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ABSTRACT 
 

 

 
DETERMINATION OF STOCHASTIC MODEL PARAMETERS OF INERTIAL SENSORS 

 
 
 

Ünver, Alper 

 PhD, Department of Electric Electronic Engineering 

      Supervisor: Prof. Dr. Mübeccel Demirekler  

 

January 2013, 82 pages 

 

Gyro and accelerometer systematic errors due to biases, scale factors, and 
misalignments can be compensated via an on-board Kalman filtering approach in a 
Navigation System. On the other hand, sensor random noise sources such as 
Quantization Noise (QN), Angular Random Walk (ARW), Flicker Noise (FN), and Rate 
Random Walk (RRW) are not easily estimated by an on-board filter, due to their random 
characteristics.  
 
In this thesis a new method based on the variance of difference sequences is proposed 
to compute the powers of the above mentioned noise sources. The method is capable of 
online or offline estimation of stochastic model parameters of the inertial sensors. Our 
aim in this study is the estimation of ARW, FN and RRW parameters besides the 
quantization and the Gauss-Markov noise parameters of the inertial sensors. 
 
The proposed method is tested both on the simulated and the real sensor data and the 
results are compared with the Allan variance method. Comparison shows very 
satisfactory results for the performance of the method. Computational load of the new 
method is less than the computational load of the Allan variance on the order of tens. 
 
One of the usages of this method is the individual noise characterization. A noise, whose 
power spectral density has a constant slope, can be identified accurately by the proposed 
method. In addition to this, the parameters of the GM noise can also be determined. 
 
Another idea developed here is to approximate the overall error source as a combination 
of ARW and some number of GM sources only. The reasons of selecting such a structure 
is the feasibility of using these models in a Kalman filter framework for error propagation 
as well as their generality of modeling other noise sources.     
 
 
Keywords: Angle Random Walk (ARW), Rate Random Walk (RRW), Flicker (1/f) Noise, 
Quantization Noise (QN), Gauss-Markov Noise, Allan Variance, Online Parameter 
Estimation. 
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ÖZ 
 

 

 
ATALETSEL ÖLÇERLERİN STOKASTİK MODEL PARAMETRELERİNİN 

BELİRLENMESİ 
 
 
 

Ünver, Alper 

 Doktora, Elektrik Elektronik Mühendisliği Bölümü 

        Tez Yöneticisi : Prof. Dr. Mübeccel Demirekler  

 

Ocak 2013, 82 sayfa 

 
 
Dönüölçer ve ivmeölçerin sabit kayma, orantı katsayısı açı kayma hatalarından kaynaklı 
sistamatik hataları seyrüsefer sistemlerinde gerçek zamanlı çalışan Kalman filtre 
yaklaşımı ile giderilebilmektedir. Diğer yandan nicemleme, açısal rastgele yürüme, sabit 
kayma kararsızlığı ve açısal hız rastgele yürüme hataları rastgele yapısından dolayı 
kolaylıkla kestirelemez. 
 
Bu tezde fark dizilerinin varyansına dayanan ve yukarıda bahsi geçen stokhastik hata 
kaynaklarının gücünü hesap eden yeni bir yöntem önerilmektedir. Bu metod ile ataletsel 
ölçerlerin stokhastik hata kaynakları eşzamanlı veya ard işlemleme ile hesap 
edilebilmektedir. Bu çalışmaaki amacımız ataletsel ölçerlerin açısal rastgele yürüme, 
sabit kayma kararsızlığı ve açısal hız rastgele yürüme hatalarının yanısıra Gauss Markov 
ve nicemleme hata parametrelerinin kestirilmesidir. 
 
Önerilen metod benzetim ve gerçek ataletsel ölçer verileri kullanılarak ve test edilip, 
sonuçlar Allan variance yöntemi ile karşılaştırılmıştır. Karşılaştırmalar sonucunda önerilen 
metodun performansına ilişkin çok iyi sonuçlar bulunmuştur.Önerilen metodun hesaplama 
yükü Allan varyans yöntemine gore 10 katlar mertebesinde daha azdır. 
 
Tek bir gürültü kaynağının karekterizasyonu bu metod kullanılarak gerçekleştirilebilir. Güç 
tayf yoğunluğunda sabit eğime sahip gürültülerin önerilen metod ile tüm parametreleri 
kestirilebilir. Gürültü kaynağının Gauss Markov olduğu biliniyorsa bu gürültüye ait de 
bütün parametreler kestirilebilir. 
 
Bu çalışmada geliştirilen bir başka fikirde bütün hata kaynaklarını açısal rasgele yürüme 
ve birkaç Gauss Markov hata modeli ile karakterize etmektir.Bu yapısal seçimdeki en 
önemli neden Kalman filtre yapısındaki hata ilerlemelerine uyumluluk ile Gauss Markov 
hata kanağının diğer hata kaynaklarını modellemek için uygunluğudur. 
 
 
Anahtar Kelimeler: Açısal Rasgele Yürüme, Flicker Gürültüsü, Hız Rasgele Yürüme, 
Allan Variance, Gerçek Zamanlı Kestirim 



 vii 

 

 

 

 

 

 

 

 
 

To my father, İsmail ÜNVER 
 



 viii 

 

ACKNOWLEDGMENTS 
 
I would like to express my sincere gratitude to Prof Dr. Mübeccel DEMİREKLER for her 

endless support, guidance and for helpful discussions we have made throughout the 

study. 

 

This work has been supported by TÜBİTAK-SAGE and ASELASAN. I would like to thank 

TÜBİTAK-SAGE and ASELSAN for providing the computational power and literature 

sources which were enormously important for this study. 

 

I would like to thank my colleagues Dr. Burak KAYGISIZ and Dr. Yüksel SUBAŞI for their 

unforgettable valuable teamwork and help in my studies. 

 

My special thanks go to my mother, Hanife ÜNVER, my father İsmail ÜNVER and my 

brother Mehmet Emin ÜNVER, for their endless support. 

 

Lastly, my deepest thanks go to my wife and two daughters who gave me endless 

support and love which made this thesis possible. 



 ix 

TABLE OF CONTENTS 
 

 
ABSTRACT ..................................................................................................................... v 
ÖZ ................................................................................................................................. vi 
ACKNOWLEDGMENTS ............................................................................................... viii 
TABLE OF CONTENTS ................................................................................................. ix 
LIST OF FIGURES ......................................................................................................... xi 
LIST OF TABLES ......................................................................................................... xiii 
CHAPTERS 
1. INTRODUCTION ........................................................................................................ 1 
2. ALLAN VARIANCE AND STOCHASTIC ERROR PARAMETERS OF INERTIAL 
SENSOR........................................................................................................................ 5 

2.1 Allan Variance Background .................................................................................. 5 
2.2 Allan Variance and Power Spectral Density .......................................................... 6 
2.3 Derivation of the Allan Variance ............................................................................ 7 
2.4 Typical Allan Variance Plot ..................................................................................10 

3. INERTIAL SENSOR MODELING AND ESTIMATION OF ITS RANDOM NOISE 
SOURCES ....................................................................................................................13 

3.1 Systematic Error Model of Inertial Sensors ..........................................................13 
3.2 Stochastic Error Models of Inertial Sensors .........................................................16 
3.3 Quantization Noise ..............................................................................................16 
3.4 Angle Random Walk ............................................................................................17 
3.5 Gauss-Markov Noise ...........................................................................................17 
3.6 Bias Instability .....................................................................................................18 
3.7 Rate Random Walk .............................................................................................19 
3.8 Rate Ramp ..........................................................................................................19 
3.9 Stochastic Model Used in the Study ....................................................................20 

4. VARIANCES OF DIFFERENCES ..............................................................................21 
4.1 Sensor Output Difference Variance .....................................................................22 
4.2 Difference Variance of Quantization Noise ...........................................................23 
4.3 Difference Variance of Angle Random Walk Noise ..............................................23 
4.4 Difference Variance of Gauss-Markov Noise........................................................23 
4.5 Difference Variance of Bias Instability Noise ........................................................25 
4.6 Difference Variance of the Rate Random Walk Noise ..........................................26 

5. LEAST SQUARES ESTIMATION FORMULATION ....................................................29 
5.1 Selection of the Sequence of Delay Times ...........................................................31 
5.2 Sampling Time ....................................................................................................34 
5.3 Weighted Least Squares Estimate .......................................................................35 

6. SIMULATIONS AND RESULTS.................................................................................41 
6.1 Step Wise Changing Interval Lengths ..................................................................45 
6.2 Interval Lengths Changing with Square Function .................................................52 

6.3 Application to the Real Data ..........................................................................56 
7. INDIVIDUAL NOISE CHARACTERIZATION ..............................................................59 

7.1 Generation of 1/f
α 

Noise Source ....................................................................60 
7.2 Characterization of 1/f

α 
Noise Source...................................................................61 

7.3 Simulations for Identification of 1/f
α
 Noise ............................................................62 

7.4 Generation and Characterization of First Order Gauss-Markov Model ..................66 
7.5 Simulations for GM Noise ....................................................................................67 

8. STOCHASTIC MODELLING USING ANGLE RANDOM WALK AND GAUSS MARKOV 
NOISE MODELS ...........................................................................................................69 

8.1 Simplified Stochastic Model and The Algorithm ...................................................69 
8.2 Simulations .........................................................................................................72 
8.3 Modeling by Using Two or More GM Noise Sources ............................................75 
8.4 Summary ............................................................................................................77 



 x 

9. CONCLUSIONS ........................................................................................................ 79 
REFERENCES ............................................................................................................. 81 



 xi 

LIST OF FIGURES 
 
 
FIGURES 

Figure 1: f(x) =sin
4
(x)/ (x)

2
 plots for =1 (Blue) and=2 (Red) ........................................ 7 

Figure 2: Typical Allan Variance Plot .............................................................................11 
Figure 3: Gyroscope and Accelerometer Model Compensation Technique .....................15 
Figure 4: Stochastic Model of Inertial Sensor used in this study .....................................20 
Figure 5: Magnitude response of the comb filter ............................................................22 
Figure 6: GM noise difference variances (Tc=3sec) normalized with input variance for 
0.1sec sampling time .....................................................................................................24 
Figure 7: Bias instability noise difference variances normalized with input variance for 
1sec sampling time .......................................................................................................25 
Figure 8: Objective function versus the correlation time .................................................31 
Figure 9: Difference values for different data lengths .....................................................33 
Figure 10: Difference lengths generated by different strategies ......................................34 
Figure 11: BI noise difference variance errors (Blue: 50 hours, Red: 5 hours) ................36 
Figure 12: Average error of BI difference variance .........................................................36 
Figure 13: RRW noise difference variance errors (Blue: 50 hours, Red: 5 hours) ...........37 
Figure 14: Average error of RRW difference variance ....................................................37 
Figure 15: ARW noise difference variance versus error difference values (Blue: 50 hours, 
Red: 5 hours) ................................................................................................................38 
Figure 16: QN noise difference variance versus error difference values (Blue: 50 hours, 
Red: 5 hours) ................................................................................................................38 
Figure 17: GM noise difference variance versus error difference values (Blue: 50 hours, 
Red: 5 hours) ................................................................................................................39 
Figure 18: Calculation of difference variances................................................................39 
Figure 19: Allan variance plot of the first example ..........................................................41 
Figure 20: Allan variance plot for different GM correlation times. Increasing curves 
correspond to increase in correlation times from 3sec to 21sec by 2sec steps ...............43 
Figure 21: Percentage errors in the estimation of parameters for different simulation times
 .....................................................................................................................................43 
Figure 22: Difference variances for the noise sources at 10Hz. (A) Gauss Markov noise 
for different correlation times, (B) All other noise sources. Input noise variances GM=1, 
ARW=1, BI=4, RRW=0.07, QN=0.1 (C) BI ‘variance=3.2’ and GM ‘variance=1, Tc=20’ (D) 
RRW ‘variance=0.5’ and GM ‘variance=1, Tc=60’ ..........................................................44 
Figure 23: Allan variance plot for simulation 1 ................................................................46 
Figure 24: Stochastic error parameter estimations for correlation times, 5, 8, 10, 15, 20, 
25, 30, 35, 40, 45, 50, 55, 60 sec and for different simulation times (Actual values are 
ARW=5, BI=0.5, RRW=0.001, QN=0.3, GM=0.2) ...........................................................47 
Figure 25: Allan variance plot for simulation 2 ................................................................48 
Figure 26: Stochastic error parameter estimations for correlation times, 5, 8, 10, 15, 20, 
25, 30, 35, 40, 45, 50, 55, 60 sec and for different simulation times (Actual values are 
ARW=1, BI=0.07, RRW=0.0007, QN=0.1, GM=0.06) .....................................................49 
Figure 27: Allan variance plot for simulation 3 ................................................................50 
Figure 28: Stochastic error parameter estimations for correlation times, 5, 8, 10, 15, 20, 
25, 30, 35, 40, 45, 50, 55, 60 sec and for different simulation times (Actual values are 
ARW=1, BI=0.5, RRW=0.0003, QN=0.2, GM=0.1) .........................................................51 
Figure 29: Stochastic error parameter estimations for different correlation times, 10, 20, 
30, 40, 50, 60 sec and for different simulation times (Actual values are ARW=1.9, BI=0.7, 
RRW=0.005, QN=0.5, GM=0.6) .....................................................................................53 
Figure 30: Error parameter estimations for different correlation times, 10, 20, 30, 40, 50, 
60 sec and for different simulation times (Actual values are ARW=1, BI=0.1, RRW=0.005, 
QN=0.1, GM=0.05) ........................................................................................................55 



 xii 

Figure 31: Error parameter estimations for different correlation times, 10, 20, 30, 40, 50, 
60 sec and for different simulation times (Actual values are ARW=1, BI=0.5, 
RRW=0.0003, QN=0.2, GM=0.1)................................................................................... 56 
Figure 32: Output of the real MEMs sensor ................................................................... 57 
Figure 33: Allan Variance of real sensor output (blue) and estimated sensor output (red)
 ..................................................................................................................................... 58 
Figure 34: Root Allan Variance of 1/f

