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ABSTRACT

SIMPLE AND COMPLEX BEHAVIOR LEARNING USING BEHAVIOR HIDDEN MARKOV
MODEL AND COBART

Seyhan, Seyit Sabri
Ph.D., Department of Computer Engineering
Supervisor : Prof. Dr. Ferda Nur Alpaslan

January 2013, 85 pages

In this thesis, behavior learning and generation models are proposed for simple and complex behaviors
of robots using unsupervised learning methods. Simple behaviors are modeled by simple-behavior
learning model (SBLM) and complex behaviors are modeled by complex-behavior learning model
(CBLM) which uses previously learned simple or complex behaviors. Both models have common
phases named behavior categorization, behavior modeling, and behavior generation. Sensory data are
categorized using correlation based adaptive resonance theory network that generates motion prim-
itives corresponding to robot’s base abilities in the categorization phase. In the modeling phase,
Behavior-HMM, a modified version of hidden Markov model, is used to model the relationships among
the motion primitives in a finite state stochastic network. In addition, a motion generator which is an
artificial neural network is trained for each motion primitive to learn essential robot motor commands.
In the generation phase, desired task is presented as a target observation and the model generates cor-
responding motion primitive sequence. Then, these motion primitives are executed successively by the
motion generators which are specifically trained for the corresponding motion primitives.

The models are not proposed for one specific behavior, but are intended to be bases for all behav-
iors. CBLM enhances learning capabilities by integrating previously learned behaviors hierarchically.
Hence, new behaviors can take advantage of already discovered behaviors. The proposed models are
tested on a robot simulator and the experiments showed that simple and complex-behavior learning
models can generate requested behaviors effectively.

Keywords: Robot behavior learning, hidden Markov model, artificial neural network, CobART
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ÖZ

SAKLI MARKOV MODEL VE COBART KULLANIMI İLE BASİT VE KARMAŞIK
DAVRANIŞLARI ÖĞRENME

Seyhan, Seyit Sabri
Doktora, Bilgisayar Mühendisliği Bölümü
Tez Yöneticisi : Prof. Dr. Ferda Nur Alpaslan

Ocak 2013 , 85 sayfa

Bu tez kapsamında, basit ve karmaşık robot davranışlarını gözetmen ihtiyacı duymayan yöntemlerle
öğrenen ve tekrarlayabilen davranış modelleri tasarlandı. Basit davranışlar basit-davranış öğrenme mo-
deli (SBLM) ile karmaşık davranışlar ise daha önce öğrenilen basit ve karmaşık davranışları kullana-
bilen karmaşık-davranış öğrenme modeli (CBLM) ile modellendi. Her iki model de davranış sınıflan-
dırma, davranış modelleme ve davranış üretme aşamalarından oluşmaktadır. Sınıflandırma aşamasında
algılayıcılardan elde edilen veriler robotun temel yeteneklerine karşılık gelen temel hareketleri elde
etmek amacıyla ilinti temelli uyarlanır rezonans kuramı kullanılarak sınıflandırılır. Modelleme aşama-
sında, saklı Markov modelinin değiştirilmiş bir şekli olan davranış-HMM kullanılarak temel hareketler
arasındaki ilişki sonlu durumlu olasılıksal ağ biçiminde modellenir. Davranış modeline ilaveten robot
motor komutlarını öğrenmek amacıyla her bir temel davranış için yapay sinir ağlarını kullanan bir
hareket üretici eğitilir. Davranış üretme aşamasında, istenen görev amaç gözlem şeklinde sunulur ve
model karşılık gelen temel hareket dizisini üretir. Sonra herbir temel hareket daha önce bu amaçla
eğitilmiş hareket üreticiler aracılığıyla sırasıyla işletilir.

Modeller tek bir davranış için değil bütün davranışlar için bir dayanak oluşturması açısından tasar-
landı. CBLM daha önce öğrenilen davranışları sıradüzensel olarak birleştirerek öğrenme yeteneğinin
gelişmesini sağlar. Böylece yeni davranışlar daha önce öğrenilmiş davranışları kullanma yeteneğine
sahip olur. Önerilen modeller robot benzeştiriciler üzerinde denendi ve deneme sonuçlarına göre basit
ve karmaşık davranış modelleri istenen davranışları etkin bir biçimde tekrar üretmeyi başardı.

Anahtar Kelimeler: Robot davranışını öğrenme, saklı Markov model, yapay nöron ağları, CobART
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CHAPTER 1

INTRODUCTION

Although there is no common definition of a robot, in dictionary terms, a robot is defined as “a ma-
chine capable of carrying out a complex series of actions automatically". Robots can be autonomous,
semi-autonomous, or remotely controlled. In this study, we focused on autonomous robots which can
perform desired tasks without explicit human control. Today, autonomous robots can perform more
complex tasks using advanced sensory-motor functions. In order to improve their capabilities, we need
better learning methods to model a robot behavior.

It is necessary to define and inspect the meaning of a behavior before developing a robot behavior
learning model. There are various definitions and types of behavior in the literature. Behavior is de-
fined in the dictionary as “actions or reactions of a person, animal, or artificial entity in response to
external or internal stimuli". As a reaction to a stimulus, behavior is a process changing the environ-
ment or the agent itself from one state to another. Robot behaviors are defined as a time-extended
action sequences achieving specified tasks [1] in the scope of this study. Behaviors which have one
basic and specific goal such as turn, approach, and grasp an object are considered simple behaviors.
On the other hand, behaviors having a complex goal that can be segmented into several basic goals are
considered complex behaviors. Thus, a complex behavior may consist of several simple or complex
behaviors. For example, in order to approach an object having a rotational angle difference, robot
needs to perform turn and approach behaviors.

In robotics, there are two main approaches to control robots. The first one is programmer’s perspective
which controls the robots by preprogramming the behaviors and the second one is robot’s perspective
in which robots learn behaviors with or without the help of a human tutor. In this study, the second
approach is followed. The motivation of this thesis arises from the question of how to learn and per-
form robot behaviors using observation data without the help of a human tutor. Unsupervised learning
is selected to let robots to discover behaviors based on their capabilities without the supervisor’s per-
ception of the world. The major contribution of this thesis is to develop an extendible, generic and
self-organizing behavior learning model. The model should reuse the already learned behaviors to
learn more complex behaviors and new behaviors could be integrated with the model easily.

This thesis consists of two behavior learning models developed for simple and complex behaviors.
Simple-behavior learning model (SBLM) is designed to learn simple behaviors and complex-behavior
learning model (CBLM) is designed for complex behaviors. CBLM integrates already learned models
hierarchically. Behavior categorization, behavior modeling, and behavior generation are the common
phases of both models.

A behavior learning model should extract the unique and repeated parts of a behavior. These parts are
considered as meaningful components of a behavior. In the previous studies, Yavas and Alpaslan [2][3]
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proposed correlation based adaptive resonance theory (CobART) for the categorization of behaviors
using observation data. This study uses CobART for the categorization of meaningful components
of a behavior. The components generated by CobART are called motion primitives. There are some
advantages to learn a behavior based on the motion primitives. The model can learn basic components
more easily and correctly. Furthermore, the model can use previously learned components to avoid
retraining [4].

Once the categorization of motion primitives completed, relations among them should be constructed.
In the behavior modeling phase, relations and transition probabilities among the motion primitives
are learned in a higher level model. As mentioned before, a behavior is a collection of action se-
quences. Thus, it is assumed that action sequences (i.e. motion primitives) can be modeled by a finite
state stochastic network. Hidden Markov model (HMM) [5] is a tool to model generative sequences
where the modeled system is a Markov process with unobserved states. The regular HMM is changed
to model the relations between the motion primitives. This adopted version of HMM is named as
Behavior-HMM throughout the study [4].

Motion primitive transition model constructed as Behavior-HMM helps robots to generate motion
primitive sequences in order to achieve a given task. On the other hand, how to execute each motion
primitive during runtime is not clear yet. For this purpose, a motion generator is used to learn gener-
ation of motor commands for each motion primitive. Motion generators use artificial neural networks
(ANN) to learn the generation of motor commands. ANNs can learn the complex relations between
the real-valued inputs and outputs.

Behavior generation phase generates motion primitive sequence to achieve the desired goal. It uses
most likely path and Viterbi [6] algorithms to generate the most likely sequence of motion primitives.
Then, the motion primitives in the sequence is executed one by one until the desired goal is achieved.

Modeling of complex behaviors need a different approach than simple behaviors. Applying simple-
behavior learning model on complex behaviors causes a very complex behavior model that has repeated
components. Different complex behaviors may contain common components and they can be modeled
hierarchically to enhance the learning capabilities. CBLM is developed to manage the complexity
of hierarchically integrated behavior models. It exploits the previously learned simple or complex
behaviors as the parts of the new complex behavior [4].

Robot behavior learning is an active area of research as explained in Chapter 2. Many different frame-
works using different types of neural networks and HMMs are proposed for behavior learning. This
study introduces a new approach to learn simple and the complex behaviors in an extendible, unsuper-
vised and self-organizing manner. Hierarchical structure of the model lets the use of already learned
behaviors to generate more complex behaviors. The use of already learned behaviors reduces the
training time and improves the quality of the learned behavior.

The model capabilities are tested on Khepera [7] robot using Webots [8] simulator. Simple-behavior
model is experimented on turn and approach behaviors. Complex-behavior model is tested on the
combination of previously learned turn and approach behaviors.

1.1 Contributions

The contributions of this thesis are listed below:

2



• This study contributes to other studies by the ability of learning of simple and complex behaviors
effectively in an incremental manner.

• Robots learn behaviors without the help of a supervisor. Thus, robots are not restricted with the
supervisor’s perception of the world and they can discover behaviors based on their capabilities.

• New behaviors can be added to the model hierarchically. Integration of already learned behaviors
improves the behavior generation performances and reduces the computational times of training.

• The model is extendible and self-organizing. Adding new behaviors to the model does not
disrupt already learned behaviors. Furthermore, there is no need to retrain the old behaviors.

• The model can run on the continuous domain. It is not restricted with the range of the values
inside the training data.

Followings are the differences from the previous studies of Yavas and Alpaslan [9][2][3]:

• Previous studies focused on behavior recognition and categorization process. This study extends
the problem scope from behavior categorization to behavior learning.

• In the previous studies, CobART is used to recognize the different behaviors. This study uses
CobART to extract motion primitives as meaningful parts of a single behavior.

• Simple and complex behavior models, Behavior-HMM, motion generators using ANNs and
behavior generation algorithms (most likely path and Viterbi) are used only in this study.

• In [3], hierarchically integrated CobART networks are used to develop a better behavior cate-
gorization. In this study, already learned behavior models are integrated hierarchically to model
the complex behaviors.

1.2 Outline

Outline of the remaining sections are organized as follows:

• Chapter 2: Related Work presents a review of the relevant previous work in this area.

• Chapter 3: Background gives background information about the topics discussed in the thesis.

• Chapter 4: Simple Behavior Learning Model explains behavior learning model for simple
behaviors in detail.

• Chapter 5: Complex Behavior Learning Model explains behavior learning model for complex
behaviors in detail.

• Chapter 6: Experimental Evaluation reports experiments and results obtained during the mod-
els evaluation.

• Chapter 7: Discussion& Conclusion discusses the experiment results and presents a summary
of the work described in this thesis and gives information about the future work.
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• Appendix A: More Hidden Layer/Unit Experiments on Neural Network Training reports
more experiments about the hidden layer/unit effect on neural network training for two-input
networks.

• Appendix B: More Behavior Generation Experiments presents more simple and complex-
behavior experiments.

• Appendix C: Video Recordings of Training and Generated Behaviors presents samples of
training and generated behavior video recordings.
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CHAPTER 2

RELATED WORK

A review of related work in the areas of behavior recognition, behavior learning and behavior gener-
ation are presented in this chapter. Studies in behavior recognition generally categorizes the observed
human or robot behaviors and predicts the next behavior. Behavior learning studies propose modeling
and learning methodologies including different types of neural networks, genetic algorithms, hidden
Markov models or stochastic models. Behavior generation studies are closely related with the learning
algorithms and they are focused on the motion generation capabilities of the robots. The related works
are grouped based on the main methodologies they use.

2.1 CobART

In their study, Yavas and Alpaslan [2] introduced a new categorization method of robot behaviors. It
is intended to be a base model for behavior recognition by using correlation based adaptive resonance
theory (CobART). They used derivation based correspondence and Euclidean distance as correlation
analysis method for category matching. CobART is a competitive, unsupervised, self-organizing cat-
egory generation network where patterns are formed by consecutive real-valued inputs. As a base
model, it uses ART 2 (Adaptive Resonance Theory) network, but has a more simple architecture adopt-
able to different problems. CobART behavior categorization results were compared against ART 2 and
ART 2 with SOM networks. In their study, they tested the model on approaching, pushing, and striking
behaviors. Test results show that CobART produces more reasonable categorizations than ART 2 and
ART 2 with SOM networks.

