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ABSTRACT 

 

QUANTIFICATION AND ANALYSIS OF UNCERTAINTIES IN 

RESERVOIR MODELING USING MULTIPLE-POINT GEOSTATISTICS 

 

 

Fadlelmula Fadlelseed, Mohamed Mohieldin 

  Ph.D., Department of Petroleum and Natural Gas Engineering 

                        Supervisor      : Prof. Dr. Serhat Akin 

                        Co-Supervisor: Prof. Dr. H. Şebnem Düzgün 

 

 

December 2012, 171 pages 

 

This study analyzed and quantified uncertainties of reservoirs modeled using 

multiple-point geostatistics (MPG). The uncertainty types analyzed herein are 

training image (TI) and hard data (porosity) uncertainties.  

Aiming at studying the impact of TI uncertainty, this study provides a tool to 

parameterize TIs having channel structure by a mathematical (Sine) function so that a 

TI is a function of four parameters. These parameters are channels’ number, waves’ 

number in each channel, amplitude level of waves, and Z-direction slices’ number. 

These parameters are used to generate 2D and 3D TIs to remodel a reservoir utilizing 

a proposed MPG methodology.  
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Analysis of cumulative oil production values showed that TI having 5 Z-direction 

slices and 3 channels with 2 medium or low amplitude level waves or more produced 

representative and reliable reservoir models. Thus, these values are set as thresholds 

of the TI’s parameters. Additionally, increasing the number of channels and waves of 

a TI decreased the uncertainty of the simulated reservoir. However, increasing the 

number of Z slices beyond 5 and the amplitude level had no effect on the uncertainty.  

Analysis of the original and recoverable oil in place (OOIP and ROIP) values showed 

that the effect of channel number and amplitude level are random. However, the 

number of waves is directly proportional to OOIP and ROIP values. Moreover, 

utilization of the thresholds defined decreased the uncertainty range of OOIP and 

ROIP prediction. 

Finally, the investigation of hard data uncertainty revealed that porosity data 

uncertainty has great impact on the simulated reservoir.  

 

 

 

 

 

Keywords: Multiple-Point Geostatistics, Training Image Uncertainty, Hard Data 

Uncertainty, Uncertainty Quantification  
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ÖZ 

 

ÇOK NOKTALI JEOİSTATİSTİK KULLANARAK REZERVUAR 

MODELLERİNDE BELİRSİZLİĞİN ANALİZİ VE ÖLÇÜLMESİ 

 

 

      Fadlelmula Fadlelseed, Mohamed Mohieldin 

                           Doktora, Petrol ve Doğal Gaz Mühendisliği Bölümü 

                           Tez Yöneticisi          : Prof. Dr. Serhat Akin 

                           Ortak Tez Yôneticisi: Prof. Dr. H. Şebnem Düzgün 

 

 

Aralık 2012, 171 sayfa 

 

Bu çalışmada, çok noktalı jeostatistik teknikler kullanılarak modellenen 

rezervuarların belirsizlikleri analiz edilmiş ve ölçülmüştür. Analiz edilen belirsizlik 

tipleri başlıca eğitim görüntüsü ve sabit veri (gözeneklilik) belirsizlikleridir. 

Bu çalışma, eğitim görüntüsünün belirsizliğinin etkisini çalışmak üzere, matematiksel 

(Sinüs) fonksiyonu kullanarak kanal yapısındaki eğitim görüntüsünü parameter-

lendiren bir araç sunmaktadır. Böylece, eğitim görüntüsünün yapısı dört parametre ile 

kontrol edilmektedir. Bu parametreler kanal sayısı, kanaldaki dalga sayısı, dalganın 

yükseklik seviyesi ve görüntünün Z eksenindeki dilimlerinin sayısıdır. Bu 

parametreler kullanılarak 2 ve 3 boyutlu eğitim görüntüleri oluşturulmuştur. 
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Çalışmada çok noktalı bir jeostatistik metodu önerilmiş ve oluşturulan eğitim 

görüntüleri kullanılarak önceden modellenen bir rezervuar tekrar modellenmiştir.  

Kümülatif petrol üretim değerlerinin analizi sonucunda, en az 5 Z ekseni dilimli ve 2 

orta ya da düşük yükseklik seviyesindeki dalgaya sahip 3 kanallı eğitim görüntüsünün 

temsili ve güvenilir rezervuar modeli ürettiği görülmüştür. Bulunan bu değerler, 

eğitim görüntülerinin parametrelerininde eşik değeri olarak kullanılmıştır. Ayrıca, 

eğitim görüntülerinin kanal sayısını artırmak ya da dalga sayısını artırmak rezervuar 

modelinin belirsizliğini düşürmüştür. Ancak, Z ekseni dilimlerini 5 üzerine çıkarmak 

ve yükseklik seviyesini artırmak rezervuar belirsizliği üzerinde herhangi bir etki 

yaratmamıştır. 

Yerinde Orjinal ve Yerinde Üretilebilir Petrol (YOP ve YÜP) analizleri sonucunda 

kanal sayısı ve yükseklik seviyesinin rastgale olduğu tespit edilmiştir. Ancak, dalga 

sayısı YOP ve YÜP değerleri ile doğrudan ilişkili bulunmuştur. Ayrıca, tanımlanan 

eşik değerlerinin kullanımı tahmin edilen YOP ve YÜP değerlerinin belirsizlik 

aralığını azaltmıştır.  

Son olarak, sabit veri belirsizliği analizi sonucunda gözeneklerdeki belirsizliğin 

modellenen rezervuar üzerinde büyük etkiye sahip olduğu görülmüştür. 

 

 

 

Anahtar Kelimeler: Çok Noktalı Jeostatistik, Eğitim Görüntüsünün Belirsizliği, Sabit 

Veri Belirsizliği, Belirsizlik Ölçülmesi 
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CHAPTER 1 

INTRODUCTION 

 

The scarcity of geological subsurface information is one of the most significant 

sources of uncertainty in a reservoir modeling process. As a result, stochastic 

simulation techniques are developed to reduce such kind of uncertainty. These 

techniques generate multiple equiprobable reservoir models while maintaining the 

geological structure. The traditional geostatistical modeling techniques use the 

variogram model to represent the spatial heterogeneity or continuity and the kriging 

for spatial interpolation. Thus, these traditional techniques are limited to the 

reproduction of two-point statistics. However, modeling complex geological 

structures such as channels, which are curvilinear formation meandering in 3D space, 

requires multiple-point correlation. Thus, the traditional two-point based 

geostatistical modeling techniques, such as the sequential indicator simulation 

(Deutsch and Journel, 1998), fail to capture complex geological structures (Journel, 

1992; Caers and Journel, 1998; Strebelle, 2000; Strebelle and Journel, 2001; Caers 

and Zhang, 2004). On the contrary, the multiple-point geostatistics (MPG) simulation 

technique proposed by Guardiano and Srivastava (1993) is proven to be a powerful 

technique in modeling such complex structures (Journel, 2005). However, the 

technique of Guardiano and Srivastava (1993) was central processing unit (CPU) 

demanding, in other words, it was processor demanding. Thus, MPG was not widely 

used until the implementation of the search tree by Strebelle (2000). In addition, 

Strebelle (2000) developed the single normal equation simulation (SNESIM) 

algorithm, a non-iterative sequential simulation algorithm that obtains multiple-point 

statistics from conceptual geological models called “training images” and anchors 

them to the subsurface well-log, seismic and production data (Feyen and Caers, 

2006).  
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In the last two decades, a lot of work was conducted to improve MPG simulation 

techniques. As a result, different MPG algorithms were developed. Some of these 

Algorithms are SNESIM (Strebelle, 2000; Strebelle, 2002), SIMPAT (Arpat, 2005; 

Arpat and Caers, 2007), FILTERSIM (Zhang, 2006), IMPALA (Straubhaar et al, 

2011), and CCSIM (Tahmasebi et al, 2012). Among these algorithms SNESIM, 

which models only categorical variables, is used in this study.  

A training image (TI) is defined as the representation of expected subsurface 

heterogeneities believed to exist in the area being modeled and not necessarily carry 

any locally accurate information (Strebelle, 2000; Strebelle and Journel, 2001; Arpat 

and Caers, 2007). However, a training image should reflect a spatial continuity style 

similar to the actual phenomenon (Arpat and Caers, 2007). Training images should be 

stationary, i.e. the spatial patterns are reasonably homogeneous all over the training 

image (Strebelle and Zhang, 2005; Maharaja, 2008). However, some implementations 

of MPG provided tools to use non-stationary training images (Caers and Zhang, 

2004; Arpat, 2005; Liu 2006; Strebelle, 2006; Wu, 2007; de Vries et al., 2009). 

training images are obtained from nearby field analogues, outcrop photographs as 

well as interpretation of actual data such as cores, well logs, and seismic (Strebelle 

and Remy, 2005; Boucher, 2009; Barrera et al, 2005; Okabe and Blunt, 2005). In 

addition, training images are hand-drawn by geologists, then numerically digitized 

(Strebelle and Remy, 2005) or created using unconditional object-based modeling 

techniques (Strebelle and Remy, 2005; Arpat and Caers, 2007).  

Selection of the right training image that represents the target spatial phenomenon is 

crucial for an effective use of MPG simulation technique (Strebelle, 2002; Boisvert et 

al., 2007). Although, a lot of work was conducted to improve MPG simulation 

techniques the use of the optimum training image remains a challenge. The 

uncertainty in the selection of the most representative training image for the data 

under consideration is addressed by Boisvert et al. (2007) and Arslan (2005). 

However, the construction of training images involves uncertainty too. Strebelle 
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(2000) has investigated some parameters that cause such type of uncertainty. He 

studied the sensitivity of MPG simulation to the size of the training image, width of 

the structure displayed by the training image, and the rotation of the training image. 

Nevertheless, the literature addressing the issue of training image construction and 

the uncertainty associated is very limited.  

1.1 Dissertation Outline 

This dissertation is divided into seven chapters. In Chapter 2, a brief literature review 

about the limitation of the traditional two-point based geostatistical modeling 

techniques is provided. Then, the Multiple-point geostatistics (MPG) simulation 

technique and its Algorithm, the Single Normal Equation Simulation (SNESIM) are 

introduced. After that, summary of the past work related to MPG simulation is 

presented.  Following that, brief information about the uncertainty in hard data, its 

sources, and the way it is analyzed is presented.  

The main objectives of this research are provided in Chapter 3. Next, a detailed 

description of the methodology followed in this dissertation is presented in Chapter 4. 

This chapter includes four main parts. The first part covers the method followed in 

the generation of an original hypothetical reservoir using a proposed MPG modeling 

methodology. The second part provides information about a sensitivity analysis of the 

proposed method. The third part explains the steps followed in the construction of 

training images and the modeling of their corresponding reservoirs. In the last part 

hard data uncertainty analyzing method is presented. The results of this work and 

their discussions are offered in Chapter 5. In Chapter 6 the main conclusions of the 

study are drawn. Finally, some recommendations for future work are provided in 

Chapter 7. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

In the past, reservoirs were modeled by simplistic layer cake models. These models 

were not producing accurate flow response predictions. Afterward, regression 

methods were developed to represent reservoir layers by interpolating the data 

recorded from wells (Strebelle, 2000). Among these the kriging method is the most 

popular one. It depends on a prior model of spatial correlation called the variogram 

model. However, in reservoir modeling the kriging method have smoothing problem 

which may results in overestimating the low petrophysical values and under-

estimating the high ones (Arpat, 2005). 

Aiming at correcting the smoothing effect of kriging, Journel (1974) introduced the 

stochastic simulation. This simulation allowed the reproduction of spatial variance 

predicted by the variogram model. Based on that a number of simulation algorithms 

including the sequential simulation were developed (Barrera, 2006). However, these 

variogram-based techniques fail to produce complex spatial patterns such as 

curvilinear structures and fractured systems because they are based on the correlation 

of only two points (Caers and Zhang, 2004).  Figure 2.1 shows a good example of 

such failure since three different structures resulted in three similar variograms. 
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Figure 2. 1. Three different geological heterogeneities result in three similar variograms 
(Caers and Zhang, 2004) 

 

From another point of view, there are two main techniques to model a spatial 

distribution, namely, pixel-based and object-based techniques. The former simulate 

each node of reservoir model one pixel at a time and all the unsampled nodes are 

visited sequentially along a random path. Then, based on both hard and soft data, the 

conditional probability distribution function of a given node is estimated. The 

simulated value at each node is recorded as a hard data for the simulation of the 

subsequent unknown nodes. These pixel-based techniques are very flexible and easy 

to condition to any conditional data since they simulate pixel by pixel. However, 

most of the pixel-based techniques fail to represent complex geological structures 

such as meandering channels because they are based on the traditional two-point 

variogram model (Liu, 2003). The most notable pixel based techniques known to 

produce complex geological structures are: simulated annealing (Farmer, 1988; 

Deutsch, 1992), post-processing iterative algorithm (Srivastava, 1992), stochastic 

1 
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simulation using neural networks (Caers and Journel, 1998), and extended normal 

equations algorithm (Guardiano and Srivastava, 1993). However, these techniques 

have other shortcomings, such as the convergence problems and extreme random 

access memory (RAM) and CPU demand, which render them impractical (Strebelle, 

2000).  

On the other hand, the object-based techniques introduced by Stoyan et al. (1987), 

and Haldorsen and Damsleth (1990) perform a simulation by adding different 

geobodies one after another to the simulated field. Every added geobody is accepted, 

rejected, or modified based on some objective functions. The object-based techniques 

are proven to be good at the reproduction of crisp shapes which are used in reservoir 

characterization since they are based on parameters provided by prior vision of the 

questioned geobody (Liu, 2003). However, these techniques are time consuming and 

often CPU demanding especially when intensive well data have to be honored as they 

are iterative techniques (Eskandari, 2008; Liu, 2003; Strebelle, 2000). Moreover, the 

algorithms used for the object-based techniques have to be modified when dealing 

with different types of objects or reservoirs because every single object has its own 

specific parameterizations (Eskandari, 2008; Strebelle, 2000). 

2.2 Multiple-Point Geostatistics  

Due to the limitation of the traditional modeling techniques that are based on two-

point statistics (i.e. variogram) several studies (Strebelle, 2000; Strebelle, 2002; Caers 

and Zhang, 2004; Karishnan and Journel, 2003; Barrera, 2005; Journel, 2005; Lima, 

2005; Journel and Zhang, 2006) have suggested the newly developed Multiple-Point 

Geostatistics (MPG) simulation technique which is based on a training image (TI) 

concept. By combining the strengths of both pixel-based and object-based techniques, 

MPG method has become one of today’s most important geostatistical modeling 

techniques. MPG was first introduced by Journel (1992) and was initially coded by 

Guardiano and Srivastava (1993). This method was proven to be extremely CPU 
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demanding because it requires complete scanning of the TI for every new data event 

used to inform a node being simulated. However, this changed with the development 

of the search tree technique proposed by Strebelle (2000).  

2.2.1 Training Images 

MPG method requires a training image (TI) such as the one shown in (Figure 2.2). A 

training image is defined as a numerical representation of the geological structure and 

patterns believed to exist in the area being modeled and not necessarily carry any 

locally accurate information (Strebelle, 2000; Strebelle and Journel, 2001; Arpat and 

Caers, 2007). However, a training image should reflect a spatial continuity style 

similar to the actual phenomenon (Arpat and Caers, 2007). In other words, a training 

image is used to deliver prior geological concepts about the geometry of the 

questioned heterogeneities.  

 

Figure 2. 2. A 2D training image of size 250 x 250 representing a channel structure (Caers 
and Zhang, 2004) 

 



8 
 

Training Images are obtained from nearby field analogues, outcrop photographs as 

well as interpretation of actual data such as cores, well logs, and seismic (Strebelle 

and Remy, 2005; Boucher, 2009; Barrera et al, 2005; Okabe and Blunt, 2005). 

Training images are hand-drawn by geologists, then numerically digitized (Strebelle 

and Remy, 2005) or created using unconditional object-based simulations such as the 

ones proposed by Deutsch and Wang (1996), Holden et al. (1998), Viseur (1999), and 

Maharaja (2008). Training images should be stationary, i.e. the spatial patterns are 

reasonably homogeneous all over the training image (Strebelle and Zhang, 2005; 

Maharaja, 2008). However, some implementations of MPG provided tools to use 

non-stationary training images as well (Caers and Zhang, 2004; Liu 2006; Strebelle, 

2006; Wu, 2007; de Vries et al., 2009) (Figure 2.3). 

 

Figure 2. 3. Examples of a non-stationary training image, A, and a stationary training image, 
B (Arpat, 2005) 

 

Like the variogram model the training image provides statistics relating unsampled 

value to conditioning data, but in jointly multiple locations. In other words, MPG 

technique accounts correlations between three or more locations at a time. Thus, 

MPG technique is capable of producing complex curvilinear geological structures 

accurately (Strebelle, 2002). The simulation carried out by the MPG technique is 
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taking the patterns from the training image and anchoring them to the actual data 

(Liu, 2003; Liu et al, 2005). This process when first proposed by Guardiano and 

Srivastava (1993) was slow and CPU demanding because it was calling for 

rescanning of training image for each new data event. However, the development of 

the Single Normal Equation Simulation algorithm (SNESIM) of (Strebelle, 2000), 

which scans the training image only once, significantly speeded up the MPG 

simulation process and decreased its CPU demand.    

2.2.2 The SNESIM Algorithm 

SNESIM was first developed by Strebelle (2000) to carry out pattern reproduction 

conditional to hard data. Later SNESIM has been modified to account for auxiliary 

constraints such as those presented by seismic data (Strebelle et al., 2002). SNESIM 

deals only with categorical variables. It scans a training image only once to retrieve 

the frequencies of occurrence of observed outcomes for the central nodal value 

utilizing a template of neighboring conditioning data. The probabilities found are then 

stored in a data structure called “search tree”. This search tree allows fast storage and 

retrieval of probabilities corresponding to the actual data events encountered during a 

sequential simulation (Strebelle, 2002). Figure 2.4 illustrates an example of such 

search tree. In order to construct the search tree of Figure 2.4, a given data template is 

used to scan the training image in which the yellow and the white nodes represent the 

channel and the non-channel structures, respectively. For example, in level ‘0’ the 

training image is scanned to calculate the probabilities of finding a channel or non-

channel structures using only the central node ‘u’ of the data template. In other 

words, no conditional data (no CD) is used when scanning the training image at this 

stage. In this case, the probability of finding a channel structure (yellow node) in the 

training image is 11 while that of the non-channel structure (white node) is 14. 

Following that the training image is scanned using the central node ‘u’ and one 

conditional data (1 CD) of the data template. In this case, the training image is 

scanned for the probabilities of finding: 1) channel structure in u when the 
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conditional data is also channel, 2) non-channel structure in u when the conditional 

data is channel, 3) channel structure in u when the conditional data is non-channel, 4) 

non-channel structure in u when the conditional data is also non-channel. Next, the 

training image is scanned similarly with two, three, and four conditional data of the 

data templates.     

  

 

Figure 2. 4. Illustration of how a data template is used to scan a training image for the 
frequencies of occurrence of observed outcomes for the central nodal value (Caers, 2002) 

 

In MPG the hard data are fixed at their nodal locations and they are never changed. 

Then the unsampled nodes are sequentially visited and simulated conditional to the 

previously simulated values as well as the hard data (Figure 2.5). In the case of soft 

(e.g. seismic) data conditioning the MPG simulation is performed in two steps (Liu, 

2003; Liu et al., 2005). First, the soft data are extracted and stored in the search tree 

each in its location as in the case of hard data. Then, both the soft and hard data are 
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used as conditional data while performing the sequential simulation. SNESIM 

reproduces the structure of the training image and at the same time it honors the 

available hard and soft data. Figure 2.6 illustrates the workflow of MPG simulation 

conditional to both hard and soft data.  The workflow then consists of three main 

parts: ���|��, ���|��, and ���|�, �� where “A” stands for the value at location u to 

be simulated, “B” stands for geological information and hard data, and “C” stands for 

soft data (Liu, 2003; Liu et al., 2005). A more general and simplified illustration of 

MPG simulation workflow for such a case is given in Figure 2.7. For further details 

on SNESIM algorithm, the reader is referred to Strebelle (2000).  

A user-friendly interface of SNESIM algorithm is available in an open-source 

computer package called “Stanford Geostatistical Modeling Software” (SGeMS). 

SGeMS is developed at Stanford University as its name implies and particularly by 

the Stanford Center for Reservoir Forecasting (SCRF). A description of the SNESIM 

algorithm parameters is given in Section 1 of Appendix A. SGeMS implements 

several geostatistics algorithms for modeling earth systems. Some of these algorithms 

are: Sequential Gaussian Simulation (SGSIM), Filter-based Simulation 

(FILTERSIM), and Training Image Generator (TIGENERATOR).  

