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ABSTRACT 

 

 

 

APPROXIMATE FACTORIZATION USING ACDI METHOD ON HYBRID GRIDS AND 

PARALLELIZATION OF THE SCHEME 

 

 

Onay, Oğuz Kaan 

M.Sc., Department of Aerospace Engineering 

Supervisor: Assoc. Prof. Dr. Oğuz Uzol 

Co-Supervisor: Assist. Prof. Dr. Nilay Sezer Uzol 

January 2013, 98 pages 

 

In this thesis study, a fast implicit iteration scheme called Alternating Cell Directions Implicit method 

is combined with Approximate Factorization scheme. This application aims to offer a mathematically 

well defined version of the Alternating Cell Directions Implicit Method and increase the accuracy of 

the iteration scheme that is being used for the numerical solutions of the partial differential equations. 

 

The iteration scheme presented here is tested using unsteady diffusion equation, Laplace equation and 

advection-diffusion equation. The accuracy, convergence character and the stability character of the 

scheme compared with suitable iteration schemes for structured and unstructured quadrilateral grids. 

Besides, it is shown that the proposed scheme is applicable to triangular and hybrid polygonal grids.   

 

A transonic full potential solver is generated using the current scheme. The flow around a 2-D 

cylinder is solved for subcritical and supercritical cases. Axi-symmetric flow around cylinder is 

selected as a benchmark problem since the potential flow around bodies with a blunt leading edge is a 

more challenging problem than slender bodies.  

 

Besides, it is shown that, the method is naturally appropriate for parallelization using shared memory 

approach without using domain decomposition applications. The parallelization that is performed here 

is partially line, partially point parallelization. The performance of the application is presented for a 3-

D unsteady diffusion problem using Cartesian cells and 2-D unsteady diffusion problem using both 

structured and unstructured quadrilateral cells.  

 

Key words: Implicit Formulation, ACDI 

  



v 
 

ÖZ 

 

 

 

HİBRİD ÇÖZÜM AĞLARI İÇİN DAHYKF KULLANILARAK YAKLAŞIK ÇARPANLARA 

AYIRMA VE ŞEMANIN PARALELLEŞTİRİLMESİ 

 

 

Onay, Oğuz Kaan 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği 

Tez Yöneticisi: Doç. Dr. Oğuz Uzol 

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Nilay Sezer Uzol 

Ocak 2013, 98 sayfa 

 

Bu tez çalışmasında Değişken Ardışık Hücre Yönlü Kapalı Formülasyon Metodu, Yaklaşık 

Çarpanlara Ayırma yaklaşımıyla birleştirilmiştir. Bu uygulama, Değişken Ardışık Hücre Yönlü Kapalı 

Formülasyon Metodu’nun matematiksel olarak daha iyi tanımlanmış bir versiyonunu ortaya koymayı 

ve kısmi diferansiyel denklemlerin çözümü için kullanılan bu metodun başarısını arttırmayı 

hedeflemektedir. 

 

Burada sunulan iterasyon şeması daimi difüzyon denklemi, Laplace denklemi ve konveksiyon-

difüzyon denklemi kullanılarak test edilmiştir. Şemanın doğruluk, yakınsama ve kararlılık karakterleri 

yapısal ve yapısal olmayan dörtgen sayısal ağlar kullanılarak uygun iterasyon şemalarıyla 

karşılaştırılmıştır. Ayrıca önerilen şemanın üçgen ve hibrit çokgen sayısal ağlara uygulanabilir olduğu 

gösterilmiştir. 

 

Şema kullanılarak transonik tam potansiyel bir çözücü geliştirilmiştir. 2-B silindir etrafında kritik altı 

ve kritik üstü akış çözülmüştür. Problem olarak eksenel simetrik silindir probleminin seçilmiş 

olmasının sebebi küt hücum kenarlı cisimler etrafındaki akış çözümlerinin ince cisimler etrafındaki 

akış çözümlerinden daha zor olmasıdır.  

 

Aynı zamanda metodun doğası gereği paylaşımlı bellek kullanımında paralelleştirmeye uygun olduğu 

gösterilmiştir. Burada uygulanan paralelleştirme kısmen çizgi, kısmen nokta paralelliğidir. 

Uygulamanın performansı basit bir 3-B daimi difüzyon problemi üzerinde Kartezyen elemanlar 

kullanılarak ve 2-B daimi difüzyon denklemi üzerinde yapısal ve yapısal olmayan dört kenarlı 

elemanlar kullanılarak sunulmaya çalışılmıştır.  

 

Anahtar Kelimeler: Kapalı Formülasyon, DAHYKF 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Background 

 

The numerical solution of partial differential equations is the basis of the scientific computation 

applications. Solutions are being performed using discrete forms of the equations using finite cells 

instead of infinitesimal extents. The discretization approaches of equations specify the classification 

of the solution methods.  

 

One of the classifications can be stated as having implicit formulation or explicit formulation. Implicit 

formulations result with linear sets of equations in matrix forms whereas explicit formulations use 

directly the previous iteration or time step values to obtain the current iteration or time step value. The 

explicit schemes are more common with unstructured grids [1],[2]. 

 

Implicit formulations are the approaches that are more difficult to program than explicit schemes and 

have better convergence character. Having a better convergence character can be used as an advantage 

if fast implicit methods like Alternating Directions Implicit (ADI) Method are applied. These kinds of 

fast implicit formulations are usually appropriate for structured grids [2],[3] (grids that are composed 

of ordered finite cells on the solution domain). The formulations of them generally use tri-diagonal or 

penta-diagonal matrix solutions and these kinds of matrices are relatively easier to solve.  

 

Fully implicit schemes require more computational time since they end up with mass matrices for the 

solution and the efforts to obtain quicker results with these applications are generally focused on faster 

solution methods of mass matrices [4].  

 

Alternating Cell Directions Implicit method is a fast implicit scheme that can be used for both 

structured and unstructured grids [3]. This ability is not very common for fast implicit schemes. 

Mavriplis [2] states that it is possible to generate grid directions with the edges of triangular elements 

and these directions can be used for line implicitness, but in fact these sweep directions are not unique 

for an unstructured grid and they are defined by a method selected by the programmer. One of the 

most important studies on line implicitness of unstructured grids is the usage of Hamiltonian Tours [5] 

of Hassan et al [6]. Venkatakrishnan states that [4] there might exist many of the Hamiltonian Tours 

and there might be no of them for a 2-D unstructured mesh. 

 

The ACDI method is offered in order to combine the advantages of successful convergence characters 

of fast implicit methods with the easier meshing advantage of unstructured grids. The method is 

inspired from ADI Methods [7],[8],[9] but its degree of implicitness is in the order of Line Gauss 

Seidel Iteration method in case of the existence of quadrilateral elements. Since one of the objectives 

of this study is to increase the implicitness level of the ACDI method to the order of approximate 

factorization [10], classical approximate factorization approach will be explained briefly after Point 

Gauss Seidel, Line Gauss Seidel, Alternating Directions Implicit and Alternating Cell Directions 

Implicit Methods. Then the fully implicit Laasonen method will be explained briefly.   
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1.2 Point Gauss Seidel Iteration Method (PGS) 

 
Laplace equation (1.1) is used as model equation to show the discretization of Point Gauss Seidel, 

Line Gauss Seidel and the Alternating Directions implicit methods.  

  

   

   
 
   

   
    (1. 1) 

 

If the node based discretization using second order central differences is written for the sample grid 

shown in Figure 1.1. as given below; 

 

     
  

  
 
 

     
     

  

  
 
 

       
        

           
        

    (1. 2) 

 

 

If the equation (1.2) is inspected well it can be seen that the terms with the indices (i-1,j) and (j-1,i ) 

are written implicitly to the right hand side of the equation. If the solution procedure begins from the 

corners where the boundary conditions exist as in Figure 1.1, then the implicitness of these terms can 

be provided for all of the discretized equations written for whole nodes inside the domain. This 

approach can be applied to unstructured grids as well as the structured grids and provides an enhanced 

convergence character to the method. Line Gauss Seidel and Alternating Directions Implicit methods 

have also relatively good convergence characters but they can not be applied to unstructured grids. 

 

 

 
 

 

  

 

 

 

 

 

Figure 1.1 Example solution domain for PGS  
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1.3 Line Gauss Seidel Iteration Method (LGS) 

 

The Laplace equation given with (1.1) is discretized as shown in equation (1.3) using finite difference 

approximation and node based approach. 

 

      
         

  

  
 
 

     
          

      
  

  
 
 

       
        

     (1. 3) 

 

If equation (1.3) is written for the marked nodes given in Figure 1.2 the cells with j+1 indices remain 

explicit in the left hand side of the discretized equation. Each equation set written for constant j 

indices, generate a single tri-diagonal matrix to be solved. The equation sets are solved beginning with 

j=1 constant line and the solution of the j
th 

equation set requires the results of the j-1
st
 tri-diagonal 

matrix solution. 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 1.2 Example solution domain for LGS  
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1.4 Alternating Directions Implicit Method (ADI) 

 

ADI Method uses two implicit iteration cycles for x and y directions over the domain. An example 

domain and solution directions are shown with Figure 1.3. 

 

Each of the iteration cycles ends up in a solution for half iteration time step for a 2-dimensional 

domain. This solution is not meaningful in the manner of unsteadiness, although the semi-solution is 

called half iteration time step solution. 

 

 

 

 

 

 

 

 

 

Figure 1.3 Sweep directions for ADI 

 

 

 

If the Laplace equation given with (1.1) is discretized using node based finite difference 

approximation as shown below;  

 

      
     

      
  

  
 
 

     
     

       
     

   
  

  
 
 

       
        

     
   

 
  

  
 
 

      
         

  

  
 
 

     
          

           
     

       
    (1. 4) 

 

Both of the discretized equations given with (1.4) generate tri-diagonal matrices to be solved for each 

sweep. Having tri diagonal matrices lessens the computational time and programming effort. 

The oncoming sweep solution has to use the results of the previous one for such a scheme. For 

example second x sweep solution can not be performed before the end of the first x sweep solution, 

also to begin y sweep calculations, x sweep calculations have to be completed for such a 

discretization. As obviously seen, the scheme requires structured grids and the application can also be 

used where the grid transformation is required [11].  

  

 

 

X SWEEP 

SOLUTION 

Y SWEEP 

SOLUTION 
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1.5 Alternating Cell Directions Implicit Method (ACDI) 

 

Alternating cell directions implicit method uses the cell directions that generated via travelling over 

the opposing edges of the unstructured quadrilateral cells instead of the x and y sweep directions of 

classical ADI method. This approach makes it useful for both structured and unstructured grids. 

Example cell directions passing through a sample cell are given in Figure 1.4 

. 

The method has previously been used to generate an incompressible Navier-Stokes solver and it has 

been proven that it gives more accurate results than Point Gauss Seidel Iteration Method [12] 

. 

The notation given with Figure 1.4 is for cell centered based finite volume approach of ACDI method. 

Only two cell directions can pass through each cell center of quadrilateral cells and these directions 

become unique for each mesh. The points P, M and N are the cell centers where the dependent 

variable is written implicitly into the discretized equation and all of these points take place over the 

cell direction shown with continuous red arrow. The dashed red arrow represents the other cell 

direction that also passes through the cell with center M. Continuing to write the discretized equation 

over the same solution band results with a tri-diagonal matrix to be solved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Example alternating cell directions for quadrilateral cells 
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Integrating the unsteady diffusion equation over the cell with center M yields: 

 

  

  
         (1. 5) 

 

 
  

  

 

 

       
 

 

      
   

   
 
   

   
 

 

 

   (1. 6) 

 

Applying the Green’s theorem gives: 

 

 

  
  

 

 

    
  

  

 

 

      
  

  

  

  
 
  

  

  

  
 

 

 

   (1. 7) 

 

Also: 

  

  
 

  

  
  

  

  
  

  

  
 (1. 8) 

 

If the identities given with (1.8) are written into (1.7); 

 

     

   

  
    

  

  

  

  
 
  

  

  

  
 

 

 

     
  

  
   

 

    

 
  

  
    

 

    

 (1. 9) 

 

Where: 

     
 

 
    

 

 

  

 

The integrations defined at boundary abcd have to be calculated. The average fluxes at each edge of 

the cells are calculated using virtual areas. The corners of these virtual areas are the nodes of the edge, 

center of the cell itself and the center of the neighbor cell. For example MaPb is the face that is used 

for the flux calculation at the edge ab of the cell which has the center M at Figure 1.4. 

The flux expressions are inserted into (1.9) and the values at points P, M and N are held implicit in the 

discretized equation. These points take place on the solution band of interest.  

Writing the discretized equation through a solution band ends up in a tri-diagonal matrix. Solution of 

these tri-diagonal matrices for all solution bands gives a single time iteration step solution.   

Solving the tri-diagonal matrices one by one gives the results for the current iteration or time step, but 

there is no appropriate or well-defined selection method for the sequence of matrix solutions. One of 
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the aims of this thesis study is to present a mathematically well defined approach that uses Alternating 

Cell Directions concept.  

1.6 Classical Approximate Factorization  

 

If the unsteady diffusion equation is discretized using Crank-Nicolson scheme and node based finite 

difference approach; 

 

    
        

 

  
    

 

 
 
      
         

          
   

   
 
      
       

        
 

   

  
      
         

          
   

   
  

      
       

        
 

   
   

(1. 10) 

 

Writing the equation in operator form and rearranging gives: 

   
  

 

  

   
 
  

 

  

   
     

       
  

 

  

   
 
  

 

  

   
     

  (1. 11) 

 

Approximately factorizing the equation above; 

 

   
  

 

  

   
    

  

 

  

   
     

       
  

 

  

   
    

  

 

  

   
     

  (1. 12) 

 

A solution procedure can be applied as shown below; 

   
  

 

  

   
     

     
  

 

  

   
     

   

          
  

 

  

   
     

          
  

 

  

   
     

  (1. 13) 

 

Writing the discretized form which is an approximation of Crank-Nicolson scheme gives: 

    
   

  

 
  
      
       

        
 

   
      

   
  

 
  
      
       

        
 

   
  

 

 

     
      

  

 
  
      
         

          
   

   
         

  
  

 
  
      
       

        
 

   
  (1. 14) 

 

The factorization yields with an additional term in the formulation and this additional term in the 

operator form is: 
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    (1. 15) 

 

The solution of (1.13) can be obtained using x and y sweeps that shown in Figure 1.3 as ADI scheme. 

