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ABSTRACT

QUANTIFICATION AND ANALYSIS OF UNCERTAINTIES IN
RESERVOIR MODELING USING MULTIPLE-POINT GEOSTATISTICS

Fadlelmula Fadlelseed, Mohamed Mohieldin
Ph.D., Department of Petroleum and Natural Gas Engineering
Supervisor  : Prof. Dr. Serhat Akin

Co-Supervisor: Prof. Dr. H. Sebnem Diizgiin

December 2012, 171 pages

This study analyzed and quantified uncertainties of reservoirs modeled using
multiple-point geostatistics (MPG). The uncertainty types analyzed herein are

training image (TI) and hard data (porosity) uncertainties.

Aiming at studying the impact of TI uncertainty, this study provides a tool to
parameterize TIs having channel structure by a mathematical (Sine) function so that a
TI is a function of four parameters. These parameters are channels’ number, waves’
number in each channel, amplitude level of waves, and Z-direction slices’ number.
These parameters are used to generate 2D and 3D TIs to remodel a reservoir utilizing

a proposed MPG methodology.
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Analysis of cumulative oil production values showed that TI having 5 Z-direction
slices and 3 channels with 2 medium or low amplitude level waves or more produced
representative and reliable reservoir models. Thus, these values are set as thresholds
of the TI’s parameters. Additionally, increasing the number of channels and waves of
a TI decreased the uncertainty of the simulated reservoir. However, increasing the

number of Z slices beyond 5 and the amplitude level had no effect on the uncertainty.

Analysis of the original and recoverable oil in place (OOIP and ROIP) values showed
that the effect of channel number and amplitude level are random. However, the
number of waves is directly proportional to OOIP and ROIP values. Moreover,
utilization of the thresholds defined decreased the uncertainty range of OOIP and

ROIP prediction.

Finally, the investigation of hard data uncertainty revealed that porosity data

uncertainty has great impact on the simulated reservoir.

Keywords: Multiple-Point Geostatistics, Training Image Uncertainty, Hard Data

Uncertainty, Uncertainty Quantification



0z

COK NOKTALI JEOISTATISTIK KULLANARAK REZERVUAR
MODELLERINDE BELIRSIiZLiGIN ANALIiZi VE OLCULMESi

Fadlelmula Fadlelseed, Mohamed Mohieldin
Doktora, Petrol ve Dogal Gaz Miihendisligi Boliimii
Tez Yoneticisi : Prof. Dr. Serhat Akin
Ortak Tez Yoneticisi: Prof. Dr. H. Sebnem Diizgiin

Aralik 2012, 171 sayfa

Bu calismada, c¢ok noktali jeostatistik teknikler kullanilarak modellenen
rezervuarlarin belirsizlikleri analiz edilmis ve Olclilmiistiir. Analiz edilen belirsizlik

tipleri baslica egitim goriintiisii ve sabit veri (gozeneklilik) belirsizlikleridir.

Bu caligma, egitim goriintiisiiniin belirsizliginin etkisini ¢aligmak iizere, matematiksel
(Siniis) fonksiyonu kullanarak kanal yapisindaki egitim goriintiisiinii parameter-
lendiren bir ara¢ sunmaktadir. Boylece, egitim goriintiisiiniin yapisi dort parametre ile
kontrol edilmektedir. Bu parametreler kanal sayisi, kanaldaki dalga sayisi, dalganin
yiikseklik seviyesi ve goriintiiniin Z eksenindeki dilimlerinin sayisidir. Bu

parametreler kullanilarak 2 ve 3 boyutlu egitim goriintiileri olusturulmustur.
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Calismada cok noktali bir jeostatistik metodu Onerilmis ve olusturulan egitim

goriintiileri kullanilarak 6nceden modellenen bir rezervuar tekrar modellenmistir.

Kiimiilatif petrol iiretim degerlerinin analizi sonucunda, en az 5 Z ekseni dilimli ve 2
orta ya da diisiik ylikseklik seviyesindeki dalgaya sahip 3 kanall1 egitim goriintiisiiniin
temsili ve giivenilir rezervuar modeli {irettigi goriilmiistiir. Bulunan bu degerler,
egitim goriintiilerinin parametrelerininde esik degeri olarak kullamilmistir. Ayrica,
egitim goriintiilerinin kanal sayisin1 artirmak ya da dalga sayisini artirmak rezervuar
modelinin belirsizligini diisiirmiistiir. Ancak, Z ekseni dilimlerini 5 {izerine ¢cikarmak
ve yiikseklik seviyesini artirmak rezervuar belirsizligi iizerinde herhangi bir etki

yaratmamistir.

Yerinde Orjinal ve Yerinde Uretilebilir Petrol (YOP ve YUP) analizleri sonucunda
kanal sayis1 ve yiikseklik seviyesinin rastgale oldugu tespit edilmistir. Ancak, dalga
sayist YOP ve YUP degerleri ile dogrudan iliskili bulunmustur. Ayrica, tanimlanan
esik degerlerinin kullanimi tahmin edilen YOP ve YUP degetlerinin belirsizlik

araligimi azaltmistir.

Son olarak, sabit veri belirsizligi analizi sonucunda gozeneklerdeki belirsizligin

modellenen rezervuar iizerinde biiyiik etkiye sahip oldugu goriilmiistiir.

Anahtar Kelimeler: Cok Noktal1 Jeostatistik, Egitim Goriintiisiiniin Belirsizligi, Sabit

Veri Belirsizligi, Belirsizlik Olgiilmesi
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CHAPTER 1

INTRODUCTION

The scarcity of geological subsurface information is one of the most significant
sources of uncertainty in a reservoir modeling process. As a result, stochastic
simulation techniques are developed to reduce such kind of uncertainty. These
techniques generate multiple equiprobable reservoir models while maintaining the
geological structure. The traditional geostatistical modeling techniques use the
variogram model to represent the spatial heterogeneity or continuity and the kriging
for spatial interpolation. Thus, these traditional techniques are limited to the
reproduction of two-point statistics. However, modeling complex geological
structures such as channels, which are curvilinear formation meandering in 3D space,
requires multiple-point correlation. Thus, the traditional two-point based
geostatistical modeling techniques, such as the sequential indicator simulation
(Deutsch and Journel, 1998), fail to capture complex geological structures (Journel,
1992; Caers and Journel, 1998; Strebelle, 2000; Strebelle and Journel, 2001; Caers
and Zhang, 2004). On the contrary, the multiple-point geostatistics (MPG) simulation
technique proposed by Guardiano and Srivastava (1993) is proven to be a powerful
technique in modeling such complex structures (Journel, 2005). However, the
technique of Guardiano and Srivastava (1993) was central processing unit (CPU)
demanding, in other words, it was processor demanding. Thus, MPG was not widely
used until the implementation of the search tree by Strebelle (2000). In addition,
Strebelle (2000) developed the single normal equation simulation (SNESIM)
algorithm, a non-iterative sequential simulation algorithm that obtains multiple-point
statistics from conceptual geological models called “training images” and anchors
them to the subsurface well-log, seismic and production data (Feyen and Caers,

2006).



In the last two decades, a lot of work was conducted to improve MPG simulation
techniques. As a result, different MPG algorithms were developed. Some of these
Algorithms are SNESIM (Strebelle, 2000; Strebelle, 2002), SIMPAT (Arpat, 2005;
Arpat and Caers, 2007), FILTERSIM (Zhang, 2006), IMPALA (Straubhaar et al,
2011), and CCSIM (Tahmasebi et al, 2012). Among these algorithms SNESIM,

which models only categorical variables, is used in this study.

A training image (TI) is defined as the representation of expected subsurface
heterogeneities believed to exist in the area being modeled and not necessarily carry
any locally accurate information (Strebelle, 2000; Strebelle and Journel, 2001; Arpat
and Caers, 2007). However, a training image should reflect a spatial continuity style
similar to the actual phenomenon (Arpat and Caers, 2007). Training images should be
stationary, i.e. the spatial patterns are reasonably homogeneous all over the training
image (Strebelle and Zhang, 2005; Maharaja, 2008). However, some implementations
of MPG provided tools to use non-stationary training images (Caers and Zhang,
2004; Arpat, 2005; Liu 2006; Strebelle, 2006; Wu, 2007; de Vries et al., 2009).
training images are obtained from nearby field analogues, outcrop photographs as
well as interpretation of actual data such as cores, well logs, and seismic (Strebelle
and Remy, 2005; Boucher, 2009; Barrera et al, 2005; Okabe and Blunt, 2005). In
addition, training images are hand-drawn by geologists, then numerically digitized
(Strebelle and Remy, 2005) or created using unconditional object-based modeling

techniques (Strebelle and Remy, 2005; Arpat and Caers, 2007).

Selection of the right training image that represents the target spatial phenomenon is
crucial for an effective use of MPG simulation technique (Strebelle, 2002; Boisvert et
al., 2007). Although, a lot of work was conducted to improve MPG simulation
techniques the use of the optimum training image remains a challenge. The
uncertainty in the selection of the most representative training image for the data
under consideration is addressed by Boisvert et al. (2007) and Arslan (2005).

However, the construction of training images involves uncertainty too. Strebelle



(2000) has investigated some parameters that cause such type of uncertainty. He
studied the sensitivity of MPG simulation to the size of the training image, width of
the structure displayed by the training image, and the rotation of the training image.
Nevertheless, the literature addressing the issue of training image construction and

the uncertainty associated is very limited.

1.1 Dissertation Outline

This dissertation is divided into seven chapters. In Chapter 2, a brief literature review
about the limitation of the traditional two-point based geostatistical modeling
techniques is provided. Then, the Multiple-point geostatistics (MPG) simulation
technique and its Algorithm, the Single Normal Equation Simulation (SNESIM) are
introduced. After that, summary of the past work related to MPG simulation is
presented. Following that, brief information about the uncertainty in hard data, its

sources, and the way it is analyzed is presented.

The main objectives of this research are provided in Chapter 3. Next, a detailed
description of the methodology followed in this dissertation is presented in Chapter 4.
This chapter includes four main parts. The first part covers the method followed in
the generation of an original hypothetical reservoir using a proposed MPG modeling
methodology. The second part provides information about a sensitivity analysis of the
proposed method. The third part explains the steps followed in the construction of
training images and the modeling of their corresponding reservoirs. In the last part
hard data uncertainty analyzing method is presented. The results of this work and
their discussions are offered in Chapter 5. In Chapter 6 the main conclusions of the
study are drawn. Finally, some recommendations for future work are provided in

Chapter 7.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In the past, reservoirs were modeled by simplistic layer cake models. These models
were not producing accurate flow response predictions. Afterward, regression
methods were developed to represent reservoir layers by interpolating the data
recorded from wells (Strebelle, 2000). Among these the kriging method is the most
popular one. It depends on a prior model of spatial correlation called the variogram
model. However, in reservoir modeling the kriging method have smoothing problem
which may results in overestimating the low petrophysical values and under-

estimating the high ones (Arpat, 2005).

Aiming at correcting the smoothing effect of kriging, Journel (1974) introduced the
stochastic simulation. This simulation allowed the reproduction of spatial variance
predicted by the variogram model. Based on that a number of simulation algorithms
including the sequential simulation were developed (Barrera, 2006). However, these
variogram-based techniques fail to produce complex spatial patterns such as
curvilinear structures and fractured systems because they are based on the correlation
of only two points (Caers and Zhang, 2004). Figure 2.1 shows a good example of

such failure since three different structures resulted in three similar variograms.
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Figure 2. 1. Three different geological heterogeneities result in three similar variograms
(Caers and Zhang, 2004)

From another point of view, there are two main techniques to model a spatial
distribution, namely, pixel-based and object-based techniques. The former simulate
each node of reservoir model one pixel at a time and all the unsampled nodes are
visited sequentially along a random path. Then, based on both hard and soft data, the
conditional probability distribution function of a given node is estimated. The
simulated value at each node is recorded as a hard data for the simulation of the
subsequent unknown nodes. These pixel-based techniques are very flexible and easy
to condition to any conditional data since they simulate pixel by pixel. However,
most of the pixel-based techniques fail to represent complex geological structures
such as meandering channels because they are based on the traditional two-point
variogram model (Liu, 2003). The most notable pixel based techniques known to
produce complex geological structures are: simulated annealing (Farmer, 1988;

Deutsch, 1992), post-processing iterative algorithm (Srivastava, 1992), stochastic



simulation using neural networks (Caers and Journel, 1998), and extended normal
equations algorithm (Guardiano and Srivastava, 1993). However, these techniques
have other shortcomings, such as the convergence problems and extreme random
access memory (RAM) and CPU demand, which render them impractical (Strebelle,

2000).

On the other hand, the object-based techniques introduced by Stoyan et al. (1987),
and Haldorsen and Damsleth (1990) perform a simulation by adding different
geobodies one after another to the simulated field. Every added geobody is accepted,
rejected, or modified based on some objective functions. The object-based techniques
are proven to be good at the reproduction of crisp shapes which are used in reservoir
characterization since they are based on parameters provided by prior vision of the
questioned geobody (Liu, 2003). However, these techniques are time consuming and
often CPU demanding especially when intensive well data have to be honored as they
are iterative techniques (Eskandari, 2008; Liu, 2003; Strebelle, 2000). Moreover, the
algorithms used for the object-based techniques have to be modified when dealing
with different types of objects or reservoirs because every single object has its own

specific parameterizations (Eskandari, 2008; Strebelle, 2000).

2.2 Multiple-Point Geostatistics

Due to the limitation of the traditional modeling techniques that are based on two-
point statistics (i.e. variogram) several studies (Strebelle, 2000; Strebelle, 2002; Caers
and Zhang, 2004; Karishnan and Journel, 2003; Barrera, 2005; Journel, 2005; Lima,
2005; Journel and Zhang, 2006) have suggested the newly developed Multiple-Point
Geostatistics (MPG) simulation technique which is based on a training image (TI)
concept. By combining the strengths of both pixel-based and object-based techniques,
MPG method has become one of today’s most important geostatistical modeling
techniques. MPG was first introduced by Journel (1992) and was initially coded by

Guardiano and Srivastava (1993). This method was proven to be extremely CPU



demanding because it requires complete scanning of the TI for every new data event
used to inform a node being simulated. However, this changed with the development

of the search tree technique proposed by Strebelle (2000).

2.2.1 Training Images

MPG method requires a training image (TI) such as the one shown in (Figure 2.2). A
training image is defined as a numerical representation of the geological structure and
patterns believed to exist in the area being modeled and not necessarily carry any
locally accurate information (Strebelle, 2000; Strebelle and Journel, 2001; Arpat and
Caers, 2007). However, a training image should reflect a spatial continuity style
similar to the actual phenomenon (Arpat and Caers, 2007). In other words, a training
image is used to deliver prior geological concepts about the geometry of the

questioned heterogeneities.
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Figure 2. 2. A 2D training image of size 250 x 250 representing a channel structure (Caers
and Zhang, 2004)



Training Images are obtained from nearby field analogues, outcrop photographs as
well as interpretation of actual data such as cores, well logs, and seismic (Strebelle
and Remy, 2005; Boucher, 2009; Barrera et al, 2005; Okabe and Blunt, 2005).
Training images are hand-drawn by geologists, then numerically digitized (Strebelle
and Remy, 2005) or created using unconditional object-based simulations such as the
ones proposed by Deutsch and Wang (1996), Holden et al. (1998), Viseur (1999), and
Maharaja (2008). Training images should be stationary, i.e. the spatial patterns are
reasonably homogeneous all over the training image (Strebelle and Zhang, 2005;
Maharaja, 2008). However, some implementations of MPG provided tools to use
non-stationary training images as well (Caers and Zhang, 2004; Liu 2006; Strebelle,
2006; Wu, 2007; de Vries et al., 2009) (Figure 2.3).

Channel

Shale

P ————

¥ B
Figure 2. 3. Examples of a non-stationary training image, A, and a stationary training image,
B (Arpat, 2005)

Like the variogram model the training image provides statistics relating unsampled
value to conditioning data, but in jointly multiple locations. In other words, MPG
technique accounts correlations between three or more locations at a time. Thus,
MPG technique is capable of producing complex curvilinear geological structures

accurately (Strebelle, 2002). The simulation carried out by the MPG technique is



taking the patterns from the training image and anchoring them to the actual data
(Liu, 2003; Liu et al, 2005). This process when first proposed by Guardiano and
Srivastava (1993) was slow and CPU demanding because it was calling for
rescanning of training image for each new data event. However, the development of
the Single Normal Equation Simulation algorithm (SNESIM) of (Strebelle, 2000),
which scans the training image only once, significantly speeded up the MPG

simulation process and decreased its CPU demand.

2.2.2 The SNESIM Algorithm

SNESIM was first developed by Strebelle (2000) to carry out pattern reproduction
conditional to hard data. Later SNESIM has been modified to account for auxiliary
constraints such as those presented by seismic data (Strebelle et al., 2002). SNESIM
deals only with categorical variables. It scans a training image only once to retrieve
the frequencies of occurrence of observed outcomes for the central nodal value
utilizing a template of neighboring conditioning data. The probabilities found are then
stored in a data structure called “search tree”. This search tree allows fast storage and
retrieval of probabilities corresponding to the actual data events encountered during a
sequential simulation (Strebelle, 2002). Figure 2.4 illustrates an example of such
search tree. In order to construct the search tree of Figure 2.4, a given data template is
used to scan the training image in which the yellow and the white nodes represent the
channel and the non-channel structures, respectively. For example, in level ‘O’ the
training image is scanned to calculate the probabilities of finding a channel or non-
channel structures using only the central node ‘u’ of the data template. In other
words, no conditional data (no CD) is used when scanning the training image at this
stage. In this case, the probability of finding a channel structure (yellow node) in the
training image is 11 while that of the non-channel structure (white node) is 14.
Following that the training image is scanned using the central node ‘u’ and one
conditional data (1 CD) of the data template. In this case, the training image is

scanned for the probabilities of finding: 1) channel structure in u when the



conditional data is also channel, 2) non-channel structure in u when the conditional
data is channel, 3) channel structure in u when the conditional data is non-channel, 4)
non-channel structure in u when the conditional data is also non-channel. Next, the
training image is scanned similarly with two, three, and four conditional data of the

data templates.
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Figure 2. 4. lllustration of how a data template is used to scan a training image for the
frequencies of occurrence of observed outcomes for the central nodal value (Caers, 2002)

In MPG the hard data are fixed at their nodal locations and they are never changed.
Then the unsampled nodes are sequentially visited and simulated conditional to the
previously simulated values as well as the hard data (Figure 2.5). In the case of soft
(e.g. seismic) data conditioning the MPG simulation is performed in two steps (Liu,
2003; Liu et al., 2005). First, the soft data are extracted and stored in the search tree

each in its location as in the case of hard data. Then, both the soft and hard data are

10



used as conditional data while performing the sequential simulation. SNESIM
reproduces the structure of the training image and at the same time it honors the
available hard and soft data. Figure 2.6 illustrates the workflow of MPG simulation
conditional to both hard and soft data. The workflow then consists of three main
parts: P(A|B), P(A|C), and P(A|B, C) where “A” stands for the value at location u to
be simulated, “B” stands for geological information and hard data, and “C” stands for
soft data (Liu, 2003; Liu et al., 2005). A more general and simplified illustration of
MPG simulation workflow for such a case is given in Figure 2.7. For further details

on SNESIM algorithm, the reader is referred to Strebelle (2000).