 

 

Figure 2. 5. Explanation of how unsampled nodes are simulated conditional to available data 
(Caers, 2002)  

 



 

Figure 2. 6. A multiple

 

Figure 2. 7. Simplified multiple
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. A multiple-point simulation workflow (Liu, 2003; Liu et al., 2005)

. Simplified multiple-point simulation workflow illustratio

 

workflow (Liu, 2003; Liu et al., 2005) 

 

point simulation workflow illustration 
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2.3 Previous Research Studies on MPG Simulation 

Previous research studies on MPG simulation can be grouped into five main topics: 

1. The use of non-stationary training images in MPG simulation (Caers and Zhang, 

2004; Arpat, 2005; Mahraja, 2005; Strebelle and Zhang, 2005, Liu 2006; 

Strebelle, 2006; Wu, 2007; Chugunova and Hu, 2008; de Vries et al., 2009). 

2. Development of new MPG simulation algorithms (Strebelle and Remy, 2005; 

Arpat, 2005; Arpat and Caers, 2007; Zhang, 2006; Straubhaar et al., 2011; 

Tahmasebi et al, 2012). 

3. Applications of MPG (Liu et al.,2002; Harding et al., 2005; Okabe and Blunt, 

2004; Feyen and Caers, 2005; Okabe & Blunt, 2005; Feyen and Caers, 2006; 

Zhang, 2008; Du et al., 2009; Hajizadeh et al., 2011; Mariethoz et al., 2011; 

Zhang et al., 2005; Comunian et al., 2011; Comunian et al., 2012; dell’Arciprete 

et al., 2012). 

4. Reduction of RAM and CPU demand (Huysmans and Dassargues, 2011; 

Huysmans and Dassargues, 2012; Zhang et al., 2012). 

5. Generation and selection of training images (Arslan, 2005; Boisvert et al., 2007; 

Boisvert et al., 2008; Huysmans and Dassargues, 2010; Eskandari, 2008). 

Some of these studied are summarized in the following paragraphs.  

Caers and Zhang (2002) in their work illustrated the differences between the 

traditional variogram and MPG techniques. Then, they pointed out the basic concepts 

in which reservoir modeling and thus MPG are based on. Briefly, these concepts are 

Stationarity and Ergodicity. Stationarity is the similarity repetition of the data to be 

collected. The Ergodicity, on the other hand, explains the expected fluctuation of the 

collected data (statistics) and the effect they have on the model building. Finally, the 

authors considered a very important point which is non-stationary models. As they 

have cited, actual reservoirs may contain non-stationary elements such as vertical 

proportion variations. Thus, the need for non-stationary reservoir models arises. 
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Then, they illustrated how to construct a non-stationary reservoir model from a 

stationary training image.   

Liu et al. (2002) presented a methodology for generating stochastic models of 

fracture systems in reservoirs. In their work it was proven that the most important 

characteristics of the patterns corresponding to different classes of fracture systems 

can be reliably detected using multiple point statistical measures. Then, it was 

suggested to perform a detailed geological characterization of fracture outcrops. The 

essence of the fracture patterns described in those outcrop exposures are captured 

through multiple point statistical measures. Then, when modeling a target reservoir 

the analog model suitable for that reservoir can be constructed using the multiple-

point statistical measures characteristic for that system. These patterns are then 

imposed on the model for the target reservoir using a growth-based stochastic 

simulation technique. The stochastic models can be constrained to all available 

information in the form of conditioning well data, seismic maps, rock mechanical 

strength data etc. 

Strebelle et al. (2002) stated that deepwater turbidite reservoirs represent a growing 

number of hydrocarbon targets for major oil companies. Due to the high drilling and 

production costs associated with such reservoirs, however, the need for reliable 

architecture modeling increased. Thus, integration of geological information beyond 

two-point variogram reproduction becomes critical in order to quantify more 

accurately heterogeneity and assess realistically the uncertainty of oil recovery. Then, 

they proposed a practical approach to integrate large-scale seismic amplitude data 

into a finer scale geological model. They generated a TI depicting sinuous sand 

bodies using a non-conditional object-based simulation algorithm. Disconnected sand 

bodies are interpreted from seismic amplitude data using a principal component 

cluster analysis technique. In addition, a map of local sand probabilities obtained 

from a principal component proximity transform of the same seismic is generated. 

MPG then simulates multiple realizations of channel bodies constrained to the local 
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sand probabilities, partially interpreted sand bodies, and well-log data. The resulting 

model reflected the prior geologists' vision of the subsurface architecture while 

honored the well and the seismic data. Moreover, the authors proved that computer 

RAM and the time needed to run the resulting model are comparable to those of the 

traditional variogram-based algorithms. 

Chevron Texaco's earth science community by using real case example proved that 

MPG method results in models that represent complex reservoir facies very well 

(Harding et al., 2004). They followed a four-step-procedure that can be summarized 

as follows:  

• MPG algorithm has been improved to permit a single training image, which is 

constructed for a particular geological environment to model multiple 

stratigraphic zones.  

• A relatively large number of facies have been employed; this enabled them to 

represent the complexities of the reservoir in the model.  

• A workflow has been used which allowed the integration of geological facies' 

geometry, associations and heterogeneity with varying azimuth, and facies 

proportions.  

• The workflow allows distinctly different geological scenarios to be modeled, 

permitting an improved understanding of the impact of uncertainty in facies 

distribution on the reservoir continuity and pore volume. 

In their work Strebelle and Remy (2005) stated that the flow performance of reservoir 

heterogeneity is primarily controlled by the spatial distribution of the depositional 

facies. Thus, it would be better to model these depositional facies first, then 

populating each simulated facies with its corresponding specific porosity and 

permeability distributions. They also presented a new version of the MPG simulation 

algorithm; SNESIM, with integrated post-processing. In that newly proposed 

algorithm, the method used to gather local conditional facies probability distributions 

was modified to increase the number of conditioning data which were actually used 
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in that gathering process. This new estimating method has removed a great number of 

anomalies from MPG models. In other words, it has removed simulated patterns that 

were not present in the training image. Then a post-processing technique is proposed 

to reduce the number of the remaining anomalies. Finally, by applying the post-

processing technique to a 2D horizontal section of a fluvial reservoir the authors 

proved that computer RAM and the time needed to run the new modified SNESIM 

are comparable to those of the original SNESIM, though the number of anomalies 

decreases dramatically. 

Feyen and Caers (2005) indicated that MPG technique’s potential to characterize 

subsurface heterogeneity for hydrogeological applications in a wide variety of 

complex geological settings is very high. Geological structures or features such as 

sand channels or clay lenses often constitute preferential flow paths or obstacles to 

flow. Thus, it is very important to accurately represent and locate these structures 

when predicting flow and transport in porous media. However, the authors claimed 

that further analysis is needed to systematically evaluate and quantify the effects of 

the different levels of geological uncertainty on groundwater flow and transport 

predictions in multi-modal settings. 

Okabe and Blunt (2005) used MPG simulation on a 2D thin section image to generate 

a 3D pore space image with an assumption of isotropy for orthogonal planes. The 

method is tested on sandstone and carbonate samples. Permeability is predicted 

directly on the 3D image using the Lattice Boltzmann Method (LBM). This method is 

an extended version of MPG approach that was developed by Strebelle et al. (2002). 

It provides an important input for the creation of geologically realistic networks for 

pore-scale modeling to predict multiple flow properties. The major extension of this 

method is the rotation of the measured statistics by 90 degrees, which allowed the 

authors to generate a 3D structure. This process consists of three steps: 

• Extracting multiple-point statistics from a training image, 

• Probability calculation for each orthogonal plane using conditioning data, 
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• Pattern reproduction using the probability weighted by number of 

conditioning data on each plane. 

The LBM provides a good approximation for the solutions of Navier-Stokes 

equations using a parallel and efficient algorithm that readily accommodates complex 

boundaries as encountered in porous media. This method is a suitable way to assess 

the structures if no microtomographic image of the rock is available.  

In addition, Feyen and Caers (2006) studied the problem of quantifying the 

geological uncertainty for groundwater flow and transport modeling in complex 

geological settings. A two-step procedure was employed to generate realizations of 

the hydraulic property distributions. In the first one the realizations of the facies 

architecture were generated using MPG techniques. In the second the facies were 

populated with hydraulic property distributions generated using two-point 

geostatistical methods. In both steps they accounted for the uncertainty inherent in the 

selection of the statistical model and in the estimation of global statistics. Spatial 

bootstrap was used to estimate the uncertainty of unknown statistical parameters. 

With a comprehensive numerical analysis the authors evaluated the effect of different 

geological uncertainty scenarios on the predictions of a groundwater flow and 

transport model. Their results indicated that the level of facies uncertainty affected 

the variability of the head predictions largely.  

Du and Zhang (2009) simulated porosity data using the continuous MPG algorithm; 

FILTERSIM of Zhang (2006). FILTERSIM simulates both continuous and 

categorical variables based on filters. In their proposed method Du and Zhang used 

nine filters to scan a 3D training image. The local patterns captured by the filters at 

the locations of each node in the 3D space are characterized by nine score values 

corresponding to the nine filters used. The patterns with close filter scores are stored 

in a group called “prototype”. The prototype of each group of patterns is given a 

score equal to the average of the filters’ scores that fall in that group (Wu et al., 2007; 

Zhang, 2006). After that and during simulation, the prototype with the score closest to 
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the conditioning data event is extracted. Then, a training pattern is drawn randomly 

from that prototype and pasted back onto the simulation grid. The results showed that 

this method generates the structures and characteristics of porosity in the used 

training image well and more accurately than the SGSIM results.   

Huysmans and Dassargues (2010) gave details on how a training image can be 

constructed based on geological and hydrogeological field data. Besides, they 

explained how MPG can be applied to determine the impact of complex geological 

heterogeneity on ground water flow and transport in a real aquifer. In addition, the 

significant effect of small-scale sedimentary heterogeneity on the calculation of a 

contaminant concentration distribution was confirmed by a hypothetical case. The 

outputs showed that using a homogeneous model to predict the contaminant plume 

emigration and concentration would yield erroneous results. So, it was concluded that 

heterogeneity encountered in ground water contamination studies should be taken 

into account.    

Hajizadeh et al. (2011) proposed a stochastic method that uses MPG technique for the 

construction of a 3D pore structure from a 2D thin section training image. In this 

method, the 3D porous media is constructed layer by layer using successive 2D MPG 

simulations coupled with multi-scale conditioning data extraction procedure. 

SNESIM algorithm is utilized as the simulation tool. Application of the method for a 

sample Berea sandstone confirmed that the obtained 3D realization preserved the 

pore space patterned of the thin section training image. The advantage of this method 

is its computational efficiency when compared with other similar methods such as 

that of Okabe and Blunt (2004). However, this method can only be applied to media 

with repeated multiple-point statistics. In other words, the training image used must 

be stationary because SNESIM algorithm relies on the assumption of stationary 

statistical properties.                                                                   

Huysmans and Dassargues (2011) applied a method that uses MPG to perform a 

direct simulation for edge properties in order to model irregularly shaped surfaces 
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such as clay drapes. The edge properties in this method are used instead of pixel 

values. The proposed method allowed modeling reservoirs of aquifers having 

irregular shapes with considerable computational time reduction when compared with 

the traditional MPG. In other words, it decreased the demand for CPU and RAM 

significantly. Thus, this method is very valuable for 3D application of MPG.  

Mariethoz et al. (2011) proposed a multiple-point super-resolution mapping method. 

This method requires an image of a coarse scale structure as the only input parameter. 

This image is treated as the training image; therefore, it should be large enough to 

contain a diversity of patterns. Then, MPG method is used to infer the fine scale 

structure from the coarse ones based on the scale invariance properties’ assumption. 

This method generated images having the same properties as their coarse ones, both 

in terms of fractal dimensions and reproduction of spatial statistics. In addition, it is 

able to deal with both continuous and categorical variable and even can be 

generalized to multivariate problems. The only limitation of this method is that it only 

produces self-similar structures, but that is not always the case for natural images.   

Huysmans and Dassargues (2012) used a combined approach of MPG and edge 

properties to include clay drapes in a flow model. Instead of representing clay drapes 

by pixels they were represented as grid cell edge properties. This allowed the 

reduction of CPU and RAM needed for modeling large grid cell sizes. The proposed 

method also allowed the simulation of realistic spatial distribution of the clay drape 

occurrence based on a field-based training image. Besides, it was proven to be 

efficient for integrating field-structures in a larger scale model.   

Tahmasebi et al. (2012) proposed a methodology that utilizes MPG but without the 

need for pattern database and a small data event. This method works with both 

categorical and continuous training images. In addition, it is based on a cross-

correlation function for the similarity of the generated pattern and the used training 

image. To apply this method a newly developed algorithm; cross-correlation 

simulation (CCSIM), is used. CCSIM algorithm is tested with different training 
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images and the results indicated its significant reduction of CPU and RAM demand 

when compared to previous algorithms. In addition, CCSIM is able to generate 

realizations of reservoirs with accurate conditioning and continuity.  

Zhang et al. (2012) also developed a method that decreased the CPU and RAM 

demand when simulating reservoirs using MPG. A compact search tree containing the 

same information as the first search tree proposed by Strebelle (2000) was developed. 

However, it reduced memory cost by one order of magnitude. That is because the 

compact tree decreases the long non-branching sequences to only their essential 

information such as the common properties and number of repeating nodes. Due to 

that the proposed method accelerates MPG simulation significantly. Thus, allows the 

simulation of field-scale and complex 3D facies models.  

A lot of work was conducted to improve MPG simulation techniques. The work 

conducted concentrated mainly on: the use of non-stationary training images (TIs) in 

MPG simulation, development of new MPG simulation algorithms, applications of 

MPG, reduction of RAM and CPU demand, and the generation and selection of 

training images. However, the generation and selection of training images have not 

been thoroughly studied yet. In other words, the literature addressing the issue of 

training image generation and the uncertainty associated is very limited. One part of 

the present study is devoted to analyze and quantify the impact of such uncertainty on 

reservoir models. 

2.4 Uncertainty in the Hard Data  

The hard data have some sorts of uncertainty (Figure 2.8). These uncertainties are 

either due to the physical phenomenon that is inherently random or errors in the 

predictions and estimations of the real world conditions (Ang and Tang, 1984). The 

inherent uncertainty is a state of nature so it cannot be decreased. However, the 

estimation (or modeling) uncertainty is possibly reduced by the use of more accurate 
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models or the acquisition of more data (Ang and Tang, 1984). The error in model 

prediction is subdivided into systematic error and random error. The systematic error 

or simply the bias is due to factors that are not taken into account in the predicting 

model that are likely to affect the estimation somehow (Duzgun, 2004). The 

estimations based on core samples analyzed in laboratory have systematic error, 

because they do not represent the in situ properties of the considered structure. The 

random error, on the other hand, is due to lack of knowledge. The sampling error that 

depends on the sample size is an example of such error. The description of the errors 

can be made by the use of the mean or median and the standard deviation or 

coefficient of variation.   

 

 

Figure 2. 8. Sources of uncertainties (Duzgun, 2004) 
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2.4.1 Analysis of Hard Data Uncertainties 

The types of uncertainties explained in the previous section can be analyzed in a 

unified manner using the following model.  Suppose that the true but unknown state 

of nature is X, a model denoted by $X , may be used. $X  is a model of the real world, 

therefore, it contains a certain degree of error and needs to be corrected by a factor, 

denoted by N.  Thus, the true state is expressed as follows (Ang and Tang, 1984): 

X = ��                                                (2.1)      

Then, if the state of nature is random, the model $X  should also be a random variable. 

As a result, the necessary correction factor N can also be considered as a random 

variable, whose mean value ν indicates the mean correction of the systematic error in 

the estimated mean value (x ), while the c.o.v of N, denoted by (∆), represents the 

random error in the estimated mean value (x ). The inherent variability, denoted by 

(��), on the other hand, is quantified utilizing the estimated mean value (x ) and 

variance (���) of  $X  as follows:  

 �� =	�� �̅�                                                         (2.2) 

After assuming that N and $X  are statistically independent, Ang and Tang (1984) 

calculated the expected value of X by: 

 �� = �	�̅                                                          (2.3) 

Where, 

 = Estimate of the true mean value (i.e. the estimated mean value) 

ν  = Bias correction for systematic error in the estimated mean value    

 

x

x
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After assuming the statistical independence, Ang and Tang (1984) suggested that the 

total uncertainty (Ωtotal) in the estimated value of a given variable X (such as 

porosity) is calculated by: 

Ω����� = �Ω�� !"!��� + Ω!$��%������                                     (2.4) 

 

Where, 

Ωtotal = the total coefficient of variation (uncertainty) in the predicted mean value  

Ωinherent = the coefficient of variation due to the inherent error 

Ωestimation = the coefficient of variation due to the estimation error 
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CHAPTER 3 

STATEMENT OF PROBLEM 

 

There are three main objectives of this study. The first one is to provide a tool to 

parameterize channelized training images. The parameterization is performed by 

means of a mathematical function (i.e. the Sine function). This function is used to 

represent the channel structure of a training image in two dimensions. Then, the 

parameters of the mathematical function are modified to generate different 2D 

training images. Next, 3D training images of these 2D training images are generated. 

The second objective of this study is to analyze the impact of training image 

parameters uncertainty on an original reservoir model. Thus, the generated 2D and 

3D training images are used to remodel an original reservoir utilizing a proposed 

multiple-point geostatistics methodology. The third objective of this study is to 

investigate the impact of hard data uncertainty on the original reservoir model.  
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CHAPTER 4 

METHODOLOGY 

 

The main objectives of this study are: 1) providing a tool to parameterize training 

images, 2) investigating the impact of modifying training image parameters on an 

original reservoir model, 3) investigating the impact of hard data uncertainty on the 

original reservoir model. In order to perform the intended investigations, a MPG 

modeling methodology is proposed. Then, a synthetic fluvial channel reservoir model 

(Original Reservoir) is generated utilizing a given dataset and its training image. 

Next, a sensitivity analysis of the MPG modeling Algorithm and the methodology 

proposed is carried out.  

A Sine function is employed to model the geological structure (i.e. channels) of the 

original training image. The Sine function is used to represent the channel structure of 

the training image in two dimensions. So, the training image becomes a function of 

four parameters. These parameters are the number of channels, the number of waves 

in each channel (i.e. in the Sine function), the amplitude level of waves, and the 

number of Z direction slices in the training image. After that, different 2D and 3D 

training images are constructed by modifying the four parameters defined. These 

developed training images are then employed to model reservoirs by utilizing the 

same methodology followed in the generation of the original reservoir. Next, the 

uncertainty due to the modification of training image’s parameters is analyzed by 

comparing the developed reservoir models with the original reservoir.  

In the present study, the impact of hard data uncertainty on the original reservoir 

model is investigated by considering only the uncertainty of the porosity data. This 

investigation is performed in three steps as follows. First, different realizations of the 
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original porosity data are generated through Monte Carlo Simulations using 

coefficients of variation of similar studies in literature. Then, the original reservoir is 

remodeled using the generated realizations instead of the original porosity data. 

Finally, the impact of porosity uncertainty on the reservoir model is analyzed.  

4.1 The Proposed MPG Modeling Methodology 

In this study, a MPG modeling methodology is proposed. This methodology is 

summarized as follows (Figure 4.1): 

• Develop 2D and 3D training images by modifying the parameters of 

the training image defined. Then, import into Stanford Geostatistical 

Modeling Software (SGeMS) (This step is used while studying the 

impact of training image uncertainty on the original reservoir).  

• Generate a reservoir facies realization using the facies hard data and 

MPG simulation algorithm; the Single Normal Equation Simulation 

(SNESIM) of SGeMS. 

• Calculate the experimental variogram (in 3D) of the generated 

realization.  

• Fit a variogram model to the experimental variogram 

• Generate the corresponding porosity file (in 3D) using the Sequential 

Gaussian Simulation (SGSIM) of SGeMS 

• Extract the porosity data out of SGeMS 

• Upscale the porosity data 

• Calculate the corresponding permeability values using defined 

logarithmic relations 

• Construct a reservoir Model using the Builder tool of CMG software 

then input the porosity and permeability data calculated to the model 

• Run the model by IMEX tool of CMG software 
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• Extract the Cumulative oil production (Q) versus time (T) plot and 

data, Original Oil In Place (OOIP) and Recoverable Oil In Place 

(ROIP) values 

 

 

Figure 4. 1. A flowchart of the proposed MPG modeling methodology.  
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4.2 3D Dataset 

The dataset used in the modeling process of this dissertation is acquired from 

Stanford VI, a synthetic dataset of a fluvial channel reservoir (Castro, 2007). The 

SGeMS project of this dataset is given by Remy et al. (2009). Three objects of this 

dataset are used in this study: grid, training-image, and well-simple. The grid object 

is a Cartesian grid consisting of 150 x 200 x 80 nodes, with its original point at the 

(0,0,0), and a unit cell size in each direction (Remy et al., 2009). The seismic or the 

facies probability data (p(sand|seis) and p(mud|seis)) are the only properties used in 

the grid object (Figure 4.2). The mud represents the shale (i.e. non-channel) structure. 