Different than the ADI scheme x sweep solutions do not require any other x sweep solution but all x 

sweep solutions have to be completed before the calculation of the y sweep equations. 

Classical Approximate Factorization is an approximation of fully implicit schemes rather than a line 

implicit scheme. 

 

1.7 Implicit Laasonen Method 

 

The model equation (1.5) is discretized as given below; 

  

    
        

 

  
    

 

 
 
      
         

          
   

   
  

      
         

          
   

   
    (1. 16) 

 

As seen all the terms instead of the central node variable in the time derivative are written implicitly. 

If the equation (1.16) is written for a domain that is composed of NxN nodes NxN linear equations will 

be obtained, thus (NxN) by (NxN) matrix has to be solved to obtain the dependent variable values of 

the next time step. Hoffman [13] states that the implicit methods have outstanding convergence 

characters even with very large time step sizes, but the accuracy decreases with the increased time 

step size. Besides, solution of mass matrices take relatively long CPU times when compared to tri-

diagonal or penta-diagonal matrix solutions. Most of the efforts on speeding up the fully implicit 

schemes are on fast solution of the mass matrices [4]. 

 

1.8 Present Approach and Aims of the Study 

 

The main aim of this thesis study is to combine an approximate factorization scheme with ACDI [10] 

time iteration scheme in order to increase the implicitness level and the accuracy of the previous 

ACDI studies [3],[12]. Although the main study is carried on using cell centered finite volume 

discretization; the approximate factorization approach used for this study will also be explained for 

node based finite difference discretization on structured grids for clearness, also it is aimed to serve a 

mathematically well defined approach. 

 

The unsteady diffusion equation, Laplace equation and unsteady advection-diffusion equation are 

selected as the model equations for the validation of the method. Two different approximate 

factorization methods are adapted to ACDI method. One of these factorizations uses the Crank-

Nicolson discretization whereas the other one uses relatively simpler approach for the spatial 

derivatives, also two different flux calculation approaches are used to calculate the flux integrals at the 

boundaries of the cells. One of these methods uses inverse distance weighting interpolation and a 

finite difference approach which is relatively low order and is easier to program. The second method 

uses virtual faces on edges to calculate the flux integrals with trapezoidal rule and it is similar with the 

flux calculation of previous ACDI study. Inverse distance weighting flux calculation is more 

appropriate for three dimensional applications. Low order approach is presented since it is more useful 

and easy to program and high order one is represented in order to compare the success of the current 

approach with previous ACDI approach. 

It is previously shown by Çete [3] that, the ACDI is appropriate for structured, unstructured 

quadrilateral and combination of triangular and quadrilateral quad-dominant unstructured grids. The 

approach is generalized for all kinds of polygonal cells with this study. The data structure of the 

previous programming approach is reconfigured to obtain a flexible data structure that suits different 

number of edge numbers on cells. 
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Another objective is to show that the approximate factorization used for this study, serves a scheme 

that can be easily parallelized for shared memory applications without using domain decomposition. 

Unsteady diffusion equation is solved using 100x100x100 Cartesian cells and the speedup ratios are 

calculated up to 32 processors with a 48 GB RAM server. Also the performance of parallelization is 

shown for both structured and unstructured quadrilateral grids again using the unsteady diffusion 

equation.  
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CHAPTER 2 

 

 

NUMERICAL METHOD 

 
 

 

2.1 Approximate Factorization Method Appropriate for ACDI 

 

Writing the unsteady diffusion equation in operator form where the spatial derivatives symbolize 

second order central differencing at nodes of equi-sized structural cells;  

 

    
        

 

  
   

  

   
 

  

   
      

      (2.1) 

 

Rearranging gives; 

     
  

   
   

  

   
      

        
  (2.2) 

 

Applying the simple factorization as shown below [14]; 

     
  

   
       

  

   
     

        
  (2.3) 

 

The additional term of factorization will be;  

   
  

   
 
  

   
     

      (2.4) 

 

If semi-solutions for equation (2.3) are assigned as shown below; 

        
  

   
     

    (2.5) 

        
  

   
     

    (2.6) 

 

Then equation (2.3) can be written as two independent equations; 

 

     
  

   
         

  (2.7) 
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  (2.8) 

 

Using same terms in the right hand sides of the equations and using independent semi-solutions at left 

hand sides makes the discretization appropriate for ACDI. 

The equations given as (2.7) and (2.8) result with tri-diagonal matrices if second order central 

difference is used for spatial derivatives. (2.7) has to be solved for all x sweep directions and (2.8) has 

to be solved for all y sweep directions, but the semi-solutions    and    do not require each other to be 

calculated. The procedure to obtain     
    using these semi-solutions is as given below.  

Summation of expressions (2.5) and (2.6) gives; 

           
  

   
   

  

   
      

    (2.9) 

 

Rearranging (2.9) gives 

          
          

  

   
   

  

   
      

    (2.10) 

 

The term given in operator form at right hand side of (2.10) is already equal to     
    

    
              

  (2. 11) 

 

As shown with equations (2.7),(2.8) and (2.11) none of the tri-diagonal matrix solutions use the semi-

solution of each other until all x sweep and y sweep solutions are obtained. Although such an 

approximate factorization has a higher additional term error than classical Crank-Nicolson 

approximate factorization, it is easier to program. This approach will be named as simple AF for the 

rest of the study.  

Also the approximate factorization that is used by Ramos [15] is adapted for the ACDI and became 

useful for unstructured grids. The form given below becomes Crank Nicolson scheme if      ; 

 

    
        

 

  
  

      
   

   
      

      
 

   
  

      
   

   
      

      
 

   
 (2. 12) 

 

(2.12) can be rearranged as shown below; 

  

  
  

    

   
  

    

   
 

      
 

   
 
      

 

   
 (2. 13) 

                                                               
        

 . 
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If a regular kind of approximate factorization is used for (2.13);  

      
  

   
     

      
 

   
 
      

 

   
 (2. 14) 

       
  

   
              (2. 15) 

 

The factorization given with (2.13), (2.14) and (2.15) is inappropriate for ACDI applications  It can 

not be used with alternating cell directions since it is not possible to define meaningful sequence 

selection for the sweep solutions for unstructured cells. Thus the importance of sequence of sweep 

solutions should be removed. Using a similar approach of equations (2.7) and (2.8) yields;  

 

      
  

   
     

      
 

   
 
      

 

   
 (2. 16) 

       
  

   
       

      
 

   
 
      

 

   
 (2. 17) 

 

Where; 

          
  

   
    (2. 18) 

          
  

   
    (2. 19) 

 

If similar derivation approaches of equation (2.11) are performed, the solution for next time step value 

will be; 

 

     
            

      
 

   
 
      

 

   
 (2. 20) 

  

If the expression   
      

 

   
 

      
 

     that takes place in the right hand side of the above equation is 

inspected, it will be seen that it is equal to the minus one times the right hand side of the equation 

(2.13) which is a known value of the general equation (2.13).  

 

      
 

   
 
      

 

   
     

(2. 21) 

Then;  



14 
 

     
                (2. 22) 

    
        

  +      
    (2. 23) 

 

The additional term of factorization is; 

 

     
 

   
 
 

   
     

        
    (2. 24) 

 

And it is equal to the additional term of standard Crank-Nicolson approximate factorization where 

         

This factorization method will be named as Crank Nicolson like AF for the comparison of the 

results. 

 

2.2 Approximate Factorization with ACDI 

 

The method will be explained using cell centered finite volume approach. Using finite volume 

approach is more suitable since the success of the approach will be compared with previous ACDI 

method which also uses cell centered finite volumes.  

 

  

  
         (2. 25) 

 

Integrating the equation over the control volume cell that shown in Figure 2.1 gives: 

 
  

  

 

 

        
 

 

     (2. 26) 

 

Applying the Green’s Theorem for the second term of left hand side and writing the first term in 

discrete form: 

 
   

  
   

  

  
   

 

 

   (2. 27) 

 

Where    is a mean value of dependent variable that placed at cell center such that: 

                                                            
 

 
    
 

 
 

 

If it is assumed that the fluxes at each cell edge is constant through the edge, where the cell has N 

edges like shown in Figure 2.1, (2.27) can be written in the form as shown: 
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   (2. 28) 

 

 

 

 

Figure 2. 1 Control Volume with N edges 

 

 

 

If (2.28) is written in the form of: 

 
   

  
       

  

  
 
 
      

  

  
 
 
            

  

  
 
 
       (2. 29) 

 

If the flux terms are grouped such that opposite edge fluxes take place in the same group where      

is the next time step value of dependent variable at each cell center that is to be calculated, the 

resulting expression will be; 

 

 
        

  
       

  

  
 
 
      

  

  
 
     

        

    
  

  
 
 
      

  

  
 
     

        

      
  

  
 
   

        
  

  
 
 
            

(2. 30) 

 

It is possible to rearrange (2.30) such that    takes place at the right hand side of the equation since it 

is a known value at the n
th 

time step: 

 

          
  

 
 
  

  
 
 
    

  

 
  
  

  
 
     

        

   
  

 
 
  

  
 
 
     

  

 
 
  

  
 
     

        

      
  

 
 
  

  
 
   

      
  

 
  
  

  
 
 
             

(2. 31) 
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The fluxes are going to be calculated implicitly, thus it is possible to write the LHS in the operator 

form. For the sake of simplicity       will be represented as   and    will be represented as     

beginning from this point. 

 

        
  

 
    

 

  
 
 
 
  

 
         

 

  
 
     

 

   
  

 
    

 

  
 
 
  

  

 
        

 

  
 
     

 

     
  

 
      

 

  
 
   

 
  

 
     

 

  
 
 
              

(2. 32) 

 

The form given with equation (2.32) is for the application of simple AF. The derivations for usage of 

simple AF and Crank-Nicolson like AF are very similar to each other, thus the derivation of usage of 

simple AF is given only. 

Equation given above offers a form that is suitable for approximate factorization for any kind of 

polygonal cells that have even number of edges, also it is possible to use the same factorization for 

cells that have odd number of edges via developing simple strategies to convert these cell edges to 

even numbered edges. Possible strategies for odd numbered edges will be discussed in oncoming parts 

of the study. 

Applying simple AF to the form given as (2.3) gives: 

 

    
  

 
    

 

  
 
 
 
  

 
  

  
 
 
  

 

  
 
  

 
 

  

    
  

 
    

 

  
 
 
 
  

 
   

  
 
 
 
 

  
 
  

 
 

    

    
  

 
      

 

  
 
   

 
  

 
     

 

  
 
 
         

(2. 33) 

 

Grouping fluxes written for opposite edges in the factorized equation lets the scheme to be applied 

using alternating cell directions that shown on even number edged polygonal cells in Figure 2.2. 
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Figure 2. 2 Cell directions drawn travelling opposing edges of cells 

 

 

 

It is possible to write the expression (2.33) separately for each factorized term via assigning semi-

solutions that will be declared as                     such that: 
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(2. 34) 

 

Writing the operators as shown above and using semi-solutions is performed to obtain tri-diagonal 

matrices for the equation sets that will be written over the solution bands that shown in Figure 2.2. 

The value of   has to be calculated after the semi-solutions are obtained. If the operators of (2.34) are 

named as                         
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(2. 35) 
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If it is assumed that the expression                             is equal to the form before the 

factorization: 

 

                

         
  

 
    

 

  
 
 
 
  

 
         

 

  
 
     

     

           
  

 
    

 

  
 
 
  

  

 
        

 

  
 
     

 

                  
       

 
 
 

  
 
   

 
  

 
     

 

  
 
 
         

(2. 36) 

 

If the expressions of (2.35) are summed using the assumption given as (2.36) the summation gives: 

 

 

 
    

 

 
     

  

 
       

  

  
 
 

 

   

     

 

   

 (2. 37) 

 

Rearranging (2.37) yields: 

 

                
 

 
        

  

 
    

  

  
 
 

 

   

   
                 

     

 

   

 (2. 38) 

                                                                          RHS  

 

Then the value of   can be calculated using the simple expression below: 

                     
 

 
      

 

   

 (2. 39) 

 

2.2.1 Difference of the Approach from Fractional Time Stepping Methods 

 

The equation set that is written for a sample hexagonal element of the general form is given below; 

 

    
  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
                               

  

      
  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
                               

 

       
  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
                               

(2. 40) 
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If the equation set is inspected well with the factorized equation which is written together with the 

equation set (2.40-a), (2.40-b) and (2.40-c) it will be seen that; 

 

    
  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
  

    
  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
  

       
  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
     

 

          
  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
     

         
  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
    

                           
  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
                    

(2. 41) 

 

The equation (2.40) shows that none of the equations (2.40-a), (2.40-b) and (2.40-c) are the 

approximations of the left hand side of the equation (2.41), but they are exactly equal to it by 

definition.  

The tri-diagonal matrix solutions of (2.40-a), (2.40-b) and (2.40-c) give the values of the definitions 

given below;    

 

    
  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
     

  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
         

 

    
  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
     

  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
      

 

    
  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
     

  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
      

 

The algebraic operations (2.35)-(2.39) are simply performed to obtain the updated cell center values 

using the previously obtained values of the definitions given above as T1, T2 and T3.  

 

Node based finite difference Crank-Nicolson version of the fractional time stepping method is adapted 

from Hoffman [13] and given below for the unsteady diffusion equation; 

  

    
     

     
 

    
 

 

 
 
  

   
     

     
 
 

 
 
  

   
     

  

 

(2. 42) 
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As seen from the equation set (2.42) the first of the equations does not include any of the y derivative 

terms and the second of the equations does not include any of the x derivative terms. The operators are 

split to obtain half time step solution in one direction firstly and the updated value in the other 

direction secondly. The bond between the equations of (2.42) is only provided with the half time step 

solution, but the equations of (2.40) are exactly equal to each other and the whole factorized equation 

itself. Each of them is set to provide the cell center values of different parts of the whole factorized 

equation (2.40).  

