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ABSTRACT

ELASTIC ANALYSIS OF A CIRCUMFERENTIAL CRACK IN AN ISOTROPIC
CURVED BEAM USING MODIFIED MAPPING-COLLOCATION METHOD

Amireghbali, Aydin

M.Sc., Department of Aerospace Engineering

Supervisor : Assist. Prof. Dr. Demirkan Çöker

February 2013, 55 pages

The modi�ed mapping-collocation (MMC) method is applied to analyze a circumferential
crack in an isotropic curved beam. Based on the method a MATLAB code was developed to
obtain the stress �eld. Incorporating the stress correlation technique, the opening and sliding
fracture mode stress intensity factors (SIF)s of the crack for the beam under pure bending
moment load case are calculated.

The MMC method aims to solve two-dimensional problems of linear elastic fracture mechan-
ics (LEFM) by combining the power of analytic tools of complex analysis (Muskhelishvili's
formulations, conformal mapping, and extension arguments) with simplicity of applying the
boundary collocation method as a numerical solution approach.

Qualitatively, a good agreement between the computed stress contours and the fringe shapes
obtained from the photoelastic experiment on a plexiglass specimen is observed. Quantita-
tively, the results are compared with that of ANSYS �nite element analysis software. The
e�ect of crack size, crack position and beam thickness variation on SIF values and mode
mixity is investigated.

Keywords: linear elastic fracture mechanics (LEFM), modi�ed mapping-collocation (MMC)
method, stress intensity factor (SIF), circumferential crack, curved beam, pure bending, com-
plex analysis, conformal mapping, Muskhelishvili formulation, boundary collocation method,
stress correlation technique, ANSYS Mechanical APDL
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ÖZ

MOD�F�YE HAR�TALAMA-E�D�Z�ML�L�K YÖNTEM� �LE �ZOTROP�K E�R� K�R��
�Ç�NDEK� ÇEVRERSEL ÇATLA�IN ELAST�K ANAL�Z�

Amireghbali, Aydin

Yüksek Lisans, Havac�l�k ve Uzay Mühendisli§i Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Demirkan Çöker

�ubat 2013 , 55 sayfa

�zotropik e§ri kiri³teki çevresel çatla§�n elastik analizi için modi�ye haritalama-e³dizimlilik
(MMC) yöntemi uygulanm�³t�r. Yöntemi saf bükme yükü alt�nda olan bu nesne için kullan-
mak üzere MATLAB kodu geli³tirerek; gerilme alan� elde edilmi³tir. Gerilme ba§�nt� tekni§ini
yönteme katarak çatla§�n aç�lma ve kayma k�r�lma modlar� için gerilme ³iddeti faktörü (SIF)
de§erleri hesaplanm�³t�r.

�ki-boyutlu linear elastik k�r�lma mekani§i problemlerin çözümünü amaçlayan MMC yöntemi,
kompleks analiz teorisinin analitik araçlar�n�n (Muskhelishvili formülasyonu, aç�-korur hari-
talama ve geni³letme argümanlar�) gücünü s�n�r e³dizimlilik metodunun nümerik uygulanma
kolayl�§� ile birle³tiriyor.

Hesaplanm�³ olan e³yükselti gerilme e§rilerin, pleksiglas numune üzerindeki fotoelastik deneyin
frinç ³ekilleri ile nitel uyumu gözlemlenmi³tir. ANSYS sonlu elemanlar yaz�l�m� sonuçlar� ile
kar³�la³t�rarak nicel uyum ara³t�r�lm�³t�r. Çatlak büyüklü§ü, konumu, ve kiri³ kal�nl�§�n�n
SIF'ler ve onlar�n oran� üzerindeki etkisi incelenmi³tir.

Anahtar Kelimeler: linear elastik k�r�lma mekani§i (LEFM), modi�ye haritalama-e³dizimlilik

(MMC) yöntemi, gerilme ³iddeti faktörü (SIF), çevresel çatlak, e§ri kiri³, saf bükme yükü,

kompleks analiz, aç�-korur haritalama, Muskhelishvili formülasyonu, s�n�r e³dizimlilik metodu,

gerilme ba§�nt� tekni§i, ANSYS Mechanical APDL
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CHAPTER 1

INTRODUCTION

Delamination (or interlaminar fracture) as a mechanism of failure in laminated composite
materials is a current source of manufacturing quality issue in aerospace and wind turbine in-
dustries and of high importance to prevent damage to the composite airframe parts. Generally
occurring before other modes of damage, it causes the weakest link (resistance to de-cohesion
among laminae) to determine the ability to bear load. The phenomenon is not only of high
importance because of probable safety problems it may cause, but also in regard to e�ects of
its consideration in design procedure on costs through body weight and material consumption.

For thin-walled aircraft structures, stresses normal to the laminated panels are usually very
low and therefore of no concern, however, for curved laminated parts, interlaminar tensile
stresses become quite large. For example consider the A400M Airbus wingbox, which is a fuel
tank. The �C�-section CFRP (carbon �ber reinforced polymer) spars are bolted to the skin
and engulf the tanks. A critical load case for A400M is a refuel over�ow, during which a fault
causes tanks to become over-�lled, creating a large rise in the tank internal pressure. This
develops an opening moment and the spar corners begin to experience signi�cant through-
thickness tensile stresses among the plies within the laminate [1].

The standard test method established by ASTM [2], aims at determination of the curved
beam strength of a continuous �ber-reinforced composite material using a 90◦ curved beam
specimen (Figure 1.1). Especially designed for through-the-thickness interlaminar tensile stress
measurements, it is emphasized by the standard that the failure should be carefully observed

to ensure that a delamination(s) is produced across the width before the failure data are used.

According to linear elastic fracture mechanics (LEFM) theory, the stress �eld around the
crack tip could be represented by a single quantity de�ned as the stress intensity factor (SIF).
For each mode of opening or sliding, it uniquely re�ects loading and geometry of the cracked
component. When this quantity reaches its critical value (fracture toughness of the material),
the crack starts to grow. SIF vales are of fundamental concern in fracture mechanics studies.

1.1 The problem perspective

The present study of a circumferential crack in an isotropic curved beam subjected to pure
bending moment (Figure 1.2), beside beating a path for application of the MMC method to
the problem of orthotropic case, provides the opportunity of comparing the solution results
with that of a specimen composed of two isotropic beams glued at interface, with a partial
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Figure 1.1: ASTM D6415 test apparatus and specimen con�guration. The grey part is of
prime concern.

no-glue region as pre-crack (see Figure 1.3). This also supplies a rough estimation of that
to what extent a homogeneously orthotropic (no-interface) body with a crack could mimic
delamination in laminated composites in the later studies.

Curved laminated composite beams are frequently used in aero-structures and wind turbine
blades. The present work is a �rst step for future study of the possibility of modelling de-
lamination in these structural parts by considering a circumferential crack in a homogeneous
cylindrically orthotropic model. In this step, it is presumed that while there is no crack growth,
a one-piece isotropic curved beam which contains a circumferential crack (Figure 1.2), simu-
lates a specimen including two isotropic curved beams attached partially by a weak interface,
where the glue-free part stands as a pre-crack (Figure 1.3). In other words, it is assumed
that the problem under investigation, composes a reasonable model for the case with glued
interface.

Figure 1.2: The curved beam with circumferential crack
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Figure 1.3: Two curved beams attached partially by a weak interface, under 4-point bending

1.2 The MMC method, the big picture

In the current study, the MMC method is applied in order to obtain SIFs for both opening
and sliding modes of a circumferential crack in an isotropic curved beam under pure bending.
The e�ect of crack size, crack radius and beam thickness on SIFs is studied by developing
a MATLAB code. The calculated stress �eld maximum shear contours, near (and far away
from) crack tip, are plotted.

The modi�ed mapping collocation (MMC) method is a semi-analytic approach to solve bound-
ary value problems of 2-D LEFM. The analytical part, makes use of complex analysis tools to
reduce the boundary condition equations into a linear system of equations which its unknowns
are the stress function series expansion coe�cients. The numerical part of the method takes
advantage of boundary collocation method to solve the overdetermined system of equations
supplied by the analytic part in a least-square sense.

As a method developed to treat two-dimensional fracture mechanics problems, the objective
of MMC method is the calculation of SIFs; however, solving the fundamental boundary value
problem of two-dimensional elasticity (circumventing the need for direct treatment of the
biharmonic equation), it primarily provides the stress function and therefore the stress �eld
near (and also far away from) the crack tip. Then it is an easy matter to calculate SIF values,
using the stress correlation technique [3].

According to G. V. Kolosov [4], only two analytic complex functions (e.g. φ(z) and ψ(z)) are
su�cient to fully describe the stress �eld in a two-dimensional elastic body. The boundary
condition equations was written by N. I. Muskhelishvili [4] in terms of these two analytic
complex functions (see Appendix A). The advantages of performing conformal mapping and
applying extension arguments become more clear when dealing with cracked body problems.
Finding a proper mapping function, which maps the unit circle in the image plane into the
crack in the physical plane, and using extension arguments; the traction-free condition on
the crack surface can be satis�ed analytically (Appendix B). Besides, the number of analytic
functions needed reduces to one (as one can be expressed in terms of the other). Finally, a
suitable ground for applying the Laurent theorem and series to the problem emerges in the

3



image region (Appendix C).

1.3 Literature Survey

The MMC method was introduced by O. L. Bowie in 1970 as an accurate method to calculate
SIFs for isotropic two-dimensional LEFM problems. In his paper [5] the method is applied
to the problem of a circular disk containing an internal straight crack under uniform external
tension upon its perimeter.

Later developed further for orthotropic problems [6], the method was applied to a range of
isotropic two-dimensional problems, all with straight cracks; for a radial crack in a circular
ring [7], for a radial crack in a segment of a circular ring [8] and for radial cracks emanating
from both inner and outer surfaces of a circular ring [9].

The analytic part of the method is mainly based on the comprehensive work of N. I. Muskhe-
lishvili [4], in which his complex representations for boundary condition equations, besides
conformal mapping and extension (or continuation) arguments of both Muskhelishvili and
Kartzivadze are introduced and applied to the two-dimensional LEFM problems.

4



CHAPTER 2

FORMULATION AND SOLUTION

According to Muskhelishvili's complex representations (Appendix A); stress, force and mo-
ment boundary condition equations can be written in terms of two analytic complex functions
(e.g. φ(z) and ψ(z)) in the physical plane. By using a proper mapping function and taking
advantage of the continuation concept (Appendix B), it becomes possible to write the bound-
ary condition equations in terms of only one analytic function in the image plane (i.e. solely
φ(ζ)). In addition, applying Kartzivadze's continuation argument makes the so-called traction
free conditions on the crack surfaces satis�ed analytically.

Thus, to �nd the stress �eld, it is su�cient to �nd φ(ζ). Assuming a Laurent series expansion
for φ(ζ) (Appendix C), the boundary condition at each point ζ on the boundary becomes a
linear equation which its unknowns are coe�cients of the series.

