementation can be realized in any FPGA of 

any vendor because it needs only the very common primitive resources of the 

FPGAs. For the concurrent statistical evaluation of the generated random numbers 

the randomness tests that are described in FIPS 140-1 are realized on the FPGA. 

Besides, the external statistical evaluation of the developed TRNG is also 

performed by using NIST statistical tests and Diehard battery of tests. These test 

suites are executed on a general purpose computer using the generated random 

streams of the TRNG. The implemented TRNG has a throughput up to 0.5 Mbps 

and the generation core occupies only 25 slices of the Xilinx Virtex-5 FPGA. This 

design shows us the possibility of generating and confirming true random bit 

sequences by using only the internal resources of FPGAs.  

 

We have also compared our custom TRNG with RPG100, which is an external IC 

TRNG of FDK Corporation, from several aspects. We have performed the same 

statistical tests on the bit streams of RPG100. The statistical evaluation of both 

TRNGs shows that both are suitable to be employed in cryptographic applications. 

The throughput of our custom TRNG is higher than the throughput of RPG100 on 

average. The most important advantage of custom TRNG is being embedded in the 

FPGA that hosts the cryptographic application also. In contrast RPG100 is an 

external device, which is vulnerable to attacks of an adversary. As a result, using 

embedded TRNG in FPGA is more advantageous than using a separate IC such as 

RPG100 for true random number generation. This approach decreases vendor 

dependency and cost of a complete design. Besides, security of the whole system 

increases with embedded TRNG against external attacks. This thesis demonstrates 

that random number generation requirement of cryptographic systems can be 

satisfied by a TRNG built in FPGA where the system is already running on. 

 

As a future study, other random number generation methods found in the literature 

can be implemented and tested in order to compare those with the already 
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implemented one. The statistical evaluation of TRNGs can be done by the other 

statistical tests that exist in the literature such as the test of BSI [30]. ASIC 

implementation of the custom TRNG can also be considered together with the 

embedded test suite and an appropriate communication interface.  
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APPENDIX – A 

library unisim; 

use unisim.vcomponents.all; 

entity ring_osc is  port (    

osc_out : out std_logic; 

 reset  : in std_logic   ); 

  end ring_osc; 

architecture low_level_definition of ring_osc is 

signal ring_delay1 : std_logic; 

signal ring_delay2 : std_logic; 

signal ring_delay3 : std_logic; 

signal ring_invert : std_logic; 

signal toggle  : std_logic; 

signal clk_div2 : std_logic; 

attribute KEEP : string;  

attribute KEEP of ring_delay1 : signal is "true";  

attribute KEEP of ring_delay2 : signal is "true";  

attribute KEEP of ring_delay3 : signal is "true";  

attribute INIT : string;  

attribute INIT of div2_lut               : label is "1";  
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attribute INIT of delay1_lut           : label is "4";  

attribute INIT of delay2_lut           : label is "4";  

attribute INIT of delay3_lut           : label is "4";  

attribute INIT of invert_lut            : label is "B";  

-- Attribute for manually placement 

attribute bel : string ; 

attribute bel of delay1_lut : label is "D6LUT";  

attribute bel of delay2_lut : label is "C6LUT";  

attribute bel of delay3_lut : label is "B6LUT";  

attribute bel of div2_lut    : label is "A6LUT";  

attribute bel of invert_lut  : label is "A5LUT";  

begin 

  osc_out <= clk_div2; 

  toggle_flop : FDCE 

  port map ( D   => toggle, 

             CLR => '0' , 

             CE  => '1' , 

             Q   => clk_div2, 

             C   => ring_invert);         

  div2_lut: LUT2 

    generic map (INIT => X"1") 

  port map( I0 => reset, 

            I1 => clk_div2, 

             O => toggle );   
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  delay1_lut: LUT2 

    generic map (INIT => X"4") 

  port map( I0 => reset, 

            I1 => ring_invert, 

             O => ring_delay1 ); 

  delay2_lut: LUT2 

    generic map (INIT => X"4") 

  port map( I0 => reset, 

            I1 => ring_delay1, 

             O => ring_delay2 ); 

  delay3_lut: LUT2 

    generic map (INIT => X"4") 

  port map( I0 => reset, 

            I1 => ring_delay2, 

             O => ring_delay3 ); 

  invert_lut: LUT2 

    generic map (INIT => X"B") 

  port map( I0 => reset, 

            I1 => ring_delay3, 

             O => ring_invert ); 

end low_level_definition; 
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APPENDIX – B 

entity sampler is 

  port(   clk_in1     : in  std_logic; 

          clk_in2     : in  std_logic; 

          enable      : in  std_logic; 

          clear       : in  std_logic; 

          randout     : out std_logic; 

          bitready    : out std_logic 

          ); 

  end sampler; 

architecture low_level_definition of sampler is 

signal rand_clk       : std_logic; 

signal cnt0_n          : std_logic; 

signal cnt0              : std_logic; 

-- Attribute for manually placement 

attribute bel : string ; 

attribute bel of Sampling_FF : label is "AFF";  

attribute bel of Rand_out_FF : label is "AFF";  

attribute bel of Rand_cnt_FF : label is "AFF";  

attribute bel of Bit_ready_FF    : label is "AFF";  
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attribute bel of invert_lut  : label is "A6LUT";  

-- Attributes LOC  

  attribute LOC : string ; 

  attribute LOC of invert_lut : label is "SLICE_X2Y0"; 

  attribute LOC of Sampling_FF : label is "SLICE_X2Y1"; 

  attribute LOC of Bit_ready_FF : label is "SLICE_X3Y1"; 

  attribute LOC of Rand_cnt_FF : label is "SLICE_X2Y0"; 

  attribute LOC of Rand_out_FF : label is "SLICE_X3Y0"; 

begin 

  Sampling_FF : FDCE 

  port map ( D   => clk_in1, 

             CLR => '0' , 

             CE  => '1' , 

             Q   => rand_clk, 

             C   => clk_in2);              