A user-friendly interface of SNESIM algorithm is available in an open-source
computer package called “Stanford Geostatistical Modeling Software” (SGeMS).
SGeMS is developed at Stanford University as its name implies and particularly by
the Stanford Center for Reservoir Forecasting (SCRF). A description of the SNESIM
algorithm parameters is given in Section 1 of Appendix A. SGeMS implements
several geostatistics algorithms for modeling earth systems. Some of these algorithms
are: Sequential Gaussian Simulation (SGSIM), Filter-based Simulation

(FILTERSIM), and Training Image Generator (TIGENERATOR).
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Figure 2. 5. Explanation of how unsampled nodes are simulated conditional to available data
(Caers, 2002)

11



Part 1 : P(A|B)

i ‘Traming image Obtain/store P(A|B) 3
i (zeology) for all possible B’s :
! = '
i "M Retrieve
e PR |
. _a corresponding
E At Incation u, read = L N
; B(u) : hard data \\
; (wells) + previously i \
i / simulated values } <
________________________________________________________ > a Draw
In sequential HAREI a value
simulation mode : "
visit each unknown — —_
node u : \“x /
\_k_‘_\ ,""
= i . /
T, Retrieve
e P{A|C) (u) at
: ocation
Part 2 : P(A|C) ; P i
i L
{Soft information Ublagm’slorc ’r Part 3 : P(A|B,C)
i(seismic data, .) " P(A|C) for all

» I
: locations u i

Figure 2. 6. A multiple-point simulation workflow (Liu, 2003; Liu et al., 2005)

geoiogy and hard data

,r-—-—"—"-—'"—""-.
S —
e

Pattern scanning

N/
)\
N
<h-||
%

)

Integrating both
sources of data

et

I

4

v

Pattern
reproduction

Draw a value
(realization)
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2.3 Previous Research Studies on MPG Simulation

Previous research studies on MPG simulation can be grouped into five main topics:

1. The use of non-stationary training images in MPG simulation (Caers and Zhang,
2004; Arpat, 2005; Mahraja, 2005; Strebelle and Zhang, 2005, Liu 2006;
Strebelle, 2006; Wu, 2007; Chugunova and Hu, 2008; de Vries et al., 2009).

2. Development of new MPG simulation algorithms (Strebelle and Remy, 2005;
Arpat, 2005; Arpat and Caers, 2007; Zhang, 2006; Straubhaar et al., 2011;
Tahmasebi et al, 2012).

3. Applications of MPG (Liu et al.,2002; Harding et al., 2005; Okabe and Blunt,
2004; Feyen and Caers, 2005; Okabe & Blunt, 2005; Feyen and Caers, 2006;
Zhang, 2008; Du et al., 2009; Hajizadeh et al., 2011; Mariethoz et al., 2011;
Zhang et al., 2005; Comunian et al., 2011; Comunian et al., 2012; dell’ Arciprete
et al., 2012).

4. Reduction of RAM and CPU demand (Huysmans and Dassargues, 2011;
Huysmans and Dassargues, 2012; Zhang et al., 2012).

5. Generation and selection of training images (Arslan, 2005; Boisvert et al., 2007;

Boisvert et al., 2008; Huysmans and Dassargues, 2010; Eskandari, 2008).

Some of these studied are summarized in the following paragraphs.

Caers and Zhang (2002) in their work illustrated the differences between the
traditional variogram and MPG techniques. Then, they pointed out the basic concepts
in which reservoir modeling and thus MPG are based on. Briefly, these concepts are
Stationarity and Ergodicity. Stationarity is the similarity repetition of the data to be
collected. The Ergodicity, on the other hand, explains the expected fluctuation of the
collected data (statistics) and the effect they have on the model building. Finally, the
authors considered a very important point which is non-stationary models. As they
have cited, actual reservoirs may contain non-stationary elements such as vertical

proportion variations. Thus, the need for non-stationary reservoir models arises.
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Then, they illustrated how to construct a non-stationary reservoir model from a

stationary training image.

Liu et al. (2002) presented a methodology for generating stochastic models of
fracture systems in reservoirs. In their work it was proven that the most important
characteristics of the patterns corresponding to different classes of fracture systems
can be reliably detected using multiple point statistical measures. Then, it was
suggested to perform a detailed geological characterization of fracture outcrops. The
essence of the fracture patterns described in those outcrop exposures are captured
through multiple point statistical measures. Then, when modeling a target reservoir
the analog model suitable for that reservoir can be constructed using the multiple-
point statistical measures characteristic for that system. These patterns are then
imposed on the model for the target reservoir using a growth-based stochastic
simulation technique. The stochastic models can be constrained to all available
information in the form of conditioning well data, seismic maps, rock mechanical

strength data etc.

Strebelle et al. (2002) stated that deepwater turbidite reservoirs represent a growing
number of hydrocarbon targets for major oil companies. Due to the high drilling and
production costs associated with such reservoirs, however, the need for reliable
architecture modeling increased. Thus, integration of geological information beyond
two-point variogram reproduction becomes critical in order to quantify more
accurately heterogeneity and assess realistically the uncertainty of oil recovery. Then,
they proposed a practical approach to integrate large-scale seismic amplitude data
into a finer scale geological model. They generated a TI depicting sinuous sand
bodies using a non-conditional object-based simulation algorithm. Disconnected sand
bodies are interpreted from seismic amplitude data using a principal component
cluster analysis technique. In addition, a map of local sand probabilities obtained
from a principal component proximity transform of the same seismic is generated.

MPG then simulates multiple realizations of channel bodies constrained to the local

14



sand probabilities, partially interpreted sand bodies, and well-log data. The resulting
model reflected the prior geologists' vision of the subsurface architecture while
honored the well and the seismic data. Moreover, the authors proved that computer
RAM and the time needed to run the resulting model are comparable to those of the

traditional variogram-based algorithms.

Chevron Texaco's earth science community by using real case example proved that
MPG method results in models that represent complex reservoir facies very well
(Harding et al., 2004). They followed a four-step-procedure that can be summarized

as follows:

® MPG algorithm has been improved to permit a single training image, which is
constructed for a particular geological environment to model multiple
stratigraphic zones.

* A relatively large number of facies have been employed; this enabled them to
represent the complexities of the reservoir in the model.

e A workflow has been used which allowed the integration of geological facies'
geometry, associations and heterogeneity with varying azimuth, and facies
proportions.

¢ The workflow allows distinctly different geological scenarios to be modeled,
permitting an improved understanding of the impact of uncertainty in facies

distribution on the reservoir continuity and pore volume.

In their work Strebelle and Remy (2005) stated that the flow performance of reservoir
heterogeneity is primarily controlled by the spatial distribution of the depositional
facies. Thus, it would be better to model these depositional facies first, then
populating each simulated facies with its corresponding specific porosity and
permeability distributions. They also presented a new version of the MPG simulation
algorithm; SNESIM, with integrated post-processing. In that newly proposed
algorithm, the method used to gather local conditional facies probability distributions

was modified to increase the number of conditioning data which were actually used
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in that gathering process. This new estimating method has removed a great number of
anomalies from MPG models. In other words, it has removed simulated patterns that
were not present in the training image. Then a post-processing technique is proposed
to reduce the number of the remaining anomalies. Finally, by applying the post-
processing technique to a 2D horizontal section of a fluvial reservoir the authors
proved that computer RAM and the time needed to run the new modified SNESIM
are comparable to those of the original SNESIM, though the number of anomalies

decreases dramatically.

Feyen and Caers (2005) indicated that MPG technique’s potential to characterize
subsurface heterogeneity for hydrogeological applications in a wide variety of
complex geological settings is very high. Geological structures or features such as
sand channels or clay lenses often constitute preferential flow paths or obstacles to
flow. Thus, it is very important to accurately represent and locate these structures
when predicting flow and transport in porous media. However, the authors claimed
that further analysis is needed to systematically evaluate and quantify the effects of
the different levels of geological uncertainty on groundwater flow and transport

predictions in multi-modal settings.

Okabe and Blunt (2005) used MPG simulation on a 2D thin section image to generate
a 3D pore space image with an assumption of isotropy for orthogonal planes. The
method is tested on sandstone and carbonate samples. Permeability is predicted
directly on the 3D image using the Lattice Boltzmann Method (LBM). This method is
an extended version of MPG approach that was developed by Strebelle et al. (2002).
It provides an important input for the creation of geologically realistic networks for
pore-scale modeling to predict multiple flow properties. The major extension of this
method is the rotation of the measured statistics by 90 degrees, which allowed the

authors to generate a 3D structure. This process consists of three steps:

e Extracting multiple-point statistics from a training image,

e Probability calculation for each orthogonal plane using conditioning data,
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e Pattern reproduction using the probability weighted by number of

conditioning data on each plane.

The LBM provides a good approximation for the solutions of Navier-Stokes
equations using a parallel and efficient algorithm that readily accommodates complex
boundaries as encountered in porous media. This method is a suitable way to assess

the structures if no microtomographic image of the rock is available.

In addition, Feyen and Caers (2006) studied the problem of quantifying the
geological uncertainty for groundwater flow and transport modeling in complex
geological settings. A two-step procedure was employed to generate realizations of
the hydraulic property distributions. In the first one the realizations of the facies
architecture were generated using MPG techniques. In the second the facies were
populated with hydraulic property distributions generated wusing two-point
geostatistical methods. In both steps they accounted for the uncertainty inherent in the
selection of the statistical model and in the estimation of global statistics. Spatial
bootstrap was used to estimate the uncertainty of unknown statistical parameters.
With a comprehensive numerical analysis the authors evaluated the effect of different
geological uncertainty scenarios on the predictions of a groundwater flow and
transport model. Their results indicated that the level of facies uncertainty affected

the variability of the head predictions largely.

Du and Zhang (2009) simulated porosity data using the continuous MPG algorithm;
FILTERSIM of Zhang (2006). FILTERSIM simulates both continuous and
categorical variables based on filters. In their proposed method Du and Zhang used
nine filters to scan a 3D training image. The local patterns captured by the filters at
the locations of each node in the 3D space are characterized by nine score values
corresponding to the nine filters used. The patterns with close filter scores are stored
in a group called “prototype”. The prototype of each group of patterns is given a
score equal to the average of the filters’ scores that fall in that group (Wu et al., 2007;
Zhang, 2006). After that and during simulation, the prototype with the score closest to
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the conditioning data event is extracted. Then, a training pattern is drawn randomly
from that prototype and pasted back onto the simulation grid. The results showed that
this method generates the structures and characteristics of porosity in the used

training image well and more accurately than the SGSIM results.

Huysmans and Dassargues (2010) gave details on how a training image can be
constructed based on geological and hydrogeological field data. Besides, they
explained how MPG can be applied to determine the impact of complex geological
heterogeneity on ground water flow and transport in a real aquifer. In addition, the
significant effect of small-scale sedimentary heterogeneity on the calculation of a
contaminant concentration distribution was confirmed by a hypothetical case. The
outputs showed that using a homogeneous model to predict the contaminant plume
emigration and concentration would yield erroneous results. So, it was concluded that
heterogeneity encountered in ground water contamination studies should be taken

into account.

Hajizadeh et al. (2011) proposed a stochastic method that uses MPG technique for the
construction of a 3D pore structure from a 2D thin section training image. In this
method, the 3D porous media is constructed layer by layer using successive 2D MPG
simulations coupled with multi-scale conditioning data extraction procedure.
SNESIM algorithm is utilized as the simulation tool. Application of the method for a
sample Berea sandstone confirmed that the obtained 3D realization preserved the
pore space patterned of the thin section training image. The advantage of this method
is its computational efficiency when compared with other similar methods such as
that of Okabe and Blunt (2004). However, this method can only be applied to media
with repeated multiple-point statistics. In other words, the training image used must
be stationary because SNESIM algorithm relies on the assumption of stationary

statistical properties.

Huysmans and Dassargues (2011) applied a method that uses MPG to perform a

direct simulation for edge properties in order to model irregularly shaped surfaces
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such as clay drapes. The edge properties in this method are used instead of pixel
values. The proposed method allowed modeling reservoirs of aquifers having
irregular shapes with considerable computational time reduction when compared with
the traditional MPG. In other words, it decreased the demand for CPU and RAM
significantly. Thus, this method is very valuable for 3D application of MPG.

Mariethoz et al. (2011) proposed a multiple-point super-resolution mapping method.
This method requires an image of a coarse scale structure as the only input parameter.
This image is treated as the training image; therefore, it should be large enough to
contain a diversity of patterns. Then, MPG method is used to infer the fine scale
structure from the coarse ones based on the scale invariance properties’ assumption.
This method generated images having the same properties as their coarse ones, both
in terms of fractal dimensions and reproduction of spatial statistics. In addition, it is
able to deal with both continuous and categorical variable and even can be
generalized to multivariate problems. The only limitation of this method is that it only

produces self-similar structures, but that is not always the case for natural images.

Huysmans and Dassargues (2012) used a combined approach of MPG and edge
properties to include clay drapes in a flow model. Instead of representing clay drapes
by pixels they were represented as grid cell edge properties. This allowed the
reduction of CPU and RAM needed for modeling large grid cell sizes. The proposed
method also allowed the simulation of realistic spatial distribution of the clay drape
occurrence based on a field-based training image. Besides, it was proven to be

efficient for integrating field-structures in a larger scale model.

Tahmasebi et al. (2012) proposed a methodology that utilizes MPG but without the
need for pattern database and a small data event. This method works with both
categorical and continuous training images. In addition, it is based on a cross-
correlation function for the similarity of the generated pattern and the used training
image. To apply this method a newly developed algorithm; cross-correlation

simulation (CCSIM), is used. CCSIM algorithm is tested with different training
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images and the results indicated its significant reduction of CPU and RAM demand
when compared to previous algorithms. In addition, CCSIM is able to generate

realizations of reservoirs with accurate conditioning and continuity.

Zhang et al. (2012) also developed a method that decreased the CPU and RAM
demand when simulating reservoirs using MPG. A compact search tree containing the
same information as the first search tree proposed by Strebelle (2000) was developed.
However, it reduced memory cost by one order of magnitude. That is because the
compact tree decreases the long non-branching sequences to only their essential
information such as the common properties and number of repeating nodes. Due to
that the proposed method accelerates MPG simulation significantly. Thus, allows the

simulation of field-scale and complex 3D facies models.

A lot of work was conducted to improve MPG simulation techniques. The work
conducted concentrated mainly on: the use of non-stationary training images (TIs) in
MPG simulation, development of new MPG simulation algorithms, applications of
MPQG, reduction of RAM and CPU demand, and the generation and selection of
training images. However, the generation and selection of training images have not
been thoroughly studied yet. In other words, the literature addressing the issue of
training image generation and the uncertainty associated is very limited. One part of
the present study is devoted to analyze and quantify the impact of such uncertainty on

reservoir models.

2.4 Uncertainty in the Hard Data

The hard data have some sorts of uncertainty (Figure 2.8). These uncertainties are
either due to the physical phenomenon that is inherently random or errors in the
predictions and estimations of the real world conditions (Ang and Tang, 1984). The
inherent uncertainty is a state of nature so it cannot be decreased. However, the

estimation (or modeling) uncertainty is possibly reduced by the use of more accurate
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models or the acquisition of more data (Ang and Tang, 1984). The error in model
prediction is subdivided into systematic error and random error. The systematic error
or simply the bias is due to factors that are not taken into account in the predicting
model that are likely to affect the estimation somehow (Duzgun, 2004). The
estimations based on core samples analyzed in laboratory have systematic error,
because they do not represent the in situ properties of the considered structure. The
random error, on the other hand, is due to lack of knowledge. The sampling error that
depends on the sample size is an example of such error. The description of the errors
can be made by the use of the mean or median and the standard deviation or

coefficient of variation.

Sources of Uncertainties

Inpetfection i the
modeling of the
physical process

Randomness in the
physical process

( Systematic Cc::umponent> ( Eandom Component >

Figure 2. 8. Sources of uncertainties (Duzgun, 2004)
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2.4.1 Analysis of Hard Data Uncertainties

The types of uncertainties explained in the previous section can be analyzed in a

unified manner using the following model. Suppose that the true but unknown state

of nature is X, a model denoted by X, may be used. X is a model of the real world,
therefore, it contains a certain degree of error and needs to be corrected by a factor,

denoted by N. Thus, the true state is expressed as follows (Ang and Tang, 1984):
X=NX (2.1)

Then, if the state of nature is random, the model X should also be a random variable.
As a result, the necessary correction factor N can also be considered as a random
variable, whose mean value v indicates the mean correction of the systematic error in
the estimated mean value (X), while the c.0.v of N, denoted by (A), represents the
random error in the estimated mean value (X). The inherent variability, denoted by

(8,), on the other hand, is quantified utilizing the estimated mean value (X) and

variance (o) of X as follows:

8= /s (2.2)

After assuming that N and X are statistically independent, Ang and Tang (1984)
calculated the expected value of X by:

W =vZx (2.3)

Where,

x = Estimate of the true mean value (i.e. the estimated mean value)

v = Bias correction for systematic error in the estimated mean value X
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After assuming the statistical independence, Ang and Tang (1984) suggested that the
total uncertainty () in the estimated value of a given variable X (such as

porosity) is calculated by:

— 2 2
-Qtotal - JQinherent + 'Qestimation (2'4)

Where,
Quoral = the total coefficient of variation (uncertainty) in the predicted mean value
Qinnerent = the coefficient of variation due to the inherent error

Qestimation = the coefficient of variation due to the estimation error
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CHAPTER 3

STATEMENT OF PROBLEM

There are three main objectives of this study. The first one is to provide a tool to
parameterize channelized training images. The parameterization is performed by
means of a mathematical function (i.e. the Sine function). This function is used to
represent the channel structure of a training image in two dimensions. Then, the
parameters of the mathematical function are modified to generate different 2D
training images. Next, 3D training images of these 2D training images are generated.
The second objective of this study is to analyze the impact of training image
parameters uncertainty on an original reservoir model. Thus, the generated 2D and
3D training images are used to remodel an original reservoir utilizing a proposed
multiple-point geostatistics methodology. The third objective of this study is to

investigate the impact of hard data uncertainty on the original reservoir model.
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CHAPTER 4

METHODOLOGY

The main objectives of this study are: 1) providing a tool to parameterize training
images, 2) investigating the impact of modifying training image parameters on an
original reservoir model, 3) investigating the impact of hard data uncertainty on the
original reservoir model. In order to perform the intended investigations, a MPG
modeling methodology is proposed. Then, a synthetic fluvial channel reservoir model
(Original Reservoir) is generated utilizing a given dataset and its training image.
Next, a sensitivity analysis of the MPG modeling Algorithm and the methodology

proposed is carried out.

A Sine function is employed to model the geological structure (i.e. channels) of the
original training image. The Sine function is used to represent the channel structure of
the training image in two dimensions. So, the training image becomes a function of
four parameters. These parameters are the number of channels, the number of waves
in each channel (i.e. in the Sine function), the amplitude level of waves, and the
number of Z direction slices in the training image. After that, different 2D and 3D
training images are constructed by modifying the four parameters defined. These
developed training images are then employed to model reservoirs by utilizing the
same methodology followed in the generation of the original reservoir. Next, the
uncertainty due to the modification of training image’s parameters is analyzed by

comparing the developed reservoir models with the original reservoir.

In the present study, the impact of hard data uncertainty on the original reservoir
model is investigated by considering only the uncertainty of the porosity data. This

investigation is performed in three steps as follows. First, different realizations of the
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original porosity data are generated through Monte Carlo Simulations using
coefficients of variation of similar studies in literature. Then, the original reservoir is
remodeled using the generated realizations instead of the original porosity data.

Finally, the impact of porosity uncertainty on the reservoir model is analyzed.

4.1 The Proposed MPG Modeling Methodology

In this study, a MPG modeling methodology is proposed. This methodology is

summarized as follows (Figure 4.1):

e Develop 2D and 3D training images by modifying the parameters of
the training image defined. Then, import into Stanford Geostatistical
Modeling Software (SGeMS) (This step is used while studying the
impact of training image uncertainty on the original reservoir).

e Generate a reservoir facies realization using the facies hard data and
MPG simulation algorithm; the Single Normal Equation Simulation
(SNESIM) of SGeMS.

e C(alculate the experimental variogram (in 3D) of the generated
realization.