Stress, force and moment at each boundary point (i.e. right hand side values of the acquired
linear equations) can be obtained on the basis of Golovin's solution (Appendix D). These
crack-less curved beam values, are supplied to the equations to solve the cracked case. This
is assumed that the results should be reasonable as long as the crack is not so large.

In the subsequent sections the boundary condition equations are transformed from the physical
z-plane into the image ζ-plane, where by substituting the Laurent series expansion of φ(ζ), the
equations can be expressed as linear equations in terms of ζ. The series expansion coe�cients
are unknowns of the constructed system of equations.

The intendedly overdetermined system of boundary condition equations is to be solved in
a least square sense. Determination of φ(ζ) leads to determination stress �eld. Thereafter
stress correlation technique can be used to calculate SIF values. The �nal section explains the
solution procedure indicating the applied MATLAB functions.

2.1 Stress boundary condition equations

According to Appendix A, equation (A.46):

φ′(z) + φ′(z)− [z̄φ′′(z) + ψ′(z)]e2iθ = N − iT (2.1)

where N and T stands for normal and tangential components of stress traction at boundary
point and θ is the angle N makes with positive direction of x axis (see Figure A.2). The bar
represents conjugate function.
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Considering the mapping function to be (see Appendix B):

z = h(ζ) = Ra exp{i[β
2

(ζ + ζ−1)− π

2
]} (2.2)

where Ra is crack radius and β is crack half-arc angle.

De�ning:
φ(z) = φ[h(ζ)] = φ1(ζ) (2.3)

due to the chain rule:

φ′(z) =
dφ(z)

dz
=
dφ1(ζ)

dζ
· dζ
dz

=
φ′1(ζ)

h′(ζ)
(2.4)

consequently:

φ′′(z) =
d

dz
(
φ′1(ζ)

h′(ζ)
) =

d

dζ
(
φ′1(ζ)

h′(ζ)
) · dζ
dz

(2.5)

φ′′(z) =
φ′′1(ζ).h′(ζ)− φ′1(ζ).h′′(ζ)

[h′(ζ)]2
/
dh(ζ)

dζ
(2.6)

φ′′(z) =
h′(ζ).φ′′1(ζ)− h′′(ζ).φ′1(ζ)

[h′(ζ)]3
(2.7)

Similar to (2.3) and (2.4):
ψ(z) = ψ[h(ζ)] = ψ1(ζ) (2.8)

ψ′(z) =
dψ(z)

dz
=
dψ1(ζ)

dζ
· dζ
dz

=
ψ′1(ζ)

h′(ζ)
(2.9)

As a result of Kartzivadze's continuation argument (appendix B, section B.2):

ψ1(ζ) = −φ1(
1

ζ
)−

h( 1
ζ )

h′(ζ)
φ′1(ζ), for |ζ| > 1 (2.10)

di�erentiating the above equation with respect to ζ and substituting into (2.9), left hand side
(2.1) can be obtained in terms of φ(ζ) only (see section C.2, equations (C.2)-(C.5) for the
details).

In addition, Appendix C asserts that:

φ1(ζ) =
∑
n

[iA2nζ
2n +A2n+1ζ

2n+1] (2.11)

where A2n and A2n+1 are purely real, takes into account the stress symmetry of the problem
with respect to the imaginary axis.

The boundary conditions require T to be zero everywhere on the boundary. The same thing
is required for N except on the moment-exerted ends of the beam where N ≡ σθ(r) and is
given by Golovin's solution (Figure D.1):

σθ(r) = − 4M

NGb
[−R

2
1R

2
2

r2
ln(

R2

R1
) +R2

2 ln(
r

R2
) +R2

1 ln(
R1

r
) +R2

2 −R2
1] (2.12)

where:
NG = (R2

2 −R2
1)2 − 4R2

1R
2
2(ln(

R2

R1
))2 (2.13)

whereM is absolute value of the moment exerted, b stands for depth of the beam in z-direction
and R1 and R2 are inner and outer radii of the beam.

Putting all together, equation (2.1) produces two linear equations at each boundary point,
one for tangential component of stress traction and the other for normal component of that
vector (by its real and imaginary parts respectively). The unknowns are A2n and A2n+1 (i.e.
purely real coe�cients of the Laurent series expansion (2.11)).
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Figure 2.1: The unit circle, ζ and ζ

2.2 Force boundary condition equations

The force boundary condition equations obtained in Appendix A as:

b.i[φ(z) + zφ′(z) + ψ(z)]zBzA = (Fx + iFy)on AB (2.14)

The right hand side expression is shown (Appendix D) to be given by:

(Fx + iFy)on AB = −[cos(α) + i sin(α)] ·
4M

NG
[R2

1r ln(
R1

r
) +R2

2r ln(
r

R2
) +

R2
1R

2
2

r
ln(

R2

R1
)]rBrA (2.15)

substituting this into above and multiplying both by −i/b:

[φ(z) + zφ′(z) + ψ(z)]zBzA = (2.16)

1

b
[i cos(α)− sin(α)]

4M

NG
[R2

1r ln(
R1

r
) +R2

2r ln(
r

R2
) +

R2
1R

2
2

r
ln(

R2

R1
)]rBrA

Using z = h(ζ) (equation (2.2)), the left hand side can be transferred into the ζ-plane. Con-
sidering (2.4):

φ′(z) =
φ′1(ζ)

h′(ζ)
(2.17)

Besides, taking conjugate of (2.10):

ψ1(ζ) = −φ1(
1

ζ
)−

h( 1

ζ
)

h′(ζ)
φ′1(ζ), for |ζ| > 1 (2.18)

substituting into left hand side (2.16) it may be rewritten as:

[φ(z) + zφ′(z) + ψ(z)]zBzA = [φ1(ζ)− φ1(
1

ζ
) + (h(ζ)− h(

1

ζ
))
φ′1(ζ)

h′(ζ)
]ζBζA (2.19)

Note that since on a unit circle (ζ = exp(iθ)), we have ζ = 1

ζ
, (see Figure 2.1) it can be

seen from right hand side of the force boundary equation (above) that so-called traction free
condition on crack is satis�ed automatically.
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Substituting (2.19) into (2.16):

[φ1(ζ)− φ1(
1

ζ
) + (h(ζ)− h(

1

ζ
))
φ′1(ζ)

h′(ζ)
]ζBζA =

(i cos(α)− sin(α))
4M

NGb
[R2

1r ln(
R1

r
) +R2

2r ln(
r

R2
) +

R2
1R

2
2

r
ln(

R2

R1
)]rBrA (2.20)

This is the force equation on the moment-exerted end of the beam, however on traction free
faces one �nds:

[φ1(ζ)− φ1(
1

ζ
) + (h(ζ)− h(

1

ζ
))
φ′1(ζ)

h′(ζ)
]ζBζA = 0 (2.21)

where φ1(ζ) is to be expanded as given in (2.11). Hence at each boundary point there are two
equations due to real and imaginary parts of (2.20) and (2.21).

2.3 Moment boundary condition equations

The moment boundary equation in the physical plane obtained as (Appendix A):

<{[zz̄φ′(z) + zψ(z)− χ(z)]zBzA} = (Mz)on AB (2.22)

where:

χ(z) =

∫
ψ(z)dz (2.23)

Considering (2.8) and noting z = h(ζ), the above equation is rewritten as:

χ(ζ) =

∫
ψ1(ζ)d(h(ζ)) (2.24)

multiplying and dividing the integrand by dζ:

χ(ζ) =

∫
ψ1(ζ).h′(ζ)dζ (2.25)

substituting ψ1ζ) from (2.10):

χ(ζ) = −
∫

[h′(ζ).φ(
1

ζ
) + h(

1

ζ
).φ′(ζ)]dζ (2.26)

substituting (2.26),(2.4) and (2.10) into (2.22):

− <{
∫ ζB

ζA

[h′(ζ).φ(
1

ζ
) + h(

1

ζ
).φ′(ζ)]dζ}

− <{[h(ζ).h(ζ) · φ
′(ζ)

h′(ζ)
]ζBζA}

− <{[h(ζ).φ(
1

ζ
) +

h(ζ).h( 1
ζ )

h′(ζ)
φ′(ζ)]ζBζA} = (Mz)on AB (2.27)

changing integration limits with each other and reordering:

<{
∫ ζA

ζB

[h′(ζ).φ(
1

ζ
)+h(

1

ζ
).φ′(ζ)]dζ +[h(ζ)·(

h(ζ) + h( 1
ζ )

h′(ζ)
φ′(ζ)+φ(

1

ζ
)]ζBζA} = (Mz)on AB (2.28)
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only the real part of the equation is needed to yield the moment equation corresponding to
each boundary point (center of AB).

The right hand side value (Mz) is shown in Appendix D to be:

(Mz)c = |={zc}|.Fx + |<{zc}|.Fy (2.29)

where Fx and Fy can be obtained from (2.15).

2.4 The solution procedure

The MMC method advices construction of a system of linear (boundary condition) which
intendedly has more equations than unknowns (i.e is an overdetermined system). For this
purpose, MATLAB Symbolic Toolbox was used to substitute the expressions corresponding to
the φ(ζ) function (based on expansion (2.11)) into the boundary condition equations. These
expressions are φ

′
(ζ), φ

′′
(ζ) and φ

′
( 1
ζ ), and their expanded forms are given in Appendix C.

Then boundary condition equations are written (evaluated) at discrete collocation points (sta-
tions) on the boundary. At each station on the boundary, two linear stress boundary condition
equations (considering real and imaginary parts of the complex equation) are obtained. For
the force and moment equations the process is a little di�erent since they are evaluated be-
tween every two successive stations (A and B) on the boundary. Finally the process ends up
with construction of a linear system of equations which its unknowns are coe�cients of the
φ(ζ) function Laurent series expansion.

The overdetermined system of linear (boundary condition) equations is constructed by writing
the equations for discrete points (stations) on the boundary. On the inner radius, the moment-
exerted and the outer radius boundaries 3, 4 and 5 stations are considered respectively. For the
Laurent series expansion (equation (2.11)), M and N values both were set to 3. The constructed
overdetermined system is solved in a least square sense (using MATLAB lsqr function). The
solution determines φ(ζ) series expansion coe�cients. Then the stress components at every
point of the body can be found using Kolosov's formulae (A.33) and (A.35) in the image
region:

σy + σx = 4<{φ
′
(ζ)

h′(ζ)
} (2.30)

σy − σx + 2iσxy = 2{h(ζ)
h

′
(ζ)φ

′′
(ζ)− h′′

(ζ)φ
′
(ζ)

[h′(ζ)]2
+ ψ

′
(ζ)}/h

′
(ζ) (2.31)

Then, using stress correlation technique [3], SIFs are obtained by extrapolating (using MAT-
LAB interp1 function) the values in three points ahead and in vicinity of the crack tip
considering that:

KI = lim
r→0

√
2πrσ22(r, 0) (2.32)

KII = lim
r→0

√
2πrσ12(r, 0) (2.33)

where I and II represent opening and sliding modes respectively and r stands for local radial
distance from the crack tip and 1 and 2 represent directions tangential and perpendicular to
the crack at its tip. In other words, since the stress �led is known, values of the expression
in front of the lim operator (in each of the above cases) can be calculated and used for the
extrapolation. The points are chosen on the line θ = 0 (that is tangent to the crack at the
crack tip) and are to be in an in�nitesimal distance to the crack tip. The extrapolation of
these values to r = 0 determines crack SIFs.
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CHAPTER 3

RESULTS AND CONCLUSIONS

Considering the stress symmetry of the problem of a circumferential crack in an isotropic

curved beam under pure bending moment with respect to the imaginary axis, the MMC method
is applied successfully to the right hand side half of the curved beam.