  Rand_cnt_FF : FDC_1 

    port map ( D    => cnt0_n, 

               Q    => cnt0, 

               CLR  => clear, 

               C    => clk_in2 

               );        

  invert_lut: LUT2 

  generic map (INIT => X"B") 

  port map( I0 => '0', 
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                  I1 => cnt0, 

                  O => cnt0_n ); 

  Rand_out_FF : FDCE 

  port map ( D   => cnt0, 

             CLR => clear, 

             CE  => enable, 

             Q   => randout, 

             C   => rand_clk);        

  Bit_ready_FF : FDCE 

  port map ( D   => '1', 

             CLR => clear, 

             CE  => enable, 

             Q   => bitready, 

             C   => rand_clk); 

 

end low_level_definition; 
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APPENDIX – C 

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION 

OF PASSING SEQUENCES 

------------------------------------------------------------------------------ 

   generator is <data/custom_total.bin> 

------------------------------------------------------------------------------ 

 C1  C2  C3  C4  C5  C6  C7  C8  C9 C10  P-VALUE  PROPORTION  STATISTICAL TEST 

------------------------------------------------------------------------------ 

 95 107 108 108 100 100  84 100  94 104  0.825505    989/1000    Frequency 

114  86  95  93 110 108 112  88  95  99  0.397688    989/1000    BlockFrequency 

 94 108  99 116  75 108 115 113  91  81  0.026768    988/1000    CumulativeSums 

 99  96 113 105 114  93  96  84 102  98  0.599693    987/1000    CumulativeSums 

 87  98  95 106 100  88 112 116 105  93  0.482707    995/1000    Runs 

104 114 107 112  80  95 114  92  84  98  0.141256    989/1000    LongestRun 

103  89 101 119  91  98 108  94 102  95  0.630872    989/1000    Rank 

110 110  98 104  89 108  95  93  91 102  0.775337    983/1000    FFT 

 94 113  96  99 119  91 101  93  97  97  0.603841    989/1000    NonOverlappingTemplate 

 89  95  85 106 110 105 108  88 108 106  0.494392    993/1000    NonOverlappingTemplate 

136 100  83  95 103  83  90 115 104  91  0.005557    995/1000    OverlappingTemplate 

103 100 119  99  96  99 103  97  98  86  0.733899    990/1000    Universal 

109 102  92  81 121 101  94 100 103  97  0.345650    987/1000    ApproximateEntropy 

 58  67  62  75  59  65  61  52  69  60  0.723673    617/628     RandomExcursions 

 62  73  60  49  61  72  68  58  63  62  0.613623    622/628     RandomExcursions 
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 67  63  74  59  54  60  67  71  48  65  0.437274    623/628     RandomExcursions 

 57  66  76  54  56  63  69  64  61  62  0.707249    620/628     RandomExcursions 

 62  61  63  66  69  57  65  64  62  59  0.993769    622/628     RandomExcursions 

 53  52  59  71  54  76  64  63  67  69  0.363700    620/628     RandomExcursions 

 63  63  66  49  60  83  57  67  56  64  0.234060    623/628     RandomExcursions 

 70  61  67  58  59  54  65  68  60  66  0.915607    614/628     RandomExcursions 

 58  62  71  75  39  60  67  68  56  72  0.065546    623/628     RandomExcursionsVariant 

 66  57  74  57  61  71  57  54  61  70  0.616976    621/628     RandomExcursionsVariant 

 68  62  50  69  58  68  54  63  72  64  0.610271    622/628     RandomExcursionsVariant 

 68  62  51  55  69  61  66  70  65  61  0.781044    623/628     RandomExcursionsVariant 

 72  60  53  52  60  64  79  72  57  59  0.239982    622/628     RandomExcursionsVariant 

 75  59  57  60  56  58  69  70  73  51  0.358376    619/628     RandomExcursionsVariant 

 62  58  68  60  72  49  63  58  67  71  0.613623    623/628     RandomExcursionsVariant 

 58  62  63  53  63  50  67  55  68  89  0.042096    623/628     RandomExcursionsVariant 

 58  64  58  64  60  60  54  81  52  77  0.168532    619/628     RandomExcursionsVariant 

 68  42  72  58  60  70  71  63  66  58  0.222556    621/628     RandomExcursionsVariant 

 65  54  61  67  57  75  69  65  58  57  0.707249    620/628     RandomExcursionsVariant 

 62  66  62  59  74  64  64  51  64  62  0.845408    624/628     RandomExcursionsVariant 

 58  65  55  56  65  71  72  76  51  59  0.342708    621/628     RandomExcursionsVariant 

 56  53  59  60  62  65  62  67  69  75  0.723673    618/628     RandomExcursionsVariant 

 60  57  58  47  69  59  71  63  74  70  0.353103    620/628     RandomExcursionsVariant 

 68  50  52  54  68  72  65  64  77  58  0.222556    618/628     RandomExcursionsVariant 

 59  52  54  57  66  70  66  78  63  63  0.446255    620/628     RandomExcursionsVariant 

 55  48  58  61  70  56  77  71  56  76  0.105114    620/628     RandomExcursionsVariant 

117 112  90  83 107 107  81  96 100 107  0.142872    993/1000    Serial 

113  96  97  88 103 108 106  98  90 101  0.786830    983/1000    Serial 

101  96 104  93  98 125  91 110  82 100  0.204439    993/1000    LinearComplexity 
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

The minimum pass rate for each statistical test with the exception of the 

random excursion (variant) test is approximately = 980 for a 

sample size = 1000 binary sequences. 