α
 noise .................................................................. 60 

Figure 35: Cost Function Change While   Changes From -2 to 2 ................................ 63 

Figure 36: Cost Function Change While   Changes From -2 to 2 with Axis Limitation .. 63 

Figure 37: Convergence of the parameter   for 5 hours simulation time ...................... 64 

Figure 38: Convergence of the parameter   for 1 hour simulation time ........................ 65 

Figure 39:Stochastic Model Used in This Study ............................................................. 70 
Figure 40: Simplified Model ........................................................................................... 70 
Figure 41: Allan variance of generated (blue) and estimated (red) sensor output ........... 72 
Figure 42: Allan Variance of Inertial Measurement Unit Accelerometer .......................... 73 
Figure 43:Allan Variance of Inertial Measurement Unit Gyroscope ................................. 73 
Figure 44: Allan Variance of Inertial Measurement Unit Accelerometer .......................... 74 
Figure 45: Allan Variance of Inertial Measurement Unit Gyroscope ................................ 74 
Figure 46: Allan variance of inertial measurement unit accelerometer ............................ 75 
Figure 47: Root Allan variance and Deviations for one and two GM Noise Source in the 
Model............................................................................................................................ 76 
Figure 48: Allan Variance of real sensor output (blue) and estimated sensor output (red)
 ..................................................................................................................................... 77 

 



 xiii 

LIST OF TABLES 
 
TABLES 
Table I: Input Noise Parameters ....................................................................................10 
Table II: Normalized variances for first 10 differences intervals of the flicker noise. ........25 
Table III: Input noise parameters ...................................................................................30 
Table IV: Comparison of the Allan variance method and the proposed method ..............42 
Table V True values of the noise parameters used in the simulation ..............................42 
Table VI: Parameters of Simulation1 .............................................................................45 
Table VII: Parameters for Simulation 2 ..........................................................................48 
Table VIII: Parameters for Simulation 3 .........................................................................50 
Table IX: Input Noise Parameters ..................................................................................52 
Table X: Input Noise Parameters ...................................................................................54 
Table XI: Summary of the Real Data Used ....................................................................57 
Table XII: Calculated Stochastic Model Parameters of the MEMs sensor by using the 
proposed algorithm .......................................................................................................58 
Table XIII: Actual and Estimated Noise Parameters for 5 Hours Simulation Time ...........64 
Table XIV: Actual and Estimated Noise Parameters for 1 Hour Simulation Time ............65 
Table XV: Input and estimated noise parameters for 1/f

α
 noise ......................................66 

Table XVI: Input and estimated noise parameters for GM noise .....................................68 

 

 



 xiv 

 



 1 

CHAPTER 1 

 
 

INTRODUCTION 

 
 
 

Because of their high speed and reliability to external disturbances, inertial navigation 
systems are one of the most important sources for navigation solutions. Main drawback 
of inertial systems is the increase of their error with time unboundedly. Therefore 
gyroscope and accelerometer error sources used in an inertial navigation system must be 
modeled and compensated, if possible, so that navigation performance can be estimated 
and increased. Inertial sensor models include both deterministic and stochastic error 
sources. Deterministic error sources, namely bias, scale factor and misalignment errors, 
can be determined and compensated at the output of the sensors with well known 
methods [3]. On the other hand stochastic error sources like Quantization Noise (QN), 
Angle Random Walk (ARW), Gauss-Markov (GM) noise, Bias Instability, sometimes 
called flicker noise (BI), and Rate Random Walk (RRW) are not easy to estimate and 
compensate.  
 
Allan variance method is a very powerful tool for the discrimination and the evaluation of 
stochastic error sources ([3], [8]). However obtaining the error source parameters by 
using this method requires too much data to be acquired and too many calculations to be 
done.  
 
Other than the Allan variance method, few studies exist in the literature about the online 
estimation of the error parameters. The online estimation of Allan variance parameters for 
the case of the existence of only Angle Random Walk and Rate Random Walk error 
sources is studied in [2]. This study uses finite dimensional filters for maximum likelihood 
estimation of discrete Gauss Markov models, [1], [4], [10]. However the effectiveness and 
the performance of the algorithm degrade in the case of the existence of other stochastic 
noise sources. [16] extends the model to include Bias Instability noise term as a first 
order GM noise. Similarly, in [12], Allan variance is used to determine the model 
parameters of ARW, RRW and BI noise sources using the synthetic data only. Bias 
instability is modeled as a first order GM noise in this study.  
 
Because of the non-rational transfer function of bias instability, it is modeled by different 

techniques in the literature. In [13] this noise, denoted by  nx , is generated using the 

inverse Fourier transform of a sequence of two random processes  nG  and  nU  

where  nG  is Gaussian and  nU  is uniformly distributed on the interval [0, 2π]. The 

related expression is given in (1). In this formulation β can be thought as a spectral 
parameter and is equal to one for the bias instability noise. 
 

          



























 



M

n

nUjnUnnGIFFTnx
1

2 2sin2cosRe 


 

(1) 
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For navigation purposes, high frequency noise is considered to be ARW (white noise) 
and low frequency part is modeled as a first or higher order GM noise. In [14], it is shown 
that second or third order AR modeling of low frequency noise gives better results than 
the first order GM modeling. A multi-resolution technique is suggested in this study in 
order to increase the navigation performance. In this way wideband white noise is aimed 
to be removed from the sensor output. 
  
Using de-noising techniques is another approach of handling the stochastic noises of 
inertial sensors. In [15], Kaiser Window based FIR low pass filter and in [17], Neural 
Network Model are used for this purpose. This approach suffers from the bandwidth 
problems. In order to use them useful bandwidth of the sensor for the specific application 
must be identified.  
 
The originality of our work is to include almost all possible stochastic error sources into 
the identification problem and solve the problem in an efficient way by proposing a new 
method which is much faster and requires less memory compared to the Allan variance 
method. Proposed method is based on the calculation of the variances of the differences 
of sensor outputs and their delayed versions. Second order statistics of difference 
sequences depend on the error source coefficients differently for each delay time. The 
difference sequence obtained from the sensor output that includes the five basic 
stochastic error sources is stationary. Therefore, the variance of it depends only the 
parameters of the unknown noise parameters and the amount of delay used in the 
difference operation.  
 
  
For a tactical grade navigation system, besides the angle and the rate random walk 
parameters bias instability is one of the most important parameter that must be 
determined. For this noise term, different modeling techniques are examined in [6] and 
[7]. The noise model given in [6] is used in this study because of the suitability of it to the 
proposed algorithm. The aim of this study is to determine these three parameters 
together with the GM and the quantization noise coefficients. Rate ramp parameter which 
can be determined by using the Allan variance is not included into our model. However 
our model can easily be extended to include it.  
 
One of the applications of the proposed method is the characterization of the noise 
source that has a constant slope in the power spectral density function. These types of 
noise sources can be modeled in discrete time by filtering the white noise with a rational 
or non-rational transfer function, depending on the value of  , of the form 

 211

1
)(






z

zH  . There are too many noise sources that can be classified in this 

category. All of the noise sources other than the GM noise specified in this study are in 
this form. The value of   is -2 for QN, zero for ARW, 1 for BI and 2 for RRW noises. The 

method proposed in this study is not only applicable for the specified noise sources but 

also suitable for all 
f/1  type noise sources for 2 . Once the characteristics of the 

noise is determined by finding the parameter  , power of the white noise input is found 

by least squares method and the noise is identified completely. If the noise type is a first 
order GM noise, then the method proposed can be used with a slight modification, made 
for the determination of the GM noise parameters. 
 
Another idea developed here is to approximate the overall error sources as a combination 
of ARW and some number of GM noises only. The reasons of selecting such a structure 
is the feasibility of using these models in a Kalman filter framework for error propagation 
as well as their generality of modeling other noise sources. The idea is exploited by 
generating estimation techniques that use 2 and 3 models. Results are obtained for the 
real sensor data. 
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The performance of the method is tested both by using the simulated and the real data. 
When using real data, performance is tested by comparing the Allan variance of the 
original data with the Allan variance obtained from the synthetic data generated by the 
estimated parameters.   
 
The organization of the thesis is as follows. Allan variance method is explained in 
Chapter 2 for the sake of completeness. In Chapter 3 the systematic and the stochastic 
error models for inertial sensors are given. In this chapter bias Instability (flicker noise) is 
modeled as the output of a system with a non-rational transfer function which is 
approximated by a finite number of terms of its Taylor series expansion. The method 
proposed in this thesis is fully explained with mathematical proofs in Chapter 4. In 
Chapter 5 simulations and results are given and compared with the Allan variance 
method. The proposed method is also applied to real accelerometer data of 
approximately 7 hours taken at 10 Hz sampling frequency.  
 
The two different application of the proposed algorithm is given in Chapter 7 and Chapter 
8. In Chapter 7, the individual noise characterization is explained. By simulations it is 
shown that if there is only one noise source and if its type is classified as GM or not GM, 
then the proposed algorithm determines the noise parameters accurately and effectively. 
In Chapter 8, sensor output is modeled using the ARW and GM noise sources only. 
Number of GM noise sources is selected as one or two in two different cases. For the two 
GM noise source case correlation times of the two models are forced to belong to two 
different non overlapping regions. Experimental results show that both with simulated and 
real data the method are quite satisfactory for the sensor stochastic error 
characterization.  
 
Finally, conclusions of the study and future works are given in Chapter 9. 
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CHAPTER 2 

 
 

ALLAN VARIANCE AND STOCHASTIC ERROR 
PARAMETERS OF INERTIAL SENSOR 

 
 
 

2.1 Allan Variance Background 
 
Allan variance is first introduced to characterize the phase and frequency instability of 
precision oscillators [3]. It is a time domain analysis technique. Independent noise 
sources can be identified from the log-log plot of the square root of it versus correlation 
time. This time domain analysis technique is easy to use. Once it is evaluated, different 
characteristics of the noise sources are differentiated either from the slope of the curve or 
the sinusoidal shape of it. The quantization, ARW, BI, RRW and rate ramp noises 
generate different slopes in the “square root of the Allan variance” curve while GM noise 
and/or sinusoidal noise introduce a sinusoidal shape in it. The success of this technique 
depends on the assumption that the effect of all noise sources becomes active at 
different correlation times of the Allan variance plot.   
 
Besides all the noise variances, correlation time of GM noise and the frequency of the 
sinusoidal noise are also determined by the Allan variance method. In other words all the 
noise sources can be characterized completely.  
 

Evaluation of Allan variance from the N  samples of the data with a sampling period of 

0 is explained below. Note that the time interval of the overall data is 0N . 

 

Data clusters of lengths 1, 2, …, M (
2

N
M  ) are formed. Allan variance is a function of 

M for each cluster. Averages are obtained for the clusters over the length of that cluster. 

Note that there are MNK /  clusters. 

 

      k                 2k               1k      

,...,,...,,...,,,...,, 12121

K

NMNMMM



 
 

 
Then the average of each cluster is evaluated as in (24). 

 



M

i

iMkk

M
M

1

1

1
)( 

 

(2) 

 
The Allan variance can be calculated as given below.  
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where, 0 MM  . 

The symbol x  denotes the mean of x . The relationship between Allan variance and 

the two-sided PSD is given in (26). 
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(4) 

   

where )( fSw  is the PSD of the given data. This equation is the key result that will be 

used to calculate the Allan variance [3]. 

 

2.2 Allan Variance and Power Spectral Density 
 
The five basic noise terms in an inertial sensor system are angle random walk (white 
noise), rate random walk (Brownian motion), bias instability (flicker noise), quantization 
noise, and Gauss Markov noise.  
 