The training image of size 200 x 200 x 5 that is used in the MPG simulation is 

available in the training image object (Figure 4.3). This training image has a sand 

(channel) proportion of 0.271 and a shale (non-channel) proportion of 0.729. 

 

 

Figure 4. 2. Seismic (i.e. facies probability) data (p(sand|seis); (A), and p(mud|seis)); (B) 

(B) (A) 
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Figure 4. 3. Original training image used for modeling the original reservoir. The size of the 
training image is 200 × 200 × 5, each slice in the z − direction is shown here from top to 

bottom (Castro, 2007) 

 

In this dataset (in the well-simple object) there are 46 vertical wells and six properties 

(density, facies, P-impedance, P-velocity, permeability, and porosity) that are 

associated with these wells. In the present study only three of these properties are 

used. These properties are 1) facies (binary indicators for the sand channel and shale 

having proportions of 0.4540 and 0.546, respectively), 2) porosity (Figure 4.4), and 3) 

permeability. Each of these properties has got 4320 data. Figure 4.5 shows the 

histograms of porosity, and permeability properties.  
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Figure 4. 4.The 46 wells of Stanford VI dataset showing the porosity property 

 

 

 
Figure 4. 5. Histograms of the porosity and permeability data of Stanford VI data set 
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4.3 Original Reservoir  

4.3.1 Simulation with SNESIM Algorithm 

The original hypothetical reservoir model is generated using the Stanford VI dataset 

objects defined in the previous section. The first step in this process is the utilization 

of the MPG simulation algorithm, SNESIM, to generate a categorical (facies) model 

(Figure 4.1). The parameters required by SNESIM for the present study are described 

in Section 1 of Appendix A. The values of these parameters are reported in Table 4.1. 

The “Target Marginal Distribution” values in Table 4.1 are the proportions of shale 

and channel categories in the facies hard data. These proportions are calculated as 

follows: 

• The facies data (4320 data) are extracted to Excel spreadsheet 

• Sorted 

• Separated into shale (with “0” category) and channel (with “1” category) 

Then the proportions are calculated by: 

�&'('&)*'+, = -./012	34	5676	432	8671932:;
7<1	7376=	-./012	34	5676                           (4.1) 

In order to find the ranges of the “Search Template Geometry” the variogram of the 

hard data (facies) is computed in SGeMS (the details of this variogram computation 

are given in Section 1 of Appendix A). The Omni-directional variogram is calculated 

since the directional Variography is assumed to be isotropic (Figure 4.6 and Table 

4.2). Thus, the angles of the search template were set to 0. As a rule of thumb, the 

ranges of the searching ellipsoid should have a value more than twice the range of the 

conditional data variogram. Therefore, all ranges were set as 21. 
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Figure 4. 6. Variogram model of the hard data 

 
 
 

Table 4. 1. Variogram model fitted to the experimental variogram of the hard data. Ranges 
are shown in feet 

 

 

The Global Affinity Change values are set as “2  1 0.5” indicating the corresponding 

change of the channels’ width in the X, Y, and Z directions, respectively (Remy et al., 

2009). Finally, the used search template is big enough to reproduce the structure of 

the training image therefore the number of Multigrids is set as 1. 

  

Type Exponential 

Nugget 0.0005 
Sill 0.0083 

Ranges 10/9/8 
Angles 0/0/0 
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Table 4. 2. Values of the parameters used by SNESIM algorithm to model the original 
reservoir 

Parameter Value 
Seed 519175 

# of Categories 2 (non-channel and channel) 
Target Marginal Distribution 0.546 0.454 

# of Nodes in Search Template 80 (default for a 3D training image) 
Search Template Geometry 

(ranges and angles) 
21, 21, 21 and 0, 0, 0 

Hard Data (property) Facies 
Soft Data Probability p(mud|seis) and p(sand|seis) 

Tau Values for Training Image and Soft 
Data 

1 1 

Global Affinity Change 2  1 0.5 
Min # of Replicates 1(default) 
Servosystem Factor 0.5 (the default value which is the mean) 

Re-simulation Threshold -1 (default) 
Re-simulation Iteration # 1 (default) 

# of Multigrids 1 
Previously Simulated Nodes 4 (default) 

Template Expansion Isotropic 
 

 

The SNESIM parameter file including all these parameters is given in Section 1 of 

Appendix C. This file is loaded into SGeMS then SNESIM algorithm is run to 

simulate the original reservoir. Figure 4.7 shows the simulation output facies 

realization obtained. This realization honors both the hard data (compare the facies 

histograms in Figure 4.8), and the soft data (compare Figure 4.2 (A) with Figure 4.7).  
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Figure 4. 7. Original reservoir’s facies realization generated by SNESIM algorithm. The size 
of the model and the realization is 150 × 200 × 80 

 

 

 
Figure 4. 8. The facies histograms of the hard data and the simulated reservoir realization 

illustrated in Figure 4.7 
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4.3.2 Simulation with SGSIM Algorithm 

The next step after simulating the reservoir facies is to convert them into porosity 

numbers. In order to do that the Sequential Gaussian Simulation (SGSIM) algorithm 

of SGeMS is used (Figure 4.1). The parameters required by SGSIM are described in 

Section 2 of Appendix A. The values of these parameters are reported in Table 4.3 

and their SGSIM parameter file is given in Section 2 of Appendix C. The variogram 

model used in SGSIM is that of the simulated facies realization given in Figure 4.7. 

The parameters and a plot of this variogram are shown in Table 4.4 and Figure 4.9, 

respectively (the details of this variogram computation are given in Section 2 of 

Appendix B). The calculated variogram is the Omni-directional since the directional 

Variography is assumed to be isotropic.  

 

Table 4. 3. Values of the parameters used by SGSIM algorithm to convert the original 
reservoir facies into porosity numbers 

Parameter Value 
Seed 14071789 (the default) 

Kriging Type Simple kriging 
Hard Data (property) Porosity 

Max Conditioning Data 12 (the default) 
Search Ellipsoid Geometry 

(ranges and angles) 
80, 80, 80 and 0, 0, 0 

Property with Reference Distribution Porosity 
Variogram Variogram model of Table 4.4 

 

Table 4. 4. Variogram model fitted to the experimental variogram of the simulated realization 
shown in Figure 4.7. Ranges are in feet 

 

 

 

Type Exponential 

Nugget 0.04 
Sill 0.1895 

Ranges 22/21/8.1 
Angles 0/0/0 
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Figure 4. 9. Variogram model of the simulated realization shown in Figure 4.7 

 

The porosity realization generated by the SGSIM algorithm utilizing the parameters 

defined above is shown in Figure 4.10. This realization honors the (porosity) hard 

data (compare the porosity histograms of Figure 4.11). However, the generated 

realization does not honor the soft data because SGSIM algorithm has no parameter 

that accounts for the probabilities of such data. Thus, the channel structure generated 

is not similar to that of Figures 4.2 (A) and 4.7.   
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Figure 4. 10. Original reservoir’s porosity realization generated by SGSIM algorithm             

                                                                                                                             

 

Figure 4. 11. The porosity histograms of the hard data and the simulated reservoir realization 
illustrated in Figure 4.10  
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4.3.3 Exporting Simulated Porosity Data 

The data of the simulated porosity realization are exported out of SGeMS by means 

of a python code (Figure 4.1). This code is given in Section 1 of Appendix D. The 

code exports the data from the original grid (150 x 200 x 80 feet) to 1000 different 

ASCII files each corresponding to a block with a size of 15 x 20 x 8 feet. Each of the 

obtained 1000 files contains 2400 (i.e. 15 x 20 x 8) porosity data. The code exports 

the data block by block and Z-slice by Z-slice. In other words, the code loops through 

the X axis first, then the Y axis, and finally the Z axis.   

4.3.4 Upscaling the Porosity Data 

The size of real world geological models used for reservoir description exceeds by 

several orders of magnitude the capabilities of the available computer-based reservoir 

simulators. In other words, such models are too detailed to be used directly for 

reservoir simulation. Thus, upscaling is required. The main idea of upscaling is to 

replace some fine grid blocks of the same property with one equivalent coarse grid 

block. So, in general the main concept of upscaling is averaging. Upscaling therefore 

reduces the sizes of the simulation models so that they can be handled by simulators 

and within acceptable time frame. 

Many upscaling approaches are available, but the simplest and the most widely used 

one is the arithmetic upscaling approach. This approach is the one used in the present 

study. So, the 1000 ASCII files of porosity data exported out of SGeMS in the 

previous section are arithmetically upscaled (Figure 4.1). In order to do that a Visual 

Basic code is developed. This code is given in Section 2 of Appendix D. The code 

averages the data in the 1000 ASCII files so that each file yields one porosity datum 

instead of 2400 data. As a result, the data are upscaled into 10 x 10 x 10 grid (i.e. 

only 1000 data) instead of 150 x 200 x 80 (i.e. 2.4 x 106 data). Both the exporting and 

upscaling processes are summarized in Figure 4.12.  
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Figure 4. 12. The method followed in exporting and upscaling the simulated porosity data 

 

4.3.5 Permeability Calculation 

The next step in the proposed methodology is to calculate the permeability data 

corresponding to the porosity data of the previous section (i.e. the 1000 upscaled 

data) (Figure 4.1). In order to do that, the permeability and porosity hard data of 

Stanford VI dataset are plotted.  Then, their logarithmic relations are obtained. Due to 

the bimodal distribution of the porosity data, corresponding to the channel and non-

channel structures, the data are clustered into two groups. Thus, two logarithmic 

relations connecting porosity and permeability are found (Figure 4.13). These 

relations are tested using the F test and found to be highly significant. Next, they are 

utilized by means of an Excel spreadsheet to calculate the intended permeability data.  
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Figure 4. 13. The logarithmic relations between porosity and permeability hard data 

 

4.3.6 Building the Synthetic Original Reservoir  

4.3.6.1 Model Construction Steps  

The original reservoir simulation model is a black oil model and constructed using 

the CMG’s Builder tool. A Cartesian grid that consist of 1000 blocks; that is 10 x 10 

x 10 is used for this purpose. The dimensions of each block are 500 ft, 1640 ft, and 

8ft in the X, Y, and Z directions, respectively. The top of the formation is set at a 

depth of 5000 ft. The initial reservoir pressure and the bubble point pressure are 

defined as 4800 and 4014.7 psi, respectively. The Capillary effects are ignored and 

the relative permeability curves shown in Figure 4.14 are used. The gas is kept out of 

the calculation for simplicity; therefore, the gas oil contact (GOC) is set at a depth of 

4000 ft. The water oil contact (WOC) is specified at 5064 ft. So, the first 8 K layers 

of the model make up the pay zone which is 64 ft thick. In addition, the previously 

simulated 1000 porosity and their corresponding permeability data are added to the 

model. Other model data as well as the CMG data file are given in Appendix E. 
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Figure 4. 14. Relative permeability curves used in modeling the original reservoir  

 

After that, three production wells are added to the model. These wells are placed as 

shown in Figure 4.15. Then, the OOIP is calculated in order to define the production 

rates for three wells. The OOIP calculation details are shown below. 

First the bulk volume is calculated: 

>0 = �500 × 10� × �1640 × 10� × �8 × 8� = 5,248,000,000	GHI)          (4.2) 

			= �5,248,000,000� × �0.178108� = 934,710,784	&NNO               (4.3) 

Then, the OOIP is calculated: 

PPQ� = >0 × R6S9 × �1 − UV�                                  (4.4) 

Where, 

R6S9 =	The average porosity value of the 1000 simulated porosity data found as 

0.151586 

UV = The Connate Water Saturation of the relative permeability curves shown in 

(Figure 4.14) 
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Then, 

PPQ� = 934,710,784 × 0.151586 × �1 − 0.13� = 123,269,490	&NNO    (4.5) 
 

 

 

Figure 4. 15. 3D view of the reservoir constructed in CMG Builder tool showing the 
positions of the three wells used. The depth is given in feet 

 

20-year-constant and continuous production (from 1992 to 2012) is planned for the 

reservoir model. Then, the production rates for the three wells are specified as 20%, 

30%, and 50%, respectively. Next, using the calculated OOIP value (see Equation 

4.5), well_1, well_2, and well_3 are set to produce 3377, 5066, and 8443 rbbl/day, 

respectively. The rates are calculated by Equation (4.6) given below. However, these 

rate values are later reset to 1478, 2217, and 3694 rbbl/day (see Section 4.3.6.2). The 

wells were perforated in all the eight K layers (Figure 4.16).  

(&'WHG)*'+	&X)Y	�&NNO WXZ⁄ � = �\235.87,3-%	×	^^_`�200=��
�a	:162	×	bcd�56: :162⁄ �                    (4.6) 

Depth (ft)    

  Well 3 

Well 1 
 

 Well 2 

z 
y 

x 
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Figure 4. 16. Perforation of the eight K layer in wells 1 and 2. The depth is given in feet 

  

Depth (ft) 

Depth (ft) 

Depth (ft) 
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The wells are initially operated on rate constraint. If the borehole pressure fails to 

produce the rate specified or violates the minimum bottomhole pressure (BHP) 

specified (i.e. min BHP = 50 psi) for a well, the BHP constraint becomes the 

operating constraint of that well.  As a result, the simulator calculates the pressure 

difference value (i.e. grid block pressure – wellbore pressure) and uses it to calculate 

a new production rate for each timestep.  

4.3.6.2 Running the Model in CMG (IMEX Tool) 

When the model constructed in Section 4.3.6.1 is initialized in IMEX tool, it yields 

OOIP and ROIP of 71,212 M STB and 53,941 M STB respectively (Figure 4.1). The 

ROIP value obtained is used to recalculate the production rates of the wells since the 

original values are very high; therefore, they deplete the reservoir in a short time. 

That happens because the original production rates are calculated based on the 

amount of the OOIP which was calculated using the average porosity value (see 

Equation 4.5). Equation (4.6) is used to calculate the new production rates 1478, 

2217, and 3694 rbbl/day. Plots of the production rate verses time and cumulative oil 

production versus time of the reservoir are given in Figures 4.17 and 4.18, 

respectively. The time when each of the wells is switched from constant rate 

constraint to bottomhole pressure constraint is shown by an arrow in Figure 4.17. The 

switching time of the wells is different because the grid blocks around each well have 

different pressure values than those around the others.  

The complete methodology followed in the construction of the original reservoir 

model is summarized in Figure 4.19. Besides, the CMG data file of the reservoir is 

given in Appendix E. 
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Figure 4. 17. Production rate verses time plot of the original reservoir 

 

 

Figure 4. 18. Cumulative oil production verses time plot of the original reservoir 
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Figure 4. 19. Summary of the methodology followed in the generation of the original 
reservoir model. Where, OOIP = original oil in place, ROIP = recoverable oil in place,          

Q = cumulative oil production, and T = Time   
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4.4 Sensitivity Analysis of the SNESIM Algorithm and the Methodology 

Proposed 

4.4.1 Simulation of the Original Reservoir 

The sensitivity of the SNESIM algorithm and the methodology proposed is 

investigated by the generation of 50 equiprobable models of the original reservoir. 

The simulation performed utilizing the same SNESIM parameters of section 4.3.1 

except for the seed. The seed is set to 211175 which is the default value. The seed 

number is changed in order not to generate the realization of the original reservoir 

(shown in Figure 4.7) again.  After generating the 50 realizations, 50 variogram 

models are constructed as reported in Section 2 of Appendix B. These variogram 

models are given in the attached CD.   

The corresponding porosity data of the 50 realizations are simulated by the SGSIM 

algorithm using the same parameters of Section 4.3.2 except for the variogram model. 

The variogram model of each realization is used to simulate its porosity data. These 

porosity data are exported, upscaled, and used to calculate their corresponding 

permeability data as explained in Sections 4.3.3, 4.3.4, and 4.3.5, respectively. The 

simulated porosities and the calculated permeabilities are input into the CMG data 

file given in Appendix E and run by the IMEX tool to get the OOIP and ROIP values. 

4.4.2 Analysis of the Results 

In order to study the sensitivity of the SNESIM algorithm and the proposed method 

the OOIP and the ROIP of the 50 generated models are plotted. In addition, the 

percentage errors for both parameters are calculated and plotted. The percentage 

errors are calculated by the following formula: 
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(Y&GY+)XeY	Y&&'& = fg;hijklmnofpqgmrsmn
fpqgmrsmn × 100                     (4.7) 

Where, 

�t,/.=6715 = OOIP or ROIP value for the simulated 50 reservoir models 

�30t12S15 =  OOIP or ROIP value for the original reservoir 

 
Following that, the reliability of the information obtained with only 50 simulations is 

investigated as follows:  

• The EasyFit statistical tool is used to fit a distribution to the errors calculated. 

• The probabilities of finding an error within the limits of the calculated 

distribution or beyond them are calculated.   

4.5 Sensitivity Analysis of the Variogram Model  

Variogram fitting is subjective; therefore, the impact of different variogram models 

on the OOIP and ROIP is investigated in this section. However, it is important to 

state that the visual fitting of the variograms used in this study is investigated by the 

sensitivity analysis of the previous section. So, this analysis is performed by setting 

different model types and ranges than those of the originally found variogram model. 

In other words, this analysis is executed by fitting the following models to the 

experimental variogram of the original reservoir: 

• A Spherical variogram model  

• A Gaussian variogram model  

• An Exponential variogram model with lower ranges than those of the original 

variogram given in Table 4.2  

• An Exponential variogram model with larger ranges than those of the original 

variogram 

The same methodology is followed in order to obtain the OOIP and ROIP values (see 

Figure 4.19). However, the process starts with the simulation of porosity in SGSIM 
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where the variogram model is employed. So, only the porosity and the permeability 

data are changed in the methodology steps. The final results (i.e. OOIP and ROIP 

values) are then compared with those of the original reservoir in order to analyze the 

sensitivity of the result to the variogram model. 

4.6 Analysis of Training Image Uncertainty Impact on Reservoir Model 

4.6.1 Parameterization of Original Training Image Structure and Modeling of 

2D Training Images 

In order to study the impact of training image Uncertainty on the original reservoir 

model the Sine function is used to represent the fluvial channels structure of the 

original training image shown in Figure 4.3. The Sine wave or sinusoid in its most 

basic form is (Webshaker website, 2011):  

Z�)� = � × U*+�u) + v�                                     (4.8) 
Where, 

A = Amplitude  

u =  Frequency = 2πf (rad/s), where f = 1/T, and T = period in seconds 

t = Time (s) 

v = Phase (rad) 

 
In the present study, the channels (i.e. Sine waves) are sketched utilizing the “SpeQ 

Mathematics” software (SpeQ Mathematics website, 2011). The Sine wave in this 

software is defined by: 

Z = � × U*+	�w × ��                                          (4.9) 
Where,  

A = Amplitude  

w = An angle (in radian) that controls both the frequency and the phase parameters 
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� = A fixed-length x-axis as � ∈ y−10,10z for the one and three-wave cases and 

� ∈ y−15,5z for the two-wave cases 

The flowchart of the methodology proposed for training image generation is given in 

Figure 4.20.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 20. Summary of the proposed methodology for training image generating 

Generate a channel utilizing the Sine 

function in SpeQ Mathematics software 

Export the channel as 2D 

Adobe Photoshop software 

Fix image size to 200 x 200 x1 

Add required number of channels 

Save as a new 2D image 

Visual Basic code 

 
Convert to GSLIB text file format 

Save as a 2D training image 

Paste (n-1) times for a TI of size (200 x 200 x n) 

Save as a 3D training image 

Copy the data  
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4.6.1.1 One-Wave Channel Cases 

Using Equation (4.9) three one-wave channels having three different amplitudes are 

drawn. In order to get the one-wave channels θ = 0.315 radian is used. The drawn 

channels are fixed-width and phase (Figure 4.21). The amplitudes used are high (i.e. 

0.75), medium (i.e. 0.57), and low (i.e. 0.30). Each channel of Figure 4.21 is exported 

as a 2D image (Figure 4.20). Then, Adobe Photoshop Software is used to set the 

dimensions of each image to 200 x 200 x1 pixels (Figure 4.20). So, the amplitude and 

phase are converted into pixels, where, the phase is converted to 100 pixels for all the 

cases. The amplitudes are converted to 75 pixels, 57 pixels, and 30 pixels 

corresponding to the high, medium, and low cases, respectively (Figure 4.22).  

 

 

Figure 4. 21. One-wave channel cases having high, medium, and low amplitudes and a fixed 
phase value 
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Figure 4. 22. Training images of size 200 x 200 x 1 pixels for the one-wave cases having high 
(A1 = 75 pixels), medium (A2 = 57 pixels), and low (A3 = 30 pixels) amplitudes and an equal 

phase (φ1 =	φ2 = φ3 = 100 pixels). 