Having determined φ(ζ) series expansion coe�cients from the linear system of boundary con-
dition equations, stress values and thereafter SIF values (for both opening and sliding modes
of fracture) are calculated.

The MMC-based MATLAB code result for the case study stress fringes is qualitatively com-
pared with the photoelastic caustics obtained from the plexiglass specimen test with the same
geometry. Also, a quantitative comparison is made between the stress �eld contours obtained
from MATLAB and that of �nite element analysis (FEA) using ANSYS Mechanical APDL
(Appendix E). SIF values are evaluated using stress correlation technique (see section 2.4) in-
corporated to the MMC method. The recalculated stress on the beam boundaries is discussed
as a measure of solution accuracy. The e�ects of di�erent geometrical parameters on the SIF
values are investigated.

3.1 Results

The results are separated into four parts. The �rst part contains a qualitative comparison
between the MMC method stress �eld result with that of the photoelastic test for the same
con�guration, also stress state on the arc containing the crack is plotted. In the second part,
the results of �nite element analysis (FEA) done by ANSYS in terms of stresses, are compared
with that brought up by MATLAB code applying the MMC method. In the third part, the
stress distribution obtained from the MMC method is tackled as a measure of accuracy by
comparing the values with that of the classical (crack-less) solution (Appendix D) and also
with that of FEA. In the last part the SIF values (calculated according to the stress correlation
technique (section 2.4)) are plotted as functions of crack and beam geometrical parameters.
Obviously neither the mechanical properties nor the plane stress / plane strain assumptions
are going to a�ect the results as long as only the stresses are of interest.

An opening moment of −10Nm (i.e. M = 10Nm) is applied to and a width (b) of 0.01m is
considered for all of the beams under investigation. Considering the symmetry of the problem
with respect to the imaginary axis, the MMC method is applied successfully to one of the
halves of the beam in order to �nd the stress �eld and thereafter opening and sliding mode

11



Figure 3.1: The maximum shear stress contours for the sample beam according to the: (a)
MATLAB code applying the MMC method (b) photoelastic test of plexiglass specimen, cour-
tesy of Denizhan Yavas

Figure 3.2: Stress variation on the arc that includes the crack for the sample beam

SIFs. In the subsections 3.1.1 - 3.1.3, the calculations are carried out for a sample beam of
30mm in thickness (R1 = 15mm and R2 = 45mm) containing a crack of 25◦ half arc angle, β,
which is located on its center line (Ra = 30mm). In subsection 3.1.4 the e�ect of geometrical
parameters variation on mode-I SIF and mode-mixity is studied.

3.1.1 Versus photoelastic caustics

The code-produced maximum shear stress contours for the sample beam are shown in Figure
3.1-(a). The asymmetric maximum shear stress contour shape around the crack tip signi�es
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the mixity of fracture modes. Uniformly changing contours near the inner radius imitates
the rainbow-shaped fringes predicted by the classical solution (in absence of the crack). In
the lower quarter of the beam thickness, moving radially towards the beam bottom there is a
regularly increasing trend in the stress values. The maximum shear stress contours obtained
from photoelastic 4-point bending test of a plexiglass specimen of the same dimensions is
shown in Figure 3.1-(b).

Considering manufacturing imperfections (especially at crack tips) and also noting de�ection
of the test specimen (which is not incorporated in the MMC-generated plot), a good agreement
is observed between the analytic and experimental results in terms of the contour shapes. In
Figure 3.2, the stress components in polar coordinates are shown on the arc that includes the
crack for the same case. The plot indicates 1/

√
r linear-elastic singularity at the crack tip.

The traction-free conditions on the crack surface (σr = 0, σrθ = 0) are satis�ed to an order of
10−6Pa (or 10−12MPa).

3.1.2 Versus FEA

For the purpose of quantitative comparison, ANSYS Mechanical APDL, the commercial �nite
elements analysis software, is used to model and analyse the problem (Appendix E). The stress
intensity (which is an ANSYYS jargon de�ned as 2 ∗ τmax and should not be confused with
stress intensity factor (SIF)) contours of the whole body are plotted and shown in Figure
3.3-(a) from FEA, and Figure 3.3-(b) from MATLAB code applying the MMC method. Note
that deformation is shown in the Figure 3.3-(a) (so that one may realize the opened crack),
but is not incorporated in Figure 3.3-(b), where the crack seems to be closed. However the
fringes are from rather di�erent colors, their values are speci�ed the same. Although the
contours are not identical, a reasonable consistency can be observed between them. For the
near-tip stress fringe signature to become more clear, a zoomed view is presented in Figures
3.4-(a) and (b), again from FEA and the MMC method respectively. Comparing the crack
tip caustics in Figure 3.4-(a) with that of photoelastic test (Figure 3.1-b) one may recognize
an increasing incompatibility by approaching the very vicinity of the crack tip, however, the
case is just the opposite for Figure 3.4-(b). In an immediate neighbourhood of the crack front
a clearly analogous crack-tip signature is provided by the MMC method. Since the near tip
stress values are to be used for SIF calculation in the next stage, they are of vital importance
for insuring accuracy of the results. However the specimen imperfection (especially at the
crack tip) should not be ignored, the test stands as a measure of reality.

3.1.3 Accuracy

In addition to relative residual value (i.e. norm(b-A*x)/norm(b)) resulted from solving the
linear system of equations in a least-squares sense; the stress values on the boundaries also
provide a measure for the degree of solution accuracy. It can be shown that when the system
is restricted to include only local force boundary condition equations, the calculated stresses
on the boundary are more consistent with that of input values (namely b matrix), as this leads
to smaller relative residual values.

The recalculated stress values on the boundaries give a measure of the solution accuracy. In
Figure 3.5 the obtained normal stress distribution on the moment-exerted boundary is plotted
(by the markers) together with the classical (Golovin's) solution (the solid line) for the sample
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Figure 3.3: Stress intensity (2 ∗ τmax) contours for the half sample beam containing a crack
of β = 25◦ at ha = 0.5 obtained from (a) MATLAB code applying the MMC method and (b)
ANSYS FEA
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Figure 3.4: Stress intensity (2 ∗ τmax) contours in 1 cm2 vicinity of the crack-tip for the half
sample beam containing a crack of β = 25◦ at ha = 0.5 obtained from (a) MATLAB code
applying the MMC method and (b) ANSYS FEA
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Figure 3.5: Deviation from the classical solution for normal stress distribution on the moment-
exerted boundary for the sample beam with di�erent β values

beam. Although the same distribution is expected, a deviation from the classical solution is
observed with increase in the crack half arc angle (β). The root mean square (RMS) values of
the deviation for β values 10◦, 20◦, 30◦ and 40◦ are calculated as 0.05, 0.25, 0.96 and 2.19MPa

respectively. Dividing by σ = (σθ)r=R1 = 10.19MPa, one has 0.5%, 2.5%, 9.4% and 22% as
a measure of the deviation from the classical solution. Also it is observed that all of the
stress distributions, give nearly the same moment value about the origin (with a maximum
of 3.2% deviation from −10Nm for β = 30◦, where for the other cases these values are below
0.5%). These distributions do not produce a pure moment; inducing a somewhat negligible
non-zero force resultant in the circumferential direction. The fraction of these force values to
the resultant of the positive σθ on the moment-exerted boundary reaches a maximum of 7.6%

for β = 40◦. The immediate neighbour is 1.36% for β = 30◦. Generally, the smaller the cracks
are the higher is the accuracy. On the other hand since initiating cracks are of prime concern
loss of accuracy for handling large crack sizes is not of high importance practically. Obviously
extrapolation could be done to some extent when needed.

Calculated value of the polar stress components, σr and σrθ, ahead and in vicinity of crack-tip
are of great importance for calculation of SIF values (see equations (2.32) and (2.33)). These
values are extracted from both the MMC method and FEA on a segment of an arc to the
center of xy plane, which includes the crack tip. In Figure 3.6, the MMC-resulted stress values
are shown with markers whereas FEA-extracted stresses are plotted by solid lines. The FEA
stress components �rst experience a jump at an angular position in 1◦ vicinity of the crack tip.
Then, however σr results agree, the FEA σrθ values suddenly drop right before the crack-tip,
while the MMC method-calculated values continue to increase according to the expectation
of linear-elastic singularity at the crack-tip.

3.1.4 Parametric study

It is convenient to de�ne a non-dimensionalized SIF parameter, Hi, as:

Hi =
Ki

σ
√

2πRm
(3.1)
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Figure 3.6: The markers represesnt the MMC method recalculated stresses in polar coor-
dinates, the lines show the corresponding stress components extracted from ANSYS, both
plotted for the points on a 20◦ arc with its center at the origin of the xy plane which has the
crack tip at its midpoint and includes 10◦ of the crack surface

where σ is the value of the normal stress distribution in the classical (crack-less) solution at
inner radius of the moment-exerted edge of the beam, Rm is the center line radius of the beam
(Rm = (R1 +R2)/2); and i stands for either opening (i ≡ I) or sliding (i ≡ II) modes.

3.1.4.1 The crack position e�ect

The e�ect of the crack position along the thickness of the beam (ha = (Ra − R1)/(R2 −
R1)) on mode-I SIF and the mode-mixity is shown in Figure 3.7 for a 30mm thick beam
(R1 = 15mm,R2 = 45mm). Non-dimensional mode-I SIF, HI , and mode-mixity, HII/HI ,
are plotted as a function of crack-half-arc-angle,β, in Figures 3.7-a and 3.7-b, respectively, for
di�erent crack positions ha = 0.25, 0.5 and 0.75. For all crack positions, opening mode SIF
is seen to increase rather linearly with crack size as seen in Figure 3.7-a. It is noted that
the mode-I SIF is greater for crack positions closer to the inner radius. In Figure 3.7-b, the
mode-mixity increases with crack size, however, its value remains always below unity, implying
opening mode dominance (over sliding mode) for all of the 30mm thick beams. The mode-
mixity is seen to be independent of crack position for smaller crack sizes, as indicated by the
overlapping parts of the curves for β < 15◦.