The Allan variance obtained by performing the prescribed operations, is related to the 
PSD of the noise terms in the original data set as given in (26).  
 
An interpretation of this expression is that the Allan variance is proportional to the total 
noise power of the gyro rate output when passed through a filter with the transfer function 

of the form 
 

2

4sin

x

x
. This particular transfer function is the result of the method used to 

create and operate on the clusters [3]. When the argument, x , of this transfer function 

scaled by a positive number greater than one the function becomes narrow and close to 
the origin. 
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Figure 1: f(x) =sin
4
(x)/ (x)

2
 plots for =1 (Blue) and=2 (Red) 

It is seen from this equation and from Figure 1 that the filter pass-band depends on the 
correlation time  . This suggests that different types of random processes can be 

examined by adjusting the filter pass band by varying  . Thus, the Allan variance 

provides a means of identifying and quantifying various noise terms that exist in the data. 
It is normally plotted as the square root of the Allan variance versus   on a log-log plot. 

 

2.3 Derivation of the Allan Variance 
 
The Power Spectral Density (PSD) of a signal is important to characterize and determine 
the stochastic error model parameters of the inertial sensors. PSD is calculated by taking 
the Fourier transform of the autocorrelation function of the sensor output. Allan variance 
is another technique that is used for the same purpose. The aim of this section is to 
derive the relationship between these approaches. Although the relationship is used 
widely in the literature its derivation is not so common. We give a simple and easily 
understandable derivation here for the sake of completeness.  
 
Equation (26) gives the Allen variance in terms of PSD. This operator is not injective, i.e., 
its inverse does not exist.  To show the equality we first begin by the definition of the right 
side it.  

  2

1

2

2

1
kk     (5) 

 

where,  is used for the expected average, and   is used for cluster length.  The 

cluster average is computed as given below. 
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where,  t  is inertial sensor output waveform in the continuous time domain. The Allan 

variance can be written as; 
 

   2
22
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2
2

1

2 2
2

1
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(7) 

 
2

k  can be expressed in terms of the continuous inertial sensor output so that the 

Autocorrelation function and PSD expressions are formed.  
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(8) 

 R  is the autocorrelation function of the inertial sensor output and it is equal to 

inverse Fourier transform of the PSD. Therefore, 
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Similarly, 
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and, 
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Using the Allan variance equation and the expression obtained above; 
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Note that, 
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Therefore, 
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For a real data sequence  fS  is even and the second integral becomes zero.  

 

2.4 Typical Allan Variance Plot 
 
Root Allan variance plot is used to determine the noise parameters of the sensor output 
by examining the corresponding slope i.e. -1 for quantization, -½ for angle random walk, 
zero for bias instability, ½ for rate random walk noise sources, or by finding the local 
maximum for Gauss-Markov noise. Both the value of Allan variance and the 
corresponding time are necessary in determination of input noise powers and the Gauss-
Markov correlation time, [3]. 
 

An inertial sensor output data, whose input noise parameters are given in Table I, is 
generated during 55 hours simulation time with 0.1 second sampling period.  
 
 
 

Table I: Input Noise Parameters 

Parameters ARW BI RRW QN GM 
Input Noise 
Variances 

1.9 1 0.0002 0.01 
3  

(Tc=7 sec) 

 
 
 
In the Root Allan variance plot the specified points shown with the arrows are used to 
identify the input noise powers.  
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Figure 2: Typical Allan Variance Plot 
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CHAPTER 3 

 
 

INERTIAL SENSOR MODELING AND ESTIMATION 
OF ITS RANDOM NOISE SOURCES 

 
 
 

Inertial navigation system performance is highly related with the accuracy of inertial 
sensors, gyroscopes and accelerometers. Each sensor has different error sources and 
their value together with repeatability performances determine the accuracy. Generally, 
inertial sensor errors can be grouped as systematic and stochastic errors. Systematic 
errors can be detected and corrected more easily compared to the stochastic errors. In 
any application it is advised to correct the systematic errors before handling the 
stochastic errors. In this chapter we will first briefly explain the systematic errors then give 
more detailed explanations for the stochastic errors.  
 

3.1 Systematic Error Model of Inertial Sensors 
 
Scale factor, bias and misalignment errors are the main sources of the systematic errors 
of an inertial sensor. In order to determine the error model parameters of an inertial 
sensor it is usually forced with a deterministic input. The corresponding output and the 
known deterministic input are used to identify the unknown parameters.  
 
Systematic error model of mechanical inertial sensors, such as a single or two degrees of 
freedom spinning wheel gyroscope or a pendulum accelerometer, includes second and 
even third order nonlinearities [3]. These parameters are determined similarly like the 
previous model parameters.  
 
For mechanical sensors, dynamic response may be very critical depending on the 
application. In order to determine the bandwidth and the damping coefficient of the 
sensor, sinus sweep or white noise vibration input is usually applied as a sensor input.  
 
Ignoring the environmental effects and the dynamic structure of the model, i.e. reducing it 
to a static one, accelerometer and gyroscope systematic errors can be modeled as in 
(15) and (16), [8]. 
 

...3

3

2

20

1

 oppopoopoiiopiipiii aaaaKaaKaaKaKaKaK
K

E


 

(15
) 

 
Where the subscript ‘i’ denotes the ‘input’, and ‘o’ denotes the output, ‘p’ the pendulum 
axis which is orthogonal to the input and the output axis. The other parameters are 
defined below.  
 
 

E  : Electrical output of accelerometer 



 14 

1K  : Scale Factor 

0K  : Bias 

xa  : Inertial acceleration along x direction 

2K  : Second order nonlinearity (source of vibration rectification error) 

3K  : Third order nonlinearity coefficient 

xyK  : Cross axes sensitivities 

x  : Misalignment between x axis and input axis 

 
 

... sisoiosoossiisoiiossooiiii

i

i aaGaaGaaGaGaGaGb
K

E


 

(16
) 

 
The subscripts ‘i’ and ‘o’ denote the input and the output as before. ‘s’ denotes the spin 
axis which is orthogonal to the input and the output axis. The parameters that are not 
defined above are the following. 
 

iK  : Scale Factor corresponding to the input axis 

 ib  :  Bias along the input axis 

x  : Inertial angular input along x direction 

xG  : Acceleration sensitivity along x direction 

xxG  : Cross axes acceleration sensitivity 

xi   : Misalignment between x axis and the input axis 

 
Generally the second order and the third order effects are not included into the 
systematic error models and they are not compensated in real time. The only exception 
for this is the second order nonlinearity term for the accelerometer. This error source 
becomes critical if the vibration levels of the sensor changes during the mission. Because 
of the DC change of sensor output, bias term may be very disturbing. If the second order 
nonlinearity term is high for the mission, some mechanical solutions or the online 
vibration measurements may be required to get correct acceleration output. 
 
Bias, scale factor and misalignment parameters of the models are determined and 
compensated in real time after the sensors are placed on the three axes of the Inertial 
Measurement Unit. In this way, time and cost can be reduced. For three gyroscopes and 
accelerometers bias is compensated first, then the scale factor and misalignment 
corrections can be made as given in Figure 3. 
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Figure 3: Gyroscope and Accelerometer Model Compensation Technique 

 
 
 
After this process it is also possible to compensate the temperature effects and the 
nonlinearity effects of the sensor, mutually. The model used for each sensor is given in 
(17) [9]. The main disadvantage of this technique is the necessity of determining the 
unknown 3x4 coefficient matrix. To do this, one should make quite a number of tests at 
different stabilized temperature and at different input levels.  
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The g term represents the compensated output of an inertial sensor, and T is the 

temprature.   
The processes explained up to this point is for determining and compensating the 
systematic errors of inertial sensors. After these compensations, the measurement still 
contains some noise components. These noise components are random drift errors on 
bias and scale factor uncertainties as given in (18) [3]. 
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In this thesis, mainly random drift errors, D, will be our concern and in Section 2.2 these 
error characteristics will be introduced.  
 

3.2 Stochastic Error Models of Inertial Sensors 

 
Main stochastic error sources of inertial sensors are quantization, angle random walk, 
Gauss-Markov, bias instability, rate random walk and rate ramp noises. All these noises 
can be generated from a white noise sequence by a rational or non-rational transfer 
functions, [3]. When variances of these noise sources are examined it can be observed 
that, quantization, angle random walk and Gauss-Markov noise sources has a constant 
variances independent of the data length. However, others have variable variances for 
different data lengths. The reason for this is the non-stationary nature of these noise 
sources. Therefore if an inertial sensor contains all these noise sources, its output 
variance changes with data length.  
 
The main acceptation about the stochastic error sources of the inertial sensors is their 
independency in a probabilistic sense. With this assumption all noise sources can be 
handled separately. This assumption brings some simplification into the computations. 
For example variance of the inertial sensor output is evaluated by summing the individual 
noise source variances.  
 
We can analyze the above mentioned noise sources by analyzing the power spectral 
density (PSD) of the noise. Note that if the noise under study is the output of a system 

with a transfer function of the form 
ms)/1( , where m is an integer (in the continuos time) 

driven by white noise then it has even powers of the frequency in PSD. The log-log plot 
generated by using this PSD has a slope which is equal to -2m.  Bias instability noise, 
i.e., 1/f noise, on the other hand has a -1 slope on this plot and since it has the transfer 

function of 
2/1)/1( s . In some studies the model for this noise is approximated by a 

Gauss- Markov or multiple stage ARMA model. But these approximations sometimes 
cause problems if a Gauss-Markov or the other noise sources exist at the sensor output.  
 
Because of the very low frequency nature of the rate ramp noise, it is not included in the 
stochastic model of the inertial sensor. Low frequency nature implies that its effect can be 
observed only after a long investigation period of the data. It has a slope of -3 in PSD log-
log plot. In other words it can be considered as integral of flicker noise.  
 
In the following subsections well known spectral density functions, Allan variances and 
white noise driven discrete model of six noise sources of the sensor are given. 
  

3.3 Quantization Noise 
 
Quantization noise is strictly due to the digital nature of the sensor output. The rate PSD 
and Allan Variance for this noise is given in (19) and (20): 

)(sin
4

)( 0

2

0

2




f
Q

fSQ 

 

(19) 

 

2

2
2 3

)(



Q

Q 
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Related slope in the square root Allan variance of the log-log plot is –1. The unit of Q  is 

in radians for gyroscopes and m/s for accelerometers. 
 
The power spectral density of the quantization noise has the same characteristics as that 
of one sample difference of the white noise. This fact is stated in the following lemma.  
 

Lemma 1: Quantization noise can be modeled as the output of the filter 

)1()( 1 zzH  driven by white noise.   

 
Proof:  
The power spectral density of the quantization noise, given in (19), can be written 
as  
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(21) 

 
This spectrum can be obtained from white noise by filtering it with 

)1( 1 z transfer function. 

 

3.4 Angle Random Walk 
 
Angle random walk is characterized by a white noise on the gyro rate output. The 
associated PSD is: 
 

2)()( ARfSAR 
 

(22) 

where, 

AR  is the angle random walk coefficient and its unit is secdeg/ (and sec/m for 

accelerometers) 
Allan Variance can be obtained as; 
 

   



2

2 )(
)(

AR
AR 

 
(23) 

 
Therefore the log-log plot of Root Allan Variance has a slope of –1/2. [3] 
 

3.5 Gauss-Markov Noise  
 
Gauss Markov noise is characterized by an exponentially decaying function with a finite 
correlation time [3]. The first order Gauss-Markov (GM) process in discrete time can be 
written as [11]; 
 

kk
Tc

t

k wxex  




1  (24) 

 



 18 

In this expressionTc  is the correlation time of the GM noise. The equation shows that the 

Gauss-Markov noise can be considered as the output of a first order system driven by 
white Gaussian noise. The related transfer function is the following one. 
 

11

1
)(
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



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ze

zH

Tc

tGM  (25) 

 
The associated variance is given by [11]; 
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Allan Variance of this sequence is given in [3] as; 
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When   is much longer than the correlation time it can be approximated as: 
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x
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  (28) 

 
If   much smaller than the correlation time, then the Allan variance can be approximated 

as [3]; 
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2
2 w
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  (29) 

If white noise input of the system has a variance 
2G , unit of G is hrhr /)(deg/  for 

gyroscopes and   sec/sec/ 2m for accelerometers. 

 

3.6 Bias Instability 
 
The origin of bias instability is the electronics, or other components susceptible to random 
flickering. Because of its relatively low-frequency nature it shows up as the bias 
fluctuations in the data. The rate PSD associated with this noise is: 
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 (30) 

where B is the bias instability coefficient and its unit is deg/sec for gyroscopes and m/sec
2
 

for accelerometers. f0 is the cutoff frequency. 
 
Allan Variance can be obtained as [3]; 
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Therefore the log-log plot of this noise has zero slope [3]. 
 