 

4.6.1.2 Two and Three-Wave Channel Cases 

The two and three-wave channel cases are drawn using Equation (4.9) too. However, 

the θ values for the two and three-wave channel cases are changed to 0.63 and 0.945, 

respectively (Figure 4.23 and 4.24). Each of these channels is exported as a 2D image 

and their dimensions are converted into 200 x 200 x1 pixels as in Section 4.6.1.1. In 

the two-wave channel cases the phase is 50 pixels, while the three-wave channel 

cases it is 33.33 pixels. The amplitudes are kept the same as in Section 4.6.1.1(Figure 

4.19). So, they are 75 pixels, 57 pixels, and 30 pixels corresponding to the high, 

medium, and low cases, respectively (Figure 4.25 and 4.26). The phase and the 

numbers of waves in a channel are interrelated since the training image has a fixed 

size (Table 4.5). The amplitude and the wave number (corresponding to the phase) 

are the Sine function’s parameters which are analyzed in this study. 
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      Figure 4. 23. Two-wave channel cases having high, medium, and low amplitudes and a 
fixed phase values 

 

 

Figure 4. 24. Three-wave channel cases having high, medium, and low amplitudes and a 
fixed phase values  
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Figure 4. 25. Training images of size 200 x 200 x 1 pixels for the two-wave cases having 
high (A1 = 75 pixels), medium (A2 = 57 pixels), and low (A3 = 30 pixels) amplitudes and an 

equal phase (φ1 = φ2 = φ3 = 50 pixels) 

 

 

Figure 4. 26. Training images of size 200 x 200 x 1 pixels for the three-wave cases having 
high (A1 = 75 pixels), medium (A2 = 57 pixels), and low (A3 = 30 pixels) amplitudes and an 

equal phase (φ1 = φ2 = φ3 = 33.33 pixels) 

 

 

 



55 
 

Table 4. 5. The relation between the phase value and the number of waves in a channel 

Phase value (pixel) Number of waves in a channel 
100 1 
50 2 

33.33 3 
 
 

All the nine 2D training images generated so far are one channel training images 

(Figures 4.21, 4.23 and 4.24). In other words, each of these training images has only 

one channel. The channel number which a training image parameter is also analyzed 

in this work. Thus, other 2D training images containing different channel numbers are 

generated. Since, the number of channels in each training image is restricted by its 

fixed size (i.e. 200 x 200 x 1), amplitude level, and number of waves in each channel 

up to 8-channel training images are generated for the low amplitude cases. However, 

up to only 3 and 5-channel training images could be generated for the high and 

medium amplitude cases, respectively. So, the total number of the 2D training images 

generated is 46. Table 4.6 lists the modification of the considered parameters and the 

corresponding number of training images generated. Some of the generated training 

images are illustrated in Figures 4.27. The separation between channels in each 

training image is kept almost the same. 

 

Table 4. 6. Modification of parameters and the corresponding number of the 2D training 
images generated  

Number of 
Channels 

Number of 
waves 

Amplitude 
level 

Number of generated 
training images 

1, 2, and 3 1 
High 

3 x 1 = 3 
1 and 2 2 2 x 1 = 2 
1 and 2 3 2 x 1 = 2 

1, 2, 3, 4 and 5 1, 2, and 3 Medium 5 x 3 = 15 
1, 2, …, 7, and 8 1, 2, and 3 Low 8 x 3 = 24 

Total number of 2D training images generated = 46 
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The generated training images are converted into geostatistical software library 

(GSLIB) text file format by means of a developed Visual Basic code (Figure 4.20). 

That is made because SGeMS accepts files with GSLIB format. The developed code 

is given in Section 3 of Appendix D. 

 
 

 

 

 

 

 

 

 

 

 
Figure 4. 27. Training images of the one-wave channel cases. The channel having high; (A), 
medium; (B), and low amplitudes; (C) are shown. Up to three, five, and eight channels could 

be fitted to the fixed size of the training image for the high, medium, and low amplitude 
cases, respectively 

  

(A) 

(B) 

(C) 
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4.6.2 Modeling of 3D Training Images 

After generating the 2D training images and converting them into GSLIB text files, 

the data in those files are used to add the third dimension slices (i.e. the Z slices) in 

order to generate the 3D training images.  First, all the data (200 x 200 x 1= 40,000 

data) in the GSLIB text file of the 2D training image are copied except the first three 

rows, which are the titles. Next, these data are pasted at the end of the first 40,000 

data as many as the number of the required slices in the Z direction to generate the 

new 3D training image (Figure 4.20). In the present study, training images with up to 

eight Z direction slices are generated. Dissimilar to the original training image of 

Stanford VI dataset, all the slices in the Z direction of each training image are having 

the same number of channels as in the first one (i.e. the 2D training image). The 

training images are generated this way because the increase in number of channels 

with depth is not a general geological property and it depends on the sedimentation 

process as well as other factors (F. B. Rojay, personal connections, January 17, 

2012). So, the generated training images in total (including both the 2D and 3D 

images) are 368 images. Table 4.7, which an extension of Table 4.6, lists these 

training images.  

 

Table 4. 7. Modification of parameters and the corresponding number of training images 
generated  

Number of 
Channels 

Number of 
waves 

Number of Z 
slices 

Amplitude 
level 

Number of TIs  
generated 

1, 2, and 3 1 1, 2, …, 7, and 8 
High 

 

3 x 1 x 8 = 24 
1 and 2 2 1, 2, …, 7, and 8 2 x 1 x 8 = 16 
1 and 2 3 1, 2, …, 7, and 8 2 x 1 x 8 = 16 

1, 2, 3, 4 and 5 1, 2, and 3 1, 2, …, 7, and 8 Medium 5 x 3 x 8 = 120 
1, 2, …, 7, and 8 1, 2, and 3 1, 2, …, 7, and 8 Low 8 x 3 x 8 = 192 

Total number of training images generated = 368 
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4.6.3 Construction of reservoirs using the generated Training Images  

All the 368 generated training images are input into SGeMS creating 368 reservoirs 

that are modeled following the same methodology used in modeling the original 

reservoir (see Section 4.3) by changing only three parameters: 

1. The default seed values of the SNESIM algorithm (i.e. 211175) is used 

2. One of the 368 generated training images of Sections 4.6.1 and 4.6.2 is used 

in SNESIM algorithm each time to generate a new facies realization.  As a 

result, 368 different facies realizations are generated.  

3. 368 experimental variograms are computed for the simulated 368 

realizations using the parameters given in Section 2 of Appendix B. Then 

variogram models are fitted to them. These models are used in SGSIM to 

simulate the porosity values of the generated realizations.   

These porosity values are used to generate 368 new reservoir models. The 

methodology followed in the generation of training images and their corresponding 

reservoir models is as summarized in Figure 4.1. 

4.6.4 Analysis of Training Image Parameters Effects on Reservoir Model 

4.6.4.1 Impact of Training Image Parameters on Cumulative Oil Production  

In order to study the effect of the training image parameters on the cumulative oil 

production, the cumulative oil production versus time plots of the 368 generated 

reservoir models are compared with that of the original reservoir. The plots are 

grouped in order to study the effect of each training image parameter (i.e. # of Z 

slices, # of channels, # of waves in each channel, and amplitude level). Next, the 

results are used to define thresholds for the training image parameters defined to 
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assist in the construction of more representative reservoir models. Then, the effect of 

parameters’ variation in the uncertainty is investigated.  

4.6.4.2 Impact of Training Image Parameters on OOIP and ROIP 

In this section the effect of each parameter is investigated. Then, the percentage 

errors of each case with respect to OOIP and ROIP of the original reservoir are 

calculated and plotted in order to find the uncertainty range of the methodology 

proposed. The calculation of the percentage errors is conducted as shown in Section 

4.4.2. After that, the thresholds defined in the previous sections are utilized. In other 

words, the reservoir models not meeting the thresholds are eliminated. Then, the 

uncertainty range is reanalyzed.   

4.7 Analysis of Porosity Uncertainty Impact on Reservoir Model  

4.7.1 Modeling of Porosity Uncertainty 

In this part, the effect of porosity uncertainty on the reservoir model is investigated. 

In order to do that the uncertainty related to the log-derived porosity (measurement 

uncertainty) and porosity derived from core samples analysis are both considered. 

With the aim of investigating the effect of porosity uncertainty on the predicted 

reservoir model, the uncertainty due to core sample analysis (i.e. laboratory 

uncertainty) is assumed to be the inherent uncertainty.  

Logging tool reading uncertainty (5%) is obtained from the Century Geophysical 

Corporation website (2012) and assumed to be the coefficient of variation (c.o.v) for 

the log reading (Ωlog). On the other hand, a 0.26 coefficient of variation of a 

sandstone core analysis performed by Sanjay (2000) is considered as the inherent 

uncertainty (Ωcore). These two coefficients of variations are combined using Equation 

2.4 to find the total uncertainty in the predicted porosity value, Ωtotal, as shown below. 
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Ω����� = √0.26� + 0.05� = 0.265                                 (4.8) 

 
Since the porosity hard data of Stanford VI dataset has a bimodal distribution (see 

Figure 4.5), the porosity data are clustered into two different groups (Figure 4.28). 

Then, the standard deviation (σ) of each group is found using the Ω total and the mean 

(µ) of that data group. Next, a Gaussian Monte Carlo Simulation (MCS) is performed 

to generate 50 realizations for each porosity datum using the calculated σ and µ by 

means of a developed Visual Basic code, which is given in Section 4 of Appendix D. 

These 50 realizations are extracted from Excel software into text files of GSLIB 

format by another Visual Basic Code. The details of the code are given in Section 5 

of Appendix D. The generated 50 text files are then imported into SGeMS and named 

“Realization_i”, where “i = 1, 2, 3, …, 50”. Then, the distribution structure and the 

overall mean of the hard data are checked in order to verify that the introduced 

uncertainty has not disturbed them. In addition, the experimental variograms of the 50 

realizations are computed and their best fitting variogram models are found. Then, the 

fitted models are plotted in order to investigate whether the introduced uncertainty 

have interrupted the autocorrelation (spatial correlation) of the real hard data or not. 

Aiming at studying the effect of porosity uncertainty, the original reservoir is 

employed. In order to generate the reservoir models corresponding to the 50 

generated porosity realizations, the methodology steps of Section 4.3 are repeated 

using the original reservoir. However, the only difference is in the porosity simulation 

part of the SGSIM algorithm. In the second page of the algorithm interface; “Data” 

(see Figure A.2), the “Hard Data” and the “Property with Reference Distribution” 

objects are selected as one of the 50 generated porosity realizations each time a new 

reservoir is modeled. For example, if the first reservoir is being modeled, the objects 

are selected as “Realization_1”. As a result, the only factor affecting the reservoir 

models is the porosity uncertainty since the other parameters are constant. The 

investigation of this effect is the aim of this section. 
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Figure 4. 28. Two groups of the porosity hard data 

 

4.7.2 Analysis of Porosity Uncertainty Impact 

The porosity uncertainty the OOIP and the ROIP of the 50 generated reservoirs 

corresponding to the MCS realizations of the previous section are plotted. In addition, 

the percentage errors of each case with respect to OOIP and ROIP of the original 

reservoir are calculated, plotted and analyzed. The calculation of the percentage 

errors and the investigation of the results’ reliability are made as shown in Section 

4.4.2.  

In this section the effect of different Ωtotal values on the percentage errors is 

investigated and compared with that of Ωhard data (Table 4.8). The cases where Ωtotal is 

0.01, 0.02, 0.05, 0.10, and 0.15 are considered and 30 MCS are performed to generate 

30 reservoir models for each case. The steps explained previously in Section 4.4.2 are 

followed here to generate the corresponding reservoir models. 
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Table 4. 8. Descriptive statistics of the porosity hard data 

Original data c.o.v mean StDev 
Non-reservoir (Shale) 0.317578 0.074045 0.023515 

Reservoir (Cannel) 0.105684 0.258696 0.027340 
 

In addition, analysis of porosity uncertainty impact utilizing different upscaling 

method is carried out. In the previous parts of this study the arithmetic upscaling 

method is used. Although, the arithmetic upscaling method is widely used, it has a 

smoothing effect on the results. The median, on the other hand, is a more robust 

statistic (i.e. it is not affected with the number of small and large data). Thus, in this 

section the median upscaling method is employed and once again the total uncertainty 

(Ωtotal = 0.265) is used. In order to perform the upscaling using the median, the Visual 

Basic code of Section 4.3.4 is extended to include the option of “calculation method” 

which is either median or average. This code is given in Section 6 of Appendix D. 

  



63 
 

CHAPTER 5 

RESULTS AND DISCUSSIONS 

 

5.1 Sensitivity Investigation of the SNESIM Algorithm and the Methodology 

Proposed 

In order to study the sensitivity of the SNESIM algorithm and the methodology 

proposed, the OOIP and ROIP values of the generated 50 equiprobable reservoirs as 

well as their corresponding percentage errors with respect to the values of the original 

reservoir are plotted (Figures 5.1 and 5.2). The OOIP and ROIP values of the 

generated reservoirs are in the ranges (71,233 – 71,195) M STB and (53,957 – 

53,928) M STB, respectively. The percentage errors of these values with respect to 

those of the original reservoir are in the ranges (2.9% – -2.4%) and (3% – -2.4%), 

respectively. As expected the percentage error of the OOIP and ROIP are almost 

identical since the permeability is calculated from the porosity by means of 

logarithmic relations.  These results verify that the SNESIM algorithm and the 

proposed method including its entire steps allow good reproduction of the original 

reservoir with confidence limits between 3% and -2.4%.  In other words, the 

proposed method including SNESIM simulation, variogram fitting, SGSIM 

simulation, upscaling, and running the model in CMG (IMEX tool) is producing 

accurate results with accuracy of about ±3%. 
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Figure 5. 1. The OOIP values of the 50 generated reservoir models and their percentage 
errors with respect to the OOIP of the original reservoir model 

 
 
 

 

Figure 5. 2. The ROIP values of the 50 generated reservoir models and their percentage errors 
with respect to the ROIP of the original reservoir model 
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After that, the reliability of the information obtained with only 50 simulations is 

investigated by the utilization of the EasyFit statistical tool. The EasyFit tool is used 

to fit a distribution to the calculated percentage errors. As the error is normally 

distributed, a normal distribution is fitted to the errors. Then, the goodness of fit is 

checked by the same tool (Figure 5.3).  

 

 

Figure 5. 3. Goodness of fit details 

 

In order to understand Figure 5.3 it is important to know the details of the EasyFit 

tool output. First of all, the null and alternative hypotheses being tested are: 

 

H0 = the data follows the normal distribution. 

H1 = the data does not follow the normal distribution. 

 

Then, if the resulting p-value is less than the level of significance, the null hypothesis 

is rejected and within the required degree of certainty it cannot be stated that the data 

is normally distributed. In other words, if we would like to state within 95% certainty 

that the data can be described by the normal distribution, the resulting p-value must 

be greater than the level of significance. As the level of significance equals 1 minus 

the required degree of certainty, it is 0.05 in this case. In Figure 5.3 the resulting p-



66 
 

value is 0.77 which is greater than the level of significance; therefore, the null 

hypothesis is not rejected. As a result, with at least 95% certainty it can be stated that 

the data is normally distributed, with N (0.00368, 0.01424).  

Using the normal distribution fitted to the percentage errors, the reliability of the 

information obtained with only 50 simulations is investigated. First, the probabilities 

of finding an error within the limits of the calculated distribution or beyond them are 

calculated. Here only the OOIP error is considered as the error in the ROIP is almost 

identical. The probabilities P (x < -0.024) and P (x < 0.029) are calculated using the 

NORMDIST function in Excel software. The following equations show the 

calculation details: 

��� < −0.024� = 0.0260                                         (5.1) 

��� > 0.029� = 1 − ��� < 0.029� = 0.0377                      (5.2) 

��−0.024 < � < 0.029� = 1 − �	��� < −0.024� + ��� > 0.029�� 
= 1 − �0.0260 + 0.0377� = 	0.9363                                 (5.3) 

 
These probability values show that if more than 50 simulations are performed the 

chance of obtaining errors within the limits of the obtained normal distribution is 

0.9363. Thus, it is almost sure that other simulations will provide the same 

information which obtained with only 50 reservoir models. In other words, the 50 

reservoir models are enough to comment on the sensitivity of the methodology 

proposed.   

5.2 Sensitivity Investigation of the Variogram Model 

In order to perform this analysis the following variogram models are fitted to the 

experimental variogram of the original reservoir realization shown in Figure 4.7: 

• A Spherical variogram model  

• A Gaussian variogram model  
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• An Exponential variogram model with lower ranges than those of the original 

variogram given in Table 4.2  

• An Exponential variogram model with larger ranges than those of the original 

variogram 

The plots and parameters of these variogram models are shown in Tables 5.1 through 

5.4 and Figures 5.4 through 5.7, respectively. After finding these variogram models, 

the corresponding reservoirs’ porosities are generated. Then, the other reservoir 

modeling steps given in Section 4.3 are followed to get the corresponding cumulative 

oil production plots and their data.  

 

Table 5. 1. The parameters of the Spherical variogram model fitted to the experimental 
variogram of the original reservoir. Ranges are shown in feet 

  

 

 

Table 5. 2. The parameters of the Gaussian variogram model fitted to the experimental 
variogram of the original reservoir.  

 

 

 

 

Type Spherical 
Nugget 0.08 

Sill 0.1485 
Ranges 14/14/14 
Angles 0/0/0 

Type Gaussian 
Nugget 0.095 

Sill 0.135 
Ranges 15/14/11 
Angles 0/0/0 
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Table 5. 3. The parameters of the Exponential variogram model with lower ranges fitted to 
the experimental variogram of the original reservoir.  

 

 

 

 

 

Table 5. 4. The parameters of the Exponential variogram model with larger ranges fitted to 
the experimental variogram of the original reservoir.  

 

 

 

 

 

 
Figure 5. 4. The Spherical variogram model fitted to the experimental variogram of the 

original reservoir.  

 

Type Exponential 
Nugget 0.04 

Sill 0.1895 

Ranges 20.9/19.95/7.7 

Angles 0/0/0 

Type Exponential 
Nugget 0.04 

Sill 0.1895 
Ranges 23.1/22.05/8.51 
Angles 0/0/0 
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Figure 5. 5. The Gaussian variogram model fitted to the experimental variogram of the 

original reservoir 

 

 
Figure 5. 6. The Exponential variogram model with lower ranges fitted to the experimental 

variogram of the original reservoir 
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Figure 5. 7. The Exponential variogram model with larger ranges fitted to the experimental 

variogram of the original reservoir 

 

To check the sensitivity of the reservoir model to the variogram model, the OOIP and 

ROIP of the generated reservoirs are compared with those of the original reservoir. 

None of the generated reservoirs output a value identical to that of the original 

reservoir (Table 5.5). For example, if the variogram used in modeling the original 

reservoir (see Table 4.4) is used, but with a 5% increase in the ranges it results in 

0.16% change in the OOIP and ROIP values (Table 5.5). In addition, 5% decrease in 

the ranges of that variogram results in 0.19% change in the OOIP and ROIP values 

(Table 5.5). Although, the percentage differences are not very large, it is very clear 

that the reservoir model is sensitive to the variogram used in the simulation of 

porosity. As a result, it is advised to carefully select the appropriate variogram model 

when using the proposed modeling methodology. 
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Table 5. 5. Comparison of the reservoirs generated using different variogram models with the 
original reservoir  

 
The 
variogram 
Model used 

OOIP 
(M STB) 

ROIP 
(M STB) 

Difference 
in OOIP 
(M STB) 

Difference 
in ROIP 
(M STB) 

Difference 
(%) 

Original variogram 
(Exponential) 

71,212 53,941 
  

 

Gaussian model 72,202 54,691 990 750 1.39 

Spherical model 72,475 54,897 1,263 956 1.77 
Exponential with 

larger ranges 
71,100 53,856 -112 -85 -0.16 

Exponential with 
lower range 

71,344 54,041 132 100 0.19 

 

5.3 Impact of Training Image Parameters on Reservoir Model 

5.3.1 Effect of Training Image Parameters on Cumulative Oil Production  

In this section the effect of training image modification on the cumulative oil 

production is investigated. So, the effect of each training image parameter (i.e. 

amplitude, and number of waves in each channel, number of fixed-width channels, 

and number of slices in Z direction) on the cumulative oil production is studied 

individually. The following subsections illustrate this work. 

5.3.1.1 Effect of Z slice number 

From Figure 5.8 it is very clear that the number of Z slices has a great influence on 

the amount of the cumulative oil production. Figures 5.8 through 5.10 demonstrate 

that the values of the cumulative oil production obtained using training images having 

1, 2, 3, and 4 Z slices do not represent the original reservoir. In contrast, the results of 

the simulations in which training images having 5, 6, 7, and 8 Z slices are used, yield 
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values closer to that of the original reservoir. Note that the increase in the number of 

Z slices beyond 5 has no noticeable effect on the cumulative oil production value. 