The minimum pass rate for the random excursion (variant) test 

is approximately = 614 for a sample size = 628 binary sequences. 

For further guidelines construct a probability table using the MAPLE program 

provided in the addendum section of the documentation. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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APPENDIX – D 

NOTE: Most of the tests in DIEHARD return a p-value, which should be uniform 

on [0,1) if the input file contains truly independent random bits.   Those p-values 

are obtained by p=F(X), where F is the assumed distribution of the sample random 

variable X---often normal. But that assumed F is justan asymptotic approximation, 

for which the fit will be worst in the tails. Thus you should not be surprised with 

occasional p-values near 0 or 1, such as .0012 or .9983. When a bit stream really 

FAILS BIG, you will get p's of 0 or 1 to six or more places.  By all means, do not, 

as a Statistician might, think that a p < .025 or p> .975 means that the RNG has 

"failed the test at the .05 level".  Such p's happen among the hundreds that 

DIEHARD produces, even with good RNG's.  So keep in mind that " p happens".                      

______________________________________________________________ 

This is the BIRTHDAY SPACINGS TEST 

Choose m birthdays in a year of n days.  List the spacings between the birthdays.  If 

j is the number of values that occur more than once in that list, then j is 

asymptotically Poisson distributed with mean m^3/(4n).  Experience shows n must 

be quite large, say n>=2^18, for comparing the results to the Poisson distribution 

with that mean.  This test uses n=2^24 and m=2^9,  so that the underlying 

distribution for j is taken to be Poisson with lambda=2^27/(2^26)=2.  A sample of 

500 j's is taken, and a chi-square goodness of fit test provides a p value.  The first 

test uses bits 1-24 (counting from the left) from integers in the specified file. Then 

the file is closed and reopened. Next, bits 2-25 are used to provide birthdays, then 3-

26 and so on to bits 9-32. Each set of bits provides a p-value, and the nine p-values 

provide a sample for a KSTEST. 

 BIRTHDAY SPACINGS TEST, M= 512 N=2**24 LAMBDA=  2.0000 
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           Results for custom_1.bin    

                   For a sample of size 500:     mean    

   The 9 p-values were 

        .335681   .623615   .512990   .638848   .052862 

        .178181   .853718   .943854   .405282 

  A KSTEST for the 9 p-values yields  .000665 

______________________________________________________________       

             THE OVERLAPPING 5-PERMUTATION TEST 

This is the OPERM5 test.  It looks at a sequence of one million 32-bit random 

integers.  Each set of five consecutive integers can be in one of 120 states, for the 5! 

possible orderings of five numbers.  Thus the 5th, 6th, 7th,...numbers each provide a 

state. As many thousands of state transitions are observed,  cumulative counts are 

made of the number of occurences of each state.  Then the quadratic form in the 

weak inverse of the 120x120 covariance matrix yields a test equivalent to the 

likelihood ratio test that the 120 cell counts came from the specified 

(asymptotically) normal distribution with the specified 120x120 covariance matrix 

(with rank 99).  This version uses 1,000,000 integers, twice.     

           OPERM5 test for file custom_1.bin    

For a sample of 1,000,000 consecutive 5-tuples, 

 chisquare for 99 degrees of freedom= 97.795; p-value= .484594 

           OPERM5 test for file custom_1.bin    

     For a sample of 1,000,000 consecutive 5-tuples, 

 chisquare for 99 degrees of freedom=140.726; p-value= .996237 

______________________________________________________________ 

This is the BINARY RANK TEST for 31x31 matrices.  
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The leftmost 31 bits of 31 random integers from the test sequence are used to form a 

31x31 binary matrix over the field {0,1}. The rank is determined. That rank can be 

from 0 to 31, but ranks< 28 are rare, and their counts are pooled with those for rank 

28. Ranks are found for 40,000 such random matrices and a chisquare test is 

performed on counts for ranks 31,30,29 and <=28.   ::         

    Binary rank test for custom_1.bin    

         Rank test for 31x31 binary matrices: 

        rows from leftmost 31 bits of each 32-bit integer 

      rank   observed  expected (o-e)^2/e  sum 

        28       212     211.4   .001602     .002 

        29      5033    5134.0  1.987349    1.989 

        30     23247   23103.0   .896960    2.886 

        31     11508   11551.5   .163993    3.050 

  chisquare= 3.050 for 3 d. of f.; p-value= .656377 

______________________________________________________________   

This is the BINARY RANK TEST for 32x32 matrices.  

A random 32x32 binary matrix is formed, each row a 32-bit random integer. The 

rank is determined. That rank can be from 0 to 32, ranks less than 29 are rare, and 

their counts are pooled with those for rank 29.  Ranks are found for 40,000 such 

random matrices and a chisquare test is performed on counts for ranks  32,31,30 and 

<=29.                                                

    Binary rank test for custom_1.bin    

         Rank test for 32x32 binary matrices: 

        rows from leftmost 32 bits of each 32-bit integer 

      rank   observed  expected (o-e)^2/e  sum 

        29       196     211.4  1.124385    1.124 
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        30      4990    5134.0  4.039523    5.164 

        31     23122   23103.0   .015549    5.179 

        32     11692   11551.5  1.708293    6.888 

  chisquare= 6.888 for 3 d. of f.; p-value= .928777 

______________________________________________________________    

This is the BINARY RANK TEST for 6x8 matrices.   

From each of six random 32-bit integers from the generator under test, a specified 

byte is chosen, and the resulting six bytes form a 6x8 binary matrix whose rank is 

determined.  That rank can be from 0 to 6, but ranks 0,1,2,3 are rare; their counts 

are pooled with those for rank 4. Ranks are found for 100,000 random matrices, and 

a chi-square test is performed on counts for ranks 6,5 and <=4. 