Bias instability noise can be produced as the output of the irrational transfer function 
given below when the input is white noise. 
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z

zH BI  
(32) 

 

3.7 Rate Random Walk 
 
This is a random process of uncertain origin, possibly a limiting case of an exponentially 
correlated noise with a very long correlation time. The PSD and Allan Variance 
associated with this noise are: 
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 (34) 

 
where K is the rate random walk coefficient and its unit is deg/hr/hr

½
 [3] for gyroscopes, 

m/sec
2
/sec

½
 for accelerometers. Root Allan Variance of this noise has +1/2 slope. 

 
Since, rate random walk is the integral of the white noise, the related transfer function can 
be written as; 
 

)1(

1
)(

1
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z
zHRRW  (35) 

 

3.8 Rate Ramp 
 
For long, but finite time intervals this is more of a deterministic error rather than a random 
noise. For an Interferometric Fiber optic Gyroscope (IFOG) it is given in time domain as 

Rt  where R is the rate ramp coefficient and   is the output of IFOG 

corresponding to rate ramp. Its unit is deg/hr/hr for gyroscopes. By forming and 
operating on the clusters of data containing an input, we obtain: 
 

  
2

)(
22

2 


R
RR   (36) 

 
This indicates that the rate ramp noise has a slope of +1 in the log-log plot of 

)( versus [3]. 
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3.9 Stochastic Model Used in the Study 
 

Although rate ramp noise is included in the stochastic model of an inertial sensor, it is 
treated as a deterministic noise source as explained previously. Therefore it is excluded 
from the model for this study. In fact once it is determined it can be completely 
compensated like a bias or a scale factor of an inertial sensor. 
 
Very low frequency sinusoidal noise is also included in the stochastic model of the inertial 
sensor. However, this noise is again excluded from the model used in this study because 
of the same reason. 
 
Our model for an inertial sensor used in this study contains quantization, angle random 

walk, Gauss-Markov, bias instability and rate random walk noise sources and is given 

schematically in Figure 4. 

 
 
 

 

Figure 4: Stochastic Model of Inertial Sensor used in this study 
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CHAPTER 4 

 
 

VARIANCES OF DIFFERENCES 

 
 
 

Allan variance and the online estimation methods proposed up to now has some 
advantages and disadvantages in terms of performance and calculation load. For 
example, Allan variance method can be used to identify all of the stochastic error sources 
of an inertial sensor. On the other hand, noise sources with small power can not be 
determined accurately, because of its graphical parameter estimation strategy. High 
calculation load can be considered as another disadvantage of this method. Online 
estimation techniques are very good with its reduced calculation load and high 
performance in the estimation accuracy even for low power noises. However, only a 
limited number of the noise sources can be modeled and identified and the existence of a 
noise source that is not modeled will degrade the estimation performance. 
 
The proposed method, whose theory and the algorithm explained in the following 
sections, is a very powerful method to identify the noise parameters of an inertial sensor. 
Usage of this method provides high accuracy in the estimation of the noise parameters 
with a reduced calculation load. 
 
Since bias instability and rate random walk noise sources are non-stationary inertial 
sensor output including these noise sources is also non-stationary. Therefore, looking at 
the sensor variance directly does not give any useful information to discriminate and 
identify the different noise sources. The method suggested in this study uses the 
differences of original sensor outputs and its delayed versions. This approach is new and 
one of the contributions of this thesis. 
 
Although the main reason of choosing the differencing technique is the stationarity of the 
resultant signal it also has interesting properties in the frequency domain.  The transfer 
function of the operation of taking the difference of elements of the given sequence can 
be modeled the difference waveform as the output of the system with the transfer function 

)1()( L

L zzH  . The magnitude plots of the system are given in Figure 5 for different 

L values. This filter is a special comb filter. So it selects some frequencies that exist in the 
signal. This property encourages us to use it to find the power of the different noises that 
exist in the output of an inertial sensor. As an example when L=1 the filter is a high pass 
filter so eliminates the low frequency noise like rate random walk and concentrates on the 
others. On the other hand when L is large almost all noises are effective so it becomes 
possible to find the power of low frequency noises. Very simple structure of the filter and 
the partly unknown frequency content of any noise make this filter attractive. Another 
approach may be using wavelet filters that we suggest as a further study.  
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Figure 5: Magnitude response of the comb filter 

 

 

 
Variances of difference sequences for the sensor output and each noise source will be 
given in the following subsections. In all the derivations we assume that the input white 

noise is zero mean and has the variance 
2 . 

 

4.1 Sensor Output Difference Variance 
 
Inertial sensor output considered in this study is assumed to include quantization, angle 
random walk, bias instability, rate random walk and correlated Gauss-Markov noise 
sources. The model can be extended to include rate ramp noise source but we leave it as 
a future work. 

Let the inertial sensor output be  ng  . Then referring to Figure 4, 

 

           ngngngngngng GMRRBIARQN   (37) 

 

where;            , ,, , ngngngngng GMRRBIARQN are quantization, angle random walk, bias 

instability, rate random walk and Gauss-Markov noises. 
 

K step difference sequence, called  ngdK , is defined as; 

 

     
              
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GMGMRRRR

BIBIARARQNQN

dK







             

           

 

(38
) 

Each difference sequence can be considered as the outputs of some system driven by 
independent white noise. Therefore, variance of the K step difference of the sensor 
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output is equal to the sum of the variances of each difference sequence if the sequences 
are independent. For the formulation to be useful we would like to emphasize the 
stationarity of these sequences that is shown below. 
 

4.2 Difference Variance of Quantization Noise 
 
Quantization noise can be obtained from white noise by filtering it with the transfer 
function  

)1()( 1 zzH . This noise is wide sense stationary with zero mean and variance 

2
2 where 

2 is the variance of the white noise. Transfer function of the combined 

system difference of quantization noise and its delayed versions can be obtained as 
given by, 
 

      KK

d zzHzHzzHzH   1)(  (39) 

 

The time domain expression is       ]1[][]1[][ KnwKnwnwnwngQN  . 

From the expression the output variances can be obtained as follows. 
 

2 K for  4          

1K for  6   

2
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 (40) 

Note that a sequence obtained by filtering the white noise with  zH d  is stationary. 

  

4.3 Difference Variance of Angle Random Walk Noise 
 
Angle Random Walk noise of an inertial sensor is white noise. Therefore, its difference 

variance 
2

ARW  is always equal to the two times the input white noise variance. 

 

4.4 Difference Variance of Gauss-Markov Noise 
 

Let kx  be a GM noise sequence generated by the following equation. 
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Where, t  is the sampling rate, cT  is the correlation time and kw  is IID white noise 

which is zero mean and variance 
2 . Steady state variance of the sequence kx is equal 

to; 
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In order to find the variance of the difference signal of this sequence, it is assumed that 

the length of sequence is much bigger than the difference so that variances of kx  

and nkx   are equal, i.e., the sequence is at the steady state. 

 

      T

nkkknkk

T
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Since, 
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Difference variances for GM noise for 3 sec correlation time are normalized with the input 
noise variance and are plotted with respect to the difference interval length in Figure 6. 

For large difference values the correlation  T

nkk xxE   goes to zero with an exponential 

rate so the normalized variance. 
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Figure 6: GM noise difference variances (Tc=3sec) normalized with input variance 
for 0.1sec sampling time 
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4.5 Difference Variance of Bias Instability Noise  
 
Difference sequence of bias instability transfer function can be written in the same way as 
the quantization noise by defining the system that generates the difference sequence. 
 

      KK

d zzHzHzzHzH   1)(  (46) 

Where; 
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(47) 

Approximate infinite impulse response model parameters for the non-rational transfer 

function of  zH  can be obtained as given in [6]; 
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 (48) 

Table II shows the results of the computation of the normalized variances of the 
difference sequences of the output of this filter up to K=10 where K is the length of the 
difference interval. 
 
 

Table II: Normalized variances for first 10 differences intervals of the flicker noise. 

K 1 2 3 4 5 6 7 8 9 10 

dv/
2  

1.273
2 

1.697
7 

1.952
3 

2.134
2 

2.275
7 

2.391
4 

2.489
4 

2.574
2 

2.649
1 

2.716
1 

 
 
Difference variances for bias instability noise are normalized with the input noise variance 
and are plotted versus difference values in Figure 7. (dv) is for the difference variance.   
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Figure 7: Bias instability noise difference variances normalized with input variance 
for 1sec sampling time 



 26 

To apply the method proposed here we need stationary sequences after a transition 
period. This requirement is satisfied if the system that generates the sequence is stable. 
The theorem given below guarantees the stability of the system.  
 

Theorem: The difference sequence obtained from Bias instability noise is 

stationary, i.e., every sequence obtained by filtering the white noise with  zHd  

is stationary. 
 
Proof: From the impulse response model used for bias instability the variance for 
each difference can be obtained as; 
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where, kx is the bias instability noise. Since 
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(50) 

Note that n is finite and from (48), 12 kh . The numerator and the denominator of 

the expression inside the parenthesis are monic polynomials of k and the 
resultant rational function’s numerator degree is one less than the degree of its 

denominator. This guarantees the convergence of the series  






0

2

k

knk hh .    

Note that the original system with the transfer function 
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stable. So differencing operation is necessary to obtain its unknown parameters. 
 

4.6 Difference Variance of the Rate Random Walk Noise  
 
Rate Random Walk noise of an inertial sensor is the integral of white noise. Therefore, for 

K=1 difference variance 
2

R  is equal to the input white noise variance. For K=2, the 

difference sequence becomes the difference of two independent random variables so its 
variance is equal to two times the input variance. For the general case consider 

kkk xx  1  where kx is the rate random walk and k is a zero mean white noise 

with variance 
2 .  The variance of nkk xx   can be obtained as;  
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Note that this system is also not stable as the system that generates the bias instability 
noise since it is a simple adder (integrator). Differencing makes the resultant system 
stable and allows the application of the identification method. 
 
In this section all noises that we assume to exist at the output of an inertial sensor are 
modeled. Furthermore their differences are also modeled and the steady state variances 
of them are found. Our ultimate aim is to identify the powers of these signals as well as 
the correlation coefficient of the GM noise.    
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CHAPTER 5 

 
 

LEAST SQUARES ESTIMATION FORMULATION 

 
 
 

The main purpose of this study is the identification of the white noise variances that 
generate the inertial sensor stochastic errors. For this purpose we use the models 
mentioned in the previous chapter that reduces the problem to a simple identification of 
noise variances process that can be solved by using the least squares estimation 
method. The only noise source that requires the identification of a parameter other then 

input noise variance is GM noise. First assume that the GM noise parameter 
Tc

t
 is 

known.  
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where, 
22222 G,R ,B ,,Q A  are variances of white noise that generate quantization, 

angle random walk, bias instability, rate random walk and Gauss-Markov noises, 

respectively. The functions 
)(nbi
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 can be obtained as follows; 
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(52) 

 
In the above formulation n, indicates that to compute the difference we skip exactly ‘n’ 

samples, i.e., an ‘n difference’ operation is applied to  ig  sequence. The set of 

differencing interval lengths ‘n’ should be smaller than a fraction of the data length but 
does not need to include all integers. Indeed the selection of ‘good n ’ values is one of 

the important issues of this method. This problem will be addressed later.  
 
To explain the equations that are solved in the least square sense we give an example of 

correlation coefficient .sec3Tc . The equations for this case can be written as follows.   
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The above equations can be written in the matrix form as:  
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The functions of the last row of the coefficient matrix are given in (52). The equation is in 

the form nn GA   and the objective function that must be minimized is 
2

nn GA  . 

The LSE method minimizes the norm 
2

)( BXTcA  where the elements of the A matrix 

are the difference variances of the individual noise sources given by the theory. The 
elements of the vector B are obtained by computing the difference variances of the signal 
for the delay times same as the ones used in the matrix A. A is a function of the time 

constant, Tc , of the GM correlation function.  

 
In order to characterize the GM noise two parameters namely, the input white noise 
variance and the correlation time are required. Determination of the input white noise 
variance is very similar to other stochastic model parameters. On the other hand, the 

computation of the optimal Tc  is unfortunately not very easy due to a highly complicated 

dependence of the objective function to this parameter. Since the value of the parameter 
is bounded we have used an extensive search in our experiments to find its value. We 
have selected the interval as 2-102 sec. with 0.1 sec. increments.  
 
To give an idea about the dependence of the value of the objective function we evaluated 
it for the input noise parameters given in Table III and plotted with respect to the 
correlation time in Figure 8. Note that this function is neither convex nor unimodal. 
Therefore it is difficult to estimate the correlation time using a gradient based optimization 
algorithm unless a good initial estimate of correlation time known. 
 