 
2.2.2 Flux Calculation Using Inverse Distance Weighting 

 

The notation that will be used for the flux calculation is given in Figure 2. 3. The subscripts   and   

are going to be used for the coordinates of the center of the cell that the fluxes are being calculated 

for, and center of the neighbor cells relatively. The subscripts   and   are going to be used for the 

coordinates of the nodes that are on the cell edge that the flux calculation is being performed. 

 

The points that shown with the coordinates         and         are the locations that the dependent 

variables will be moved using inverse distance weighting [16]. These points are perpendicularly 

      far away from the edge center that the flux is being calculated. If it is assumed that the flux is 

constant over the cell edge, the derivative to be calculated can be approximated as;    

 

  

  
   

                   

    
 (2. 43) 

   

The coordinates         and         have to be calculated for the inverse distance weighted 

interpolation. 

 

   
     
 

  
  

  

  

  
  

   
     
 

  
  

  

  

  
  

   
     
 

  
  

  

  

  
  

   
     
 

  
  

  

  

 
 (2. 44) 

 

 The derivative values on the edge can be approximated as; 

 



21 
 

  

  
   

  

  
  

     
  

  

  

  
  

  

  
  

     
  

 (2. 45) 

 

 

                   

 

Figure 2. 3 Notation used for low order flux calculation on a sample polygonal cell and neighbor cell 

 

 

 

If    
,    

are distances from the cell center to        ,         relatively and    
,    

are distances 

from the neighbour cell center to         and         then extrapolated values will be: 

 

          
   

    
    

 
    

   

    
    

 
    

           
   

    
    

 
    

   

    
    

 
   (2. 46) 

 

The flux calculation approach shown here is a simple and easy to use method. Also it is easily 

applicable for three dimensional applications but its order of accuracy is not high enough for most of 

the fluid flow calculations. 

 

2.2.3 Flux Calculation Using Trapezoidal Rule 

 

The notation that will be used for the flux calculation is given in Figure 2.4. The subscript M will be 

used for the cell that the flux terms are being calculated. P and N are the centers of the neighbor cells 

which are on the solution band of interest. The values of these points are going to be included as 

unknown values in the calculation. L and R are the centers of the neighbor cells which take place on 

the other solution band that passes through the cell M.  

 

The node values at points a, b, c and d will be used as known values, and thus the values at nodes have 

to be updated at each time step via interpolating the cell center values to these nodes. 

  



22 
 

  

  
  

  

  

  

  
  

  

  

  

  
 (2. 47) 

 

The derivatives       and       are already approximated using the equations (2.45). The average 

values of fluxes are calculated using integrations with the help of virtual faces shown with dashed 

lines at Figure 2.4.  For example derivative on the edge ab is calculated using the face MaPb. The 

average values of derivatives at edge ab: 

 

 
   

  
 
  

  
 

     

  
  

  
     

  

  
     

  

  
        

 

    

 

    

 

    

 

    

   

 
   

  
 
  

  
 

     

  
  

  
    

  

  
      

  

  
         

 

    

 

    

 

    

 

    

  (2. 48) 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Notation used for trapezoidal rule flux calculation on a sample quadrilateral cell and 

neighbor cells 

 
 
 
The integrations can be calculated numerically using trapezoidal rule: 
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(2. 49) 

 

If the expressions of (2.49) inserted into (2.47) and the       calculations are used with equations 

given as (2.34) the equation sets will end up with tri-diagonal matrices for all alternating cell 

directions. The node values will take place explicitly in equation sets.  

 

2.2.4 Von Neumann Stability Analysis 

 

Von Neumann stability analysis is performed assuming Cartesian cells. Sample Cartesian cell and its 

neighbors are shown in Figure 2.5 with the notation used for the analysis. Analysis is carried on using 

inverse distance weighting flux calculation with simple AF. 

Rewriting the equations in (2.34) quadrilateral cells: 

 

    
  

 
    

   
  

 
 
 
  

 
     

   
  

 
 
      

 

 

    
  

 
    

   
  

 
 
 
  

 
     

   
  

 
 
      

 

(2. 50) 

 

 

 

 

Figure 2.5 Example Cartesian cell and its neighbors 

 

 

 

The low order flux terms can be inserted in the form of: 

 
   
  

 
 
     

    
          (2. 51) 
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and     are the weights that used to calculate the flux term from the cell with cell center    that 

shown in Figure 2.5. The weights for Cartesian cells are all equal to 1/  . Then the flux terms can be 

inserted into equations (2.50) in the form as below: 

 

  
   
  

 
 
   

 

  
      

        

  
   
  

 
 
   

 

  
      

        

  
   
  

 
 
   

 

  
      

        

  
   
  

 
 
   

 

  
      

       (2. 52) 

 

 

Inserting the flux terms into equations given as (2.50) and using spatial and temporal indices gives: 

 

    
  

 
       

      
  

 
         

        
  

 
         

           
    

 

 

    
  

 
       

      
  

 
         

        
  

 
         

           
    (2. 53) 

 

Inserting      
                into the first expression given with (2.53) to find out the growth rate of 

error at each time iteration gives; 

 

    
  

 
               

  

 
                     

  

 
                  

             

(2. 54) 

 

Dividing both RHS and LHS of (2.54) by            yields: 

 

    
  

 
    

  

 
           

  

 
           (2. 55) 

 

Rearranging (2.55) gives: 
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                    (2. 56) 

 

Then the growth factor will be: 

 

  
 

    
  
 
    

  
 

        
 (2. 57) 

 

Similarly the growth factor for the second expression of (2.53) will be: 

 

  
 

    
  
 
    

  
 

        
 (2. 58) 

 

The stability criterion is: 

 

       

       

 

Since; 

                                                    (2. 59) 

 

Both of the growth factors satisfy the stability criterion, thus the scheme is unconditionally stable. 

2.3 Odd Number of Edges 

 

The ACDI scheme is appropriate for elements that have even number of edges as stated previously. 

The solution bands called cell directions are generated via travelling the opposing edges of the cells as 

shown in Figure 2. 2 and such generation is not possible for cells that have odd number of edges. 

Two different strategies that used to overcome this problem will be explained in this part.  

 

One of these methods is splitting one of the edges of the cell into two and converting it to a cell that 

has even number of edges. This approach is only possible if the split edge takes place on the boundary 

of the domain. If the cell is inside the domain and one of the edges is split into two, the neighbor cell 

which has even number of edges will be converted to a cell that has odd number of edges which is not 

desired. 

As seen from Figure 2.6 splitting the edge at the boundary causes having very sharp turns of the cell 

directions which is an undesirable situation. Although the new element has a poor quality and cell 
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directions of the element has very sharp turns, strategy is still useful and it is used for some of the 

solutions that are presented in the oncoming parts of the study. 

The cell that has odd number of edges may take place inside the domain. In this situation one of the 

nodes of the cell is considered as a zero length edge and cell direction ends inside the domain at that 

edge. The edge will have two nodes that have the same coordinates. No boundary condition 

application is required since the flux will be zero at this edge. 

  

 

 

 

Figure 2.6 Split edge of triangular element at the boundary and cell directions 

 

 

Figure 2. 7 Zero length edge of triangular element inside the domain and cell directions 
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An example cell that is converted to a quadrilateral element with a zero length edge and the cell 

directions are shown in Figure 2. 7. 

Existence of a zero length edge breaks the cell direction as shown in Figure 2.7 and having more 

triangular elements inside the domain means being less implicit.  

Also the selection of the location of zero length edge is random, thus the cell directions generated for 

the grid is not unique anymore. One of the aims of this study is to end up with a mathematically well 

defined version of previous ACDI studies. There exists no randomness of solution in case of having 

even number of edges all over the domain. The sequence of solution bands does not change the 

numerical results. But having odd number of edges inside the domain damages this property.  

 

2.4 K-exact Least Squares Reconstruction 

 

If the factorized equation for advection-diffusion equation that is shown in Appendix C is inspected 

well, it will be seen that the dependent variable should also be calculated at edge centers as well as the 

nodes of the cells. The node values required for trapezoidal rule flux calculation have been calculated 

using inverse distance weighting for diffusion equation comparisons but reconstruction at nodes and 

edge centers with inverse distance weighting will result in fluctuations for the solution of advection 

diffusion equation [22] [23], also low order reconstruction is not appropriate for the full potential 

solver that will be explained in the oncoming parts of the study. Neel [24] states that K-exact least 

squares method is one of the most suitable reconstruction schemes for full potential solvers for non-

oscillatory results with a linear distribution. Thus K-exact least squares method is embedded to the AF 

ACDI code for non-oscillatory results for both advection-diffusion equation solution and transonic full 

potential solution.  

 

An appropriate stencil is selected for the reconstruction of the variable on the desired point. The 

variables and coordinates of the points of the stencil are used to generate a k
th

 order polynomial for the 

reconstruction. A polynomial of  k
th 

order provides k+1
st
 order of accuracy.

 
 

The explanation of the least squares reconstruction application is adapted from Neel [24] for 

reconstruction of variables at nodes using the adjacent cell center values.  

If the first order polynomial that will be used for the reconstruction in a 2-D domain is in the form; 

               (2. 60) 

Then there will be linear equations equal to the number of the cells in the stencil that will be used for 

the reconstruction. This situation results with an over-constraint set of equations. All the adjacent cells 

are used for the calculation of the variable on the node as shown Figure 2.8.  

 

 

 

 

                                                    

 

 

 

Figure 2.8 Stencil used for a reconstruction at node 
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Weighted reconstruction is used for such situations. Weights are generally set via using the inverse 

distance weighting method. The sum of the square errors at each cell center of the reconstruction will 

be; 

                                               
 

 

   

 (2. 61) 

 

Setting the derivative of the error with respect to the constant terms equal to 0 gives 3 linear equations 

with 3 unknowns; 

 

                  
  

   

                          

 

   

   

                      
  

   

                             

 

   

   

                      
  

   

                             

 

   

   

 

(2. 62) 

 

2.5 Parallelization Strategy 

 

If the finite difference formulations given as (2.16), (2.17) or the finite volume formulations given as 

(2.34) are observed, it will be seen that none of the matrices of sweep directions or matrices of cell 

directions require each other's solutions. It is possible to solve the tri-diagonal matrices independently. 

They do not have to wait another matrix solution. 

 

Two different options are considered for the parallelization. One of them is MPI (Massage Passing 

Interface) and the other one is Open MP (Open Multi Processing). MPI is distributed memory based 

[17] and OpenMP is a shared memory based library [18]. The difference between parallelization 

principles is shown in Figure 2.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

 

 

 

 

  

  

 

 

 

 

 

Figure 2.9 Difference between usage of shared and distributed memory approaches for parallelization 

 

If distributed memory is used for the approach a 'broadcast’ or a ‘send-receive’ operation will be a 

must during the data sharing part. Although data sharing part results with an overhead for all 

parallelization applications with distributed memory; this is not the biggest problem of ACDI with 

MPI. If domain decomposition was being used, data sharing would take place only over the edges of 

the decomposed domains [19], but the matrices of sweep directions or cell directions return with semi-

solutions instead of an updated value of the new solution. Thus all these semi-solutions have to be sent 

to the correct cell information and the overhead of the parallelization will be enormous.  

But if shared memory is used and the matrices of the cell directions are calculated by different threads, 

all the threads will calculate independent semi-solutions of different cells. They record nothing new to 

each other's variable, thus no confusion occurs.  

The dashed lines of OpenMP part in Figure 2.9 can be considered as two equi-sized cell directions. 

When they both end up, no data sharing procedure is required and simply the updated results are 

calculated by the Master thread using the equation (2.39); 

 

        
 

 
      

 

   

 

 

In fact it is not a must to update the values using only master thread. The part of the code that updates 

the results can also be parallelized with almost no effort. All the semi-solutions or RHS parts (which 

are required for the calculation of the new values at cell centers) of the updating equation can be taken 

into account independently since they all belong to a unique cell center. No data sharing between the 

cells are required and all the equations that are in the form of (2.39) are written independently for each 

 MPI    OpenMP 

Processes 
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same code 
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thread 
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cell center. Then each of them can be calculated by a random thread. Then the approach will be 

parallel-by-line during the tri-diagonal matrix solutions and parallel-by-point while updating the cell 

center values [20]. 

If an implicit scheme is being used together with the domain decomposition approach, the implicitness 

of the solution will be harmed by the boundaries of the decomposed domains. Besides different 

decompositions with same number of CPU usage or usage of different numbers of decomposed 

domains might result with non-unique solution of the implicit scheme. Using a parallelization that 

offered in this part of the study gives exactly same results for any cases and the constructed 

implicitness is protected. 
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CHAPTER 3 

 

 

RESULTS AND DISCUSSION 

 

 
 
3.1 Validation of the Numerical Approach Using Unsteady Diffusion Equation 

  

3.1.1 Problem Specifications for Unsteady Diffusion Equation Solution Comparisons 

 

Firstly unsteady heat conduction problem on a rectangular plate is solved for the comparisons. The 

infinite wall boundary condition is used at horizontal boundaries and constant temperature boundary 

condition is applied at vertical walls. Representation of this 1-D problem is given in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Heat conduction problem on a rectangular plate 

 

 

 

The unsteady diffusion equation is as given below;  

 

 

  

  
         (3.1)  

 

In the equation given above   is the thermal diffusivity of the material. Dimensionless time for the 

unsteady diffusion equation is; 

   
  

 
 (3.2)  

Also dimensionless distance is; 

  

  
   

L 
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 (3.3)  

 

Non-dimensionalization of the temperature is performed as given below; 

 

         
           

     
 (3.4)  

 

Then the non-dimensional form of the equation will be; 

 
   

   
 
   

   
 

  

  
 (3.5)  

 

The analytical solution of the problem is; 

  

                             

 

   

 

   
      

          
 

           

 

(3.6)  

 

Bi is the non-dimensional heat transfer coefficient Biot number. 