In [3], Yavas and Alpaslan proposed an improved behavior categorization model which uses hierar-
chically integrated CobART networks. In this study, three CobART networks exist in the first layer
of the model, and they categorize robot self behavior data, object self behavior data, and the distance
between them. Categorization results of first layer networks are combined at the second layer, and
categorized second time by the CobART network located at that layer. Thus, the model generates
behavior categories according to robot motion and its effect over the object. The model generates
alternative categories for the different forms of the same behaviors and specifies the close correlation
between them. According to test results, hierarchical model categorizations are better than the single
CobART network.
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2.2 Recurrent Neural Networks (RNN) and Continuous-time Recurrent Neural Networks (CTRNN)

Tani and Yamamoto [10] studied the modeling problem of a workspace through exploration. A combi-
nation of reinforcement learning with novelty rewarding, consolidation learning and recurrent neural
networks (RNN) are used for this purpose. In the model, prediction of the rewards and next sensory
data is learned by the RNN model. Since modeling the workspace requires new directions to be tested,
novel behaviors are resulted in having more rewards. Consolidation process is applied by rehearsing
based on the previous learning, because the RNNs have some difficulties in incremental learning. Test
results show that the robot is successful in learning a model of the simple workspaces.

Similarly, Tani [11] proposed a method for behavior generation by using multi level RNNs for sensory-
motor learning. They used two level RNNs operating on different time scales. There are parametric
interactions in top-down and bottom-up directions between two levels of networks. The model is tested
on a robot arm by using a visual system. The bottom-up process corresponds to recalling the past and
the top-down process corresponds to predicting the future. The parametric interaction between the
bottom-up and top-down processes makes the system more flexible and robust against real time noise
and changes in the environment. The networks utilize the working memory storage which stores
the sequences of the parametric biases and the sensory-motor inputs/outputs where the recall as well
as planning process takes place. The network in the lower level learns motor command generation
using sensory data and motor commands. The relations among the motion primitives are learned by
the higher level network to predict future plans. Future plans as a motion primitives sequence are
generated by the higher level network, and motor commands for each motion primitive are generated
by the lower level network. The model performance on the defined motion primitives are satisfactory.
However, when new behavior is added to the model, the model should be retrained.

Nishimoto and Tani [12] showed learning capabilities of RNNs by generating specific sensory-action
sequences. The proposed model learns the alternative paths of a finite state machine (FSM). For this
purpose, the model uses context units to encode the active state of FSM. As a result, it is concluded that
correct action sequences of FSMs can be generated when respective initial state is set to the context
units.

Paine and Tani [13] studied on the complex navigation task. In their study, a robot learns to reach
multiple targets in a maze starting from a home position. They used two different continuous-time
recurrent neural networks (CTRNN). In the first network, neurons are fully connected to each other.
Second network has two layer fully connected networks which are connected to each other by bottle-
neck neurons. Switching among the targets are accomplished by using task neurons. The parameters
of the network are learned by genetic algorithms without crossover. Tests show that hierarchically
connected network performs better than the fully connected network.

In addition, Tani et al. [14] worked on a codevelopmental learning between human and humanoid
robot by using hierarchically integrated CTRNNs. Arm joint positions and visual inputs are connected
to the input layer of the network. Output layer produces prediction for the next visual inputs and joint
positions. Motor commands are applied by using closed loop control to achieve the predicted joint
positions. Robot learns the tasks with the physical assistance of the human tutor. When robot performs
the task, human tutor interfere to the robot physically in order to improve task generation. Single
CTRNN is not qualified for the complex tasks. Therefore, hierarchically integrated CTRNNs are used
for complex tasks. CTRNNs in the first layer learn generation of outputs with minimum error rate.
The second layer network learns to predict a lower layer network which will generate minimum error
for the next step. Hence, second layer network is responsible from selecting the proper network in the
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lower layer. Experimental results present that the complex tasks can be learned by the hierarchically
integrated CTRNNs.

Reinhart and Steil [15] proposed a model which can learn reaching behavior for a humanoid robot
by using RNN. The model does not generate trajectory maps for this purpose, but uses transient task
space inputs with the reservoir computing approach. Reservoir computing is a framework designed
for recurrent neural networks. It is used to generate a nonlinear transformation from the inputs to a
multi dimensional network state space. The model has input, output and reservoir neurons for different
purposes. Input neurons are connected to task space inputs and output neurons generates joint angles.
Thus, the network maps the joint angles to task space bidirectionally. The reservoir neurons have
connections to each other and also they are connected to the input and the output neurons. In the
experiments, reaching to the target positions are achieved successfully, even when the robot arm is
forced to deviate from the target (simulates a strong hit) in the middle of reaching.

2.3 Hidden Markov Model (HMM)

Fox et al. [16] proposed a behavioral model of a robot as a finite state stochastic system. They used
unsupervised learning techniques on raw sensory data. Their study does not focus on the planning and
control aspects, but propose a learning and evaluation methodology. In order to predict and explain the
behavior of a robot during execution of the task, an HMM is estimated. Because behavioral states are
hidden to the robot and it is equipped with noisy sensors from which it can obtain only an estimate of
its state, they used HMM. In the first step of HMM construction, observations are clustered into evi-
dences. Multi dimensional feature vectors are obtained by processing the raw features of consecutive
observations. Then, feature vectors are fed into Kohonen self-organizing network to produce clusters
of evidence items. While the robot is performing a task, a human observer labels the observations. The
labeling indicates the relation between an observation and a behavioral state, as perceived by human
observer. The set of labels are used as an initial set of states. The state splitting algorithm is used to
enhance the initial set of states. Then HMM parameters are re-estimated by using expectation maxi-
mization algorithm1. Most likely sequence of generated states for a given trajectory is calculated by
using Viterbi algorithm. Then, the generated state sequence are compared to the state sequence ob-
served by human. HMM performance is investigated on randomly initialized, different size models by
comparing their clustering stability. Their behavior model performance is experimented on an indoor
navigation task.

Morisset and Ghallab [18] studied on a robot controller model that can perform complex tasks. They
use Markov decision processes (MDPs) and hierarchical task networks (HTNs) to model the controller.
The designer specifies the set of sensory-motor functions as skills into HTN plans offline. Alternative
ways of performing a skill is represented by a HTN using different combinations of sensory-motor
functions. The right skill to achieve the high level task is selected at each moment depending on
robot state and environmental parameters. The relations among the skills and the control states are
represented as an MDP and they learned through experience. Available set of skills for the task cor-
responds to the action space and robot control space is the state space of MDP. Control space is the
task-dependent properties describing the current context. The capabilities of the model is tested by
using different skills for navigation task in different types of indoor environments.

1 Expectation maximization algorithm iteratively computes most likely parameters of a statistical model with
incomplete data [17].
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Infantes et al. [19] introduced a probabilistic model based on dynamic Bayesian network2 (DBN)
to learn behavior model of an autonomous robot using sensor data. Their behavior model generally
cannot be composed into a global functional model, because robots are designed by multiple behavioral
components. They presented a methodology for modeling the behavior of a robot as DBN, structured
into observable, controllable, and hidden components, by constructing causal relations between the
components. After learning the behavioral model, performance of the robot is improved by optimizing
control parameters using dynamic decision network3 (DDN) approach. DDN formalism adds some
cost and reward transitions to the DBN model and it provides some variables which are controllable
by decision making algorithms. Capabilities of the model is presented on an autonomous navigation
task within various environments.

Han and Veloso [20] introduced a stochastic model to recognize the high-level robotic behaviors from
low-level sensor inputs. The model uses a pre-defined set of states and it is based on augmented hidden
Markov model. When an observation does not match to the definition, reject states are inserted to the
model to stop the processing of HMM. The model is used for narrating a robotic soccer game by
recognizing opponent’s next behavior. Each behavior has modeled by a specific HMM.

Osentoski et al. [21] proposed a method for modeling hierarchical activities by using abstract hidden
Markov models (AHMMs). The AHMM is defined as a statistical model for representing behaviors
in stochastic and noisy environments. The parameters of the model is learned from the raw sensory
data using expectation maximization algorithm. In the lowest level, model has states, observations
and mixture components. Behaviors and termination flags are defined at the upper levels. The study
compares the performances of 1 and 2-level AHMMs on indoor navigation behavior. Experiments
show that second (2-level) model performed better in the environments where the classification is
difficult and the training data have similar entries.

Vazquez et al. [22] presented a growing hidden Markov model (GHMM) which is used to recognize
human and vehicle motions. The key feature of a GHMM is the ability of on-line and incremental
learning of parameters and structure of a model. When a new observation pattern is presented to the
model, probability parameters, structure of the model, and number of states are updated. A topological
map is constructed to implement their structure learning approach. Continuous observation space is
represented as a graph where nodes corresponds to space regions, and contiguous nodes are connected
by edges. Instantaneous topological map algorithms are used to update the model’s structure for every
observation. Then, the structure of GHMM is updated according to changes in the topological map.
An incremental version of Baum-Welch algorithm is used to estimate the parameters of GHMM. The
prediction accuracy of model is compared with the other two models: first one is based on HMM and
uses expectation maximization algorithm for learning, while the second one uses hierarchical fuzzy
K-means (HFKM) clustering. In the experiments, both the simulator data and real data from a visual
tracking system is used. The results show that, the proposed model perform better than others.

Kulic et al. [23] proposed an incremental and autonomous model to learn patterns of motion from
observation data. Motion patterns are organized in a hierarchical tree structure by using HMM and
factorial hidden Markov model (FHMM). An FHMM is a type of HMM in which independent mul-
tiple dynamic chains interact to generate a single output. The outputs of each independent chains are
summed and output is generated using an expectation function. Motion patterns are stored in a hier-

2 A Bayesian network is defined as a directed acyclic graph that represents dependencies between variables
in a probabilistic model. Dynamic Bayesian network is a version of Bayesian network which attempts to model
events that include temporal and ambient aspects. HMMs are just a special type of dynamic Bayesian networks.

3 Dynamic decision network is also a directed acyclic graph with chance and decision nodes and it extends
the single stage decision network to allow for sequential decisions.
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archical tree structure for easy retrieval and organization. Detailed motion patterns near the leaves are
modeled by FHMMs and general motion patterns are modeled in the nodes near to roots by HMMs.
The model is experimented on a set of different human movement observation sequence obtained from
a motion capture system. The performance of traditional HMM and FHMM models are compared in
the experiments. FHMM demonstrated better generalization capability and performed a higher perfor-
mance when recognizing same type of motion patterns.

In addition, Kulic and Nakamura [24] worked on an incremental model that can learn recognition
of human behaviors by using observed data. In their approach, motion primitives are segmented by
a modified version of Kohlmorgen and Lehm algorithm. Motion primitives are modeled as hidden
Markov models incrementally during on-line observation. Following that, motion primitive sequences
are modeled by a higher layer HMM where each hidden state corresponds to a motion primitive.
The model is tested on a whole body motion data set and generated reasonable results by properly
constructing a probabilistic transition model between the motion primitives.

Okada and Nishida [25] worked on incremental clustering of human gesture patterns. HMM and
self-organizing incremental neural network (SOINN) are used to learn observed gestures incremen-
tally. The SOINN is an unsupervised incremental learning method, based on self-organizing map
(SOM) and growing neural gas (GNG). In GNG, dimensions of the topological structures are deter-
mined on-line during the training. The proposed model is defined as an extension to SOINN to handle
variable length sequence patterns. HMM is used to map the variable length gesture patterns into fixed-
length patterns and HMM parameters are used as input to SOINN. They compared the proposed model
with the adaptive factorial HMM (FHMM) and hierarchical agglomerative clustering using dynamic
time warping (DTW) for measuring the distance. The performed experiments show that the proposed
method improved the clustering performance over the other two approaches.

Kelley et al. [26] proposed a model that can predict agents’ intent based on the experiences acquired
through sensor data. They used a specifically designed version of HMM to model each experiences
of robot. The robot acts as an observer of agent activities and infers the intents before the actions are
finalized. They validated the model on a real robot having a vision system by predicting human intents
in different activities.

2.4 Imitation Learning

Okuzawa et al. [27] introduced an imitation based motion generation model for humanoid robots.
Recognition of instructed movement primitives is accomplished by using HMMs. Motion generation
is learned by the robot using dynamical movement primitives. Motion symbol for the recognized
motion is constructed and it is kept with the learned motion primitives within the motion knowledge
database. When a new motion is presented to the robot, corresponding motion symbol is compared
with the motion symbols in the motion knowledge database. When a similar one is found, motion
primitives of the similar motion symbol from the motion knowledge database are used and modifying
process is applied to learn generation of new motion. Experiments show that, modifying process
decreases the cost of the learning, but increases the error.