¢ Fit a variogram model to the experimental variogram

e Generate the corresponding porosity file (in 3D) using the Sequential
Gaussian Simulation (SGSIM) of SGeMS

e Extract the porosity data out of SGeMS

e Upscale the porosity data

e C(alculate the corresponding permeability values using defined
logarithmic relations

e (Construct a reservoir Model using the Builder tool of CMG software
then input the porosity and permeability data calculated to the model

¢ Run the model by IMEX tool of CMG software
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e Extract the Cumulative oil production (Q) versus time (T) plot and
data, Original Oil In Place (OOIP) and Recoverable Oil In Place
(ROIP) values

Developing training images

U

Converting to GSLIB text file format

\V4 Stanford VIreservoir data set
\ Training image |, Hard data (facies) : \ Soft data (seismic) |
SNESIM algorithm

Stanford VIreservoir data

K Variogram model (3D)

_________________

Ll 1

SGSIM algorithm

SGeMS

Extraction of simulated porosity data (3D)

1 |

Upscaling

1

(CMG) IMEX data file
:' Other reservoir data -i:— Production history : q Permeabi]it}_-' calculation

________________________________

(CMG) IMEX tool

| (Q vs. T) plot ‘l

Figure 4. 1. A flowchart of the proposed MPG modeling methodology.
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4.2 3D Dataset

The dataset used in the modeling process of this dissertation is acquired from
Stanford VI, a synthetic dataset of a fluvial channel reservoir (Castro, 2007). The
SGeMS project of this dataset is given by Remy et al. (2009). Three objects of this
dataset are used in this study: grid, training-image, and well-simple. The grid object
is a Cartesian grid consisting of 150 x 200 x 80 nodes, with its original point at the
(0,0,0), and a unit cell size in each direction (Remy et al., 2009). The seismic or the
facies probability data (p(sandlseis) and p(mudiseis)) are the only properties used in
the grid object (Figure 4.2). The mud represents the shale (i.e. non-channel) structure.
The training image of size 200 x 200 x 5 that is used in the MPG simulation is
available in the training image object (Figure 4.3). This training image has a sand

(channel) proportion of 0.271 and a shale (non-channel) proportion of 0.729.

(B)
IShaIe[nDn-channel] ISand [channel)

(A)

Sand (channel) Shale (non-channel)

Figure 4. 2. Seismic (i.e. facies probability) data (p(sandlseis); (A), and p(mudlseis)); (B)
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Figure 4. 3. Original training image used for modeling the original reservoir. The size of the
training image is 200 x 200 x 5, each slice in the z — direction is shown here from top to
bottom (Castro, 2007)

In this dataset (in the well-simple object) there are 46 vertical wells and six properties
(density, facies, P-impedance, P-velocity, permeability, and porosity) that are
associated with these wells. In the present study only three of these properties are
used. These properties are 1) facies (binary indicators for the sand channel and shale
having proportions of 0.4540 and 0.546, respectively), 2) porosity (Figure 4.4), and 3)
permeability. Each of these properties has got 4320 data. Figure 4.5 shows the

histograms of porosity, and permeability properties.
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Figure 4. 5. Histograms of the porosity and permeability data of Stanford VI data set
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4.3 Original Reservoir

4.3.1 Simulation with SNESIM Algorithm

The original hypothetical reservoir model is generated using the Stanford VI dataset
objects defined in the previous section. The first step in this process is the utilization
of the MPG simulation algorithm, SNESIM, to generate a categorical (facies) model
(Figure 4.1). The parameters required by SNESIM for the present study are described
in Section 1 of Appendix A. The values of these parameters are reported in Table 4.1.
The “Target Marginal Distribution” values in Table 4.1 are the proportions of shale
and channel categories in the facies hard data. These proportions are calculated as

follows:

e The facies data (4320 data) are extracted to Excel spreadsheet
e Sorted

e Separated into shale (with “0” category) and channel (with “1” category)

Then the proportions are calculated by:

number of data for category;

Proportion; = 4.1)

the total number of data
In order to find the ranges of the “Search Template Geometry” the variogram of the
hard data (facies) is computed in SGeMS (the details of this variogram computation
are given in Section 1 of Appendix A). The Omni-directional variogram is calculated
since the directional Variography is assumed to be isotropic (Figure 4.6 and Table
4.2). Thus, the angles of the search template were set to 0. As a rule of thumb, the
ranges of the searching ellipsoid should have a value more than twice the range of the

conditional data variogram. Therefore, all ranges were set as 21.
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Figure 4. 6. Variogram model of the hard data

Table 4. 1. Variogram model fitted to the experimental variogram of the hard data. Ranges
are shown in feet

Type | Exponential

Nugget 0.0005

Sill 0.0083
Ranges 10/9/8
Angles 0/0/0

The Global Affinity Change values are set as “2 1 0.5” indicating the corresponding
change of the channels’ width in the X, Y, and Z directions, respectively (Remy et al.,
2009). Finally, the used search template is big enough to reproduce the structure of

the training image therefore the number of Multigrids is set as 1.
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Table 4. 2. Values of the parameters used by SNESIM algorithm to model the original

reservoir
Parameter Value
Seed 519175
# of Categories 2 (non-channel and channel)
0.546 0.454

Target Marginal Distribution

# of Nodes in Search Template

80 (default for a 3D training image)

Search Template Geometry
(ranges and angles)

21,21,21and 0,0, 0

Hard Data (property) Facies
Soft Data Probability p(mudlseis) and p(sandlseis)
Tau Values for Training Image and Soft 11
Data
Global Affinity Change 2105
Min # of Replicates 1(default)

Servosystem Factor

0.5 (the default value which is the mean)

Re-simulation Threshold

-1 (default)

Re-simulation Iteration #

1 (default)

# of Multigrids 1
Previously Simulated Nodes 4 (default)
Template Expansion Isotropic

The SNESIM parameter file including all these parameters is given in Section 1 of
Appendix C. This file is loaded into SGeMS then SNESIM algorithm is run to
simulate the original reservoir. Figure 4.7 shows the simulation output facies
realization obtained. This realization honors both the hard data (compare the facies

histograms in Figure 4.8), and the soft data (compare Figure 4.2 (A) with Figure 4.7).
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Figure 4. 7. Original reservoir’s facies realization generated by SNESIM algorithm. The size
of the model and the realization is 150 x 200 x 80
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Figure 4. 8. The facies histograms of the hard data and the simulated reservoir realization
illustrated in Figure 4.7
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4.3.2 Simulation with SGSIM Algorithm

The next step after simulating the reservoir facies is to convert them into porosity
numbers. In order to do that the Sequential Gaussian Simulation (SGSIM) algorithm
of SGeMS is used (Figure 4.1). The parameters required by SGSIM are described in
Section 2 of Appendix A. The values of these parameters are reported in Table 4.3
and their SGSIM parameter file is given in Section 2 of Appendix C. The variogram
model used in SGSIM is that of the simulated facies realization given in Figure 4.7.
The parameters and a plot of this variogram are shown in Table 4.4 and Figure 4.9,
respectively (the details of this variogram computation are given in Section 2 of
Appendix B). The calculated variogram is the Omni-directional since the directional

Variography is assumed to be isotropic.

Table 4. 3. Values of the parameters used by SGSIM algorithm to convert the original
reservoir facies into porosity numbers

Parameter Value
Seed 14071789 (the default)
Kriging Type Simple kriging
Hard Data (property) Porosity
Max Conditioning Data 12 (the default)

Search Ellipsoid Geometry
(ranges and angles)
Property with Reference Distribution Porosity
Variogram Variogram model of Table 4.4

80, 80,80 and 0, 0, 0

Table 4. 4. Variogram model fitted to the experimental variogram of the simulated realization
shown in Figure 4.7. Ranges are in feet

Type | Exponential

Nugget 0.04
Sill 0.1895
Ranges | 22/21/8.1

Angles 0/0/0
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Figure 4. 9. Variogram model of the simulated realization shown in Figure 4.7

The porosity realization generated by the SGSIM algorithm utilizing the parameters
defined above is shown in Figure 4.10. This realization honors the (porosity) hard
data (compare the porosity histograms of Figure 4.11). However, the generated
realization does not honor the soft data because SGSIM algorithm has no parameter
that accounts for the probabilities of such data. Thus, the channel structure generated

is not similar to that of Figures 4.2 (A) and 4.7.
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Figure 4. 10. Original reservoir’s porosity realization generated by SGSIM algorithm
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Figure 4. 11. The porosity histograms of the hard data and the simulated reservoir realization
illustrated in Figure 4.10
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4.3.3 Exporting Simulated Porosity Data

The data of the simulated porosity realization are exported out of SGeMS by means
of a python code (Figure 4.1). This code is given in Section 1 of Appendix D. The
code exports the data from the original grid (150 x 200 x 80 feet) to 1000 different
ASCII files each corresponding to a block with a size of 15 x 20 x 8 feet. Each of the
obtained 1000 files contains 2400 (i.e. 15 x 20 x 8) porosity data. The code exports
the data block by block and Z-slice by Z-slice. In other words, the code loops through

the X axis first, then the Y axis, and finally the Z axis.

4.3.4 Upscaling the Porosity Data

The size of real world geological models used for reservoir description exceeds by
several orders of magnitude the capabilities of the available computer-based reservoir
simulators. In other words, such models are too detailed to be used directly for
reservoir simulation. Thus, upscaling is required. The main idea of upscaling is to
replace some fine grid blocks of the same property with one equivalent coarse grid
block. So, in general the main concept of upscaling is averaging. Upscaling therefore
reduces the sizes of the simulation models so that they can be handled by simulators

and within acceptable time frame.

Many upscaling approaches are available, but the simplest and the most widely used
one is the arithmetic upscaling approach. This approach is the one used in the present
study. So, the 1000 ASCII files of porosity data exported out of SGeMS in the
previous section are arithmetically upscaled (Figure 4.1). In order to do that a Visual
Basic code is developed. This code is given in Section 2 of Appendix D. The code
averages the data in the 1000 ASCII files so that each file yields one porosity datum
instead of 2400 data. As a result, the data are upscaled into 10 x 10 x 10 grid (i.e.
only 1000 data) instead of 150 x 200 x 80 (i.e. 2.4 x 10° data). Both the exporting and

upscaling processes are summarized in Figure 4.12.
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Figure 4. 12. The method followed in exporting and upscaling the simulated porosity data

4.3.5 Permeability Calculation

The next step in the proposed methodology is to calculate the permeability data
corresponding to the porosity data of the previous section (i.e. the 1000 upscaled
data) (Figure 4.1). In order to do that, the permeability and porosity hard data of
Stanford VI dataset are plotted. Then, their logarithmic relations are obtained. Due to
the bimodal distribution of the porosity data, corresponding to the channel and non-
channel structures, the data are clustered into two groups. Thus, two logarithmic
relations connecting porosity and permeability are found (Figure 4.13). These
relations are tested using the F test and found to be highly significant. Next, they are

utilized by means of an Excel spreadsheet to calculate the intended permeability data.
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Figure 4. 13. The logarithmic relations between porosity and permeability hard data

4.3.6 Building the Synthetic Original Reservoir

4.3.6.1 Model Construction Steps

The original reservoir simulation model is a black oil model and constructed using
the CMG’s Builder tool. A Cartesian grid that consist of 1000 blocks; that is 10 x 10
x 10 is used for this purpose. The dimensions of each block are 500 ft, 1640 ft, and
8ft in the X, Y, and Z directions, respectively. The top of the formation is set at a
depth of 5000 ft. The initial reservoir pressure and the bubble point pressure are
defined as 4800 and 4014.7 psi, respectively. The Capillary effects are ignored and
the relative permeability curves shown in Figure 4.14 are used. The gas is kept out of
the calculation for simplicity; therefore, the gas oil contact (GOC) is set at a depth of
4000 ft. The water oil contact (WOC) is specified at 5064 ft. So, the first 8 K layers
of the model make up the pay zone which is 64 ft thick. In addition, the previously
simulated 1000 porosity and their corresponding permeability data are added to the

model. Other model data as well as the CMG data file are given in Appendix E.
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Figure 4. 14. Relative permeability curves used in modeling the original reservoir

After that, three production wells are added to the model. These wells are placed as
shown in Figure 4.15. Then, the OOIP is calculated in order to define the production

rates for three wells. The OOIP calculation details are shown below.

First the bulk volume is calculated:
V, = (500 x 10) x (1640 x 10) x (8 x 8) = 5,248,000,000 cuft “4.2)
= (5,248,000,000) x (0.178108) = 934,710,784 rbbl 4.3)

Then, the OOIP is calculated:

00IP = Vp X ¢gpg X (1 —=S,,) 4.4)
Where,
$avg = The average porosity value of the 1000 simulated porosity data found as

0.151586
Sw = The Connate Water Saturation of the relative permeability curves shown in

(Figure 4.14)
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Then,
OO0IP = 934,710,784 x 0.151586 x (1 — 0.13) = 123,269,490 rbbl (4.5)

Original Reservoir Model
Grid Top (fty 1992-01-01

File: Qriginal Rese
User: M
Drate: 1202242012

20310001

Depth (ft)
5,072
5,065
5,058
5,050
5,043
5,036
5,029
5,022
5,014
5,007
5,000

Figure 4. 15. 3D view of the reservoir constructed in CMG Builder tool showing the
positions of the three wells used. The depth is given in feet

20-year-constant and continuous production (from 1992 to 2012) is planned for the
reservoir model. Then, the production rates for the three wells are specified as 20%,
30%, and 50%, respectively. Next, using the calculated OOIP value (see Equation
4.5), well_1, well_2, and well_3 are set to produce 3377, 5066, and 8443 rbbl/day,
respectively. The rates are calculated by Equation (4.6) given below. However, these
rate values are later reset to 1478, 2217, and 3694 rbbl/day (see Section 4.3.6.2). The
wells were perforated in all the eight K layers (Figure 4.16).

(production% X OOIP(rbbl))
20 year X 365(day/year)

production rate (rbbl/day) = (4.6)
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Figure 4. 16. Perforation of the eight K layer in wells 1 and 2. The depth is given in feet



The wells are initially operated on rate constraint. If the borehole pressure fails to
produce the rate specified or violates the minimum bottomhole pressure (BHP)
specified (i.e. min BHP = 50 psi) for a well, the BHP constraint becomes the
operating constraint of that well. As a result, the simulator calculates the pressure
difference value (i.e. grid block pressure — wellbore pressure) and uses it to calculate

a new production rate for each timestep.

4.3.6.2 Running the Model in CMG (IMEX Tool)

When the model constructed in Section 4.3.6.1 is initialized in IMEX tool, it yields
OOIP and ROIP of 71,212 M STB and 53,941 M STB respectively (Figure 4.1). The
ROIP value obtained is used to recalculate the production rates of the wells since the
original values are very high; therefore, they deplete the reservoir in a short time.
That happens because the original production rates are calculated based on the
amount of the OOIP which was calculated using the average porosity value (see
Equation 4.5). Equation (4.6) is used to calculate the new production rates 1478,
2217, and 3694 rbbl/day. Plots of the production rate verses time and cumulative oil
production versus time of the reservoir are given in Figures 4.17 and 4.18,
respectively. The time when each of the wells is switched from constant rate
constraint to bottomhole pressure constraint is shown by an arrow in Figure 4.17. The
switching time of the wells is different because the grid blocks around each well have

different pressure values than those around the others.

The complete methodology followed in the construction of the original reservoir
model is summarized in Figure 4.19. Besides, the CMG data file of the reservoir is

given in Appendix E.
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Figure 4. 18. Cumulative oil production verses time plot of the original reservoir
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Figure 4. 19. Summary of the methodology followed in the generation of the original
reservoir model. Where, OOIP = original oil in place, ROIP = recoverable oil in place,
Q = cumulative oil production, and T = Time
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4.4 Sensitivity Analysis of the SNESIM Algorithm and the Methodology

Proposed

4.4.1 Simulation of the Original Reservoir

The sensitivity of the SNESIM algorithm and the methodology proposed is
investigated by the generation of 50 equiprobable models of the original reservoir.
The simulation performed utilizing the same SNESIM parameters of section 4.3.1
except for the seed. The seed is set to 211175 which is the default value. The seed
number is changed in order not to generate the realization of the original reservoir
(shown in Figure 4.7) again. After generating the 50 realizations, 50 variogram
models are constructed as reported in Section 2 of Appendix B. These variogram

models are given in the attached CD.

The corresponding porosity data of the 50 realizations are simulated by the SGSIM
algorithm using the same parameters of Section 4.3.2 except for the variogram model.
The variogram model of each realization is used to simulate its porosity data. These
porosity data are exported, upscaled, and used to calculate their corresponding
permeability data as explained in Sections 4.3.3, 4.3.4, and 4.3.5, respectively. The
simulated porosities and the calculated permeabilities are input into the CMG data

file given in Appendix E and run by the IMEX tool to get the OOIP and ROIP values.

4.4.2 Analysis of the Results

In order to study the sensitivity of the SNESIM algorithm and the proposed method
the OOIP and the ROIP of the 50 generated models are plotted. In addition, the
percentage errors for both parameters are calculated and plotted. The percentage

errors are calculated by the following formula:
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Xsi -X
percentage error = —Simulated “observed 5 1()() 4.7

Xobserved

Where,
Xsimutatea = OOIP or ROIP value for the simulated 50 reservoir models

Xopservea = OOIP or ROIP value for the original reservoir

Following that, the reliability of the information obtained with only 50 simulations is
investigated as follows:
¢ The EasyFit statistical tool is used to fit a distribution to the errors calculated.
e The probabilities of finding an error within the limits of the calculated

distribution or beyond them are calculated.

4.5 Sensitivity Analysis of the Variogram Model

Variogram fitting is subjective; therefore, the impact of different variogram models
on the OOIP and ROIP is investigated in this section. However, it is important to
state that the visual fitting of the variograms used in this study is investigated by the
sensitivity analysis of the previous section. So, this analysis is performed by setting
different model types and ranges than those of the originally found variogram model.
In other words, this analysis is executed by fitting the following models to the

experimental variogram of the original reservoir:

® A Spherical variogram model

® A Gaussian variogram model

* An Exponential variogram model with lower ranges than those of the original
variogram given in Table 4.2

* An Exponential variogram model with larger ranges than those of the original

variogram

The same methodology is followed in order to obtain the OOIP and ROIP values (see

Figure 4.19). However, the process starts with the simulation of porosity in SGSIM

48



where the variogram model is employed. So, only the porosity and the permeability
data are changed in the methodology steps. The final results (i.e. OOIP and ROIP
values) are then compared with those of the original reservoir in order to analyze the

sensitivity of the result to the variogram model.

4.6 Analysis of Training Image Uncertainty Impact on Reservoir Model

4.6.1 Parameterization of Original Training Image Structure and Modeling of

2D Training Images

In order to study the impact of training image Uncertainty on the original reservoir
model the Sine function is used to represent the fluvial channels structure of the
original training image shown in Figure 4.3. The Sine wave or sinusoid in its most

basic form is (Webshaker website, 2011):

y(t) = A X Sin(wt + @) (4.8)
Where,

A = Amplitude

w = Frequency = 2xf (rad/s), where f = 1/T, and T = period in seconds
t = Time (s)

¢ = Phase (rad)

In the present study, the channels (i.e. Sine waves) are sketched utilizing the “SpeQ
Mathematics” software (SpeQ Mathematics website, 2011). The Sine wave in this

software is defined by:

y=AXSin (0 Xx) (4.9)
Where,

A = Amplitude

6 = An angle (in radian) that controls both the frequency and the phase parameters
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x = A fixed-length x-axis as x € [—10,10] for the one and three-wave cases and
x € [—15,5] for the two-wave cases
The flowchart of the methodology proposed for training image generation is given in

Figure 4.20.