   
  

 
 (3.7)  

 

And it is taken as infinity for the numerical comparisons given. 

Non-dimensional temperature contours at           and 0.3 obtained using analytical formulation 

are given in Figure 3.2.   
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                        (a)                                                (b) (c) 

Figure 3.2 Non-dimensional temperature   contours at (a)          (b)          (c)       using 

analytical formulation 

 

 

 

 3.1.2 Validation of the Proposed Approximate Factorization 

  

The problem explained in part 3.1.1 is solved using classical Crank Nicolson Approximate 

Factorization, Crank-Nicolson like AF and simple AF for 20x20 and 40x40 structured grids. 

 

Simple AF is the approximate factorization approach that is defined in Section 2.1 and the 

formulations are given as (2.3), (2.7) and (2.8). Crank Nicolson like AF is the approximate 

factorization approach that is defined in Section 2.1 and the formulations are given as (2.13), (2.16) 

and (2.17). These two methods are combined with ACDI method in oncoming sections, thus their 

accuracies will be compared with the classical approximate factorization method that is defined in 

section 1.6 and the formulations can be seen in equations (1.12) and (1.14). The classical method is 

named as Crank -Nicolson AF for the comparisons of this section 

Since it is not appropriate to use the classical approximate factorization methods with unstructured 

grids, only structured grids are used for this comparison.   

The analytical solution is used to calculate the time accurate mean errors of the time integration 

schemes. The mean error is defined as the average of absolute differences of numerical and analytical 

solutions at nodes of the whole solution domain. 

 

                                         

 

   

   
 

 
 (3.8)  

 

N represents the total number of nodes if the solution is node based or it represents the total number of 

cells if the solution is cell center based. 

Node based finite difference approach is used for the solutions. Second order central differences are 

used for the spatial derivative terms. The mean error histories of the solutions up to   =0.5 are plotted 

and compared. 

It is seen in Figure 3.3 and Figure 3.4 that the behaviors of the Crank-Nicolson AF and Crank-

Nicolson like AF schemes are very similar to each other for both of the structured grids. This means 

that, AF solution as proposed does not increase the order of error for structured grids for the current 
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case. Although simple AF method has higher order of error for both of the grids; it yields comparable 

results with Crank-Nicolson discretization. 

Having higher order of error with simple AF method is an expected result. There exist explicit terms 

in the spatial discretization of Crank-Nicolson and these terms increase the order of the method. 

 

 

 

 

Figure 3.3 Mean Error histories of the numerical solutions for Crank-Nicolson Approximate 

Factorization and current Approximate Factorization methods using 20x20 structured cells with     

=0.0001 time step size 

 

 

Figure 3.4 Mean Error histories of the numerical solutions for Crank-Nicolson Approximate 

Factorization and current Approximate Factorization methods using 40x40 structured cells with     

=0.0001 time step size 
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3.1.3 Validation of the Proposed Approximate Factorization with ACDI 

 

Firstly time accurate results of Crank Nicolson AF-ACDI and simple AF-ACDI are compared with 

previous ACDI, Point-Gauss-Seidel, Line Gauss Seidel, Runge-Kutta order 4 and Full Implicit 

Laasonen Methods for structured cells. Then the comparison is carried on for quadrilateral 

unstructured cells.    

 

Also analytic results of the problem is calculated at non-dimensional time   =0.1, 0.2 and 0.3. These 

analytic results are used to plot the error distributions through Y=0.5 constant line.   

 

3.1.3.1 Comparison of Different Methods Using Structured Grid 

 
The analytical results at      ,        and       are given in Figure 3.5.   

 

 

 

 

Figure 3.5 Analytical results through Y=0.5 constant line at      ,        and       

dimensionless time 

 

 

 

The absolute error distributions through Y=0.5 constant line are plotted for comparison of the Crank 

Nicolson AF–ACDI, simple AF-ACDI, ACDI, Point-Gauss-Seidel, Line Gauss Seidel, Runge-Kutta 

order 4 and Full Implicit Laasonen Methods in case of structured cells. Error at nodes is calculated 

using the formulation; 

 

                                               (3.9)  

 

Error distributions at      ,       and       are given in Figure 3.6, Figure 3.7 and Figure 3.8 

respectively. 
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Figure 3.6 Error distribution through Y=0.5 constant line at        20x20 structured grid,     

=0.0001 

 

 

Figure 3.7 Error distribution through Y=0.5 constant line at      , 20x20 structured grid,     

=0.0001 
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Figure 3.8 Error distribution through Y=0.5 constant line at      , 20x20 structured grid,     

=0.0001 

 

 

 

As seen from the Figures 3.6, 3.7 and 3.8 most accurate results are obtained with the methods Runge 

Kutta Order 4 and Crank-Nicolson AF ACDI. Interestingly the error distributions of these two 

methods are almost equal. Also the error distributions of simple AF ACDI and Full Implicit Laasonen 

Methods are almost same. Full implicit method is applied iteratively instead of a single large time step 

size to see the similarities between the AF ACDI and implicit approach.  

It is possible to note that the explicit node terms added to the Crank-Nicolson scheme disturbs the 

implicitness of the Crank-Nicolson AF ACDI scheme while increasing its accuracy. The non-

dimensional diffusion number which is the order of diffusivity of a property in a domain is defined as 

given below.    

   
  

   
 (3.10)  

 

The non-dimensional Von-Neumann number for the current numerical solutions is 0.04. 

As seen from the Figures 3.6, 3.7 and 3.8 the orders of the errors of Full Implicit Laasonen Method 

and Simple AF ACDI are almost equal to each other. It is possible to say that Simple AF-ACDI is an 

appropriate approximation of fully implicit scheme for diffusion problem solution with structured 

cells. Numerical tests show that simple AF ACDI is unconditionally stable for diffusion problem 

using structured cells. 

Also CPU times of the solutions are obtained during the calculations. It is seen that Crank-Nicolson 

AF-ACDI is distinguishably faster than Runge-Kutta Order 4 method. The CPU time results are given 

in Table 3.1 for 20x20 structured grids. Runge-Kutta order 4 has 4 steps for the integration application 

and it means 4 times reconstruction of the variables. Also Crank-Nicolson AF ACDI do not deal with 

the whole discretized equation through the cell directions and handles only the half of the operations 

and this is another reason of being faster than Runge-Kutta order 4 method. 

1E-07 

1E-06 

1E-05 

0.0001 

0.001 

0.01 

0.1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

RK4 

FULL IMPLICIT (iterative) 

PGS 

ACDI 

ACDI CR-NIC AP-FAC 

ACDI SIMPLE APFAC 

LGS 

ERROR DISTRIBUTIONS AT Y=0.5 CONSTANT LINE 𝛕=0.3 

DIMENSIONLESS DISTANCE X 

ER
R

O
R

 (
LO

G
 S

C
A

LE
) 



38 
 

 

Table 3.1 CPU time required for the methods, 20x20 structured cells 

METHOD USED CPU TIME (s) FOR 1000 ITER 

RK4 5.788 

FULL IMPLICIT (iterative) 270.588 

PGS 3.698 

ACDI 4.492 

ACDI CR-NIC AP-FAC 4.682 

ACDI SIMPLE AP-FAC 4.152 

LGS 4.140 

 

The absolute error at selected point X=0.5 Y=0.5 is given in Figure 3.9 for different time step sizes. 

As seen from the figure the order of error of Crank Nicolson AF ACDI does not increase with the 

increasing time step size but it loses stability after a certain point.  

The stability of Simple AF ACDI is not lost up to     =0.1 and it gives meaningful results with only 2 

iteration steps at    =0.2 whereas the accuracy becomes poorer with the increasing time step size. 

Both of the time accurate error distribution plots and order of accuracy plots proves that Crank-

Nicolson AF ACDI shows the character of a high order explicit scheme whereas simple AF ACDI 

shows the character of a fast implicit scheme.   

 
 
 

 

Figure 3.9 Variation of the absolute error at point X=0.5 Y=0.5 with the change of time step size for 

Crank Nicolson AF ACDI and Simple AF ACDI – solution at    =0.2 with 20x20 structured grid 
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3.1.3.2 Comparison of Different Methods Using Unstructured Grid 

 

Error distributions through Y=0.5 constant line are given in Figure 3.10, 3.11 and 3.12 at 

dimensionless time   0.1, 0.2 and 0.3 respectively. 297 element unstructured grid is used for the 

comparisons. The grid is given in Figure 3.14. Time step is selected as     =0.0001 since all the 

integration schemes are stable for this time step. 

It is seen that order of the accuracy is again almost same for Runge-Kutta order 4 and Crank-Nicolson 

AF ACDI methods, also it can be observed in Table 3.2 that Crank-Nicolson AF ACDI method is 

faster than RK4 method if the CPU time per iteration is taken into account.     

The order of the error distributions were very close to each other for Simple AF ACDI and Full 

Implicit Laasonen methods in case of structured cells. The order of the error is again in comparable 

orders for these two methods but the full implicit approximation of the simple AF ACDI method is 

slightly disturbed for unstructured quadrilateral cells. 

The order of the error is again lower than the previous ACDI study for both of the AF ACDI methods.  

Non-dimensional   contours at   =0.1,   =0.2 and   =0.3 are given in Figure 3.15 for 297 element 

unstructured grid using Crank-Nicolson AF ACDI.   

 

 

 

 

Figure3.10 Error distribution through Y=0.5 constant line at      , 297 elements unstructured grid, 

    =0.0001 
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Figure 3.11 Error distribution through Y=0.5 constant line at      , 297 element unstructured grid, 

    =0.0001 

 

 

 Figure 3.12 Error distribution through Y=0.5 constant line at      , 297 element 

unstructured grid,     =0.0001 
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 Table 3.2 CPU time required for the methods, 297 unstructured cells 

METHOD USED CPU TIME (s) FOR 1000 ITER 

RK4 3.8322 

FULL IMPLICIT (iterative) 62.459 

PGS 2.668 

ACDI 3.052 

ACDI CR-NIC AP-FAC 3.124 

ACDI SIMPLE AP-FAC 2.828 

 

The absolute error at selected point X=0.5 Y=0.5 is given in Figure 3.13 for different time step sizes.  

 

The behaviors of the schemes are similar to structured grid case. The order of the absolute error do not 

increase with the increasing step size for Crank-Nicolson AF ACDI solution but the method has poor 

stability such as an explicit scheme. 

The order of error increases with the increasing step size if the simple AF ACDI method is used. The 

method do not lose its stability up to    =0.1 where the numerical results are calculated at   =0.2. 

 

 

 

 

Figure 3.13 Variation of the absolute error at point X=0.5 Y=0.5 with the change of time step size for 

Crank Nicolson AF ACDI and Simple AF ACDI – solution at    =0.2 with 297 element unstructured 

grid 
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Figure 3.14  297 element unstructured grid that is used for time accurate comparisons  

 

 

                      (a)                                              (b)                                                      (c) 

Figure 3.15 Non-dimensional temperature   contours at (a)          (b)          (c)       for 

297 element unstructured grid - Crank Nicolson ACDI AF 

 
 
 
3.1.4 Comparison of Different Grid Types 

 

The grids generated for the comparison are given in Figure 3.16. Trapezoidal rule flux calculation is 

used to obtain the numerical results. The resulting temperature contours and error distribution 

contours have been plotted at t=0.1 using  t=0.0001 time step size, also average errors of the 

numerical solutions until   =0.5 have been compared in order to observe the behavior of the method 

for different cell types. Simple AF ACDI is used for the comparison. 
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                                    (a)                                                                                (b) 

                                      

                                    (c)                                                                               (d) 

Figure 3.16 (a) 45 element structured grid. (b) 46 element triangular grid. (c) 43 element quadrilateral 

unstructured grid. (d) 44 element hybrid polygonal grid. 

 
 
 
Non-dimensional temperature contours are given in Figure 3.17 for triangular, quadrilateral and 

hybrid polygonal grids at   =0.1 non-dimensional time. Also absolute error distributions obtained 

using the analytical solution are represented. The non-dimensional temperature contours and absolute 

error contours for structured grid are given in Figure 3.18 separately. The result for structured grid is 

not given together with other grids since the error is in the order of 10
-4 

for structured grid whereas the 

error is in the order of 10
-2

 for other grids. The error distributions are not comparable and it is not 

possible to represent structured grid absolute error with unstructured grid absolute error distributions 

with the same legend. 

If the results of unstructured grid solutions are compared, it will be observed that quadrilateral grid 

has the lowest error and triangular grid has the highest error.  

Hybrid polygonal grid does not generate high order of error in the regions where hexagonal elements 

exist. The high error regions take place over the pentagonal elements. The cell directions for this grid 

are given Figure in 3.19. It can be seen that the edges of the pentagonal elements are split into two to 

obtain elements with even number of edges. This application results with sharp turns of cell directions 

as well as low quality elements and also increased order of error.   

Having highest error with triangular cells is also expected. The cell directions are broken inside the 

domain and this situation blocks the information flow as stated previously. The implicitness of the 

scheme is harmed with broken cell directions and the scheme becomes a hybrid of approximate 

factorization method and Point-Gauss-Seidel scheme.           
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(a)                                                               (b) 

                  

(c)                                                              (d) 

                   

(e)                                                                (f) 

Figure 3.17 (a) Non-dimensional theta contours and (b) error contours for triangular grid (c) Non-

dimensional theta contours and (d) error contours for quadrilateral grid and (e) Non-dimensional theta 

contours and (f) error contours for hybrid polygonal grid 
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Figure 3.18 (a) Non-dimensional theta contours and (b) error contours for structured grid 

. 