 
 

Table III: Input noise parameters 

Parameters 2Q  2A  
2B  

2R  
2G  

Input Noise 
Variances 

0.01 0.033 0.0036 0.00028 

0.033 
(Tc=60, 50, 

40, 30, 
20,10 sec) 
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Figure 8: Objective function versus the correlation time 

 
 
 

5.1 Selection of the Sequence of Delay Times 
 
Difference variances can be evaluated for every delay time ‘n’. Such an exhaustive 
approach causes a very long evaluation time. Also there may be some problems when 
using all consecutive delay times since due to the close values in the difference variances 
(repetition of the data). In order to overcome this problem variable difference interval 
lengths should be selected with some care. Moreover small difference intervals occur 
more in their number that causes biased importance towards the high frequency noises. 
The sequence of differencing lengths chosen must provide both good discrimination of 
the high frequency noises and a good estimation of the low frequency noise powers.  
 
There are some critical issues in the determination of the delay sequence ‘n’. The 
differencing operation as explained before corresponds to the application of a comb filter 
to the data. In order to capture the low frequency noise it is required to cover the low 
frequency bands by the comb filter. That is achieved by using long difference intervals. 
As an overall result: the first difference is very important for the discrimination of the 
quantization and the angle random walk noise parameters. Small ’n’ values are good for 
the determination of ARW and GM noise sources with low correlation times. In order to 
determine RRW and BI noise parameters and also GM noise that has high correlation 
times high ’n’ values are required.  
 
Depending on the data length unexpected variances can be obtained for high difference 
values because of the insufficient number of data. A method in determination of the 
difference values that can be used in the proposed algorithm for 10 Hz sensor output is 
given step by step as follows: 
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 Use the first 400 delays (k=1,2, …400), 

 Evaluate increment size by using the equation;
40

400_

60

1
_




lengthdata
sizeinc , 

 Count is equal to 1; 
 Starting value of the next delay is nd=400+inc_size*count. Choose the next 10 

delay values as: (k=nd, nd+1,…,nd+9); 

 Increase the count by one, until it reaches to 60 and execute the previous step. 
 
We cannot say that the selection of these sequences is optimum for all types of inertial 
sensor outputs. On the other hand, in the simulations it works quite well for the chosen 
stochastic model parameters. 
 
The selection of the difference intervals should clearly depend on the data length. A 
second approach that we have used assumes that the number of intervals is restricted to 
a given number. Figure 9 assumes that this number is 1000. Our previous experience on 
the subject shows that one step and two step increases in the difference interval lengths 
are extremely important in the identification of the high frequency noise. So 300 out of 
1000 of the variance data is generated with an increase of one in the difference interval 
length and 100 out of 1000 with an increase of two. For the remaining 600 interval 
lengths we have applied a strategy of changing them with much larger steps. To explain 
the strategy let M be the data length. (M/37.5) corresponds to the largest difference 
interval. As an example if M=180000 which is the smallest data length given in Figure 9 
this number is 4800. The remaining interval lengths will start from 300+2x100=500 and 
go to 4800 and there are 600 of them. Due to the noisy behavior of the solution we 
decided to use some clusters for the interval lengths instead of a single value. The cluster 
length is selected as 30. So each interval length cluster starts from a value say ‘k’ and 
increases one by one to ‘k+30’. The number of clusters is therefore is 600/30=20. The 
jump amounts in the interval lengths is assumed to be constant and is calculated as 
4800/20.  According to this procedure the example data generates the interval lengths as: 
 
Interval length: 1, 2, …, 300, 302, 304, …, 500, 741, 742, …, 770, 981, 982, …, 1010, 
1221, 1222, … 
 
The algorithm is given below. 
 

 First 300 interval lengths change from 1 to 300 and increase with one step. 

 Interval lengths of 301 to 400 changes from 302 to 500 and increase with 2 steps. 

 X=datalength/37.5: largest interval length 

 X/20: amount of jump in the interval lengths 

 Set increment to zero. 

 Interval lengths of (401+30*increment) to (430+30*increment) starts from 
(increment*(X/20)+500) and increase with one step. 

 Increase the increment and repeat the previous step until increment is equal to 
21. 
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Figure 9: Difference values for different data lengths 

 
 
 
The performance of the system highly depends on the strategy of selection of the interval 
lengths. We applied different strategies to see the effects of using different interval 
lengths. One of the strategies is to use an appropriate quadratic function in the interval 
length determination. In this strategy a difference sequence is generated by using the 
square of the numbers from 1 to 100 incremented by one and the square of the numbers 
from 100 to 500 incremented by 0,5. The interval lengths are given by the numbers 
computed. In this strategy we didn’t use the concept of clusters.  
 
A third strategy is to use Fibonacci numbers as the interval lengths. The idea of using 
clusters is also not used in this algorithm. Furthermore the number of interval lengths is 
quite small which is around 20 compared to 1000 for this algorithm as can be seen from 

the Figure 10. Figure 10 is plotted for an approximate maximum difference length of 
250000. This figure is generated by using approximately the same parameters, except 
step increase in the first method, used in the simulations given in this study. The step 
increase used in the first method in the simulations is ¼th of the one given here. The 
reason for it is to make the visual comparison more clear. As the figure indicates we have 
selected a very diverse set of algorithms to estimate the unknown parameters. At this 
step we can say that the worst performing algorithm is Fibonacci as can be expected and 
the best one is the ‘stepwise increase’. More detailed conclusions are given at the end of 
the related experiments. Note that all three algorithms use increasing sequence of degree 
at least two as the interval lengths.  
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Figure 10: Difference lengths generated by different strategies 

 
 
 

5.2 Sampling Time 
 

The algorithm up to now is explained for a sampling time of one second. However, the 
sampling time for tactical grade navigation system is 0.01 second or less than this. It is 
possible to obtain lower sampling frequency output by combining samples of the inertial 
sensor. This causes a low pass effect on the data. As a result of such a process 
determination of high frequency quantization noise parameter is badly effected as 
expected. Our experiment shows us that 0.1 Second sampling time is quite good to 
determine this parameter. The proposed algorithm requires some modifications if the 
sampling rate is different than one second.  
 
Quantization noise variance is inversely proportional to sampling time. Angle random 
walk or white noise variance does not depend on sampling time. Bias instability variance 
is proportional to square root of the sampling time, Gauss-Markov and rate random walk 
noise variances are proportional to the sampling time. Therefore, first column of the 
predefined A matrix must be divided by the sampling time, second column remains 
unchanged, third column of it must be multiplied by the square root of sampling time, 
fourth and fifth columns of the matrix are multiplied by the sampling time. After the 

modifications when the sampling time is ST  the equation takes the following form.  
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Effect of total simulation time is important especially for the computation of low frequency 
noise sources, namely bias instability and rate random walk noise parameters. This 
requirement is enhanced further because of the very low input noise power.   

5.3 Weighted Least Squares Estimate  
 
Difference variances are obtained from the original sequence and its delayed versions. In 
order to evaluate the K

th
 difference of the data with dimension L; the data from 1 to L-K is 

differentiated from the data from K+1 to L. Therefore the effect of non-stationarity 
becomes important if difference value is big as compared to L.  
 
Especially for BI and RRW noises, increase in difference interval causes high difference 
variance error because of their non-stationary characteristics and finite data length. In 
order to analyze this effect for these two noise sources, difference noise variances are 
calculated for the generated data with 0.1 sampling time and unit input variance and 
compared with the expected noise variances. Increasing the data length reduces the 
error however cannot remove this effect completely. 
 
For BI noise, approximately 10 and 50 hours simulated data is used. The error between 
the expected and evaluated noise variance versus difference variances is plotted in 
Figure 11. 
 
Increase of the data length from 10 hours to 50 hours reduces the error however can not 
remove it completely. Note that up to difference interval lengths of 4000, error is 
acceptable for both data lengths. On the other hand for higher difference values error 
becomes unacceptable due to the non stationary character of the data. Note that the 
comparison of the two figures shows this effect of non stationarity clearly.   
 
Similarly, for RRW noise approximately 10 and 50 hours simulated data is used and the 
error between the expected and evaluated noise variance versus difference interval 
lengths is plotted in Figure 13. 
 
The experiments are repeated 10 times. As a result of these Monte Carlo runs the 
obtained average errors are plotted for both BI and RRW noise sources. Figure 12 for BI 
noise and Figure 14 for RRW noise show that the increase in simulation time decreases 
the average error. 
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Figure 11: BI noise difference variance errors (Blue: 50 hours, Red: 5 hours) 
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Figure 12: Average error of BI difference variance 
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Figure 13: RRW noise difference variance errors (Blue: 50 hours, Red: 5 hours) 
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Figure 14: Average error of RRW difference variance 
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For the RRW noise, error in difference variances increases as the interval length 
increases for both data lengths. For difference interval length of up to 4000, error in 
difference variances are relatively small but even for this interval, unlike the BI noise, they 
are not suitable to be used in the algorithm directly. The error plots given in Figure 11 
Figure 14 are the errors corresponding to input noises of power 1, i.e., they are  
normalized with the input variance. Input variance for the BI is around 0.1 and RRW is 
0.001 for tactical grade inertial sensors. So the absolute errors are in the order of 10

-3
 for 

both of the sensors.  
 
The degradation in the performance as interval length increases is not observed for the 
other noise sources. Their plots are given in Figure 15, Figure 16 and Figure 17. Increase 
in data length reduces the error, but the error is independent from the difference values. 
We believe that this is due to the stationary character of this noise.   
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Figure 15: ARW noise difference variance versus error difference values (Blue: 50 
hours, Red: 5 hours) 
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Figure 16: QN noise difference variance versus error difference values (Blue: 50 
hours, Red: 5 hours)  
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Figure 17: GM noise difference variance versus error difference values (Blue: 50 
hours, Red: 5 hours) 

 
 
 
As indicated above the difference variances for the sensor outputs containing BI and 
RRW noise sources evaluated becomes unreliable for difference interval lengths greater 
than 4000 for the 0.1 sec sampling time. We said that the reason for it is the non 
stationary nature of these noises. These noises contain low frequency fluctuations which 
are not stable. Differencing is unavoidable for the computation of their input powers. Even 
after this operation they require long interval lengths for the reliable computation of their 
parameters. Since the data length is limited even for 50 hours case, as the interval length 
increases it becomes in sufficient due to the reason that at the very beginning and the 
end of the data creates a non-stationarity. The situation is explained in Figure 18. In the 
figure we assume that the length of data is N and the length of the interval is N/3. The 
middle part of the data i.e., 1/3

rd
 of it is used two times in the computation of the interval 

variances while the 1/3
rd

 at the beginning and 1/3
rd

 at the end are only used once. This 
causes some kind of non-stationarity in the computations.  
  
 
 

 

Figure 18: Calculation of difference variances 



 40 

 
The requirement of long difference intervals and the requirement of stationarity are 
conflicting. The conflict is tried to be solved by using a weighting matrix. Using a 
weighting matrix to reduce the reliability to high difference values usually give better 
result for the estimation as expected. Depending on the nature of the data a suitable 
weighting function can be determined. Very low weighting values for high intervals may 
cause the poor estimation of low frequency noise parameters. Weighting function used 
for the simulations is selected as 0.9999

difference_value
. Increasing this number results in high 

convergence rate for the parameters, but causes instabilities especially for limited data.  
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CHAPTER 6 
 

 

SIMULATIONS AND RESULTS 
 

 

 
Allan Variance is one of the best methods to identify the stochastic model parameters of 
the inertial sensors. Therefore we have generated artificial data with known noise 
parameters and estimate the known parameters both using Allan variance method and 
our method and compare the results. In order to generate bias instability noises, Auto 
Regressive (AR) model is used as suggested in [6]. Delay times are selected as the first 
27 Fibonacci numbers. The results are given in Table IV and the Allan variance plot is 
given in Figure 19. 
 
 
 

  

Figure 19: Allan variance plot of the first example 
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Table IV: Comparison of the Allan variance method and the proposed method 

Parameters True Values 
Values computed by 

Allan Variance 

Values computed by 

the proposed 

method 

2Q  0.01 0.0076 (at t=0.1s) 0.0102 

2A  1.9 2.197 (at t=0.2 s) 1.8950 

2B  1 
1.4559(at t=1661.6 

s) 
1.0292 

2R  
0.0005 0.00083 (at 

t=10000s) 

0.000323 

2G  
3 (7 sec Tc)  3.6486 (6.825 s Tc) 2.9907 (7.01 sec 

Tc) 

 
 
 
Results obtained from the proposed method are much better than the results of the Allan 
variance method even we used the Fibonacci selection which uses only 27 equations in 
this simulation. When multiple error sources exist, Allan variance method is successful if 
the different noise terms appear in different regions of cluster time. This example 
indicates that our method is more robust to variations in the multiple error sources which 
is the main advantage of the proposed method over Allan variance. The conclusion here 
is also supported by other simulation examples as well as the one using the real data. 
 