Generate a channel utilizing the Sine

function in SpeQ Mathematics software

v

Export the channel as 2D

v

Adobe Photoshop software

Fix image size to 200 x 200 x1

Add required number of channels

Save as a new 2D image

L}

Visual Basic code

Convert to GSLIB text file format

N
- I\

Save as a 2D training image Copy the data

L}

Paste (n-1) times for a TI of size (200 x 200 x n)

v

Save as a 3D training image

Figure 4. 20. Summary of the proposed methodology for training image generating
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4.6.1.1 One-Wave Channel Cases

Using Equation (4.9) three one-wave channels having three different amplitudes are
drawn. In order to get the one-wave channels 8 = 0.315 radian is used. The drawn
channels are fixed-width and phase (Figure 4.21). The amplitudes used are high (i.e.
0.75), medium (i.e. 0.57), and low (i.e. 0.30). Each channel of Figure 4.21 is exported
as a 2D image (Figure 4.20). Then, Adobe Photoshop Software is used to set the
dimensions of each image to 200 x 200 x1 pixels (Figure 4.20). So, the amplitude and
phase are converted into pixels, where, the phase is converted to 100 pixels for all the
cases. The amplitudes are converted to 75 pixels, 57 pixels, and 30 pixels

corresponding to the high, medium, and low cases, respectively (Figure 4.22).

0.8 &= 0).75%5in(0.315%x)
&= 0.57*5in(0.315%x)
- 0.30*5in(0.315%x)

-0.8

Figure 4. 21. One-wave channel cases having high, medium, and low amplitudes and a fixed
phase value
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Figure 4. 22. Training images of size 200 x 200 x 1 pixels for the one-wave cases having high
(A= 175 pixels), medium (A, = 57 pixels), and low (A; = 30 pixels) amplitudes and an equal
phase (¢, = @,= @3;= 100 pixels).

4.6.1.2 Two and Three-Wave Channel Cases

The two and three-wave channel cases are drawn using Equation (4.9) too. However,
the O values for the two and three-wave channel cases are changed to 0.63 and 0.945,
respectively (Figure 4.23 and 4.24). Each of these channels is exported as a 2D image
and their dimensions are converted into 200 x 200 x1 pixels as in Section 4.6.1.1. In
the two-wave channel cases the phase is 50 pixels, while the three-wave channel
cases it is 33.33 pixels. The amplitudes are kept the same as in Section 4.6.1.1(Figure
4.19). So, they are 75 pixels, 57 pixels, and 30 pixels corresponding to the high,
medium, and low cases, respectively (Figure 4.25 and 4.26). The phase and the
numbers of waves in a channel are interrelated since the training image has a fixed
size (Table 4.5). The amplitude and the wave number (corresponding to the phase)

are the Sine function’s parameters which are analyzed in this study.
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Figure 4. 23. Two-wave channel cases having high, medium, and low amplitudes and a
fixed phase values
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04

0.2+

=0, 75*Sin(D.945*x}
=0, 57%Sin(D.945%x)
= 0),3*Sin{0.945%x)

Figure 4. 24. Three-wave channel cases having high, medium, and low amplitudes and a
fixed phase values
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Figure 4. 25. Training images of size 200 x 200 x 1 pixels for the two-wave cases having
high (A, = 75 pixels), medium (A, = 57 pixels), and low (A; = 30 pixels) amplitudes and an
equal phase (¢, = ¢, = @3 = 50 pixels)

VAVAVA

High amplimde Medium amplitude Low amplitude

Figure 4. 26. Training images of size 200 x 200 x 1 pixels for the three-wave cases having
high (A, = 75 pixels), medium (A, = 57 pixels), and low (A; = 30 pixels) amplitudes and an
equal phase (¢, = ¢, = @3 = 33.33 pixels)
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Table 4. 5. The relation between the phase value and the number of waves in a channel

Phase value (pixel) Number of waves in a channel
100 1
50 2
33.33 3

All the nine 2D training images generated so far are one channel training images
(Figures 4.21, 4.23 and 4.24). In other words, each of these training images has only
one channel. The channel number which a training image parameter is also analyzed
in this work. Thus, other 2D training images containing different channel numbers are
generated. Since, the number of channels in each training image is restricted by its
fixed size (i.e. 200 x 200 x 1), amplitude level, and number of waves in each channel
up to 8-channel training images are generated for the low amplitude cases. However,
up to only 3 and 5-channel training images could be generated for the high and
medium amplitude cases, respectively. So, the total number of the 2D training images
generated is 46. Table 4.6 lists the modification of the considered parameters and the
corresponding number of training images generated. Some of the generated training
images are illustrated in Figures 4.27. The separation between channels in each

training image is kept almost the same.

Table 4. 6. Modification of parameters and the corresponding number of the 2D training
images generated

Number of Number of Amplitude Number of generated
Channels waves level training images
1,2,and 3 1 3x1=3

1 and 2 2 High 2x1=2

1 and 2 3 2x1=2

1,2,3,4and 5 1,2, and 3 Medium 5x3=15

1,2,...,7,and 8 1,2, and 3 Low 8x3=24
Total number of 2D training images generated = 46
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The generated training images are converted into geostatistical software library
(GSLIB) text file format by means of a developed Visual Basic code (Figure 4.20).
That is made because SGeMS accepts files with GSLIB format. The developed code

is given in Section 3 of Appendix D.

(A)

~

(B)

©)

S (%
D 5

DI

>
IO S S
I B

Figure 4. 27. Training images of the one-wave channel cases. The channel having high; (A),
medium; (B), and low amplitudes; (C) are shown. Up to three, five, and eight channels could
be fitted to the fixed size of the training image for the high, medium, and low amplitude
cases, respectively
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4.6.2 Modeling of 3D Training Images

After generating the 2D training images and converting them into GSLIB text files,
the data in those files are used to add the third dimension slices (i.e. the Z slices) in
order to generate the 3D training images. First, all the data (200 x 200 x 1= 40,000
data) in the GSLIB text file of the 2D training image are copied except the first three
rows, which are the titles. Next, these data are pasted at the end of the first 40,000
data as many as the number of the required slices in the Z direction to generate the
new 3D training image (Figure 4.20). In the present study, training images with up to
eight Z direction slices are generated. Dissimilar to the original training image of
Stanford VI dataset, all the slices in the Z direction of each training image are having
the same number of channels as in the first one (i.e. the 2D training image). The
training images are generated this way because the increase in number of channels
with depth is not a general geological property and it depends on the sedimentation
process as well as other factors (F. B. Rojay, personal connections, January 17,
2012). So, the generated training images in total (including both the 2D and 3D
images) are 368 images. Table 4.7, which an extension of Table 4.6, lists these

training images.

Table 4. 7. Modification of parameters and the corresponding number of training images

generated

Number of Number of Number of Z Amplitude | Number of TIs

Channels waves slices level generated
1,2, and 3 1 1,2,...,7,and 8 Hich 3x1x8=24
1and 2 2 1,2,....7.and 8 & 2x1x8=16
1 and 2 3 1,2,...,7,and 8 2x1x8=16
1,2,3,4and 5 1,2,and 3 1,2,...,7,and 8 Medium 5x3x8=120
1,2,...,7,and 8 1,2,and 3 1,2,...,7,and 8 Low 8x3x8=192

Total number of training images generated = 368

57



4.6.3 Construction of reservoirs using the generated Training Images

All the 368 generated training images are input into SGeMS creating 368 reservoirs
that are modeled following the same methodology used in modeling the original

reservoir (see Section 4.3) by changing only three parameters:

1. The default seed values of the SNESIM algorithm (i.e. 211175) is used

2. One of the 368 generated training images of Sections 4.6.1 and 4.6.2 is used
in SNESIM algorithm each time to generate a new facies realization. As a
result, 368 different facies realizations are generated.

3. 368 experimental variograms are computed for the simulated 368
realizations using the parameters given in Section 2 of Appendix B. Then
variogram models are fitted to them. These models are used in SGSIM to

simulate the porosity values of the generated realizations.

These porosity values are used to generate 368 new reservoir models. The
methodology followed in the generation of training images and their corresponding

reservoir models is as summarized in Figure 4.1.

4.6.4 Analysis of Training Image Parameters Effects on Reservoir Model

4.6.4.1 Impact of Training Image Parameters on Cumulative Oil Production

In order to study the effect of the training image parameters on the cumulative oil
production, the cumulative oil production versus time plots of the 368 generated
reservoir models are compared with that of the original reservoir. The plots are
grouped in order to study the effect of each training image parameter (i.e. # of Z
slices, # of channels, # of waves in each channel, and amplitude level). Next, the

results are used to define thresholds for the training image parameters defined to
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assist in the construction of more representative reservoir models. Then, the effect of

parameters’ variation in the uncertainty is investigated.

4.6.4.2 Impact of Training Image Parameters on OOIP and ROIP

In this section the effect of each parameter is investigated. Then, the percentage
errors of each case with respect to OOIP and ROIP of the original reservoir are
calculated and plotted in order to find the uncertainty range of the methodology
proposed. The calculation of the percentage errors is conducted as shown in Section
4.4.2. After that, the thresholds defined in the previous sections are utilized. In other
words, the reservoir models not meeting the thresholds are eliminated. Then, the

uncertainty range is reanalyzed.

4.7 Analysis of Porosity Uncertainty Impact on Reservoir Model

4.7.1 Modeling of Porosity Uncertainty

In this part, the effect of porosity uncertainty on the reservoir model is investigated.
In order to do that the uncertainty related to the log-derived porosity (measurement
uncertainty) and porosity derived from core samples analysis are both considered.
With the aim of investigating the effect of porosity uncertainty on the predicted
reservoir model, the uncertainty due to core sample analysis (i.e. laboratory

uncertainty) is assumed to be the inherent uncertainty.

Logging tool reading uncertainty (5%) is obtained from the Century Geophysical
Corporation website (2012) and assumed to be the coefficient of variation (c.0.v) for
the log reading (€j¢). On the other hand, a 0.26 coefficient of variation of a
sandstone core analysis performed by Sanjay (2000) is considered as the inherent
uncertainty (Qcore). These two coefficients of variations are combined using Equation

2.4 to find the total uncertainty in the predicted porosity value, Qa1, as shown below.
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Qeotal = V0.262 + 0.052 = 0.265 (4.8)

Since the porosity hard data of Stanford VI dataset has a bimodal distribution (see
Figure 4.5), the porosity data are clustered into two different groups (Figure 4.28).
Then, the standard deviation (o) of each group is found using the € y,; and the mean
(w) of that data group. Next, a Gaussian Monte Carlo Simulation (MCS) is performed
to generate 50 realizations for each porosity datum using the calculated ¢ and U by
means of a developed Visual Basic code, which is given in Section 4 of Appendix D.
These 50 realizations are extracted from Excel software into text files of GSLIB
format by another Visual Basic Code. The details of the code are given in Section 5
of Appendix D. The generated 50 text files are then imported into SGeMS and named
“Realization_i”, where “i = 1, 2, 3, ..., 50”. Then, the distribution structure and the
overall mean of the hard data are checked in order to verify that the introduced
uncertainty has not disturbed them. In addition, the experimental variograms of the 50
realizations are computed and their best fitting variogram models are found. Then, the
fitted models are plotted in order to investigate whether the introduced uncertainty

have interrupted the autocorrelation (spatial correlation) of the real hard data or not.

Aiming at studying the effect of porosity uncertainty, the original reservoir is
employed. In order to generate the reservoir models corresponding to the 50
generated porosity realizations, the methodology steps of Section 4.3 are repeated
using the original reservoir. However, the only difference is in the porosity simulation
part of the SGSIM algorithm. In the second page of the algorithm interface; “Data”
(see Figure A.2), the “Hard Data” and the “Property with Reference Distribution”
objects are selected as one of the 50 generated porosity realizations each time a new
reservoir is modeled. For example, if the first reservoir is being modeled, the objects
are selected as “Realization_1". As a result, the only factor affecting the reservoir
models is the porosity uncertainty since the other parameters are constant. The

investigation of this effect is the aim of this section.
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Figure 4. 28. Two groups of the porosity hard data

4.7.2 Analysis of Porosity Uncertainty Impact

The porosity uncertainty the OOIP and the ROIP of the 50 generated reservoirs
corresponding to the MCS realizations of the previous section are plotted. In addition,
the percentage errors of each case with respect to OOIP and ROIP of the original
reservoir are calculated, plotted and analyzed. The calculation of the percentage

errors and the investigation of the results’ reliability are made as shown in Section

4.4.2.

In this section the effect of different Q. values on the percentage errors is
investigated and compared with that of Qpaq dara (Table 4.8). The cases where Qo 18
0.01, 0.02, 0.05, 0.10, and 0.15 are considered and 30 MCS are performed to generate
30 reservoir models for each case. The steps explained previously in Section 4.4.2 are

followed here to generate the corresponding reservoir models.
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Table 4. 8. Descriptive statistics of the porosity hard data

Original data C.0.V mean StDev
Non-reservoir (Shale) 0.317578 0.074045 0.023515
Reservoir (Cannel) 0.105684 0.258696 0.027340

In addition, analysis of porosity uncertainty impact utilizing different upscaling
method is carried out. In the previous parts of this study the arithmetic upscaling
method is used. Although, the arithmetic upscaling method is widely used, it has a
smoothing effect on the results. The median, on the other hand, is a more robust
statistic (i.e. it is not affected with the number of small and large data). Thus, in this
section the median upscaling method is employed and once again the total uncertainty
(Qota1 = 0.265) is used. In order to perform the upscaling using the median, the Visual
Basic code of Section 4.3.4 is extended to include the option of “calculation method”

which is either median or average. This code is given in Section 6 of Appendix D.

62



CHAPTER 5

RESULTS AND DISCUSSIONS

5.1 Sensitivity Investigation of the SNESIM Algorithm and the Methodology

Proposed

In order to study the sensitivity of the SNESIM algorithm and the methodology
proposed, the OOIP and ROIP values of the generated 50 equiprobable reservoirs as
well as their corresponding percentage errors with respect to the values of the original
reservoir are plotted (Figures 5.1 and 5.2). The OOIP and ROIP values of the
generated reservoirs are in the ranges (71,233 — 71,195) M STB and (53,957 —
53,928) M STB, respectively. The percentage errors of these values with respect to
those of the original reservoir are in the ranges (2.9% — -2.4%) and (3% — -2.4%),
respectively. As expected the percentage error of the OOIP and ROIP are almost
identical since the permeability is calculated from the porosity by means of
logarithmic relations. These results verify that the SNESIM algorithm and the
proposed method including its entire steps allow good reproduction of the original
reservoir with confidence limits between 3% and -2.4%. In other words, the
proposed method including SNESIM simulation, variogram fitting, SGSIM
simulation, upscaling, and running the model in CMG (IMEX tool) is producing

accurate results with accuracy of about +3%.
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After that, the reliability of the information obtained with only 50 simulations is
investigated by the utilization of the EasyFit statistical tool. The EasyFit tool is used
to fit a distribution to the calculated percentage errors. As the error is normally
distributed, a normal distribution is fitted to the errors. Then, the goodness of fit is

checked by the same tool (Figure 5.3).

Mormal [£27]

Chi-Squared

Deg. of freedom | 4

Statistic 1.8131

P-Value 0.77009

Fank 16

a 0.2 0.1 0.05 0.02 0.01
Critical Value 5.9886 7.7794 9.4877 11.668 13.277

Reject? No No No No

Figure 5. 3. Goodness of fit details

In order to understand Figure 5.3 it is important to know the details of the EasyFit

tool output. First of all, the null and alternative hypotheses being tested are:

HO = the data follows the normal distribution.

H1 = the data does not follow the normal distribution.

Then, if the resulting p-value is less than the level of significance, the null hypothesis
is rejected and within the required degree of certainty it cannot be stated that the data
is normally distributed. In other words, if we would like to state within 95% certainty
that the data can be described by the normal distribution, the resulting p-value must
be greater than the level of significance. As the level of significance equals 1 minus

the required degree of certainty, it is 0.05 in this case. In Figure 5.3 the resulting p-
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value is 0.77 which is greater than the level of significance; therefore, the null
hypothesis is not rejected. As a result, with at least 95% certainty it can be stated that

the data is normally distributed, with N (0.00368, 0.01424).

Using the normal distribution fitted to the percentage errors, the reliability of the
information obtained with only 50 simulations is investigated. First, the probabilities
of finding an error within the limits of the calculated distribution or beyond them are
calculated. Here only the OOIP error is considered as the error in the ROIP is almost
identical. The probabilities P (x < -0.024) and P (x < 0.029) are calculated using the
NORMDIST function in Excel software. The following equations show the

calculation details:

P(x < —0.024) = 0.0260 (5.1)
P(x > 0.029) = 1 — P(x < 0.029) = 0.0377 (5.2)

P(—0.024 < x < 0.029) =1 — ( P(x < —0.024) + P(x > 0.029))
=1 —(0.0260 + 0.0377) = 0.9363 (5.3)

These probability values show that if more than 50 simulations are performed the
chance of obtaining errors within the limits of the obtained normal distribution is
0.9363. Thus, it is almost sure that other simulations will provide the same
information which obtained with only 50 reservoir models. In other words, the 50
reservoir models are enough to comment on the sensitivity of the methodology

proposed.

5.2 Sensitivity Investigation of the Variogram Model

In order to perform this analysis the following variogram models are fitted to the

experimental variogram of the original reservoir realization shown in Figure 4.7:

e A Spherical variogram model

¢ A Gaussian variogram model
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* An Exponential variogram model with lower ranges than those of the original
variogram given in Table 4.2
* An Exponential variogram model with larger ranges than those of the original

variogram

The plots and parameters of these variogram models are shown in Tables 5.1 through
5.4 and Figures 5.4 through 5.7, respectively. After finding these variogram models,
the corresponding reservoirs’ porosities are generated. Then, the other reservoir
modeling steps given in Section 4.3 are followed to get the corresponding cumulative

oil production plots and their data.

Table 5. 1. The parameters of the Spherical variogram model fitted to the experimental
variogram of the original reservoir. Ranges are shown in feet

Type Spherical
Nugget 0.08
Sill 0.1485
Ranges 14/14/14
Angles 0/0/0

Table 5. 2. The parameters of the Gaussian variogram model fitted to the experimental
variogram of the original reservoir.

Type Gaussian
Nugget 0.095
Sill 0.135

Ranges 15/14/11
Angles 0/0/0
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Table 5. 3. The parameters of the Exponential variogram model with lower ranges fitted to
the experimental variogram of the original reservoir.

Type Exponential
Nugget 0.04
Sill 0.1895
Ranges | 20.9/19.95/7.7
Angles 0/0/0

Table 5. 4. The parameters of the Exponential variogram model with larger ranges fitted to
the experimental variogram of the original reservoir.

Type Exponential
Nugget 0.04
Sill 0.1895
Ranges | 23.1/22.05/8.51
Angles 0/0/0

plot 1: (0.57735, 0.57735, 0.57735)
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Figure 5. 4. The Spherical variogram model fitted to the experimental variogram of the
original reservoir.
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Figure 5. 5. The Gaussian variogram model fitted to the experimental variogram of the
original reservoir
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Figure 5. 6. The Exponential variogram model with lower ranges fitted to the experimental
variogram of the original reservoir
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Figure 5. 7. The Exponential variogram model with larger ranges fitted to the experimental
variogram of the original reservoir

To check the sensitivity of the reservoir model to the variogram model, the OOIP and
ROIP of the generated reservoirs are compared with those of the original reservoir.
None of the generated reservoirs output a value identical to that of the original
reservoir (Table 5.5). For example, if the variogram used in modeling the original
reservoir (see Table 4.4) is used, but with a 5% increase in the ranges it results in
0.16% change in the OOIP and ROIP values (Table 5.5). In addition, 5% decrease in
the ranges of that variogram results in 0.19% change in the OOIP and ROIP values
(Table 5.5). Although, the percentage differences are not very large, it is very clear
that the reservoir model is sensitive to the variogram used in the simulation of
porosity. As a result, it is advised to carefully select the appropriate variogram model

when using the proposed modeling methodology.
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original reservoir

Table 5. 5. Comparison of the reservoirs generated using different variogram models with the

The oorp | Rrorp | Difference | Difference | fopr oo
. in OOIP in ROIP
variogram (M STB) | (M STB) (M STB) (M STB) (%)
Model used
Original variogram | -, 212 53,941
(Exponential)
Gaussian model 72,202 54,691 990 750 1.39
Spherical model 72,475 54,897 1,263 956 1.77
Exponential with | 7 15 | 53 856 112 85 0.16
larger ranges
Exponential with | =7y 3,4 | 54 04y 132 100 0.19
lower range

5.3 Impact of Training Image Parameters on Reservoir Model

5.3.1 Effect of Training Image Parameters on Cumulative Qil Production

In this section the effect of training image modification on the cumulative oil
production is investigated. So, the effect of each training image parameter (i.e.
amplitude, and number of waves in each channel, number of fixed-width channels,
and number of slices in Z direction) on the cumulative oil production is studied

individually. The following subsections illustrate this work.