3.1.4.2 The beam thickness e�ect

The e�ect of thickness on the SIF and mode-mixity is shown in �gure 3.8 for a central crack
position kept �xed at Ra = 30mm. Non-dimensional opening mode SIF, HI , (Figure 3.8-a)
and mode-mixity, HII/HI , (Figure 3.8-b) are plotted against crack-half-arc-angle, β, for beam
thicknesses t = 10, 20 and 30mm. Since the same moment is applied to all of the cases, the
narrower beams have higher SIF (K) values for their cracks (Figure 3.9). This is not evident
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Figure 3.7: (a) Non-dimensionalized mode-I SIF and (b) Mode-mixity, versus crack half arc
angle, β, for di�erent crack positions ha = 0.25, 0.5 and 0.75 for the beam with R1 = 15mm

and R2 = 45mm for which the non-dimensionalising stress value is σ = (σθ)r=R1
= 10.2MPa
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Figure 3.8: (a) Non-dimensionalized mode-I SIF and (b) Mode-mixity, versus crack half arc
angle, β, for a central crack (ha = 0.5) at Ra = 30mm, in beams of t = 10, 20 and 30mm

thickness, for which corresponding non-dimensionalising stress values are σ = (σθ)r=R1
=

67.6, 19.4 and 10.2MPa respectively
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Figure 3.9: Mode-I SIF (KI) versus crack half arc angle, β, for a central crack (ha = 0.5) at
Ra = 30mm in beams of di�erent thicknesses t = 10, 20 and 30mm

from Figure 3.8-a because of non-dimensionalization done by equation (3.1); which involves
the value of σ that varies inversely with beam thickness for a speci�ed moment value. The
σ values are given in the Figure caption. In Figure 3.8-a, the non-dimensional mode-I SIF
increases monotonically with crack size for all thicknesses. The line slope for the beam of
10mm in thickness is relatively small. In Figure 3.8-b, mode-mixity increases with crack size
for all thicknesses. At smaller crack sizes, mode-mixity remains below 0.1 for all thicknesses,
showing an almost pure opening mode fracture. For the 20 and 30mm thick beams, the mode-
mixity values almost overlap linearly increasing to a value of 0.35 at β = 35◦. However, for
the 10mm thick beam, the mode-mixity signi�cantly deviates and following a non-linear trend
reaches a value of 1.4 at β = 35◦, rendering the crack tip mode-II dominated.

3.2 Conclusions

Using the stress correlation [3] technique, the stress �eld computed by the MMC method was
successfully used to evaluate opening and sliding mode SIFs for a circumferential crack in
an isotropic curved beam under pure bending. As a semi-analytic and mesh-free approach
to treat boundary value problems of 2-D LEFM, the MMC method has a great advantage
over other numerical methods such as �nite elements, especially in dealing with the crack tip
linear-elastic singularity, which makes it a proper choice for accurate calculation of SIF values.

The results of FEA using ANSYS Mechanical APDL shows a general compatibility with that of
the MMC method in both qualitative and quantitative aspects. Compared with the FEA, the
MMC method's near tip caustics appear to be more akin to that of photoelastic experiment.

The e�ects of crack position and beam thickness on the mode-I SIF and the mode-mixity are
presented as a function of the crack size. As expected, the mode-I and mode-II SIFs increase
with crack length. Considering di�erent crack positions in the 30mm thick beam, the mode-I
SIF values are found to be higher for the cracks closer to the inner radius. The mode-mixity is
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observed to be independent of the crack position and also to be below unity in all of the cases.
Considering beams of di�erent thicknesses (10, 20 and 30mm), mode-I fracture is dominant
in all cases except for the thinnest case in which a switch to the mode-II dominance happens
for large crack lengths. The mode-mixity is found to be independent of the thickness for the
thicker beams.

As a semi-analytic and mesh-free approach to treat boundary value problems of 2-D elasticity,
the MMC method has a great advantage over other numerical methods such as �nite elements,
especially in dealing with the crack tip linear-elastic singularity, which makes it a proper choice
for accurate calculation of SIF values. A possible subject of future work is to apply the method
to analyze a circumferential crack in a cylindrically orthotropic curved beam.
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APPENDIX A

MUSKHELISHVILI'S COMPLEX REPRESENTATIONS

Based on the general idea of developing a representation for the stress �eld that satis�es
equilibrium and yields a single governing equation from the strain compatibility and strain-
stress relations; the plane elasticity equations could be merged into the biharmonic equation:

∇4U = 0 (A.1)

where the U function is called Airy Stress Function and ∇ = ∂
∂x + ∂

∂y . The above formula
is the fundamental equation of the boundary value problem of two dimensional elasticity (for
both plane stress and plane strain cases) on which the boundary condition equations are to
be applied.

Starting from the equation (A.1), it will be shown that how did N. I. Muskhelishvili [4] use
complex analysis tools to re-formulate the mentioned problem.

A.1 The stress function

Rewriting equation (A.1) as:

∇2(∇2U) = 0 (A.2)

De�ning ∇2U = P (x, y):

∇2P = 0 (A.3)

This means P (x, y) satis�es the Laplace (or harmonic) equation. De�ning the complex func-
tion f(z) where z = x+ iy as:

f(z) = P (x, y) + iQ(x, y) (A.4)

The real and imaginary parts of any analytic function of a complex variable are solutions of
the Laplace equation. For f(z) to be analytic in a region (i.e. to possess a unique derivative
at any point of that region), the so-called Cauchy-Reimann conditions must hold:

∂P

∂x
=
∂Q

∂y
,
∂P

∂y
= −∂Q

∂x
(A.5)

De�ning another complex function as:

φ(z) =
1

4

∫
f(z)dz = p(x, y) + iq(x, y) (A.6)
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Note that since z = x+ iy, ∂z∂x = 1. According to the chain rule:

∂

∂x
F (z) =

d

dz
F (z).

∂z

∂x
(A.7)

so we conclude:
d

dz
≡ ∂

∂x
(A.8)

considering (A.8), di�erentiating (A.6) with respect to z yields:

φ′(z) =
1

4
(P +Q) =

∂p

∂x
+ i

∂q

∂x
(A.9)

equating the real and imaginary parts:

∂p

∂x
=

1

4
P,

∂q

∂x
=

1

4
Q (A.10)

Considering Cauchy-Reimann conditions for φ(z):

∂p

∂x
=
∂q

∂y
,
∂p

∂y
= − ∂q

∂x
(A.11)

Putting (A.10) and (A.11) together:

∂p

∂x
=
∂q

∂y
=

1

4
P,

∂q

∂x
= −∂p

∂y
=

1

4
Q (A.12)

On the other hand, applying the Laplace operator to the expression xp+ yq:

∇2(xp+ yq) = (
∂2

∂x2
+

∂2

∂y2
)(xp+ yq)

∇2(xp+ yq) = 2
∂p

∂x
+ 2

∂q

∂y
+ x(

∂2p

∂x2
+
∂2p

∂y2
) + y(

∂2q

∂x2
+
∂2q

∂y2
) (A.13)

Since p and q, as real and imaginary parts of the analytic function φ(z), satisfy the Laplace
equation (i.e. ∇2p = ∇2q = 0):

∇2(xp+ yq) = 2
∂p

∂x
+ 2

∂q

∂y
(A.14)

substituting (A.1) into the above, leads to:

∇2(xp+ yq) = P (A.15)

We had ∇2U = P , eliminating P :

∇2(U − xp− yq) = 0 (A.16)

De�ning g(x, y) = U−xp−yq, which satis�es the Laplace equation and therefore is a harmonic
function, the stress function can be rewritten as:

U = xp+ yq + g (A.17)

De�ning the analytic function χ(z) = g(x, y) + ih(x, y), and also noting:

z̄φ(z) = (xp+ yq) + i(xq − yp) (A.18)

one may write:
U = <{z̄φ(z) + χ(z)} (A.19)

or equally, eliminating the < symbol:

U =
1

2
(z̄φ(z) + zφ(z) + χ(z) + χ(z)) (A.20)
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A.2 Stress �eld equations

Note that since z = x+ iy and z̄ = x− iy, based on the chain rule:

∂z

∂x
= 1 ⇒ ∂

∂x
F (z) =

d

dz
F (z)

∂z

∂x
⇒ ∂

∂x
≡ d

dz
(A.21)

∂z̄

∂x
= 1 ⇒ ∂

∂x
F (z) =

d

dz̄
F (z)

∂z̄

∂x
⇒ ∂

∂x
≡ d

dz̄
(A.22)

∂z

∂y
= i ⇒ ∂

∂y
F (z) =

d

dz
F (z)

∂z

∂y
⇒ ∂

∂y
≡ i d

dz
(A.23)

∂z̄

∂y
= −i ⇒ ∂

∂y
F (z) =

d

dz̄
F (z)

∂z̄

∂y
⇒ ∂

∂y
≡ −i d

dz̄
(A.24)

Di�erentiating stress function (A.20) with respect to x (considering (A.21) and (A.22)):

∂U

∂x
=

1

2
[φ(z) + z̄φ′(z) + φ(z) + zφ′(z) + χ′(z) + χ′(z)] (A.25)

Similarly, considering (A.23) and (A.24):

i
∂U

∂y
=

1

2
[φ(z)− z̄φ′(z)− φ(z) + zφ′(z)− χ′(z) + χ′(z)] (A.26)

summing up the last two equations:

∂U

∂x
+ i

∂U

∂y
= φ(z) + z̄φ′(z) + χ′(z) (A.27)

De�ning ψ(z) = χ′(z):
∂U

∂x
+ i

∂U

∂y
= φ(z) + zφ′(z) + ψ(z) (A.28)

The above relation will appear very useful in complex formulation of boundary condition
equations beside providing a basis for stress �eld representation. Di�erentiating (A.28) with
respect to x (again considering (A.21) and (A.22)):

∂2U

∂x2
+ i

∂2U

∂x∂y
= φ′(z) + φ′(z) + zφ′′(z) + ψ′(z) (A.29)

Di�erentiating (A.28) with respect to y (noting (A.23) and (A.24)), and multiplying both sides
by −i:

∂2U

∂y2
− i ∂

2U

∂x∂y
= φ′(z) + φ′(z)− zφ′′(z)− ψ′(z) (A.30)

Adding (A.29) to (A.30):
∂2U

∂2x
+
∂2U

∂2y
= 2(φ′(z) + φ′(z)) (A.31)

From elasticity, one may remember that Airy stress function was constructed basically as:

σx =
∂2U

∂y2
, σy =

∂2U

∂x2
, σxy = − ∂2U

∂x∂y
(A.32)
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Figure A.1: The axes of element stress transformation

in order to satisfy the equilibrium equations automatically. Substituting the corresponding
equations from above into (A.31):

σy + σx = 4<{φ′(z)} (A.33)

On the other hand, subtracting (A.30) from (A.29) and substituting from (A.32) into the
yielded relation:

σy − σx − 2iσxy = 2[zφ′′(z) + ψ′(z)] (A.34)

taking conjugate of both sides:

σy − σx + 2iσxy = 2[z̄φ′′(z) + ψ′(z)] (A.35)

The equations (A.33) and (A.35), formulated by G. V. Kolosov (as mentioned by N. I. Muskhe-
lishvili [4]), show that stress �eld can be completely described in terms of two analytic functions
φ(z) and ψ(z). These equations may be called Kolosov's stress �eld representation.