         Binary Rank Test for custom_1.bin    

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG custom_1.bin    

     b-rank test for bits  1 to  8 

   TEST SUMMARY, 25 tests on 100,000 random 6x8 matrices 

 These should be 25 uniform [0,1] random variables: 

     .750451     .071345     .421675     .155774     .827358 

     .376755     .726652     .897187     .786412     .611982 

     .303095     .129650     .127276     .429067     .609446 

     .501428     .221000     .877219     .556928     .329686 

     .369401     .314815     .970922     .116750     .752722 

   brank test summary for custom_1.bin    

       The KS test for those 25 supposed UNI's yields 

                    KS p-value= .034584 
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______________________________________________________________ 

                        THE BITSTREAM TEST 

The file under test is viewed as a stream of bits. Call them b1,b2,... .  Consider an 

alphabet with two "letters", 0 and 1and think of the stream of bits as a succession of 

20-letter "words", overlapping.  Thus the first word is b1b2...b20, the second is 

b2b3...b21, and so on.  The bitstream test counts the number of missing 20-letter 

(20-bit) words in a string of 2^21 overlapping 20-letter words.  There are 2^20 

possible 20 letter words.  For a truly random string of 2^21+19 bits, the number of 

missing words j should be (very close to) normally distributed with mean 141,909 

and sigma 428.  Thus (j-141909)/428 should be a standard normal variate (z score) 

that leads to a uniform [0,1) p value.  The test is repeated twenty times. 

THE OVERLAPPING 20-tuples BITSTREAM  TEST, 20 BITS PER WORD, N 

words 

   This test uses N=2^21 and samples the bitstream 20 times. 

  No. missing words should average  141909. with sigma=428. 

tst no  1:  141469 missing words,   -1.03 sigmas from mean, p-value= .15179 

 tst no  2:  141762 missing words,    -.34 sigmas from mean, p-value= .36534 

 tst no  3:  142141 missing words,     .54 sigmas from mean, p-value= .70585 

 tst no  4:  142516 missing words,    1.42 sigmas from mean, p-value= .92183 

 tst no  5:  141984 missing words,     .17 sigmas from mean, p-value= .56925 

 tst no  6:  141281 missing words,   -1.47 sigmas from mean, p-value= .07104 

 tst no  7:  142413 missing words,    1.18 sigmas from mean, p-value= .88036 

 tst no  8:  141494 missing words,    -.97 sigmas from mean, p-value= .16593 

 tst no  9:  141636 missing words,    -.64 sigmas from mean, p-value= .26154 

 tst no 10:  142805 missing words,    2.09 sigmas from mean, p-value= .98181 

 tst no 11:  141948 missing words,     .09 sigmas from mean, p-value= .53600 
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 tst no 12:  141877 missing words,    -.08 sigmas from mean, p-value= .46990 

 tst no 13:  141847 missing words,    -.15 sigmas from mean, p-value= .44211 

 tst no 14:  141997 missing words,     .20 sigmas from mean, p-value= .58115 

 tst no 15:  141887 missing words,    -.05 sigmas from mean, p-value= .47920 

 tst no 16:  141490 missing words,    -.98 sigmas from mean, p-value= .16361 

 tst no 17:  141875 missing words,    -.08 sigmas from mean, p-value= .46804 

 tst no 18:  142332 missing words,     .99 sigmas from mean, p-value= .83831 

 tst no 19:  142137 missing words,     .53 sigmas from mean, p-value= .70262 

 tst no 20:  141694 missing words,    -.50 sigmas from mean, p-value= .30745 

______________________________________________________________ 

             The tests OPSO, OQSO and DNA 

OPSO means Overlapping-Pairs-Sparse-Occupancy The OPSO test considers 2-

letter words from an alphabet of 1024 letters.  Each letter is determined by a 

specified ten bits from a 32-bit integer in the sequence to be tested. OPSO generates  

2^21 (overlapping) 2-letter words  (from 2^21+1 "keystrokes")  and counts the 

number of missing words---that is 2-letter words which do not appear in the entire 

sequence. That count should be very close to normally distributed with mean 

141,909, sigma 290. Thus (missingwrds-141909)/290 should be a standard normal 

variable. The OPSO test takes 32 bits at a time from the test file and uses a 

designated set of ten consecutive bits. It then restarts the file for the next designated 

10 bits, and so on.  

OQSO means Overlapping-Quadruples-Sparse-Occupancy The test OQSO is 

similar, except that it considers 4-letter words from an alphabet of 32 letters, each 

letter determined by a designated string of 5 consecutive bits from the test file, 

elements of which are assumed 32-bit random integers. The mean number of 

missing words in a sequence of 2^21 four letter words,  (2^21+3 "keystrokes"), is 
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again 141909, with sigma = 295.  The mean is based on theory; sigma comes from 

extensive simulation. 

The DNA test considers an alphabet of 4 letters C,G,A,T determined by two 

designated bits in the sequence of random integers being tested.  It considers 10-

letter words, so that as in OPSO and OQSO, there are 2^20 possible words, and the 

mean number of missing words from a string of 2^21  (over-lapping)  10-letter  

words (2^21+9 "keystrokes") is 141909. The standard deviation sigma=339 was 

determined as for OQSO by simulation.  (Sigma for OPSO, 290, is the true value (to 

three places), not determined by simulation.    