Since all of the predefined stochastic noise error models used in this study can be 
characterized according to its variance and the sampling rate, except for the GM noise, 
the performance of the algorithm must be evaluated for different GM correlation times 
and for different data lengths.  For this purpose, input variance parameters given in Table 
V are used. Correlation times of the GM noises are changed from 3 sec to 21 sec by 2sec 
steps. Allan variances of the selected case are given in Figure 20 and the percentage 
errors for the noise parameters are given in Figure 21 for different input sequence 
lengths. Sampling time is taken as 0.1 sec for all simulations and difference lengths are 
chosen as Fibonacci numbers. Percentage error is defined as; 
 

valuetrue

valueestimatedvaluetrue
errorpercentage


100_

. 
 
 
 

Table V True values of the noise parameters used in the simulation  

Parameters 2A  
2B  

2R  
2Q  2G  

Input Noise 
Variances 

1.9 0.7 0.005 0.5 0.6 
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Figure 20: Allan variance plot for different GM correlation times. Increasing curves 
correspond to increase in correlation times from 3sec to 21sec by 2sec steps 
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Figure 21: Percentage errors in the estimation of parameters for different 
simulation times  
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Generally, the performance of the algorithm increases by increasing the data length as 
shown in Figure 21. Increase in the correlation time of the GM noise reduces the 
estimation accuracy of bias instability and rate random walk noise variances. The 
increase in the errors of the parameters of BI and RRW noises is due to the wrong weight 
selection for the data lengths for around 110 hours. That observation implies that the 
selection of the weighting function should be further optimized according to the interval 
length selection strategy (Fibonacci for this experiment) and the data length. That is one 
of the future work that we propose.  
   
Figure 22 shows the difference variances of different noise sources with respect to the 
difference interval length. As the figure shows it is not possible to differentiate low pass 
noise sources, RRW, BI furthermore GM (with high correlation times) noise shows similar 
character when the difference interval lengths are small as indicated in (C) and (D) part of 
the figure. For such a situation estimation of the input powers of the noise sources cannot 
be differentiated by the proposed Least Squares Estimate algorithm. The quantization 
noise and angle random walk noise parameter estimation performance remains almost 
unchanged for different correlation times of the GM noise. This result can be explained 
again by examining Figure 22 as the figure indicates that the characteristics of the noise 
sources are different for other 3 noise sources for any differentiation interval length. 
Estimation accuracy of GM noise parameters, the noise variance and the correlation time, 
is much better for high correlation times. In fact, the absolute error in the estimation of the 
correlation times is almost same but percentage errors become small for high correlation 
times. When the results are examined, it is observed that, the performance of the 
algorithm in the determination of the noise parameters is not satisfactory for all noises 
except the QN and ARW for the data lengths used in the simulations. Therefore we can 
conclude that the choice of Fibonacci numbers for differencing intervals is not suitable 
especially for low frequency noise characterization.  
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Figure 22: Difference variances for the noise sources at 10Hz. (A) Gauss Markov 
noise for different correlation times, (B) All other noise sources. Input noise 

variances GM=1, ARW=1, BI=4, RRW=0.07, QN=0.1 (C) BI ‘variance=3.2’ and GM 
‘variance=1, Tc=20’ (D) RRW ‘variance=0.5’ and GM ‘variance=1, Tc=60’ 
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Correlation time of the GM noise changes the model matrix A radically. Estimation of the 
correlation time accurately will improve the performance of the estimation of the other 
parameters. The objective function is unfortunately neither a convex function of the 
correlation time nor its unimodal. So we have used quantized values of the correlation 
time and optimized other parameters for each level of the correlation time. The algorithm 
finds correlation time and other model parameters accurately for large data lengths.  
 
During the simulations, up to now, Fibonacci numbers are used for difference values. 
Fibonacci sequence is selected only for its property of exponential increase which causes 
good estimation for high frequency noise components. This increase is necessary not to 
obtain a degenerate set of equations. The results are quite good even for real data as 
given in Figure 33, however for short data lengths the stationarity of the data is 
questionable and this causes convergence of the algorithm to some wrong values. To 
overcome this problem, difference values proposed in Section 5.1 can be used. It is 
shown in the following simulations that, the algorithm is more robust even for limited data 
when difference interval lengths are changed as proposed. The main disadvantage of the 
other methods is the increase of the calculation time compared to the Fibonacci numbers 
selection. 

6.1 Step Wise Changing Interval Lengths  
Previous experiment shows that the performance of the estimator can be improved by 
selecting interval lengths using a different strategy. At this section we have used the 
stepwise increase in the interval lengths. We have done 3 simulations in this part. For 
each simulation a different input noise difference is used.  
 
Simulation 1. 
Input noise parameters given in Table VI are used for this simulation. Correlation time for 
Gauss-Markov noise starts from 60 sec and reduces to 5 sec. For each correlation time 
inertial sensor outputs are generated using the simulator and input noise variances and 
correlation times are estimated using the proposed algorithm. Results are obtained and 
plotted in Figure 24. Convergence rate of ARW, QN and GM noise variances are 
estimated very well in a short time. Estimation of RRW and BI noise variances needs 
more time but converges to the expected value successfully. Correlation time of GM 
noise is estimated better when it is less than 20 sec.  
 
 
 

Table VI: Parameters of Simulation1  

Parameters 2A  
2B  

2R  
2Q  2G  

Input Noise 
Variances 

5 0.5 0.001 0.3 0.2 
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Figure 23: Allan variance plot for simulation 1 
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Figure 24: Stochastic error parameter estimations for correlation times, 5, 8, 10, 15, 
20, 25, 30, 35, 40, 45, 50, 55, 60 sec and for different simulation times (Actual values 

are ARW=5, BI=0.5, RRW=0.001, QN=0.3, GM=0.2) 
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Allan variances for different correlation times are calculated and given in Figure 23. The 
figure shows that the artificial data generated is reasonable. The correlation time changes 
of the GM are clearly observed from the plot but however the computation of the BI 
parameter is almost impossible from it.  
 
Simulation 2. 
For this simulation input noise parameters are given in Table VII. Results are obtained 
and plotted in Figure 26. Related root Allan variance plot is given in Figure 25. Estimation 
performance and convergence rate of noise variances and correlation time are very 
similar to the previous simulation, except for BI noise variance. The reason for this is the 
very small value assigned for this noise variance. 
 

Table VII: Parameters for Simulation 2 

Parameters 2A  
2B  

2R  
2Q  2G  

Input Noise 
Variances 

1 0.07 0.0007 0.1 0.06 
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Figure 25: Allan variance plot for simulation 2 
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Figure 26: Stochastic error parameter estimations for correlation times, 5, 8, 10, 15, 
20, 25, 30, 35, 40, 45, 50, 55, 60 sec and for different simulation times (Actual values 

are ARW=1, BI=0.07, RRW=0.0007, QN=0.1, GM=0.06) 
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Simulation 3. 
For this simulation input noise parameters are given in Table VIII. Results are obtained 
and plotted in Figure 28. The corresponding root Allan variance plot is given in Figure 27. 
Estimation performance and convergence rate of noise variances and correlation time are 
very similar to the previous simulations. In this simulation GM and RRW noise variances 
are small. Results are very satisfactory in terms of estimation performance and 
convergence rate. 
 

Table VIII: Parameters for Simulation 3 

Parameters 2A  
2B  

2R  
2Q  2G  

Input Noise 
Variances 

1 0.5 0.0003 0.2 0.1 
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Figure 27: Allan variance plot for simulation 3 
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Figure 28: Stochastic error parameter estimations for correlation times, 5, 8, 10, 15, 
20, 25, 30, 35, 40, 45, 50, 55, 60 sec and for different simulation times (Actual values 

are ARW=1, BI=0.5, RRW=0.0003, QN=0.2, GM=0.1) 
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Generally, high frequency noise parameters namely the angle random walk and the 
quantization noise parameters are accurately estimated, independent of the simulation 
time and the GM correlation time. Estimation of the bias instability and the rate random 
walk are badly affected from short data lengths. GM noise variance estimate is closely 
related with the accuracy of its correlation time estimate. For high GM correlation time, 
accuracy of it reduces and all of the low frequency noise source parameter estimation 
accuracies are affected accordingly.  
 
We can say that the proposed new method finds the stochastic model parameters namely 
QN, ARW, BI, RRW, GM noise and GM correlation time successfully. It also finds small 
noise variances that cannot be determined from the Allan variance plot. Increasing the 
number of difference variances increases the convergence rate of the algorithm. In other 
words, parameters determined with less data.  
 
Using limited number of difference variances improves the calculation time considerably. 
The calculation time of the new method is at least 80 times less than the computation 
time of the Allan variance.  
 
For high GM correlation times, convergence performance of the algorithm is reduced. 
The main reason for this is the high sensitivity of the related column (i.e. GM noise 
covariance) of the input matrix to the correlation time.  
 
The online estimation technique, explained in [2], can also be compared with our 
approach. The main advantage of our method over the online estimation technique is the 
richer set of estimated noise variances.  Reduction in the calculation complexity is the 
second advantage of the proposed method over the online estimation technique given in 
[2]. 
 
Finally when the estimated parameters are too small or inefficient number of samples is 
used, estimated variances may become negative. In this case related column can be 
deleted and the similar least squares estimation method may be applied for the other 
unknown noise variances. 

6.2 Interval Lengths Changing with Square Function 
 
Simulation 1. 
For this simulation input noise parameters given in Table IX are used. Correlation time for 
Gauss-Markov noise range is 10-60 sec. Estimated input noise parameters for different 
data lengths and for different correlation times are given in Figure 29. Difference 
sequence used for these simulations is obtained using the quadratic function as 
explained in Section 5.1.  
 
 
 

Table IX: Input Noise Parameters 

Parameters 2A  
2B  

2R  
2Q  2G  

Input Noise 

Variances 
1.9 0.7 0.005 0.5 0.6 

Tc is variable 



 53 

 

Figure 29: Stochastic error parameter estimations for different correlation times, 
10, 20, 30, 40, 50, 60 sec and for different simulation times (Actual values are 

ARW=1.9, BI=0.7, RRW=0.005, QN=0.5, GM=0.6) 
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One interesting result is that all of the estimations are worse for small data lengths when 
the correlation times are small. Quadratic function of the delays does not provide good 
resolution for high frequency noise terms, QN, ARW and low correlation time GM noises. 
The main reason for this is the insufficient number of small delay values. Performance of 
the estimation increases while the simulation time increases. Similarly, other noise 
parameter estimation accuracies are better for long simulation times in general.   
 
Simulation 2 and Simulation 3. 

The input noise parameters given in Table X are used for the following two simulations. 
Correlation time range is 10-60 sec. for the Gauss-Markov noise.   
 
 
 

Table X: Input Noise Parameters 

Parameters 2A  
2B  

2R  
2Q  2G  

Input Noise 
Variances 

Simulation 2 

1 0.1 0.005 0.1 0.05 
Tc is variable 

Input Noise 
Variances 

Simulation 3 
1 0.5 0.0003 0.2 0.1 

Tc is variable 

 
 
 

Simulation results given in Figure 30 and Figure 31 demonstrate the similarity between 
the new simulations and the previous one. One of the important conclusions is about the 
steady state performance. The degradation in the performance even for long data length 
is due to the variation of the difference variances for finite data length. Automatic 
averaging made by the stepwise function remove this effect considerably, providing better 
convergence performance as compared to the quadratic function.   
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Figure 30: Error parameter estimations for different correlation times, 10, 20, 30, 40, 

50, 60 sec and for different simulation times (Actual values are ARW=1, BI=0.1, 
RRW=0.005, QN=0.1, GM=0.05) 
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Figure 31: Error parameter estimations for different correlation times, 10, 20, 30, 40, 

50, 60 sec and for different simulation times (Actual values are ARW=1, BI=0.5, 
RRW=0.0003, QN=0.2, GM=0.1)6.3 Application to the Real Data 
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The real data used in this study is obtained from 13 different sensors. Each IMU has 
three gyroscope and three accelerometer outputs and all the sensors are tactical grade. 
IMU1 sensor outputs are acquired for two hours with 10 Hz sampling rate and IMU2 
sensor outputs are acquired for six hours with 1 Hz sampling rate. Except for the third 
accelerometer, subjected to the gravitational field, all sensor outputs can be considered 
as zero input for both IMU. Finally, a single accelerometer output which is acquired for 7 
hours with 10 Hz sampling rate is subjected to the gravitational field. Summary of the real 
data used in this study is given in Table XI. 
 