5.3.1.1 Effect of Z slice number

From Figure 5.8 it is very clear that the number of Z slices has a great influence on
the amount of the cumulative oil production. Figures 5.8 through 5.10 demonstrate
that the values of the cumulative oil production obtained using training images having
1,2, 3, and 4 Z slices do not represent the original reservoir. In contrast, the results of

the simulations in which training images having 5, 6, 7, and 8 Z slices are used, yield

71



values closer to that of the original reservoir. Note that the increase in the number of
Z slices beyond 5 has no noticeable effect on the cumulative oil production value.
Thus, it can be said that training images having at least 5 Z slices are needed to
simulate the considered reservoir accurately using the MPG technique proposed. This
can be generalized to all 3D reservoirs if verified by applications to reservoirs with

thicker and thinner grid sizes.
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Figure 5. 8. Medium Amplitude_ One Wave_ Three Channels Cases; (A). Exaggerated plot
of the highlighted part of A; (B)
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Figure 5. 9. Medium Amplitude_ Two Waves_ Two Channels Cases
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Figure 5. 10. Low Amplitude_ Three Waves_ Seven Channels Cases

The reason behind the differences between cumulative oil production values of
reservoirs obtained using training images with 4 Z slices or less and the ones obtained

with 5 Z slices or more is the extreme underestimation of the porosity. This extreme
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underestimation of the porosity clearly occurs somewhere between the porosities
obtained by the use of 4 and 5 Z slices (see Figures 5.8 through 5.10). When the
porosity is significantly underestimated, the pore volume and therefore the OOIP are
significantly underestimated too. As a result, the reservoir is depleted faster. In
addition, the reservoir pressure drops faster and therefore the control of each
production well is switched from constant rate constraint to BHP constraint. Thus, the
value of cumulative oil production for such reservoir at the end of the production

period is definitely less than that of a reservoir having a larger porosity value.

The results show that at least 5 Z slices are needed to perform a representative
simulation of the original reservoir. However, the original reservoir model is
synthetic and generated using the original training image which consists of 5 Z slices
too. So, this might be the reason behind the defined 5 Z slices threshold. In order to
investigate that, the original reservoir is remodeled four more times using different
training images. These training images are generated using the Z slices of the original

image (see Figure 4.3). The details of the training images generated are given below.

e The first training image is generated using the first four Z slice of the original
training image (i.e. it contains 4 Z slices)

¢ The second training image consists of the first Z slice of the original training
image repeated five times (i.e. it contains 5 Z slices)

e The third training image consists of the last Z slice of the original training
image repeated five times (i.e. it contains 5 Z slices)

® The fourth training image consists of the original training image with its all Z

slices plus the last slice repeated one more time (i.e. it contains 6 Z slices)

Note that the first Z slice has the least number of channels and therefore the least
channel proportion. In contrast, the last Z slice has the most number of channels and
therefore the most channel proportion (see Figure 4.3). The channels proportions of

the generated training images are given in Table 5.6.
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Figure 5.11 illustrates the (cumulative oil production vs. time) plots of the reservoirs
generated using the four training images of Table 5.6. Figure 5.11 shows that
training image number 1 (TI;), which has 4 Z slices, outputs cumulative oil
production value far from the original value (i.e. the values of the original reservoir).
Note that training image number 2 (TI,), which has 5 Z slices, have less channel
proportion than TI;, but it outputs a larger cumulative oil production value which is
not close to the original value as well. Training images number 3 (TI3) and 4 (TL,), on
the other hand, overestimate the channel proportion of the original training image
(see Table 5.6), however, they result in cumulative oil production values that are very
close to the original values. So, TI, and TI; resulted in very different cumulative oil
production values, although both of them consist of 5 Z slices. As a result, the
threshold of a 5 Z slices defined earlier is not related to the size of the original
training image utilized in modeling the original reservoir. However, the higher the

channels proportion in the training image the more reasonable the result.

Table 5. 6. Categories’ proportions of the training images used to investigate the effect of Z
slice number

Channel Shale
Name and description of training image (Sand) (Non-channel)
proportion (%) | proportion (%)
Original training image 0.271 0.729
TI, (with the first 4 Z slices original training 0251 0.749
image)
TL, (with thf.: first Z slice of thf? original training 0145 0.855
image repeated 5 times)
TI; (with th§ last Z slice of thq original training 0.349 0.651
image repeated 5 times)
TL, (original training image leth the last Z slices 0284 0716
repeated one time)
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Figure 5. 11. Cumulative oil production versus time plots of the reservoirs generated using
the four training images of Table 5.6

5.3.1.2 Effect of other parameters (channel number, wave number, and

amplitude level)

The investigation of the channel number, wave number, and amplitude level effect on
the cumulative oil production is performed in two steps. First, the reservoirs
generated are grouped based on the parameters’ values of the training images used.
Then, the cumulative oil production values of the reservoirs in each group are plotted

and compared.

The results of the previous section showed that the training images having 1, 2, 3, and
4 7Z slices are not suitable for the simulation of the original reservoir. Thus, the
reservoirs consider in this part are the ones modeled using 5, 6, 7, and 8 Z slices

training images (in total 156 reservoirs) (see Table 4.7).
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Figures 5.12, through 5.15 illustrate the results of the reservoirs generated using one,
two, and three medium-amplitude-wave channels, respectively. In these figures the
reservoirs generated using the one and two channels’ training images having medium
amplitude waves, output unrepresentative results. In Figure 5.12 the one channel
training image produces a reservoir which overestimates the cumulative oil
production of the original reservoir although it has less pore volume and therefore
less OOIP and ROIP than those of the original reservoir (Table 5.7). The reason
behind that is the dissimilarity between the grid blocks’ pressure of the generated and
the original reservoir. To clarify, the wells are initially operated on constant rate
constraint, but if the borehole pressure in any well fails to produce the rate specified,
the bottomhole pressure constraint becomes the operating constraint of that well.
Then, the simulator (i.e. IMEX) calculates the pressure difference value (i.e. grid
block pressure — wellbore pressure) and uses it to calculate a new production rate for
each timestep. As a result, the cumulative oil production depends on the value of the
pressure difference which is a function of the grid block pressure. However, the grid
block pressure changes according to the value of its simulated porosity which is a
function of the training images used. The arithmetic upscaling application has a
smoothing effect on the cumulative oil production as well. However, its impact on all
the reservoir models is the same; therefore, it does not cause a great change unless the
porosity values are totally different. As a result, the one channel training image is not
suitable for simulating the original reservoir as it does not produce representative
reservoir. In addition, the two channels’ training image in Figure 5.12 produces
unrepresentative reservoir model since its cumulative oil production extremely
underestimates that of the original reservoir. That happens due to the underestimation
of the grid porosities which causes the grid pressure to be very low. As a result, the
two channel training image is also not suitable for simulating the original reservoir. In
Figures 5.13 through 5.15 the one channel training images also show unreliable
results as their cumulative oil production curves are changing while the others are

almost constant. The reason for that is also the unrepresentative porosity.
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Figure 5. 12. Cumulative oil production for reservoirs generated using training images with
different numbers of channels. The abbreviation (m_1_1_77Z) stands for medium amplitude_

one wave_ one channel_ 7 Z slices training image

Table 5. 7. Comparison of the reservoir models given in Figure 5.12

Original | m_1.177Z | m_1277Z | m 13772 | m_1477Z | m_1.57Z
Reservoir pore
volume (M 179659 178373 178978 179194 179096 179121
rbbl)
OOIP (M 71212 71158 71371 71223 71422 71431
STB)
ROIP (M STB) 53941 53900 54061 53950 54100 54107
Cumulative oil
production (M 29502 29681 29021 29429 29310 29294
STB)
Current oil in
place (M STB) 41714 41476 42347 41793 42094 42131
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Figure 5. 13. Cumulative oil production for reservoirs generated using training images having
different numbers of channels, two waves, medium amplitude, and eight Z slices
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Figure 5. 14. Cumulative oil production for reservoirs generated using training images having
different numbers of channels, medium amplitude, three waves, and six Z slices
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Figure 5. 15. Cumulative oil production for reservoirs generated using training images having
different numbers of channels, medium amplitude, three waves, and six Z slices

Due to the same reasons the low-amplitude-wave channel cases produce completely
unrepresentative results when one-wave-channel training images are used (Figures
5.16 and 5.17). However, in the 2 and 3 waves’ cases at least 3 channels are needed
to get fair results (Figures 5.18 and 5.19). As a result, training images having medium
and low amplitude wave channels with less than 5 Z slices, 3 channels, and 2 waves
in each channel produce reservoirs with porosity values that do not represent the
original reservoir. Based on these findings and as a general rule, the training images
having medium and low amplitude wave channels produce reservoirs with reliable
cumulative oil production results when at least 5 Z slices, 3 channels and 2 waves in
each channel are used in the training image (other results’ plots are given in the

attached CD).

80



3.10E+07

3.00E+07

2 90E+07 = — = Original Reservoir

L_1_1_5ZCase.irf

L_1_2_5ZCase.irf
2 BOE+07

L_1_3_5ZCase.irf

L_1_4_5ZCase.irf

Cumulative Oil SC (bbl)

2.70E+07

———L_1_5_5ZCase.irf
L_1_6_5ZCase.irf

/ e L_1_7_5Z Case.irf

2 60E+07 L_1_&_57Case.irf

2 .50E+07
4000 4500 5000 5500 6000 6500 7000 7500

Time (days)

Figure 5. 16. Cumulative oil production for reservoirs generated using training images having
different numbers of channels, low amplitude, one waves, and five Z slices
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Figure 5. 17. Cumulative oil production for reservoirs generated using training images having
different numbers of channels, low amplitude, one waves, and seven Z slices
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Figure 5. 18. Cumulative oil production for reservoirs generated using training images having
different numbers of channels, low amplitude, two waves, and eight Z slices
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Figure 5. 19. Cumulative oil production for reservoirs generated using training images having
different numbers of channels, low amplitude, three waves, six Z slices
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The channels’ number is limited by the size of the training image, number of waves
in each channel, and the amplitude level of waves. In the high amplitude case it was
not possible to fit more than 3 channels having one wave, or 2 channels having 2 and
3 waves into the training image (Figure 5.20). So, the number of cases generated is
not large enough to mean anything statistically. Thus, the high amplitude cases are

not considered in the present study.

Figure 5. 20. The high amplitude cases fitted to the limited size training image

In general the pore volumes of the models developed in the present study
underestimate the pore volume of the original reservoir (see Table 5.7). This is due to
the underestimation of the porosity. That can either be because the training image is
not pattern-rich or its sand (i.e. channel) proportion is not high enough. Strebelle,
(2000) and Arpat (2005) indicated that when a training image is not large enough or
when it is not pattern-rich the data events of that training image are not enough to
condition to when simulating unsampled nodes. However, in the present case the
same training image size is used, therefore, low channel proportion means pattern-
poor. Thus, the underestimation of the porosity is due to the fact that all the cases

have channel proportions less than that of the original training image (Table 5.8).

Although, SNESIM has a servosystem parameter that forces it to remain close to the
global target proportions (or target marginal distribution) defined by the user

(Strebelle, 2000), it still underestimates the value of the channel proportion.
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Increasing the servosystem parameter value brings the simulated marginal probability
closer to the target, but at a cost of losing the structural information of facies (Liu,
2006). So, the use of training image that is not pattern-rich leads to poor reproduction
of pattern in SNESIM algorithm. In other words, when modeling fluvial reservoirs
less continuity of sinuous channel patterns are obtained therefore porosity is
underestimated. These lead to erroneous flow responds. So, the thresholds defined
earlier are the ones below which the SNESIM algorithm fails to reproduce the closest

marginal probabilities and patterns of the reservoir under consideration.

Table 5. 8. The sand and shale proportions of the original training image and the training
image with the highest channel proportion among the developed training images

Traini Channel (sand) Non-channel (shale)
raining Image . .
proportion proportion
Original image 0.271 0.739
Training image having 3 waves, 0.154925 0.845075
8 channel, and 8 Z slices

5.3.1.3 Effect of parameters’ variation

The effect of the parameters variation is examined and the results show that:

1. As the number of channels and waves increase the uncertainty of the simulation
decreases. For example, the uncertainty range decreases from 435 M STB to 70
M STB when the number of channels having medium-amplitude waves increases
from 1 to 3 in an 8 Z slices training image (Figures 5.21). In addition, it decreases
from 801 M STB to 237 M STB when the number of low-amplitude waves in
channels increases from 1 to 3 in a 7 Z slices training image (Figures 5.22).

2. The increase in the number of Z slices from 5 to 8 and in the amplitude level from
low (A3 = 30 pixels) to high (A; = 75 pixels) have no noticeable effect on the
uncertainty (Figures 5.23 and 5.24).
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Figure 5. 21. (Effect of channel’s number): medium amplitude_ one channel_ eight Z slices
cases; (A), medium amplitude_ two channels_ eight Z slices cases; (B), medium amplitude_
three channels_ eight Z slices cases; (C)

85



3.10E407
3006407 /
f 2 90E+07 /_/--_-—-—‘ = = = Original Reservoir
2 ——L_1_1_7ZCase.irf
o
p L_1_2_7ZCase.irf
=}
g 2.80E+07 ——L_1_3_7ZCase.rf
E L_1_4_7zCase.irf
E
2 L_1_5_7ZcCase.rf
2.70E407
——L_1_6_7ZCase.irf
———L_1_7_7ZCase.irf
2.60E+07 L_1_8_7ZCase.irf
2.50E+07
4000 4500 5000 5500 6000 6500 7000 7500
( ) Time (days)
3.00E+07
2.85E+07
2.80E+07
— 285E+07 = = = Original Reservoir
-]
] . .
£ 2s0er07 L_2_1_7ZCase.irf
= L_2_2_7ZCase.irf
=)
g 275E+07 ——— L_2_3_7ZCase.irf
-E L_2_4_77Case.irf
g 270E+07
E L_2_5_72Case.irf
2.65E+07 ——— L_2_6_7ZCase.irf
L_2_7_72ZCase.irf
2.60E+07
L_2_B_7ZCase.irf
2.55E+07
2.50E+07
4000 4500 5000 5500 6000 6500 7000 7500
(B) Time (days)
3.00E+07
2.85E+07
2.80E+07
— 285E+07 = = = Original Reservoir
-]
] . .
£ 2s0er07 L_3_1_7ZCase.irf
= L_3_2_7ZCase.irf
=)
g 275E+07 —— L_3_3_7ZCase.irf
-E L_3_4_77Case.irf
g 270E+07
E L_3_5_72Case.irf
2.65E+07 ——— L_3_6_7ZCase.irf
L_3_7_72ZCase.irf
2.60E+07
L_3_B_7ZCase.irf
2.55E+07
2.50E+07
4000 4500 5000 5500 6000 6500 7000 7500
( C) Time (days)

Figure 5. 22. (Effect of wave’s number): low amplitude_ one wave_ seven Z slices cases;
(A), low amplitude_ two waves_ seven Z slices cases; (B), low amplitude_ three waves_
seven Z slices cases; (C)
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Figure 5. 23. (Effect of Z slices’ number): medium amplitude_ two waves_ five Z slices
cases; (A), medium amplitude_ two waves_ six Z slices cases; (B), medium amplitude_ two

waves_ seven Z slices cases; (C)
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Figure 5. 24. (Effect of amplitude): three wave_ five channels_ five Z slices cases; (A),
three wave_ five channels_ six Z slices cases; (B), three wave_ five channels_ eight Z slices
cases; (C)
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5.3.2 Effect of Training Image Parameters on OOIP and ROIP

In this section the effect of training image parameters on the OOIP and ROIP is
studied. The effect of the parameters on both OOIP and ROIP are identical as
expected because the permeability is calculated based on the porosity utilizing the
logarithmic relations of Figure 4.13. The effect of the Z slice number shows no
specific trend except for the 1 Z slice case. The training images having 1 Z slice
always overestimates the OOIP and ROIP which clearly indicates that 2D training
images are not suitable for 3D reservoir simulation (Figures 5.25 through 5.27). The
smoothing effect of the arithmetic upscaling might be the reason behind the
undefined trend of the change in OOIP and ROIP in the other cases of the Z slice
number (i.e. 2, 3, ..., 7, and 8 7).
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Figure 5. 25. OOIP and ROIP values for the reservoirs modeled using training images having
different numbers of Z slices and one channel containing one wave having medium amplitude
(m) level
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Figure 5. 26. OOIP and ROIP values for the reservoirs modeled using training images having
different numbers of Z slices and four channels each contains three waves having medium
amplitude (m) level
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Figure 5. 27. OOIP and ROIP values for the reservoirs modeled using training images having
different numbers of Z slices and four channels each contains two waves having low
amplitude (L) level
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The effect of training image channel number on the OOIP and ROIP is random
(Figure 5.28 through 5.30). However, the amount of the OOIP and ROIP are directly
proportional to the number of waves in the channels used (Figure 5.31 and 5.32). As
in the case of the Z slice and channel number, the amplitude level of the wave has no
specific effect on the OOIP and ROIP (Figure 5.33 and 5.34) (other results’ plots are
given in the attached CD).
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Figure 5. 28. OOIP and ROIP values for the reservoirs modeled using 6 Z slice-training
images having different numbers of channels; each of these channels contains two medium
amplitude waves
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Figure 5. 29. OOIP and ROIP values for the reservoirs modeled using 8 Z slice-training
images having different numbers of channels; each of these channels contains two low
amplitude waves
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Figure 5. 30. OOIP and ROIP values for the reservoirs modeled using 6 Z slice-training
images having different numbers of channels; each of these channels contains three low
amplitude waves
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Figure 5. 31. OOIP and ROIP values for the reservoirs modeled using 7 Z slice-training
images having a single channel with different numbers of medium amplitude waves
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Figure 5. 32. OOIP and ROIP values for the reservoirs modeled using 8 Z slice-training
images having eight channels; each of these channels contains different numbers of low
amplitude waves
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Figure 5. 33. OOIP and ROIP values for the reservoirs modeled using 5 Z slice-training
images having three one-wave channels with different amplitude levels
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Figure 5. 34. OOIP and ROIP values for the reservoirs modeled using 6 Z slice-training
images having three two-wave channels with different amplitude levels
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After analyzing the effect of each training image parameter on the OOIP and ROIP
the percentage errors of each case with respect to OOIP and ROIP of the original
reservoir are calculated using Equation 4.7. Next, the calculated percentage errors for
the developed 368 reservoir models are plotted and analyzed. Figures 5.35 and 5.36
illustrate that the OOIP and ROIP can be predicted with an uncertainty range of
+1.549% — -0.345%. Yet again the percentage errors of both OOIP and ROIP are
identical as the permeability is calculated based on the porosity utilizing the
logarithmic relations of Figure 4.11. However, this uncertainty range (i.e. +1.549 —
-0.345) can be narrowed down by eliminating the cases that are not meeting the
parameters thresholds defined in Section 5.3.1. As a result, the uncertainty range of
the OOIP and ROIP prediction is reduce to 0.382% — 0.104% (Figures 5.37 and
5.38). This verifies that the defined thresholds provide the most representative

reservoir models.
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Figure 5. 35. The OOIP values of the reservoirs generated by using the developed 368
training images and their percentage errors with respect to the OOIP of the original reservoir
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Figure 5. 36. The ROIP values of the reservoirs generated by using the developed 368
training images and their percentage errors with respect to the ROIP of the original reservoir
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Figure 5. 37. Percentage error associated with the prediction of OOIP using the developed
training images after excluding the cases that fail to meet the defined thresholds
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Figure 5. 38. Percentage error associated with the prediction of ROIP using the developed
training images after excluding the cases that fail to meet the defined thresholds

The reservoir models illustrated in Figures 5.37 and 5.38 are the ones generated with
training images that meet the thresholds of the parameters defined in Section 5.3.1
(Table 5.9). So, these models are the ones that represent the original reservoir the
best. As a result, they can be used to history match the production data of the original

reServoir.