In another study, Kubota [28] worked on an interactive imitation learning between an instructor and a
partner robot. Steady-state genetic algorithms4 (SSGA) are used for human hand detection. The spatial

4 In steady-state genetic algorithm, only a small number of individuals are replaced in each genetic iteration
[28].

9



and temporal patterns of the human hand motion is extracted by spiking neural networks5 (SNN). Then,
hand motion patterns are clustered into gestures by self-organizing maps (SOM). At the end, action
patterns are generated based on the human gestures by using SSGAs. The model is tested on imitative
learning experiments using the partner robot MOBiMac. Experimental results showed that the robot
learned the action patterns of human gestures as a result of imitative learning process.

Borenstein and Ruppin [29] introduced an imitation based learning model using genetic algorithms and
neural network. Motor command generation learned by neural network using inputs of human tutor’s
actions and environment data. Genetic algorithms are used to determine the parameters of neural
network. The fitness function of individuals are evaluated by using the correctness of the performed
actions. The evolved agents performs correct actions after 2000 generation.

Hajimirsadeghi et al. [30] proposed an imitation based incremental concept learning model which uses
HMM and reinforcement learning methods. Spatio-temporal demonstrations are modeled into percep-
tual prototypes using HMM to represent relational concepts. Generated HMMs are stored in long term
or working memories, based on their contents. Motor babbling approach for hand-eye coordination is
used to regenerate the learned concepts. In this approach, robot starts with an initial joint positions
and makes small perturbations in its joint variables to reach some temporary goals. Then, the robot
maps the sensory space to motor space by combining visuomotor information at temporary goals. The
performance of their study is experimented by imitating the signs of a human hand movement. The
results show that the proposed algorithm is successful in learning the concepts and regenerating the
conceptual behaviors.

5 Spiking neural networks are designed to have an increased similarity to the biological neurons. They
incorporates “time of spike firing" concept into the neural network models.
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CHAPTER 3

BACKGROUND

In this chapter, a brief background information is presented about the models, architectures, and al-
gorithms used in this study. In behavior categorization phase, CobART is used to extract the motion
primitives. Hence CobART and its base pattern classification architecture ART networks are explained
first. Hidden Markov model (HMM) is used to model the relationships between the motion primitives
and Viterbi algorithm is used to generate the most likely motion primitive sequence in behavior model-
ing and generation phases. Then, artificial neural networks and backpropagation algorithm are used to
learn the relations between the sensor data and motor commands. Thus, details about HMM, Viterbi al-
gorithm, ANN, and backpropagation algorithm are presented in this chapter. Then, information about
Webots simulator, Khepera robot, and s-curve motion control algorithm is given, because they are used
in experimental evaluation of the proposed models.

3.1 Adaptive Resonance Theory (ART) Networks

The adaptive resonance theory (ART) is a family of neural networks that are capable of stable cate-
gorization of a sequence of input patterns in real time. These architectures propose solutions of the
stability-plasticity dilemma. A learning system should keep its ability to learn new patterns (plasticity)
while preserving its past knowledge in a stable way (stability). This phenomenon is called stability-
plasticity dilemma. ART networks were introduced by Carpenter and Grossberg as an extension of the
competitive learning scheme. In competitive systems, category nodes compete with others to classify
the input patterns and the winner category is selected based on some correlation function. ART cate-
gorization algorithm checks the input pattern whether it corresponds to one of the already discovered
categories, otherwise a new category is created. ART architectures self-organize recognition categories
for arbitrary sequences of input patterns in unsupervised manner.

Feedback mechanism is used between the competitive and input layers. It is an important feature
to solve the stability-plasticity problem by automatically switching between stable and plastic modes.
Moreover, feedbacks provide the learning of new patterns while preserving past knowledge. A resonant
state in an ART network occurs in one of two ways. The network shall enter a resonant state if a
previously learned input pattern is presented again. During the resonance state, the memory of the
stored pattern will be refreshed by the adaptation process. If the input pattern is a novel pattern which
does not match to active category, then the network shall search all stored patterns. If there is no
match in stored patterns, a new resonant state occurs in which the new pattern is stored as a new
category. Hence the network has the ability to retrieve previously learned data while keeping learning
capabilities when novel input patterns presented [31].
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Figure 3.1: ART 2 architecture [31]

Carpenter and Grossberg first introduced ART 1 [32] for binary input networks. They developed
ART 2 [33] for both analog and binary input patterns. ART 2-A [34] is a more efficient form of ART 2
network with faster runtime and better noise tolerance. Fuzzy ART [35] uses fuzzy logic for rapid
learning of recognition categories for arbitrary sequence of analog or binary input patterns. ARTMAP
[36] and Fuzzy ARTMAP [37] have a supervised learning mechanism for binary and analog data.

3.1.1 ART 2

ART 2 is a class of unsupervised competitive neural network which self-organizes pattern categories
of analog or binary inputs. ART 2 includes the base components of all ART networks, attentional and
orienting subsytems. As shown in Figure 3.1, attentional subsystem consists of an input representation
field F1, and a category representation field F2. Orienting subsystems interacts with the attentional
subsystem to perform a search process. There are top-down (F2 → F1) and bottom-up (F1 → F2)
adaptive filters between the fields [34].

F1 layer has six sublayers w, u, x, p, v, and q. Bottom-up input patterns and top-down signals (from
F2) are processed at different sublayers in F1. G nodes are the gain controls which send inhibitory
signals to the each unit on the layer it connected. Because pattern of activity over the nodes in the two
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layers of the attentional subsystem exists only during single processing of an input pattern, they are
called short-term memory (STM). Adaptive filters between the top-down and bottom-up connections
are called long-term memory (LTM), because connection weights defining adaptive filters remains as
a part of the network for long times [31].

When an input is presented to the F1 layer as a pattern of activity, a pattern matching cycle is started
until a match is found in F2. If there is no match with the active category, orienting subsystem becomes
active and sends a reset event to the active category at F2. Reset event initiates a parallel search in
attentional subsystem in which alternative categories are checked until a match is found or a new
category is created. Bottom-up and top-down adaptive filters are updated when a search is finished
and a matched F1 pattern is found. The learning is a non-stop process which continues even while the
pattern matching process is active. When a match occurs, no reset signal is generated and the network
enters a resonant state which the weight are strengthened [33].

3.2 Correlation Based Adaptive Resonance Theory (CobART)

CobART is an unsupervised, competitive category generation network on real-valued inputs. It is
based on ART 2 (adaptive resonance theory) [33] network, but has a simplified structure that can be
adoptable to different problems. Figure 3.2 represents the architecture of the CobART network. It has
orienting and attentional subsystems as its base model ART 2.

Input processing layer F1 and category processing layer F2 are the components of attentional subsys-
tem. There are top-down and bottom-up weights among F1 and F2 layers. Input patterns are filtered
to reduce the effect of noise and then presented to the network through F1 layer. In this layer, there
is one neuron for each dimension of the input pattern. The last active category has a small effect on
the new input at p nodes to provide a continuous categorization process. The processed input data
corresponding to p nodes are calculated by

pi j = a × wi j + (1 − a) × zki j

where pi j is the processed input data for the dimension of input vector i and input value j. wi j is the
filtered input value and zki j is the kth category data. Parameter a is the effect of new data on processed
input vector [3].

There is a neuron in F2 layer for each category. Winner category data for each input is updated
according to the deviation from the input pattern and the learning rate. Learning rate decreases over
time to preserve the previously learned categories.

After the input pattern is processed at F1 layer, a matching score between the input pattern and the
learned categories are calculated at r nodes in the orienting subsystem using correlation methods.
Euclidean distance method (EDM) and derivation correspondence method (DCM) are used to calculate
the correlation between the two vectors. DCM calculates the similarity of two vectors based on their
derivations. On the other hand, EDM calculates the similarity of two vectors based on the distance
between them. Matching score rk is calculated by

rk =
1
I
×

I∑
i=1

(
b × DCM(pi, zki) + (1 − b) × EDM(pi, zki)

)
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where pi is the processed input data and zki is the kth category data. I is the input vector length and b
is the weight of DCM over EDM [3].

Vigilance parameter adjusts the coarseness of the generated categories and balances stability-plasticity
features. If matching score of a category is greater than the vigilance parameter, that category is
selected as the winner. If there is no match, a new category is created by using input data.

3.2.1 Hierarchically Integrated CobART Networks

In behavior recognition, sometimes it is necessary to classify the different forms of the same behavior.
For example, we may need to determine that slow and fast approach behaviors are the different forms
of the same behavior. Moreover, a robot can perform more than one behavior in parallel. When it is
approaching an object, it can be moving away from another object. In order to learn relations among
these behaviors, a second layer CobART network is added and CobART networks are integrated hier-
archically as shown in Figure 3.3. CobART Robot categorizes robot behaviors using robot’s motion
data, CobART Object categorizes object’s behaviors, and CobART Distance categorizes distance be-
tween robot and object. In the second layer, CobART Relation categorizes robot behaviors according
to its effect on an object. w1, w2, and w3 are the weight parameters connecting the first layer to the
second layer. They determine the effect of the first layer CobART networks on the second layer. The
association from second layer to first layer (clipped line) delivers matching information to the first
layer and the effect of this feedback association is adjusted by weight w f [3].

Matching information is used to detect the correlation between the input patterns and category data as
in single CobART network, but input pattern of the second layer corresponds to active category outputs
of the first layer networks. Matching score rk in the second layer is calculated by

rk =

M∑
m=1

(wm

Im
×

Im∑
i=1

(
DCM(pmi, zmki) × b + EDM(pmi, zmki) × (1 − b)

))

where M is the number of first layer CobART networks while the weight of CobART network m is
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Figure 3.4: A hidden Markov model (HMM)

represented by wm, and Im is the input vector length for the corresponding CobART network. pmi is the
processed input data and zmki represents the kth category data for mth CobART network. Experiments
in [3] presents that hierarchically integrated CobART network outperforms to single CobART network
by classifying input data into more correct and generic categories [3].

3.3 Hidden Markov Model (HMM)

A Markov process is a stochastic process where the future state distribution is determined only by the
current state, not the sequence of previous events. It is a state machine in which the system stays in
the active state and then transits to a different state probabilistically. A hidden Markov model (HMM)
is a mathematical and statistical tool to model generative sequences where the modeled system is a
Markov process with unobserved states as shown in Figure 3.4. States of the model are directly visible
in a regular Markov model. However, the states are not visible to the observer, but the observations in
the state are visible in an HMM.

An HMM can be described as a 5-tuple [5]:

• S = {S 1, . . . , S N} is the set of states and the state at time t is qt.

• O = {o1, . . . , oM} is the set of observations and the observation at time t is ot.

• A = {ai j} is the probability distribution of state transitions where ai j = P[qt+1 = S j | qt = S i],
1 ≤ i, j ≤ N.
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• B = {b j(k)} is the probability distribution of observations in state j where b j(k) = P[ok at t | qt =

S j], 1 ≤ j ≤ N, 1 ≤ k ≤ M.

• π = {πi} is the probability distribution of initial states where πi = P[q1 = S i], 1 ≤ i ≤ N.

After an HMM is properly defined by the parameters S , O, A, B and π, it can be used as a generator
for a given observation sequence like V = [V1V2 . . .VT ] as follows [5]:

1. Using the initial state distribution π, choose an initial state q1 = S i.

2. Reset the time (t = 1.)

3. Choose Vt = ok according to bi(k) in state S i.

4. Go to new state qt+1 = S j according to ai j for state S i.

5. Increase time t = t + 1; terminate if t ≥ T ; otherwise go to step 3.

The process described above can be used as a model explaining steps of a given observation sequence
generation by a corresponding HMM.

3.3.1 Viterbi Algorithm

The problem given below is one of the main problems that should be solved to prove that HMM can
be used in real applications.

Problem: Given the observation sequence V = [V1V2 . . .VT ] and an HMM, find the corresponding
most likely state sequence S = [S 1S 2 . . . S T ].

The Viterbi algorithm [6] is a kind of dynamic programming algorithm to solve the above problem. As
a first step, highest probability term is defined below as

δt(i) = max
S 1,S 2,...S t−1

P[S 1, S 2 . . . S t = i, V1V2 . . .Vt | λ]

for a single path including the first t observations. λ is the definition of the given HMM. It can be
stated that

δt+1( j) = [max
i
δt(i) ai j] · b j(Vt+1)

by induction. In order to get the state sequence, the argument which maximizes the above equation
should be tracked for each t and j. ψt( j) is defined for this purpose. The procedure to find most likely
state sequence is presented below [5]:

• Initialization

δ1(i) = πibi(V1), 1 ≤ i ≤ N

ψ(i) = 0
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Figure 3.5: A perceptron [39]

• Recursion

δt( j) = max
1≤i≤N

[δt−1(i) ai j] · b j(Vt), 2 ≤ t ≤ T and 1 ≤ j ≤ N

ψt( j) = argmax
1≤i≤N

[δt−1(i) ai j], 2 ≤ t ≤ T and 1 ≤ j ≤ N

• Termination

P∗ = max
1≤i≤N

[δT (i)]

S ∗T = argmax
1≤i≤N

[δT (i)]

• State sequence tracking

S ∗t = ψt+1(S ∗t+1), t = T − 1,T − 2, . . . , 1

3.4 Artificial Neural Networks (ANN)

An artificial neural network, commonly referred as neural network, is a mathematical model motivated
by biological neural networks which are build of very complex groups of interconnected neurons.
Processing in these systems is parallel and distributed across layers of neurons. Each neuron processes
its inputs simultaneously and independently [38]. Artificial neural networks try to simulate highly
effective processing power of biological neural networks. Neural network methods provide a powerful
approach to learn analog, binary, and vector based target functions [39]. They are very effective in
learning the certain types of complex problems such as mapping of complex input data to actuator
commands.