A.3 Stress boundary condition equations

We are going to write stress on the boundaries in terms of its normal and tangential compo-
nents. The in-plane stress transformation equations are:

σx′ =
1

2
(σx + σy) +

1

2
(σx − σy) cos(2θ) + σxy sin(2θ) (A.36)

σy′ =
1

2
(σx + σy)− 1

2
(σx − σy) cos(2θ)− σxy sin(2θ) (A.37)

σx′y′ =
1

2
(σy − σx) sin(2θ) + σxy cos(2θ) (A.38)

Adding (A.36) and (A.37):

σx′ + σy′ = σx + σy (A.39)

On the other hand substituting (A.36),(A.37) and (A.38) into the expression σy′−σx′ +2iσx′y′ ,
and re-factoring:

σy′ − σx′ + 2iσx′y′ = (σy − σx)[cos(2θ) + i sin(2θ)]

+2σxy[− sin(2θ) + i cos(2θ)] (A.40)
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Figure A.2: The normal an tangential traction components on boundary of region "R"

Aside, the expression − sin(2θ) + i cos(2θ) may be rewritten as:

− sin(2θ) + i cos(2θ) =
1

−i
[i sin(2θ) + cos(2θ)] (A.41)

considering Euler 's Formula, eiα = cos(α) + i sin(α):

− sin(2θ) + i cos(2θ) = ie2iθ (A.42)

and therefore (multiplying both sides by −i):

cos(2θ) + i sin(2θ) = e2iθ (A.43)

substituting (A.42) and (A.43) into (A.40):

σy′ − σx′ + 2iσx′y′ = (σy − σx + 2iσxy)e2iθ (A.44)

which was stated for the �rst time by J. H. Michell.

Subtracting the sides of Michell's equation from those of (A.39), results in elimination of σy′ :

2(σx′ − iσx′y′) = σx + σy − (σy − σx + 2iσxy)e2iθ (A.45)

Note that the left hand side contains only normal and tangential stress components. One
might rename them as σx′ ≡ N and σx′y′ ≡ T . On the other hand making use of Kolosov's
stress �eld representation (equations (A.33) and (A.35)); right hand side of (A.45) can be
substituted. Then, the above formula may be rewritten as:

N − iT = φ′(z) + φ′(z)− [z̄φ′′(z) + ψ′(z)]e2iθ (A.46)
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Figure A.3: Arc AB of the boundary of region "R" and corresponding in�nitesimal element
on it

A.4 Force boundary condition equations

Consider an element on an arc AB of boundary of the body "R" (Figure A.3). Let the arc's
positive direction be from A to B. This means moving from A to B, we always have the body
on the left, and then the normal vector to the right of the arc.

Writing force components equilibrium equation in x-direction:

Tx.ds− σx.|dy| − σxy.|dx| = 0 (A.47)

consequently (noting that dy < 0):

Tx = σx(−dy
ds

) + σxy(
dx

ds
) (A.48)

substituting from (A.32):

Tx = −∂
2U

∂y2
dy

ds
− ∂2U

∂x∂y

dx

ds
(A.49)

rewriting this way:

Tx = −[
∂

∂y
(
∂U

∂y
)
dy

ds
+

∂

∂x
(
∂U

∂y
)
dx

ds
] (A.50)

The total di�erential is de�ned as:

df(x, y)

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
(A.51)

considering ∂U
∂y ≡ f ; the equity (A.50) could be written brie�y as:

Tx = − d

ds
(
∂U

∂y
) (A.52)

In a very similar manner, force components equilibrium equation in y-direction leads to:

Ty =
d

ds
(
∂U

∂x
) (A.53)
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Substituting the equations above into stress traction (i.e. T = Tx + iTy), factoring out i:

T = i
d

ds
(
∂U

∂x
+ i

∂U

∂y
) (A.54)

replacing the expression in the parenthesis with that of equation (A.28):

T = i
d

ds
(φ(z) + zφ′(z) + ψ(z)) (A.55)

or equally:
(Tx(s) + iTy(s))ds = id(φ(z) + zφ′(z) + ψ(z)) (A.56)

integrating the traction along AB, representing beam thickness in z-direction by b, one might
express the force resultant components on arc AB as:

(Fx + iFy)on arc AB = b.

∫ B

A

(Tx(s) + iTy(s))ds

= b.i[φ(z) + zφ′(z) + ψ(z)]zBzA (A.57)

A.5 Moment boundary condition equation

The moment resulted from the force components acting on the arc AB about the origin of the
coordinate system xy, considering Figure A.3, is given by:

(Mz)on arc AB =

∫ B

A

[−y.Tx(s) + x.Ty(s)]ds (A.58)

substituting (A.52) and (A.53) into the above, one �nds:

(Mz)on arc AB =

∫ B

A

[y.d(
∂U

∂y
) + x.d(

∂U

∂x
)] (A.59)

implementing integration by parts on the �rst and second terms of the right hand side:

(Mz)on arc AB = (x
∂U

∂x
+ y

∂U

∂y
)]BA −

∫ B

A

(
∂U

∂x
dx+

∂U

∂y
dy) (A.60)

note that the integrand equals dU (i.e. is a total di�erential), thus:

(Mz)on arc AB = (x
∂U

∂x
+ y

∂U

∂y
)]BA − [U ]BA (A.61)

aside, one �nds:

x
∂U

∂x
+ y

∂U

∂y
= <{z(∂U

∂x
− i∂U

∂y
)} (A.62)

further, taking conjugate of (A.28):

∂U

∂x
− i∂U

∂y
= φ(z) + z̄φ′(z) + ψ(z) (A.63)

substituting (A.63) into (A.62):

x
∂U

∂x
+ y

∂U

∂y
= <{zφ(z) + zz̄φ′(z) + zψ(z)} (A.64)
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On the other hand, the equation (A.19) may be written as:

U = <{zφ(z) + χ(z)} (A.65)

Putting (A.64) and (A.65) into right hand side. (A.61):

(Mz)on arc AB = <{[zz̄φ′(z) + zψ(z)− χ(z)]zBzA} (A.66)

where, since we de�ned previously χ′(z) = ψ(z):

χ(z) =

∫
ψ(z)dz (A.67)
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APPENDIX B

CONFORMAL MAPPING AND ITS AIM

Why do we use conformal mapping? What is the advantage held by transferring the physical
domain into the image plane?

The mapping performed by an analytic function h(ζ) is called conformal. By means of z =

h(ζ), an analytic function of complex variable z becomes another analytic function of the
complex variable ζ. However, the boundary curve of the domain R in the z-plane, which may
not be convenient to work with, could be treated in the ζ-plane that allows the boundary
condition to be satis�ed more easily. The advantages of mapping become more apparent
especially when there is a crack in the body under investigation.

B.1 The mapping function

The problem of circumferential crack, due to its geometry, needs two successive mappings.
Combining these functions relates the ζ-plane (in which the problem is solved) to the z-plane
(to which the solution will be transferred back). The composite mapping function z = h(ζ)

allows rewriting z-plane formulations in terms of ζ. In fact, the mapping is performed from the
ζ-plane to the z-plane, because the intended image is already there and the formulae should
be mapped to. After the solution process done, the results may be transferred back into the
physical plane again.

The �rst function maps the unit circle (and its exterior) in the ζ-plane into the straight crack
(and its exterior) in w-plane:

w = g(ζ) =
L

4
(ζ + ζ−1) (B.1)

where L is the length of the straight crack in the w-plane. It can be shown how does this
happen by substituting ζ = eiθ = cos(θ) + i sin(θ) (i.e. unit circle equation) into the above
formula, which yields w = L

2 cos(θ).

The second function maps the straight crack (and its exterior) resulted in the w-plane, into
the circumferential crack (and its exterior) in the z-plane:

z = f(w) = Ra exp{i(w − π

2
)} (B.2)

where Ra is crack radius in z-plane. Solving the above for z, considering z = z(rz, θz):

w = (θz +
π

2
)− i ln(

rz
Ra

) (B.3)
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Figure B.1: The successive mapping plan

by which it can be shown that L = 2β. Then (B.1) can be rewritten as:

w = g(ζ) =
β

2
(ζ + ζ−1) (B.4)

Therefore, combining the �rst and second mappings one �nds the composite function which
maps the unit circle (|ζ| = 1) and its exterior into the circumferential crack and the curved
beam (as its exterior) as:

z = f(g(ζ)) = h(ζ) = Ra exp{i[β
2

(ζ + ζ−1)− π

2
]} (B.5)

The h(ζ) function enables transferring analytic functions in z-plane to those in ζ-plane.

On the other hand, solving (B.4) for ζ yields:

ζ =
w ±

√
w2 − β2

β
(B.6)

Substituting (B.3) into the above, ζ can be obtained as a function of z. The equation (B.6)
declares that the relation between ζ and w planes has a dual feature. It can be shown (maybe
using MATLAB plotting functions) that if the plus sign is selected, only the right half of the
rectangle in the w-plane (see Figure B.1) is mapped exterior to the unit circle (and to the right
hand side of the imaginary axis) in the ζ-plane, while the left half of the rectangle is mapped
into the unit circle. Besides, by choosing the minus sign, only left half of the rectangle is
mapped exterior to the unit circle and to left hand side of the imaginary axis while the right
half of the rectangle is mapped into the unit circle. This is why in Figures B.1 and C.1 the
mapped boundary in the ζ-plane is divided into right and left parts.

B.2 Kartzivadze's continuation argument

In close relation to application of conformal mapping to the cracked body problems, the concept
of analytic continuation developed by I. N. Kartzivadze (for the unit circle) and later by N. I.
Muskhelishvili (for the real axis).
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Figure B.2: The unit circle interior, and exterior

Let the function φ(ζ) (in the image plane), to be extended into the interior unit circle (i.e.
inside the crack image) by de�ning:

φ(ζ) = − h(ζ)

h′( 1
ζ )
φ′(

1

ζ
)− ψ(

1

ζ
), for |ζ| < 1 (B.7)

where:

fn(
1

ζ
) = fn(

1

ζ
) (B.8)

The equation (B.7) is called Kartzivadze's continuation (or extension) argument as it causes
the φ(ζ) function continue across into the unit circle.

Taking conjugate from (B.7), and reordering:

ψ(
1

ζ
) = −φ(ζ)− h(ζ)

h′( 1
ζ )
φ′(

1

ζ
), for |ζ| < 1 (B.9)

noting that according to (B.8),

fn(
1

ζ
) = fn(

1

ζ
) (B.10)

one has:

ψ(
1

ζ
) = −φ(ζ)− h(ζ)

h′( 1

ζ
)
φ′(

1

ζ
), for |ζ| < 1 (B.11)

changing the notation by putting:

1

ζ
→ ζ∗ =⇒ ζ → 1

ζ∗
(B.12)

note that if ζ is inside unit circle (i.e. |ζ| < 1), which is so for the equation (B.11), then
1

ζ
≡ ζ∗ is outside unit circle (see Figure(B.2)). Therefore:

ψ(ζ) = −φ(
1

ζ
)−

h( 1
ζ )

h′(ζ)
φ′(ζ), for |ζ| > 1 (B.13)
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Note that |ζ| > 1 means for every point on the body. This result is of extreme importance
from two aspects; �rstly expressing ψ(ζ) in terms of φ(ζ), reduces number of analytic functions
needed to describe the Airy stress function to one (i.e. solely φ(ζ)); and secondly it analytically
makes traction-free conditions on the crack surfaces satis�ed by keeping left hand side of the
force boundary conditions zero on the unit circle which renders the equations automatically
satis�ed (see section 2.2).
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APPENDIX C

THE LAURENT SERIES REPRESENTATION

What is the proper series expansion for the φ(ζ) function? How does stress symmetry with
respect to the imaginary axis a�ect that expansion?