Table 5. 9. The training images that meet the thresholds of the parameters defined

Number of Number of Number of Z Amplitude
. Number of TIs
Channels waves slices level
3,4and 5 2,and 3 5,6,7,and 8 Medium 3x2x4=24
3,4,5,6,7,and 8 2,and 3 5,6,7,and 8 Low 6x2x4=48
Total number of training images = 72

Based on these findings a history matching workflow can be established. So, in order

to obtain the best history matching model for a fluvial channel reservoir the following
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workflow is proposed. First, the 3D training images reported in Table 5.9 are
generated as illustrated in Sections 4.6.1 and 4.6.2. Next, their corresponding
reservoir models are developed and run utilizing the MPG methodology proposed
(see Section 4.6.3). After that, an objective function for history matching is defined
using the water cut and bottom-hole pressure (BHP) of the production wells (Li and
Caers, 2011). After normalizing the water cut and BHP data the objective function is
used to computes the sum of the square differences between the observed (original)
and simulated data. The best matching model is the one with the smallest sum of the

square differences.

5.4 Porosity Uncertainty Impact on Reservoir Model

5.4.1 Porosity Uncertainty Modeling

The developed 50 Monte Carlo simulation (MCS) realizations of the porosity data
using the total coefficient of variation (Q.1) of 0.265 are evaluated by plotting their
histograms and variograms. This assessment is performed to confirm that the real
hard data are not disturbed by the introduced error. In case the data are disturbed by
the introduced error, the generated realizations do not represent the real hard data;

therefore, analyzing such data would be of no use.

The results show that the overall mean (i.e. 0.157) and distribution structure (i.e.
bimodal) of the real hard data are not disturbed by the uncertainty introduced (Figures
5.39 and 5.40, the other plots are given in the attached CD). In addition, the
variogram models of the realizations and the real hard data are similar (i.e.
exponential) (Figure 5.41 and 5.42, the other variograms are given in the attached
CD). As a result, the introduced error did not interrupt the autocorrelation of the real
hard data. So, the generated 50 MCS realizations represent the real hard data,
therefore, can be used to analyze the impact of that data uncertainty on reservoirs

modeled using the proposed MPG methodology.
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5.4.2 Analysis of Porosity Uncertainty Impact

In order to investigate the impact of the porosity uncertainty in the developed
reservoir model, the porosity realizations of the 50 Monte Carlo simulations (MCS)
generated earlier are used to simulate the original reservoir 50 times as explained in
Section 4.7.1. The OOIP and ROIP values of the new 50 reservoir models are
compared with those of the original reservoir. The results show that the OOIP and
ROIP values of all the new models underestimate the original results. As shown in
Figures 5.43 and 5.44 the OOIP and ROIP values of the generated reservoirs are in
the ranges (67,946 — 66,198) M STB and (51,467 — 50,143) M STB, respectively. The
corresponding percentage errors of these values with respect to those of the original

reservoir are both in the range (-4.586% — -7.041%) (Figures 5.43 and 5.44).

The reliability of the information acquired from only 50 MCS is checked by using the
percentage error as explained in Section 5.1. As expected the percentage error is
normally distributed, N (0.050157, 1.9959). The calculated probability values verify
that the results obtained with only 50 MCS are reliable. In other words, more MCS
will provide the same information obtained with only 50 realizations since the
probability of obtaining reservoirs having OOIP and ROIP within the limits of the
fitted normal distribution is 95% (Table 5.10).

101



71,500 ‘ 0.000
70,500
- -2.000
@ 69,500
G .
s 2
£ 68,500 67.946 4536 -4.000 5
8 67,500 - N pot——+
TN, sy ¢ P L 4 AR - -6.000
66,500 e L 4
66,198 -7.041
65,500 -8.000
0 10 20 30 40 50 60
Realization Number
@ Original Reservoir @ The 50 reservoir models generated

Figure 5. 43. The OOIP values of the 50 reservoir models generated using the 50 porosity
MCS and their percentage errors with respect to the OOIP of the original reservoir model
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Figure 5. 44. The ROIP values of the 50 reservoir models generated using the 50 porosity
MCS and their percentage errors with respect to the ROIP of the original reservoir model
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Table 5. 10. Probabilities of finding an error within or beyond the limits of the calculated
distribution using 50 MCS

Probability Value

P(x < —7.0410) 0.0186

P(x > —4.5865) 0.0312
P(=7.0410 < x < —4.5865) 0.9503

5.4.2.1 Analyzing the Impact of Different Porosity Uncertainty values

Aiming at investigating the effect of different uncertainty values on the prediction of
OOIP and ROIP values, the Q1 of 0.01, 0.02, 0.05, 0.10, and 0.15 are considered
and 30 MCS are performed for each case. The descriptive statistics of the considered
cases are given in Table 5.11. The results show that with 0.01 and 0.02 uncertainties
the OOIP and ROIP values are overestimated (Figures 5.45 and 5.46). The reason
behind that is the data are forced to be around the mean when these two small
uncertainty values are used. As a result, all the generated realizations fail to capture
the variability of the real hard data. The highest and lowest limits of the OOIP and
ROIP in each case and their corresponding percentage errors with respect to the

original reservoir model are reported in Table 5.12.

As the uncertainty increases from 0.01 to 0.15 the values of OOIP and ROIP are
moving from overestimation to underestimation. The reason behind that might be the
synthetic origin of the hard data, which are also uncertain. Thus, high and low
uncertainties in real world hard data not necessarily show the same respond.
However, the aim here is to examine the impact of hard data uncertainty in the
reservoir models, so, the results found show that a small uncertainty in the hard data
has a great impact in the simulated reservoir outputs. Thus, more time and money
should be devoted to decrease the uncertainty of collected hard data which facilitate

the simulation of more accurate reservoir models.
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Table 5. 11. Descriptive statistics of the porosity data generated using different coefficient of
variation (c.o.v) (i.e. uncertainty) values

mean StDev StDev StDev StDev StDev
for 1% for 2% for 5% for 10% | for 15%
Shale 0.074045 0.00074 | 0.001481 | 0.003702 | 0.007404 | 0.011107
Channel | 0.258696 | 0.002587 | 0.005174 | 0.012935 | 0.02587 | 0.038804
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Figure 5. 45. The OOIP and ROIP values corresponding to reservoir models generated using
different coefficient of variation (c.0.v) (i.e. uncertainty) values
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Figure 5. 46. The percentage errors in OOIP and ROIP values corresponding to reservoir
models generated using different coefficient of variation (c.0.v) (i.e. uncertainty) values with
respect to the original reservoir model

Table 5. 12. The highest and lowest limits for the OOIP and ROIP of the reservoir models
generated using different coefficient of variation (c.0.v) (i.e. uncertainty) values, and their

corresponding percentage errors with respect to the original reservoir model

OOIP (M STB) ROIP (M STB) % Error
Case Highest | Lowest | Highest | Lowest | Highest | Lowest
limit limit limit limit limit limit
1% c.o.v | 72,668 | 71,502 | 55,044 | 54,161 2.045 0.174
2% c.o.v | 72,373 | 71,239 | 54,820 | 53,961 1.630 0.038
5% cov | 71,873 | 70,782 | 54,442 | 53,616 | 0.921 -0.604
10% c.o.v | 71,228 | 69,533 | 53,953 | 52,670 | 0.022 -2.358
15% c.o.v | 69,607 | 68,240 | 52,725 | 51,690 | -2.254 -4.173

105



5.4.2.2 Analysis of Porosity Uncertainty Impact Utilizing Different Upscaling

Method

In this section the upscaling is performed using the median instead of the arithmetic
mean. So, the 1000 ASCII files of porosity data exported out of SGeMS in Section
4.3.3 are upscaled by taking the median of the data in each file instead of their
arithmetic mean. However, the median upscaling method outputs more
underestimating results than the arithmetic upscaling method (Figures 5.47). In other
words, the uncertainty of the results obtained with the median upscaling method is
larger than that of the ones obtained with the arithmetic upscaling method. The
maximum and minimum differences between the OOIP and ROIP values of the
reservoirs generated using the two upscaling methods are shown with black arrows in
Figures 5.47. The values of these differences for the OOIP are 7,618 M STB and
6,841 M STB, respectively. For the ROIP, in addition, they are 5,771 M STB and
5,182 M STB, respectively. The reason why the median upscaling method resulted in
smaller values than the arithmetic upscaling method is the bimodal structure of the
hard data. So, the use of median upscaling method is not appropriate for the present

study.
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Figure 5. 47. The OOIP and ROIP values corresponding to reservoir models generated with
50 MCS using both the median and average upscaling methods. The black arrows show the
maximum and minimum differences between the results of the upscaling methods
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CHAPTER 6

CONCLUSIONS

In this study the uncertainties of reservoir models generated using a proposed
multiple-point geostatistics based modeling methodology are analyzed and
quantified. The uncertainty types analyzed are the model related and parameter
related uncertainties. The former is the training image uncertainty while the latter is
the hard data uncertainty. In addition, the sensitivity of the proposed multiple-point
geostatistics modeling methodology is investigated. At the end of this research the

following concluding remarks are obtained:

e The proposed multiple-point geostatistics modeling methodology including
SNESIM algorithm allow good reproduction of the original reservoir with
confidence limits ranging between 3% and -2.4%. In other words, the proposed

method is producing accurate results with accuracy of about +3%.

e The proposed modeling methodology is sensitive to the variogram model used.
Thus, selection of the most representative variogram model should be given great
care. So, the choice of the variogram model should be based on the interpretation

of the available geological information.

e [t was found that 2D training images as well as 3D training image having up to 4
Z slices are not suitable for modeling 3D reservoirs. Then, based on the
investigation of other parameters’ impact on the reservoir model thresholds are
set. With these thresholds representative and reliable reservoir models are
obtained. The thresholds defined are 5 Z direction slices, 3 channels and 2

medium or low amplitudes waves in each channel. In addition, it was found that
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the training images meeting the thresholds defined produce more accurate results
if their channel proportions are higher. In other words, the higher the channel

proportion in a training image the more accurate the model outputs are.

As the number of channels and waves in a training image increase the uncertainty
of the simulated reservoir decreases. However, the increase in the number of Z
slices from 5 to 8 and in the amplitude level have no noticeable effect on the
uncertainty of the reservoir. So, it is unnecessary to generate training images with

more than 5 Z slides when modeling 3D reservoirs.

The number of channel in a training image, the amplitude level of their waves,
and the number of the Z slices in the training image have no defined effect on the
OOIP and ROIP. In other words, their effect is random. However, the amount of
the OOIP and ROIP are directly proportional to the number of waves in the

channels of the training image.

When reservoirs are modeled using all the constructed training images the OOIP
and ROIP are predicted with an uncertainty range of +1.549% - -0.345%.
However, this uncertainty range (i.e. +1.549 — -0.345) decreased by eliminating
the cases that are not meeting the parameters thresholds. As a result, the
uncertainty range of the OOIP and ROIP prediction is reduced to 0.382% -
0.104%. This verifies that the defined thresholds provide the most representative

reservoir models.

The training images that meet the thresholds of the parameters defined output the
most representative reservoir models. These models are used to establish a history
matching workflow to improve the accuracy of history matching models. So, the

present study assists the fields of reservoir history matching.
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The investigation of hard data uncertainty impact on reservoirs modeled using the
proposed multiple-point geostatistics methodology showed that a small
uncertainty in the hard data has a great impact on the simulated reservoir outputs.
For example, 1% uncertainty resulted in reservoirs having OOIP percentage
errors ranging between 2.045 and 0.174. Thus, more time and money should be
devoted to decrease the hard data uncertainty which facilitate the simulation of

more accurate reservoir models.
In the proposed multiple-point geostatistics modeling methodology if the hard

data have a bimodal structure the use of median upscaling method is inappropriate

since it results in erroneous reservoir models.

110



CHAPTER 7

RECOMMENDATIONS

Future studies should focus on:

Investigating more sources of uncertainty while modeling reservoirs with
multiple-point geostatistics techniques. Some sources of uncertainty are
variogram anisotropy, channel thickness and orientation.

Investigating the uncertainty associated with upscaling methods.

Developing a methodology that combines all sources of uncertainty in order to
quantify the total uncertainty of reservoirs modeled using the proposed multiple-
point geostatistics methodology.

Investigating the impact of high-amplitude-wave channels on reservoir by using
bigger-size training images

Verifying the findings of the present study with real case studies. For example,
the uncertainty of the synthetic porosity data in this study showed a great impact
on the original and recoverable oil in place values, therefore, real porosity data
could be used in future studies to verify such impact.

Developing a multiple-point geostatistics algorithm that includes a training image
generating option. This option should contain all the parameters defined in the
present study, so that users have complete control on the generation of the

training image.
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® Representing other reservoir structures with proper mathematical functions to
decrease the uncertainty associated for better multiple-point geostatistics
applications. For example, lens-type reservoirs could be represented with

ellipsoidal functions.
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APPENDIX A

PARAMETERS DESCRIPTION OF THE USED ALGORITHMS

1. Parameters Description of SNESIM Algorithm

The description of SNESIM algorithm parameters given here after is based on
the work of Remy et al. (2009). The SNESIM algorithm interface contains four
pages, namely: General, Conditioning, Rotation/Affinity, and Advanced (Figure A.1).

The parameters described here are the ones used in this study.

1. Simulation Grid Name: is the name of the grid where the simulation will take

place.

2. Property Name Prefix: is the prefix given by the user for the simulation output.
Then, a “_real#” suffix is added to the generated realization by the algorithm. “#”

is a number.

3. # of Realization: is the number of realization the user wishes to generate.

4. Seed: is a large odd integer to initialize the pseudo-random number generator.

5. Training Image (object and property):
® Object: the name of the grid containing the TI to be used.
® Property: the TI property which must be a categorical variable and must
have a value between “0” and “number of categories-1”. This parameter is

selected automatically one the user select the TI for the object parameter.

121



10.

11.

# of Categories: the number of categories contained in the TI used. If the TI

contains sand and non-sand categories then the # of categories is 2.

Target Marginal Distribution: are the target categories’ proportions and must
be ordered by starting from the proportion of the category “0” till that of the last
category, separating each two by a space. The sum of all target proportions must

be 1 otherwise SGeMS fail and shut in when the algorithm is run.

# of Nodes in Search Template: is the number of nodes contained in the search
template. The larger the value of this parameter, the better the simulation quality
if the used TI is large, but the more RAM memory is demanded. Usually, for a
fairly good realization generation 60 nodes for a 2D TI and 80 nodes for a 3D TI

are used.

Search Template Geometry (ranges and angels): these two parameters are
defining the size of the ellipsoid by which the neighboring conditioning data are
searched. The search ellipsoids are characterized by six parameters: three range
and three angels. The three ranges: max, med, and min stands for the dimensions
of the major axis, medium axis, and minor axis, respectively. The three angles are
the azimuth, dip, and rake. These angles account for the anisotropy of the
conditional data variogram. As a rule of thumb, the ranges of the searching
ellipsoid should have a value more than twice the range of the conditional data

variogram.

Hard Data (object): is the grid containing the hard data which is used as
conditioning data. The hard data object must be a point set. If the user whishes to
carry out an unconditional simulation then this object should be left as default

which is “None”.

Hard Data (property): is the property containing the categorical hard

conditioning data (e.g. well facies).
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12.

13.

14.

15.

16.

17.

18.

Use Probability Data Calibrated from Soft Data: this is selected when the user

is wishing to condition the simulation to soft data (e.g. seismic) too.

Soft Data (Choose Properties): use this to select the soft data categorical
properties. The order of the selected properties is very important. The property
should be ordered as in the Target Marginal Distribution box. Note that, it is not
possible to choose soft data properties unless they are given in the same

simulation grid selected for parameter “1”.

Tau Values for Training Image and Soft Data: are defined by the user to give
weights to the influence of TI and soft data on the conditional probabilities
calculated while generating a realization. The first tau value is for the TI (1})
while the second value is for the soft conditioning data (1,). The default values are
“l 1”7 which indicates the conditional independence of TI and soft data (Journel,
2002). More details of the tau expression are given in Krishnan (2005) and Remy
et al. (2009).

Vertical Proportion: is 1D grid with the number of cells in the X and Y
directions being 1 while the number of cells in the Z direction is the same as that
of the simulation grid. The default is “None” which means there is no vertical

proportion of the data used.

Use Azimuth Rotation: is to manage non-stationary simulations by rotating the

TI used. The default is not to use rotation.

Use Scaling: is to manage non-stationary simulations utilizing the affinity
concept. The default is not to use scaling. If scaling is required, then selecting the
“Use Global Affinity” box is an indication to scale the TI used with user-defined
constant factors (or affinity values).

Global Affinity Change: when the “Use Global Affinity” box is selected, three

Affinity values are input here for the X, Y, and Z directions, respectively. The
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19.

20.

21.

22.

23.

Affinity factor (f) changes the width of the simulated categories in a given
direction. If the affinity in a given direction is f, then the category width in that
direction becomes f times the original width (the width of that category in the

TI). So, the width of the simulated category increases with the increase of f.

Min # of Replicates: is the minimum number of training replicates of a certain
conditioning data event to be found in the search tree before retrieving its

conditional probability. The default is 1.

Servosystem Factor: is a parameter that controls the servosystem correction. It
takes a value between 0 and 1. The higher this parameter is, the closer the
proportions reproduced to the target marginal distribution proportions but, at a
cost of losing the structural information of facies (Liu, 2006). The default value is

0.5.

Re-simulation Threshold: The threshold value needed for re-simulation. When a
data event is not repeated enough in The TI, SNESIM algorithm drops one datum
from that event, and then repeats the search. The datum dropped is the one with
the largest distance from the center. The simulated nodes having a number of
dropped conditional nodes larger than the input threshold value are re-simulated
(Arpat, 2005).The default value is (-1) which means no re-simulation is

performed.

Re-simulation Iteration #: is the number of iteration to repeat the re-simulation
procedure. The default value is 1. To ignore this parameter the value should be set

to -1.

# of Multigrids: SNESIM algorithm discards any conditioning data that does not
fall within a given search template centered at a certain node. This spoils the

reproduction of long range correlation if the search template is small (Tran,
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24.

25.

26.

27.

28.

1994). Thus, the multi-grid approach of Tran (1994) is implemented in SNESIM

to compensate for the dropping of the furthest data values. The default value is 3.

Debug Level: this parameter controls the outputs in the simulation grid. It can
take three values (0, 1, and 2). When 0, which is the default value, is used only
the realization of the simulation is output. In the case of a 1 debug level, the
simulation generates two outputs, the realization and a map showing the number
of nodes dropped during the simulation. When this parameter is set to 2 the
simulation generates intermediate simulation results as well as the previous two

outputs.

Use Sub-grids: if selected, it divides the simulation nodes on the current multi-
grid into three groups that are simulated in sequence. For 3D simulations it is

strongly recommended to use this option.

Previously Simulated Nodes: is the number of nodes in a sub-grid to be used for

conditioning data. The default value is 4.

Use Regions: this option is used to perform simulation with the region concept. If

not selected, the simulation is carried over the entire grid.

Template Expansion (isotropic expansion): by selecting this option, the
isotropic expansion method is used to generate the series of cascaded search

templates and multiple grids.
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Figure A. 1. SNESIM algorithm interface
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2. Parameters Description of SGSIM Algorithm

The description of SGSIM algorithm parameters given here after is based on
the work of Remy et al. (2009). The SGSIM algorithm interface contains three pages,
namely: General, Data, and Variogram (Figure A.2). The parameters described here

are the ones used in this study.