 OPSO test for generator custom_1.bin    

  Output: No. missing words (mw), equiv normal variate (z), p-value (p) 

                                                           mw     z     p 

    OPSO for custom_1.bin    using bits 23 to 32        142229  1.102  .8648 

    OPSO for custom_1.bin    using bits 22 to 31        142369  1.585  .9435 

    OPSO for custom_1.bin    using bits 21 to 30        142212  1.044  .8517 

    OPSO for custom_1.bin    using bits 20 to 29        141672  -.818  .2066 

    OPSO for custom_1.bin    using bits 19 to 28        141961   .178  .5707 

    OPSO for custom_1.bin    using bits 18 to 27        142411  1.730  .9582 

    OPSO for custom_1.bin    using bits 17 to 26        141994   .292  .6148 

    OPSO for custom_1.bin    using bits 16 to 25        141853  -.194  .4230 

    OPSO for custom_1.bin    using bits 15 to 24        141968   .202  .5802 

    OPSO for custom_1.bin    using bits 14 to 23        141441 -1.615  .0532 

    OPSO for custom_1.bin    using bits 13 to 22        141432 -1.646  .0499 

    OPSO for custom_1.bin    using bits 12 to 21        141677  -.801  .2115 

    OPSO for custom_1.bin    using bits 11 to 20        141948   .133  .5530 
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    OPSO for custom_1.bin    using bits 10 to 19        142017   .371  .6448 

    OPSO for custom_1.bin    using bits  9 to 18        142267  1.233  .8913 

    OPSO for custom_1.bin    using bits  8 to 17        141869  -.139  .4447 

    OPSO for custom_1.bin    using bits  7 to 16        142165   .882  .8110 

    OPSO for custom_1.bin    using bits  6 to 15        142239  1.137  .8722 

    OPSO for custom_1.bin    using bits  5 to 14        142041   .454  .6751 

    OPSO for custom_1.bin    using bits  4 to 13        141881  -.098  .4611 

    OPSO for custom_1.bin    using bits  3 to 12        141376 -1.839  .0330 

    OPSO for custom_1.bin    using bits  2 to 11        141798  -.384  .3505 

    OPSO for custom_1.bin    using bits  1 to 10        142104   .671  .7490 

 OQSO test for generator custom_1.bin    

  Output: No. missing words (mw), equiv normal variate (z), p-value (p) 

                                                           mw     z     p 

    OQSO for custom_1.bin    using bits 28 to 32        142003   .318  .6246 

    OQSO for custom_1.bin    using bits 27 to 31        141829  -.272  .3927 

    OQSO for custom_1.bin    using bits 26 to 30        142261  1.192  .8834 

    OQSO for custom_1.bin    using bits 25 to 29        141573 -1.140  .1271 

    OQSO for custom_1.bin    using bits 24 to 28        142092   .619  .7321 

    OQSO for custom_1.bin    using bits 23 to 27        142247  1.145  .8738 

    OQSO for custom_1.bin    using bits 22 to 26        141604 -1.035  .1503 

    OQSO for custom_1.bin    using bits 21 to 25        141790  -.405  .3429 

    OQSO for custom_1.bin    using bits 20 to 24        141726  -.621  .2672 

    OQSO for custom_1.bin    using bits 19 to 23        141859  -.171  .4323 

    OQSO for custom_1.bin    using bits 18 to 22        142236  1.107  .8659 
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    OQSO for custom_1.bin    using bits 17 to 21        142110   .680  .7518 

    OQSO for custom_1.bin    using bits 16 to 20        141893  -.055  .4779 

    OQSO for custom_1.bin    using bits 15 to 19        141873  -.123  .4510 

    OQSO for custom_1.bin    using bits 14 to 18        141663  -.835  .2019 

    OQSO for custom_1.bin    using bits 13 to 17        142148   .809  .7908 

    OQSO for custom_1.bin    using bits 12 to 16        141528 -1.293  .0981 

    OQSO for custom_1.bin    using bits 11 to 15        141761  -.503  .3075 

    OQSO for custom_1.bin    using bits 10 to 14        142463  1.877  .9697 

    OQSO for custom_1.bin    using bits  9 to 13        142191   .955  .8302 

    OQSO for custom_1.bin    using bits  8 to 12        141942   .111  .5441 

    OQSO for custom_1.bin    using bits  7 to 11        142075   .562  .7128 

    OQSO for custom_1.bin    using bits  6 to 10        142082   .585  .7208 

    OQSO for custom_1.bin    using bits  5 to  9        141856  -.181  .4283 

    OQSO for custom_1.bin    using bits  4 to  8        141892  -.059  .4766 

    OQSO for custom_1.bin    using bits  3 to  7        142510  2.036  .9791 

    OQSO for custom_1.bin    using bits  2 to  6        141854  -.188  .4256 

    OQSO for custom_1.bin    using bits  1 to  5        141845  -.218  .4137 

  DNA test for generator custom_1.bin    

  Output: No. missing words (mw), equiv normal variate (z), p-value (p) 

                                                           mw     z     p 

     DNA for custom_1.bin    using bits 31 to 32        141819  -.266  .3949 

     DNA for custom_1.bin    using bits 30 to 31        141559 -1.033  .1507 

     DNA for custom_1.bin    using bits 29 to 30        141861  -.143  .4433 

     DNA for custom_1.bin    using bits 28 to 29        141473 -1.287  .0990 
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     DNA for custom_1.bin    using bits 27 to 28        141487 -1.246  .1064 