3.4.1 Perceptron

The perceptron is the first algorithmically described neural unit invented by Rosenblatt [40]. As shown
in Figure 3.5, it contains a single neuron with weighted inputs and adjustable threshold to classify the
linearly separable input patterns (i.e., patterns that can be separated by a single line). Rosenblatt pro-
posed a perceptron learning algorithm for perceptron networks to solve pattern recognition problems.
If the patterns are from two linearly separable classes, then the learning algorithm converges to the
correct network weights [41].
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A perceptron takes a set of analog inputs and determines the activation level by summing the weighted
input values, then generates −1 if the result is less than some threshold and 1 otherwise. More pre-
cisely, given input values x1, . . . , xn, weights w1, . . . ,wn and a threshold (−w0), the output o(x1, . . . , xn)
computed by the perceptron is

o(x1, . . . , xn) =

 1 if w0 + w1x1 + · · · + wnxn > 0
−1 otherwise

where each wi is the weight of inputs which determines the effect of input xi over the output. Note
that the value (−w0) is used as a threshold that the sum of weighted inputs must be greater than the
threshold in order to output 1.

The perceptron presents a decision surface in the multi-dimensional instance space. It outputs 1 for
the patterns on the one side and outputs −1 for the other patterns [39].

A perceptron learning is a process for choosing the correct values of weight vector w1, . . . ,wn that fits
to training data. One approach to learn an acceptable weight vector is the perceptron training rule. This
approach initializes weights randomly, then applies each training example to the perceptron iteratively.
The weight vector of the perceptron is updated when a training example is not classified correctly. This
process is repeated until all training examples are classified correctly. For each training example in the
training set, each weight wi associated with input xi is updated according to the rule

wi ← wi + ∆wi

where

∆wi = η(t − o)xi

Here t is the target output, o is the perceptron output (t − o is the error in output), and η is a positive
constant called learning rate. Learning rate determines the degree of change in weights in each step
[39].

Perceptrons can represent most of the boolean functions (such as AND, OR, NAND and NOR). How-
ever, some boolean functions cannot be represented by a single perceptron, such as the XOR function
which is not linearly separable.

3.4.2 Multilayer Networks

The perceptron network is inherently limited to the linearly separable patterns. Multilayer networks
(multilayer perceptron) are constructed in order to overcome limitations of perceptron. Followings are
the major features of multilayer networks [41]:

• Each neuron in the network includes a differentiable nonlinear activation function.

• The network includes one or more hidden layers.

• The network has a high degree of connectivity between the neurons.
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Figure 3.6: A multilayer network [42]

Figure 3.6 shows the architectural graph of a multilayer network with one input layer, one hidden
(internal representation) layer and one output layer.

In order to extend our solutions to non-linearly separable patterns, we need units that has differentiable
nonlinear activation function. One solution is the sigmoid unit which is like perceptron but has a
smoothed, differentiable threshold function.

The sigmoid unit first calculates the activation level by summing the weighted input values, then ap-
plies a threshold which is a continuous function of its inputs as shown in Figure 3.7. The output of a
sigmoid unit o is calculated as

o = σ(~w · ~x)

where
σ(y) =

1
1 + e−y

σ is called the logistic function or the sigmoid function. Other differentiable sigmoid functions can be
used in place of σ like hyperbolic tangent function (tanh) [39].

3.4.2.1 Backpropagation Algorithm

Backpropagation learning algorithm is a simple and general method to train multilayer neural net-
works. It applies gradient descent to find the minimum error rate between the target values and net-
work outputs. Delta rule is developed to fix the convergence problem of perceptron training rule. Delta
rule searches all possible weight vectors to find the best weight vector that fit the training examples by
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Figure 3.7: The sigmoid threshold unit [39]

using gradient descent. In multilayer backpropagation algorithm, delta rule is modified to adopt the
hidden and output layer weight update rules. The modified delta rule is called generalized delta rule
[42].

Different kinds of error functions can be used in gradient descent. One of the error measures on
input/output pattern p is

Ep =
1
2

∑
j

(tp
j − op

j )
2

where op
j and tp

j are the actual and the target outputs associated with jth output unit for pattern p. The
overall error measure is E =

∑
Ep. Generalized delta rule uses gradient descent in E. The rule for

changing weights for input/output pattern p is

w ji(n)← w ji(n − 1) + ∆pw ji(n − 1)

where
∆pw ji = ηδ

p
j o

p
i

n is the iteration number, w ji is the weight value from the ith unit to the jth unit, η is the learning rate,
δ

p
j is the error signal in jth node, and op

i denotes the input from node i to unit j. ∆pw ji is the amount
of change to be made to the weight w ji for the pattern p. The net total output of a given unit is

netp
j =

∑
i

w jio
p
i

and the output of a unit is calculated by the following formula:

op
j = f j(netp

j )

f is the differentiable activation function (e.g. sigmoid, tanh). The error signal, δ, differs for output
units and hidden units. δ is calculated for output units as

δ
p
j = (tp

j − op
j ) f ′j (netp

j )
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where f ′ is the derivation of activation function. δ is defined below for the hidden units:

δ
p
j = f ′j (netp

j )
∑

k

(δp
k wk j)

The application of the generalized delta rule includes two phases. In the first phase, the output of each
unit op

j is calculated by propagating the input values through the network. Then the outputs of output
units are compared with the targets and an error signal δp

j is calculated for each output unit. During the
second phase, error signal calculated at the output units are propagated backward to the hidden units
and the necessary weight changes are done [42].

Many variations developed for backpropagation algorithm. One of the variations is using momentum
in the weight update rule. In order to speed up the learning process, larger learning rates needed,
but large learning rates may lead oscillations during gradient descent. The use of momentum term in
neural network training lets the use of larger learning rates without oscillation. Following is the weight
update rule with momentum:

∆pw ji(n) = ηδ
p
j o

p
i + α∆pw ji(n − 1)

∆pw ji(n) is the weight update in the iteration n, and 0 ≤ α < 1 is the momentum constant. The
momentum allows fast convergence by using bigger weight steps.

3.4.3 Recurrent Neural Networks

A recurrent neural network (RNN) is a kind of neural network with feedback connections. It uses
outputs of network at time t as the input to other units at time t + 1. This creates an internal memory
which allows processing of temporal sequences of inputs. The feedback connections improve the
neural network learning capabilities that can be used in many problems including behavior learning
and sequence processing tasks.

There are many types of recurrent neural networks developed for different domains. Figure 3.8 shows
a simple RNN which have one feedback connection. Assume that we have a task of forecasting the
next day’s weather y(t + 1) based on the current day’s weather x(t). One solution to this task is to
use feedforward network as shown in Figure 3.8(a). This solution is limited to the today’s weather. It
might be necessary to forecast the tomorrow’s weather not only based on today’s weather but based
on the arbitrary window of time in the past. The recurrent network shown in Figure 3.8(b) provides a
proper solution to this problem. New units b and c(t) are added for feedback connections. The value
of c(t) is defined as the value of b at time t − 1. In this recurrent relation, b corresponds to information
about the network inputs history. Because b depends both on the x(t) and c(t), it is the summary of
information from previous values of x in time. Figure 3.8(c) shows the recurrent neural network status
which is unfolded in time [39].

In practice, training of RNN is more difficult than the networks with no feedback loops. RNNs can-
not be easily trained for larger networks having large number of input units. In spite of the training
difficulties, they remain important because of their representational power [39].
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Figure 3.8: Recurrent neural networks [39]
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3.5 Webots Simulator

Webots [8] is a mobile robot simulation software that provides a prototyping environment for mod-
eling, programming and simulating mobile robots. A simulated robot environment is less expensive
than real robots. Application development and testing in simulated environments are more flexible and
safer than the real environments. Webots lets the user to add passive objects (e.g. walls, obstacles)
and active objects (e.g. mobile robots). These robots can have a sensor and actuator devices, such as
distance sensors, wheels, video cameras, and touch sensors. In this simulated environment, there are
various models of robots and program examples for robot controllers. The user can control each robot
separately to achieve the desired behavior by using the example programs. Webots provides a couple
of interfaces to real robots, hence the user can transfer control program to the real robot after the robot
behaves as intended in the simulated environment.

Webots have been used in many research and educational projects in the following areas [43]:

• Prototyping mobile robots

• Robot locomotion studies

• Multi-agent robot studies (collaborative mobile robots groups, swarm intelligence, etc.)

• Adaptive behavior studies (neural networks, genetic algorithm, AI, etc.).

• Teaching robotics

• Robot contests

A simple Webots simulation is consists of a world file and one or more controller programs for the
robots. A world describes the environment and properties of robots. Each object in a world can contain
other objects hierarchically. For example, a robot can have two wheels, two encoders and a servo which
itself contains a camera. Figure 3.9 shows a sample Webots environment.

A controller program should be implemented to control each robot specified in world file. Implementa-
tion languages supported by Webots are C, C++, Java, Matlab, and Python. As soon as the simulation
starts, specified controllers are launched for each robot as a separate process.

Webots have a privileged type of robot called supervisor. Each supervisor controller is associated
with a controller program. It can access to privileged operations such as positioning robots to specific
positions and making video capture of the simulation [43].

3.5.1 Programming Fundementals

A robot controller program should start with the initialization function robot_live(). Then the program
should enter an infinite loop to run the controller continuously until the simulator exits. The loop
must contain at least one call to the robot_step(SIMULATOR_TIME_STEP) function which advances
the simulator time. robot_step() function is used to synchronize the actuator and sensor data with the
simulator. Time duration given in robot_step() specifies an amount of simulated time, so user can run
the simulator faster than the real world.

Following is the code snippet describing a typical robot controller application which reads the sensors,
actuates the motors and runs the simulator by the time given in the robot_step() function.
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Figure 3.9: Webots environment

while (true)

{

readSensors();

actuateMotors();

robot_step(SIMULATOR_TIME_STEP);

}

Following code shows a complete example of a robot controller application. The robot in this example
has left and right motors for differential steering. It has left and right proximity sensors to sense
obstacles [43].

#define SIMULATOR_TIME_STEP 32

int main()

{

robot_live();

DeviceTag leftSensor = robot_get_device("leftSensor");

DeviceTag rightSensor = robot_get_device("rightSensor");

distance_sensor_enable(leftSensor, SIMULATOR_TIME_STEP);

distance_sensor_enable(rightSensor, SIMULATOR_TIME_STEP);

while (true)

{

// read sensors

double leftDistance = distance_sensor_get_value(leftSensor);

double rightDistance = distance_sensor_get_value(rightSensor);
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// compute motor commands

double leftCommand = compute_left_speed(leftDistance, rightDistance);

double rightCommand = compute_right_speed(leftDistance, rightDistance);

// apply motor commands to wheel motors

differential_wheels_set_speed(leftCommand, rightCommand);

robot_step(SIMULATOR_TIME_STEP);

}

return 0;

}

3.5.2 Supervisor Controller

The supervisor is a special type of super robot that is able to perform everything a robot can perform. It
is useful for communicating with the other robots by using the Receiver and Emitter nodes. In addition,
a supervisor can move or rotate any object and can track the position of robots in order to record the
trajectories. It can also take a snapshot or a video of the simulation. When describing a simulation
world, a Supervisor node can be inserted as a basis node to the model of a robot. The Supervisor node
offers the supervisor_*() functions in addition to the robot_*() functions. All this functions can be
used from a controller program associated with a Supervisor node. Following is the supervisor code
example showing how to keep track of a single robot [43].