 

 

 

Figure 3.19 Cell directions for polygonal grid after splitting the edges of pentagonal elements 

 

 

 

The mean error histories of different grid solutions are obtained up to   =0.5 using     =0.0001 time 

steps. The comparison of the mean error histories is given in Figure 3.20. The lowest error is obtained 

with structured grid and highest error is obtained with triangular grid up to   =0.15. Having even 

number of edges seems to be an advantage before approaching the steady state. By the way having 

regularly distributed cells become more important for more accurate results while approaching the 

steady state. Also it is possible to say that the arrangement of structured cells favors the gradient 

directions, thus it is an expected result to have relatively lower order of error with structured grids. 
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Figure 3.20 Error histories of the numerical solutions for different grid types 

 

 

 

3.1.5 Comparison of Inverse Distance Weighting and Trapezoidal Rule Flux Calculations 

 

In this part, effect of the order of the flux calculation is observed. The comparison is made for only 

297 element unstructured quadrilateral grid and 1283 element unstructured quadrilateral grid. It is 

seen that the order of the flux calculation has almost no effect for structured cells for the problem of 

unsteady heat conduction on a rectangular plate, thus the error histories are not given for structured 

grids in this part. 

  

The mean error curves of the inverse distance flux calculation results are very similar to each other for 

297 element grid and 1283 element grid as seen in Figure 3.21. This means inverse distance flux 

calculation ends up in less dependency to grid size.  

Applying higher order discretization decreases the order of the error for both of the grids as expected. 

But the decrease of the error is higher for the coarser grid.  

The grids used for comparison is given in Figure 3.22. 
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Figure 3.21 Error histories of the numerical solutions using higher and lower order flux calculation 

approaches with ACDI AF for unstructured grids     =0.0001 time step size  

 

 

 

 

                  

Figure 3.22 (a) 297 element and (b) 1283 element unstructured grids that used for the flux calculation 

method comparison 
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3.2 Comparison of Convergence Characters Using Steady Laplace Equation 

 

In this section the method is applied to a steady problem. Incompressible potential flow around a 

cylinder is solved to observe the convergence behavior of the method for elliptic equations. The 

potential flow equation is solved using simple AF ACDI, Runge Kutta Order 4,Full Implicit Laasonen 

and Point Gauss Seidel iteration methods. Crank-Nicolson AF ACDI is not used for the comparisons 

since the method behaves like an explicit scheme. Full implicit method is again applied iteratively in 

order to reach a certain residual value of the solution. 

The steady Laplace equation that is used for the solution of the potential equation is as given below; 

 

   

   
 
   

   
    (3.11)  

  

 

  represents the stream function in the equation given above. The velocity component in x and y 

directions are; 

   
  

  
                

  

  
 (3.12)  

 

The equation is solved with the help of pseudo-time step. Equation can be rewritten as if it is an 

unsteady equation;  

  

  
 
   

   
 
   

   
    (3.13)  

 

The solution converges to a steady state if pseudo-time step is used and the solutions before the 

convergence are meaningless in the manner of unsteadiness. As seen above the form of the equation 

with a virtually transient term is completely same with the unsteady diffusion equation and the 

factorization application is given in Appendix C. 

 

3.2.1 Problem Specifications for Convergence Character Comparisons with Laplace Equation 

 

Potential flow around a 2-D cylinder with a diameter of 1 m is solved for the comparisons. The free 

stream velocity is taken as 1 m/s and the analytic solution for the stream function is as given below.  

 

 

 

         
     

     
 (3.14)  

 

The stream function contours obtained using the analytical solution is as given below; 
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Figure 3.23 The stream function contours obtained using the analytical solution where the free stream 

velocity is 1 m/s 

 

 

 

3.2.2 Comparison of Convergence Characters Using Structured Grid 

 

The iteration numbers and CPU times of the methods to reach a previously defined root mean square 

residual are obtained using different pseudo-time step sizes for simple AF ACDI, Point Gauss Seidel 

Method, Full Implicit Laasonen and Runge Kutta order 4 methods. The residual value to be reached 

for the convergence is selected as 10
-7

 and the root mean square residual is defined as; 

 

 

              
 

 
    

      
   

 

   

  (3.15)  

 

N represents the number of elements for cell centered calculations and number of node for node based 

calculations, n is the time indice and i is the element or node indice. 

The 500 element structured grid is shown in Figure 3.28 (a). The Dirichlet boundary condition is used 

at the far field of the domain. Since the problem is symmetric, half of the domain is used for the 

solution and again Dirichlet boundary condition is used for the symmetry and wall faces where    .  

In Figure 3.24 required iteration number using different pseudo-time step sizes is plotted for simple 

AF ACDI, Point Gauss Seidel, Full Implicit and Runge-Kutta order 4 methods using 500 element 

structured grid.  

It is seen that Runge-Kutta order 4 method has a poor stability character when it is compared with the 

other methods. The required pseudo-time step size for the convergence is larger than the other 

methods since small step sizes are required for the stability.  

The iteration number required converges to a certain number with the increased pseudo-time step sizes 

for both of the Point Gauss Seidel and Full Implicit methods and both of the methods remain stable 

with the usage of relatively larger time step sizes.  

Simple AF ACDI method has an optimum value of pseudo-time step size different than the Full 

Implicit and Point Gauss Seidel Methods. As seen from the figure the slope of the trend of the fully 

implicit scheme before converging to a certain iteration number and slope of the trend of the fully 

explicit scheme seem very close to each other. The Point Gauss Seidel Method leaves the trend before 

the simple AF ACDI and converges to a certain iteration number value whereas the number of time 

steps required increases for simple AF ACDI method after the optimum time step size value. 
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It is possible to conclude that simple AF ACDI is a better approximation of fully implicit scheme than 

Point Gauss Seidel until an optimum pseudo-time step size. 

The convergence histories of Point Gauss Seidel and simple AF ACDI methods with the minimum 

iteration numbers required are plotted in Figure 3.26 

 

 

 

 

Figure 3.24 Number of iteration required for the convergence versus time pseudo-step size (s) using 

different methods for 500 element structured grid  

 

 

Figure 3.25 CPU time required for the convergence versus pseudo-time step size (s) using different 

methods for 500 element structured grid  

 

 

 

In Figure 3.25 CPU time versus pseudo-time step size plots are given for the methods. It can be 

observed that Laasonen method loses its advantage of less iteration number requirement. The method 

inverts a mass matrix for each iteration step and this operation increases the requirement of CPU time 

for convergence.  
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In Figure 3.27 the stream function contours obtained with simple AF ACDI is given, also absolute 

error contours of numerical solution with simple AF-ACDI can be observed in Figure 3.28 (b). The 

absolute error at nodes is calculated using the formulation; 

 

 

                                                (3.16)  

 

 

 

 

Figure 3.26 Convergence histories of simple AF ACDI and Point Gauss Seidel Method with optimum 

time step sizes with 500 element structured grid 

 

 

 

 

 

Figure 3.27 Contours of stream function around 2-D cylinder obtained with using simple AF ACDI 

with 500 element structured grid 
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(a)                                                                   (b) 

 

Figure 3.28 (a) 500 element structured grid used for the comparison of convergence behaviors of 

different methods (b) absolute error contours of stream function with the usage of simple AF ACDI 

 

 

 

3.2.3 Comparison of Convergence Characters Using Unstructured Grid 

 

The 789 element unstructured grid that is used for the numerical calculations are given in Figure 3.33 

(a).  

 

Iteration number required versus time step size for simple AF ACDI, Laasonen Method, Point Gauss 

Seidel and Runge Kutta order 4 methods are given for numerical solution of Laplace Equation with 

unstructured quadrilateral grid in Figure 3.29. 

 

The curves obtained for the methods have similar behavior with the structured grid case results. 

Simple AF ACDI method has again an optimum value of pseudo-time step size but after this optimum 

value the scheme shows an unstable character instead of an increased iteration number requirement 

different than the structured grid case.  

 

In case of usage of optimum pseudo-time step size simple AF ACDI gives convergent results about 

two times faster than the Point Gauss Seidel Method. The convergence histories of simple AF ACDI 

method and Point Gauss Seidel Method can be observed in Figure 3.31. 

 

CPU time requirements with different time step sizes of the methods are given in Figure 3.30. 

Laasonen Method uses larger CPU time per iteration and Runge Kutta order 4 method requires 

relatively smaller time step sizes, thus both of the methods seem disadvantageous for obtaining 

convergent results faster. 

 

The absolute error contours stream function is given in Figure 3.33 (b).   
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Figure 3.29 Number of iteration required for the convergence versus pseudo-time step size (s) using 

different methods for 789 element structured grid  

 

 

 

 

 

Figure 3.30 CPU time required for the convergence versus time step size (s) using different methods 

for 789 element unstructured grid  
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Figure 3.31 Convergence histories of simple AF ACDI and Point Gauss Seidel Method with optimum 

time step sizes for 789 element unstructured grid 

 

 

Figure 3.32 Contours of stream function around 2-D cylinder obtained with using simple AF ACDI 

with 789 element unstructured grid 

 

 

 

 

Figure 3.33 (a) 789 element unstructured grid used for the comparison of convergence behaviors of 

different methods (b) absolute error contours of stream function with the usage of simple AF ACDI 
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3.3 Time Accurate Comparisons Using Advection-Diffusion Equation 

 

Alternating Cell Directions Implicit Method with Approximate Factorization is also tested for the time 

accurate solutions of well-known advection diffusion equation. Trials on Diffusion equation show that 

using Crank-Nicolson discretization results with a scheme that behaves like a high order explicit 

scheme with a relatively better stability behavior, but the aim of this thesis study is to represent a fast 

implicit scheme that is also useful for unstructured grids. Thus simple version of AF ACDI is tested 

for advection-diffusion equation instead of the Crank-Nicolson version. 

 

If the advective terms are added to diffusion equation, the resulting partial differential equation will 

be; 

  

  
   

   

   
   

   

   
  

  

  
  

  

  
   (3.17)  

 

Where    and    represent the diffusion coefficients in x and y directions and u and v represent the 

advection coefficients in x and y directions respectively. The dependent variable c can be considered 

as mass concentration for the model equation. 

The model problem solved for the time integration comparisons do not include the advection in y 

direction, thus the equation reduces to;   

  

  
   

   

   
   

   

   
  

  

  
   (3.18)  

 

3.3.1 Problem Specifications for Advection-Diffusion Equation Comparisons 

 

The diffusion and advection problem of an instantaneous point source is solved for the comparisons. 

The analytic solution that is used for comparisons assumes an infinite domain, thus the analytic 

solution is used as Dirichlet boundary condition at the boundaries in order not to deal with an 

extremely big domain with too many number of cells or complicated types of boundary conditions 

since the aim of the comparisons is simply to compare the performances of different iteration 

schemes. Time accurate analytic solution of the problem is [25]; 

 

         
 

 

 

        

     
          

    
 
      

 

    
  (3.19)  

 
In the equation given above M/L is the mass released instantaneously and the unit for this term is kg/m 

since the problem is 2 dimensional. Diffusion and advection coefficients are taken as unity for 

numerical comparisons. The analytic solutions are plotted in Figure 3.34. The concentration 

distribution of 1 kg/m mass that is released from the point (0,0) is given after 5 seconds, 10 seconds 

and 15 seconds.; 
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                                                                              (a) 

 

(b) 

 

(c) 

Figure 3.34 Contours of mass concentration at (a)          (b)         (c)        using analytical 

formulation 
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3.3.2 Comparison for Advection-Diffusion Equation Using Structured Grid 

 

16x32 cell structured grid is used for the comparisons. Laasonen method is selected as fully implicit 

solution method and Runge-Kutta order-4 method is selected as fully explicit method. The numerical 

calculations are carried on using two different time steps which are mainly  t=0.01 s and  t=0.25 s. 

The non-dimensional Pecklet number for the case with unity diffusion and advection terms is Pe = 

1.25. Pecklet number can be defined as the rate of advective behavior to diffusive behavior and 

calculated with the relation; 

 

   
   

 
 (3.20)  

 

The numerical schemes require upwinding methods for a stable solution where Pe ≥2 [26]. Thus no 

upwinding applications are required for the numerical experiments of this section of the study.  

The Courant number is a dimensionless number that defines the rate of transport per each time step 

and it is calculated with the definition; 

  
   

  
 (3.21)  

 

The Courant number for the 16x32 structured grid is α=8x10
-3

 
 
if  t=0.01 s and α=0.2 if  t=0.25 s.  

In Figures 3.35, 3.36 and 3.37 the evolution of mass concentrations are given for simple AF ACDI, 

Full Implicit Laasonen and Runge-Kutta order 4 methods including the comparisons with analytical 

solution at y=0 constant line for  t=0.01 s. It can be seen that all of the methods give slightly more 

diffusive results than the analytical solution and the solutions of the methods are very close to each 

other for relatively low Courant number. 

The solutions at y=0 constant line are given in Figures 3.38, 3.39 and 3.40 for  t=0.25 s. The results 

are relatively less diffusive than they should be and the accuracy of the Runge-Kutta order 4 method is 

better than the simple AF ACDI method and Laasonen method. It is possible to say that the behavior 

of the simple AF ACDI method is again close to full implicit Laasonen method. Increased time step 

decreases the accuracy of both of them. Also it is possible to say that decreased time step size results 

the schemes to behave more diffusive.     
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Figure 3.35 Comparison of concentration distributions obtained with analytical solution and numerical 

solution using simple AF ACDI for 16x32 structured cells and  t=0.01s 

 

 

Figure 3.36 Comparison of concentration distributions obtained with analytical solution and numerical 

solution using Laasonen method for 16x32 structured cells and  t=0.01s 

 

 

Figure 3.37 Comparison of concentration distributions obtained with analytical solution and numerical 

solution using Runge-Kutta order 4 method for 16x32 structured cells and  t=0.01s 
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Figure 3.38 Comparison of concentration distributions obtained with analytical solution and numerical 

solution using ACDI SIMPLE AF for 16x32 structured cells and  t=0.25s 

 

 

Figure 3.39 Comparison of concentration distributions obtained with analytical solution and numerical 

solution using Laasonen method for 16x32 structured cells and  t=0.25s 

 

 

Figure 3.40 Comparison of concentration distributions obtained with analytical solution and numerical 

solution using Runge-Kutta order 4 method for 16x32 structured cells and  t=0.25s 
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3.3.3 Comparison for Advection-Diffusion Equation Using Unstructured Grid 

 
654 element unstructured grid that is used for the comparison of advection-diffusion equation 

solutions with different methods are given in Figure 3.47 (a). The numerical solutions are again 

obtained with simple AF ACDI, Full Implicit Laasonen and Runge Kutta order 4 methods using time 

steps  t=0.01 s and  t=0.25 s.  