     DNA for custom_1.bin    using bits 26 to 27        141679  -.679  .2484 

     DNA for custom_1.bin    using bits 25 to 26        142228   .940  .8264 

     DNA for custom_1.bin    using bits 24 to 25        141723  -.550  .2913 

     DNA for custom_1.bin    using bits 23 to 24        141563 -1.022  .1535 

     DNA for custom_1.bin    using bits 22 to 23        142324  1.223  .8894 

     DNA for custom_1.bin    using bits 21 to 22        142111   .595  .7240 

     DNA for custom_1.bin    using bits 20 to 21        141967   .170  .5675 

     DNA for custom_1.bin    using bits 19 to 20        141643  -.786  .2160 

     DNA for custom_1.bin    using bits 18 to 19        142053   .424  .6641 

     DNA for custom_1.bin    using bits 17 to 18        142310  1.182  .8814 

     DNA for custom_1.bin    using bits 16 to 17        142064   .456  .6759 

     DNA for custom_1.bin    using bits 15 to 16        141804  -.311  .3780 

     DNA for custom_1.bin    using bits 14 to 15        141657  -.744  .2283 

     DNA for custom_1.bin    using bits 13 to 14        142042   .391  .6522 

     DNA for custom_1.bin    using bits 12 to 13        141224 -2.022  .0216 

     DNA for custom_1.bin    using bits 11 to 12        142787  2.589  .9952 

     DNA for custom_1.bin    using bits 10 to 11        142248   .999  .8411 

     DNA for custom_1.bin    using bits  9 to 10        141920   .031  .5126 

     DNA for custom_1.bin    using bits  8 to  9        142480  1.683  .9539 

     DNA for custom_1.bin    using bits  7 to  8        142025   .341  .6335 

     DNA for custom_1.bin    using bits  6 to  7        141714  -.576  .2822 

     DNA for custom_1.bin    using bits  5 to  6        142027   .347  .6357 

     DNA for custom_1.bin    using bits  4 to  5        141994   .250  .5986 
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     DNA for custom_1.bin    using bits  3 to  4        141646  -.777  .2186 

     DNA for custom_1.bin    using bits  2 to  3        142041   .388  .6511 

     DNA for custom_1.bin    using bits  1 to  2        141729  -.532  .2974 

______________________________________________________________     

          This is the COUNT-THE-1's TEST on a stream of bytes. 

Consider the file under test as a stream of bytes (four per 32 bit integer).  Each byte 

can contain from 0 to 8 1's, with probabilities 1,8,28,56,70,56,28,8,1 over 256.  

Now let the stream of bytes provide a string of overlapping  5-letter words, each 

"letter" taking values A,B,C,D,E. The letters are determined by the number of 1's in 

a byte::  0,1,or 2 yield A, 3 yields B, 4 yields C, 5 yields D and 6,7 or 8 yield E. 

Thus we have a monkey at a typewriter hitting five keys with various probabilities 

(37,56,70,56,37 over 256).  There are 5^5 possible 5-letter words, and from a string 

of 256,000 (overlapping) 5-letter words, counts are made on the frequencies for 

each word.   The quadratic form in the weak inverse of the covariance matrix of the 

cell counts provides a chisquare test Q5-Q4, the difference of the naive Pearson 

sums of (OBS-EXP)^2/EXP on counts for 5- and 4-letter cell counts.  

   Test results for custom_1.bin    

 Chi-square with 5^5-5^4=2500 d.of f. for sample size:2560000 

                               chisquare  equiv normal  p-value 

  Results fo COUNT-THE-1's in successive bytes: 

 byte stream for custom_1.bin     2510.48       .148      .558909 

 byte stream for custom_1.bin     2421.22     -1.114      .132617 

______________________________________________________________ 

          This is the COUNT-THE-1's TEST for specific bytes. 

Consider the file under test as a stream of 32-bit integers. From each integer, a 

specific byte is chosen , say the leftmost bits 1 to 8. Each byte can contain from 0 to 
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8 1's, with probabilitie 1,8,28,56,70,56,28,8,1 over 256.  Now let the specified bytes 

from successive integers provide a string of (overlapping) 5-letter words, each 

"letter" taking values A,B,C,D,E. The letters are determined  by the number of 1's, 

in that byte::  0,1,or 2 ---> A, 3 ---> B, 4 ---> C, 5 ---> D, and  6,7 or 8 ---> E.  Thus 

we have a monkey at a typewriter hitting five keys with with various probabilities 

37,56,70,56,37 over 256. There are 5^5 possible 5-letter words, and from a string of 

256,000 (overlapping) 5-letter words, counts are made on the frequencies for each 

word. The quadratic in the weak inverse of the covariance matrix of the cell counts 

provides a chisquare test::  Q5-Q4, the difference of the naive Pearson  sums of 

(OBS-EXP)^2/EXP on counts for 5- and 4-letter cell counts. 

Chi-square with 5^5-5^4=2500 d.of f. for sample size: 256000 

                      chisquare  equiv normal  p value 

  Results for COUNT-THE-1's in specified bytes: 

           bits  1 to  8  2443.96      -.793      .214021 

           bits  2 to  9  2416.46     -1.181      .118708 

           bits  3 to 10  2526.06       .369      .643754 

           bits  4 to 11  2491.55      -.119      .452443 

           bits  5 to 12  2522.34       .316      .623997 

           bits  6 to 13  2491.22      -.124      .450586 

           bits  7 to 14  2625.15      1.770      .961623 

           bits  8 to 15  2593.83      1.327      .907740 

           bits  9 to 16  2449.62      -.712      .238096 

           bits 10 to 17  2451.16      -.691      .244880 

           bits 11 to 18  2507.65       .108      .543071 

           bits 12 to 19  2434.88      -.921      .178539 

           bits 13 to 20  2520.40       .288      .613514 
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           bits 14 to 21  2525.94       .367      .643154 

           bits 15 to 22  2594.37      1.335      .909005 

           bits 16 to 23  2541.63       .589      .721994 

           bits 17 to 24  2591.28      1.291      .901629 

           bits 18 to 25  2509.22       .130      .551845 

           bits 19 to 26  2389.95     -1.556      .059817 

           bits 20 to 27  2439.70      -.853      .196882 

           bits 21 to 28  2479.03      -.297      .383389 

           bits 22 to 29  2562.59       .885      .811954 

           bits 23 to 30  2485.35      -.207      .417942 

           bits 24 to 31  2446.02      -.763      .222608 

           bits 25 to 32  2571.86      1.016      .845259 

______________________________________________________________        

                THIS IS A PARKING LOT TEST 

In a square of side 100, randomly "park" a car---a circle of radius 1.   Then try to 

park a 2nd, a 3rd, and so on, each time parking "by ear".  That is, if an attempt to 

park a car causes a crash with one already parked, try again at a new random 

location. (To avoid path problems, consider parking helicopters rather than cars.)   