#define SIMULATOR_TIME_STEP 32

int main()

{

// Coordinates in X, Y, Z. Rotation in X, Y, Z, Rotation angle

float robot_coordinates[7];

robot_live();

// do this once only

NodeRef robot_node = supervisor_node_get_from_def("MY_ROBOT");

supervisor_field_get(robot_node,

SUPERVISOR_FIELD_TRANSLATION_AND_ROTATION,

robot_coordinates,

SIMULATOR_TIME_STEP);

while (true)

{

printf("Robot position is: %g %g %g\n",

robot_coordinates[0],

robot_coordinates[1],

robot_coordinates[2]);
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Figure 3.10: Khepera robot

robot_step(SIMULATOR_TIME_STEP);

}

return 0;

}

3.6 Khepera Robot

The Khepera is a differential wheeled mobile research robot developed by LAMI (Microprocessor and
Interface Laboratory) at the Swiss Federal Institute of Technology Lausanne (EPFL) in 1992. The
initial version of Khepera is shown on Figure 3.10. It is used in many academic and research studies
around the world for many robotics experiments.

The Khepera robot has 8 infrared and light sensors allowing to detect proximity of objects in front,
behind, right and left. Light sensors measure the level of lights to detect light sources. The robot
has two independently controlled motors which enabling forward and backward movements. Due to
its small size and wide range of possible movements, it can be used in various experiments including
obstacle avoidance, target search and collective behavior [7].

3.7 S-Curve Algorithm

One of the main challenges in motion control systems is to generate the desired motion with minimum
oscillation and overshoot in position and velocity. In order to solve these problems, trajectory planning
topic has been researched extensively. The goal is to generate feasible and smooth motion with the
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(a) (b)

Figure 3.11: (a) Trapezoidal s-curve model and (b) third order polynomial s-curve model [44]

minimized overshoot [44].

S-curve algorithms rely on the information of the possible limits of acceleration and deceleration of
the controlled system. Simple trapezoidal models, sometimes called second order s-curve models,
can perform fast motions, but as shown in Figure 3.11a there are acceleration jumps at some points
in time like t0, t1, t2, and t3 when the orientation of velocity changes. This jumps force the jerk to
have infinite values. This may cause problems in some systems. Third or nth order s-curve models are
proposed to overcome the jumps in acceleration and infinite jerk problems. S-curve model with finite
jerk and infinite snap (derivation of jerk) segments the desired motion into multiple pieces as shown
in Figure 3.11b. The algorithm uses limited jerk, depicted by Jpeak in the figure, to make the motion
smoother [44].

The model definition of the trapezoidal system (M2) is presented below where the velocity is not
smooth. Its acceleration is calculated by second order polynomials [44].

a = M2 =

 Apeak, t0 ≤ t ≤ t1
−Apeak, t2 ≤ t ≤ t3

In polynomial models higher than two, the jerk can be finite and makes the velocity profiles smoother.
Third order polynomial s-curve model (M3) is presented below [44].
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j = M3 =

 M2, t0 ≤ t ≤ t3
−M2, t4 ≤ t ≤ t7

Similarly, nth order s-curve models can be defined recursively in the following expression [44].

Mn =

 Mn−1, t0 ≤ t ≤ t2n−1−1

−Mn−1, t2n−1 ≤ t ≤ t2n−1
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CHAPTER 4

SIMPLE-BEHAVIOR LEARNING MODEL (SBLM)

SBLM is developed to model simple behaviors which have one specific and basic goal such as turn,
approach, or grasp an object. Overall structure of this model is presented in Figure 4.1. The model is
composed of behavior categorization, behavior modeling, and behavior generation phases. The cate-
gorization phase categorizes raw sensory data into motion primitives and observation categories. The
modeling phase constructs a transition model between motion primitives and learns to generate motor
commands for each motion primitive using sensory data. The last phase handles the generation of
behaviors based on the current and the goal observations. Following sections give detailed information
about the model phases [4].

4.1 Behavior Categorization

A behavior as a time-extended action sequences has some unique and repeated parts. A behavior
learning model should recognize these parts as meaningful components of a behavior. Thus the purpose
of behavior categorization is to determine hidden or visible capabilities of robots while performing a
task. Components of behaviors are categorized as meaningful motion sequences by the model. Hence
behaviors are decomposed into more easily and more accurately learned reusable components. These
components are called motion primitives. There are some advantages to learn a behavior based on the
motion primitives. The model can learn small components more easily and correctly. Furthermore, the
model can use previously learned components without repeating the same training process. CobART
[9] is used as a categorization method to determine motion primitives and observation categories [4].

CobART (see Section 3.2) is a competitive, self-organizing category generation network for real-
valued inputs. It is based on ART 2 (adaptive resonance theory) [33] network but has a simpler
architecture that can be adoptable to different problems.

The adaptation of CobART for different problems is performed through the adjustment of the param-
eters. Categorization capabilities of CobART is directly related with the parameters. The important
CobART parameters are listed in Table 4.1. Parameter a adjusts the effect of new input over the last
selected category. If it is higher, new input has more power on the next category. Parameter b deter-
mines the effect of correlation methods (EDM and DCM) on the calculation of correlation between
two vectors. EDM (Euclidean distance method) calculates the correlation of two vectors based on the
distance between them. DCM (Derivation correspondence method) uses derivations to calculate the
similarity between the vectors. Learning rate decreases over time in order to protect previously learned
categories from continuous updates. d is the initial learning rate which decreases over time according
to decrease rate α. Vigilance parameter ρ determines coarseness of learned categories and balances
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Figure 4.1: Components of simple-behavior learning model [4]
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Table4.1: Definitions of CobART parameters [4]

Parameter Explanation
a The weight of new input on the last active category where 0 ≤ a ≤ 1
b Weight of DCM over EDM where 0 ≤ b ≤ 1
d Initial learning rate where 0 ≤ d ≤ 1
α Learning rate decrease amount where −∞ < α ≤ 0
ρ Vigilance parameter where 0 ≤ ρ ≤ 1
I Length of input vector

Table4.2: CobART parameter values used in motion primitive and observation categorization

Parameter Motion Primitives Observations
a 0.8 0.95
b 0.4 0.1
d 0.2 0.2
α −1.0 −1.0
ρ 0.85 0.95
I 10 3

stability-plasticity features. The bigger vigilance generates more categories with finer distinction. De-
creasing the vigilance generates fewer categories. At last, parameter I is the number of consecutive
inputs fed into the CobART [3].

An observation can be defined as a collection of sensor readings (mostly real-valued) at some point
in time. Thus, observation space contains very large real-valued sensory inputs and they should be
mapped into meaningful finite observation categories to be used by the model. For this purpose, in
addition to motion primitive categorization, CobART is used with different inputs and parameters to
categorize observation space. The CobART parameter values which are used in motion primitive and
observation categorization are presented in Table 4.2.

CobART parameter values in Table 4.2 are selected based on the previous studies of Yavas and Al-
paslan [2][3]. Parameter a is higher for observation categorization, because observation categories are
less dependent on the previous data. Hence new inputs should have more impact on the observation
categorization. Also, EDM method is more effective to compare the two observation vectors. Thus
parameter b is smaller in observation categorization. Higher vigilance parameter is used in observation
categorization, because more categories of observations increases behavior generation quality and res-
olution. In motion primitive categorization, 10 consecutive inputs (I = 10) are presented to the input
layer of CobART. This value is the same as in [2]. Because observations are instantaneous values,
input length is selected as 3 (I = 3) in observation categorization.

Followings are the formal definitions of the terms used in the categorization process [4]. An observa-
tion xt at time t is defined as

xt = {pt
1, . . . , pt

N}

where pt is a sensor value at time t and N is the number of sensor readings. Observation sequence XT

is a finite set of consecutive observations which is defined as

XT = [xt=1xt=2 . . . xt=T ]

where T is the number of observations in the sequence. Observation category o is defined as a function
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Figure 4.2: Behavior categorization and modeling process [4]

of CobART as
o = CobART (Po, XT=Io )

where Po is the set of CobART parameters and Io is the length of observation sequence used in obser-
vation categorization. In addition to observation category, motion primitive category S is also defined
as a function of CobART as

S = CobART (Ps, XT=Is )

where Ps is the set of CobART parameters and Is is the length of observation sequence used in motion
primitive categorization.

4.2 Behavior Modeling

Once the categorization of motion primitives and observations completed, relations among the motion
primitives should be constructed. In the behavior modeling phase, relations and transition conditions
among the motion primitives are learned in a higher level model. Furthermore, a motion generator for
each motion primitive is trained to associate sensor inputs to motor commands. In Figure 4.2, behavior
categorization and behavior modeling process is presented.

A behavior is considered as a collection of action sequences. Thus, it is assumed that motion primitives
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can be modeled as a Markov process which is a state machine in which the system stays in the active
state and then transits to a different state probabilistically. Markov process does not answer the question
of what is the exit condition of a state? As an answer to this question, observations are used as exit
conditions of the states in this study. If the exit condition (i.e. exit observation) is encountered during
the execution of a state, the model goes to the next state in the sequence. Thus, the use of hidden
Markov model (HMM) instead of Markov processes is a more proper solution to behavior modeling
problem. HMM (see Section 3.3) is a statistical tool to model generative sequences where the modeled
system is a Markov process with hidden states. States of the model are directly visible to the observer
in a regular Markov model. However, states are not directly visible, but the observations dependent on
the state are visible in a hidden Markov model [4].

In this study, a modified version of HMM, called as Behavior-HMM, is used to model the relations
between the motion primitives. Observation-to-observation transitions are added to Behavior-HMM to
be used in the behavior generation phase. Also, motion generators are added for each motion primitive
in a Behavior-HMM. Figure 4.3 show samples of HMM and Behavior-HMM.

The Behavior-HMM is defined as a 7-tuple denoted by {S ,G,O, A, B,C, π} [4]:

• S = {S 1, . . . , S N} is the set of motion primitives where the motion primitive at time t is qt.

• G = {G1, . . . ,GN} is the set of motion generators defined for each motion primitive.

• O = {o1, . . . , oM} is the set of observation categories where the observation category at time t is
ot.

• A = {ai j} is the motion primitive transition probability distribution where ai j = P[qt+1 = S j |

qt = S i], 1 ≤ i, j ≤ N.

• B = {b j(k)} is the observation category probability distribution in motion primitive j where
b j(k) = P[ok at t | qt = S j], 1 ≤ j ≤ N, 1 ≤ k ≤ M.

• C = {ci j} is the observation category transition probability distribution where ci j = P[ot+1 = O j |

ot = Oi], 1 ≤ i, j ≤ M.

• π = {πi} is the initial motion primitive distribution where πi = P[q1 = S i], 1 ≤ i ≤ N.

Set of motion primitives S , motion generators G, and observation categories O are determined in the
categorization phase. The training data are processed to determine all transition probabilities (A, B, C,
and π) in a Behavior-HMM. A transition is added from each state to itself for self-transition. During
the Behavior-HMM construction, when a new transition occurs from the current state to another, count
of this transition is increased by one. After processing training data, each transition probability from
the current state is calculated by dividing the number of specific transition to the total number of all
transitions from the current state. As an example, Table 4.3 shows a transition probability calculation
for state S 1. Consider that state S 1 has transitions to the states S 2 and S 3, and o1 and o2 are the
observations in S 1. Transition probabilities are calculated by using the number of transitions in the
training data as shown in the table. All state-to-state (A), state-to-observation (B), and observation-
to-observation (C) transition probabilities are calculated by using the same process. Initial motion
primitive distribution (π) is also calculated according to same process using training data. Density of
a motion primitive in the training data determines its initial probability [4].

Motion primitive transition model constructed as Behavior-HMM helps robots to generate motion
primitive sequences in order to achieve a given task. On the other hand, correlations of sensory data
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(a)

(b)

Figure 4.3: (a) Hidden Markov model (HMM) and (b) Behavior hidden Markov model (Behavior-
HMM) [4]
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Table4.3: Sample of transition probabilities calculation [4]

S 1 S 2 S 3 o1 o2

Number of transitions from
S 1 to

1 4 3 2 5

Transition probabilities
a11 =

1/8
a12 =

4/8
a13 =

3/8
b11 =

2/7
b12 =

5/7

Figure 4.4: ANN inputs and outputs

and motor commands should be learned in order for the robot to perform those motion primitives.
For this purpose, a motion generator is used to learn generation of motor commands for each motion
primitive. Motion generators use artificial neural networks (ANNs) (see Section 3.4) to learn the
generation of continuous motor commands. ANNs can learn the complex relations between the real-
valued inputs and outputs. Error backpropagation [42] (see Section 3.4.2.1) learning algorithm is used
to train the neural networks. It is a simple and general method to train multilayer neural networks. It
uses gradient descent to find the minimum error rate between the target values and network outputs.
Error backpropagation is a kind of supervised learning method, but the way it is used in this study
does not need a supervisor. Robot’s sensory data is used as inputs of network and motor commands
are expected as target values. Thus, the training of neural network is performed without the help of a
supervisor. As shown in Figure 4.4, the inputs of network is the raw sensory data and outputs are left
and right motor commands. Input vector containing consecutive sensor readings are fed into the input
layer of neural network. In each iteration, input vector is shifted by one and shifted vector is presented
as new input to network for the next iteration. By using shifted inputs, network learns sequence of
sensor readings as a pattern instead of instantaneous data. This improves the learning capabilities of
motion generators [4].