C.1 The Laurent series

According to the Laurent theorem, for any function (e.g. φ(ζ)) that is analytic on an annulus

R, centred at ζ = 0, there exists a unique power series expansion of the form:

φ(ζ) =

+∞∑
n=−∞

anζ
n (C.1)

which converges to that function on the region R, namely a Laurent Series.

Although in the case of cracked curved beam, the outer mapped boundary is not circular;
there is no a priori reason to suspect that the region of convergence of the series could not
be extended over to a it. Hence, it seems possible to approximate the φ(ζ) by a truncated

Laurent series there.

C.2 The e�ect of stress symmetry

Stress symmetry with respect to the imaginary axis requires the stress �eld on the left-half
of the body to mirror that of the right-half. This means that normal stresses (σx and σy) at
−ζ̄ must be respectively equal to those at ζ. Also, with shear stress τ at ζ, there must be −τ
at −ζ̄ (see Figure (C.1)). We are going to see how the above requisition may a�ect the series
expansion form of φ(ζ). In other words, we want to investigate the possibility of taking into
account the stress symmetry of the problem as an innate property of the series expansion such
that it could automatically satisfy the boundary conditions on the axis of symmetry.

Consider Kolosov's stress �eld representation (Appendix A) in the image plane:

σy + σx = 4<{φ
′
(ζ)

h′(ζ)
} (C.2)

σy − σx + 2iτ = 2{h(ζ)
h

′
(ζ)φ

′′
(ζ)− h′′

(ζ)φ
′
(ζ)

[h′(ζ)]2
+ ψ

′
(ζ)}/h

′
(ζ) (C.3)
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According to Kartzivadze's extension argument (Appendix B, section B.2) the ψ(ζ) function
expressed in terms of φ(ζ) by equation B.13, di�erentiating with respect to ζ yields:

ψ
′
(ζ) = −φ′(1

ζ
) + [

h( 1
ζ )·h′′

(ζ)

[h′(ζ)]2
−
h
′
( 1
ζ )

h′(ζ)
] · φ

′
(ζ)−

h( 1
ζ )

h′(ζ)
· φ

′′
(ζ) (C.4)

Name right hand side of equation(C.3) as Ω. Substituting the above relation into Ω and
reordering:

Ω(ζ) = 2{[ h
′′
(ζ)

[h′(ζ)]3
· (h(

1

ζ
)− h(ζ))−

h
′
( 1
ζ )

[h′(ζ)]2
] · φ

′
(ζ) +

h(ζ)− h( 1
ζ )

[h′(ζ)]2
· φ

′′
(ζ)−

φ
′
( 1
ζ )

h′(ζ)
} (C.5)

Name the complex coe�cients of φ
′
(ζ) and φ

′′
(ζ) in the above relation as ω1(ζ) and ω2(ζ)

respectively. It may be shown that:

<{ω1(ζ)} = <{ω1(−ζ)} (C.6)

={ω1(ζ)} = −={ω1(−ζ)} (C.7)

<{ω2(ζ)} = −<{ω2(−ζ)} (C.8)

={ω2(ζ)} = ={ω2(−ζ)} (C.9)

Also:

<{h
′
(ζ)} = <{h

′
(−ζ)} (C.10)

={h
′
(ζ)} = −={h

′
(−ζ)} (C.11)

In the light of these relations, considering equations (C.2) and (C.3) the conditions for stress
symmetry can be formulated as given below:

For σx(ζ) = σx(−ζ) and σy(ζ) = σy(−ζ) to be held:

<{φ
′
(ζ)

h′(ζ)
} = <{φ

′
(−ζ)

h′(−ζ)
} (C.12)

which considering equation (C.10), may be reduced to:
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Figure C.1: The punctured region's symmetry and mirrored shear stress

<{φ
′
(ζ)} = <{φ

′
(−ζ)} (C.13)

also, noting the equation (C.3):

<{Ω(ζ)} = <{Ω(−ζ)} (C.14)

On the other hand, considering equation (C.3), to keep τ(ζ) = −τ(−ζ), it is necessary to have:

={Ω(ζ)} = −={Ω(−ζ)} (C.15)

Thus for stress symmetry conditions to become satis�ed by the form of φ(ζ) function series
expansion, there exist three requirements; namely equations (C.13), (C.14) and (C.15).

Rewriting series expansion (C.1) by separating even and odd exponents of ζ:

φ(ζ) =

+∞∑
n=−∞

[a2nζ
2n + a2n+1ζ

2n+1] (C.16)

one has:

φ
′
(ζ) =

+∞∑
n=−∞

[2n.a2nζ
2n−1 + (2n+ 1)a2n+1ζ

2n] (C.17)

φ
′
(−ζ) =

+∞∑
n=−∞

[−2n.a2nζ̄
2n−1 + (2n+ 1)a2n+1ζ̄

2n] (C.18)

also:
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φ
′′
(ζ) =

+∞∑
n=−∞

[2n(2n− 1)a2nζ
2n−2 + 2n(2n+ 1)a2n+1ζ

2n−1] (C.19)

φ
′′
(−ζ) =

+∞∑
n=−∞

[2n(2n− 1)a2nζ̄
2n−2 − 2n(2n+ 1)a2n+1ζ̄

2n−1] (C.20)

The �rst requirement for the stress symmetry was equation (C.13), which can be written as:

<{φ
′
(ζ)− φ

′
(−ζ)} = 0 (C.21)

substituting C.17 and C.18 into the above equation:

<{
+∞∑

n=−∞
[2n.a2n(ζ2n−1 + ζ̄2n−1) + (2n+ 1)a2n+1(ζ2n − ζ̄2n)]} = 0 (C.22)

since ζ2n−1 + ζ̄2n−1 is always a purely real expression, and ζ2n − ζ̄2n is purely imaginary ; for
the above equation to be satis�ed for every ζ, a2n is to be purely imaginary and a2n+1 must
be purely real. Mathematically, the notation is changed as:

a2n ≡ iA2n (C.23)

a2n+1 ≡ A2n+1 (C.24)

where A2n and A2n+1 are purely real coe�cients of the series expansion.

On the other hand, for the second requirement (equation (C.14)) to be true, there are three
sub-requirements:

<{φ
′
(ζ)} = <{φ

′
(−ζ)} (C.25)

<{φ
′′
(ζ)} = −<{φ

′′
(−ζ)} (C.26)

<{φ′(1

ζ
)} = <{φ′(−1

ζ
)} (C.27)

The �rst one is the same as equation (C.13), and therefore is previously satis�ed.

Substituting (C.19) and (C.20) into (C.26) leads to:

<{
+∞∑

n=−∞
[2n(2n− 1)a2n

purely real︷ ︸︸ ︷
(ζ2n−2 + ζ̄2n−2) +2n(2n+ 1)a2n+1

purely imaginary︷ ︸︸ ︷
(ζ2n−1 − ζ̄2n−1)]} = 0 (C.28)
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which is again satis�ed by considering (C.23) and (C.24).

Before expanding sides of (C.27), note that according to the de�nition (fn(ζ) = fn(ζ)):

φ
′
(
1

ζ
) = φ′(

1

ζ
) (C.29)

and similarly:

φ
′
(−1

ζ
) = φ′(−1

ζ
) = φ′(−1

ζ
) (C.30)

substituting (C.29) and (C.30) into (C.27):

<{φ′(1

ζ
)} = <{φ′(−1

ζ
)} (C.31)

taking conjugate from the sides of (C.31):

<{φ′(1

ζ
)} = <{φ′(−1

ζ
)} (C.32)

Now expanding the sides of (C.32) according to (C.17) and reordering:

<{
+∞∑

n=−∞
[2n.a2n

purely real︷ ︸︸ ︷
(ζ̄1−2n + ζ1−2n) +(2n+ 1)a2n+1

purely imaginary︷ ︸︸ ︷
(ζ̄−2n − ζ−2n) ]} = 0 (C.33)

this equation is also satis�ed by setting (C.23) and (C.24). Thus, up to now it is shown that
σx(ζ) = σx(−ζ) and σy(ζ) = σy(−ζ) is guaranteed.

Finally; equation (C.15) is investigated. It needs a little more carefulness, since the habitual
principles of algebra may mislead the analysis with complex variables.

First consider the term ω1(ζ).φ
′
(ζ) in C.5. Noting equations (C.6), (C.7) and (C.13); for the

imaginary part of this term to change sign by converting ζ to −ζ:

={φ
′
(ζ)} = −={φ

′
(−ζ)} (C.34)

must be held. Now consider the term ω2(ζ).φ
′′
(ζ); noting equations (C.8), (C.9) and (C.25),

for its imaginary part to change sign at symmetrical points with respect to the imaginary axis:

={φ
′′
(ζ)} = ={φ

′′
(−ζ)} (C.35)

is a must. Lastly, for the term φ′( 1
ζ )/h

′
(ζ), considering (C.10), (C.11) and (C.27):
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={φ′(1

ζ
)} = −={φ′(−1

ζ
)} (C.36)

therefore the third requirement is broken into three sub-requirements; namely equations
(C.34), (C.35) and (C.36).

Expanding (C.34), by using (C.17) and (C.18):

={
+∞∑

n=−∞
[2n.a2n

purely imaginary︷ ︸︸ ︷
(ζ2n−1 − ζ̄2n−1) +(2n+ 1)a2n+1

purely real︷ ︸︸ ︷
(ζ2n + ζ̄2n)]} = 0 (C.37)

Expanding (C.35), by using (C.19) and (C.20):

={
+∞∑

n=−∞
[2n(2n− 1)a2n

purely imaginary︷ ︸︸ ︷
(ζ2n−2 − ζ̄2n−2) +2n(2n+ 1)a2n+1

purely real︷ ︸︸ ︷
(ζ2n−1 + ζ̄2n−1)]} = 0 (C.38)

On the other hand, substituting (C.29) and (C.30) into (C.36):

={φ′(1

ζ
)} = −={φ′(−1

ζ
)} (C.39)

taking conjugate:

={φ′(1

ζ
)} = −={φ′(−1

ζ
)} (C.40)

Expanding (C.40), making use of (C.17) and (C.18):

={
+∞∑

n=−∞
[2n.a2n

purely imaginary︷ ︸︸ ︷
(ζ
−2n−1 − ζ−2n−1)−(2n+ 1)a2n+1

purely real︷ ︸︸ ︷
(ζ−2n−2 + ζ̄−2n−2)]} = 0 (C.41)

It is obvious that a2n≡iA2n and a2n+1≡A2n+1 do also satisfy the sub-requirements (C.37),
(C.38) and (C.41).