Each attempt leads to either a crash or a success, the latter followed by an increment 

to the list of cars already parked. If we plot n:  the number of attempts, versus k the 

number successfully parked, we get a curve that should be similar to those provided 

by a perfect random number generator.  Theory for the behavior of such a random 

curve seems beyond reach, and as graphics displays are not available for this battery 

of tests, a simple characterization of the random experiment is used: k, the number 

of cars successfully parked after n=12,000 attempts. Simulation shows that k should 

average 3523 with sigma 21.9 and is very close to normally distributed.  Thus (k-
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3523)/21.9 should be a standard normal variable, which, converted to a uniform 

variable, provides input to a KSTEST based on a sample of 10.        

           CDPARK: result of ten tests on file custom_1.bin    

            Of 12,000 tries, the average no. of successes 

                 should be 3523 with sigma=21.9 

            Successes: 3541    z-score:   .822 p-value: .794438 

            Successes: 3561    z-score:  1.735 p-value: .958644 

            Successes: 3555    z-score:  1.461 p-value: .928018 

            Successes: 3548    z-score:  1.142 p-value: .873180 

            Successes: 3520    z-score:  -.137 p-value: .445521 

            Successes: 3553    z-score:  1.370 p-value: .914635 

            Successes: 3497    z-score: -1.187 p-value: .117571 

            Successes: 3489    z-score: -1.553 p-value: .060270 

            Successes: 3534    z-score:   .502 p-value: .692266 

            Successes: 3520    z-score:  -.137 p-value: .445521 

           square size   avg. no.  parked   sample sigma 

             100.            3531.800       23.494 

            KSTEST for the above 10: p=  .818998 

______________________________________________________________ 

               THE MINIMUM DISTANCE TEST 

It does this 100 times::   choose n=8000 random points in a square of side 10000.  

Find d, the minimum distance between the (n^2-n)/2 pairs of points.  If the points 

are truly independent uniform, then d^2, the square of the minimum distance should 

be (very close to) exponentially distributed with mean .995 .  Thus 1-exp(-d^2/.995) 

should be uniform on [0,1) and a KSTEST on the resulting 100 values serves as a 
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test of uniformity for random points in the square. Test numbers=0 mod 5 are 

printed but the KSTEST is based on the full set of 100 random choices of 8000 

points in the 10000x10000 square.  

               This is the MINIMUM DISTANCE test 

              for random integers in the file custom_1.bin    

     Sample no.    d^2     avg     equiv uni             

           5     .2568    .4633     .227466 

          10     .3804    .6225     .317684 

          15     .3710   1.0337     .311239 

          20    2.7945   1.5499     .939706 

          25     .0367   1.3904     .036204 

          30     .9667   1.2787     .621501 

          35     .1312   1.1506     .123576 

          40    1.1381   1.1592     .681391 

          45    1.4139   1.1469     .758522 

          50     .2297   1.1258     .206137 

          55    2.0995   1.1709     .878767 

          60     .0429   1.1082     .042214 

          65    5.2945   1.1434     .995113 

          70     .2287   1.1530     .205350 

          75     .2150   1.1202     .194297 

          80    5.5842   1.1310     .996347 

          85    1.7746   1.1254     .831956 

          90    5.6926   1.1848     .996724 



116 

 

          95    2.3002   1.1930     .900917 

         100    2.4611   1.1748     .915710 

     MINIMUM DISTANCE TEST for custom_1.bin    

          Result of KS test on 20 transformed mindist^2's: 

                                  p-value= .673039 

______________________________________________________________    

              THE 3DSPHERES TEST 

Choose  4000 random points in a cube of edge 1000.  At each point, center a sphere 

large enough to reach the next closest point. Then the volume of the smallest such 

sphere is (very close to) exponentially distributed with mean 120pi/3.  Thus the 

radius cubed is exponential with mean 30. (The mean is obtained by extensive 

simulation).  The 3DSPHERES test generates 4000 such spheres 20 times.  Each 

min radius cubed leads to a uniform variable by means of 1-exp(-r^3/30.), then a 

KSTEST is done on the 20 p-values.  

               The 3DSPHERES test for file custom_1.bin    

 sample no:  1     r^3=  14.010     p-value= .37313 

 sample no:  2     r^3=   4.483     p-value= .13881 

 sample no:  3     r^3=   4.290     p-value= .13323 

 sample no:  4     r^3=   8.167     p-value= .23833 

 sample no:  5     r^3=  10.468     p-value= .29456 

 sample no:  6     r^3=  11.586     p-value= .32037 

 sample no:  7     r^3=   6.453     p-value= .19355 

 sample no:  8     r^3=  27.781     p-value= .60388 

 sample no:  9     r^3=  45.703     p-value= .78204 

 sample no: 10     r^3=  11.222     p-value= .31207 
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 sample no: 11     r^3= 124.081     p-value= .98401 

 sample no: 12     r^3=  18.753     p-value= .46479 

 sample no: 13     r^3=  36.836     p-value= .70709 

 sample no: 14     r^3=  27.195     p-value= .59606 

 sample no: 15     r^3=  26.891     p-value= .59195 

 sample no: 16     r^3=   2.189     p-value= .07038 

 sample no: 17     r^3=  25.173     p-value= .56789 

 sample no: 18     r^3=  44.948     p-value= .77648 

 sample no: 19     r^3=  11.705     p-value= .32305 

 sample no: 20     r^3=  88.002     p-value= .94678 

  A KS test is applied to those 20 p-values. 