The maximum Courant number is α=0.02 inside the domain where  t=0.01 s. The numerical 

solutions at y=0 constant line are plotted and compared with the analytical solution at t=5, 10 and 15 s 

for all of the three methods and the results are given in Figure 3.41, 3.42 and 3.43. It can be seen that 

the solutions are again very close to each other but this time numerical solutions are less diffusive than 

they should be.  

The numerical results obtained by using time step  t=0.25 s
 
 are given in Figures 3.44, 3.45 and 3.46 

including the comparisons with analytical solutions. Both Full Implicit and simple AF ACDI method 

gives relatively less diffusive numerical results then the exact solution and the accuracy of the 

numerical solutions decreases with the increased Courant number similarly to structured grid 

advection-diffusion solution. The maximum Courant number inside the domain is α=0.51.For this 

Courant number with unstructured quadrilateral cells Simple AF ACDI and Full Implicit methods give 

more accurate results than the Runge-Kutta order 4 methods. 

If the mass concentration plots at y=0 constant line are inspected it will be seen that very smooth 

results are obtained for both of the stable solutions of Full Implicit Laasonen and simple AF ACDI 

methods even with the unstructured cells. Also linear distribution of mass concentration contours can 

be observed in Figure 3.47 (b). The linear distribution of the variables at nodes is provided by the 

usage of k-exact least squares reconstruction. 

The mass concentration contours at t=5, t=10 and t=15 s are given in Figure 3.47 (b) for simple AF 

ACDI solution.  

The contours of mass concentration of simple AF ACDI method shows that the regions where 

relatively smaller cells take place are less diffusive then the larger cell size regions inside the domain. 

This situation supports the idea that lower Courant number solutions behave more diffusive then 

relatively higher Courant number solutions. 
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Figure 3.41 Comparison of concentration distributions obtained with analytical solution and numerical 

solution using ACDI SIMPLE AF for 624 element unstructured cells and  t=0.01s 

 

 

Figure 3.42 Comparison of concentration distributions obtained with analytical solution and numerical 

solution using Laasonen method for 624 element unstructured cells and  t=0.01s 

 

 

Figure 3.43 Comparison of concentration distributions obtained with analytical solution and numerical 

solution using Runge-Kutta order 4 method for 624 element unstructured cells and  t=0.01s 
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Figure 3.44 Comparison of concentration distributions obtained with analytical solution and numerical 

solution using ACDI SIMPLE AF for 624 element unstructured cells and  t=0.25s 

 

 

Figure 3.45 Comparison of concentration distributions obtained with analytical solution and numerical 

solution using Laasonen method for 624 element unstructured cells and  t=0.25s 

 

 

Figure 3.46 Comparison of concentration distributions obtained with analytical solution and numerical 

solution using Runge-Kutta order 4 method for 624 element unstructured cells and  t=0.25s 
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(a) 

 

 

(b) 

Figure 3.47 (a) Grid used for unstructured grid comparisons (b) evolution of mass concentration for 

simple AF-ACDI method solution with  t=0.25s 
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3.4 Transonic Full Potential Solver Using AF ACDI 

 
A full potential flow solver has also been generated using the AF ACDI method. Full potential 

equation is a scalar and nonlinear equation which includes the assumptions of irrotational, isentropic 

and inviscid flow.  

  

The full potential equation is usually used for subsonic and transonic flow problems since the 

accuracy of the solutions decreases for strong shock cases where the isentropic assumption through 

the shock is not valid anymore. Holst [27] states that the full potential solution gives relatively good 

approximations of Euler solution for the cases that Mach number does not exceed the value 1.3.  

The unsteady and conservative form of the 2-D equation is; 

 

  

  
 
     

  
 
     

  
    

 

  
  

  
       

  

  
 

 

(3.22)  

 

Where u is velocity component in x direction, v is velocity component in y direction,   is the velocity 

potential and   is the density.  

Then the steady form of the equation will be; 

 

  
  

  

  
  

 

  
  

  

  
     (3.23)  

The relation between pressure and density is; 

 

  
   

 

  
 
 

 (3.24)  

 

P is the pressure and   is the specific heat ratio. Calculation of the density using the free stream 

velocity is; 

        
   

 
           

 
   

 

 

(3.25)  

 

   and    are the non-dimensional density and non-dimensional free stream velocity which are 

calculated using the equations; 
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    (3.26)  

 

Using artificial time for the iterations and integrating the conservative form of the full potential 

equation gives; 

 
  

  

 

 

      
  

  

 

 

     (3.27)  

 

The equation is non-linear because of the relation between   and  . The problem is handled via using 

the density value as the constant value at a specific time on the cell edge of the interest. The factorized 

equation can be seen in Appendix C.  

Trapezoidal rule is used for the flux calculations again but using the inverse distance weighting for the 

calculation of the node values results with fluctuations in the solution of the full potential equation. 

Thus K-exact least squares method is used for the reconstruction of variables at nodes and the center 

of the edges.  

The behavior of the equation is elliptic for subsonic regions, parabolic for sonic line and hyperbolic 

for supersonic regions, thus density biasing is required for supersonic region . Well-known artificial 

viscosity method is used for stability in the supersonic regions of the solution. The density term is 

replaced with the biased term that is given as below [28]; 

 

        
  

  
  (3.28)  

 

The derivative term given in the equation above is; 

  

  
 

 

 

  

  
   

 

 

  

  
     (3.29)  

 

 

And   is the switching function; 

 

          
  

 

  
   (3.30)  

 

M is the local Mach number, Mc is the cut-off Mach number which is about 0.98 and k is a 

programmer defined constant between 1 and 3.  
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3.4.1 Problem Specifications for Full Potential Equation Solution 

 
The full potential solution of geometries with blunt leading edge is a more challenging problem then 

slender bodies, thus subcritical and supercritical cases for 2-D cylinder is selected as a benchmark 

problem. The pressure coefficients for subcritical case are compared with the analytical result adapted 

from the study of Saied and Alireza [29] and the pressure coefficients obtained for supercritical case 

are compared with the full potential solutions of Djojodihardjo and Widodo [30]. In case of the 

existence of angle of attack satisfaction of the Kutta condition is required, but only axi-symmetric 

flow is taken into account for the current study.  

The flow around a 2-D cylinder with a diameter of 1 m is solved using two different grids for two 

different free stream Mach numbers. The free stream Mach numbers are selected as 0.25 and 0.7. First 

of the grids is a structured c-grid and composed of 1500 elements. Second grid used is an unstructured 

grid that is composed of 720 quadrilateral elements. The appearances of the grids used can be seen in 

Figure 3.48 (a) and Figure 3.48 (b). 50 elements are used around the semi-cylinder for both of the 

grids. 

 

 

       

                                     (a)                                                                             (b) 

Figure 3.48 (a) Structured grid and (b) unstructured grid used for the full potential equation solution 

 

 

 

3.4.2 Full Potential Equation Solution Using Crank-Nicolson AF ACDI 

 

The plots of Mach contours obtained for Ma∞=0.25 are given in Figure 3.49 for structured grid and in 

Figure 3.50 for unstructured grid including the appearances of the grids around the cylinder. The 

effect of k-exact least squares reconstruction can be seen on the solution domain of quadrilateral 

unstructured grid. The linear distribution of the variables result with highly smoothed contours. The 

comparison of the numerically obtained pressure coefficients over the surface of the cylinder are 

compared with an analytical solution and shown in Figure 3.51 [29]. The results of structured and 

unstructured grid solutions are in a good agreement whereas the numerical pressure distribution 

results are slightly more diffusive then they should be.  

 

Mach contours for supercritical case where Ma∞=0.7 are given in Figure 3.52 for structured grid and 

in Figure 3.53 for unstructured grid. Also the pressure coefficient distributions are compared with the 

full potential solution of Djojodihardjo and Widodo [30]. In Figure 3.54 it can be observed that both 

of the shocks that captured by using the current study are not steep enough, but rest of the pressure 

coefficient curves are in a good agreement. Soulis [28] states that the selection of the switching 

function k affects the accuracy in serious manner. The selection of this parameter or using relatively 

coarse mesh over the surface of the cylinder might be the reason of having a flat weak shock.  
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Figure 3.49 Mach contours around the cylinder and the appearance of the structured grid Ma∞=0.25 

(Crank Nicolson AF ACDI solution) 

 

 

Figure 3.50 Mach contours around the cylinder and the appearance of the unstructured grid Ma∞=0.25 

(Crank Nicolson AF ACDI solution) 

 

 

Figure 3.51 Comparison of pressure coefficients with the analytical results adapted from Saied and 

Alireza [29]  Ma∞=0.25 (Crank Nicolson AF ACDI solution) 
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Figure 3.52 Mach contours around the cylinder and the appearance of the structured grid Ma∞=0.7 

(Crank Nicolson AF ACDI solution) 

 

  

Figure 3.53 Mach contours around the cylinder and the appearance of the unstructured grid Ma∞=0.7 

(Crank Nicolson AF ACDI solution)  
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Figure 3.54 Comparison of pressure coefficients with the full potential solutions adapted from 

Djojodihardjo and Widodo [30]  Ma∞=0.7 (Crank Nicolson AF ACDI solution) 

 

 

 

The artificial viscosity term that is used for the density biasing is first order accurate. If Mach contours 

and the pressure coefficient distributions for supercritical solution are inspected well, it can be seen 

that the agreement of the pressure coefficient comparisons begin to break up beginning with the sonic 

line. Obviously the effect of the artificial viscosity term increases with the increasing Mach number. 

Thus the solution becomes closer to a first order accurate solution while approaching to weak shock 

region.  

 

3.4.3 Full potential Equation Solution Using Simple AF ACDI 

 

The trials on the solution of the full potential equation is also carried on  using simple AF ACDI since 

the problem solved is a steady problem and the simple AF ACDI is expected to give more convergent 

results than Crank Nicolson AF ACDI. The grids that shown in Figure 3.48 are used again for 

Ma∞=0.25 and Ma∞=0.7. The comparisons of pressure coefficients with the analytic solution [29] 

where Ma∞=0.25 are given in Figure 3.55. The agreement with the analytic solution is worse than the 

Crank-Nicolson AF ACDI as expected but the solution is relatively more convergent than the Crank 

Nicolson AF ACDI. Example RMS residual history of the of the simple AF ACDI solution is given in 

Figure 3.57. The solution reaches to the level of 10
-7

 in about 750 iterations for 1500 element grid.      
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Figure 3.55 Comparison of pressure coefficients with the analytical results adapted from Saied and 

Alireza [29]   Ma∞=0.25 (Simple AF ACDI solution) 

 

 

 

The comparisons with the full potential solution of Dijojodihardjo and Widodo [30] are given in 

Figure 3.56. Weak shock is again more flat than expected.   

    

In Figure 3.57 example residual histories for subcritical and supercritical cases are given. It is seen 

that very convergent solutions have been obtained for the subcritical case, but the first order artificial 

viscosity term shows its effect from the very beginning of the solution since the object has a very 

blunt leading edge. 
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Figure 3.56 Comparison of pressure coefficients with the analytical results adapted from 

Djojodihardjo and Widodo [30]  Ma∞=0.7 (Simple AF ACDI solution) 

 

 

Figure 3.57 Example residual histories for subcritical and supercritical cases using 30x50 structured 

grid 

 

 

 

In Figure 3.58 the Mach contours for a structured grid that is clustered at the shock region is given. 

Grid used has 30x60 structured cells. The solution is given in order to show that it is possible to obtain 

steeper weak shocks in case of finer grids.  
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Figure 3.58 Mach contours around the cylinder and the appearance of the 30x60 structured grid that is 

clustered at shock region - Ma∞=0.7  

 

 

 

3.5 Performance of parallelization 

 

3.5.1 Performance of Parallelization for Finite Difference Cartesian Case Using Proposed 

Approximate Factorization 

 

1-D unsteady heat conduction problem is solved in a 3-D domain using 100x100x100 Cartesian cells 

for the observation of the parallelization performance.  t=0.01 time step size is used for 50 time steps. 

The calculations are performed using node based finite difference approach and simple version of the 

new approximate factorization is used. Three dimensional forms of the formulations (2.7) and (2.8) 

are; 

     
  

   
         

  

     
  

   
         

  

     
  

   
         

  

(3.31)  

 

And the updated solution is; 

    
                   

  (3.32)  

 

There is no importance of the sequence of the solution of the sweeps for such a factorization. In 

standard approaches x, y and z sweep solutions are calculated in order and all sweeps uses the 

previous sweep solution. For example, in standard ADI approaches firstly, first sweep direction of x 

sweeps is solved, but the factorization of the current study can begin with z sweep direction which 

passes through the middle of the domain and following a random sequence for the solution does not 

change the numerical results.  

Thus the scheme lets the programmer to solve all tri-diagonal matrices of a common time step at the 

same time. This property also exists for Crank-Nicolson like AF ACDI which is used with finite 

volumes. 
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The code has run beginning with 1 CPU up to 32 CPU’s using the powers of 2 as number of CPU’s. 

CPU times of the solutions are recorded and the speedup ratios are calculated to observe the 

performance of the parallelization approach. 

Firstly, only the sweep solutions have been sent to different processors. Secondly, update part of the 

code is parallelized as well as the sweeps. These two different applications have been performed in 

order to see the performance of sending sweep solutions to different processors.   

Speedup ratio is the ratio between CPU times of serial and parallel running codes. Maximum speedup 

of a parallel code is calculated theoretically using the Amdahl’s law [31];   

  

     
 

      
 
 

 
(3.33)  

 

Where P is the proportion of the code that is parallelized and N is equal to number of processors used. 

Amdahl’s law is used to plot the speedup ratios of theoretically 90% and 97% parallelized codes. 