Thus, it can be said that training images having at least 5 Z slices are needed to 

simulate the considered reservoir accurately using the MPG technique proposed. This 

can be generalized to all 3D reservoirs if verified by applications to reservoirs with 

thicker and thinner grid sizes.  

 

(A)  

(B)  

Figure 5. 8. Medium Amplitude_ One Wave_ Three Channels Cases; (A).  Exaggerated plot 
of the highlighted part of A; (B) 
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Figure 5. 9. Medium Amplitude_ Two Waves_ Two Channels Cases 

 

 

Figure 5. 10. Low Amplitude_ Three Waves_ Seven Channels Cases 

 

The reason behind the differences between cumulative oil production values of 

reservoirs obtained using training images with 4 Z slices or less and the ones obtained 

with 5 Z slices or more is the extreme underestimation of the porosity. This extreme 
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underestimation of the porosity clearly occurs somewhere between the porosities 

obtained by the use of 4 and 5 Z slices (see Figures 5.8 through 5.10). When the 

porosity is significantly underestimated, the pore volume and therefore the OOIP are 

significantly underestimated too. As a result, the reservoir is depleted faster. In 

addition, the reservoir pressure drops faster and therefore the control of each 

production well is switched from constant rate constraint to BHP constraint. Thus, the 

value of cumulative oil production for such reservoir at the end of the production 

period is definitely less than that of a reservoir having a larger porosity value.  

The results show that at least 5 Z slices are needed to perform a representative 

simulation of the original reservoir. However, the original reservoir model is 

synthetic and generated using the original training image which consists of 5 Z slices 

too. So, this might be the reason behind the defined 5 Z slices threshold. In order to 

investigate that, the original reservoir is remodeled four more times using different 

training images. These training images are generated using the Z slices of the original 

image (see Figure 4.3). The details of the training images generated are given below. 

• The first training image is generated using the first four Z slice of the original 

training image (i.e. it contains 4 Z slices) 

• The second training image consists of the first Z slice of the original training 

image repeated five times (i.e. it contains 5 Z slices)  

• The third training image consists of the last Z slice of the original training 

image repeated five times (i.e. it contains 5 Z slices) 

• The fourth training image consists of the original training image with its all  Z 

slices plus the last slice repeated one more time (i.e. it contains 6 Z slices) 

Note that the first Z slice has the least number of channels and therefore the least 

channel proportion. In contrast, the last Z slice has the most number of channels and 

therefore the most channel proportion (see Figure 4.3). The channels proportions of 

the generated training images are given in Table 5.6.  
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Figure 5.11 illustrates the (cumulative oil production vs. time) plots of the reservoirs 

generated using the four training images of Table 5.6.  Figure 5.11 shows that 

training image number 1 (TI1), which has 4 Z slices, outputs cumulative oil 

production value far from the original value (i.e. the values of the original reservoir). 

Note that training image number 2 (TI2), which has 5 Z slices, have less channel 

proportion than TI1, but it outputs a larger cumulative oil production value which is 

not close to the original value as well. Training images number 3 (TI3) and 4 (TI4), on 

the other hand, overestimate the channel proportion of the original training image 

(see Table 5.6), however, they result in cumulative oil production values that are very 

close to the original values. So, TI2 and TI3 resulted in very different cumulative oil 

production values, although both of them consist of 5 Z slices. As a result, the 

threshold of a 5 Z slices defined earlier is not related to the size of the original 

training image utilized in modeling the original reservoir. However, the higher the 

channels proportion in the training image the more reasonable the result.  

 

Table 5. 6. Categories’ proportions of the training images used to investigate the effect of Z 
slice number 

Name and description of  training image 
Channel  
(Sand) 

proportion (%) 

Shale  
(Non-channel) 
proportion (%) 

Original training image 0.271 0.729 
TI1 (with the first 4 Z slices original training 

image) 
0.251 0.749 

TI2 (with the first Z slice of the original training 
image repeated 5 times) 

0.145 0.855 

TI3 (with the last Z slice of the original training 
image repeated 5 times) 

0.349 0.651 

TI4 (original training image with the last Z slices 
repeated one time) 

0.284 0.716 
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Figure 5. 11. Cumulative oil production versus time plots of the reservoirs generated using 
the four training images of Table 5.6 

 

5.3.1.2 Effect of other parameters (channel number, wave number, and 

amplitude level) 

The investigation of the channel number, wave number, and amplitude level effect on 

the cumulative oil production is performed in two steps. First, the reservoirs 

generated are grouped based on the parameters’ values of the training images used.  

Then, the cumulative oil production values of the reservoirs in each group are plotted 

and compared.  

The results of the previous section showed that the training images having 1, 2, 3, and 

4 Z slices are not suitable for the simulation of the original reservoir. Thus, the 

reservoirs consider in this part are the ones modeled using 5, 6, 7, and 8 Z slices 

training images (in total 156 reservoirs) (see Table 4.7). 



77 
 

Figures 5.12, through 5.15 illustrate the results of the reservoirs generated using one, 

two, and three medium-amplitude-wave channels, respectively. In these figures the 

reservoirs generated using the one and two channels’ training images having medium 

amplitude waves, output unrepresentative results. In Figure 5.12 the one channel 

training image produces a reservoir which overestimates the cumulative oil 

production of the original reservoir although it has less pore volume and therefore 

less OOIP and ROIP than those of the original reservoir (Table 5.7). The reason 

behind that is the dissimilarity between the grid blocks’ pressure of the generated and 

the original reservoir. To clarify, the wells are initially operated on constant rate 

constraint, but if the borehole pressure in any well fails to produce the rate specified, 

the bottomhole pressure constraint becomes the operating constraint of that well.  

Then, the simulator (i.e. IMEX) calculates the pressure difference value (i.e. grid 

block pressure – wellbore pressure) and uses it to calculate a new production rate for 

each timestep. As a result, the cumulative oil production depends on the value of the 

pressure difference which is a function of the grid block pressure. However, the grid 

block pressure changes according to the value of its simulated porosity which is a 

function of the training images used. The arithmetic upscaling application has a 

smoothing effect on the cumulative oil production as well. However, its impact on all 

the reservoir models is the same; therefore, it does not cause a great change unless the 

porosity values are totally different. As a result, the one channel training image is not 

suitable for simulating the original reservoir as it does not produce representative 

reservoir. In addition, the two channels’ training image in Figure 5.12 produces 

unrepresentative reservoir model since its cumulative oil production extremely 

underestimates that of the original reservoir. That happens due to the underestimation 

of the grid porosities which causes the grid pressure to be very low. As a result, the 

two channel training image is also not suitable for simulating the original reservoir. In 

Figures 5.13 through 5.15 the one channel training images also show unreliable 

results as their cumulative oil production curves are changing while the others are 

almost constant. The reason for that is also the unrepresentative porosity. 
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Figure 5. 12. Cumulative oil production for reservoirs generated using training images with 
different numbers of channels. The abbreviation (m_1_1_7Z) stands for medium amplitude_ 

one wave_ one channel_ 7 Z slices training image 

 

Table 5. 7. Comparison of the reservoir models given in Figure 5.12 

 
 

Original m_1_1_7Z m_1_2_7Z m_1_3_7Z m_1_4_7Z m_1_5_7Z 

Reservoir pore 
volume (M 

rbbl) 
179659  178373  178978  179194  179096  179121  

OOIP (M 
STB) 

71212 71158 71371 71223 71422 71431 

ROIP (M STB) 53941 53900 54061 53950 54100 54107 

Cumulative oil 
production (M 

STB) 
29502 29681 29021 29429 29310 29294 

Current oil in 
place (M STB) 

41714 41476 42347 41793 42094 42131 
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Figure 5. 13. Cumulative oil production for reservoirs generated using training images having 
different numbers of channels, two waves, medium amplitude, and eight Z slices  

 
 
 

 

Figure 5. 14. Cumulative oil production for reservoirs generated using training images having 
different numbers of channels, medium amplitude, three waves, and six Z slices  
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Figure 5. 15. Cumulative oil production for reservoirs generated using training images having 
different numbers of channels, medium amplitude, three waves, and six Z slices  

 

Due to the same reasons the low-amplitude-wave channel cases produce completely 

unrepresentative results when one-wave-channel training images are used (Figures 

5.16 and 5.17). However, in the 2 and 3 waves’ cases at least 3 channels are needed 

to get fair results (Figures 5.18 and 5.19). As a result, training images having medium 

and low amplitude wave channels with less than 5 Z slices, 3 channels, and 2 waves 

in each channel produce reservoirs with porosity values that do not represent the 

original reservoir. Based on these findings and as a general rule, the training images 

having medium and low amplitude wave channels produce reservoirs with reliable 

cumulative oil production results when at least 5 Z slices, 3 channels and 2 waves in 

each channel are used in the training image (other results’ plots are given in the 

attached CD). 
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Figure 5. 16. Cumulative oil production for reservoirs generated using training images having 
different numbers of channels, low amplitude, one waves, and five Z slices  

 

 

Figure 5. 17. Cumulative oil production for reservoirs generated using training images having 
different numbers of channels, low amplitude, one waves, and seven Z slices  
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Figure 5. 18. Cumulative oil production for reservoirs generated using training images having 
different numbers of channels, low amplitude, two waves, and eight Z slices  

 

 

Figure 5. 19. Cumulative oil production for reservoirs generated using training images having 
different numbers of channels, low amplitude, three waves, six Z slices  
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The channels’ number is limited by the size of the training image, number of waves 

in each channel, and the amplitude level of waves. In the high amplitude case it was 

not possible to fit more than 3 channels having one wave, or 2 channels having 2 and 

3 waves into the training image (Figure 5.20). So, the number of cases generated is 

not large enough to mean anything statistically. Thus, the high amplitude cases are 

not considered in the present study.  

 

 

 

 

 
Figure 5. 20. The high amplitude cases fitted to the limited size training image 

 

In general the pore volumes of the models developed in the present study 

underestimate the pore volume of the original reservoir (see Table 5.7). This is due to 

the underestimation of the porosity. That can either be because the training image is 

not pattern-rich or its sand (i.e. channel) proportion is not high enough. Strebelle, 

(2000) and Arpat (2005) indicated that when a training image is not large enough or 

when it is not pattern-rich the data events of that training image are not enough to 

condition to when simulating unsampled nodes. However, in the present case the 

same training image size is used, therefore, low channel proportion means pattern-

poor. Thus, the underestimation of the porosity is due to the fact that all the cases 

have channel proportions less than that of the original training image (Table 5.8).  

Although, SNESIM has a servosystem parameter that forces it to remain close to the 

global target proportions (or target marginal distribution) defined by the user 

(Strebelle, 2000), it still underestimates the value of the channel proportion.  
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Increasing the servosystem parameter value brings the simulated marginal probability 

closer to the target, but at a cost of losing the structural information of facies (Liu, 

2006). So, the use of training image that is not pattern-rich leads to poor reproduction 

of pattern in SNESIM algorithm. In other words, when modeling fluvial reservoirs 

less continuity of sinuous channel patterns are obtained therefore porosity is 

underestimated. These lead to erroneous flow responds. So, the thresholds defined 

earlier are the ones below which the SNESIM algorithm fails to reproduce the closest 

marginal probabilities and patterns of the reservoir under consideration. 

 

Table 5. 8. The sand and shale proportions of the original training image and the training 
image with the highest channel proportion among the developed training images 

Training Image 
Channel (sand) 

proportion 
Non-channel (shale) 

proportion 
Original image 0.271 0.739 

Training image having 3 waves, 
8 channel, and 8 Z slices 

0.154925 
 

0.845075 
 

 

5.3.1.3 Effect of parameters’ variation 

The effect of the parameters variation is examined and the results show that: 

1. As the number of channels and waves increase the uncertainty of the simulation 

decreases. For example, the uncertainty range decreases from 435 M STB to 70 

M STB when the number of channels having medium-amplitude waves increases 

from 1 to 3 in an 8 Z slices training image (Figures 5.21). In addition, it decreases 

from 801 M STB to 237 M STB when the number of low-amplitude waves in 

channels increases from 1 to 3 in a 7 Z slices training image (Figures 5.22).   

2. The increase in the number of Z slices from 5 to 8 and in the amplitude level from 

low (A3 = 30 pixels) to high (A1 = 75 pixels) have no noticeable effect on the 

uncertainty (Figures 5.23 and 5.24).   
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(A)  

(B)  

(C)  

Figure 5. 21. (Effect of channel’s number): medium amplitude_ one channel_ eight Z slices 
cases; (A), medium amplitude_ two channels_ eight Z slices cases; (B), medium amplitude_ 

three channels_ eight Z slices cases; (C) 
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 (A)  

(B)  

(C)  

Figure 5. 22. (Effect of wave’s number): low amplitude_ one wave_ seven Z slices cases; 
(A), low amplitude_ two waves_ seven Z slices cases; (B), low amplitude_ three waves_ 

seven Z slices cases; (C) 
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 (A)  

(B)  

(C)  

Figure 5. 23. (Effect of Z slices’ number): medium amplitude_ two waves_ five Z slices 
cases; (A), medium amplitude_ two waves_ six Z slices cases; (B), medium amplitude_ two 

waves_ seven Z slices cases; (C) 
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(A)  

(B)  

(C)  

Figure 5. 24. (Effect of amplitude): three wave_ five channels_ five Z slices cases; (A), 
three wave_ five channels_ six Z slices cases; (B), three wave_ five channels_ eight Z slices 

cases; (C) 
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5.3.2 Effect of Training Image Parameters on OOIP and ROIP 

In this section the effect of training image parameters on the OOIP and ROIP is 

studied. The effect of the parameters on both OOIP and ROIP are identical as 

expected because the permeability is calculated based on the porosity utilizing the 

logarithmic relations of Figure 4.13. The effect of the Z slice number shows no 

specific trend except for the 1 Z slice case. The training images having 1 Z slice 

always overestimates the OOIP and ROIP which clearly indicates that 2D training 

images are not suitable for 3D reservoir simulation (Figures 5.25 through 5.27). The 

smoothing effect of the arithmetic upscaling might be the reason behind the 

undefined trend of the change in OOIP and ROIP in the other cases of the Z slice 

number (i.e. 2, 3, …, 7, and 8 Z). 

 

 

Figure 5. 25. OOIP and ROIP values for the reservoirs modeled using training images having 
different numbers of Z slices and one channel containing one wave having medium amplitude 

(m) level  
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Figure 5. 26. OOIP and ROIP values for the reservoirs modeled using training images having 
different numbers of Z slices and four channels each contains three waves having medium 

amplitude (m) level  

 

 

 

Figure 5. 27. OOIP and ROIP values for the reservoirs modeled using training images having 
different numbers of Z slices and four channels each contains two waves having low 

amplitude (L) level   
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The effect of training image channel number on the OOIP and ROIP is random 

(Figure 5.28 through 5.30). However, the amount of the OOIP and ROIP are directly 

proportional to the number of waves in the channels used (Figure 5.31 and 5.32). As 

in the case of the Z slice and channel number, the amplitude level of the wave has no 

specific effect on the OOIP and ROIP (Figure 5.33 and 5.34) (other results’ plots are 

given in the attached CD).   

 

 

Figure 5. 28. OOIP and ROIP values for the reservoirs modeled using 6 Z slice-training 
images having different numbers of channels; each of these channels contains two medium 

amplitude waves   
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Figure 5. 29. OOIP and ROIP values for the reservoirs modeled using 8 Z slice-training 
images having different numbers of channels; each of these channels contains two low 

amplitude waves 

 

 

Figure 5. 30. OOIP and ROIP values for the reservoirs modeled using 6 Z slice-training 
images having different numbers of channels; each of these channels contains three low 

amplitude waves 
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Figure 5. 31. OOIP and ROIP values for the reservoirs modeled using 7 Z slice-training 
images having a single channel with different numbers of medium amplitude waves   

 

 

Figure 5. 32. OOIP and ROIP values for the reservoirs modeled using 8 Z slice-training 
images having eight channels; each of these channels contains different numbers of low 

amplitude waves 
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Figure 5. 33. OOIP and ROIP values for the reservoirs modeled using 5 Z slice-training 
images having three one-wave channels with different amplitude levels 

 

 

Figure 5. 34. OOIP and ROIP values for the reservoirs modeled using 6 Z slice-training 
images having three two-wave channels with different amplitude levels 
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After analyzing the effect of each training image parameter on the OOIP and ROIP 

the percentage errors of each case with respect to OOIP and ROIP of the original 

reservoir are calculated using Equation 4.7. Next, the calculated percentage errors for 

the developed 368 reservoir models are plotted and analyzed. Figures 5.35 and 5.36 

illustrate that the OOIP and ROIP can be predicted with an uncertainty range of 

+1.549% – -0.345%. Yet again the percentage errors of both OOIP and ROIP are 

identical as the permeability is calculated based on the porosity utilizing the 

logarithmic relations of Figure 4.11. However, this uncertainty range (i.e. +1.549 –    

-0.345) can be narrowed down by eliminating the cases that are not meeting the 

parameters thresholds defined in Section 5.3.1. As a result, the uncertainty range of 

the OOIP and ROIP prediction is reduce to 0.382% – 0.104% (Figures 5.37 and 

5.38). This verifies that the defined thresholds provide the most representative 

reservoir models. 

 

 

Figure 5. 35. The OOIP values of the reservoirs generated by using the developed 368 
training images and their percentage errors with respect to the OOIP of the original reservoir  
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Figure 5. 36. The ROIP values of the reservoirs generated by using the developed 368 
training images and their percentage errors with respect to the ROIP of the original reservoir 

 

 

Figure 5. 37. Percentage error associated with the prediction of OOIP using the developed 
training images after excluding the cases that fail to meet the defined thresholds 
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Figure 5. 38. Percentage error associated with the prediction of ROIP using the developed 
training images after excluding the cases that fail to meet the defined thresholds  

 

The reservoir models illustrated in Figures 5.37 and 5.38 are the ones generated with 

training images that meet the thresholds of the parameters defined in Section 5.3.1 

(Table 5.9). So, these models are the ones that represent the original reservoir the 

best. As a result, they can be used to history match the production data of the original 

reservoir.  

 

Table 5. 9. The training images that meet the thresholds of the parameters defined  

Number of 
Channels 

Number of 
waves 

Number of Z 
slices 

Amplitude 
level 

Number of TIs   

3, 4 and 5 2, and 3 5, 6, 7, and 8 Medium 3 x 2 x 4 = 24 
3, 4, 5, 6, 7, and 8 2, and 3 5, 6, 7, and 8 Low 6 x 2 x 4 = 48 

Total number of training images = 72 
 

Based on these findings a history matching workflow can be established. So, in order 

to obtain the best history matching model for a fluvial channel reservoir the following 

0.382

0.104

-0.100

0.000

0.100

0.200

0.300

0.400

53,900

53,950

54,000

54,050

54,100

54,150

0 100

%
 E

rr
o

r 

R
O

IP
 
(M

 S
T

B
)

Realization Number  

Original Reservoir Reservoir models meeting the parameters thersholds



98 
 

workflow is proposed. First, the 3D training images reported in Table 5.9 are 

generated as illustrated in Sections 4.6.1 and 4.6.2. Next, their corresponding 

reservoir models are developed and run utilizing the MPG methodology proposed 

(see Section 4.6.3). After that, an objective function for history matching is defined 

using the water cut and bottom-hole pressure (BHP) of the production wells (Li and 

Caers, 2011). After normalizing the water cut and BHP data the objective function is 

used to computes the sum of the square differences between the observed (original) 

and simulated data. The best matching model is the one with the smallest sum of the 

square differences.     

5.4 Porosity Uncertainty Impact on Reservoir Model 

5.4.1 Porosity Uncertainty Modeling 

The developed 50 Monte Carlo simulation (MCS) realizations of the porosity data 

using the total coefficient of variation (Ωtotal) of 0.265 are evaluated by plotting their 

histograms and variograms. This assessment is performed to confirm that the real 

hard data are not disturbed by the introduced error. In case the data are disturbed by 

the introduced error, the generated realizations do not represent the real hard data; 

therefore, analyzing such data would be of no use.  

The results show that the overall mean (i.e. 0.157) and distribution structure (i.e. 

bimodal) of the real hard data are not disturbed by the uncertainty introduced (Figures 

5.39 and 5.40, the other plots are given in the attached CD). In addition, the 

variogram models of the realizations and the real hard data are similar (i.e. 

exponential) (Figure 5.41 and 5.42, the other variograms are given in the attached 

CD). As a result, the introduced error did not interrupt the autocorrelation of the real 

hard data. So, the generated 50 MCS realizations represent the real hard data, 

therefore, can be used to analyze the impact of that data uncertainty on reservoirs 

modeled using the proposed MPG methodology.  
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Figure 5. 39. Porosity histogram of the first MCS realization 

 

 

Figure 5. 40. Porosity histogram of the thirty-first MCS realization 
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Figure 5. 41. Variogram of the first MCS realization 

 

 

Figure 5. 42. Variogram of the eleventh MCS realization 
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5.4.2 Analysis of Porosity Uncertainty Impact  

In order to investigate the impact of the porosity uncertainty in the developed 

reservoir model, the porosity realizations of the 50 Monte Carlo simulations (MCS) 

generated earlier are used to simulate the original reservoir 50 times as explained in 

Section 4.7.1. The OOIP and ROIP values of the new 50 reservoir models are 

compared with those of the original reservoir. The results show that the OOIP and 

ROIP values of all the new models underestimate the original results. As shown in 

Figures 5.43 and 5.44 the OOIP and ROIP values of the generated reservoirs are in 

the ranges (67,946 – 66,198) M STB and (51,467 – 50,143) M STB, respectively. The 

corresponding percentage errors of these values with respect to those of the original 

reservoir are both in the range (-4.586% – -7.041%) (Figures 5.43 and 5.44).  