4.3 Behavior Generation

In behavior generation phase, the aim is to generate the most likely motion primitive sequence to per-
form the requested behavior. Requested behavior is given to the model as goal observation. First,
most likely observation sequence is generated from the current observation to goal observation by
most likely path algorithm. This observation sequence is generated by the help of Behavior-HMM’s
observation-to-observation transition probabilities as explained below. Then, Viterbi algorithm gener-
ates the most likely motion primitive sequence by using the previously generated observation sequence
[4].
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Behavior generation phase can be stated as a two-step problem. The problems and proposed solutions
are given below [4]:

Problem 1: Given the goal observation category og and Behavior-HMM, find the most likely obser-
vation category sequence Ogoal = [o1o2 . . . og] from the current observation category o1 to the goal
observation category og.

Problem 2: Given the observation category sequence Ogoal and Behavior-HMM, find the corresponding
most likely motion primitive sequence S goal = [S 1S 2 . . . S g].

Solution to Problem 1: The first problem is solved by developing a most likely path algorithm which
is a modified version of Dijkstra’s shortest path algorithm [45]. Shortest path logic is changed to most
likely path by reversing the comparators in the algorithm. Logarithms of transition probabilities are
used as edge costs to prevent floating-point underflow problems. The algorithm constructs a tree from
starting node to every other nodes in the network to find the most likely path. At the end, it generates
the most likely path from the current observation category to the goal observation category.

Solution to Problem 2: Viterbi algorithm [6] (see Section 3.3.1) is used to solve the second problem by
generating the most likely motion primitive sequence using the observation sequence generated in the
previous step. This algorithm is a kind of dynamic programming algorithm and finds the most likely
sequence of hidden states for the given observation sequence.

The behavior generation algorithm is explained in Algorithm 1 as a pseudo code. The process of be-
havior generation is presented in Figure 4.5. After generating observation category sequence Ogoal and
motion primitive sequence S goal, behavior generation algorithm starts to execute the first motion prim-
itive in the sequence. If the exit condition (i.e. exit observation) is encountered during the execution of
a motion primitive, the model goes to the next motion primitive in the sequence. Figure 4.6 shows the
motion primitive transitions using observations as transition conditions. This process is repeated until
the goal observation category og is reached. The algorithm checks if a new state sequence is needed in
each cycle. This check is used to detect any problems during the behavior generation. The robot may
generate a wrong command or it may lose its direction because of environmental changes. This check
helps to improve the quality of behavior generation.
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Algorithm 1 Behavior Generation

{Po: CobART parameters used in observation categorization}
{Io: Observation sequence length in observation categorization}
{Xc

T=Io
: Current observation sequence}

{Xg
T=Io

: Goal observation sequence}
{Find current and goal observation categories}
oc ← CobART (Po, Xc

T=Io
)

og ← CobART (Po, X
g
T=Io

)
{Generate observation and motion primitive sequences}
Ogoal ← MostLikelyPath(BehaviorHMM, oc, og)
S goal ← Viterbi(BehaviorHMM,Ogoal)
{Start from first primitive behavior}
S c ← S goal[0]
while oc , og do

{Generate motor command and send to robot}
motorCommand ← ANNHandler(S c, Xc

T=Io
)

robot ← motorCommand
{If the exit observation of the current state is encountered, go to next state}
if Ogoal[S c] = oc then

S c ← next state in S goal

end if
{Find current observation category}
oc ← CobART (Po, Xc

T=Io
)

{Generate observation and motion primitive sequences}
NewOgoal ← MostLikelyPath(BehaviorHMM, oc, og)
NewS goal ← Viterbi(BehaviorHMM,NewOgoal)
{Check whether a new state sequence is needed}
if S c , first state of NewS goal then

S goal ← NewS goal

S c ← first state of S goal

Ogoal ← NewOgoal

end if
end while
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Figure 4.5: Behavior generation process [4]

Figure 4.6: State transitions during behavior generation [4]
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CHAPTER 5

COMPLEX-BEHAVIOR LEARNING MODEL (CBLM)

Behaviors having a complex goal that can be decomposed into several basic goals are considered com-
plex behaviors. Thus, a complex behavior may consists of several simple or complex behaviors. For
example, grasping an object which is located at the backside of a robot may need turn, approach,
and grasp behaviors to be performed respectively. Grasp, turn, and approach behaviors are indepen-
dent behaviors, but they can be modeled by CBLM as a single complex behavior. Different complex
behaviors may contain common components. Applying simple-behavior learning model on complex
behaviors results in a very complex behavior model that has repeated components in it. Moreover,
this complex model may have performance problems and longer training times. Thus, modeling of
complex behaviors need a different approach than simple behaviors. Driven by these ideas, CBLM
which hierarchically integrates common components to enhance the learning capabilities is developed
for complex behaviors [4].

The structure of the complex-behavior learning model is presented in Figure 5.1. As shown in the
figure, its structure is similar to SBLM and it has the same phases of behavior categorization, behavior
modeling, and behavior generation.

The model needs some information about the already learned behaviors in order to construct the
Behavior-HMM. This information is used to calculate behavior-to-behavior, behavior-to-observation,
and observation-to-observation transition conditions. Thus, CBLM needs a new training data to con-
struct the relationships between the behaviors. The training data includes sensory inputs as in SBLM.
But in CBLM training, sensory data are tagged by corresponding behaviors to indicate the relation
between sensory data and the behaviors. This data is used in behavior categorization and behavior
modeling phases.

Behavior categorization phase uses the tagged sensory data to extract the components of new complex
behavior. These components are the already learned simple or complex behaviors. Hence, there is
no motion primitive categorization in this phase. But, the observation categorization is still needed
in order to determine observation sequence from current observation to goal observation in behavior
generation phase. Specifying the target tasks as goal observation is the key feature of the proposed
models. Thus, in order to generate complex-behaviors, observation-to-observation transitions must
be constructed by the help of observation categorization. The process of behavior categorization and
modeling is presented in Figure 5.2.

In complex-behavior modeling phase, first already learned components are used as states of Behavior-
HMM. In Figure 5.1, these behaviors are sampled by the S BLM1, CBLM2 and S BLM3. Then, prob-
abilities of behavior-to-behavior, behavior-to-observation, and observation-to-observation transitions
are determined as in simple-behavior learning model. In CBLM, motor command generation task is
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Figure 5.1: Components of complex-behavior learning model. Previously learned simple or complex
behaviors correspond to states in a Behavior-HMM [4].
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Figure 5.2: CBLM behavior categorization and modeling process

left to the already learned behaviors. Thus, complex-behavior model does not have motion generator
training phase. During complex behavior generation, active behavior is responsible to generate the
appropriate motor commands. If it is a complex behavior, it also delegates the command generation to
its sub-behaviors [4].

Complex behavior generation phase is similar to simple behavior generation phase. First, observation
sequence is generated by most likely path algorithm based on the current and the goal observations.
Then, Viterbi algorithm generates the sequence of simple or complex behavior components in the
highest probability to achieve the given task. After that, command generation starts from the first be-
havior in the sequence. Note that corresponding intermediate observation in the observation sequence
is given to the low level behavior as goal observation. Each low level behavior executes its behavior
generation algorithm according to given intermediate goal observation. When execution of a behavior
is completed, the system proceeds to the next behavior in the sequence. This process is repeated until
all behaviors are executed and the goal observation category is reached [4].

The process of behavior generation can be explained with an example. Suppose that a CBLM has
three low level behaviors like turn, approach, and grasp. The robot is located according to an object
with 70◦ rotational angle and 0.8 m distance. The current observation oc and the goal observation og

is defined as below:

oc : {angle = 70◦, distance = 0.8 m, grasp status = no grasp}

og : {angle = 0◦, distance = 0 m, grasp status = grasp}

The model, first, generates observation sequence from current observation to goal observation like

Ogoal = [o1o2og]
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Figure 5.3: Example behavior transitions using observation sequence

where o1, o2, and og is determined by the model as follows:

o1 : {angle = 0◦, distance = 0.8 m, grasp status = no grasp}

o2 : {angle = 0◦, distance = 0 m, grasp status = no grasp}

og : {angle = 0◦, distance = 0 m, grasp status = grasp}

Behavior sequence is generated according to observation sequence Ogoal as below:

S goal = [Turn, Approach,Grasp]

Behavior generation starts with turn behavior until the observation o1 is encountered. Then, approach
behavior is performed to see the observation o2. Finally, grasp behavior is applied to reach the goal
observation og. Figure 5.3 shows the behavior transitions using observation sequence for this example.
Note that if the initial position of the robot is 0◦ rotational angle and 0.8 m distance, then the behavior
sequence shall be generated as S goal = [Approach,Grasp]. Similarly, the behavior sequence shall be
generated as S goal = [Turn,Grasp], if the robot is located as 70◦ rotational angle and 0 m distance.
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CHAPTER 6

EXPERIMENTAL EVALUATION

Webots [8] (see Section 3.5) simulator is used as a test platform for the proposed learning models. As
a test robot Khepera [7] (see Section 3.6) is selected. It has 8 light sensors, 8 distance sensors, 2 motor
outputs and 2 encoder inputs for left and right differential motors.

Turn to the object and approach the object behaviors are selected as test behaviors for SBLM. Fur-
thermore, CBLM is experimented on the combination of the previously learned turn to the object and
approach the object behaviors. Test and training data for the experimentation of selected behaviors are
collected by the help of a test data collector application. Smooth motion commands for turn and ap-
proach behaviors are generated using third order polynomial s-curve algorithm [44] (see Section 3.7).
This algorithm segments the requested motion into multiple pieces and uses different equations and
limited jerk1 for each segment to generate a smooth motion.

The test data collector application records the following data into a log file at 16ms intervals: time,
distance, linear velocity, angle, and angular velocity. These variables are selected by considering
the test behaviors (turn and approach). But the proposed models are capable of learning different
behaviors using different set of sensor readings on alternative robot platforms [4].

The performance of a machine learning system is dependent on the distribution of the input data. Thus
the input data should be normalized to be used in a learning process. In this study, all input data are
normalized into [−1 : +1] interval before fed into a network. Also, inputs of ANN and CobART are
filtered using low-pass second-order filters2 [46] in order to decrease the effect of noise [4].

Success rate of the experiments are measured by Euclidean distance method (EDM). It calculates the
similarity of two vectors by comparing the distances between them. In this study, EDM is used to
compare the generated and the training motor commands. Output of EDM is a relative value which
depends on the properties of compared vectors. Thus, EDM results of the similar types of vectors
are comparable. Following equation is used to compare the training and generated motor command
vectors [4].

EDM(a, b) =

√∑N
i=1 (ai − bi)2

N

In the equation, a and b are the input vectors and N is the length of the input vectors.

1 Jerk is the derivative of acceleration with respect to time. In order words, it is the rate of change of
acceleration.

2 A low-pass filter lets low frequency signals and cuts high frequency signals. A second-order filter reduces
the amplitude of higher frequencies more steeply.
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Table6.1: Sample motion primitive sequences for turn behaviors [4]

Angle Sequence of motion primitives

-115 3, 4, 1, 2
-168 7, 13, 3, 4, 1, 2
86 5, 6, 0

123 10, 12, 6, 0

6.1 Behavior Categorization and Modeling Experiments

Categorization and modeling capabilities of the proposed models are tested in some preliminary exper-
iments. These experiments are performed on turn behavior. The data for turn behavior from different
rotational angles are categorized by CobART into motion primitives. Then, the corresponding transi-
tion diagram for the motion primitives is constructed.

In the first experiment, a higher vigilance parameter (0.85) is selected to produce finer categories in
CobART categorization. Figure 6.1 shows the categorization results of the turn behavior with higher
vigilance parameter. As shown in the figure, separate categories are generated for different angles. In
the experiment, constant velocity (slope of angle vectors) is used during the turn behavior. By this way,
we can observe the category similarities for the similar turn behaviors. Figure 6.2 shows the transition
diagram of generated motion primitives for this experiment.

In the second experiment, a lower vigilance parameter (0.75) in CobART categorization is used to
produce a simple transition diagram. In this simple version, results can be analyzed clearly. Figure 6.3
shows the categorization results of the turn behavior with lower vigilance parameter. Figure 6.4 shows
the transition diagram of generated motion primitives.

Some sample motion primitive sequences for turn behaviors are shown in Table 6.1. The first two
rows present the sequences of motion primitives from negative angles and last two rows presents the
sequences of motion primitives from positive angles. Note that motion primitives in the beginning of
motion sequences are different, because they start from different rotational angles. On the other hand,
while performing turn behavior, each turn behavior starts to repeat the common motion primitives as
soon as the rotational angles approach to each other. As presented in Table 6.1, motion primitives {6,
0} and {3, 4, 1, 2} are common in turn behaviors from the same directions.