 

Table XI: Summary of the Real Data Used 

Real Sensor Data 
Data Rate 

(Hz) 

Simulation 

Time 
Input 

IMU1 

Gyroscope1,2,3 10 2 hours 0 

Accelerometer1,2 10 2 hours 0 

Accelerometer3 10 2 hours 1g 

IMU2 

Gyroscope1,2,3 1 6 hours 0 

Accelerometer1,2 1 6 hours 0 

Accelerometer3 1 6 hours 1g 

Accelerometer 10 7 hours 1g 

 
 
In order to verify the method on the real inertial sensor data, the output of the MEMS 
accelerometer data sampled at 10Hz and acquired approximately 7 hours. The output of 
the sensor in mg is given in Figure 32. Stochastic model parameters are determined 
using the proposed algorithm and are listed in Table XII. Note that during these 
calculations delay times are selected as ‘stepwise difference’. 
 
 

 

Figure 32: Output of the real MEMs sensor 
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Table XII: Calculated Stochastic Model Parameters of the MEMs sensor by using 
the proposed algorithm 

Parameters 2A  
2B  

2R  
2Q  2G  

Values computed 

by the proposed 

method 

911.54e-6 103.94e-6 1.85e-6 0 
64.95e-6 

(Tc=31.05) 

 
 
 
To test the correctness of the estimated values the two Allan variance plots; the Allan 
variance plot of the original data and the data generated by using the estimated 
stochastic model parameters are compared with each other. The result is given in Figure 
33. The similarity of the two plots shows that the noise parameters are estimated quite 
well. 
 
 
 

10
-1

10
0

10
1

10
2

10
3

10
4

10
-1.7

10
-1.6

10
-1.5

10
-1.4

10
-1.3

10
-1.2

10
-1.1

T (sec)

R
o
o
t 

A
lla

n
 V

a
ri
a
n
c
e

 

 

Estimated Data

Real Data

 

Figure 33: Allan Variance of real sensor output (blue) and estimated sensor output 
(red) 
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CHAPTER 7 

 
 

INDIVIDUAL NOISE CHARACTERIZATION 

 
 
 

The devices and systems that have 
f/1  type noises have been observed over the 

years. This type of noise arises in resistance and thermal fluctuations, voltages across 
vacuum tubes and diodes, and almost every solid state device, frequency fluctuations in 
oscillator, and voltages in most superconducting devices. There are lots of fields other 
than physics and engineering; like economics, music, weather, traffic and hydrology that 
this noise source can be observed, [6]. Therefore modeling and identification of this type 
of noise sources have crucial importance in many fields. 
 

The devices and systems that have 
f/1  type noises have been observed over the 

years. This type of noise arises in resistance and thermal fluctuations, voltages across 
vacuum tubes and diodes, and almost every solid state device, frequency fluctuations in 
oscillator, and voltages in most superconducting devices. There are lots of fields other 
than physics and engineering; like economics, music, weather, traffic and hydrology that 
this noise source can be observed as given in [6]. Therefore modeling and identification 
of this type of noise sources have crucial importance in many fields.  
 
In this chapter of the thesis, the effectiveness of the proposed method in determination of 
the individual noise source parameters will be shown. In order to do this, the stochastic 
noise source models specified in Chapter 2 are used. In this model, five noise sources, 
QN, ARW, BI, RRW and GM, are given with their transfer functions. Except for the GM 
noise source, all the other models can be described by the output of the white noise 
source with the transfer function H(z), written by; 
 

 2
1

2

1

)(








z

sr
zH  (54) 

 
In order to get the QN from this transfer function   is set to -2. Similarly,   is set to 0 

for ARW, 1 for BI and 2 for RRW. Besides these noise sources different noise sources 
can be generated and identified using this model with all rational values of   between -2 

and +2. Therefore, different types of noise models can be generated and characterized 
using the proposed new method. 
 

Gauss Markov noise, on the other hand, is different from the f/1  type noise sources, in 

that, coefficient of 
1z  term is not unity and equal to Tc

sr

e


. The parameter   is equal to 2 

for the first order GM noise. Therefore its generation and identification is explained in 
different subtitles. 
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7.1 Generation of 1/fα Noise Source 
 

Generation of 
f/1  noise is explained for α is equal to one, previously. The 

autoregressive transfer function is chosen for this purpose. Input white noise is filtered 

using the transfer function, )(zH , where it is equal to; 
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 (55) 

 
where, 
 

k

h
kh

h
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k

1
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




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

  (56) 

 
as given in [6]. 
 
Allan variance can be used to show the effect of this filtering. For   is equal to zero 

)(zH  becomes unity. The values chosen for   are 0.3, 0.5, 0.8, 1, 1.5, 2. White noise 

has unit variance and sampling rate is set to 0.1 sec for the simulations. The order of filter 
is increased up to 20000. 
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Figure 34: Root Allan Variance of 1/f
α
 noise 

 
The generated noise characteristics are as expected and given in the root Allan variance 
plot in Figure 34.  
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Note that in the generation of this type of noise sources, AR model of )(zH  is preferred. 

Because of the nature of the proposed algorithm for determination of the unknown noise 
parameters, which depends mainly on the variance of differences, the moving average 

model of )(zH  is preferred.  

 

7.2 Characterization of 1/fα Noise Source 
 

Stochastic noise sources of the form 
f/1  can be characterized with two parameters, 

  and the input white noise variance. Our aim here is to identify these two parameters 

from the generated noise sources explained in the previous section. The effect of 
sampling rate is also took account. 
 
The transfer function used to characterize the noise source can be expanded as moving 
average form and given in Eq.57. 
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where, 
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In this model, output of the system kx can be obtained by filtering the white noise k  

with )(zH , given in [6]. 
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If the input noise variance for k  is 
2  then the difference variances can be obtained 

as. 
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Difference variances is a function of  , sr  and  . In order to remove the effect of   

and sr , variances can be normalized with respect to the first difference variance. In other 

words; 
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Note that ih values is a function of   for i >0. Therefore using the equation specified in 

(25), one can easily determine the critical parameter   for characterization of the noise 

source using a gradient base optimization algorithm. However, if the cost function plots 
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given in Figure 35 and Figure 36 are examined, golden section selection algorithm 
converges to the solution accurately and effectively. Determination of the input noise 
variance is very simple if   is known. Note that, sampling rate is always a known 

parameter for this identification problem. 
 
The cost function that is minimized for the parameter   can be formulized as in Eq.61 

and 30 diffrence variances (i.e. k=30) are used during the simulations.  
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) 

 
where, gf(n) is calculated by taking the variance of the sequence obtained from the 
difference of the original sequence and its n delayed version. Determination of the 
parameter   is quite simple using golden section selection algorithm.  

 
Once   is determined a simple least square estimation technique can be applied to 

identify the input noise variance, as given in Eq.63 and Eq.64, 
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and, 
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In other words, dependence of the input noise variance is excluded from the algorithm by 
normalization and the parameter   is identified first. Then input noise variance is 

determined using a simple least square estimation method. 
 
In the following subsection the algorithm details are given and its performance is shown 
by the simulations. 
 

7.3 Simulations for Identification of 1/fα Noise 
 
The technique for generation and characterization of the 1/fα noise source is explained in 
detail previously. According to this, different noise sources are generated and its 

suitability will be discussed. Next, the two unknown parameters,   and 
2 , to 

characterize the noise source is identified using the proposed algorithm for each noise 
source. 
 
Before going further, it is better to examine the cost function specified in (26) for different 
values of   between -2 to +2.   For   is greater than 1 than the gradient of the cost 

function increases as shown in Figure 35. If the same figure is plotted to see the effect of 
the   which is less than one, cost function axis is limited between zero and one and 

plotted in Figure 36.  
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Figure 35: Cost Function Change While   Changes From -2 to 2 

 
 
 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

alfa

C
o
s
t 

F
u
n
c
ti
o
n

 

 

a=0

a=0.2

a=0.4

a=0.6

a=0.8

a=1.0

a=1.2

a=1.4

a=1.6

a=1.8

a=2.0

a=-2.0

a=-1.8

a=-1.6

a=-1.4

a=-1.2

a=-1.0

a=-0.8

a=-0.6

a=-0.4

a=-0.2

 

Figure 36: Cost Function Change While   Changes From -2 to 2 with Axis 

Limitation  

 
 
 
These two figure shows that cost is a convex function of  , gradient of the cost function 

is small if   is less than one. This is the main reason why golden section selection 

algorithm is preferred instead of the gradient base approach. 

For the first simulation, input parameters are chosen as   and 
2  is equal to 1.5 and 

0.5, respectively and a gradient base approach performance is shown. Gradient of the 
cost function is obtained by numerical differentiation. Convergence of the parameter   is 

given in Figure 37 and the results are obtained as in Table XIII. All of the simulations use 
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0.1 sec sampling time for both generation and therefore characterization of the noise. 
Total experiment time is 5 hours for the simulation. 
 
 
 

Table XIII: Actual and Estimated Noise Parameters for 5 Hours Simulation Time  

1/f
α
 noise Actual Estimated İnitial Value 

  1.5 1.501 1 

2  0.5 0.499 - 

 
 
 
From the graph convergence rate of the parameter   is quite good and 70 iterations are 

enough for the parameter to converge. 
 
If total simulation time is reduced to an hour, then the accuracy of the result reduces but 
is acceptable as specified in Table XIV and the convergence rate remains unchanged as 
given in Figure 38.  
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Figure 37: Convergence of the parameter   for 5 hours simulation time 
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Figure 38: Convergence of the parameter   for 1 hour simulation time 

 
 
 

Table XIV: Actual and Estimated Noise Parameters for 1 Hour Simulation Time 

1/f
α
 noise Actual Estimated İnitial Values 

  1.5 1.507 1 

2  0.5 0.500 - 

 
 
 
For the remaining simulations 5 hours simulation time will be used and algorithm 
performance will be shown for different input parameters. The algorithm preferred to 

determine the parameter   is the golden section selection for these simulations. The 
main advantage for this algorithm is the performance related with the number of iteration 
and maximum error can easily be obtained from (65). 
 

N
error

618.1

4
  (65) 

 
Where, N is the number of iteration. Note that the error is also related with the simulation 
time and therefore calculation of the difference variances. Sampling rate 0.1 sec is used 
for generation and estimation algorithms. The results are obtained for 100 iterations and 
listed in Table XV. 
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Table XV: Input and estimated noise parameters for 1/f
α
 noise 

1/f
α
 noise Actual Estimated 1/f

α
 noise Actual Estimated 

  -1 -0.996 2  0.5 0.507 

  -0.3 -0.303 2  0.5 0.496 

  1.8 1.803 2  0.3 0.301 

  1.5 1.500 2  0.5 0.499 

  1.2 1.197 2  0.1 0.010 

  0.5 0.498 2  0.5 0.496 

  0.1 0.102 2  0.5 0.505 

 
 
 

7.4 Generation and Characterization of First Order Gauss-
Markov Model 
Generation of the Gauss-Markov (GM) noise is quite simple and obtained by filtering the 
white noise with the transfer function given in (66); 
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where, sr  is sampling rate and Tc  is the correlation time of the GM noise. Input noise 

variance and the correlation time are the two parameters to characterize the first order 
GM noise. After the similar normalization process defined for 1/fα characterization 
dependence on input noise variance is removed from the problem and correlation time 
can be determined easily by a gradient base or golden section selection optimization 
algorithms. After normalization, the difference variances become as given in (67). 
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Note that difference variances for GM noise can be obtained as in (68). 
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Therefore the cost function that is minimized for the parameter Tc  can be formulized as 

in (69). There are 3000 difference variances (i.e. k=3000) used for all simulations. 
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Once Tc  is determined a simple least square estimation technique can be applied to 

identify the input noise variance, as given in Eq. 69 and Eq. 70, 
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and, 
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7.5 Simulations for GM Noise 
 
The algorithm proposed to identify the GM noise parameters using difference variances is 

slightly different from the f/1  noise characterization, in that, GM noise characterization 

requires high difference values as compared to f/1  noise. The parameter   is directly 

determined from the algorithm as shown previously. However for the GM noise instead of 

the correlation time, exponential function Tc

sr

e


is determined first than the correlation time 

is evaluated. The reason for this is the reduced number of calculations. Golden section 
selection algorithm is also a good in determination of this parameter. Number of iteration 
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is chosen as 100 during the simulations. Sampling time of 0.1sec is used for generation 
of the GM noise. 
 
 
 

Table XVI: Input and estimated noise parameters for GM noise 

GM noise Actual Estimated GM noise Actual Estimated 

Tc 30 28.80 2  0.5 0.500 

Tc 60 60.53 2  0.5 0.499 

Tc 60 59.13 2  0.1 0.998 

Tc 20 19.47 2  0.25 0.250 

Tc 10 10.07 2  0.25 0.250 

 
 
 
Accuracy of the algorithm is quite good according to the simulations. Difference variances 
are calculated and taken account in the algorithm for all values from 1 to 3000. This 
increases the calculation time too much. The similar accuracy can also be obtained by 
selecting suitable difference values which results in a very short calculation time. 
 