1. Simulation Grid Name: is the name of the grid where the simulation will take

place.

2. Property Name Prefix: is the prefix given by the user for the simulation output.
Then, a “_real#” suffix is added to the generated realization by the algorithm. “#”

is a number.

3. Nb of Realization: is the number of realization the user wishes to generate.

4. Seed: is a large odd integer to initialize the pseudo-random number generator.

5. Kriging Type: there are four different options namely, Simple Kriging, Ordinary
Kriging, Kriging with Trends, and Kriging with Locally Varying Mean.

6. Hard Data:
¢ Object: the name of the grid containing the conditioning data.
e Property: the property containing the data that the user would like to

condition to.

7. Assign Hard Data to Simulation Grid: to relocate the hard data onto the
simulation grid. If the relocation fails, the algorithm does not proceed. The
advantage of this parameter is increasing the execution speed of the algorithm

significantly.
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10.

11.

12.

13.

Max Conditioning Data: the maximum number of data to be retain in the search

template.

Search Ellipsoid Geometry (ranges and angels): the same as in Section 1 of

this appendix.

Use Target Histogram: if selected it increases the speed of the algorithm
execution because the data are normal score transformed before the simulation,

then, the simulated field is retransformed to the original space.

Reference Distribution from: the location from where to select the reference

distribution.

Property with reference distribution (object and property): the object and its

property of which the reference distribution is used.

Variogram: either variogram model parameters are in put manually or loaded

from an existing variogram model using the available loading option.
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APPENDIX B

VARIOGRAM COMPUTATION

In SGeMS the variogram computation method depends on the grid type. The grid
type is either point-set or Cartesian grid. Thus, there are two variogram computing
methods in SGeMS. The hard data (facies) grid is a point-set grid while the simulated
realizations have Cartesian grids. Each of these grid types requires different
parameters to compute the experimental variogram. Descriptions of these parameters

are given in Remy et al. (2009).

1. Hard Data (Facies) Variogram

The following table list the parameters used to calculate the experimental variogram

of the point-set grid having the hard data.

Table B. 1. The parameters used to calculate the variogram of the point-set grid having the

hard data
Grid name Well_simple
Head and tail properties facies

Number of lag (see Section 1.1 below) 85
Lag separation 0.5

Lag tolerance 0.25
Number of directions 1

Azimuth/ dip/ tolerance/ bandwidth 0/0/91/100
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1.1 Lag Number Selection

A common rule of thumb is to restrict the Variography to half the diagonal of the data
extent. In a case of a 3D field there are four diagonals the smallest diagonal should be
used to checked whether the range is produced with it or not. If not then the second
smallest diagonal is checked. This is done until the range is seen in the experimental
variogram. The diagonal that is enough to produce the range is the one that should be

use. The diagonals of the reservoir grid used in this study are shown in Figure B.1.
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Figure B. 1. The Diagonals of the reservoir grid utilized in the present study
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V1502 + 2002

D, = =125
1 2
V1502 + 802
Dy=——— =85
2
V2002 + 802
Dy=————= 107.7

D, = |0P| = /|0C|? + |PC|?

But, loC| = \/|0D|? + |DC|?

So, 0P| = \/|0D|? + |DC|? + |PC|?

_ V1502 + 2002 + 802

= =131
2 2

2. Simulated Realizations Variogram

The following table list the parameters used to calculate the experimental variogram

of the Cartesian grid having the simulated realization of facies.

Table B. 2. The parameters used to calculate the variogram of the Cartesian grid having the
simulated realization of facies

Grid name Well_simple
Head and tail properties The realization simulated by SNESIM
Number of lag 85
Number of directions 1

1/1/1 (to compute the Omni-directional

x/y/z (see Section 2.1 below) variogram in 3D)
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2.1 Computation of the Omni-directional Variogram in 3D

|oP| = \/|DC|? + |0D|? + |PC|?

|OP| = /X% +y? + 22

|OE| X

cosa = =
|OP|  \[x2 +y2 + 22
cos f = |0D] _ y
0P| /x% +y2 + 22
0 |OF| z
cosf = =
So, if x=y=z=1
1
Then, cosa =cosf = cosf = ol 0.57735
1 o
And, a= p =6 =arccos = 54.736

So, if an Omni-directional variogram is to be used for a 3D grid, the x, y, and z are
selected as 1, 1, and 1, respectively. Then, the angles that the variogram vector makes

with all the direction is the same and it is 54.736°.
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APPENDIX C

PARAMETER FILES OF THE SIMULATION ALGORITHMS

1. SNESIM Algorithm Parameter File

<parameters> <algorithm name="snesim_std" />

<GridSelector_Sim value="grid" />

<Property_Name_Sim value="Hypothetical Original__with seed of 519175" />

<Nb_Realizations value="1"/>

<Seed value="519175" />

<PropertySelector_Training grid="training_image" property="data" />

<Nb_Facies value="2" />

<Marginal_Cdf value="0.546 0.454" />

<Max_Cond value="80" />

<Search_Ellipsoid value="212121 000" />

<Hard_Data grid="well_simple" property="facies" />

<Use_ProbField value="1" />

<ProbField_properties count="2" value="P(mudIseis);P(sandlseis)" />
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<TauModelObject value="1 1" />

<VerticalPropObject value="" />

<VerticalProperties count="0" value="" />

<Use_Global_Affinity value="1" />

<Global_Affinity value="2 10.5" />

<Affinity_property value="Hypothetical Original__with seed of 519175" />

<Affinity_categories value="222 111 050.50.5"/>

<Use_Local_Affinity value="0" />

<Use_Affinity value="1" />

<Use_Rotation value="0" />

<Cmin value="1" />

<Constraint_Marginal_ADVANCED value="0.5" />

<resimulation_criterion value="-1" />

<resimulation_iteration_nb value="1"/>

<Nb_Multigrids_ADVANCED value="1"/>

<Debug_Level value="0"/>

<Subgrid_choice value="1" />

<Previously_simulated value="4" />
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<expand_isotropic value="1" />

<expand_anisotropic value="0" />

<aniso_factor value="" />

<Region_Indicator_Prop value="P(mudlseis)" />

<Active_Region_Code value=""/>

<Use_Previous_Simulation value="0" />

<Use_Region value="0" />

</parameters>
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2. SGSIM Algorithm Parameter File

<parameters> <algorithm name="sgsim" />

<Grid_Name value="Estimated_Porosity" />

<Property_Name value="est_por_original reservoir" />

<Nb_Realizations value="1" />

<Seed value="14071789" />

<Kriging_Type value="Simple Kriging (SK)" />

<Assign_Hard_Data value="1" />

<Hard_Data grid="well_simple" property="porosity" />

<Max_Conditioning_Data value="25" />

<Search_Ellipsoid value="80 8080 000" />

<Use_Target_Histogram value="1" />

<nonParamCdf ref_on_file ="0" ref_on_grid ="1"

_nn

break_ties ="0" filename ="" grid ="well_simple" property ="porosity">

<LTI _type function ="No extrapolation" extreme ="0" omega ="3" />

<UTI_type function ="No extrapolation" extreme ="0" omega ="0.333" />

</monParamCdf>
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<Variogram nugget="0.04" structures_count="1" >

<structure_1 contribution="0.1895" type="Exponential" >

<ranges max="22" medium="21" min="8.1" />

<angles x="0" y="0" z="0" />

</structure_1>

</Variogram>

</parameters>
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APPENDIX D

DEVELOPED CODES

1. Python Code for Porosity Exporting

import sgems,nt
a=0
b=0
c=0
while ¢<10:
print a
print b
print ¢
a=a+1
lower_limit = (((a-1)%10)*15)
upper_limit = ((a%10)*15)
if upper_limit == 0:
upper_limit=150
def sgems2cmg(grid_name, prop_name, file_name, cmg_keyword, nx, ny, nz):
prop = sgems.get_property(grid_name, prop_name)
fid = open(file_name,'w")
index=0
for k in range((((c+1)*8)-1),(((c)*8)-1),-1):
for j in range((((b+1)*20)-1),((b*20)-1),-1):
for i in range(lower_limit,upper_limit):

index = i4j*nx+k*nx*ny
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fid.write(str(prop[index])+";")
index = index+1
fid.close()
sgems2cmg('Estimated_Porosity', 'est_por_original reservoir__real0', 'C:\porosity
values\cube_'+str((c*100)+a)+"txt', 'POR’, 150,200,80)
if a%10 ==0:
b=b+1
if a==100:
c=c+1
a=0
b=0

140



2. Visual Basic Code for Arithmetic Upscaling of Porosity Data

¢ pageCocitor I L, = ==

’ Select Directory ]

Prefix of the files (eg: cube_1.txt, Prefix="cube") cube ’ Start ]

| Language ofinstalled MS Office EXCEL EN -

Figure D. 1. Interface of the developed Visual Basic code for the arithmetic upscaling of
porosity data

The Code:

Imports Excel = Microsoft.Office.Interop.Excel
Public Class Form1

Public Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
Dim FolderBrowserDialogl As New FolderBrowserDialog

' Then use the following code to create the Dialog window
" Change the .SelectedPath property to the default location
With FolderBrowserDialogl

' Desktop is the root folder in the dialog.

.RootFolder = Environment.SpecialFolder.Desktop

" Select the C:\Windows directory on entry.

.SelectedPath = "C:\"

' Prompt the user with a custom message.

.Description = "Select the source directory"
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If .ShowDialog = DialogResult.OK Then
TextBox2.Text = .SelectedPath
' Display the selected folder if the user clicked on the OK button.
End If
End With
End Sub

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click

Dim xIApp As Excel.Application

Dim xIWorkBook As Excel.Workbook

Dim xIWorkSheet As Excel.Worksheet

Dim misValue As Object = System.Reflection.Missing.Value

xlApp = New Excel.Application
xIWorkBook = x]App.Workbooks.Add(misValue)

If ComboBox1.Text ="TR" Then
xIWorkSheet = xIWorkBook.Sheets("Sayfal")
Elself ComboBox1.Text = "EN" Then
xIWorkSheet = xIWorkBook.Sheets("Sheet1")
End If
Dim fileReader As String
Dim list, second
Dim sum
Dim i As Integer
Dim x_axis As Integer
Dim file As Double

X_axis =2
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For file =1 To 1000

sum =0

If file Mod 20 = 1 Then
X_axis =x_axis + 1

End If

fileReader = My.Computer.FileSystem.ReadAllText(TextBox2.Text + "\" +

TextBox1.Text + "_" & file & ".txt")

list = Split(fileReader, ";")

For i = 0 To UBound(list)
second = Replace(list(i), ".", ".")
sum += second * 1

PB.Value =file/ 10

Next
xIWorkSheet.Cells(x_axis, ((file - 1) Mod 20) + 1) = Replace(sum /
UBound(list), ",", ".")
Next

xIWorkSheet.SaveAs(TextBox2.Text + "\averages.xIsx")

xIWorkBook.Close()
x1App.Quit()

releaseObject(x1App)
releaseObject(xIWorkBook)
releaseObject(xIWorkSheet)

"mnn

MsgBox("Excel file created in " + TextBox2.Text + "\ as ""averages.xlsx""")

Process.Start("explorer.exe", TextBox2.Text)

End Sub

Private Sub releaseObject(ByVal obj As Object)
Try
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System.Runtime.InteropServices.Marshal.ReleaseComObject(obj)
obj = Nothing

Catch ex As Exception
obj = Nothing

Finally
GC.Collect()

End Try

End Sub

End Class
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3. Visual Basic Code to Convert Training Images into Binary Files Having

GSLIB Format

Imports System.IO
Public Class Form1

Public Function PureBW(ByVal image As System.Drawing.Bitmap, Optional
ByVal Mode As BWMode = BWMode.By_Lightness, Optional ByVal tolerance As
Single = 0) As System.Drawing.Bitmap

Dim x As Integer

Dim y As Integer

PictureBox2.Image = image

image = PictureBox2.Image

If tolerance > 1 Or tolerance < -1 Then
Throw New ArgumentOutOfRangeException
Exit Function

End If

Dim heightl As Integer

If 2 Mod image.Height = 1 Then
heightl = (image.Height- 1) /2

Else
height]l = image.Height / 2

End If

For y = image.Height - 1 To O Step -1
For x = 0 To image.Width - 1 Step 1
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Dim clr As Color = image.GetPixel(x, y)
If Mode = BWMode.By_RGB_Value Then
If (CInt(clr.R) + CInt(clr.G) + Clnt(clr.B)) > 383 - (tolerance * 383)
Then
image.SetPixel(x, y, Color.White)

Else
image.SetPixel(x, y, Color.Black)

End If
Else
If clr.GetBrightness > 0.5 - (tolerance / 2) Then
image.SetPixel(x, y, Color.White)

Else
image.SetPixel(x, y, Color.Black)

End If
End If
Next
ProgressBarl.Value = (1 - (y / (image.Height - 1))) * 100

Next
Button3.Enabled = True

Return image

End Function

146



Public Function PureBW_text(ByVal image As System.Drawing.Bitmap, Optional
ByVal Mode As BWMode = BWMode.By_Lightness, Optional ByVal tolerance As
Single = 0) As System.Drawing.Bitmap

Dim oWrite As System.IO.StreamWriter

Dim Path = TextBox1.Text

Dim search_Format As Array = Split(TextBox1.Text, ".")

Dim file_format As String

file_format = search_Format(UBound(search_Format))

Path = Replace(Path, file_format, "txt")

oWrite = File.CreateText(Path)

oWrite.WriteLine("GSLIB output file" & vbCrLf & "1" & vbCrLf & "data")

Dim x As Integer

Dim y As Integer

image = PictureBox2.Image

If tolerance > 1 Or tolerance < -1 Then
Throw New ArgumentOutOfRangeException
Exit Function

End If

Dim a As Integer = 0
For y = image.Height - 1 To O Step -1
For x = 0 To image.Width - 1 Step 1
a=a+1
Dim clr As Color = image.GetPixel(x, y)
If Mode = BWMode.By_RGB_Value Then
If (CInt(clr.R) + CInt(clr.G) + Clnt(clr.B)) > 383 - (tolerance * 383)
Then
oWrite.WriteLine("0.0")
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Else
oWrite.WriteLine("1.0")
End If
Else
If clr.GetBrightness > 0.5 - (tolerance / 2) Then

oWrite.WriteLine("0.0")
Else

oWrite.WriteLine("1.0")
End If
End If

Next
ProgressBarl.Value = (1 - (y / (image.Height - 1))) * 100

Next
oWrite.Close()

Return image

End Function
Enum BWMode
By_Lightness
By_RGB_Value
End Enum

Public Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click
Dim OpenFileDialogl As New OpenFileDialog
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" Then use the following code to create the Dialog window

' Change the .SelectedPath property to the default location

With (OpenFileDialogl)

.Title = "Select the image file"
If .ShowDialog = DialogResult.OK Then
TextBox1.Text = .FileName
Dim filename = .SafeFileName
Dim initial_image = TextBox1.Text
Try
Dim img As System.Drawing.Image =
System.Drawing.Image.FromFile(initial_image)
Catch generatedExceptionName As OutOfMemoryException
' Image.FromFile throws an OutOfMemoryException
"if the file does not have a valid image format or
' GDI+ does not support the pixel format of the file.
MsgBox("An error occured while loading your file: Please be sure file is
an image file.", MsgBoxStyle.Critical, "Error!")
Exit Sub
End Try
' Display the selected folder if the user clicked on the OK button.
PictureBox1.Image = New System.Drawing.Bitmap(TextBox1.Text)
Button3.Enabled = False
Else

End If

End With
End Sub
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Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click
Dim conv_meth As String
Dim initial_image = TextBox1.Text
conv_meth = ComboBox1.Text
If conv_meth = "By_RGB_Value" Then
Me.PictureBox2.Image = PureBW(Me.PictureBox1.Image,
BWMode.By_RGB_Value, (TextBox2.Text / 100))
Elself conv_meth = "By_Lightness" Then
Me.PictureBox2.Image = PureBW(Me.PictureBox1.Image,
BWMode.By_Lightness, (TextBox2.Text / 100))
End If
Me.PictureBox 1.Image = New System.Drawing.Bitmap(TextBox1.Text)
End Sub
Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button3.Click
Dim conv_meth As String
Dim initial_image = TextBox1.Text
conv_meth = ComboBox1.Text
If conv_meth = "By_RGB_Value" Then
Me.PictureBox2.Image = PureBW_text(Me.PictureBox 1.Image,
BWMode.By_RGB_Value, (TextBox2.Text / 100))
Elself conv_meth = "By_Lightness" Then
Me.PictureBox2.Image = PureBW_text(Me.PictureBox1.Image,
BWMode.By_Lightness, (TextBox2.Text / 100))
End If

End Sub
End Class
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4. Visual Basic Code to Perform MCS for the Clustered Porosity Hard Data

Sub SheetFunctions() ' This code generates 50 MCS for each datum of the available
4320 porosity data having a bimodal distribution. The mean and standard deviation of
the shale (non-reservoir) group of data are in cells C2 and C3, respectively.
Similarly, the mean and standard deviation of the channel (reservoir) group of data

are in cells C5 and C6, respectively.

Fori=0To 4319

For j =0 To 49

If (CellsG + 2, "A").Value() <= 0.147) Then Cellsi + 6, j + 7) =
WorksheetFunction.NormInv(Rnd(), Cells("4", "D").Value(), Cells("4", "E")) Else
Cells(i + 6, j + 7) = WorksheetFunction.NormInv(Rnd(), Cells("5", "D").Value(),
Cells("5", "E"))

‘Where 0.147 is the largest data in shale group of data

If Cells(i + 6, j + 7) < 0 Then Cells(i + 6, j + 7) = 0 'this line is because porosity

can not take negative values

Next

Next

End Sub
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5. Visual Basic Code to Extract the MCS Realizations From Excel into Text Files

of the GSLIB Format

The extraction of data must be in a new sheet where the first three columns are set as

follows:

well_simple
4
X
Y
YA

Porosity

Input X
coordinates of
the porosity hard | Y coordinates | Z coordinates
data starting
from this cell

v v v

In addition, the simulated 50 realizations must be copied and pasted starting from cell

L7

The code:

Sub columbfix() 'This code is developed to extract the MCS realizations from Excel
into text files.
realization_number = 1 "This number should be change manually for each

realization

realization_number = realization_number - 1

For 1 =0 To realization_number
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Sheetl.Range(Cells(7, i + 12), Cells(4326, i + 12)).Copy 'Note that the
number of the sheet here and in the following line must be correct for the code to

work

Sheetl.Range(Cells(7, "D"), Cells(4326, "D")).PasteSpecial Transpose:=False

Next

Dim fs As Object, a As Object, s As String

Set fs = CreateObject("Scripting.FileSystemObject")

Set a = fs.CreateTextFile("C:\realization-" & realization_number + 1 & ".txt",
True) 'Add the exporting location after "C:" and note that the text after the last "\" is
given as the file name before the number (in this case "realization")

i=1

While Not IsSEmpty(Cells(i, 1))

s=s & Cells(i, 1) & " " & Cells(i, 2) & " " & Cells(i, 3) & " " & Cells(i, 4) &
vbCrLf

i=i+1
Wend
a.WriteLine s
a.Close

End Sub
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6. Visual Basic Code for Arithmetic And Median Upscaling of Porosity Data

& Average Calculator | = i

l Select Directory ]

Prefix of the files (eg: cube_1.bd, Prefic="cube"} cyhe

Calculation Method  [[EREET H

Averaie
Language of installed MS Office EXCEL

| | Start

Figure D. 2. Interface of the upscaling Visual Basic code using the average or median
porosity

The code:

Imports Excel = Microsoft.Office.Interop.Excel
Public Class Form1

Public Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
Dim FolderBrowserDialogl As New FolderBrowserDialog

' Then use the following code to create the Dialog window
' Change the .SelectedPath property to the default location
With FolderBrowserDialogl

' Desktop is the root folder in the dialog.