       3DSPHERES test for file custom_1.bin         p-value= .199021 

______________________________________________________________ 

      This is the SQEEZE test 

Random integers are floated to get uniforms on [0,1). Starting with 

k=2^31=2147483647, the test finds j, the number of iterations necessary to reduce k 

to 1, using the reduction k=ceiling(k*U), with U provided by floating integers from 

the file being tested.  Such j's are found 100,000 times, then counts for the number 

of times j was <=6,7,...,47,>=48 are used to provide a chi-square test for cell 

frequencies.  

            RESULTS OF SQUEEZE TEST FOR custom_1.bin    

         Table of standardized frequency counts 

     ( (obs-exp)/sqrt(exp) )^2 

        for j taking values <=6,7,8,...,47,>=48: 

     1.3     -.3      .6     -.5     1.4     -.8 
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     1.3     -.4     -.9    -2.4     1.2      .5 

    -1.9      .0     -.8      .4    -1.7      .8 

    -1.0      .9     1.8      .8    -1.8     1.0 

      .4     1.3      .1    -1.1     1.6     1.5 

      .0     -.1      .9    -1.0     1.3     -.5 

      .7      .8     1.3     -.7    -1.3      .0 

     -.1 

           Chi-square with 42 degrees of freedom: 50.305 

              z-score=   .906  p-value= .822518 

______________________________________________________________ 

             The  OVERLAPPING SUMS test 

 Integers are floated to get a sequence U(1),U(2),... of uniform [0,1) variables.  Then 

overlapping sums, S(1)=U(1)+...+U(100), S2=U(2)+...+U(101),... are formed. The 

S's are virtually normal with a certain covariance matrix.  A linear transformation of 

the S's converts them to a sequence of independent standard normals, which are 

converted to uniform variables for a KSTEST. The  p-values from ten KSTESTs are 

given still another KSTEST. 

                Test no.  1      p-value  .250680 

                Test no.  2      p-value  .636456 

                Test no.  3      p-value  .306310 

                Test no.  4      p-value  .204592 

                Test no.  5      p-value  .001913 

                Test no.  6      p-value  .956360 

                Test no.  7      p-value  .606248 

                Test no.  8      p-value  .223802 



119 

 

                Test no.  9      p-value  .562835 

                Test no. 10      p-value  .001896 

   Results of the OSUM test for custom_1.bin    

        KSTEST on the above 10 p-values:  .931216 

______________________________________________________________ 

This is the RUNS test.   

It counts runs up, and runs down, in a sequence of uniform [0,1) variables, obtained 

by floating the 32-bit integers in the specified file. This example shows how runs 

are counted:  .123,.357,.789,.425,.224,.416,.95 contains an up-run of length 3, a 

down-run of length 2 and an up-run of (at least) 2, depending on the next values.  

The covariance matrices for the runs-up and runs-down are well known, leading to 

chisquare tests for quadratic forms in the weak inverses of the covariance matrices.  

Runs are counted for sequences of length 10,000.  This is done ten times. Then 

repeated.                                                      

           The RUNS test for file custom_1.bin    

     Up and down runs in a sample of 10000 

                 Run test for custom_1.bin   : 

       runs up; ks test for 10 p's: .772382 

     runs down; ks test for 10 p's: .953169 

                 Run test for custom_1.bin   : 

       runs up; ks test for 10 p's: .597759 

     runs down; ks test for 10 p's: .438695 

______________________________________________________________ 

    This is the CRAPS TEST.  

It plays 200,000 games of craps, finds the number of wins and the number of throws 

necessary to end each game.  The number of wins should be (very close to) a 
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normal with mean 200000p and variance 200000p(1-p), with p=244/495.  Throws 

necessary to complete the game can vary from 1 to infinity, but counts for all>21 

are lumped with 21. A chi-square test is made on the no.-of-throws cell counts. 

Each 32-bit integer from the test file provides the value for the throw of a die, by 

floating to [0,1), multiplying by 6 and taking 1 plus the integer part of the result.             

::         

                Results of craps test for custom_1.bin    

  No. of wins:  Observed Expected 

                                98483    98585.86 

                  98483= No. of wins, z-score= -.460 pvalue= .32274 

   Analysis of Throws-per-Game: 

 Chisq=  19.90 for 20 degrees of freedom, p=  .53605 

               Throws Observed Expected  Chisq     Sum 

                  1    66834    66666.7    .420     .420 

                  2    37818    37654.3    .711    1.131 

                  3    26537    26954.7   6.474    7.605 

                  4    19355    19313.5    .089    7.695 

                  5    13716    13851.4   1.324    9.018 

                  6    10025     9943.5    .667    9.686 

                  7     7207     7145.0    .538   10.223 

                  8     5191     5139.1    .525   10.748 

                  9     3735     3699.9    .334   11.082 

                 10     2586     2666.3   2.418   13.500 

                 11     1942     1923.3    .181   13.681 

                 12     1403     1388.7    .146   13.828 
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                 13      969     1003.7   1.201   15.028 

                 14      752      726.1    .921   15.949 

                 15      533      525.8    .098   16.047 

                 16      377      381.2    .045   16.092 

                 17      275      276.5    .009   16.101 

                 18      222      200.8   2.232   18.332 

                 19      135      146.0    .826   19.159 

                 20      112      106.2    .315   19.474 

                 21      276      287.1    .430   19.904 

            SUMMARY  FOR custom_1.bin    

                p-value for no. of wins: .322741 

                p-value for throws/game: .536055 

 

 Results of DIEHARD battery of tests sent to file custom_1.txt 