The reliability of the information acquired from only 50 MCS is checked by using the 

percentage error as explained in Section 5.1. As expected the percentage error is 

normally distributed, N (0.050157, 1.9959). The calculated probability values verify 

that the results obtained with only 50 MCS are reliable. In other words, more MCS 

will provide the same information obtained with only 50 realizations since the 

probability of obtaining reservoirs having OOIP and ROIP within the limits of the 

fitted normal distribution is 95% (Table 5.10).   
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Figure 5. 43. The OOIP values of the 50 reservoir models generated using the 50 porosity 
MCS and their percentage errors with respect to the OOIP of the original reservoir model  

 

 

Figure 5. 44. The ROIP values of the 50 reservoir models generated using the 50 porosity 
MCS and their percentage errors with respect to the ROIP of the original reservoir model 
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Table 5. 10. Probabilities of finding an error within or beyond the limits of the calculated 
distribution using 50 MCS 

Probability Value 
��� < −7.0410� 0.0186 
��� > −4.5865� 0.0312 

��−7.0410 < � < −4.5865� 0.9503 
 

5.4.2.1 Analyzing the Impact of Different Porosity Uncertainty values 

Aiming at investigating the effect of different uncertainty values on the prediction of 

OOIP and ROIP values, the Ωtotal of 0.01, 0.02, 0.05, 0.10, and 0.15 are considered 

and 30 MCS are performed for each case. The descriptive statistics of the considered 

cases are given in Table 5.11. The results show that with 0.01 and 0.02 uncertainties 

the OOIP and ROIP values are overestimated (Figures 5.45 and 5.46). The reason 

behind that is the data are forced to be around the mean when these two small 

uncertainty values are used. As a result, all the generated realizations fail to capture 

the variability of the real hard data. The highest and lowest limits of the OOIP and 

ROIP in each case and their corresponding percentage errors with respect to the 

original reservoir model are reported in Table 5.12. 

As the uncertainty increases from 0.01 to 0.15 the values of OOIP and ROIP are 

moving from overestimation to underestimation. The reason behind that might be the 

synthetic origin of the hard data, which are also uncertain. Thus, high and low 

uncertainties in real world hard data not necessarily show the same respond. 

However, the aim here is to examine the impact of hard data uncertainty in the 

reservoir models, so, the results found show that a small uncertainty in the hard data 

has a great impact in the simulated reservoir outputs. Thus, more time and money 

should be devoted to decrease the uncertainty of collected hard data which facilitate 

the simulation of more accurate reservoir models.  
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Table 5. 11. Descriptive statistics of the porosity data generated using different coefficient of 
variation (c.o.v) (i.e. uncertainty) values 

 mean 
StDev 
for 1% 

StDev 
for 2% 

StDev 
for 5% 

StDev 
for 10% 

StDev 
for 15% 

Shale 0.074045 0.00074 0.001481 0.003702 0.007404 0.011107 
Channel 0.258696 0.002587 0.005174 0.012935 0.02587 0.038804 

 

 

 

Figure 5. 45. The OOIP and ROIP values corresponding to reservoir models generated using 
different coefficient of variation (c.o.v) (i.e. uncertainty) values 
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Figure 5. 46. The percentage errors in OOIP and ROIP values corresponding to reservoir 
models generated using different coefficient of variation (c.o.v) (i.e. uncertainty) values with 

respect to the original reservoir model 

 

Table 5. 12. The highest and lowest limits for the OOIP and ROIP of the reservoir models 
generated using different coefficient of variation (c.o.v) (i.e. uncertainty) values, and their 

corresponding percentage errors with respect to the original reservoir model 

Case 
OOIP (M STB) ROIP (M STB) % Error 

Highest 
limit 

Lowest 
limit 

Highest 
limit 

Lowest 
limit 

Highest 
limit 

Lowest 
limit 

1% c.o.v 72,668 71,502 55,044 54,161 2.045 0.174 
2% c.o.v 72,373 71,239 54,820 53,961 1.630 0.038 
5% c.o.v 71,873 70,782 54,442 53,616 0.921 -0.604 
10% c.o.v 71,228 69,533 53,953 52,670 0.022 -2.358 
15% c.o.v 69,607 68,240 52,725 51,690 -2.254 -4.173 
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5.4.2.2 Analysis of Porosity Uncertainty Impact Utilizing Different Upscaling 

Method 

In this section the upscaling is performed using the median instead of the arithmetic 

mean. So, the 1000 ASCII files of porosity data exported out of SGeMS in Section 

4.3.3 are upscaled by taking the median of the data in each file instead of their 

arithmetic mean. However, the median upscaling method outputs more 

underestimating results than the arithmetic upscaling method (Figures 5.47). In other 

words, the uncertainty of the results obtained with the median upscaling method is 

larger than that of the ones obtained with the arithmetic upscaling method. The 

maximum and minimum differences between the OOIP and ROIP values of the 

reservoirs generated using the two upscaling methods are shown with black arrows in 

Figures 5.47. The values of these differences for the OOIP are 7,618 M STB and 

6,841 M STB, respectively. For the ROIP, in addition, they are 5,771 M STB and 

5,182 M STB, respectively. The reason why the median upscaling method resulted in 

smaller values than the arithmetic upscaling method is the bimodal structure of the 

hard data. So, the use of median upscaling method is not appropriate for the present 

study.  
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Figure 5. 47. The OOIP and ROIP values corresponding to reservoir models generated with 
50 MCS using both the median and average upscaling methods. The black arrows show the 

maximum and minimum differences between the results of the upscaling methods  
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CHAPTER 6 

CONCLUSIONS   

 

In this study the uncertainties of reservoir models generated using a proposed 

multiple-point geostatistics based modeling methodology are analyzed and 

quantified. The uncertainty types analyzed are the model related and parameter 

related uncertainties. The former is the training image uncertainty while the latter is 

the hard data uncertainty. In addition, the sensitivity of the proposed multiple-point 

geostatistics modeling methodology is investigated. At the end of this research the 

following concluding remarks are obtained: 

 

• The proposed multiple-point geostatistics modeling methodology including 

SNESIM algorithm allow good reproduction of the original reservoir with 

confidence limits ranging between 3% and -2.4%.  In other words, the proposed 

method is producing accurate results with accuracy of about ±3%. 

 

• The proposed modeling methodology is sensitive to the variogram model used. 

Thus, selection of the most representative variogram model should be given great 

care. So, the choice of the variogram model should be based on the interpretation 

of the available geological information. 

 

• It was found that 2D training images as well as 3D training image having up to 4 

Z slices are not suitable for modeling 3D reservoirs. Then, based on the 

investigation of other parameters’ impact on the reservoir model thresholds are 

set. With these thresholds representative and reliable reservoir models are 

obtained. The thresholds defined are 5 Z direction slices, 3 channels and 2 

medium or low amplitudes waves in each channel. In addition, it was found that 
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the training images meeting the thresholds defined produce more accurate results 

if their channel proportions are higher. In other words, the higher the channel 

proportion in a training image the more accurate the model outputs are.  

 

• As the number of channels and waves in a training image increase the uncertainty 

of the simulated reservoir decreases. However, the increase in the number of Z 

slices from 5 to 8 and in the amplitude level have no noticeable effect on the 

uncertainty of the reservoir. So, it is unnecessary to generate training images with 

more than 5 Z slides when modeling 3D reservoirs.    

 

• The number of channel in a training image, the amplitude level of their waves, 

and the number of the Z slices in the training image have no defined effect on the 

OOIP and ROIP. In other words, their effect is random. However, the amount of 

the OOIP and ROIP are directly proportional to the number of waves in the 

channels of the training image.  

 

• When reservoirs are modeled using all the constructed training images the OOIP 

and ROIP are predicted with an uncertainty range of +1.549% – -0.345%. 

However, this uncertainty range (i.e. +1.549 – -0.345) decreased by eliminating 

the cases that are not meeting the parameters thresholds. As a result, the 

uncertainty range of the OOIP and ROIP prediction is reduced to 0.382% – 

0.104%. This verifies that the defined thresholds provide the most representative 

reservoir models. 

 

• The training images that meet the thresholds of the parameters defined output the 

most representative reservoir models. These models are used to establish a history 

matching workflow to improve the accuracy of history matching models. So, the 

present study assists the fields of reservoir history matching. 
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• The investigation of hard data uncertainty impact on reservoirs modeled using the 

proposed multiple-point geostatistics methodology showed that a small 

uncertainty in the hard data has a great impact on the simulated reservoir outputs. 

For example, 1% uncertainty resulted in reservoirs having OOIP percentage 

errors ranging between 2.045 and 0.174. Thus, more time and money should be 

devoted to decrease the hard data uncertainty which facilitate the simulation of 

more accurate reservoir models. 

 

• In the proposed multiple-point geostatistics modeling methodology if the hard 

data have a bimodal structure the use of median upscaling method is inappropriate 

since it results in erroneous reservoir models. 

  



111 
 

CHAPTER 7 

RECOMMENDATIONS 

 

Future studies should focus on: 

• Investigating more sources of uncertainty while modeling reservoirs with 

multiple-point geostatistics techniques. Some sources of uncertainty are 

variogram anisotropy, channel thickness and orientation.  

• Investigating the uncertainty associated with upscaling methods.  

• Developing a methodology that combines all sources of uncertainty in order to 

quantify the total uncertainty of reservoirs modeled using the proposed multiple-

point geostatistics methodology.  

• Investigating the impact of high-amplitude-wave channels on reservoir by using 

bigger-size training images 

• Verifying the findings of the present study with real case studies. For example, 

the uncertainty of the synthetic porosity data in this study showed a great impact 

on the original and recoverable oil in place values, therefore, real porosity data 

could be used in future studies to verify such impact. 

• Developing a multiple-point geostatistics algorithm that includes a training image 

generating option. This option should contain all the parameters defined in the 

present study, so that users have complete control on the generation of the 

training image. 
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• Representing other reservoir structures with proper mathematical functions to 

decrease the uncertainty associated for better multiple-point geostatistics 

applications. For example, lens-type reservoirs could be represented with 

ellipsoidal functions.   
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APPENDIX A 

PARAMETERS DESCRIPTION OF THE USED ALGORITHMS 

 

1. Parameters Description of SNESIM Algorithm 

The description of SNESIM algorithm parameters given here after is based on 

the work of Remy et al. (2009). The SNESIM algorithm interface contains four 

pages, namely: General, Conditioning, Rotation/Affinity, and Advanced (Figure A.1). 

The parameters described here are the ones used in this study.  

1. Simulation Grid Name: is the name of the grid where the simulation will take 

place. 

2. Property Name Prefix: is the prefix given by the user for the simulation output. 

Then, a “_real#” suffix is added to the generated realization by the algorithm. “#” 

is a number. 

3. # of Realization: is the number of realization the user wishes to generate. 

4. Seed: is a large odd integer to initialize the pseudo-random number generator. 

5. Training Image (object and property):  

• Object: the name of the grid containing the TI to be used. 

• Property: the TI property which must be a categorical variable and must 

have a value between “0” and “number of categories-1”. This parameter is 

selected automatically one the user select the TI for the object parameter. 
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6. # of Categories: the number of categories contained in the TI used. If the TI 

contains sand and non-sand categories then the # of categories is 2. 

7. Target Marginal Distribution: are the target categories’ proportions and must 

be ordered by starting from the proportion of the category “0” till that of the last 

category, separating each two by a space. The sum of all target proportions must 

be 1 otherwise SGeMS fail and shut in when the algorithm is run. 

8. # of Nodes in Search Template: is the number of nodes contained in the search 

template. The larger the value of this parameter, the better the simulation quality 

if the used TI is large, but the more RAM memory is demanded. Usually, for a 

fairly good realization generation 60 nodes for a 2D TI and 80 nodes for a 3D TI 

are used. 

9. Search Template Geometry (ranges and angels): these two parameters are 

defining the size of the ellipsoid by which the neighboring conditioning data are 

searched. The search ellipsoids are characterized by six parameters: three range 

and three angels. The three ranges: max, med, and min stands for the dimensions 

of the major axis, medium axis, and minor axis, respectively. The three angles are 

the azimuth, dip, and rake. These angles account for the anisotropy of the 

conditional data variogram. As a rule of thumb, the ranges of the searching 

ellipsoid should have a value more than twice the range of the conditional data 

variogram.   

10. Hard Data (object): is the grid containing the hard data which is used as 

conditioning data. The hard data object must be a point set. If the user whishes to 

carry out an unconditional simulation then this object should be left as default 

which is “None”. 

11. Hard Data (property): is the property containing the categorical hard 

conditioning data (e.g. well facies). 
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12. Use Probability Data Calibrated from Soft Data: this is selected when the user 

is wishing to condition the simulation to soft data (e.g. seismic) too.  

13. Soft Data (Choose Properties): use this to select the soft data categorical 

properties. The order of the selected properties is very important. The property 

should be ordered as in the Target Marginal Distribution box. Note that, it is not 

possible to choose soft data properties unless they are given in the same 

simulation grid selected for parameter “1”. 

14. Tau Values for Training Image and Soft Data: are defined by the user to give 

weights to the influence of TI and soft data on the conditional probabilities 

calculated while generating a realization. The first tau value is for the TI (τ1) 

while the second value is for the soft conditioning data (τ2). The default values are 

“1 1” which indicates the conditional independence of TI and soft data (Journel, 

2002). More details of the tau expression are given in Krishnan (2005) and Remy 

et al. (2009). 

15. Vertical Proportion: is 1D grid with the number of cells in the X and Y 

directions being 1 while the number of cells in the Z direction is the same as that 

of the simulation grid. The default is “None” which means there is no vertical 

proportion of the data used. 

16. Use Azimuth Rotation: is to manage non-stationary simulations by rotating the 

TI used. The default is not to use rotation. 

17. Use Scaling: is to manage non-stationary simulations utilizing the affinity 

concept. The default is not to use scaling. If scaling is required, then selecting the 

“Use Global Affinity” box is an indication to scale the TI used with user-defined 

constant factors (or affinity values).  

18. Global Affinity Change: when the “Use Global Affinity” box is selected, three 

Affinity values are input here for the X, Y, and Z directions, respectively. The 
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Affinity factor (ƒ) changes the width of the simulated categories in a given 

direction. If the affinity in a given direction is ƒ, then the category width in that 

direction becomes ƒ times the original width (the width of that category in the 

TI). So, the width of the simulated category increases with the increase of ƒ. 

19. Min # of Replicates: is the minimum number of training replicates of a certain 

conditioning data event to be found in the search tree before retrieving its 

conditional probability. The default is 1. 

20. Servosystem Factor: is a parameter that controls the servosystem correction. It 

takes a value between 0 and 1. The higher this parameter is, the closer the 

proportions reproduced to the target marginal distribution proportions but, at a 

cost of losing the structural information of facies (Liu, 2006). The default value is 

0.5. 

21. Re-simulation Threshold: The threshold value needed for re-simulation. When a 

data event is not repeated enough in The TI, SNESIM algorithm drops one datum 

from that event, and then repeats the search. The datum dropped is the one with 

the largest distance from the center. The simulated nodes having a number of 

dropped conditional nodes larger than the input threshold value are re-simulated 

(Arpat, 2005).The default value is (-1) which means no re-simulation is 

performed. 

22. Re-simulation Iteration #: is the number of iteration to repeat the re-simulation 

procedure. The default value is 1. To ignore this parameter the value should be set 

to -1. 

23. # of Multigrids: SNESIM algorithm discards any conditioning data that does not 

fall within a given search template centered at a certain node. This spoils the 

reproduction of long range correlation if the search template is small (Tran, 
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1994).  Thus, the multi-grid approach of Tran (1994) is implemented in SNESIM 

to compensate for the dropping of the furthest data values. The default value is 3. 

24. Debug Level: this parameter controls the outputs in the simulation grid. It can 

take three values (0, 1, and 2). When 0, which is the default value, is used only 

the realization of the simulation is output. In the case of a 1 debug level, the 

simulation generates two outputs, the realization and a map showing the number 

of nodes dropped during the simulation. When this parameter is set to 2 the 

simulation generates intermediate simulation results as well as the previous two 

outputs. 

25. Use Sub-grids: if selected, it divides the simulation nodes on the current multi-

grid into three groups that are simulated in sequence. For 3D simulations it is 

strongly recommended to use this option.  

26. Previously Simulated Nodes: is the number of nodes in a sub-grid to be used for 

conditioning data. The default value is 4.   

27. Use Regions: this option is used to perform simulation with the region concept. If 

not selected, the simulation is carried over the entire grid.  

28. Template Expansion (isotropic expansion): by selecting this option, the 

isotropic expansion method is used to generate the series of cascaded search 

templates and multiple grids.     
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Figure A. 1. SNESIM algorithm interface 
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2. Parameters Description of SGSIM Algorithm 

The description of SGSIM algorithm parameters given here after is based on 

the work of Remy et al. (2009). The SGSIM algorithm interface contains three pages, 

namely: General, Data, and Variogram (Figure A.2). The parameters described here 

are the ones used in this study.  

1. Simulation Grid Name: is the name of the grid where the simulation will take 

place. 

2. Property Name Prefix: is the prefix given by the user for the simulation output. 

Then, a “_real#” suffix is added to the generated realization by the algorithm. “#” 

is a number. 

3. Nb of Realization: is the number of realization the user wishes to generate. 

4. Seed: is a large odd integer to initialize the pseudo-random number generator. 

5. Kriging Type: there are four different options namely, Simple Kriging, Ordinary 

Kriging, Kriging with Trends, and Kriging with Locally Varying Mean. 

6. Hard Data: 

• Object: the name of the grid containing the conditioning data. 

• Property: the property containing the data that the user would like to 

condition to. 

7. Assign Hard Data to Simulation Grid: to relocate the hard data onto the 

simulation grid. If the relocation fails, the algorithm does not proceed. The 

advantage of this parameter is increasing the execution speed of the algorithm 

significantly.  
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8. Max Conditioning Data: the maximum number of data to be retain in the search 

template. 

9. Search Ellipsoid Geometry (ranges and angels): the same as in Section 1 of 

this appendix. 

10. Use Target Histogram: if selected it increases the speed of the algorithm 

execution because the data are normal score transformed before the simulation, 

then, the simulated field is retransformed to the original space. 

11. Reference Distribution from: the location from where to select the reference 

distribution. 

12. Property with reference distribution (object and property): the object and its 

property of which the reference distribution is used.  

13. Variogram: either variogram model parameters are in put manually or loaded 

from an existing variogram model using the available loading option.  
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Figure A. 2. SGSIM algorithm interface 
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APPENDIX B 

VARIOGRAM COMPUTATION  

 

In SGeMS the variogram computation method depends on the grid type. The grid 

type is either point-set or Cartesian grid. Thus, there are two variogram computing 

methods in SGeMS. The hard data (facies) grid is a point-set grid while the simulated 

realizations have Cartesian grids. Each of these grid types requires different 

parameters to compute the experimental variogram. Descriptions of these parameters 

are given in Remy et al. (2009).    

1. Hard Data (Facies) Variogram 

The following table list the parameters used to calculate the experimental variogram 

of the point-set grid having the hard data. 

 

Table B. 1. The parameters used to calculate the variogram of the point-set grid having the 
hard data 

Grid name Well_simple 

Head and tail properties facies 

Number of lag (see Section 1.1 below) 85 

Lag separation 0.5 

Lag tolerance 0.25 

Number of directions 1 

Azimuth/ dip/ tolerance/ bandwidth 0/0/91/100 
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1.1 Lag Number Selection 

A common rule of thumb is to restrict the Variography to half the diagonal of the data 

extent. In a case of a 3D field there are four diagonals the smallest diagonal should be 

used to checked whether the range is produced with it or not. If not then the second 

smallest diagonal is checked. This is done until the range is seen in the experimental 

variogram. The diagonal that is enough to produce the range is the one that should be 

use. The diagonals of the reservoir grid used in this study are shown in Figure B.1. 