These plots are drawn together with the speedup ratios of numerical experiments in order to obtain an 

idea about the success of parallelization trials of the current study [32],[33]. 

It is seen that sending the sweep solutions to different processors results with a performance close to 

90% parallelization. Parallelizing other serial parts of the time iteration increases the performance up 

to 97%.  CPU number versus speed up ratio plots of the numerical experiments are given in Figure 

3.59, also parallelization efficiency which is the ratio of speedup ratio to the CPU number is given in 

Figure 3.60.  

CPU time’s required for the numerical experiments are given in Tables 3.3 and 3.4. 

The application gives high performance without using any domain decomposition, but the calculations 

presented in this part are performed using equi-sized sweep directions. Having different size of sweep 

directions would probably end up in more overhead since the sweep solutions have to wait for all 

sweep calculations to be completed to update the current time step results. For different size of sweeps 

a parallelization optimization might be required. But it can not be considered as a disadvantage, since 

domain decomposition applications also require an optimum decomposition to obtain decomposed 

domains which include close numbers of elements and minimized data sharing boundaries.   
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Figure 3.59 Speedup ratios of parallelization trials and comparisons with theoretically 90% and 97% 

parallelized codes 

 

 

 

 

Figure 3.60 Parallelization efficiency for sweep parallelization and general parallelization 
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Table 3.3 CPU times and speedup ratios for sweep parallelization (50 time iterations) 

CPU's CPU time (s) speedup ratio 

1 23.221 1.000 

2 12.684 1.831 

4 6.841 3.394 

8 4.157 5.586 

16 3.318 6.998 

32 2.811 8.261 

 

Table 3.4 CPU times and speedup ratios for general parallelization (50 time iterations) 

CPU's CPU TIME (s) speedup ratio 

1 23.086 1.000 

2 12.301 1.877 

4 6.305 3.661 

8 3.461 6.670 

16 1.920 12.024 

32 1.482 15.577 

 

 

 

Non-dimensional temperature contours can be seen in Figure 3.60. 

 

 

 

 

 

                             (a)                                                  (b)                                               (c) 

Figure 3.61 Non-dimensional temperature   contours at (a)          (b)          (c)       for  3-

D parallelization case using ∆ =0.01 
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3.5.2 Performance of Parallelization for AF ACDI Using 2-d Quadrilateral Structured and 

Unstructured grids  

 

A similar study of parallelization of node based 3-D Cartesian case is also carried on for simple AF 

ACDI method. 2-D structured grid and the unstructured grid used for the numerical tests are shown in 

Figure 3.602 (a) and 3.62 (b). Unsteady diffusion equation is used and CPU times are represented for 

1000 iterations.   

 

 

 

  

(a)                                                                  (b) 

Figure 3.62 (a) 10000 element structured grid and (b) 8823 element unstructured grid used for the 

parallelization performance tests 

 
 
 
The parallelization efficiencies are not as high as the node based case but the parallelization 

performances of structured and unstructured cases are very close to each other. Indeed having similar 

performances for structured grids and unstructured grids is an expected result. Although structured 

case that is shown in this part has cell directions that are equal in length, there exist enough cell 

directions for the unstructured grid to compensate the overhead of having cell directions in different 

lengths. The only time loss might exist at the very end of the sweep calculations and this effect can be 

observed in Figure 3.63. Parallelization efficiency plots for structured and unstructured quadrilateral 

cases are given in Figure 3.64.  

The data structure of finite volume approach of AF ACDI is quite different then the finite difference 

case. Besides, there are more numerical operations at the update part of the finite volume AF ACDI 

solution then the finite difference solution. Having more loss of time and poorer parallelization 

performance then finite difference case is because of these extra operations of the update part of the 

finite volume AF ACDI. 

 

 



77 
 

 

Figure 3.63 Speedup ratios of parallelization trials and comparisons with theoretically 90% and 95% 

parallelized codes for structured and unstructured grids (1000 time iterations) 

 

 

Figure 3.64 Parallelization efficiency for structured and unstructured grids 

 

 

 

The CPU times and the speedup ratios for the numerical tests using structured and unstructured grids 

can be seen in Table 3.5 and Table 3.6. 
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Table 3.5 CPU times and speedup ratios using structured grid (10000 elements 1000 iterations) 

CPU's CPU TIME (s) speedup ratio 

1 8.633 1.000 

2 4.760 1.814 

4 2.399 3.599 

8 1.868 4.622 

Table 3.6 CPU times and speedup ratios using structured grid (8828 elements 1000 iterations) 

CPU's CPU TIME (s) speedup ratio 

1 7.778 1.000 

2 4.195 1.854 

4 2.279 3.413 

8 1.816 4.283 

 

 

Table 3.7 Selected points for the comparison of sequential and different number of CPU solutions 

 

X Y 

POINT 1 0.898101786880999 0.834186303294999 

POINT 2 0.240029605709000 0.814992029195000 

POINT 3 0.476599131213999 0.258333948568999 

 

 

Table 3.8 Comparison of sequential and different number of CPU solutions at selected points 

 

POINT 1 POINT 2 POINT 3 

sequential 0.149465956179728 0.325120573213070 0.473524291931471 

4 CPU's 0.149466016191259 0.325120745813366 0.473525370048431 

8 CPU'S 0.149537754060230 0.325273628421354 0.473740594093422 

 

 

The numerical solutions obtained using sequential code and parallel codes using 4 and 8 CPU’s are 

compared at 3 randomly selected points. The non-dimensional coordinates of these points are given in 

Table 3.7. The solutions are extracted from the 8823 quadrilateral unstructured grid solution at 

      using 10
4
 time steps.  

Non-dimensional temperature values at these selected points are given in Table 3.8. The contour plots 

of these three cases are not given since the difference between them are not clear. It can be observed 

that the largest difference between the solutions of the cases is in the order of 10
-4

. The parallelization 

approach does not affect the numerical resuılts in a serious manner. 
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CHAPTER 4 

 

 

CONCLUSIONS 

 

 

 

The main properties of the variations of the iteration method that offered and examined with this study 

can be summarized as below: 

 

 The iteration method behaves like an approximation of fully implicit method up to an optimum 

time step value with a certain quadrilateral grid if the simple version of the Approximate 

Factorization is used. The order of accuracy decreases with the increased time step size up to 

this point. It does not matter if the grid is a quadrilateral structured  grid or quadrilateral 

unstructured grid. After this optimum value the error term of the factorization causes 

unstability problems with unstructured grids. 

  

 The iteration method behaves like a high order explicit method with an enhanced stability 

character if the Crank-Nicolson discretization is used. More than 50% percent of the 

discretized terms remain explicit with such a spatial discretization since the node values are 

added explicitly to the flux calculation operations as well as the explicit terms of the Crank-

Nicolson scheme, also Crank-Nicolson AF ACDI gives faster solutions than Runge Kutta 

Order 4 Method if the CPU time per iteration is taken into account, since it handles only the 

half of the operations through the cell direction solutions. The stability character is better than 

the Runge Kutta order 4 method because of having more implicit terms. The order of accuracy 

of Crank-Nicolson AF ACDI is almost similar to Runge Kutta Order 4 method for both of the 

structured and unstructured quadrilateral grids. 

  

 Both of the simple AF ACDI and Crank-Nicolson AF ACDI methods give better time accurate 

results than previous ACDI study [3], Point Gauss Seidel Method and Line Gauss Seidel 

Method. 

  

 Simple AF ACDI method converges with less number of iterations than Point Gauss Seidel 

method if the optimum time step size is used. Full Implicit Laasonen method can converge 

with larger time step sizes and less number of iterations, but if the CPU times of the 

convergence character plots are inspected, it will be seen that Full Implicit Laasonen method 

loses its advantage of having better convergence character. 

 

 Point Gauss Seidel and Full Implicit Laasonen methods remain stable with relatively larger 

time step sizes, but it is a known fact that usage of very large time steps should be avoided with 

implicit schemes [13] since the accuracy of the solution decreases in a serious manner. The 

order of accuracy plots for simple AF ACDI shows that the case is the same for simple AF 

ACDI similarly to implicit or fast implicit schemes. 

 

 It is possible to solve convective problems with relatively larger time step sizes while 

protecting stability if the simple AF ACDI is used, but using high Courant numbers result with 

less accurate results. Besides, the solution behaves less diffusive than the exact analytic 

solution. 

 

 The approximate factorization that used with the ACDI method is easy to parallelize for shared 

memory applications. The type of the grid does not change the performance of the 

parallelization seriously. If the grid has enough cell directions, the overhead of having cell 

directions in different lengths is compensated. 

 

 It is shown that it is possible to increase the order of spatial discretization via using appropriate 

flux calculation methods [34]. Two different flux calculation approaches applied for the 

method and it is seen that the stability characteristics of the approach depends on the flux 
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calculation method. The inverse distance flux calculation ends up in unconditionally stable 

scheme diffusion problem whereas the stability of the higher order flux calculation depends on 

the time step size and the cell area, also dependency to grid size is lower for the low order flux 

calculation but it has a higher order of error. 

 

 In case of having even number of edges, the current solution procedure includes no 

randomness. It was previously shown by Çete [3] that the ‘cell directions’ were unique for 

quadrilateral grids, but sequence selection of cell direction solutions were creating randomness 

for previous ACDI studies. Solution procedure also became unique as well as the cell 

directions with the current study.  

 

 Usage of triangular elements disturbs the implicitness of the scheme and the proposed scheme 

is no more an approximation of a fully implicit schemes. The solution bands are broken inside 

the domain and poorer time accurate results are obtained, since the broken cell directions block 

the flow of information. Besides, the solution method loses its uniqueness if triangular cells 

exist inside the domain. The solution band that passes through a triangular element becomes 

programmer defined, but the numerical formulation is still valid since one of the nodes of the 

cell is assumed as a zero length edge.  

 

 The advection-diffusion equation is solved using the advective term explicitly and diffusive 

terms are approximately factorized for the current study. The problem of continuous point 

source release is solved using Fully Implicit, Runge Kutta order 4 and Simple AF ACDI 

methods for different Courant numbers and the resulting mass concentration contours are given 

in Appendix D. All the solutions are obtained using the unsteady form of the equation and the 

contours have been plotted for converged results. It can be seen that using the advective term 

explicitly results in decrease of accuracy for Courant numbers greater than about 1 and stability 

problems for Courant numbers greater than about 4. The advective term is not included into the 

factorized form of the equation since the order of the additional term that arises from the 

factorization would be relatively high for the integrated advection-diffusion equation. Two 

different options could be considered for the solution of the problem. First of them is the usage 

of a semi-Lagrangian approach [38] where factorized form of the diffusion terms are used. The 

second choice might be an approach that a hybrid of proposed approximate factorization and 

Point Gauss Seidel method. It would be possible to obtain an increased stability character if the 

cell center values are updated before the calculation of another cell center value inside the 

domain, but such an approach would harm the uniqueness of the numerical solution.      
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CHAPTER 5 

 

 

FUTURE WORK 

 

 

 

The current study on Alternating Cell Directions Implicit methods show that the performance of the 

approach is highly promising for numerical fluid dynamics applications. One of the most important 

properties of the proposed iteration scheme is its capacity to unify the solution algorithm for different 

type of grids.  The future work on AF ACDI study can be summarized as below using the guidance of 

the current thesis study. 

 

 The cell directions concept might also be defined for quad-tree grids and grid adaptive solution 

approaches may be generated. 

 

 Cell directions are easy to define for 3-D structured grids, but it is not that easy for tetragonal 

elements. An updated definition for tetragonal elements may be required for a well defined 

solution on 3-D unstructured grids. 

 

 The method also should be tested on the solution of more advanced fluid dynamics applications 

like Euler or Navier-Stokes solutions. As previously stated previous ACDI method [3] has 

been tried on Incompressible Navier-Stokes Solver by Bas [12] and it is shown that the 

approach is superior to Point Gauss Seidel Iteration Method as a fast implicit method. 

 

 Both of the simple AF ACDI and Crank-Nicolson AF ACDI methods should be tried with 

higher order flux calculation methods without using explicit terms in the flux calculation 

operations. Such application most probably would highlight the success of the numerical 

approach in a better way.   

 

 The usage of approximate factorization is very widespread with full potential and transonic 

small disturbance equations [27][35][36][37]. The proposed method is used to solve the full 

potential equation for the transonic cases. Usage of Simple AF gives very convergent and 

highly stable solutions. The solution of full potential equation should be repeated with simple 

AF ACDI but relatively more advanced flux calculation approach should be used for the 

solution procedure, or Crank Nicolson AF ACDI method solution should be repeated with 

another flux calculation method without explicit node terms. These solution choices might be 

compared with the AF methods for full potential equation in the literature [27][35][37] and 

then the convergence behavior might be tested on unstructured quadrilateral grids. 

 

  It is shown that the method is very suitable for shared memory parallelization applications. 

The numerical tests that performed to show the parallelization performance of the method are 

carried on without any parallelization optimization. At the very end of the sweep solutions 

some of the solution threads wait the others since they can not find a sweep to solve and this 

situation results with an overhead.  Parallelization optimization study may be carried on as a 

future work. 