All of the three general conditions (C.13), (C.14) and (C.15) for the stress symmetry with

respect to the imaginary axis are shown to be held by the arguments (C.23) and (C.24). Since
a truncation of the Laurent series is to be used, (C.1) can be rewritten as:

φ(ζ) =

N∑
n=−M

[iA2nζ
2n +A2n+1ζ

2n+1] (C.42)

where M and N are non-negative integers and A2n and A2n+1 are purely real. The mirror

characteristic of the stress components with respect to the imaginary axis is built-into the
φ(ζ) function series expansion form.
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APPENDIX D

PURE BENDING OF A CURVED BEAM

In some problems of plane elasticity in the polar coordinates, the stress distribution is obviously
the same in all radial cross sections. Considering these θ-independent cases, one may �nd [10]
that the biharmonic equation in its polar form can be reduced to an ordinary di�erential
equation, which its general solution is of the form:

U = A ln (r) +Br2 ln (r) + Cr2 +D (D.1)

where U is the Airy stress function and A,B,C and D are constants of integration and are to
be determined from the boundary conditions.

D.1 The equivalent stress distribution

The problem of curved beam under pure bending is one of those cases which is natural to expect
stress θ-independence. Applying the boundary conditions (noting that the force equilibrium
condition is satis�ed automatically by the chosen form of (D.1)):

σr(r) = 0, (for r = R1 and r = R2) (D.2)

b

∫ R2

R1

rσθ(r)dr = −M (D.3)

σrθ(r) = 0, (on whole boundary) (D.4)

to (A.32) equations in their polar form, A,B,C and D, and thereby U are obtained [10]; then
one has:

σr(r) = − 4M

NGb
[
R2

1R
2
2

r2
ln(

R2

R1
) +R2

2 ln(
r

R2
) +R2

1 ln(
R1

r
)] (D.5)

σθ(r) = − 4M

NGb
[−R

2
1R

2
2

r2
ln(

R2

R1
) +R2

2 ln(
r

R2
) +R2

1 ln(
R1

r
) +R2

2 −R2
1] (D.6)

σrθ(r) = 0 (D.7)

where:
NG = (R2

2 −R2
1)2 − 4R2

1R
2
2(ln(

R2

R1
))2 (D.8)

and b stands for depth in z-direction. This solution is due to H. Golovin. A normal stress
distribution as of (D.6) at the ends of the beam produces a pure bending couple −M .
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Figure D.1: The opening couple and its equivalent stress distribution on the boundary

D.2 Force resultants

Knowing the stress distribution at the ends of the beam, it becomes possible to obtain force
resultant vector acting on any arbitrary segment there:

(Fx + iFy)on AB = b.

∫ B

A

[Tx(s) + iTy(s)]ds (D.9)

where Tx(s) and Ty(s) are stress traction vector components and s represents surface of the
boundary, which in the present case coincides with the polar coordinate r.

Considering Figure (D.2):
Tx(s) = −σθ(r). sin(−π

2
+ α) (D.10)

Ty(s) = σθ(r). cos(−π
2

+ α) (D.11)

where α is half-arc angle of the beam and here equals pi/4 (note that −π/2 + α is a negative
value). Substituting these into (D.9):

(Fx + iFy)on AB = b.[− sin(α− π

2
) + i cos(α− π

2
)].

∫ B

A

σθ(r)dr (D.12)

Aside, substituting Golovin's solution (D.6), and integrating:∫ B

A

σθ(r)dr = − 4M

NGb
[R2

1r ln(
R1

r
) +R2

2r ln(
r

R2
) +

R2
1R

2
2

r
ln(

R2

R1
)]rBrA (D.13)

substituting this into the previous, b is eliminated:

(Fx + iFy)on AB = −[cos(α) + i sin(α)].

4M

NG
[R2

1r ln(
R1

r
) +R2

2r ln(
r

R2
) +

R2
1R

2
2

r
ln(

R2

R1
)]rBrA (D.14)
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Figure D.2: The stress traction vector on the moment-exerted end of the beam

Figure D.3: The force components on the moment-exerted end of the beam

where M is the absolute value of the exerted couple and NG is given by (D.8).

Considering the bell shape form of the expression R2
1r ln(R1

r )+R2
2r ln( r

R2
)+

R2
1R

2
2

r ln(R2

R1
) (when

plotted with respect to r), and comparing this with Figure (D.2) reveals the requirement of
rB > rA namely the necessity of moving in the positive direction when one makes use of
(D.14); which otherwise needs to be multiplied by −1 to produce force values with compatible
sign.

D.3 Moments

Finally we come by the moment produced on a segment AB of the beam end (Figure (D.3)):
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(Mz)on AB = |xc|.Fy + |yc|.Fx (D.15)

where |xc| and |yc| are absolute values of moment arms about the origin. Obviously Fx and
Fy obtained in the previous section (by equation(D.14)) can be used again. Putting the
force components with their sign into the above relation, it may be checked that the formula
produces moment values compatible with the up to now applied sign convention.
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APPENDIX E

ANSYS PROCEDURES

In order to evaluate the MMC method solution, the problem of a circumferential crack in

an isotropic curved beam under pure bending modelled and analysed by ANSYS release 14.0
Mechanical APDL (from which ANSYS Workbench is descended). A �nite element model is
developed for the crack arc half angle, β, equal to 25◦. The crack is positioned at the middle
of the beam thickness (ha = 0.5). The beam inner and outer radii are R1 = 15mm and
R2 = 45mm respectively. The results are given and discussed in chapter 3. This appendix
plans to describe the procedures followed to come up with the results of the EFA. To begin
modelling, two primary steps are to be taken: determining the element type and inputting
the mechanical properties.

The recommended element type by ANSYS documentation for a 2-D fracture model is PLANE183,
the 8-node quadratic solid. The speci�ed element type will be used for meshing. Considering
the dimensions of the beam, a plane state of stress is assumed. The plexiglass (PMMA) me-
chanical properties are given to the software although these are not going to a�ect the results
of the stress analysis according to the theory of elasticity.

The �rst step in the preprocessing stage is to specify the element type:

ANSYS Main Menu>Preprocessor>Element Type>Add/Edit/Delete

in the Element Types dialog box push the Add button. In the Library of element types

dialog box, in the left hand side list select Solid and then on the right hand side select 8
node 183. The PLANE 183 element type is de�ned in the Element Types dialog box. Push
the Options button. In the opening dialog box for Element Shape choose Quadrilateral, for
Element behavior select Plane strs w/thk (i.e. plane state of stress assumption with specifying
thickness) and for Element formulation let the Pure displacement remain. Push Ok and Close

buttons.

Now the beam thickness in z-direction (which contrary to ANSYS jargon is named here as
width of the beam) can be speci�ed without necessarily making a 3-D model:

ANSYS Main Menu>Preprocessor>Real Constants>Add/Edit/Delete

in the Real Constants dialog box push the Add button. In the Element type for real constant
dialog box push the Ok button. In the opening dialog box set THK (thickness) to 0.01m.
Push the Ok and Close buttons.

The second step is to input the mechanical properties of the model. One may enter the
mechanical properties of plexiglass (PMMA) as EX = 2.4E + 009Pa for Young modulus and

47



PRXY = 0.28 for Poisson ratio in the dialog box appearing by:

ANSYS Main Menu>Preprocessor>Material Props>Material Models

and selecting Structural, Linear, Elastic and Isotropic.

E.1 Modelling

To model the crack, it is not acceptable to use a notch or wedge at the crack tip. Rather, the
discontinuity is to be ended by a sudden integration of the crack surfaces. In Figure E.1 the
model constructed for the half-beam is shown. For the case under study, making the crack
requires the Areas (i.e A1, A2, A3 and A4 in Figure E.1) to be Glued at all their common
boundaries other than where the crack is planned to exist. Specifying the geometry starts
with determining the Keypoints, note that two overlying keypoints should be speci�ed on the
intersection of the crack surfaces and the �imaginary�axis:

ANSYS Main Menu>Preprocessor>Modelling>Create>Keypoints>In Active CS

then creating the Arcs, note that two overlying arcs should be speci�ed as the surfaces of the
crack. They start from two distinct (but overlying) keypoints which lay on the symmetry axis
and end at the same keypoint at the crack tip. The procedure for each arc is:

ANSYS Main Menu>Preprocessor>Modelling>Create>Lines>Arcs>By End KPs & Rad

select both of the two keypoints from which the arc passes, click apply button, select the
arc-center keypoint (which is the origin of the coordinate system), and then click apply again.
In the dialog box enter the arc radius.

The straight lines can be speci�ed by:

ANSYS Main Menu>Preprocessor>Modelling>Create> Lines>Lines>In Active Coord

Then, selecting the corresponding lines the areas can be speci�ed by:

ANSYS Main Menu>Preprocessor>Modelling>Create> Areas>Arbitrary>By Lines

and the �nal stage of modeling is the gluing procedure for the areas:

ANSYS Main Menu>Preprocessor>Modelling>Operate> Booleans>Glue>Areas

note that the areas A1 and A2 (Figure E.1) are not to be glued (as the �nal part of the trick
planned to model the crack).

E.2 Meshing

One of the ways by which user can change the automatic mesh produced by ANSYS (possibly
for the purpose of generating a �ner mesh) is to determine the number of divisions on the
lines constructing the modelled body:

ANSYS Main Menu>Preprocessor>Meshing>Meshtool
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Figure E.1: The half-beam ANSYS model

then from Size Controls section, push the set button for Lines. By determining number of
divisions (NDIV ) the element nodes can be placed in equal distances from each other. It is
specially helpful when the loading is to be applied as a force distribution on the nodes. In the
case study, NDIV is set to 8 for L1 and L5 (Figure E.1) and to 16 for the others.