CobART produced proper categories for turn behavior in preliminary categorization experiments. The
experiments also showed that the relations and transition probabilities among motion primitives are
constructed properly.

6.2 ANN Learning Experiments

The learning performance of artificial neural network (ANN) is critical in behavior generation experi-
ments. In order to find the best neural network parameters for behavior generation, some experiments
are conducted. The effect of momentum, learning rate, and hidden layer organization in neural net-
work training is investigated in this preliminary experiments. The learning rate determines the speed
of learning. If it is larger, converge will be fast. But larger learning rates may cause oscillations in
the learning curve. The use of momentum term in network training lets the use of larger learning rates
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Figure 6.2: Higher vigilance (0.85) Turn behavior transition diagram.
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without oscillation. Number of hidden units also effect the learning capabilities of a neural network. A
network having too much hidden units cannot generalize input signal properly, but memorize all data
even the noise (known as overfitting). On the other hand, if a network has less than enough hidden
units, it cannot learn the input signal (known as underfitting).

Experiments are performed on turning behavior to analyze the network performance clearly. The same
input vector length as in CobART categorization is used in ANN training. Input vector containing 10
consecutive data is fed into the input layer of neural network. Left and right motor commands are
expected as the target values in the backpropagation phase. In each iteration, input vector is shifted by
one and shifted vector is fed into the network as new input for the next training cycle.

In the implementation of backpropagation algorithm, tanh() is used as the activation function. tanh()
is a nonlinear and differentiable function which the outputs are between [−1 : +1]. The network inputs
and expected outputs are normalized between [−1 : +1] to be processed properly by tanh() function.
The network is also initialized with the random weights between [−1 : +1]. In the backpropagation
implementation, incremental training scheme is used in which the weights are updated in each iteration.

One of the motion primitives category data is selected as a test data. 20% of the sensory data is used
as test data and 80% is used as training data. Test data is not used in training process.

6.2.1 Learning Rate Experiments

In the learning rate experiments, effect of learning rate in neural network training is investigated.
Different learning rates are tested and the results are plotted in a test error versus iteration number
chart as shown in the Figure 6.5. Fastest convergence is obtained when the learning rate is set to 0.01
and 0.1. Lower learning rates (< 0.01) produced equivalent success, but they needed longer training
times. When the learning rate is set too high (0.5), convergence is very slow as shown in the Figure 6.5.

6.2.2 Momentum Experiments

The momentum stabilizes the weight changes in the backpropagation algorithm. It speeds up the
converge and helps to avoid the local minimas. Momentum is strictly related with the learning rate and
they affect each other. A larger momentum requires a smaller learning rate.

In the experiments, effect of momentum in neural network training is investigated. Different momen-
tums are tested and the results are plotted in a test error versus iteration number chart as shown in the
Figure 6.6. All momentum values produced similar success rates. The lowest test error obtained when
the momentum is set to 0.8 as shown in the figure.

6.2.3 Hidden Layer/Unit Experiments

A neural network should use sufficient number of hidden units for a good training. It should not be too
much (overfitting) or less than enough (underfitting).

In the experiments, different configurations are tested and the results are plotted in a test error versus
iteration number chart as shown in the Figure 6.7. All network configurations produced similar success
rates. Best result is obtained when 1 hidden layer with 10 units is used in the training as shown in the
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figure.

6.2.4 ANN Experiments Conclusion

The best ANN performance is obtained when learning rate is set to 0.1 or 0.01, momentum is set to
0.8 and 1 hidden layer with 10 units configuration is used in the network training. But these results are
dependent to training data set, number of network inputs and outputs.

In behavior generation tests, optimum neural network parameters should be selected which are sup-
posed to generate optimum performance for all motion primitives. Aforementioned experiments are
tested on one of the motion primitives data. So, it is necessary to consider all motion primitives during
training parameter selection. Although, setting momentum to 0.8 gives the best result, bigger mo-
mentums may lead to oscillation. In the behavior generation experiments, momentum is set to 0.4.
Best result is obtained when 1 hidden layer with 10 units configuration is used. But training of large
networks takes longer times. By considering the training times, it is used 1 hidden layer with 5 units
for one-input networks. The parameters shown in Table 6.2 are used for one, two, and three-input
networks.

6.3 Simple-Behavior Generation Experiments

Simple behaviors have one specific and basic goal. In simple-behavior generation experiments, perfor-
mance of whole simple-behavior learning model is tested including behavior categorization, behavior
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Table6.2: Neural network parameters used in behavior generation tests [4]

Parameter
One input network
(E.g. distance)

Two inputs network
(E.g. distance, linear
velocity)

Three inputs network
(E.g. distance, angle,
linear velocity)

Learning rate 0.01 0.01 0.01
Momentum 0.4 0.4 0.4
Input units 10 20 30
Hidden layers/units 1 layer x 5 units 1 layer x 10 units 1 layer x 15 units

Table6.3: Average performances of 15 different turn behaviors using different inputs [4]

Turn behavior Input: angle
Input: angle,
angular velocity

Success rate (%) 90.9 84.2

modeling and behavior generation phases. The performance of SBLM is experimented on turn and
approach behaviors. Success rate of each experiment is calculated using Euclidean distance method
by comparing the training and the generated motor command vectors throughout the behaviors.

6.3.1 Turn Experiments

In this section, different turn behaviors from −180◦ to +180◦ rotational angles are experimented to
present capabilities of simple-behavior learning model. Results of the experiments are presented in
Figure 6.8 and Table 6.3. Behavior generation performances of the experiments using different set
of inputs in categorization and neural network training are compared. The first experiment uses only
angle vector as input to generate turn behavior. The second experiment uses angle and angular velocity
as inputs to the model.

Figure 6.8 shows the charts of training and generated angles for sample turn behaviors (see Ap-
pendix B.1.1 for more turn experiments). Turn behavior starts with an acceleration up to an angular
velocity level (see slope of angle vector for angular velocity), then keeps this constant velocity for a
while, and decelerates and stops at the target angle. Plotted curves of training and generated angles
in the figure show that the model can generate this pattern successfully. Average performances in
Table 6.3 confirm that SBLM learns and performs turn behavior effectively.

Performance of the second experiment (uses angle and angular velocity as inputs) is lower than the first
experiment (uses only angle as input). This implies that angular velocity has a negative effect on the
performance of turn behavior. Angular velocity is the derivation of rotational angle and it is calculated
using the rate of rotational angle change in time. Thus, noise in angle data may have more impact
on the velocity calculation. Moreover, range of velocity is narrower than the range of rotational angle
in these experiments. This makes velocity data more sensitive to the noise effect. Therefore, angular
velocity does not provide significant information to the model, because it is derived from the angle.
CobART network uses DCM which uses inputs’ derivations in score calculation, hence the model can
already deduce velocity information implicitly during the categorization phase [4].
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Figure 6.8: Turn behaviors from different angles using different inputs. Shows turn behaviors from (a)
100◦ and (b) −100◦ rotational angles in a time versus angle chart [4].
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Table6.4: Average performances of 15 different approach behaviors using different inputs [4]

Approach behavior Input: distance
Input:
distance, angle

Input: distance,
angle, linear
velocity

Success rate (%) 73.9 82.6 73.7

6.3.2 Approach Experiments

In this section, different approach behaviors from 0 to 1 m distances are experimented to present capa-
bilities of simple-behavior learning model. Results of the experiments are presented in Figure 6.9 and
Table 6.4. Behavior generation performances of the experiments using different set of inputs in cate-
gorization and neural network training are compared. The first experiment uses only distance vector
as input to generate approach behavior. The second experiment uses distance and angle variables as
inputs. In the third experiment, distance, angle, and linear velocity are used as inputs to the model.

Figure 6.9 shows training and generated distance graphs for sample approach behaviors (see Ap-
pendix B.1.2 for more approach experiments). Approach behavior starts with an acceleration up to
a linear velocity level (see slope of distance vector for linear velocity), then keeps this constant ve-
locity for a while, and decelerates and stops at the target position. Plotted curves of training and
generated distances in the figure show that the model can generate this pattern successfully. Average
performances in Table 6.4 confirm that SBLM learns and performs approach behavior effectively.

Performance of the third experiment (uses distance, angle, and linear velocity as inputs) is lower
than the second experiment (uses distance and angle as inputs). This implies that the use of linear
velocity has a negative effect on the performance of approach behavior as in turn behavior experiments.
Highest performance is obtained in the second experiment. This shows that use of angle information
in approach behavior improves the performance. Small variations in left and right motor commands
generates a rotational shift during approach behavior. In our opinion, use of angle information in
addition to distance helps to correct those rotational shifts [4].

Note that approach behaviors from closer distances have better success rates as shown in Figure 6.9.
Approaching from long distances causes greater accelerations and decelerations and results big differ-
ences in consecutive motor commands. Thus, big changes in motor commands in a short time cause
differences in left and right motor responses. It leads rotational shifts to the object during approach
and causes performance problems in approach behaviors from longer distances [4].

6.4 Complex-Behavior Generation Experiments

In CBLM, complex behaviors are decomposed into components corresponding to the already learned
behaviors such as turn, approach, and grasp. The execution sequence of behaviors are determined by
the model according to requested task. After the sequence of behaviors are determined, each behavior
is executed one by one until the goal task is accomplished [4].

In this section, performance of complex-behavior learning model is tested. It is experimented on the
combination of the already learned turn and approach behaviors. This new complex behavior is called
turn&approach behavior. Figure 6.10 shows the charts of training and generated angle/distance for
sample turn&approach behaviors (see Appendix B.2 for more turn&approach experiments).
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Figure 6.9: Approach behaviors from different distances using different inputs. Shows approach be-
haviors from (a) 0.7 m and (b) 0.35 m distances in a time versus distance chart [4].
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Table6.5: Average performance of 15 different turn&approach behaviors [4]

Turn&approach behavior
Input:
distance, angle

Success rate (%) 79.8

Turn&approach behavior starts with a turn behavior (if necessary), and then performs an approach
behavior (if necessary). Rotational angle of the robot approaches to zero during the turn behavior as
shown in the Figure 6.10. After the rotational angle is aligned with the object (around 7th second for
the first experiment and 5th second for the second experiment in the figure), the model switches to
approach behavior. Then, the distance to the object decreases over time until the robot reaches to the
object (around 17th second for the first experiment and 14th second for the second experiment in the
figure). Plotted curves of training and generated distances/angles in the figure show that the model can
generate this pattern successfully. Average performances in Table 6.5 confirm that CBLM learns and
performs turn&approach behavior effectively.

As the components of turn&approach, behaviors which have better performances in simple-behavior
experiments are selected. In other words, approach behavior using distance and angle as inputs and
turn behavior using only angle as input are used in the complex behavior experiments. In the previous
experiments, it is observed that the use of velocity inputs did not improve the performance. Thus, only
distance and angle informations are used as inputs to CobART for observation categorization in these
experiments [4].

There is a general rotational shift problem during approach behaviors both in training and generated
data as shown in Figure 6.10. Rotational angle to the object is slightly shifted because of left and
right motor responses even if the same commands are applied. This rotational shift increases more in
approaches from longer distances because of high accelerations and decelerations. Small differences
in left and right motor commands in generated behaviors also cause more rotational shifts from the
target object. We consider that the problem may be minimized by using more responsive motors. In
the experiments, it is also observed that the use of limited accelerations and decelerations reduce the
rotational shifts during approach behavior [4].
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Figure 6.10: Turn&approach behaviors from different angles/distances in a time versus angle/distance
chart. (a) rotational angle is 140◦ and distance is 0.72 m. (b) rotational angle is −90◦ and distance is
0.50 m [4].
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CHAPTER 7

DISCUSSION & CONCLUSION

7.1 Discussion

Proposed models for simple and complex behaviors showed reasonable performances in learning and
performing the experimented behaviors. CobART performed well in categorization of behaviors into
motion primitives. Behavior-HMM performance was satisfactory as a modeling tool for motion prim-
itives. ANNs as motion generators could learned sensory motor functions successfully. Furthermore,
robot capabilities are enhanced incrementally by using hierarchically integrated behaviors for complex
behaviors.

This study is not a complete robot controller application within its current capabilities. Self-organizing
and extendible properties can make it a base model that can learn different behaviors effectively when
new capabilities are built into the model. The proposed models can be classified as a deliberative
architecture from the point of robot control perspective. Mainly, following robot control architectures
exist:

• Deliberative/hierarchical models perform behaviors according to sense-plan-act logic [47]. They
are built on representation, reasoning and planning concepts. These models make abstractions
on the world model and behavior internal states. They are effective for complex behaviors that
require abstract knowledge of the environments.

• Reactive models control the robot according to sense-act logic [47]. They are fast responsive
and effective in dynamically changing environments.

• Hybrid paradigm aims to combine advantages of reactive and deliberative approaches and con-
trols robots according to plan-sense-act logic [47]. High level planning is done before perform-
ing a task. Lower level reactive system is activated when needed in real-time.