As a result we have concluded that the proposed difference variance method is a very 
good approach in determination of individual noise characterization. The only limitation 
related with this characterization is the prior information required for the noise whether it 
is GM or not.  
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CHAPTER 8 

 
 

STOCHASTIC MODELLING USING ANGLE RANDOM 
WALK AND GAUSS MARKOV NOISE MODELS 

 
 
 

In aided inertial navigation system design, Angle Random Walk (ARW) and Gauss-
Markov (GM) noise sources are used in order to model gyroscope and accelerometer 
stochastic models frequently. The other noise sources, specified previously, are generally 
excluded from the model. The main reason for using only two noise sources for the whole 
stochastic model is the simplicity in the implementation of the Kalman filter error 
propagation equations.  Similarity of the stochastic models of GM noise with the flicker 
noise and the rate random walk noise sources makes this approach meaningful. 
 
Nonstationary noise sources are not suitable for error state propagation in Kalman filter. 
The variance of a nonstationary noise can not be predicted and therefore its use in the 
Kalman filter results in different propagation error at each run, independent of the 
application. This is the reason of using only the ARW and the GM noise models in most 
of the Kalman filter applications. 
 
The non stationary noises BI and RRW are generated by two independent white noise 
sources in our model as suggested in the literature. We use the approximation of first 
order GM noise model for these noises. Input white noise variance, correlation time and 
the sampling rate are the three parameters required to model the GM noise in discrete 
time. Since the sampling rate is fixed, the other two parameters must be identified to 
characterize the BI or RRW noise sources.  
 
Second order GM noise model can also be used to model the BI or RRW noise sources. 
But using only one second order GM model,to characterize the sensor output containing 
both BI and RRW noise sources will not be efficient due to the inherent independence of 
these two noises. 
 
In this part of the study, the proposed new method will be used to approximate the inertial 
sensor stochastic model with ARW and GM noise models. 

8.1 Simplified Stochastic Model and The Algorithm 
 
Performance of the proposed new method was discussed for almost complete stochastic 
model for the inertial sensors, previously. In this complete model, there are five noise 
sources namely; QN, ARW, BI (flicker), GM and RRW. Generation of these noise sources 
forming the inertial sensor output is shown in Figure 39. 
 



 70 

 

Figure 39:Stochastic Model Used in This Study 

 
 
 
In this model mainly five noise covariances and the correlation time of the GM noise must 
be identified using the Least Square Estimation techniques. It is shown that, the 
performance in terms of accuracy and calculation time the proposed method is better 
than the Allan variance technique. 
 
 
 

 

Figure 40: Simplified Model 

 
 
 
A simplified model is shown in Figure 40. There are two noise sources that are 
represented by three parameters to be determined in this figure. The Gauss Markov 
model is used to model the flicker noise or the rate random walk noise or their 
combination. The reason for this is the similarity between the stochastic characteristics of 
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GM noise with the flicker noise and the rate random walk noise for different GM 
correlation time and for definite time interval. 
 
Let g  be the DC bias free output of the gyroscope that contains ARW and GM noise 

only. Then; 
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where,  

ARW : Angle Random Walk noise (zero mean gaussian white) with 
2

ARW  variance 

GM : Gauss Markov noise obtained from the following process; 
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sr : .Sampling rate 

cT : Correlation time 

W : zero mean gaussian white noise with 
2

GM  variance 

 
If variance of the difference sequence obtained from the g  and its delayed versions is 

evaluated similar to the generalized model, the following matrix equation can be obtained. 
In order to simplify the equations  
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where; 
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and the sequence dig , is obtained from the original sequence g and its i delayed 

versions by taking the difference. The three parameters to be determined do not form a 

convex or a unimodal objective function. However when the value of Tc  is known the 

simple least squares gives the variance parameters of the ARW and the GM noises as 

before. The optimization method used in this work for Tc  is a simple grid search.  

 
The method is applied to the IMU1 and IMU2 data given in Table XI. There are three 
gyroscopes and three accelerometers data for each IMU. The performance of the 
algorithm is measured by comparing the Allan variance plots of the original data and the 
data generated from the estimated noise parameters. As stated before, some precautions 
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must be taken for the absence of some noise types. If the data has no GM noise 
component the algorithm may converge to negative variances or very large correlation 
times. In these cases GM noise variance is equated to zero and only ARW noise variance 
is estimated which is the case for the gyroscope outputs.  
 
In order to estimate the parameters of the GM noise, difference values are increased up 
to one twentieth of the data length. If the data length is very large difference variances 
can be evaluated for the predefined delay times depending on the calculation time and 
the accuracy requirement.  
 

8.2 Simulations 

 
The first simulation shows the accuracy of the algorithm for the simplified model. ARW 
and the RRW noise sources are generated in order to simulate the sensor output. Then, 
the proposed algorithm finds the ARW and the GM noise coefficients. ARW and RRW 
noise parameters are chosen as 0.1 and 0.001 with 10Hz sampling frequency. The Allan 
variance plots of the generated from the input noise variances and estimated noise 
parameters are shown in Figure 41. The proposed algorithm finds out the corresponding 
noise parameters as follows:  
 

Correlation time Tc   = 6397 

ARW Noise variance = 98.7e-003 
GM Noise variance = 1.15e-003 
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Figure 41: Allan variance of generated (blue) and estimated (red) sensor output 
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After the performance of the algorithm is shown by the simulated data, a tactical grade 
inertial measurement unit sensor outputs (i.e. three accelerometers and three 
gyroscopes), sampled at 10Hz are used to show accuracy of this approach. 
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Figure 42: Allan Variance of Inertial Measurement Unit Accelerometer 
Outputs and the Allan Variance of Estimated Noise at 10 Hz 

 
All of the estimated noise characteristics for the accelerometer outputs are acceptable as 
shown in Figure 42. On the other hand estimation performances for the first and second 
accelerometers are better than the third accelerometer. The reason for this is the 
existence of the bias instability and rate random walk noise sources together at the output 
of the third accelerometer. 
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Figure 43:Allan Variance of Inertial Measurement Unit Gyroscope 
Outputs and the Allan Variance of Estimated Noise at 10 Hz 
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GM noise does not exist at the gyroscope outputs. All of the estimated gyroscope noise 
parameters that do not include any GM noise component are shown in Figure 43. As the 
figures indicate the results are quite satisfactory. 
 
The computations are repeated for IMU2 sensors given in Table XI. 
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Figure 44: Allan Variance of Inertial Measurement Unit Accelerometer 
Outputs and the Allan Variance of Estimated Noise at 1 Hz 
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Figure 45: Allan Variance of Inertial Measurement Unit Gyroscope 
Outputs and the Allan Variance of Estimated Noise at 1 Hz 
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Estimates of the noise characteristics of both accelerometer and gyroscope outputs of the 
second inertial measurement unit are even more successful compared to the first one. 
The comparison of Allan variances of the actual and the simulated data are shown in 
Figure 44 and Figure 45. 
 
Note that, estimation performance of the proposed algorithm reduces if there exists 
quantization noise at the sensor output or a low pass filter whose cut off frequency is 
comparable with the sampling frequency is used at the output stage of the sensor.  
 

8.3 Modeling by Using Two or More GM Noise Sources 
 
The comparison of the Allan variance plots shows some error especially in Figure 42. If 
the two noise sources, bias instability and rate random walk are approximated with 
different GM noises this discrepancy may be reduced. Experiments show that the use of 
more than one GM noise models increases the estimation performance with a slight 
increase in the computation time. An iterative procedure is applied to compute the two 
time constants of the two GM noises as well as the other parameters. The procedure 
keeps the correlation time of one of the GM noises constant and all the other parameters 
are computed by using the method described previously. The procedure is repeated until 
convergence by using the optimal correlation time found for the other model. Furthermore 
the correlation times are constrained in the optimization so that the two correlation time 
values are considerably different from each other. Golden section selection algorithm is 
used to determine the time constants.  
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Figure 46: Allan variance of inertial measurement unit accelerometer 
outputs (blue) and the Allan variance of estimated noises (red) at 10 Hz 

 
Root Allan variance of the original data and deviations from this for the third 
accelerometer output is given in Figure 42. Figure 46 shows that the use of more than 
one GM noise in the model improves the performance due to a better characterization of 
the BI noise source if there are both BI and RRW noises at the sensor output.  
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Figure 47: Root Allan variance and Deviations for one and two GM Noise Source in 
the Model 

 
 
 
The same algorithm is applied to the accelerometer output plotted in Figure 32 and 
explained in Table XIHata! Başvuru kaynağı bulunamadı.. Allan variances of the real 
data and the estimated noise sources are given in Figure 48. Comparison of the Figures 
32 and 48 shows that, the performance of the 3 noise source model is not very different 
from the full model.  
 
One advantage of the approximation made here is the modeling of a non stationary noise 
with a stationary one. This approximation is especially useful in the characterization of the 
BI that is modeled as the output of a filter represented with a non rational transfer 
function.   
 
In the two noise sources model GM can be used as an approximation of BI or RRW 
noises. So it gives satisfactory results if the noise consists of only two components: ARW 
and any of the above mentioned noises. In the three source case ARW and any of the 
two noises, GM, BI, RRW are modeled satisfactorily. In both of the approaches 
quantization noise is not included. Existence of quantization may degrade the estimation 
of the ARW.  
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Figure 48: Allan Variance of real sensor output (blue) and estimated sensor output 
(red) 

 
 
 

8.4 Summary 
 
In integrated inertial navigation system design like GPS/INS systems, stochastic errors of 
the inertial sensors bias term are modeled by using the ARW and GM noise sources, 
only. The proposed simplified model gives these noise parameters directly and quite 
accurately. However, in order to obtain good results, there are some limitations related 
with the sensor output. These limitations are listed below; 
 

 There should not be any quantization noise at the sensor output. This cause the 
degradation in the estimation of ARW noise covariance. 

 The sensor output could not be filtered with a low pass filter whose cut off 
frequency close to the output frequency of the sensor. 

 
Since the quantization noise of the inertial sensors are almost negligible for modern 
inertial sensors and low pass filtering at the output stage of the inertial sensors are not 
common especially for navigation purposes, these limitations are not very important for 
the proposed algorithm in real life. 
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CHAPTER 9 

 

CONCLUSIONS 
 
This study aims effective modeling of the stochastic error sources. Our approach is to 
model different noises as the outputs of different systems driven by white noise. All noise 
sources are modeled with rational transfer functions except bias instability which requires 
irrational transfer function representation. Irrational transfer function of BI is approximated 
by a rational one.  
 
A novel idea of using the difference sequences instead of the original noise sequence is 
one of the contributions of this study. This approach converts the non-stationary noise to 
a stationary one. Selection of the lengths of the time intervals for differencing is another 
important issue in this approach. Long and short time intervals give the parameters of 
different noise sources. Two different interval length selection procedures, stepwise and 
quadratic, are applied to the real data. Also Fibonacci numbers are used in a simulation. 
The results show that stepwise and quadratic are comparable however stepwise is better 
when the total data length is small. Fibonacci numbers are not as good as in terms of 
estimation performance. 
 
Using only a few noise source models instead of a full model is another contribution of 
the paper.  In this approach only one or two Gauss Markov noise models are used. The 
aim is to approximate the low frequency components of the noise by GM. The 
observations on the real data show the satisfactory performance of this approach. This 
modeling approach enables the use of the models in the error propagation computations. 
 
When compared with the Allan variance, the advantages of the proposed method are its 
performance (observed in the simulated data), implementation simplicity and suitability for 
real time applications. The calculation time is reduced at least 80 times as compared to 
Allan variance. Furthermore the method is much suitable for an online estimation 
application. 
 
This method handles most of the stochastic model parameters like Allan Variance, it is 
much easier to implement and much suitable as an online estimation technique.   
 
This study can be extended to include rate ramp noise source but it requires some 
modifications in the method so we leave it as a future work. Delay time selection is one of 
the important parameters of the algorithm that affects both the performance and the 
calculation time considerably. Selection of the optimum delay times, which is a function of 
the sensor output and the noise sources, are left as a future work. 
 
Depending on the noise variances optimal interval values that the differences are taken 
can be determined and used. Initial good estimate of the noise variances results in fixing 
the interval values that would allow of line computation of the required matrices and this 
will reduce the real time computation time considerably. Weighting function generally 
gives good results especially for small data lengths. 
 
Individual noise characterization is one of the applications of this proposed algorithm. If 
the noise source can be obtained white noise by filtering the transfer function of the form; 
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then the proposed algorithm finds both the noise parameters   and the input noise 

variance, as explained in Chapter 7. Similarly in the same chapter, a method that uses 
the proposed algorithm to determine the unknown parameters of the GM noise, namely 
input noise variance and the correlation time, is given. But, noise type, whether GM or 
not, must be known in order to find out the correct parameters for the noise source. 
 
Online determination of these error source parameters of the inertial sensors using this 
method will be helpful for both determination of these parameters and usage in integrated 
inertial navigation system design. 
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