The crack tip meshing should be considered carefully. According to ANSYS Help, quadratic
quarter-point (singular) elements are to be used. It automatically generates two rows of these
elements around the crack tip by commanding:

ANSYS Main Menu>Preprocessor>Meshing>Size Cntrls>Concentrat KPs>Create

and choosing the crack tip keypoint. In the dialog box, DELR determines the radius of the �rst
(inner) row of the singular elements around the crack tip (it was set to 0.1mm). According to
the Help it should be smaller than the length of the crack divided by eight. RRAT is the ratio
of the di�erence between radii of outer and inner rows of the singular elements to the radius
of the inner row of the elements around the crack tip (it was set to 0.5, which means that
the radius of the outer element row is 3/2 times bigger than the inner). NTHET speci�es the
number of singular elements in each 90◦ around the crack tip in the circumferential direction.
Again according to the Help, roughly one element every 30◦ or 40◦ is recommended. This
means that NTHET should not be more than three(it was set to 3). Finally KCTIP has two
options. Due to the tutorial, quarter point (1/4pt) skewed element should be selected, for
which the midside nodes are placed at the quarter points. After entering the values push the
apply button and then the Mesh button on the Mesh tool dialog box for mesh to be generated.
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Node No. Fx Fy Node No. Fx Fy

1 58.27 -58.27 17 -9.06 9.06
2 50.22 -50.22 18 -11.20 11.20
3 43.15 -43.15 19 -13.24 13.24
4 36.88 -36.88 20 -15.18 15.18
5 31.27 -31.27 21 -17.03 17.03
6 26.21 -26.21 22 -18.81 18.81
7 21.62 -21.62 23 -20.51 20.51
8 17.42 -17.42 24 -22.14 22.14
9 13.58 -13.58 25 -23.71 23.71
10 10.02 -10.02 26 -25.22 25.22
11 6.73 -6.73 27 -26.68 26.68
12 3.67 -3.67 28 -28.09 28.09
13 0.80 0.80 29 -29.45 29.45
14 -1.89 1.89 30 -30.77 30.77
15 -4.41 4.41 31 -32.04 32.04
16 -6.80 6.80

TableE.1: The force components applied to the nodes (in Newtons)

E.3 Applying the boundary conditions

Taking advantage of the stress symmetry, half of the beam is modelled. This requires zero
horizontal displacement for the nodes on the axis of symmetry:

ANSYS Main Menu>Solution>Define Loads>Apply>Structural>Displacement>

(Symmetry B.C.)>On Nodes

In addition, to prevent the rigid body motion (which causes trivial solutions), the lowest node
on the symmetry boundary is to be �xed in the vertical direction (Figure E.2).

To apply loading in terms of forces on the nodes of the moment-exerted boundary, command:

ANSYS Main Menu>Solution>Define Loads>Apply>Structural>Force/Moment>On Nodes

The force vector components are given in the table E.1. The moment-exerted boundary is
divided to 32 equal segments and therefore includes 65 (corner and midside) nodes (Figure E.2).
Although there is no ban on force application on the midside nodes, the force components are
applied to the 31 corner nodes, starting from the corner node immediately above R1 (namely
node number 1 in the table) and ending at the corner node right before R2. These values are
obtained from multiplying σθ distribution given by Golovin (Appendix D) into the area of the
boundary division on which it acts (and is equal to b ∗ (R2 − R1)/16, where b is the beam
width). Applying point forces on the nodes at the corners avoided.

A simpler way to apply the the moment to the curved part of the beam requires modelling of
the whole L-shaped beam as in the Figures 1.1 or 1.3 (in the later ignore the bonded surface).
Then to produce pure bending moment for the curved section of the beam it becomes possible
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Figure E.2: The boundary conditions applied on the body and a close view of the crack-tip
vicinity mesh, where two rows of singular elements are generated

to apply two uniform pressure (stress) distributions on the lines L17 and L24 (Figure E.3).
Since the handle of the beam is divided to four parts of 50mm in length and considering
that the beam width is 0.1mm, the value of the pressure to produce a 10Nm moment can be
calculated as 0.2MPa. This modelling strategy not only eliminates the need for node by node
application of the force components but also provides a more accurate boundary condition
de�nition in terms of loading. By commanding:

ANSYS Main Menu>Solution>Define Loads>Apply>Structural>Pressure>On Lines

picking the lines and pressing Ok button, the pressure value can be inserted to the opening
dialog box.

E.4 Solving and plotting

After meshing the model and applying the boundary conditions the problem is ready to be
solved by:

ANSYS Main Menu>Solution>Solve>Current LS

After the solution is done, a range of plotting options for stress �eld becomes available, among
which exists Stress Intensity (it may not be confused with the stress intensity factor, SIF). AN-
SYS documentation de�nes Stress Intensity as 2 ∗ τmax. Thus do not concern if the maximum
shear expression does not appear in the lengthy list of options. After commanding:

ANSYS Main Menu>General Postproc>Plot Results>Contour Plot>Nodal Solu

in the Contour Nodal Solution Data dialog box, click the Stress folder and then the Stress
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Figure E.3: An alternative �nite element modelling strategy

intensity and push the Ok button.

E.5 Reading and listing the stress values

To read the stress component values at a speci�ed point in the Cartesian coordinates, com-
mand:

ANSYS Main Menu>General Postproc>Query Results>Subgrid Solu

In the Query Subgrid Solution Data dialog box choose Stress from the left hand side list and
select SX, SY or SXY to read σx, σy and σxy. Note that also the node coordinates can be red
from the picking (Query Subgrid Results) pallet. ANSYS only allows reading the stress values
at the element corners (and not on the midside nodes).

On the other hand, to list the stress component values of a certain set of nodes, �rstly it is
required to de�ne a path by commanding:

ANSYS Main Menu>General Postproc>Path Operations>Define Path>By Nodes

then to specify the path by selecting the nodes. The path may be named arbitrarily. The next
step is to determine the parameters that you want to be extracted into the list:

ANSYS Main Menu>General Postproc>Map onto Path

in the opening dialog box, from the left hand side menu select stress and from the right hand
side menu, choose SX, SY and SXY (which are ANSYS symbols for σx, σy and σxy) by pressing
Apply button each time. Finally, command:
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ANSYS Main Menu>General Postproc>List Results>Path Items

in the openin window, select the path name and the items XG, YG, SX, SY and SXY from the
menus. Push the Ok button to produce the list.

In order to export the list to MATLAB, �rst the list may be copied and pasted into an Excel
sheet. The reason is that the list should be prepared as a matrix, so the adhered columns are
to be separated and also text parts are to be removed. The Excel trick to do these tasks is
described here. Click on the downward arrow on the Paste Options tag that appears nearby
the pasted data (it has a suitcase icon shape). By clicking Use Text Import Wizard in the
Original data type section, select Fixed width option. Click the next button. In the Data

preview section you can separate the adhered columns which could not be recognized by Excel
as distinct columns. Check for the possible errors in the lower rows. Then by right clicking
on the selected text parts and selecting delete option it is possible to eliminate texts besides
shifting the cells up. Finally the matrix is ready to be pasted to MATLAB variable editor to
be saved as MATRIX in a MAT-�le.

To transform the stresses in order to be compared with that of MMC method the following
M-�le is developed:

%% A MATLAB M-file to transform and plot ANSYS-extracted nodal stresses

%-----------------------------------------------------------------------------

%Before running the code...

%the MATRIX MAT-file is to be imported to Workspace!

List=MATRIX;

%The List matrix has 5 columns.

%The 1st column includes x coordinate of the path nodes.

%The 2nd column includes y coordinate of the path nodes.

%The 3rd column includes Sigma_x value at the path nodes.

%The 4th column includes Sigma_y value at the path nodes.

%The 5th column includes Sigma_xy value at the path nodes.

LL=length(List);

List(:,3:5)=List(:,3:5)/10^6;%Convert stress units from Pa to MPa

GS=zeros(LL,6);%Geometry and (transformed) Stress matrix

for i=1:LL

%Geometrical parameters:

GS(i,1)=sqrt(List(i,1)^2+List(i,2)^2);%Radial coordinate of nodes

GS(i,2)=atan(List(i,2)/List(i,1));%Angular coordinate of nodes

GS(i,3)=GS(i,2)-pi/2;%Stress transformation angle (negative)

%Transformed stresses:

%Sigma_r

GS(i,4)=1/2*(List(i,3)+List(i,4))...

-1/2*(List(i,3)-List(i,4))*cos(2*GS(i,3))...

-List(i,5)*sin(2*GS(i,3));

%Sigma_theta

GS(i,5)=1/2*(List(i,3)+List(i,4))...

+1/2*(List(i,3)-List(i,4))*cos(2*GS(i,3))...

+List(i,5)*sin(2*GS(i,3));

%Sigma_rtheta

GS(i,6)=-1/2*(List(i,3)-List(i,4))*sin(2*GS(i,3))...
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+List(i,5)*cos(2*GS(i,3));

end

GS(:,2)=-GS(:,2);%Due to inversion of y-axis direction in ANSYS

%(in the MMC method y-axis is assigned downwards)

fig1=figure(1);

handle1=axes('fontsize',25);

set(fig1,'CurrentAxes',handle1)

%Sigma_r

plot(GS(:,2)*180/pi,GS(:,4),'-.red','LineWidth',3)

hold on

%Sigma_th

plot(GS(:,2)*180/pi,GS(:,5),'green','LineWidth',3)

hold on

%Sigma_rth

plot(GS(:,2)*180/pi,GS(:,6),':blue','LineWidth',3)

hold on

grid on

xlabel('\theta^{\circ}','fontsize',30)

ylabel('Stress (MPa)','fontsize',30)

set(gca,'XTick',-90:5:-45,'YTick',-20:5:30)

handle2=legend('\sigma_r','\sigma_\theta','\sigma_{r\theta}',...

'Location','Northwest');

set(handle2,'fontsize',30);

%-----------------------------------------------------------------------------

The code results are shown in Figure 3.6 for a sample case together with the stress components
calculated by the MMC method.

E.6 Calculating SIFs via displacement extrapolation method

To use displacement extrapolation method [11] o�ered by ANSYS to calculate SIF values [12],
there are three steps to be taken after the solution is done. The method is limited to linear
elastic problems with a homogeneous, isotropic material near the crack region. Before starting
to take the steps, plot the deformed shape of the body by commanding:

ANSYS Main Menu>General Postproc>Plot Results>Deformed Shape

select the Def shape only option. Then the �rst step is to de�ne a local crack-tip coordinate
system:

ANSYS Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS

>By 3 Nodes

the picker pallet appears. Three nodes should be selected to de�ne a local coordinate system
positioned at the crack tip. These nodes are to be selected in a certain order. First of all, pick
the crack-tip node. ANSYS perceives this as determination of the local coordinate system
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Figure E.4: The local x-y coordinate system and the path de�nition order

origin. Secondly, pick the closest node in the direction of (here tangential to) the crack surface
at the crack tip. This will assign the local x-axis. Thirdly, pick the nearest node to the local
origin in the direction perpendicular to the crack surface at the crack tip which speci�es the
local y-axis. Be careful not to choose the nodes in an arbitrary order.

In the second step a path is de�ned along the crack surface(s):

ANSYS Main Menu>General Postproc>Path Operations>define Path>By Nodes

again the �rst to be picked is the node at the crack-tip. A total number of �ve nodes are to
be picked in the order shown in the Figure E.4. In the opening dialog box name the de�ned
path.

Finally, in the third step calculate the SIF values by commanding:

ANSYS Main Menu>General Postproc>Nodal Calcs>Stress Int Factr

In the opening stress Intensity Factor dialog box, at the KPLAN �eld from the drop-down
menu select Plane stress and at the KCSYM �eld select Full-crack model. Note that the
symmetry concept aimed in the other option of the menu has nothing to do with the stress
symmetry according to which only half of the beam is considered. Pressing the Ok button
KCALC window displays SIF values (as KI and KII), plus some other details such as the
path node numbers and mechanical properties of the body.
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