• Behavior-based architecture combines several basic behaviors each implementing a specific goal
[48][49]. They receive sensor data and activate their commands depending on the control mech-
anism selection without constructing world models. Depending on the architecture, multiple
behaviors can activate their commands in parallel with different strengths. Subsumption is a
well-known behavior-based architecture [48]. It consists of a collection of behaviors build in
layers.

In order to achieve the desired goal, our model first extracts observation sequence and then determines
required actions before starting motion generation which is similar to deliberative models. However,
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the extendible structure of the study can be enhanced by implementing parallel behavior generation,
and by determining the strengths of the behaviors depending on the observations. Besides, the de-
viations from the target because of potential barriers can be recovered by integrating with reactive
behaviors. The combination of our models with reactive behaviors can be done either using behavior-
based or hybrid architectures.

The proposed simple and complex behavior models can be criticized in the following aspects. They
need lots of training data to learn a behavior with high quality and precision. For example, turn
behavior needs as much as possible training data ranging from −180◦ to +180◦ rotational angles.
When a new turn behavior, which is not trained before, is requested, the model approximates to the
nearest rotational angle and generates the behavior accordingly. Thus the quality of behavior learning
and generation is related with the training data set.

Another issue is related with the extendibility of CBLM. In the current implementation, off-line learn-
ing scheme is used. Assume that a CBLM was constructed for turn and approach behaviors and a
new grasping object behavior is desired to be integrated to the model. In order to integrate the new
behavior, a new CBLM should be constructed including the old CBLM (turn and approach) and the
new SBLM (grasp). The new CBLM needs a new training data to construct the relationships between
the behaviors. Training data is used to generate observation categories and transition conditions be-
tween the already learned behaviors, in order to generate observation and state sequences for a given
goal. This issue may be addressed by using an on-line learning scheme which adds the ability to learn
new behaviors incrementally. When adding a new behavior, both the parameters and the structure of
Behavior-HMM can be updated in this scheme. An example of incremental HMM based model is
presented in [22].

The proposed models are not applicable to all types of behaviors. Some behavior goals cannot be
stated as target observation. Complex robot behaviors like floor cleaning, exploration of a workspace
or obstacle avoidance need a detailed planning and goal of the behavior cannot be specified easily as a
target observation. These complex behaviors can be modeled in a CBLM by decomposing them into
many simple behaviors and subsumption architecture can be used to execute each simple behavior.
Furthermore, the model can be extended to learn multiple target observations [4].

Some behaviors have a very large observation space. Modeling of these kind of behaviors may cause
some scalability problems. For instance, categorization of a behavior using cartesian coordinates as
inputs may exhibit some resolution and scalability problems, because the model shall have very large
set of observation categories. For these behaviors, categorization of observation space can be handled
differently by preprocessing the input space and using only the most relevant inputs [4].

The measurement error analysis on performances of experiments are not performed in this study, be-
cause we used a simulated environment. But, the models use low-pass second-order filters on the
inputs of ANN and CobART to reduce the possible effects of random measurement errors in real robot
platforms. Furthermore, robot executes behaviors in a closed-loop approach by making a continuous
checks on observations and possible state changes during behavior generation. Thus, it reduces the
random measurement effect on the generated behaviors. On the other hand, systematic measurement
errors (biases in measurement) on the sensors are considered as part of the environment. We consider
that systematic errors to be learned by the model as a part of the environment and the model shall
perform the learned behaviors accordingly [4].

If a behavior model is trained by using different forms of a same behavior (e.g. fast or slow approach
behaviors), different motion primitives may be generated by CobART depending on the selected cat-
egorization parameters. This alternative motion primitives as states of Behavior-HMM may result
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different branches in the model. Within its current capabilities, proposed models do not aware of those
alternative branches. Hence, when a desired behavior is requested, the model generates the most likely
motion primitive sequence without considering alternative paths. The model can be enhanced to han-
dle those alternative forms or alternative forms of a behavior can be modeled as different behaviors
[4].

Our main focus was on the modeling and learning capabilities of the system throughout the study.
Thus, having the maximum performances were not our main goal. But, performances of the models
can be enhanced by looking for the optimum parameters experimentally. Categorization parameters of
CobART and learning parameters of ANN have a direct effect on the performances. For instance, using
a higher vigilance in categorization results more observation categories and more motion primitives
and hence increases the resolution of the system and improves the behavior generation performances.
On the other hand, it may cause scalability problems and increase computational times of training
procedure [4].

7.2 Conclusion and Future Work

In the scope of this study, we looked behavior learning problem from the robot’s perspective not from
the programmer’s. Robot learns behaviors without the help of a supervisor. For this purpose, two
robot behavior learning models are introduced for simple and complex behaviors. Followings are the
summary of methodologies used in this study:

• CobART was used to categorize sensory data into observation categories and motion primitives.

• Behavior-HMM modeled relationships among the motion primitives.

• ANNs as motion generators learned to generate continuous motor commands.

• Most likely motion primitive sequences for a requested task were generated by the help of most
likely path and Viterbi algorithms.

• Complex behaviors were modeled in a CBLM by hierarchically integrating the already learned
behaviors.

The capabilities of the models are investigated by some experiments tested on a robot simulator us-
ing turn and approach behaviors. Test results presented that the models can learn and perform the
experimented behavior effectively [4].

This thesis contributes to the previous behavior learning studies by proposing generic, unsupervised,
and extendible behavior learning models for simple and complex behaviors. The behavior models can
be a base study for future research. The use methodologies such as CobART, Behavior-HMM, and
ANN eliminate the requirement of a supervisor [4].

The capabilities of this study can be improved in many aspects. This improvements as future works
can be summarized as below [4]:

• The models can be experimented on different and more complex behaviors.

• The actual performance of the models can be tested on a real robot.
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• Behavior generation performance can be improved by using a different neural network architec-
ture specifically designed for motion generation (such as recurrent neural networks).

• The model can be enhanced by adding a parallel behavior execution mechanism in a CBLM. For
instance, while a robot is turning to an object, it can also approach to object in parallel.

• Feature selection mechanisms can be integrated to the model to learn relevant and redundant
input data. Applying feature selection to the models needs a detailed study, but it will improve
the self-organizing capabilities.
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APPENDIX A

MORE HIDDEN LAYER/UNIT EXPERIMENTS ON NEURAL
NETWORK TRAINING

In order to investigate the learning performance of neural networks for two-input networks, several
hidden layer/unit configurations are tested. Experiments are performed on turning behavior to analyze
the network performance easily. Input vector containing 10 consecutive data is presented to the input
layer of the network for each input (e.g. 10 inputs for angle and 10 inputs for angular velocity). Left
and right motor commands are expected as the target values in the backpropagation phase. In each
iteration, input vector is shifted by one and shifted vector is presented as a new input to network for
the next iteration.

One of the motion primitives category data is selected as a test data. 20% of the sensory data is used
as test data and 80% is used as training data. Test data is not used in training process.

In the experiments, different hidden layer/unit configurations are tested and the results are plotted
in a test error versus iteration number chart as shown in the Figure A.1. All network configurations
produced similar success rates. Best result is obtained when 2 hidden layers with 20 units configuration
is used in the training as shown in the figure. Training of larger networks requires longer times and a
network having too much hidden units cannot generalize input signal properly, but memorize all data
even the noise (known as overfitting). By considering the training times and overfitting, it is used 1
hidden layer with 10 units for two-input networks.
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APPENDIX B

MORE BEHAVIOR GENERATION EXPERIMENTS

In Section 6.3 and Section 6.4 only limited number of experiment results are reported for demonstration
and analysis purposes. In this section, more simple and complex-behavior experiments are presented.

SBLM is experimented on turn to the object and approach the object behaviors. Furthermore, perfor-
mance of CBLM model is experimented on the combination of the already learned turn and approach
behaviors.

B.1 Simple-Behavior Generation Experiments

B.1.1 Turn Experiments

Different turn behaviors from −180◦ to +180◦ rotational angles are experimented in this section. The
test results are shown in Figure B.1. Behavior generation performances of the experiments using
different set of inputs in categorization and neural network training are compared. The first experiment
uses only angle vector to generate turn behavior. The second experiment uses angle and angular
velocity as inputs to the model.

As shown in Figure B.1, generated behaviors can follow the training behaviors successfully. According
to success rates on the charts, the use of angular velocity in behavior learning has a negative effect on
the performance of turn behavior as stated in Section 6.3.1.

B.1.2 Approach Experiments

Different approach behaviors from 0 to 1 meter distances are experimented in this section. The test
results are shown in Figure B.2. Behavior generation performances of the experiments using different
set of inputs in categorization and neural network training are compared. The first experiment uses
only distance vector to generate approach behavior. The second experiment uses distance and angle
variables as inputs. In the third experiment, distance, angle, and linear velocity are used as inputs to
the model.

As shown in Figure B.2, generated behaviors can follow the training behaviors successfully. According
to success rates on the charts, the use of linear velocity in behavior learning has a negative effect
on the performance of approach behavior, as in turn behavior experiments. However, the use of
angle information improves the quality of approach behavior. Small variations in left and right motor
commands generate a rotational shift during approach behavior. In our opinion, the use of angle
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Figure B.1: (Part 1/3) More samples of turn behaviors from different rotational angles using different
inputs.
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Figure B.1: (Part 2/3) More samples of turn behaviors from different rotational angles using different
inputs.
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Figure B.1: (Part 3/3) More samples of turn behaviors from different rotational angles using different
inputs.
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information in addition to distance helps to correct those rotational shifts [4].

Note that approach behaviors from closer distances have better performances. Approaching from
longer distances requires greater accelerations and decelerations and results big differences in motor
commands. Big changes in motor commands in a short time cause differences in left and right motor
responses. It leads rotational shifts to the object during approach and causes performance problems in
approach behaviors from longer distances [4].

B.2 Complex-Behavior Generation Experiments

CBLM is experimented on the combination of the already learned turn and approach behaviors. This
new complex behavior is called turn&approach behavior. Turn&approach behavior starts with a turn
behavior (if necessary), and then performs an approach behavior (if necessary). The execution se-
quence of behaviors are determined by the model according to requested task. After the sequence of
behaviors are determined, each behavior is executed one by one until the goal task is accomplished
[4].

Plotted curves of training and generated distances/angles in Figure B.3 show that the model can learn
and perform turn&approach behavior successfully. As the components of turn&approach, behaviors
which have better performances in simple-behavior experiments are selected. In other words, approach
behavior using distance and angle as inputs and turn behavior using only angle as input are used in
the complex behavior experiments. In the previous experiments, it is observed that the use of velocity
inputs did not improve the performance. Thus, distance and angle are used as inputs to CobART for
observation categorization in this experiments [4].

There is a general rotational shift problem during approach behaviors both in training and generated
data as shown in Figure B.3. Rotational angle to the object is slightly shifted because of left and
right motor responses even if the same commands are applied. This rotational shift increases more in
approaches from longer distances because of high accelerations and decelerations. Small differences
in left and right motor commands in generated behaviors also cause more rotational shifts from the
target object. We consider that the problem may be minimized by using more responsive motors. In
the experiments, it is also observed that the use of limited accelerations and decelerations reduce the
rotational shifts during approach behavior [4].

Also note that in Figure B.3 (f), rotational angle to the object is 0◦. It means that the robot does not
need to turn to the object. Thus CBLM infers this situation and it starts to execute approach behavior
without performing turn behavior.
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Figure B.2: (Part 1/3) More samples of approach behaviors from different distances using different
inputs.
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Figure B.2: (Part 2/3) More samples of approach behaviors from different distances using different
inputs.
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Figure B.2: (Part 3/3) More samples of approach behaviors from different distances using different
inputs.
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Figure B.3: (Part 1/3) More samples of turn&approach behaviors from different angles/distances in a
time versus angle/distance chart.
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Figure B.3: (Part 2/3) More samples of turn&approach behaviors from different angles/distances in a
time versus angle/distance chart.
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Figure B.3: (Part 3/3) More samples of turn&approach behaviors from different angles/distances in a
time versus angle/distance chart.

81



82



APPENDIX C

VIDEO RECORDINGS OF TRAINING AND GENERATED
BEHAVIORS

In this section, samples of training and generated behavior video recordings are presented. Table C.1
shows the video recordings of turn, approach, and turn&approach behaviors. Video files can be found
in the CD-ROM attached to the thesis.

TableC.1: Samples of training and generated behavior video recordings

File names Explanation
Video_Training_Turn.avi Turn training behavior
Video_Generated_Turn.avi Turn generated behavior
Video_Training_Approach.avi Approach training behavior
Video_Generated_Approach.avi Approach generated behavior
Video_Training_Turn_Approach.avi Turn&Approach training behavior
Video_Generated_Turn_Approach.avi Turn&Approach generated behavior
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