.RootFolder = Environment.SpecialFolder.Desktop

" Select the C:\Windows directory on entry.

.SelectedPath = "C:\"
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' Prompt the user with a custom message.
.Description = "Select the source directory"
If .ShowDialog = DialogResult.OK Then
TextBox2.Text = .SelectedPath
' Display the selected folder if the user clicked on the OK button.

End If
End With
End Sub

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click

Dim x1App As Excel.Application

Dim xIWorkBook As Excel.Workbook

Dim xIWorkSheet As Excel.Worksheet

Dim misValue As Object = System.Reflection.Missing.Value

xlApp = New Excel.Application
xIWorkBook = x]1App.Workbooks.Add(misValue)

If ComboBox1.Text = "TR" Then
xIWorkSheet = xIWorkBook.Sheets("Sayfal")
Elself ComboBox1.Text = "EN" Then
xIWorkSheet = xIWorkBook.Sheets("Sheet1")
End If

Dim fileReader As String

Dim list, first, second

Dim sum, median
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Dim i As Integer
Dim x_axis As Integer
Dim file As Double
Dim sorting As New ArrayList()
X_axis =2
For file =1 To 1000
sum =0

median =0

If file Mod 20 = 1 Then
X_axis =x_axis + 1
End If
fileReader = My.Computer.FileSystem.ReadAllText(TextBox2.Text + "\" +
TextBox1.Text + "_" & file & ".txt")
list = Split(fileReader, ";")
If ComboBox2.Text = "Average" Then
For i = 0 To UBound(list)
second = Replace(list(i), ".", ".")
sum += second * 1

PB.Value =file / 10

Next
xIWorkSheet.Cells(x_axis, ((file - 1) Mod 20) + 1) = Replace(sum /
UBound(list), ",", ".")
Else

Fori=0To 2399

nn o onn

second = Replace(list(i), ".", ".")
sorting.Add(second * 1)

PB.Value = file / 10
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Next

sorting.Sort()

it calculates 1199 and 1200 because array starts from 0, not 1
median = (sorting(1199) + sorting(1200)) / 2
xIWorkSheet.Cells(x_axis, ((file - 1) Mod 20) + 1) = Replace(median, ",",
"y
sorting.RemoveRange(0, 2399)
End If

Next

If ComboBox2.Text = "Average" Then
xIWorkSheet.SaveAs(TextBox2.Text + "\laverages.xIsx")
xIWorkBook.Close()

x1App.Quit()

releaseObject(x1App)
releaseObject(xIWorkBook)
releaseObject(xIWorkSheet)

MsgBox("Excel file created in " + TextBox2.Text + "\ as ""!averages.xlsx""")
Process.Start("explorer.exe", TextBox2.Text)

Else
xIWorkSheet.SaveAs(TextBox2.Text + "\!median.xlsx")
xIWorkBook.Close()

x1App.Quit()

releaseObject(x1App)
releaseObject(xIWorkBook)
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releaseObject(xIWorkSheet)

MsgBox("Excel file created in " + TextBox2.Text + "\ as ""!median.xIsx""")
Process.Start("explorer.exe", TextBox2.Text)

End If

End Sub

Private Sub releaseObject(ByVal obj As Object)

Try
System.Runtime.InteropServices.Marshal.ReleaseComObject(obj)
obj = Nothing

Catch ex As Exception
obj = Nothing

Finally
GC.Collect()

End Try

End Sub

End Class
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1. PVT and Relative Permeability Data

APPENDIX E

CMG DATA OF THE ORIGINAL RESERVOIR

Table E. 1. PVT data

Solution

Formation

Gas

. . Oil Gas
l(’r;s(sm:)e g?s-((nl) £ V(t)lm?lf ) :xptans(lol; viscosity viscosity
S1 ratio (rs actor 0 actor (e . .

P (SCF/STB) | (rbb/STB) (SCF/rb%) (viso) (cp) | (visg) (cp)
14.7 1.0 1.0620 0.1667 6.0 1.0400
264.7 90.5 1.1500 0.0121 82.7 0.9750
514.7 180.0 1.2070 0.0063 159.0 0.9100
1014.7 371.0 1.2950 0.0032 313.0 0.8300

2014.7 636.0 1.4350 0.0016 620.0 0.6950
2514 775.0 1.5000 0.0013 773.0 0.6410

3014.7 930.0 1.5650 0.0011 926.0 0.5940

4014.7 1270.0 1.6950 0.0008 1233.0 0.5100

5014.7 1600.0 1.8270 0.0007 1541.0 0.4490

9014.7 2984.0 2.3570 0.0004 2591.0 0.2030
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Table E. 2. Water - oil relative permeability

Sw Krw Krow
0.13 0 1
0.191 0.0051 0.999
0.25 0.0102 0.769
0.294 0.0168 0.7241
0.357 0.0275 0.6206
0.414 0.0424 0.504
0.49 0.0665 0.3714
0.577 0.097 0.3029
0.63 0.1148 0.1555
0.673 0.1259 0.0956

Table E. 3. Liquid - gas relative permeability

S1 Krg Krog

0.2 0.17 0
0.395 0.112 0.0294
0.433 0.1022 0.0461
0.515 0.0855 0.0883
0.569 0.0761 0.1172
0.614 0.0654 0.1433
0.663 0.05 0.1764
0.719 0.0372 0.217
0.75 0.0285 0.2255
0.805 0.0195 0.2919
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2. CMG Data File

skt sk sk sk sk st skt sk sk sk sk skt sk sk sk s sk skt sk skeosk sk skt sk skeoske sk sk sk skoske sk skt sk skt sk skt sk skt skt skt sk skt sk sk skok skok

K3k kek
ok Hypothetical Model by Mohamed Fadlelmula ok
K3k kek
K3k kek
Hok Middle East Technical University, ko
ok Department of Petroleum and Natural gas Engineering, ok
ko Ankara, Turkey Hok
K3k kek

skt sk sk sk sk st sk sk sk sk sk skt sk skeoske sk skt sk skoske sk skt sk skoske sk skt sk skoske sk skt sk skt sk skt sk skt skt skt sk sk skeokeoskoskok skok

ok INPUT/OUTPUT CONTROL
**2012-03-01, 6:17:58 PM, M
RESULTS SIMULATOR IMEX 200600
*TITLEI 'Original Reservoir Model'
*INUNIT  *FIELD ** All the data values are in field units
*OUTUNIT *FIELD
*INTERRUPT *STOP
*MAXERROR 20 ** Maximum error number, this is the default value
*WRST  *TIME
*WPRN  *GRID *TIME
*OUTPRN  *GRID *All  ** OUTPRN is to print the data on the screen while
the simulation is going on
**(for each time step, if it is written after defining time step)

*OUTSRF *GRID *All ** OUTSRF is to print the data in output file
ok GRID AND RESERVOIR DEFINITION
*GRID *CART 1010 10 ** CART indicates a rectangular Cartesian grid, with
uniform depth/uniform thickness layers
*KDIR *DOWN ** First layer at the top of the reservoir
*DI  *CON 500 ** Dimension of I direction blocks is constant for each
block as 500 ft so in total it is

** approximately 5000 ft = 1500 m = 1.5 km
*DJ  *CON 1640 ** Dimension of J direction blocks is constant for each
block as 1640 ft so in total it is

** approximately 16400 ft = 5000 m = 5 km
*DK *CON 8 ** Dimension of K direction blocks is constant for each
block as 8 ft so in total it is

** 80 ft (16 of it water, so 64 ft is oil)
*DTOP 100*5000 ** Top of the grids in (ft) is 5000
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*% 100 is the number of grids in the upper layer (i.e. 101 x 10j)

**§$ Property: NULL Blocks Max: 1 Min: 1

*%§ 0 = null block, 1 = active block

NULL CON 1

*NOLIST

file is not listed from the
** point of the *NOLIST keyword until a *LIST keyword or

the end of data file is reached

** NOLIST keyword is inserted in the data file, the data

*POR  *All

Here the simulated and upscaled 1000 porosity data are placed

skeoskeoste sk sk st sk skt sk skt seoskeoste soskosie skoskosie skoskeoste skoskosie skoskosie skoskoste skoskosie skoskoste skoskoste skt skoskote skt skt skt skokok koo skokor sk
*PERMI *All

Here the 1000 permeability data corresponding to the above 1000 porosity data are
placed

PERMJ EQUALSI

PERMK EQUALSI

**§ Property: Pinchout Array Max: 1 Min: 1
**§ ( = pinched block, 1 = active block

PINCHOUTARRAY CON 1
*LIST
ok OTHER RESERVOIR PROPERTIES

***THTYPE *con 1 ** Unless you have multiple rock types, you do not need
*ROCKTYPE or * THTYPE
*CPOR 3.0E-6  ** Rock (or formation) compressibility 1/Psi
*PRPOR 14.7 ** Reference pressure, this pressure is the fluid (pore) pressure at
which the values input using *POR are

** to hold, in(psi)

Hek FLUID DEFINITIONS

*MODEL *BLACKOIL ** A black-oil model, modeling flow of oil, water, and

gas.

*PVT
**p rs bo eg viso visg
14.7000 1.00000  1.06200 6.00000 1.04000 0.0080000
264.700 90.50000 1.15000 82.70000 0.9750000  0.0096000
514.700 180.000  1.20700 159.000 0.9100000 0.0112000
1014.700 371.000  1.29500 313.000 0.8300000 0.0140000
2014.700 636.000  1.43500 620.000 0.6950000 0.0189000
2514.000 775.000  1.50000 773.000 0.6410000 0.0208000
3014.700 930.000  1.56500 926.000 0.5940000 0.0228000
4014.700 1270.000  1.69500 1233.000  0.5100000 0.0268000
5014.700 1600.000  1.82700 1541.000  0.4490000 0.0309000
9014.700 2984.000 2.35700 2591.000  0.2030000 0.0470000
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*DENSITY *OIL 46.244 **in lbm/ft3
*DENSITY *GAS  0.0647 **in lbm/ft3
*DENSITY *WATER 62.238 ** in lbm/ft3

*CO 9.1512E-6 ** Oil Compressibility at the corresponding pressure in
1/Psi

*CVO 4.6000E-5 ** Pressure dependence of the viscosity curve for oil
above the bubble point pressure in cp/psi

*BWI 1.0410 ** The water formation volume factor (for PVT region) in
RB/STB

*CW  3.0E-6 ** Water compressibility (for a PVT region) in 1/Psi

*REFPW 14.7 ** Reference pressure (for a PVT region) in Psi

*VWI 0.96 ** Viscosity of water phase at the reference pressure pw in
cp

*CVW 0.0 ** Pressure dependence of water viscosity (viscosity

units/pressure units) in cp/psi
**§ Property: PVT Type Max: 1 Min: 1

PTYPE CON 1

ok ROCK-FLUID PROPERTIES

*ROCKFLUID

*RPT 1 ** Indicates that this set of relative permeability curves will be defined
by table entries

*SWT ** Indicates the start of the water-oil relative permeability table

** Sw Krw Krow

sk

0.490 0.0665  0.3714

0.577 0.097 0.3029
0.630 0.1148  0.1555
0.673 0.1259  0.0956
0.719 0.1381 0.0576
0.789 0.1636 0.0
1.0 1.0 0.0
*SLT ** Indicates the start of a liquid-gas relative permeability table dependent

on liquid saturation
** SL is the total liquid saturation (fraction)
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RN Krg  Krog

ok
0.200 0.17 0.0
0395 0.112 0.0294
0.433  0.1022 0.0461
0.515 0.0855 0.0883
0.569 0.0761 0.1172
0.614 0.0654 0.1433
0.663 0.05 0.1764
0.719 0.0372  0.217
0.750  0.0285 0.2255
0.805 0.0195 0.2919
0.850 0.0121 0.3373
0.899 0.0026 0.5169
1.0 00 1.0

ok INITIAL CONDITIONS
*INITIAL
*VERTICAL *BLOCK_CENTER *WATER_OIL_GAS  ** Use vertical

equilibrium calculation.

*PB *CON 4014.7 ** Bubble point pressure

*REFDEPTH 5000 ** A reference depth

*REFPRES 4800 ** Associated pressure.

*DWOC 5064 ** Depth to water-oil contact

*DGOC 4000 ** Depth to gas-oil contact (the gas is kept out of the
calculation for simplicity)
ok NUMERICAL CONTROL
*NUMERICAL

** All these can be defaulted because the defaults used in the numerical solution
techniques provide a good and efficient solution

** to most simulation problems.(Here the default values are used)
*DTMAX 121.0 ** A real number to specify the maximum time-step size
allowed, if it is not present in the input-data-file,

** then the maximum time step size is 365 days

*ITERMAX 60 **ITERMAX is used to specify the maximum number of
iterations allowed in the Jacobian matrix solution routine

*MAXSTEPS 100 ** Maximum number of time steps

**NORM *PRESS 1000.0 ** Normal maximum changes per time step
**NORM *SATUR 0.20

**AIM *THRESH 0.25 .25 ** Use threshhold switching criteria

**NCUTS 6 ** Controls the number of time-step size cuts allowed in a single

time step, If it does not appear in the data set, then the default is 4 cuts
*RUN
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ok RECURRENT DATA

DATE 19921 1 ** Simulation starting date

>I<>I<$

WELL 'Well-1'

PRODUCER 'Well-1' ** Define the type of well.

*OPERATE *MAX *STO 1478 *CONT ** Initially, operate on a rate

constraint.
*OQPERATE *MIN *BHP 50.0 *CONT *REPEAT ** If the BHP falls below 50
psi, switch to bottomhole pressure constraint.
** The (REPEAT) subkeyword specifies that if the
constraint is violated, the timestep
** should be repeated after switching to operating on
the violated constraint.
*EE rad geofac wfrac skin
GEOMETRY K 0.375 0.249 1. 0.
PERF GEO '"Well-1'
*#§ UBA ff Status Connection
331 OPEN FLOW-TO 'SURFACE' REFLAYER
332 OPEN FLOW-TO 1
333 OPEN FLOW-TO
334 OPEN FLOW-TO
335 OPEN FLOW-TO
336 OPEN FLOW-TO
337 OPEN FLOW-TO
338 1. OPEN FLOW-TO
LAYERXYZ 'Well-1'
**§ perf geometric data: UBA, block entry(x,y,z) block exit(x,y,z), length
331 1250.000000 4100.000000 5000.008000 1250.000000 4100.000000
5007.992000 8.000000
3 32 1250.000000 4100.000000 5008.008000 1250.000000 4100.000000
5015.992000 8.000000
3 33 1250.000000 4100.000000 5016.008000 1250.000000 4100.000000
5023.992000 8.000000
334 1250.000000 4100.000000 5024.008000 1250.000000 4100.000000
5031.992000 8.000000
335 1250.000000 4100.000000 5032.008000 1250.000000 4100.000000
5039.992000 8.000000
336 1250.000000 4100.000000 5040.008000 1250.000000 4100.000000
5047.992000 8.000000
337 1250.000000 4100.000000 5048.008000 1250.000000 4100.000000
5055.992000 8.000000
3 38 1250.000000 4100.000000 5056.008000 1250.000000 4100.000000
5063.992000 8.000000
>I<>I<$
WELL 'Well-2'

— ke
NN DR W
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PRODUCER "Well-2'
*OPERATE *MAX
constraint.

*STO 2217

*CONT

*OPERATE *MIN *BHP 50.0 *CONT *REPEAT

>I<>I<$

rad geofac wfrac skin

GEOMETRY K 0.375 0.249 1. 0.

PERF GEO 'Well-2'
**$ UBA
661
662
663
664
665
666

OPEN
OPEN
OPEN
OPEN
OPEN
OPEN

667 OPEN

668 1. OPEN
LAYERXYZ 'Well-2'

pt ek ek e ek e ek

ff Status Connection
FLOW-TO
FLOW-TO
FLOW-TO
FLOW-TO
FLOW-TO
FLOW-TO
FLOW-TO
FLOW-TO

NN B W

'‘SURFACE' REFLAYER

** Initially, operate on a rate

**§ perf geometric data: UBA, block entry(x,y,z) block exit(x,y,z), length

6 6 1 2750.000000
5007.992000 8.000000
6 6 2 2750.000000
5015.992000 8.000000
6 6 3 2750.000000
5023.992000 8.000000
6 6 4 2750.000000
5031.992000 8.000000
6 6 5 2750.000000
5039.992000 8.000000
6 6 6 2750.000000
5047.992000 8.000000
6 6 7 2750.000000
5055.992000 8.000000
6 6 8 2750.000000
5063.992000 8.000000
*kG
WELL 'Well-3'
PRODUCER 'Well-3'

*OPERATE *MAX *STO 3694

constraint.

*OPERATE *MIN *BHP 50.0
rad geofac wfrac skin

>I<>I<$

9020.000000

9020.000000

9020.000000

9020.000000

9020.000000

9020.000000

9020.000000

9020.000000

GEOMETRY K 0.375 0.249 1. 0.

PERF GEO 'Well-3'

**§ UBA ff Status Connection

991 1. OPEN

*CONT

5000.008000

5008.008000

5016.008000

5024.008000

5032.008000

5040.008000

5048.008000

5056.008000

*CONT

166

*REPEAT

2750.000000

2750.000000

2750.000000

2750.000000

2750.000000

2750.000000

2750.000000

2750.000000

FLOW-TO 'SURFACE' REFLAYER

9020.000000

9020.000000

9020.000000

9020.000000

9020.000000

9020.000000

9020.000000

9020.000000

** Initially, operate on a rate



992 1. OPEN FLOW-TO 1
993 1. OPEN FLOW-TO 2
994 1. OPEN FLOW-TO 3
995 1. OPEN FLOW-TO 4
996 1. OPEN FLOW-TO 5
997 1. OPEN FLOW-TO 6
998 1. OPEN FLOW-TO 7

LAYERXYZ 'Well-3'

**§ perf geometric data:

991 4250.000000
5007.992000 8.000000
992 4250.000000
5015.992000 8.000000
9 9 3 4250.000000
5023.992000 8.000000
99 4 4250.000000
5031.992000 8.000000
995 4250.000000
5039.992000 8.000000
99 6 4250.000000
5047.992000 8.000000
997 4250.000000
5055.992000 8.000000
9 9 8 4250.000000
5063.992000 8.000000
WSRF GRID TNEXT
*DATE 1993 01 01
WSRF GRID TNEXT
*DATE 1994 01 01
WSRF GRID TNEXT
*DATE 1995 01 01
WSRF GRID TNEXT
*DATE 1996 01 01
WSRF GRID TNEXT
*DATE 1997 01 01
WSRF GRID TNEXT
*DATE 1998 01 01
WSRF GRID TNEXT
*DATE 1999 01 01
WSRF GRID TNEXT
*DATE 2000 01 01
WSRF GRID TNEXT
*DATE 2001 01 01
WSRF GRID TNEXT
*DATE 2002 01 01

UBA, block entry(x,y,z) block exit(x,y,z), length

13940.000000

13940.000000

13940.000000

13940.000000

13940.000000

13940.000000

13940.000000

13940.000000

5000.008000

5008.008000

5016.008000

5024.008000

5032.008000

5040.008000

5048.008000

5056.008000
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4250.000000

4250.000000

4250.000000

4250.000000

4250.000000

4250.000000

4250.000000

4250.000000

13940.000000

13940.000000

13940.000000

13940.000000

13940.000000

13940.000000

13940.000000

13940.000000



WSRF GRID TNEXT
*DATE 2003 01 01
WSRF GRID TNEXT
*DATE 2004 01 01
WSRF GRID TNEXT
*DATE 2005 01 01
WSRF GRID TNEXT
*DATE 2006 01 01
WSRF GRID TNEXT
*DATE 2007 01 01
WSRF GRID TNEXT
*DATE 2008 01 01
WSRF GRID TNEXT
*DATE 2009 01 01
WSRF GRID TNEXT
*DATE 2010 01 01
WSRF GRID TNEXT
*DATE 2011 01 01
WSRF GRID TIME
*DATE 2012 01 01

*STOP **History run ends here
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