 

 

Figure B. 1. The Diagonals of the reservoir grid utilized in the present study 
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�� = √150� + 200�
2 = 125 

�� = √150� + 80�
2 = 85 

�� = √200� + 80�
2 = 107.7 

�� = |P�| = �|P�|� + |��|� 

But,                                          |P�| = �|P�|� + |��|� 

So,                                      |P�| = �|P�|� + |��|� + |��|� 

�� = √150� + 200� + 80�
2 = 131 

2. Simulated Realizations Variogram  

The following table list the parameters used to calculate the experimental variogram 

of the Cartesian grid having the simulated realization of facies. 

 

Table B. 2. The parameters used to calculate the variogram of the Cartesian grid having the 
simulated realization of facies 

 Grid name Well_simple 

Head and tail properties The realization simulated by SNESIM 

Number of lag  85 

Number of directions 1 

x / y / z  (see Section 2.1 below) 
1/1/1 (to compute the Omni-directional 

variogram in 3D)  
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2.1 Computation of the Omni-directional Variogram in 3D 

|P�| = �|��|� + |P�|� + |��|� 

|P�| = �x� + y� + z� 

cos � = 	 |P�||P�| =
�

�x� + y� + z� 

 

cos � = 	 |P�||P�| =
Z

�x� + y� + z�	
 
 

cos w = 	 |P�||P�| =
�

�x� + y� + z� 

 

So, if                                                x = y = z = 1 

Then,                                     cos � = cos� = 	 cos w =		 �√b	 = 0.57735 

And,                                    � = 	� = w = X&GG'�	 �√b	 = 54.736° 

So, if an Omni-directional variogram is to be used for a 3D grid, the x, y, and z are 

selected as 1, 1, and 1, respectively. Then, the angles that the variogram vector makes 

with all the direction is the same and it is 54.736º. 
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APPENDIX C 

PARAMETER FILES OF THE SIMULATION ALGORITHMS  

 

1. SNESIM Algorithm Parameter File 

<parameters>  <algorithm name="snesim_std" />  

  <GridSelector_Sim  value="grid"  />  

  <Property_Name_Sim  value="Hypothetical Original__with seed of 519175" />  

  <Nb_Realizations  value="1" />  

  <Seed  value="519175" />  

  <PropertySelector_Training  grid="training_image"   property="data"  />  

  <Nb_Facies  value="2" />  

  <Marginal_Cdf  value="0.546 0.454" />  

  <Max_Cond  value="80" />  

  <Search_Ellipsoid  value="21 21 21  0 0 0" /> 

  <Hard_Data  grid="well_simple"   property="facies"  />  

  <Use_ProbField  value="1"  />  

  <ProbField_properties count="2"   value="P(mud|seis);P(sand|seis)"  />  
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  <TauModelObject  value="1 1" />  

  <VerticalPropObject  value=""  />  

  <VerticalProperties count="0"   value=""  />  

  <Use_Global_Affinity  value="1"  />  

  <Global_Affinity  value="2  1 0.5" />  

  <Affinity_property  value="Hypothetical Original__with seed of 519175"  />  

  <Affinity_categories  value="2 2 2  1 1 1  0.5 0.5 0.5 " />  

  <Use_Local_Affinity  value="0"  />  

  <Use_Affinity  value="1"  />  

  <Use_Rotation  value="0"  />  

  <Cmin  value="1" />  

  <Constraint_Marginal_ADVANCED  value="0.5" />  

  <resimulation_criterion  value="-1" />  

  <resimulation_iteration_nb  value="1" />  

  <Nb_Multigrids_ADVANCED  value="1" />  

  <Debug_Level  value="0" />  

  <Subgrid_choice  value="1"  />  

  <Previously_simulated  value="4" />  
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  <expand_isotropic  value="1"  />  

  <expand_anisotropic  value="0"  />  

  <aniso_factor  value="" />  

  <Region_Indicator_Prop  value="P(mud|seis)"  />  

  <Active_Region_Code  value="" />  

  <Use_Previous_Simulation  value="0"  />  

  <Use_Region  value="0"  />  

</parameters> 
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2. SGSIM Algorithm Parameter File 

<parameters>  <algorithm name="sgsim" />  

  <Grid_Name  value="Estimated_Porosity"  />  

  <Property_Name  value="est_por_original reservoir" />  

  <Nb_Realizations  value="1" />  

  <Seed  value="14071789" />  

  <Kriging_Type  value="Simple Kriging (SK)"  />  

  <Assign_Hard_Data  value="1"  />  

  <Hard_Data  grid="well_simple"   property="porosity"  />  

  <Max_Conditioning_Data  value="25" />  

  <Search_Ellipsoid  value="80 80 80  0 0 0" /> 

  <Use_Target_Histogram  value="1"  />  

  <nonParamCdf  ref_on_file ="0"  ref_on_grid ="1" 

break_ties ="0" filename =""   grid ="well_simple"  property ="porosity"> 

<LTI_type  function ="No extrapolation"  extreme ="0"  omega ="3" /> 

<UTI_type  function ="No extrapolation"  extreme ="0"  omega ="0.333" /> 

</nonParamCdf> 



138 
 

  <Variogram  nugget="0.04" structures_count="1"  > 

  <structure_1  contribution="0.1895"  type="Exponential"   > 

    <ranges max="22"  medium="21"  min="8.1"   /> 

    <angles x="0"  y="0"  z="0"   /> 

  </structure_1> 

</Variogram> 

</parameters> 
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APPENDIX D 

DEVELOPED CODES 

 

1. Python Code for Porosity Exporting  

import sgems,nt 

a=0 

b=0 

c=0 

while c<10: 

 print a 

 print b 

 print c 

 a=a+1 

 lower_limit = (((a-1)%10)*15) 

 upper_limit = ((a%10)*15) 

 if upper_limit == 0: 

   upper_limit=150 

 def sgems2cmg(grid_name, prop_name, file_name, cmg_keyword, nx, ny, nz): 

     prop = sgems.get_property(grid_name, prop_name) 

     fid = open(file_name,'w') 

     index=0 

       for k in range((((c+1)*8)-1),(((c)*8)-1),-1): 

       for j in range((((b+1)*20)-1),((b*20)-1),-1): 

        for i in range(lower_limit,upper_limit): 

   index = i+j*nx+k*nx*ny 
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   fid.write(str(prop[index])+';') 

   index = index+1     

     fid.close() 

 sgems2cmg('Estimated_Porosity', 'est_por_original reservoir__real0', 'C:\porosity 

values\cube_'+str((c*100)+a)+'.txt', 'POR', 150,200,80) 

 if a%10 == 0: 

  b=b+1 

 if a == 100: 

  c=c+1 

  a=0 

  b=0 
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2. Visual Basic Code for Arithmetic Upscaling of Porosity Data  

 

Figure D. 1. Interface of the developed Visual Basic code for the arithmetic upscaling of 
porosity data  

 
The Code: 
 
Imports Excel = Microsoft.Office.Interop.Excel 

Public Class Form1 

 

    Public Sub Button1_Click(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles Button1.Click 

        Dim FolderBrowserDialog1 As New FolderBrowserDialog 

 

        ' Then use the following code to create the Dialog window 

        ' Change the .SelectedPath property to the default location 

        With FolderBrowserDialog1 

            ' Desktop is the root folder in the dialog. 

            .RootFolder = Environment.SpecialFolder.Desktop 

            ' Select the C:\Windows directory on entry. 

            .SelectedPath = "C:\" 

            ' Prompt the user with a custom message. 

            .Description = "Select the source directory" 
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            If .ShowDialog = DialogResult.OK Then 

                TextBox2.Text = .SelectedPath 

                ' Display the selected folder if the user clicked on the OK button. 

            End If 

        End With 

    End Sub 

 

    Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles Button2.Click 

 

        Dim xlApp As Excel.Application 

        Dim xlWorkBook As Excel.Workbook 

        Dim xlWorkSheet As Excel.Worksheet 

        Dim misValue As Object = System.Reflection.Missing.Value 

 

        xlApp = New Excel.Application 

        xlWorkBook = xlApp.Workbooks.Add(misValue) 

 

        If ComboBox1.Text = "TR" Then 

            xlWorkSheet = xlWorkBook.Sheets("Sayfa1") 

        ElseIf ComboBox1.Text = "EN" Then 

            xlWorkSheet = xlWorkBook.Sheets("Sheet1") 

        End If 

        Dim fileReader As String 

        Dim list, second 

        Dim sum 

        Dim i As Integer 

        Dim x_axis As Integer 

        Dim file As Double 

        x_axis = 2 
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        For file = 1 To 1000 

            sum = 0 

            If file Mod 20 = 1 Then 

                x_axis = x_axis + 1 

            End If 

            fileReader = My.Computer.FileSystem.ReadAllText(TextBox2.Text + "\" + 

TextBox1.Text + "_" & file & ".txt") 

            list = Split(fileReader, ";") 

            For i = 0 To UBound(list) 

                second = Replace(list(i), ".", ".") 

                sum += second * 1 

                PB.Value = file / 10 

            Next 

            xlWorkSheet.Cells(x_axis, ((file - 1) Mod 20) + 1) = Replace(sum / 

UBound(list), ",", ".") 

        Next 

        xlWorkSheet.SaveAs(TextBox2.Text + "\averages.xlsx") 

 

        xlWorkBook.Close() 

        xlApp.Quit() 

 

        releaseObject(xlApp) 

        releaseObject(xlWorkBook) 

        releaseObject(xlWorkSheet) 

        MsgBox("Excel file created in " + TextBox2.Text + "\ as ""averages.xlsx""") 

        Process.Start("explorer.exe", TextBox2.Text) 

    End Sub 

 

    Private Sub releaseObject(ByVal obj As Object) 

        Try 
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            System.Runtime.InteropServices.Marshal.ReleaseComObject(obj) 

            obj = Nothing 

        Catch ex As Exception 

            obj = Nothing 

        Finally 

            GC.Collect() 

        End Try 

    End Sub 

 

End Class 
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3. Visual Basic Code to Convert Training Images into Binary Files Having 

GSLIB Format 

Imports System.IO 

Public Class Form1 

 

    Public Function PureBW(ByVal image As System.Drawing.Bitmap, Optional 

ByVal Mode As BWMode = BWMode.By_Lightness, Optional ByVal tolerance As 

Single = 0) As System.Drawing.Bitmap 

        Dim x As Integer 

        Dim y As Integer 

        PictureBox2.Image = image 

        image = PictureBox2.Image 

        If tolerance > 1 Or tolerance < -1 Then 

            Throw New ArgumentOutOfRangeException 

            Exit Function 

        End If 

        Dim height1 As Integer 

        If 2 Mod image.Height = 1 Then 

            height1 = (image.Height - 1) / 2 

 

        Else 

            height1 = image.Height / 2 

 

        End If 

 

        For y = image.Height - 1 To 0 Step -1 

            For x = 0 To image.Width - 1 Step 1 
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                Dim clr As Color = image.GetPixel(x, y) 

                If Mode = BWMode.By_RGB_Value Then 

                    If (CInt(clr.R) + CInt(clr.G) + CInt(clr.B)) > 383 - (tolerance * 383) 

Then 

                        image.SetPixel(x, y, Color.White) 

 

                    Else 

                        image.SetPixel(x, y, Color.Black) 

 

                    End If 

                Else 

                    If clr.GetBrightness > 0.5 - (tolerance / 2) Then 

                        image.SetPixel(x, y, Color.White) 

 

                    Else 

                        image.SetPixel(x, y, Color.Black) 

 

                    End If 

                End If 

            Next 

            ProgressBar1.Value = (1 - (y / (image.Height - 1))) * 100 

 

        Next 

        Button3.Enabled = True 

        Return image 

 

    End Function 
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    Public Function PureBW_text(ByVal image As System.Drawing.Bitmap, Optional 

ByVal Mode As BWMode = BWMode.By_Lightness, Optional ByVal tolerance As 

Single = 0) As System.Drawing.Bitmap 

        Dim oWrite As System.IO.StreamWriter 

        Dim Path = TextBox1.Text 

        Dim search_Format As Array = Split(TextBox1.Text, ".") 

        Dim file_format As String 

        file_format = search_Format(UBound(search_Format)) 

        Path = Replace(Path, file_format, "txt") 

        oWrite = File.CreateText(Path) 

        oWrite.WriteLine("GSLIB output file" & vbCrLf & "1" & vbCrLf & "data") 

 

 

        Dim x As Integer 

        Dim y As Integer 

        image = PictureBox2.Image 

        If tolerance > 1 Or tolerance < -1 Then 

            Throw New ArgumentOutOfRangeException 

            Exit Function 

        End If 

 

        Dim a As Integer = 0 

        For y = image.Height - 1 To 0 Step -1 

            For x = 0 To image.Width - 1 Step 1 

                a = a + 1 

                Dim clr As Color = image.GetPixel(x, y) 

                If Mode = BWMode.By_RGB_Value Then 

                    If (CInt(clr.R) + CInt(clr.G) + CInt(clr.B)) > 383 - (tolerance * 383) 

Then 

                        oWrite.WriteLine("0.0") 
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                    Else 

                        oWrite.WriteLine("1.0") 

                    End If 

                Else 

                    If clr.GetBrightness > 0.5 - (tolerance / 2) Then 

 

                        oWrite.WriteLine("0.0") 

                    Else 

 

                        oWrite.WriteLine("1.0") 

                    End If 

                End If 

 

            Next 

            ProgressBar1.Value = (1 - (y / (image.Height - 1))) * 100 

 

        Next 

        oWrite.Close() 

        Return image 

 

    End Function 

    Enum BWMode 

        By_Lightness 

        By_RGB_Value 

    End Enum 

 

    Public Sub Button1_Click(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles Button1.Click 

        Dim OpenFileDialog1 As New OpenFileDialog 
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        ' Then use the following code to create the Dialog window 

        ' Change the .SelectedPath property to the default location 

 

        With (OpenFileDialog1) 

 

            .Title = "Select the image file" 

            If .ShowDialog = DialogResult.OK Then 

                TextBox1.Text = .FileName 

                Dim filename = .SafeFileName 

                Dim initial_image = TextBox1.Text 

                Try 

                    Dim img As System.Drawing.Image = 

System.Drawing.Image.FromFile(initial_image) 

                Catch generatedExceptionName As OutOfMemoryException 

                    ' Image.FromFile throws an OutOfMemoryException   

                    ' if the file does not have a valid image format or  

                    ' GDI+ does not support the pixel format of the file.  

                    '  

                    MsgBox("An error occured while loading your file: Please be sure file is 

an image file.", MsgBoxStyle.Critical, "Error!") 

                    Exit Sub 

                End Try 

                ' Display the selected folder if the user clicked on the OK button. 

                PictureBox1.Image = New System.Drawing.Bitmap(TextBox1.Text) 

                Button3.Enabled = False 

            Else 

 

            End If 

        End With 

    End Sub 
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    Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles Button2.Click 

        Dim conv_meth As String 

        Dim initial_image = TextBox1.Text 

        conv_meth = ComboBox1.Text 

        If conv_meth = "By_RGB_Value" Then 

            Me.PictureBox2.Image = PureBW(Me.PictureBox1.Image, 

BWMode.By_RGB_Value, (TextBox2.Text / 100)) 

        ElseIf conv_meth = "By_Lightness" Then 

            Me.PictureBox2.Image = PureBW(Me.PictureBox1.Image, 

BWMode.By_Lightness, (TextBox2.Text / 100)) 

        End If 

        Me.PictureBox1.Image = New System.Drawing.Bitmap(TextBox1.Text) 

    End Sub 

    Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles Button3.Click 

        Dim conv_meth As String 

        Dim initial_image = TextBox1.Text 

        conv_meth = ComboBox1.Text 

        If conv_meth = "By_RGB_Value" Then 

            Me.PictureBox2.Image = PureBW_text(Me.PictureBox1.Image, 

BWMode.By_RGB_Value, (TextBox2.Text / 100)) 

        ElseIf conv_meth = "By_Lightness" Then 

            Me.PictureBox2.Image = PureBW_text(Me.PictureBox1.Image, 

BWMode.By_Lightness, (TextBox2.Text / 100)) 

        End If 

 

    End Sub 

End Class  
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4. Visual Basic Code to Perform MCS for the Clustered Porosity Hard Data 

Sub SheetFunctions() ' This code generates 50 MCS for each datum of the available 

4320 porosity data having a bimodal distribution. The mean and standard deviation of 

the shale (non-reservoir) group of data are in cells C2 and C3, respectively.  

Similarly, the mean and standard deviation of the channel (reservoir) group of data 

are in cells C5 and C6, respectively. 

  
 For i = 0 To 4319 

  

    For j = 0 To 49 

     

    If (Cells(i + 2, "A").Value() <= 0.147) Then Cells(i + 6, j + 7) = 

WorksheetFunction.NormInv(Rnd(), Cells("4", "D").Value(), Cells("4", "E")) Else 

Cells(i + 6, j + 7) = WorksheetFunction.NormInv(Rnd(), Cells("5", "D").Value(), 

Cells("5", "E")) 

‘Where 0.147 is the largest data in shale group of data  

     If Cells(i + 6, j + 7) < 0 Then Cells(i + 6, j + 7) = 0 'this line is because porosity 

can not take negative values   

    Next 

  

 Next 

 

End Sub   
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5. Visual Basic Code to Extract the MCS Realizations From Excel into Text Files 

of the GSLIB Format 

The extraction of data must be in a new sheet where the first three columns are set as 

follows: 

 
well_simple 

4 

X 

Y 

Z 

Porosity 

Input X 

coordinates of 

the porosity hard 

data starting 

from this cell  

Y coordinates Z coordinates 

 
 
In addition, the simulated 50 realizations must be copied and pasted starting from cell 

L7  

 
 
The code: 
 
Sub columbfix()   'This code is developed to extract the MCS realizations from Excel 

into text files. 

realization_number = 1      'This number should be change manually for each 

realization 

 

realization_number = realization_number - 1 

For i = 0 To realization_number 
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Sheet1.Range(Cells(7, i + 12), Cells(4326, i + 12)).Copy                     'Note that the 

number of the sheet here and in the following line must be correct for the code to 

work 

Sheet1.Range(Cells(7, "D"), Cells(4326, "D")).PasteSpecial Transpose:=False 

 

Next 

 

    Dim fs As Object, a As Object, s As String 

    Set fs = CreateObject("Scripting.FileSystemObject") 

    Set a = fs.CreateTextFile("C:\realization-" & realization_number + 1 & ".txt", 

True)  'Add the exporting location after "C:" and note that the text after the last "\" is 

given as the file name before the number (in this case "realization") 

    i = 1 

    While Not IsEmpty(Cells(i, 1)) 

        s = s & Cells(i, 1) & " " & Cells(i, 2) & " " & Cells(i, 3) & " " & Cells(i, 4) & 

vbCrLf 

         

        i = i + 1 

    Wend 

    a.WriteLine s 

    a.Close 

End Sub 
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6. Visual Basic Code for Arithmetic And Median Upscaling of Porosity Data 

 

 

Figure D. 2. Interface of the upscaling Visual Basic code using the average or median 
porosity  

 

The code: 

 

Imports Excel = Microsoft.Office.Interop.Excel 

Public Class Form1 

 

    Public Sub Button1_Click(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles Button1.Click 

        Dim FolderBrowserDialog1 As New FolderBrowserDialog 

 

        ' Then use the following code to create the Dialog window 

        ' Change the .SelectedPath property to the default location 

        With FolderBrowserDialog1 

            ' Desktop is the root folder in the dialog. 

            .RootFolder = Environment.SpecialFolder.Desktop 

            ' Select the C:\Windows directory on entry. 

            .SelectedPath = "C:\" 
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            ' Prompt the user with a custom message. 

            .Description = "Select the source directory" 

            If .ShowDialog = DialogResult.OK Then 

                TextBox2.Text = .SelectedPath 

                ' Display the selected folder if the user clicked on the OK button. 

 

            End If 

        End With 

    End Sub 

 

    Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles Button2.Click 

 

        Dim xlApp As Excel.Application 

        Dim xlWorkBook As Excel.Workbook 

        Dim xlWorkSheet As Excel.Worksheet 

        Dim misValue As Object = System.Reflection.Missing.Value 

 

        xlApp = New Excel.Application 

        xlWorkBook = xlApp.Workbooks.Add(misValue) 

 

        If ComboBox1.Text = "TR" Then 

            xlWorkSheet = xlWorkBook.Sheets("Sayfa1") 

        ElseIf ComboBox1.Text = "EN" Then 

            xlWorkSheet = xlWorkBook.Sheets("Sheet1") 

        End If 

 

        Dim fileReader As String 

        Dim list, first, second 

        Dim sum, median 



156 
 

        Dim i As Integer 

        Dim x_axis As Integer 

        Dim file As Double 

        Dim sorting As New ArrayList() 

        x_axis = 2 

        For file = 1 To 1000 

            sum = 0 

            median = 0 

 

            If file Mod 20 = 1 Then 

                x_axis = x_axis + 1 

            End If 

            fileReader = My.Computer.FileSystem.ReadAllText(TextBox2.Text + "\" + 

TextBox1.Text + "_" & file & ".txt") 

            list = Split(fileReader, ";") 

            If ComboBox2.Text = "Average" Then 

                For i = 0 To UBound(list) 

                    second = Replace(list(i), ".", ".") 

                    sum += second * 1 

                    PB.Value = file / 10 

                Next 

                xlWorkSheet.Cells(x_axis, ((file - 1) Mod 20) + 1) = Replace(sum / 

UBound(list), ",", ".") 