 

 For the cases where shared memory parallelization is not possible in whole domain, it is 

possible to combine block decomposition parallelization and sweep parallelization of the 

current study. It will be more advantageous to use less decomposed blocks since the data 

sharing boundaries will be shorter for such an hybrid parallelization. 
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APPENDIX A 

 

 

LIST OF THE TEST CASES 

 

 

 

1. Mean Error Comparison for Validation of Proposed Approximate Factorization: 

 

 Unsteady diffusion equation - 20x20 structured grid - Finite difference - dt 0.0001 - simple 

AF 

 Unsteady diffusion equation - 20x20 structured grid - Finite difference - dt 0.0001 - Crank-

Nicolson AF 

 Unsteady diffusion equation - 20x20 structured grid - Finite difference - dt 0.0001 - Crank-

Nicolson like AF 

 Unsteady diffusion equation - 40x40 structured grid - Finite difference - dt 0.0001 - simple 

AF 

 Unsteady diffusion equation - 40x40 structured grid - Finite difference - dt 0.0001 - Crank-

Nicolson AF 

 Unsteady diffusion equation - 40x40 structured grid - Finite difference - dt 0.0001 - Crank-

Nicolson like AF 

 

2. Comparison of Time Accurate Results:  

 

 Unsteady diffusion equation - 20x20 structured grid - Trapezoidal rule flux calculation - dt 

0.0001 - Runge Kutta Order 4 Method 

 Unsteady diffusion equation - 20x20 structured grid - Trapezoidal rule flux calculation - dt 

0.0001 - Full Implicit Laasonen Method (iterative) 

 Unsteady diffusion equation - 20x20 structured grid - Trapezoidal rule flux calculation - dt 

0.0001 - Point Gauss Seidel Iteration Method 

 Unsteady diffusion equation - 20x20 structured grid - Trapezoidal rule flux calculation - dt 

0.0001 - Line Gauss Seidel Iteration Method 

 Unsteady diffusion equation - 20x20 structured grid - Trapezoidal rule flux calculation - dt 

0.0001 - ACDI Method 

 Unsteady diffusion equation - 20x20 structured grid - Trapezoidal rule flux calculation - dt 

0.0001 - Simple AF ACDI Method  

 Unsteady diffusion equation - 20x20 structured grid - Trapezoidal rule flux calculation - dt 

0.0001 - Crank-Nicolson AF ACDI Method 

 

 Unsteady diffusion equation - 297 element unstructured grid - Trapezoidal rule flux 

calculation - dt 0.0001 - Runge Kutta Order 4 Method 

 Unsteady diffusion equation - 297 element unstructured grid - Trapezoidal rule flux 

calculation - dt 0.0001 - Full Implicit Laasonen Method (iterative) 

 Unsteady diffusion equation - 297 element unstructured grid - Trapezoidal rule flux 

calculation - dt 0.0001 - Point Gauss Seidel Iteration Method 

 Unsteady diffusion equation - 297 element unstructured grid - Trapezoidal rule flux 

calculation - dt 0.0001 - ACDI Method 

 Unsteady diffusion equation - 297 element unstructured grid - Trapezoidal rule flux 

calculation - dt 0.0001 - Simple AF ACDI Method  

 Unsteady diffusion equation - 297 element unstructured grid - Trapezoidal rule flux 

calculation - dt 0.0001 - Crank-Nicolson AF ACDI Method 

 

3. Comparison of Mean Errors Using Different Grid Types:  

 

 Unsteady diffusion equation - 45 element structured grid - Trapezoidal rule flux calculation - 

dt 0.0001 - Simple AF ACDI Method 
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 Unsteady diffusion equation - 46 element triangular grid - Trapezoidal rule flux calculation - 

dt 0.0001 - Simple AF ACDI Method 

 Unsteady diffusion equation - 43 element quadrilateral grid - Trapezoidal rule flux 

calculation- dt 0.0001 - Simple AF ACDI Method 

 Unsteady diffusion equation - 44 element hybrid polygonal grid - Trapezoidal rule flux 

calculation - dt 0.0001 - Simple AF ACDI Method 

 

4. Comparison of Mean Errors for Different Flux Calculation Methods:  

 

 Unsteady diffusion equation - 297 element unstructured grid - Trapezoidal rule flux 

calculation - dt 0.0001 - Simple AF ACDI Method 

 Unsteady diffusion equation - 297 element unstructured grid - Inverse distance weighting 

flux calculation - dt 0.0001 - Simple AF ACDI Method 

 Unsteady diffusion equation - 1283 element unstructured grid - Trapezoidal rule flux 

calculation - dt 0.0001 - Simple AF ACDI Method 

 Unsteady diffusion equation - 1283 element unstructured grid - Inverse distance weighting 

flux calculation - dt 0.0001 - Simple AF ACDI Method 

 

5. Comparison of Convergence Characters:  

 

 Laplace equation - 500 element structured grid - Trapezoidal rule flux calculation - Various 

time steps - Simple AF ACDI Method 

 Laplace equation - 500 element structured grid - Trapezoidal rule flux calculation - Various 

time steps - Point Gauss Seidel Method 

 Laplace equation - 500 element structured grid - Trapezoidal rule flux calculation - Various 

time steps - Full Implicit Laasonen Method (iterative)  

 Laplace equation - 500 element structured grid - Trapezoidal rule flux calculation - Various 

time steps - Runge Kutta Order 4 Method 

 Laplace equation - 789 element unstructured grid - Trapezoidal rule flux calculation - 

Various time steps - Simple AF ACDI Method 

 Laplace equation - 789 element unstructured grid - Trapezoidal rule flux calculation - 

Various time steps - Point Gauss Seidel Method 

 Laplace equation - 789 element unstructured grid - Trapezoidal rule flux calculation - 

Various time steps - Full Implicit Laasonen Method (iterative) 

 Laplace equation - 789 element unstructured grid - Trapezoidal rule flux calculation - 

Various time steps - Runge Kutta Order 4 Method 

 

 

6. Comparison of Time Accurate Results: 

 

 Advection-Diffusion equation - 512 element structured grid - Trapezoidal rule flux 

calculation - dt 0.01 - Simple AF ACDI Method 

 Advection-Diffusion equation - 512 element structured grid - Trapezoidal rule flux 

calculation - dt 0.01 - Runge Kutta Order 4 Method 

 Advection-Diffusion equation - 512 element structured grid - Trapezoidal rule flux 

calculation - dt 0.01 - Full Implicit Laasonen Method (iterative) 

 Advection-Diffusion equation - 512 element structured grid - Trapezoidal rule flux 

calculation - dt 0.25 - Simple AF ACDI Method 

 Advection-Diffusion equation - 512 element structured grid - Trapezoidal rule flux 

calculation - dt 0.25 - Runge Kutta Order 4 Method 

 Advection-Diffusion equation - 512 element structured grid - Trapezoidal rule flux 

calculation - dt 0.25 - Full Implicit Laasonen Method (iterative) 

 

 Advection-Diffusion equation - 624 element unstructured grid - Trapezoidal rule flux 

calculation - dt 0.01 - Simple AF ACDI Method 
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 Advection-Diffusion equation - 624 element unstructured grid - Trapezoidal rule flux 

calculation - dt 0.01 - Runge Kutta Order 4 Method 

 Advection-Diffusion equation - 624 element unstructured grid - Trapezoidal rule flux 

calculation - dt 0.01 - Full Implicit Laasonen Method (iterative) 

 Advection-Diffusion equation - 624 element unstructured grid - Trapezoidal rule flux 

calculation - dt 0.25 - Simple AF ACDI Method 

 Advection-Diffusion equation - 624 element unstructured grid - Trapezoidal rule flux 

calculation - dt 0.25 - Runge Kutta Order 4 Method 

 Advection-Diffusion equation - 624 element unstructured grid - Trapezoidal rule flux 

calculation - dt 0.25 - Full Implicit Laasonen Method (iterative) 

 

7. Solution of Full Potential Equation: 

 

 Full Potential Equation - 1500 element structured grid - Trapezoidal rule flux calculation - 

Ma 0.25 - Crank-Nicolson AF ACDI 

 Full Potential Equation - 720 element unstructured grid - Trapezoidal rule flux calculation - 

Ma 0.25 – Crank-Nicolson AF ACDI 

 Full Potential Equation - 1500 element structured grid - Trapezoidal rule flux calculation - 

Ma 0.7 - Crank-Nicolson AF ACDI 

 Full Potential Equation - 720 element unstructured grid - Trapezoidal rule flux calculation - 

Ma 0.7 - Crank-Nicolson AF ACDI 

 Full Potential Equation - 1500 element structured grid - Trapezoidal rule flux calculation - 

Ma 0.25 - Simple AF ACDI 

 Full Potential Equation - 720 element unstructured grid - Trapezoidal rule flux calculation - 

Ma 0.25 - Simple AF ACDI 

 Full Potential Equation - 1500 element structured grid - Trapezoidal rule flux calculation - 

Ma 0.7 - Simple AF ACDI 

 Full Potential Equation - 720 element unstructured grid - Trapezoidal rule flux calculation - 

Ma 0.7 – Simple AF ACDI 

 Full Potential Equation - 1800 element structured grid - Trapezoidal rule flux calculation - 

Ma 0.7 - Simple AF ACDI 

 

8. Performance of Parallelization: 

 

 Unsteady Diffusion equation - 100x100x100 element structured grid - Finite difference - dt 

0.01 - Simple AF 

 Unsteady Diffusion equation - 100x100 element structured grid - Trapezoidal rule flux 

calculation - dt 0.00001 - Simple AF ACDI 

 Unsteady Diffusion equation - 8823 element unstructured grid - Trapezoidal rule flux 

calculation - dt 0.00001 - Simple AF ACDI 

 

9. Numerical Stability Tests and Comparisons with Full Implicit and Full Explicit Schemes: 

 

 Advection-Diffusion Equation - 654 element unstructured grid - Trapezoidal rule Flux 

Calculation - Co 2 - Simple AF ACDI 

 Advection-Diffusion Equation - 654 element unstructured grid - Trapezoidal rule Flux 

Calculation - Co 3 - Simple AF ACDI 

 Advection-Diffusion Equation - 654 element unstructured grid - Trapezoidal rule Flux 

Calculation - Co 4 - Simple AF ACDI 

 Advection-Diffusion Equation - 654 element unstructured grid - Trapezoidal rule Flux 

Calculation - Co 5 - Simple AF ACDI 

 Advection-Diffusion Equation - 654 element unstructured grid - Trapezoidal rule Flux 

Calculation - Co 0.25 - Simple AF ACDI 

 Advection-Diffusion Equation - 654 element unstructured grid - Trapezoidal rule Flux 

Calculation - Co 0.5 - Simple AF ACDI 
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 Advection-Diffusion Equation - 654 element unstructured grid - Trapezoidal rule Flux 

Calculation - Co 0.25 - Runge Kutta Order 4 Method 

 Advection-Diffusion Equation - 654 element unstructured grid - Trapezoidal rule Flux 

Calculation - Co 0.5 - Runge Kutta Order 4 Method 

 

 Advection-Diffusion Equation - 654 element unstructured grid - Trapezoidal rule Flux 

Calculation - Co 2 - Full Implicit Laasonen Method 

 Advection-Diffusion Equation - 654 element unstructured grid - Trapezoidal rule Flux 

Calculation - Co 3 - Full Implicit Laasonen Method 

 Advection-Diffusion Equation - 654 element unstructured grid - Trapezoidal rule Flux 

Calculation - Co 4 - Full Implicit Laasonen Method 

 Advection-Diffusion Equation - 654 element unstructured grid - Trapezoidal rule Flux 

Calculation - Co 5 - Full Implicit Laasonen Method 

 Advection-Diffusion Equation - 654 element unstructured grid - Trapezoidal rule Flux 

Calculation - Co 0.25 - Full Implicit Laasonen Method 

 Advection-Diffusion Equation - 654 element unstructured grid - Trapezoidal rule Flux 

Calculation - Co 0.5 - Full Implicit Laasonen Method 
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APPENDIX B 

 

 

GRIDS USED FOR THE TEST CASES 

 

 

 

 

(a)    (b)                                (c) 

 

       (d)                               (e)                              (f) 

  

      (g)                               (h)  

 

 

 

 

      (i)                                                                        (j) 
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 (k)                                                             (l) 

 

                                                (m)                                                          (n) 

         

                           (o)                (p)                                                   (q) 

  

 

 (r) 
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a 20x20 structured grid j 789 element quadrilateral uns. grid 

b 40x40 structured grid k 16x32 structured grid 

c 297 element quadrilateral uns. grid l 624 element quadrilateral uns. grid 

d 1283 element quadrilateral uns. grid m 30x50 structured grid 

e 9x5 structured grid n 720 element quadrilateral uns. grid 

f 46 element triangular uns. grid o 100x100 structured grid 

g 43 element quadrilateral uns. grid p 4589 element quadrilateral uns. grid 

h 44 element hybrid polygonal grid q 100x100x100 structured grid 

i 25x20 structured grid r 30x60 structured grid 
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APPENDIX C 

 

 

EQUATIONS USED FOR THE NUMERICAL TESTS AND FACTORIZATIONS 

 

 

 

All factorizations shown for quadrilateral elements. 

UNSTEADY DIFFUSION EQUATION 
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Crank Nicolson like Approximate Factorization (θ=0.5) 
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LAPLACE EQUATION 

   

   
 
   

   
    

Simple Approximate Factorization 

    
  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
  

    
  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
        

 

    
  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
         

    
  

 
    

 

  
 
 
 
  

 
     

 

  
 
 
        

 

 

 

 

ADVECTION-DIFFUSION EQUATION 

  

  
   

   

   
   

   

   
  

  

  
   

Simple Approximate Factorization 
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FULL POTENTIAL EQUATION 

  

  
 
     

  
 
     

  
    

Simple Approximate Factorization 

    
  

 
      

 

  
 
 
 
  

 
       

 

  
 
 
  

    
  

 
      

 

  
 
 
 
  

 
       

 

  
 
 
        

 

    
  

 
      

 

  
 
 
 
  

 
       

 

  
 
 
         

    
  

 
      

 

  
 
 
 
  

 
       

 

  
 
 
        

 

Crank Nicolson like Approximate Factorization (θ=0.5) 
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APPENDIX D 

 

 

NUMERICAL STABILITY TESTS USING ADVECTION-DIFFUSION EQUATION FOR 

CONTINUOUS POINT SOURCE PROBLEM 

 

 

 

Source cell concentration – 0.01 kg/m
3
  

Maximum local Pecklet number-1.714 

Diffusion coefficient-0.07 

Advection coefficient-0.1 

Solutions are obtained for RMS residual value of 10
-5

 

 

 

 

 

Courant 

Number 
ACDI SIMPLE AF 

FULL IMPLICIT 

(iterative) 

2 

  

3 

  

4 

  

5 
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Courant 

Number 
ACDI SIMPLE AF 

FULL IMPLICIT 

(iterative) 
RK4 

0.25 

   

0.5 

   

 

 

 