            Else 

 

                For i = 0 To 2399 

                    second = Replace(list(i), ".", ".") 

                    sorting.Add(second * 1) 

 

                    PB.Value = file / 10 
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                Next 

                sorting.Sort() 

 

                'it calculates 1199 and 1200 because array starts from 0, not 1 

                median = (sorting(1199) + sorting(1200)) / 2 

                xlWorkSheet.Cells(x_axis, ((file - 1) Mod 20) + 1) = Replace(median, ",", 

".") 

                sorting.RemoveRange(0, 2399) 

            End If 

 

        Next 

 

        If ComboBox2.Text = "Average" Then 

            xlWorkSheet.SaveAs(TextBox2.Text + "\!averages.xlsx") 

            xlWorkBook.Close() 

            xlApp.Quit() 

 

            releaseObject(xlApp) 

            releaseObject(xlWorkBook) 

            releaseObject(xlWorkSheet) 

 

            MsgBox("Excel file created in " + TextBox2.Text + "\ as ""!averages.xlsx""") 

            Process.Start("explorer.exe", TextBox2.Text) 

        Else 

            xlWorkSheet.SaveAs(TextBox2.Text + "\!median.xlsx") 

            xlWorkBook.Close() 

            xlApp.Quit() 

 

            releaseObject(xlApp) 

            releaseObject(xlWorkBook) 
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            releaseObject(xlWorkSheet) 

 

            MsgBox("Excel file created in " + TextBox2.Text + "\ as ""!median.xlsx""") 

            Process.Start("explorer.exe", TextBox2.Text) 

        End If 

 

    End Sub 

 

    Private Sub releaseObject(ByVal obj As Object) 

        Try 

            System.Runtime.InteropServices.Marshal.ReleaseComObject(obj) 

            obj = Nothing 

        Catch ex As Exception 

            obj = Nothing 

        Finally 

            GC.Collect() 

        End Try 

    End Sub 

 

End Class 
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APPENDIX E 

CMG DATA OF THE ORIGINAL RESERVOIR  

 

1.  PVT and Relative Permeability Data 

 

Table E. 1. PVT data  

Pressure 
(p) (psi) 

Solution 
gas-oil 

ratio (rs) 
(SCF/STB) 

Formation 
volume 

factor (bo) 
(rbb/STB) 

Gas 
expansion 
factor (eg) 
(SCF/rbb) 

Oil 
viscosity 

(viso) (cp) 

Gas 
viscosity 

(visg) (cp) 

14.7 1.0 1.0620 0.1667 6.0 1.0400 
264.7 90.5 1.1500 0.0121 82.7 0.9750 
514.7 180.0 1.2070 0.0063 159.0 0.9100 

1014.7 371.0 1.2950 0.0032 313.0 0.8300 
2014.7 636.0 1.4350 0.0016 620.0 0.6950 
2514 775.0 1.5000 0.0013 773.0 0.6410 

3014.7 930.0 1.5650 0.0011 926.0 0.5940 
4014.7 1270.0 1.6950 0.0008 1233.0 0.5100 
5014.7 1600.0 1.8270 0.0007 1541.0 0.4490 
9014.7 2984.0 2.3570 0.0004 2591.0 0.2030 
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Table E. 2. Water - oil relative permeability 

Sw              Krw  Krow  
0.13 0 1 

0.191 0.0051 0.999 
0.25 0.0102 0.769 

0.294 0.0168 0.7241 
0.357 0.0275 0.6206 
0.414 0.0424 0.504 
0.49 0.0665 0.3714 

0.577 0.097 0.3029 
0.63 0.1148 0.1555 

0.673 0.1259 0.0956 
 

 

Table E. 3. Liquid - gas relative permeability 

Sl Krg Krog 
0.2 0.17 0 

0.395 0.112 0.0294 
0.433 0.1022 0.0461 
0.515 0.0855 0.0883 
0.569 0.0761 0.1172 
0.614 0.0654 0.1433 
0.663 0.05 0.1764 
0.719 0.0372 0.217 
0.75 0.0285 0.2255 

0.805 0.0195 0.2919 
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2.  CMG Data File 

******************************************************************** 
**                                                                                                                                 ** 
**                               Hypothetical Model by Mohamed Fadlelmula                         **     
**                                                                                                                                 ** 
**                                                               2012                                                          ** 
**                                                                                                                                 ** 
**                                       Middle East Technical University,                                   ** 
**                       Department of Petroleum and Natural gas Engineering,                  ** 
**                                                      Ankara, Turkey                                                  ** 
**                                                                                                                                 ** 
******************************************************************** 
 
** ==============  INPUT/OUTPUT CONTROL  =================== 
** 2012-03-01, 6:17:58 PM, M 
RESULTS SIMULATOR IMEX 200600 
*TITLE1  'Original Reservoir Model'  
*INUNIT     *FIELD            ** All the data values are in field units  
*OUTUNIT    *FIELD 
*INTERRUPT  *STOP 
*MAXERROR    20               ** Maximum error number, this is the default value 
*WRST       *TIME  
*WPRN       *GRID    *TIME 
*OUTPRN     *GRID    *All     ** OUTPRN is to print the data on the screen while 
the simulation is going on  
                              **(for each time step, if it is written after defining time step) 
*OUTSRF     *GRID    *All     ** OUTSRF is to print the data in output file 
**  ==============  GRID AND RESERVOIR DEFINITION  ============= 
*GRID  *CART 10 10 10         ** CART indicates a rectangular Cartesian grid, with 
uniform depth/uniform thickness layers  
*KDIR  *DOWN                  ** First layer at the top of the reservoir 
*DI   *CON 500                ** Dimension of I direction blocks is constant for each 
block as 500 ft so in total it is  
                                ** approximately 5000 ft = 1500 m = 1.5 km  
*DJ   *CON 1640               ** Dimension of J direction blocks is constant for each 
block as 1640 ft so in total it is 
                                ** approximately 16400 ft = 5000 m = 5 km 
*DK   *CON 8                  ** Dimension of K direction blocks is constant for each 
block as 8 ft so in total it is  
                                ** 80 ft (16 of it water, so 64 ft is oil) 
*DTOP 100*5000  ** Top of the grids in (ft) is 5000  
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                ** 100 is the number of grids in the upper layer (i.e. 10i x 10j)  
   
**$ Property: NULL Blocks  Max: 1  Min: 1 
**$  0 = null block, 1 = active block 
NULL CON            1 
*NOLIST                              ** NOLIST keyword is inserted in the data file, the data 
file is not listed from the  
                                       ** point of the *NOLIST keyword until a *LIST keyword or 
the end of data file is reached        
      
*POR       *All                     
Here the simulated and upscaled 1000 porosity data are placed 
******************************************************************** 
*PERMI   *All                     
Here the 1000 permeability data corresponding to the above 1000 porosity data are 
placed 
PERMJ EQUALSI 
PERMK EQUALSI 
 
**$ Property: Pinchout Array  Max: 1  Min: 1 
**$  0 = pinched block, 1 = active block 
PINCHOUTARRAY CON            1 
*LIST 
** ============== OTHER RESERVOIR PROPERTIES ================ 
**THTYPE *con 1      ** Unless you have multiple rock types, you do not need 
*ROCKTYPE or * THTYPE 
*CPOR    3.0E-6      ** Rock (or formation) compressibility 1/Psi 
*PRPOR   14.7        ** Reference pressure, this pressure is the fluid (pore) pressure at 
which the values input using *POR are  
                       ** to hold, in(psi) 
**  ==============  FLUID DEFINITIONS  ====================== 
*MODEL  *BLACKOIL         ** A black-oil model, modeling flow of oil, water, and 
gas.  
 *PVT    
   ** p                          rs                 bo              eg                    viso               visg 
    14.7000             1.00000      1.06200         6.00000          1.04000         0.0080000 
    264.700             90.50000     1.15000         82.70000       0.9750000     0.0096000 
    514.700             180.000      1.20700         159.000          0.9100000     0.0112000 
    1014.700            371.000      1.29500         313.000         0.8300000    0.0140000 
    2014.700            636.000      1.43500         620.000         0.6950000    0.0189000 
    2514.000            775.000      1.50000         773.000         0.6410000    0.0208000 
    3014.700            930.000      1.56500         926.000         0.5940000    0.0228000 
    4014.700            1270.000     1.69500         1233.000      0.5100000    0.0268000 
    5014.700            1600.000     1.82700         1541.000      0.4490000    0.0309000 
    9014.700            2984.000     2.35700         2591.000      0.2030000    0.0470000     
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   *DENSITY *OIL    46.244    ** in  lbm/ft3 
   *DENSITY *GAS     0.0647   ** in  lbm/ft3 
   *DENSITY *WATER  62.238    ** in  lbm/ft3 
   *CO    9.1512E-6           ** Oil Compressibility at the corresponding pressure in 
1/Psi 
   *CVO   4.6000E-5           ** Pressure dependence of the viscosity curve for oil 
above the bubble point pressure in cp/psi 
   *BWI   1.0410              ** The water formation volume factor (for PVT region) in 
RB/STB 
   *CW    3.0E-6              ** Water compressibility (for a PVT region) in 1/Psi 
   *REFPW 14.7                ** Reference pressure (for a PVT region) in Psi 
   *VWI   0.96                ** Viscosity of water phase at the reference pressure pw in 
cp 
   *CVW   0.0                 ** Pressure dependence of water viscosity (viscosity 
units/pressure units) in cp/psi 
**$ Property: PVT Type  Max: 1  Min: 1 
PTYPE CON            1 
**  ==============  ROCK-FLUID PROPERTIES  ==================== 
*ROCKFLUID  
*RPT 1       ** Indicates that this set of relative permeability curves will be defined 
by table entries 
 *SWT        ** Indicates the start of the water-oil relative permeability table 
**   Sw           Krw          Krow     
**  -----        ------       ------ 
    0.130         0.0          1.0 
    0.191         0.0051       0.999 
    0.250         0.0102       0.769 
    0.294         0.0168       0.7241 
    0.357         0.0275       0.6206 
    0.414         0.0424       0.504 
    0.490        0.0665       0.3714 
    0.577        0.097        0.3029 
    0.630        0.1148       0.1555 
    0.673        0.1259       0.0956 
    0.719        0.1381       0.0576 
    0.789       0.1636       0.0 
    1.0           1.0          0.0 
*SLT        ** Indicates the start of a liquid-gas relative permeability table dependent 
on liquid saturation  
            ** SL is the total liquid saturation (fraction)    
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**   Sl        Krg       Krog                               
**  -----     ------    ------     
    0.200     0.17      0.0        
    0.395     0.112     0.0294     
    0.433     0.1022    0.0461     
    0.515     0.0855    0.0883     
    0.569     0.0761    0.1172     
    0.614     0.0654    0.1433     
    0.663     0.05      0.1764     
    0.719     0.0372    0.217      
    0.750     0.0285    0.2255     
    0.805     0.0195    0.2919     
    0.850     0.0121    0.3373     
    0.899     0.0026    0.5169     
    1.0       0.0       1.0        
**  ==============  INITIAL CONDITIONS  ====================== 
*INITIAL  
*VERTICAL  *BLOCK_CENTER     *WATER_OIL_GAS   ** Use vertical 
equilibrium calculation. 
                                               
 
   *PB *CON    4014.7         ** Bubble point pressure 
   *REFDEPTH   5000           ** A reference depth  
   *REFPRES    4800           ** Associated pressure.            
   *DWOC       5064           ** Depth to water-oil contact 
   *DGOC       4000           ** Depth to gas-oil contact (the gas is kept out of the 
calculation for simplicity)  
**  ==============  NUMERICAL CONTROL  ====================== 
*NUMERICAL 
** All these can be defaulted because the defaults used in the numerical solution 
techniques provide a good and efficient solution 
  ** to most simulation problems.(Here the default values are used)  
**DTMAX    121.0             ** A real number to specify the maximum time-step size 
allowed,  if it is not present in the input-data-file, 
                              ** then the maximum time step size is 365 days 
*ITERMAX 60                  **ITERMAX is used to specify the maximum number of 
iterations allowed in the Jacobian matrix solution routine    
      
**MAXSTEPS      100          ** Maximum number of time steps 
**NORM *PRESS  1000.0        ** Normal maximum changes per time step 
**NORM *SATUR     0.20 
**AIM  *THRESH    0.25 .25   ** Use threshhold switching criteria    
**NCUTS      6    ** Controls the number of time-step size cuts allowed in a single    
time step, If it does not appear in the data set, then the default is 4 cuts 
*RUN      
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** ==============  RECURRENT DATA  ====================== 
DATE 1992 1 1                                 ** Simulation starting date  
**$ 
WELL  'Well-1' 
PRODUCER 'Well-1'                             ** Define the type of well.     
*OPERATE  *MAX  *STO  1478   *CONT            ** Initially, operate on a rate 
constraint. 
*OPERATE  *MIN  *BHP  50.0  *CONT  *REPEAT   ** If the BHP falls below 50 
psi, switch to bottomhole pressure constraint.  
                                              ** The (REPEAT) subkeyword specifies that if the 
constraint is violated, the timestep 
                                                 ** should be repeated after switching to operating on 
the violated constraint. 
**$          rad  geofac  wfrac  skin 
GEOMETRY  K  0.375  0.249  1.  0. 
PERF  GEO  'Well-1' 
**$ UBA    ff  Status  Connection   
    3 3 1  1.  OPEN    FLOW-TO  'SURFACE'  REFLAYER 
    3 3 2  1.  OPEN    FLOW-TO  1 
    3 3 3  1.  OPEN    FLOW-TO  2 
    3 3 4  1.  OPEN    FLOW-TO  3 
    3 3 5  1.  OPEN    FLOW-TO  4 
    3 3 6  1.  OPEN    FLOW-TO  5 
    3 3 7  1.  OPEN    FLOW-TO  6 
    3 3 8  1.  OPEN    FLOW-TO  7 
LAYERXYZ  'Well-1' 
**$ perf geometric data: UBA, block entry(x,y,z) block exit(x,y,z), length 
    3 3 1  1250.000000  4100.000000  5000.008000  1250.000000  4100.000000  
5007.992000  8.000000 
    3 3 2  1250.000000  4100.000000  5008.008000  1250.000000  4100.000000  
5015.992000  8.000000 
    3 3 3  1250.000000  4100.000000  5016.008000  1250.000000  4100.000000  
5023.992000  8.000000 
    3 3 4  1250.000000  4100.000000  5024.008000  1250.000000  4100.000000  
5031.992000  8.000000 
    3 3 5  1250.000000  4100.000000  5032.008000  1250.000000  4100.000000  
5039.992000  8.000000 
    3 3 6  1250.000000  4100.000000  5040.008000  1250.000000  4100.000000  
5047.992000  8.000000 
    3 3 7  1250.000000  4100.000000  5048.008000  1250.000000  4100.000000  
5055.992000  8.000000 
    3 3 8  1250.000000  4100.000000  5056.008000  1250.000000  4100.000000  
5063.992000  8.000000 
**$ 
WELL  'Well-2' 
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PRODUCER 'Well-2' 
*OPERATE  *MAX  *STO  2217   *CONT            ** Initially, operate on a rate 
constraint.  
*OPERATE  *MIN  *BHP  50.0  *CONT  *REPEAT    
**$          rad  geofac  wfrac  skin 
GEOMETRY  K  0.375  0.249  1.  0. 
PERF  GEO  'Well-2' 
**$ UBA    ff  Status  Connection   
    6 6 1  1.  OPEN    FLOW-TO  'SURFACE'  REFLAYER 
    6 6 2  1.  OPEN    FLOW-TO  1 
    6 6 3  1.  OPEN    FLOW-TO  2 
    6 6 4  1.  OPEN    FLOW-TO  3 
    6 6 5  1.  OPEN    FLOW-TO  4 
    6 6 6  1.  OPEN    FLOW-TO  5 
    6 6 7  1.  OPEN    FLOW-TO  6 
    6 6 8  1.  OPEN    FLOW-TO  7 
LAYERXYZ  'Well-2' 
**$ perf geometric data: UBA, block entry(x,y,z) block exit(x,y,z), length 
    6 6 1  2750.000000  9020.000000  5000.008000  2750.000000  9020.000000  
5007.992000  8.000000 
    6 6 2  2750.000000  9020.000000  5008.008000  2750.000000  9020.000000  
5015.992000  8.000000 
    6 6 3  2750.000000  9020.000000  5016.008000  2750.000000  9020.000000  
5023.992000  8.000000 
    6 6 4  2750.000000  9020.000000  5024.008000  2750.000000  9020.000000  
5031.992000  8.000000 
    6 6 5  2750.000000  9020.000000  5032.008000  2750.000000  9020.000000  
5039.992000  8.000000 
    6 6 6  2750.000000  9020.000000  5040.008000  2750.000000  9020.000000  
5047.992000  8.000000 
    6 6 7  2750.000000  9020.000000  5048.008000  2750.000000  9020.000000  
5055.992000  8.000000 
    6 6 8  2750.000000  9020.000000  5056.008000  2750.000000  9020.000000  
5063.992000  8.000000 
**$ 
WELL  'Well-3' 
PRODUCER 'Well-3' 
*OPERATE  *MAX  *STO  3694    *CONT             ** Initially, operate on a rate 
constraint. 
*OPERATE  *MIN  *BHP  50.0   *CONT   *REPEAT    
**$          rad  geofac  wfrac  skin 
GEOMETRY  K  0.375  0.249  1.  0. 
PERF  GEO  'Well-3' 
**$ UBA    ff  Status  Connection   
    9 9 1  1.  OPEN    FLOW-TO  'SURFACE'  REFLAYER 
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    9 9 2  1.  OPEN    FLOW-TO  1 
    9 9 3  1.  OPEN    FLOW-TO  2 
    9 9 4  1.  OPEN    FLOW-TO  3 
    9 9 5  1.  OPEN    FLOW-TO  4 
    9 9 6  1.  OPEN    FLOW-TO  5 
    9 9 7  1.  OPEN    FLOW-TO  6 
    9 9 8  1.  OPEN    FLOW-TO  7 
LAYERXYZ  'Well-3' 
**$ perf geometric data: UBA, block entry(x,y,z) block exit(x,y,z), length 
    9 9 1  4250.000000  13940.000000  5000.008000  4250.000000  13940.000000  
5007.992000  8.000000 
    9 9 2  4250.000000  13940.000000  5008.008000  4250.000000  13940.000000  
5015.992000  8.000000 
    9 9 3  4250.000000  13940.000000  5016.008000  4250.000000  13940.000000  
5023.992000  8.000000 
    9 9 4  4250.000000  13940.000000  5024.008000  4250.000000  13940.000000  
5031.992000  8.000000 
    9 9 5  4250.000000  13940.000000  5032.008000  4250.000000  13940.000000  
5039.992000  8.000000 
    9 9 6  4250.000000  13940.000000  5040.008000  4250.000000  13940.000000  
5047.992000  8.000000 
    9 9 7  4250.000000  13940.000000  5048.008000  4250.000000  13940.000000  
5055.992000  8.000000 
    9 9 8  4250.000000  13940.000000  5056.008000  4250.000000  13940.000000  
5063.992000  8.000000 
WSRF GRID TNEXT 
*DATE 1993 01 01 
WSRF GRID TNEXT 
*DATE 1994 01 01 
WSRF GRID TNEXT 
*DATE 1995 01 01 
WSRF GRID TNEXT 
*DATE 1996 01 01 
WSRF GRID TNEXT 
*DATE 1997 01 01 
WSRF GRID TNEXT 
*DATE 1998 01 01 
WSRF GRID TNEXT 
*DATE 1999 01 01 
WSRF GRID TNEXT 
*DATE 2000 01 01 
WSRF GRID TNEXT 
*DATE 2001 01 01 
WSRF GRID TNEXT 
*DATE 2002 01 01 
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WSRF GRID TNEXT 
*DATE 2003 01 01 
WSRF GRID TNEXT 
*DATE 2004 01 01 
WSRF GRID TNEXT 
*DATE 2005 01 01 
WSRF GRID TNEXT 
*DATE 2006 01 01 
WSRF GRID TNEXT 
*DATE 2007 01 01 
WSRF GRID TNEXT 
*DATE 2008 01 01 
WSRF GRID TNEXT 
*DATE 2009 01 01 
WSRF GRID TNEXT 
*DATE 2010 01 01 
WSRF GRID TNEXT 
*DATE 2011 01 01 
WSRF GRID TIME 
*DATE 2012 01 01 
 
*STOP              **History run ends here 
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